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Abstract: Recently, many approaches have been proposed to manage sensor data using semantic
web technologies for effective heterogeneous data integration. However, our empirical observations
revealed that these solutions primarily focused on semantic relationships and unfortunately paid less
attention to spatio—temporal correlations. Most semantic approaches do not have spatio—temporal
support. Some of them have attempted to provide full spatio-temporal support, but have poor
performance for complex spatio—temporal aggregate queries. In addition, while the volume of
sensor data is rapidly growing, the challenge of querying and managing the massive volumes of
data generated by sensing devices still remains unsolved. In this article, we introduce EAGLE, a
spatio—temporal query engine for querying sensor data based on the linked data model. The ultimate
goal of EAGLE is to provide an elastic and scalable system which allows fast searching and analysis
with respect to the relationships of space, time and semantics in sensor data. We also extend SPARQL
with a set of new query operators in order to support spatio-temporal computing in the linked sensor
data context.

Keywords: internet of things; graph of things; linked stream data; linked sensor data; semantic web;
sensor network; spatial data; temporal RDF; RDF stores

1. Introduction

The internet of things (IoT) is the network of physical objects embedded with sensors that are
enabling real-time observations about the world as it happens. With estimates of there being 50
billion connected objects by 2020 [1], there will be an enormous amount of sensor observation data
being continuously generated per second. These sensor observation data sources, in combination
with existing data and services on the internet, are enabling a wide range of innovative and valuable
applications and services in smart cities, smart grids, industry 4.0, intelligent transportation systems,
etc. To be able to extract, meaningful information from heterogeneous sensor data sources in a
variety of formats and protocols, the semantic web community has extended the Resource Description
Framework (RDF) data model that has been widely used for representing web data, to connect dynamic
data streams generated from IoT devices, e.g., sensor readings, with any relevant knowledge base,
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in order to create a single graph as an integrated database serving any analytical queries on a set of
nodes/edges of the graph [2-5]. However, most current approaches using the RDF data model for
managing sensor data, called linked sensor data, assume that RDF stores are able to handle queries on
rapidly updating data streams in conjunction with massive volumes of data.

Data generated by sensors is also providing a meaningful spatio-temporal context, i.e., they are
produced in specific locations at a specific time. Therefore, all sensor data items can be represented in
three dimensions: the semantic, spatial and temporal dimensions. Consider the following example:
“What was the average temperature during the past 30 min for Dublin city?”. This simple example
poses an aggregate query across weather temperature readings from all weather stations in Dublin
city. In this example, the semantic dimension describes the average temperature for Dublin city.
The spatial dimension describes the place (Dublin city). The temporal dimension describes the time
when the temperature values were generated (within the past 30 min). Unfortunately, supporting
such multidimensional analytical queries on sensor data is still challenging in terms of complexity,
performance, and scalability. In particular, these queries imply heavy aggregation on a large number
of data points along with computation-intensive spatial and temporal filtering conditions. Moreover,
the high update frequency and large volume natures of our targeted systems (around ten thousand
updates per second on billions of records already in the store) will increase the burden of answering
the query within some seconds or milliseconds. On top of that, by their nature, such systems need to
scale to millions of sensor sources and years of data.

Motivated by such challenges, in this article, we present EAGLE, a scalable spatio—temporal query
engine, which is able to index, filter, and aggregate a high throughput of sensor data together with
a large volume of historical data stored in the engine. The engine is backed by distributed database
management systems, i.e., OpenTSDB for temporal data and ElasticSearch for spatial data, and allows
us to store a billion data points and ingest a large number of records per second while still being able
to execute a spatio—temporal query in a timely manner. In summary, our contributions are as follows:

1. A proposed distributed spatio-temporal sub-graph partitioning solution which significantly
improves spatio-temporal aggregate query performance.

2. Animplementation of a comprehensive set of spatial, temporal and semantic query operators
supporting computation of implicit spatial and temporal properties in RDF-based sensor data.

3. Anextensive performance study of the implementation using large real-world sensor datasets
along with a set of spatio-temporal benchmark queries.

The remainder of the article is organized as follows. In Section 2, we review related work on
current solutions in existence. Section 3 describes the EAGLE engine architecture. The spatio—temporal
storage model is given in Section 4. In Section 5, we present our spatio—temporal query language
support through a series of examples. Section 6 elaborates on the implementation of our engine and
its infrastructure to store and query sensor data. An experimental evaluation of this implementation
follows in Section 7. Finally, we conclude and discuss future work in the last section.

2. Background and Related Work

2.1. Sensor Ontologies

During the last decade, an extensive amount of ontologies have been proposed, which aim to
address the challenge of modeling a sensor network and its data, and also to tackle the heterogeneity
problems associated with the hardware, software, and the data management aspect of sensors. More
precisely, they provide a means to semantically describe the sensor networks, the sensing devices,
the sensor data, and enable sensor data fusion.

The state-of-the-art approach in this area is the work from the Open Geospatial Consortium
Sensor Web Enablement (OGC SWE) working group [6]. They have specified a number of standards
that define formats for sensor data and metadata as well as sensor service interfaces. These standards
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allow the integration of sensor and sensor networks into the web, in what is called the sensor web.
In particular, they provide a set of standard models and XML schema for metadata descriptions of
sensors and sensor systems, namely the SensorML [7] and observations and measurements (O&M)
models for data observed or measured by sensors [8,9]. A lack of semantic compatibility, however, is
the primary barrier to realizing a progressive sensor web.

In [10], Amit et al. propose the semantic sensor web (SSW) that leverages current standardization
efforts of the OGC SWE in conjunction with the semantic web activity of the World Wide Web
Consortium W3C (www.w3.org/2001/sw/) to provide enhanced descriptions and meaning to sensor
data. In comparison with the sensor web, the SSW addresses the lack of semantic compatibility
by adding semantic annotations to the existing SWE standard sensor languages. In fact, these
improvements aim to provide more meaningful descriptions to sensor data than SWE alone. Moreover,
the SSW acts as a linking mechanism to bridge the gap between the primarily syntactic XML-based
metadata standards of the SWE and the RDF/OWL-based metadata standards of the semantic web.

The work in [11] describes a practical approach for building a sensor ontology, namely OntoSensor,
that uses the SensorML specification and extends the suggested upper merged ontology (SUMO) [12].
The objective of OntoSensor is to build a prototype sensor knowledge repository with advanced
semantic inference capabilities to enable fusion processes using heterogeneous data. For that reason,
in addition to reusing all SensorML’s concepts [7], OntoSensor provides additional concepts to describe
the observation data, i.e., the geolocation of the observations, the accuracy of the observed data or the
process to obtain the data.

Similar to OntoSensor, the W3C Semantic Sensor Network Incubator group (SSN-XG) has defined
the SSN ontology [3] in order to overcome the missing semantic compatibility in OGC SWE standards,
as well as the fragmentation of sensor ontologies into specific domains of application. The SSN
ontology can be considered as a sort of standard for describing sensors and their resources with respect
to the capabilities and properties of the sensors, measurement processes, observations, and deployment
processes. It is worth mentioning that, although the SSN ontology provides most of the necessary
details about different aspects of sensors and measurements, it does not describe domain concepts,
time, location, etc. Instead, it can be easily associated with other sources of knowledge concerning,
e.g., units of measurement, domain ontologies (agriculture, commercial products, environment, etc.).
This helps to pave the way for the construction of any domain-specific sensors ontology. Because of its
flexibility and adaptivity, the ontology has become more general and has been used in many research
projects and applied to several different domains in recent years. Some of the most recently published
works that utilize the SSN ontology are the OpenloT Project [13], the FIESTA-IoT (http:/ /fiesta-iot.eu/)
[14], VITAL-IoT (http:/ /www.vital-iot.eu/) and GeoSMA [15].

The broad success of the initial SSN led to a follow-up standardization process by the first joint
working group of the OGC and the W3C. This collaboration aims to revise the SSN ontology based on
the lessons learned over the past number of years and more specifically, to address changes in scope
and audience, some shortcomings of the initial SSN, as well as technical developments and trends
in relevant communities. The resulting ontology, namely the SOSA ontology [16], provides a more
flexible coherent framework for representing the entities, relations, and activities involved in sensing,
sampling, and actuation. The ontology is intended to be used as a lightweight, easy to use, and highly
expendable vocabulary that appeals to a broad audience beyond the semantic web community, but that
can be combined with other ontologies. The SOSA /SSN ontologies also form the core model that has
been used to model our sensor data [17,18].

2.2. Triple Stores and Spatio—Temporal Support

The current standard query language for RDE, i.e., SPARQL 1.1, does not support spatio-temporal
query patterns on sensor data. Recently, there have been several complimentary works towards
supporting spatio-temporal queries on RDE. For example, to enable spatio-temporal analysis, in [19],
Perry et al. propose the SPARQL-ST query language and introduce the formal syntax and semantics of
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their proposed language. SPARQL-ST is extended from the SPARQL language to support complex
spatial and temporal queries on temporal RDF graphs containing spatial objects. With the same goal
as SPARQL-ST, Koubarakis et al. propose st-SPARQL [20]. They introduce stRDF as a data model to
model spatial and temporal information and the stSPARQL language to query against stRDE. Another
example is [21], where Gutierrez et al. propose a framework that introduces temporal RDF graphs
to support temporal reasoning on RDF data. In this approach, the temporal dimension is added to
the RDF model. The temporal query language for temporal RDF graphs is also provided. However,
the aforementioned works commonly focus on enabling spatio-temporal query features, but hardly
any of them fully address the performance and scalability issues of querying billions of triples [22].

Regarding having to deal with the performance and scalability of RDF stores, many centralized
and distributed RDF repositories have been implemented to support storing, indexing and querying
RDF data, such as Clustered TDB [23], Inkling [24], RDFStore (http:/ /rdfstore.sourceforge.net),
Jena [25], and 4Store (http://4store.org). These RDF repositories are fast and able to scale up to
many millions of triples or a few billion triples. However, none of the systems take the spatio-temporal
features into consideration.

Toward supporting spatial queries on RDF stores, Brodt et al. [26] and Virtuoso (https:/ /github.
com/openlink/virtuoso-opensource) utilize RDF query engines and spatial indices to manage spatial
RDF data. Reference [26] uses RDF-3x as the base index and adds a spatial index for filtering entities
before or after RDF-3x join operations. Another example is OWLIM [27], which supports a geospatial
index in its Standard Edition (SE). However, none of them systematically address the issue of elasticity
and scalability for spatio—temporal analytic functions to deal with the massive volume of sensor data.
The technical details and the index performance are also not mentioned in such system descriptions.
Moreover, these approaches only support limited spatial functions, and the spatial entities have to
follow the GeoRSS GML [28] model. Such systems are not aware of the temporal nature of linked
sensor data that might be distributed over a long time span. For example, in our evaluations, most of
the data is continuously archived for 10 months or even 10 years, for weather data. Therefore, such
systems can easily run into scalability issues when the data grows. In one of our experiments [29],
a triple store crashed after a few weeks ingesting weather sensor readings from 70,000 sensor stations
and the system could not reliably answer any simple queries with a few billion triples in the store.
Taking such limitations into consideration, the work presented in this article is a new evolution of
our series of efforts [18,29-33] towards managing sensor data, together with other related work in the
community. The main focus of this work is designing a query engine that is able to support complex
spatio—temporal queries tailored towards managing linked sensor data, while the engine is also capable
of dealing with the aforementioned performance and scalability issues. The design of such an engine
is presented in the next section.

3. System Architecture

The architecture of EAGLE is illustrated in Figure 1. The engine accepts sensor data in RDF
format as input and returns an output in SPARQL Result form (https://www.w3.org/TR/rdf-sparql-
XMLres/). The general processing works as follows. When the linked sensor data is fed to the system,
it is first analyzed by the data analyzer component. The data analyzer is responsible for analyzing
and partitioning the input data based on the RDF patterns that imply the spatial and temporal context.
The output sub-graphs of the data analyzer will be converted by the data transformer to the compatible
formats of the underlying databases. The index router module then receives the transformed data
and forwards them to the corresponding sub-database components in the data manager. In the data
manager, we choose Apache Jena TDB (https://jena.apache.org/), OpenTSDB (http://opentsdb.net/)
[34], and ElasticSearch (https:/ /www.elastic.co/) as underlying stores for such partitioned sub-graphs.
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To execute the spatio—temporal queries, a query engine module is introduced. The query engine
consists of several sub-components that are responsible for parsing the query, generating the query
execution plan, rewriting the query into sub-queries and delegating sub-query execution processes to
the underlying databases. The data manager executes these sub-queries and returns the query results.
After that, the data transformer transforms the query results accordingly to the format that the query
delegator requires. Details of EAGLE’s components are described in the following subsections.

3.1. Data Analyzer

As mentioned above, for the input sensor data in RDF format, the data analyzer evaluates
and partitions them to the corresponding sub-graphs based on their (spatial, temporal or text). Data
characteristics are specified via a set of defined RDF triple patterns. In EAGLE, these RDF triple patterns
are categorized into three types: spatial patterns, temporal patterns, and text patterns. The spatial
patterns are used to extract the spatial data that need to be indexed. Similarly, temporal patterns
extract the sensor observation value along with its timestamp. The text patterns extract the string
literals. An example of the partitioning process is illustrated in Figure 2. In this example, we define (?s
wgs84:lat ?lat. ?s wgs84:long ?long) and (?s rdfs:label ?label) as the triple patterns used for extracting
spatial and text data, respectively. For instance, assume that the system receives a set of input triples
shown in Listing 1.

:dublinAirport a geo:Feature;
wgs84:lat "53.1324"""xsd:float;
wgs84:1long "18.2323"~""xsd:float;
rdfs:label "Dublin Airport".

Listing 1: RDF triples.
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Spatial patterns:
?s wgs84:lat ?lat.

s p o ?s wgs84:long ?long. Text patterns:
:dublinAirport| wgs84:lat [ “53.1324”Axsd:float ?s rdfs:label ?label.
Data
:dublinAirportjwgs84:long| “18.2323”xsd:float - Analyzer
:dublinAirport] rdfs:label “Dublin Airport”
:dublinAirport] rdf:type geo:Feature 1
LdublinAirport wgs84:lat [‘53.1324”Axsd:float [:dublinAirport] Rdfs:label | “Dublin Airport” |
text sub-graph
LdublinAirport wgs84:long[“18.2323" xsd:float 1
spatial sub-graph Data
Transformer
Index
entitie
v v
ElasticSearch spatial document ElasticSearch text document

{
"uri": ”:dublinAirport",
"geo": "drywvOkt",
"coords": ”53.1324,
18.2323",
"location": {
"type": "point",
"coordinates": [18.2323, 53.1324 ]
}

{

"uri": "”dublinAirport",
"label": “Dublin Airport",
}

Figure 2. Transform spatial and text sub-graphs to ElasticSearch documents.

As demonstrated in Figure 2, the two triples (:dublinAirpot wgs84:lat “53.1324” " xsd:float.
:dublinAirpot wgs84:long “18.2323” A xsd:float) are found to match the defined spatial patterns (?s
wgs84:lat ?lat. ?s wgs84:long ?long), and thus are extracted as a spatial graph. Similarly, we have
the text sub-graph (:dublinAirport rdfs:label “Dublin Ariport”) extracted. These sub-graphs will be
transformed into compatible formats to be used by the indexing process in the data manager. The data
transformation process will be presented in the following section.

3.2. Data Transformer

The Data Transformer is responsible for converting the input sub-graphs received from the data
analyzer to the index entities. The index entities are the data records (or documents) constructed to a
compatible data structure so that they can be indexed and stored in the data manager. Returning to the
example in Figure 2, the data transformer transforms the spatial sub-graph and text sub-graph into
ElasticSearch documents. In addition to transforming the sub-graphs into the index entities, the data
transformer also has to transform the query outputs generated by the data manager to the format that
the query delegator requires.

3.3. Index Router

The index router receives the index entities generated by the data transformer and forwards them
to the corresponding database in the data manager. For example, the spatial and text index entities
will be routed to ElasticSearch to index and ones that have temporal values will be transferred to the
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OpenTSDB cluster. For the index entities that do not match any spatial or temporal patterns, they
will be stored in the normal triple store. Due to the fact that access methods can vary across different
databases, the index router, therefore, has to support multiple access protocols such as Rest APIs, JDBC,
MQTT, etc.

3.4. Data Manager

Rather than rebuilding the spatio-temporal indices and functions into one specific system, our
data manager module adopts a loosely coupled hybrid architecture that consists of different databases
for managing different partitioned sub-graphs. More precisely, we used ElasticSearch to index the
spatial objects and text values that occur in sensor metadata. Similarly, we used a time-series database,
namely OpenTSDB, for storing temporal observation values. The reasons for choosing ElasticSearch
and OpenTSDB can be explained as follows: (1) ElasticSearch and OpenTSDB both provide flexible
data structures which enable us to store sub-graphs which share similar characteristics but have
different graph shapes. For example, stationA and stationB are both spatial objects but they have
different spatial attributes (i.e., point vs. polygon, names vs. label, etc.). Moreover, such structures also
allow us to dynamically add a flexible number of attributes in a table without using list, set, or bag
attributes or redefining the data schema. (2) ElasticSearch supports spatial and full-text search queries.
Meanwhile, OpenTSDB provides a set of efficient temporal analytical functions on time-series data. All
of these features are the key-point requirements for managing sensor data. (3) Finally, these databases
offer clustering features so that we are able to address the “big-data” issue, which is problematic for
traditional solutions when dealing with sensor data.

For the non-spatio-temporal information that does not need to be indexed in the above databases,
this will be stored in the native triple store. We currently use Apache Jena TDB to store such generic
data. In the case of a small size dataset, it can be easily loaded into the RAM of a standalone workstation
for the sake of boosting performance.

3.4.1. Spatial-Driven Indexing

To enable querying of spatial data, we transform the sub-graph that contains spatial objects as a
geo document and store it in ElasticSearch. Figure 2 demonstrates a process that transforms a semantic
spatial sub-graph to an ElasticSearch geo document. Please be aware that, along with spatial attributes,
ElasticSearch also allows the user to add additional attributes such as date-time, text description, etc.
This advanced feature allows us to develop a more complex filter that can combine spatial filters and
full-text search in a query.

The ElasticSearch geo document structure is shown in Listing 2. In this data structure, location is
an ElasticSearch spatial entity used to describe geo—spatial information. It has two properties: type and
coordinates. Type can be point, line, polygon, envelope while coordinates can be one or more arrays of
longitude/latitude pair. Details of the spatial index implementation will be discussed in Section 5.1.

<field_1>: <value_1>,

<field_n>: <value_n>,

"location": {
"type": <geo shape type>
"coordinates": <points>

Listing 2: ElasticSearch geo document structure.
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3.4.2. Temporal-Driven Indexing

A large amount of sensor observation data is fed as a time-series of numeric values such as
temperature, humidity and wind speed. For these time-series data, we choose OpenTSDB (Open
Time-Series Database) as the underlining scalable temporal database. OpenTSDB is built on top of
HBase [35] so that it can ingest millions of time-series data points per second. As shown in Figure 1,
input triples which are comprised of numeric values and time-stamps are analyzed and extracted
based on the predefined temporal patterns. Based on this extracted data, an OpenTSDB record is
constructed and then stored in OpenTSDB tables.

In addition to the numeric values and timestamps, additional information can be added to each
data record of OpenTSDB. Such information also can be used to filter the temporal data. Additional
information is selected by their regular use for filtering data in SPARQL queries. For example, a user
might want to filter data by type of sensor, type of reading, etc. The data organization and schema
design in OpenTSDB will be discussed in Section 4.

3.5. Query Engine

As shown in the EAGLE architecture in Figure 1, the query processing of EAGLE is performed
by the query engine that consists of a query parser, a query optimizer, a query rewriter and a query
delegator. It is important to mention that our query engine is developed on top of Apache Jena ARQ.
Therefore, the query parser is identical to the one in Jena. The query optimizer, query rewriter and
query delegator have been implemented by modifying the corresponding components of Jena. For the
query optimizer, in addition to Apache Jena’s optimization techniques, we also propose a learning
optimization approach that is able to efficiently predict a query execution plan for an unforeseen given
spatio—temporal query. Details of our approach can be found in our recent publication [33].

The query engine works as follows. First, for a given query, the query parser translates it and
generates an abstract syntax tree. Note that, we have modified the query parser so that it can adapt
our spatio—temporal query language. Next, the syntax tree is then mapped to the SPARQL algebra
expression, resulting in a query tree. In the query tree, there are two types of nodes, namely non-leaf
nodes and leaf nodes. The non-leaf nodes are algebraic operators such as joins, and leaf nodes are the
variables present in the triple patterns of the given query. Following the SPARQL Syntax Expressions
(https:/ /jena.apache.org/documentation/notes/sse.html), Listing 3 presents a textual representation
of the query tree corresponding to the spatio—temporal query in Example 5 of Section 6.

(propfunc temporal:avg
(?value ?obs 7sensor ?time) ("10/01/2017"~~xsd:dateTime "10/02/2017"~"xsd:dateTime)
(join
(graph <urn:x-arq:DefaultGraphNode>
(propfunc geo:sfWithin
?stationGeo geo:sfWithin (40.417287 -82.907123 40 ‘miles’)
(table unit)))
(quadpattern
(quad <urn:x-arq:DefaultGraphNode> ?sensor sosa:isHostedBy ?weatherStation.)
(quad <urn:x-arq:DefaultGraphNode> 7sensor 7sensor sosa:observes got:WindSpeedProperty.)
(quad <urn:x-arq:DefaultGraphNode> ?7obs sosa:madebySensor ?sensor.)

)))

Listing 3: Textual representation of spatio-temporal query tree in Example 5.

Please be aware that the query tree generated by the query parser is just a plain translation of the
initial query to the SPARQL algebra. At this stage, there is no optimization technique being applied
yet. After that, the query tree is processed by the query optimizer. This component is responsible for
determining the most efficient execution plan with regard to the query execution time and resource
consumption. After having a proper execution plan, it is passed to the query rewriter for any further
processing needed. Basically, the query rewriter rewrites the query operators to the compatible query
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language of the underlying database. In the next step, the query delegator delegates these rewritten
sub-queries to the corresponding database in the data manager. For example, the sub-query that
contains the spatial operator or full-text search will be evaluated by ElasticSearch, while the temporal
operator is executed by OpenTSDB. For the non-spatio-temporal queries, they are processed by Jena.
After having the sub-queries executed, the query results need to be transformed to the format that
the query delegator requires. The query delegator then performs any post-processing actions needed.
The final step involves formatting the results to be returned to the user.

4. A Spatio-Temporal Storage Model for Efficiently Querying on Sensor Observation Data

As mentioned in Section 3, we chose OpenTSDB as an underlying temporal database for managing
sensor observation data. In this section, we present a preliminary design of the OpenTSDB data schema
used for storing these data sources. Due to the data-centric nature of wide column key-value stores
of OpenTSDB, there are two most important decisions on storage model design that can affect to
the system performance, which are: the form of the row keys and the partition of data. This section
will present, in detail, our decisions for rowkey design and the data partitioning strategy that aim to
enhance the data loading and query performance on sensor observation data.

4.1. Opentsdb Storage Model Overview

OpenTSDB is a distributed, scalable, time-series database built on top of Apache HBase [35],
which is modeled after Google’s BigTable [36]. It consists of a time-series daemon (TSD) along with
a set of command-line utilities. Data reading and writing operations in OpenTSDB are primarily
achieved by running one or more of the TSDs. Each TSD is independent. There is no master, no shared
state so that many TSDs can be deployed at the same time, depending on the loading throughput
requirement. The OpenTSDB architecture is illustrated in Figure 3.

Server

Collector

Server
Collector

Server

Collector

HTTP/REST

Figure 3. OpenTSDB architecture.

Data in OpenTSDB are stored in a HBase table. A table contains rows and columns,
much like a traditional database. A cell in table is a basic storage unit, which is defined as
<RowKey,ColumnFamily:ColumnName, TimeStamp>. There are two tables in OpenTSDB, namely tsdb
and tsdb-uid. The tsdb-uid table is used to maintains an index of globally unique identifiers (UID)
and values of all metrics and tags for data points collected by OpenTSDB. In this table, two columns
exist, one called “name” that maps an UID to a string, and another table, denoted as “id”, mapping
strings to UIDs. Each row in the column family will have at least one of following three columns with
mapping values: metrics for mapping metric names to UIDs, tagk for mapping tag names to UIDs,
tagv for mapping tag values to UIDs. Figure 4 illustrates the logical view of tsdb-uid table.
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Column Family:name Column Family:id
Row Key

- d . ---

put dpO 1288946927 14 geohash=dp05mc4e readingtype=temperature

Figure 4. OpenTSDB tsdb-uid table.

A central component of OpenTSDB architecture is the tsdb table that stores our time-series
observation data. This table is originally designed to not only support time-based queries but also to
allow additional filtering on metadata, represented by tag and tag value. This is accomplished through
careful design of the rowkey. As described in Table 1, an OpenTSDB rowkey consists of three bytes
for the metric id, four bytes for the base timestamp, and three bytes each for the tag name ID and tag
value ID, repeated. Figure 5 presents an example of tsdb rowkey. As shown in this figure, the schema
contains only a single column family, namely “t”. This is due to the requirement of HBase that a table
has to contain at least one column family [37]. In OpenTSDB, the column family is not so important
as it does not affect the organization of data. The column family “t” might consist of one or many
column qualifiers representing delta elapse from the base timestamp. In this example, 16 is the value,
1288946927 is the base timestamp and column qualifier +300 is the delta elapse from base timestamp.

/ltll

Table 1. OpenTSDB row key format.

Element Name Size

Metric UID 3 bytes
Base-timestamp 4 bytes
Tag names 3 bytes
Tag values 3 bytes

--

A 1 1 o o e o o

1288947227 16

geohash=dp05mc4e readingtype=temperature

Figure 5. OpenTSDB tsdb table.
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4.2. Designing a Spatio—Temporal Rowkey

In order to make well-informed choices of the rowkey design, we first identified common data
access patterns required by the user application when querying the sensor observation data. In the
following, we enumerated a few common queries that can be expected by the realistic sensor-based
applications presented in [4,13,38,39]:

e A user may request meteorological information of an area over a specific time interval. The query
may include more than one measurement values, i.e., humidity, wind speed along with the
temperature.

e A user may request the average observation value over a specific time interval using variable
temporal granularity i.e., hourly, daily, monthly, etc.

e A user may request statistical information about the observation data that are generated by a
specific sensor station.

e A user may ask for statistical information, such as the hottest month over the last year for a
specific place of residence. Such queries can become more complex if the residence address is not
determined by city name or postal code but by its coordinate.

There can be different rowkey design approaches for answering the aforementioned queries.
Nevertheless, to have fast access to a relevant data based on the rowkey, there are two points needed
to be taken into consideration when designing a rowkey schema for storing sensor observation data in
OpenTSDB table: (1) data should be evenly distributed across all RegionServers to avoid the region
hot-spotting performance [37]. Note that, a bad key design will lead to sub-optimal load distribution.
The solution to address this issue will be presented in Section 4.3. (2) The spatio-temporal locality of
data should be preserved. In other words, data of all the sensor that locate within the same area should
be stored in the same partitions on the disk. The latter is essential in order to accelerate range scans
since users will probably request data of a specific area over a time interval instead of just a single
point in time.

Starting with the row key schema, we have to decide what information and in which order will
be stored in the row key. Since spatial information is usually the most important aspect of user queries,
encoding the sensor location in rowkey is prioritized. In this regard, a geohash algorithm is selected.
Recall that a geohash is a function that turns the latitude and longitude into a hash string. A special
feature of geohash is that, for a given geohash prefix, all the points within the same space match the
common prefix. To make use of this feature, we encode the first three characters of geohash prefix
as the metric uid of our rowkey schema. The length of the geohash prefix that is used to encode the
metric uid can be various, depending on the data density. Data stored in the tsdb table are sorted on
rowkey, thus, encoding geohash as metric uid, which is the first element of rowkey, ensures the data
of sensor stations close to each other in space are close to each other on disk. Next, we append the
measurement timestamp as the second element of a rowkey in order to preserve temporal ordering.
At this stage, we accomplish the goal (2).

After defining the first two elements of the row key, the tag names and tag values must be specified.
In OpenTSDB, tags are used for filtering data. Based on the summary of common data access patterns
above, we recognize that users may filter data by either a detailed location, or by a specific sensor,
or by a single type of sensor reading. Therefore, the following tags are defined: (1) the geohash tag to
store the full geohash string representing sensor station location; (2) the sensorld to present the full
IRI (Information Resource Identifier) of sensor that generates corresponding observation data; (3) the
readingtype to indicate the observed property of observation data. These tags are then concatenated
after the rowkey. The full form of our proposed row key design is depicted in Figure 6.
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geohash_time_fullGeoHashTag_fullGeoHashValue_sensorldTag_sensorldValue_readingTypeTag_readingTypeValue

| I I [ | Il [ Il I

metric  time tagk tagv tagk tagv tagk tagv

A A N ~ 3 e,

dp0 1288946927 geohash=dpOm5cde sensorld=dpOm5cde_TemperatureSe  readingtype=temprature
nsor_noaa_109340

Figure 6. OpenTSDB rowkey design for storing observation data.

4.3. Spatio—Temporal Data Partitioning Strategy

Data partitioning has a significant impact on parallel processing platforms like OpenTSDB. If the
sizes of the partitions, i.e., the amount of data per partition, are not balanced, a single worker node has
to perform all the work while other nodes idle. To avoid this imbalance performance, in this section,
we will present our data partitioning strategy that split data into multiple partitions and also exploits
the spatio—temporal characteristics of sensor data.

As mentioned earlier, we store observation data in OpenTSDB tsdb table, which is originally an
HBase table. By design, an HBase table can consist of many regions. A region is a table storage unit,
that contains all the rows between the start key and the end key assigned to that region. Regions are
managed by the Region Servers, as illustrated in Figure 7. Note that, in HBase, each region server
serves a set of regions, and a region can be served only by a single region server. The HMaster is
responsible to assign regions to region servers in the cluster.

Zookeeper . )T === 4 HMaster

Region Region

colA

Region Region

Key  colA colB colB Key  colA colB Key  colA colB

XXX val val XXX XXX

WA val val yyy yyy

Figure 7. HBase tables.

Initially, when a table is created, it is allocated with a single region. Data are then inserted into
this region. If the number of data records stored in this region exceeds the given threshold, HBase
will partition it into two roughly equal-sized child regions. As more and more data are inserted, this
splitting operation is performed recursively. Figure 8 describes the table splitting in HBase.



Sensors 2019, 19, 4362 13 of 42

f Region Server \

Region 1

aaa 888

fff

H Region Server H
Region 1 Region 2
colA colB

Figure 8. HBase table splitting.

Basically, table splitting can be performed automatically by HBase. The goal of this operation is
to avoid hot-spotting performance. However, table splitting is a costly task and can result in latency
increased, especially during heavy write loads. In fact, splitting is typically followed by regions moving
around to balance the cluster, which adds to the overhead and heavily affects to cluster performance.
Therefore, to avoid this costly operation, we partition the tsdb table at the time of table creation using
the pre-splitting method. For different data sources, the data partitioning strategy might be varied,
as it is very dependent upon the rowkey distribution. Therefore, a good rowkey design is also a key
factor in the effectiveness of a partitioning strategy.

Although HBase already includes partitioners, they do not make use of the spatio-temporal
characteristics. In our approach, we partition the tsdb table into a pre-configured number of regions.
Each region is assigned with a unique range of geohash prefix. Figure 9 illustrates our spatio-temporal
data partitioning strategy. In this figure, region 1 is assigned with a range [0ul-9xz], indicating that
all data records that have rowkey prefixes within the range of [Oul-9xz] will be stored in region 1.
By applying the spatio-temporal partitioning strategy, we ensure that all sensor data that are near
to each other in time and space will be stored in the same partition. As demonstrated later in our
experiments in Section 7, with the help of this strategy, the EAGLE engine is able to quickly locate
what partitions actually have to be processed for a query. For example, a spatial intersect query only
has to check the items of partitions where the partition bounds themselves intersect with the query
object. Such a check can decrease the number of data items to process significantly and thus, also
reduce the processing time drastically.
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Figure 9. Spatio—temporal data partitioning strategy.

5. System Implementation

In this section, we will present in details the EAGLE’s implementation based on the architecture
presented in Section 3.

5.1. Indexing Approach

In order to ensure efficient execution of spatio-temporal queries in EAGLE, we must provide
a means to extract and index portions of the sensor data based on spatial, temporal and text values.
In this section, we firstly present how to define triple patterns for extracting spatial, temporal and text
data. After that, we describe in detail the indexing schemes for each aspect of sensor data.

5.1.1. Defining Triple Patterns for Extracting Spatio-Temporal Data

As mentioned earlier, spatio-temporal and text data included in input RDF sensor data are
extracted if their data graph matches the pre-defined triple patterns. In EAGLE, we support
several common triple patterns already defined in a set of widely-used ontologies for annotating
sensor data, such as GeoSPARQL, OWL-Time, WGS84, SOSA /SSN. For example, we support the
GeoSPARQL pattern (?s geo:asWKT ?0) for extracting spatial data. In addition to the commonly
used patterns, the ones with user-customized vocabularies are also allowed in our engine. All triple
patterns for extracting spatio-temporal data are stored in the data analyzer component. In EAGLE’s
implementation, these patterns can be defined by either in the configuration files or via provided
procedures. Listing 4 illustrates an example of using configuration file to define triple patterns
for extracting spatial data. In this example, the two defined predicates, wgs84:lat/wgs84:long and
geo:asWKT, are used to extract the spatial information from input RDF graphs. To reduce the learning
efforts, our configuration file syntax fully complies with the Jena assembler description syntax [40].

The process to define triple patterns for extracting temporal data is a bit more complicated.
As mentioned in Section 4.3, in addition to the observation value and its timestamp, our OpenTSDB
rowkey scheme also stores other attributes such as the full geohash prefix, observed property, sensor
UR]I, etc. Therefore, the triple patterns for extracting this additional information should also be defined.
An example of defining triple patterns for extracting temporal data is illustrated in Listing 5.
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<#definition> a spatial:EntityDefinition ;

spatial:entityField "uri" ;

spatial:geoField "geo"

# custom geo predicates for 1) Latitude/Longitude Format

spatial:hasSpatialPredicate (
[ spatial:latitude wgs84:lat ; spatial:longitude wgs84:long ]
)

# custom geo predicates for 2) Well Known Text (WKT) Literal

spatial:hasWKTPredicates (geo:asWKT) ;

# custom SpatialContextFactory for 2) Well Known Text (WKT) Literal

spatial:spatialContextFactory
"com.spatial4j.core.context.jts.JtsSpatialContextFactory"

Listing 4: Defining triple patterns to extract spatial data.

<#definition> a temporal:EntityDefinition ;
temporal:hasTemporalPredicate (
[ temporal:value sosa:hasSimpleResult ; temporal:time sosa:resultTime]
[ temporal:value sosa:hasSimpleResult ; temporal:time owl-time:inXSDDateTimeStamp]
)
temporal :hasMetadataPredicate (
[ temporal:sensor sosa:madeBySensor ; temporal:readingType sosa:observedProperty]

) 8

Listing 5: Temporal triple patterns and its metadata declaration.

In the above example, triple patterns for extracting temporal value are defined as an instance of the
temporal:EntityDefinition. Its property, temporal:hasTemporalPredicate, indicates the RDF predicates
used in the matching process of temporal data and timestamp. For example, a pair (temporal:value
sosa:hasSimpleResult) denotes that the object of triples that match pattern (?s sosa:hasSimpleResult
?0) will be extracted as a temporal value. Similarly, a pair (temporal:time sosa:resultTime) specifies
the predicate sosa:resultTime used for extracting the timestamp. Finally, triple patterns that describe
additional information are defined under the temporal:hasMetadataPredicate property, i.e., the sensor
URI (extracted by sosa:madeBySensor) and the reading type (extracted by sosa:observedProperty).
It is worth mentioning that the current generation of EAGLE supports only the time instant. Time
interval support will be added in the next version.

5.1.2. Spatial and Text Index

We store spatial and text data in the ElasticSearch cluster. Therefore, we first need to define the
ElasticSearch mappings for storing these data. In ElasticSearch, mapping is the process of defining
how a document, and the fields it contains, are stored and indexed.

The ElasticSearch geo mapping for storing spatial objects is shown in Listing 6. In this mapping,
the uri field stores the geometry IRI, and the full_geohash field stores the 12-bit geohash string of the
sensor location. Similarly, the ElasticSearch mapping for storing text value is shown in Listing 7.

In EAGLE, we support both bulk and near real-time data indexing. Bulk index is used
to import data that are stored in files or in the triple store. For this, we provide a procedure
build_geo_text_index(). After having the ElasticSearch mappings defined, the build_geo_text_index()
is called to construct a spatial index for a given dataset. The pseudo code of this procedure is given in
Algorithm 1. In contrast to the bulk index, the near real-time index is used to index the data that are
currently streaming to the engine. In this regard, a procedure dynamic_geo_text_index() is introduced
to extract spatial and text data from a streaming triple and index them in ElasticSearch. Algorithm 2
describes the pseudo code of the dynamic_geo_text_index() procedure.
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"mappings" : {
"geometries": {
"properties": {
"uri": {"type": "string","index" : "not_analyzed"},
"full_geohash": {"type": "string","index" : "not_analyzed"},
"location": {
"type": "geo_shape",
"tree": "geohash",
"precision": "im"
Yo
"coords": {
"type": "geo_point",
"geohash_prefix": true,
"geohash_precision": "1km"
}
}
}
}
Listing 6: ElasticSearch mapping for spatial index.
"mappings" : {
"text": {
"properties": {
"uri": {"type": "string","index" : "not_analyzed"},
"full_geohash": {"type": "string","index" : "not_analyzed"},
"country": {"type": "string","index" : "analyzed"},
"city": {"type": "string","index" : "analyzed"},
"label": {"type": "string","index" : "analyzed"},
"address": {"type": "string","index" : "analyzed"},
}
}
}

Listing 7: ElasticSearch mapping for text index.

Algorithm 1: A procedure that will read a given dataset and index its spatial and text data
in ElasticSearch.

1 function build_geo_text_index (datasetLocation);
Input :datasetLocation: The dataset file or directory path
if geo_mapping does not exist then
create geo_mapping
end

= W N

5 D =load_dataset(datasetLocation) ;

6 foreach triple t of dataset D do

7 p = t.predicate;

8 0 = t.object;

9 if isSpatialPredicate(p) and isSpatialValue(o) then
10 geoDocument = build_ES_document(t);
11 insert document (geoDocument)

12 into geo_mapping

13 end

14 | if isTextPredicate(p) and isTextValue(o) then
15 textDocument = build_ES_document(t);
16 insert document (textDocument)

17 into text_mapping

18 end

19 end

16 of 42
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Algorithm 2: A procedure that will read a streaming triple and index its spatial and text data
in ElasticSearch.

1 function dynamic_geo_text_index (Triple t);
Input :Triple t

p = t.predicate;

0 = t.object;

if isSpatialPredicate(p) and isSpatialValue(o) then
geoDocument = build_ES_document(t);
insert document (geoDocument)

into geo_mapping

N S ok W N

end

if isTextPredicate(p) and isTextValue(o) then
10 textDocument = build_ES_document(t);
1 insert document (textDocument)

12 into text_mapping

o @®
e

13 end

5.1.3. Temporal Index

We provide the procedure, namely build_temporal_index, to construct a temporal index for given
sensor observation data. The build_temporal_index procedure is split into three steps, as illustrated in
Algorithm 3. The procedure is explained as follows. Firstly, the sensor metadata is loaded into the
system memory. This metadata is used later for quickly retrieving information needed for constructing
OpenTSDB data row, such as sensor location, observed properties, etc. The loaded metadata can be
stored in a key-value data structure such as hashmap, array;, etc.

In the second step, we extract the observation value, its timestamp, and the IRI of source
sensor based on the defined triple patterns. After having this information extracted, corresponding
observed property and sensor location are then retrieved by querying the loaded metadata in step 1.
Thereafter, from the retrieved sensor location, the corresponding geohash prefix is generated via a
build_geohash_prefix procedure. The second step is demonstrated in Figure 10.

<0bs123> a sosa:Observation;
sosa:madeBySensor got-
res:u0gxpf3m_TemperatureSensor_noaa_109340;
sosa:observedProperty got:AirTemperatureProperty;

Data

sosa:hasSimpleResult "14"; Analyzer
sosa:resultTime "2019-01-19723:00:00Z"*xsd:dateTime,

Input observation data
extract

“value”: 14

“timestamp”: 2019-01-19723:00:00

“sensorURI”: got-res: uOgxpf3m_
TemperatureSensor_noaa_109340

OpenTSDB record “sensorURI”: got-res: uOgx@#f3m_TemperatureSensor_noaa_109340
“value”: 14
“timestamp”: 2019-01-19T23:00:00
“geohash”: “u0gxpf3m” transform ~
“sensorURI”: got-res: uOgxpf3m_ — \ ‘
TemperatureSensor_noaa_109340

“readingtype”: “temperature” Lookup metadata

Figure 10. An example of temporal information extraction process.
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Algorithm 3: A procedure that will read an observation data and index its temporal information
in OpenTSDB.

1 function build_temporal_index (Observation obs);
Input :Observation obs: An observation data in RDF format
// Step 1: load sensor metadata file or graph and query it
2 if metadata is empty then
3 metadata = query_dataset(datasetLocation, query) ;
4 end

// Step 2: extract OpenTSDB indexing required information from observation
data
5 foreach triple t of observation obs do
6 if isTemporalPredicate(p) and isNumeric(o) then

7 ‘ value = extract_value(obs);
8 else if isTemporalPredicate(p) and isDateTime(o) then
9 ‘ timestamp = extract_time(obs);

10 else if isMetadataPredicate(p) and isIRI(o) then

11 ‘ sensorIRI = extract_sensorIRI(obs);

// Retrieve observed property and location from metadata based on sensorIRI

12 property = retrieve_property(sensorIR1,metadata);
13 location = retrieve_location(sensorIRI,metadata);

// generate geohash prefix from sensor location

14 geohash_prefix = build_geohash_prefix(location);

15 end

16 Step 3: build OpenTSDB record and store it via OpenTSDB APlsrecord =
build_OpenTSDB_record(value,timestamp,sensorIR1,property,geohash_prefix);
17 put record into tsdb table

The final step is to generate an OpenTSDB data record from the data extracted in the previous
steps and store it into OpenTSDB tsdb table. Data are indexed by calling OpenTSDB APIs such as put
command, REST APIs, etc. Figure 11 illustrates a simple data insert operation in OpenTSDB using put
command.

metric time value tag

A —

put dp0 1288946927 14 geohash=dpOm5cde

sensorld=dpOm5c4e_TemperatureSensor_noaa_109340 readingtype=temprature
S A
Ty g

tag tag

Figure 11. TSDB put example.

5.2. Query Delegation Model

Our query execution process of EAGLE is implemented by a query delegation model which
breaks the input query into sub-queries that can be delegated to the underlying sub-components
such as ElasicSearch, OpenTSBD, and Apache Jena. In this model, a spatio—temporal query can be
represented by the SPARQL query graph model (SQGM) [41]. A query translated into SQGM can be
interpreted as a planar rooted directed labeled graph with vertices and edges representing operators
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and data flows, respectively. In SQGM, an operator processes and generates either an RDF graph (a set
of RDF triples), a set of variable bindings or a boolean value. Any operator has the properties input
and output. The property input specifies the data flow(s) providing the input data for an operator and
output specifies the data flow(s) pointing to another operator consuming the output data.

An evaluation process of the graph is implemented by following a post-order traversal,
during which the data are passed from the previous node to the next. In this tree, each child node
can be executed individually as asynchronous tasks, which can be carried out in different processes
on different computers. Therefore, our system delegates some of those evaluation tasks to different
distributed backend repositories, which can provide certain function sets, e.g., geospatial functions (by
ElasicSearch), temporal analytical functions (by OpenTSDB), BGP matching (by Jena) and achieve the
best performance in parallel. Figure 12 shows an example of SQGM tree on which a spatial filter node
is rewritten to geospatial query and then delegated to ElasticSearch while the BGP matching query is
executed by Jena.

, A
S Coor D=t Wieng

?0bs ssn:observedBy ?sensor
?sensor sosa:isHostedBy ?station

{
"filter": {

delegate "geo_distance": {
@ Condition  — "conference.coordinates": {
"lon": -178.91,

Setati . Wah.
;stat!on a so‘sha.PIatform , ?geo geo:sfWithin(67.03 -178.91 lat": 67.03
?station geo:hasGeometry ?geo. 10.0 km) b
"distance": ”10km",

"distance_type": "arc"

(1 uw

ElasticSearch query

Figure 12. Delegating the evaluation nodes to different backend repositories.

6. Query Language Support

In this section, we present our SPARQL query language extensions for querying linked sensor
data. We adopt the GeoSPARQL syntax [42] into our proposed extensions for querying topological
relations of spatial objects. Furthermore, we also introduce a set of novel temporal analytical property
functions for querying temporal data.

6.1. Spatial Built-in Condition

Theoretically, a spatial built-in condition is used to express the spatial constraints on spatial
variables. As previously mentioned, our proposed SPARQL’s extensions adopt the GeoSPARQL syntax
for querying spatial aspect of sensor data. Therefore, in this section, we paraphrase the notion of the
spatial built-in conditions that are related to the EAGLE’s implementation. More details of GeoSPARQL
built-in condition can be found in [42]. It is important to mention that, within the scope of this paper,
we only focus on the qualitative spatial function.

A qualitative spatial function is a Boolean function f;, defined as follows:

f:GxG—B 1)

where G is a set of geometries.



Sensors 2019, 19, 4362 20 of 42

In the current version of EAGLE, several topological relations are supported: disjoint, intersect,
contains, within. Following the qualitative spatial function definition, we then define a qualitative
spatial expression, denoted by “se”:

< se >:::fs(g1,g2) ()

where g1,9> € GU V. V is a set of variables.
A spatial built-in condition is then defined by using the qualitative spatial function, logical
connectives =, A, V:

o If < se > is a qualitative spatial function, then < se > is a spatial built-in condition.
e If Ry, Ry are spatial built-in conditions, then (—R1), (R; V Rp), and (R A Ry) are spatial built-in
conditions.

6.2. Property Functions

In addition to spatial built-in condition, we also define a set of spatio-temporal and full-text
search property functions. By definition, property function is an RDF predicate in SPARQL query
that causes triple matching to happen by executing some specific data processing other than usual
graph matching. Property functions must have fixed URI for the predicate and can not represent query
variables. The subject or object of these functions can be a list.

In our query language support, the property functions are categorized into three types, depending
on their function, which are spatial property function, temporal property functions, and full-text search
property functions. These three types of property functions are assigned with different URIs (<geo:>,
<temporal:>, <text:>). Spatial and temporal property functions are defined as follows.

Drawing upon the theoretical treatments of RDF in [43], we assume the existence of
pairwise-disjoint countably infinite sets I, B and L that contain IRIs, blank nodes and literals respectively.
V is a set of query variables. We denote a set of spatial property functions like Isp,,. Similarly, let I7p;,
be a set of temporal property functions. Isp,,, ITpy, and I are also pairwise-disjoint.

A triple that contains a spatial property function is defined in the following form:

(IUB) X Ispyo X (IULUV). (3)

Example 1. Following is the example of spatial property function, namely geo:sfWithin, to find all the ?geo;
objects that are within ?geo,

?geo1 geo:sfWithin ?geo,.
Similarly, the temporal property function is defined as follows:
(IUB) X Itpry x (IULUV). 4)

An example of temporal property function is temporal:avg. For the full-text search property
function, we only support one property function, namely text:match. The usages of the property
functions will be demonstrated via examples in Section 6.3.

6.3. Querying Linked Sensor Data by Examples

This section presents the syntax of our proposed SPARQL’s spatio-temporal extensions through a
series of examples involving linked sensor data. The dataset is used throughout the examples is the
linked meteorological data described later in Section 7.1.2. The namespaces used in the examples are
listed in Appendix A.

Example 2. (Spatial built-in condition query). Return the IRIs and coordinates of all weather stations that
locate in Dublin city. The query is shown in Listing §.
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SELECT ?weatherStation 7lat 7long
WHERE
{
?city dbo:type dbr:Capital;
a dbo:Place;
foaf :name "Dublin";
geo:hasGeometry ?cityGeo.
?cityGeo geo:asWKT 7cityWkt.
?weatherStation geo:hasGeometry ?stationGeo.
?stationGeo wgs84:lat 7lat.
?stationGeo wgs84:1long 7long.
BIND (STRDT (CONCAT("POINT(",?long, " ", 7lat, ")"),sf:WktLiteral) as 7stationWkt) .
FILTER(geo:sfWithin(?stationWkt ,?cityWkt).

Listing 8: Spatial built-in condition query.

Let us now explain the query syntax by referring to the above example. Recall that our spatial
query language adopts GeoSPARQL syntax, hence, all the GeoSPARQL prefixes, as well as its
spatial datatypes, remain unchanged. As illustrated in the query, the spatial variables, ?cityWkt
and ?stationWkt, can be used in basic graph patterns and refer to spatial literals. Note that, a spatial
variable is an object of a spatial predicate in the triple pattern. In this example, the spatial predicate is
geo:asWKT defined in [42]. In addition to the basic graph patterns, the spatial variables are also used
in the FILTER expression. Similarly to the spatial predicate, the spatial built-in condition in FILTER
expression is also assigned with a unique namespace. The current version of EAGLE supports several
topological spatial relations such as geo:sfWithin, geo:sfDisjoint,geo:sfIntersects, geo:sfContains.

Example 3. (Spatial property function query). Given the latitude and longitude position, it retrieves the number
of nearest weather stations that are located within 20 miles. The query is shown in Listing 9.

SELECT count (?weatherStation)

WHERE

{
?weatherStation geo:hasGeometry ?stationGeo.
?stationGeo geo:sfWithin (59.783 5.35 20 ’miles’).

Listing 9: Spatial property function query.

The above query demonstrates the usage of geo:sfWithin property function. When this property
function is called, a dedicated piece of code will be executed to find all the geometries locate within
an area. The area is specified by these arguments (59.783 5.35 20 ‘miles’). For each spatial object that
satisfies the spatial condition, its IRI is bound to the ?stationGeo variable that occurs in the triple
representing the property function call. In addition to the default GeoSPARQL syntax of this function,
we additionally extend its usage as follows:

GeoSPAROQL syntax: <feature;> geo:sfWithin <feature,>

Our extension: <feature;> geo:sfWithin (<lat> <lon> <radius> [ <units> [ <limit>]]).

Table 2 describes the list of spatial property functions that are currently supported in EAGLE.
These functions allow the user to specify the query bounding box area by either using the <geo>
parameter or using the concrete coordinates via <lat>, <lon>, <latMin>, etc. The <geo> parameter can
be a spatial variable or a spatial RDF literal. Similarly, the <units> can be a unit URI or a string value.
The supported distance units are presented in Table 3. Finally, the <limit> parameter is to limit the
number of results returned by the function.
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Table 2. Spatial property functions.

Spatial Function Description

<feature> geo:sfIntersects (<geo> | Find features that intersect the
<latMin> <lonMin> <latMax> <lonMax> [ <limit>]) provided box, up to the limit.
<feature> geo:sfDisjoint (<geo> | Find features that intersect the
<latMin> <lonMin> <latMax> <lonMax> [ <limit>]) = provided box, up to the limit.
<feature> geo:sfWithin (<geo> | Find features that are within radius
<lat> <lon> <radius> [ <units> [ <limit>]]) of the distance units, up to the limit.
<feature> geo:sfContains <geo> | Find features that contains the

<latMin> <lonMin> <latMax> <lonMax> [ <limit>])  provided box, up to the limit.

Table 3. Supported units.

URI Description
units:kilometre or units:kilometer  Kilometres
units:metre or units:meter Metres
units:mile or units:statuteMile Miles
units:degree Degrees
units:radian Radians

Example 4. (Temporal property function query). Return the list of air temperature observation values that
are generated by the station <got-res:WeatherStation/qu9gdbbysm_ish_1001099999> from 10th to 15th March
2018. The query is shown in Listing 10.

SELECT 7obs ?7value ?time
WHERE
{
?sensor sosa:isHostedBy got-res:gu9gdbbysm_ish_1001099999.
?sensor sosa:observes got:AirTemperatureProperty.
7obs sosa:madebySensor ?sensor;
sosa:resultTime 7time;
sosa:hasSimpleResult ?value.
?value temporal:values ("10/03/2018"""xsd:dateTime "15/03/2018"~"xsd:dateTime)

Listing 10: Temporal property function query.

The above query demonstrates the example usage of one of our temporal property functions,
called temporal:values. In this query, the property function temporal:values is called to retrieve all
the temperature observation values that are generated within a specific time interval. Recall that the
prefix <temporal:> is used to represent the temporal property function. Table 4 lists all the supported
temporal property functions and their syntax. The usages of these functions will be demonstrated in
the following examples.
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Table 4. Temporal property functions.

Temporal Function Description

?value temporal:sum (<startTime> <endTime> Calculates the sum of all reading data points
[<’groupin” down sampling function>  from all of the time series or within the time
<geohash prefix> <observableProperty>]) span if down sampling.

?value temporal:avg (<startTime> <endTime>
[<’groupin” down sampling function>
<geohash prefix> <observableProperty>])

Calculates the average of all observation values
across the time span or across multiple time series

?value temporal:min (<startTime> <endTime>
[<’groupin” down sampling function>
<geohash prefix> <observableProperty>])

Returns the smallest observation value from
all of the time series or within the time span

?value temporal:max (<startTime> <endTime>
[<’groupin” down sampling function>
<geohash prefix> <observableProperty>])

Returns the largest observation value from
all of the time series or within a time span

?value temporal:values (<startTime> <endTime>
[<’groupin” down sampling function>
<geohash prefix> <observableProperty>])

List all observation values from all of the
time series or within the time span

Example 5. (Analytical spatio—temporal query). Detection of all wind-speed observation in an area within 40
miles from the center of Ohio City during the time from 10 January to 10 February 2017. The Ohio City center
coordinate is (40.417287 -82.907123). The query is shown in Listing 11.

SELECT ?weatherStation ?time ?value
WHERE
{
?weatherStation geo:hasGeometry 7?stationGeo.
?stationGeo geo:sfWithin (40.417287 -82.907123 40 ’miles’).
?sensor sosa:isHostedBy ?weatherStation.
?sensor sosa:observes got:WindSpeedProperty.
7obs sosa:madebySensor ?sensor;
sosa:resultTime 7time;
sosa:hasSimpleResult ?value.
?value temporal:avg ("10/01/2017"~~xsd:dateTime "10/02/2017"~"xsd:dateTime)

Listing 11: Analytical spatio—temporal query.

The query above demonstrates the mix of spatial and temporal property functions. The query
uses the spatial function, namely geo:sfWithin, to filter all weather stations that locate in the area
(40.417287 -82.907123 40 ‘miles’). Additionally, it also retrieves the list of wind speed observation
values generated by these station with the time constraint.

Example 6. (Analytical spatio—temporal query). Calculate the daily average windspeed at all weather stations
that locate within 20 miles from London city center during the time from 10 to 15 March 2018. The query is
shown in Listing 12.

The query demonstrates a complex analytical spatio-temporal query. In this query, we first
retrieve the London geometry data by querying the DBPedia dataset. After that, we use the spatial
function, namely geo:sfWithin, to query all the stations that locate within 20 miles from London.
In the temporal property function used in this query, we demonstrate the usage of the downsampler
feature indicated by groupin keyword, and the downsampling aggregation function. Given a brief
description, the downsampler feature is our additional temporal query feature which aims to simplify
the data aggregation process and to reduce the resolution of data. The data aggregation and data
resolution are specified by the downsampling aggregation function, which is formed by <time
interval>_<aggregation function>. The <time interval> is specified in the format <size><units>
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such as 1 h or 30 m. The aggregation function is taken from the list (sum, average, count, min, max).
For example, as illustrated in the query, the downsampling aggregation function is 1 d-avg.

SELECT ?weatherStation ?time ?value
WHERE
{
?city dbo:type dbr:Capital;
a dbo:Place;
foaf :name "London";
geo:hasGeometry ?cityGeo.
?cityGeo geo:asWKT ?7cityWkt.
?weatherStation geo:hasGeometry ?stationGeo.
?stationGeo geo:sfWithin (7cityWkt 20 ’miles’).

?sensor sosa:isHostedBy ?weatherStation.

?sensor sosa:observes got:WindSpeedProperty.

?obs sosa:madebySensor ?sensor;

sosa:resultTime 7time;

sosa:hasSimpleResult ?value.

?value temporal:avg ("10/03/2018"~~xsd:dateTime "15/03/2018"~~xsd:dateTime
’groupin’ ’1d-avg?’)

Listing 12: Analytical spatio—temporal query.

Example usage of downsampler can be described as follows. Let us say that a wind-speed sensor
is feeding observation data every second. If a user queries for data over an hour-long time span,
she would receive 3600 observation data points, something that could be graphed fairly easily in the
result table. However, let us consider the case that the user asks for a full week of data. For that, she
will receive 604,800 records, thus, leading to a very big result table. Using a downsampler, multiple
data points within a time range for a single time series are aggregated together with an aggregation
function into a single value at an aligned timestamp. This way, the number of return values can be
reduced significantly.

Example 7. (Analytical spatio—temporal query). Retrieve the weekly average temperature of area B which has
geohash “u0q” in March 2018. This query illustrates the usage of two optional arguments in the temporal
property functions, namely geohash and observableProperty. The query is shown in Listing 13.

SELECT ?v
{ ?v temporal:avg ("01/03/2018"~~xsd:dateTime "31/03/2018"""xsd:dateTime
’groupin’ ’lw-avg’ ’u0q’ got:AirTemperature). }

Listing 13: Analytical spatio—temporal query.

Example 8. (Full-text search query). Retrieve the total number of observation for each observed property of
places that match a given keyword ‘Cali’. The query is shown in Listing 14.

SELECT ?place 7observedType (count(?obs) as ?totalNumber)
WHERE
{
?station a got:WeatherStation.
?station geo:hasGeometry 7geoFeature.
7geoFeature text:match (geoname:parentCountry ’Calix’).
7geoFeature geoname:parentCountry ?place.
?sensor sosa:isHostedBy ?station;
sosa:observes 7observedType.
?obs sosa:madebySensor ?sensor.
}GROUP BY ?place 7observedType

Listing 14: Full-text search query.
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The above query demonstrates the usage of full-text search feature via the text:match property
function. The text:match syntax is described as follows:

<subject> text:match (<property> 'query string’ <limit>)

In the text:match function syntax, the <subject> implies the subject of the indexed RDF triple. It
can be a variable or an IRI. The <property> is an IRI, of which the literal is indexed, e.g., rdfs:label
and geoname:parentCountry. The ‘query string’ is the query string fragment following the Lucence
syntax (https://lucene.apache.org/core/2_9_4/queryparsersyntax.html). For example, the parameter
‘Cali*’ is to select all the literals that match prefix “Cali”. The optional limit limits the number of literals
returned. Note that, it is different than the number of total results the query will return. When a limit
is specified in the SPARQL query, it does not affect the full-text search, rather, it only restricts the size
of the result set.

7. Experimental Evaluation

In this section, we present a rigorous quantitative experimental evaluation of our EAGLE
implementation. We divide the presentation of our evaluation into different sections. Section 7.1
describes the experimental setup which includes the platform and software used, datasets, and queries
descriptions. Section 7.2 presents the experimental results. In this section, we compare the data
loading throughput and query performance of EAGLE against Virtuoso, Apache Jena and GraphDB.
We also discuss the performance differences in EAGLE when applying our data partitioning strategy,
described in Section 4.3. Finally, we evaluate EAGLE’s performance on a Google Cloud environment to
demonstrate its elasticity and scalability as regards data loading and query performance. The strengths
and weaknesses of the EAGLE engine are discussed in Section 7.3.

7.1. Experimental Settings

7.1.1. Platform and Software

To demonstrate EAGLE’s performance and scalability, we evaluate it on a physical setup and
a cloud setup. It is worth mentioning that our physical setup is dedicated to a live deployment of
our GraphOfThings application at http:/ /graphofthings.org which has been ingesting and serving
data from more than 400,000 sensor data sources since June 2014. We compare EAGLE’s performance
against Apache Jena v3.12, Virtuoso v7 and GraphDB v8.9 (former OWLIM store [27]). Among them,
Jena represents the state-of-the-art in terms of a native RDF store, Virtuoso is a widely used RDF store
backed by RDBMS, and GraphDB is a clustered RDF store that has recently supported spatial querying.

We deployed Apache Jena and Virtuoso v7 on a single machine with the same configuration as in
our physical setup below. For EAGLE, we installed ElasticSearch v7 and OpenTSDB v2.3 for both the
physical and cloud setups. Similarly, we also installed the GraphDB v8.9 on all setups.

Physical setup: we deployed a physical cluster that consists of four servers running on the shared
network backbone with 10 Gbps bandwidth. Each server has the following configuration: 2x E5-2609
V2 Intel Quad-Core Xeon 2.5GHz 10MB Cache, Hard Drive 3x 2TB Enterprise Class SAS2 6Gb/s
7200RPM - 3.5” on RAID 0, Memory 32GB 1600MHz DDR3 ECC Reg w /Parity DIMM Dual Rank. One
server is dedicated as a front-end server and to coordinating the cluster, and the other three servers are
used to store data and run as processing slaves.

Cloud setup: the cloud setup was used to evaluate the elasticity and scalability of the EAGLE
engine. We deployed a virtual cluster on Google Cloud. The configuration of the Google Cloud
instances we use for all experiments is the “nl-standard-2” instance, i.e., 7.5 GB RAM, one virtual
core with two Cloud Compute Units, 100 GB instance storage, and an Intel Ivy Bridge platform.
In this evaluation, we focused more on showing how the system performance scales when increasing
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the number of processing nodes, rather than serving as a comparison of its performance with the
physical cluster.

7.1.2. Datasets

Our experimental evaluations are conducted over the linked meteorological dataset which is
described in [18,44]. The dataset consists of more than 26,000 meteorological stations allocated around
the world and covers various aspects of data distribution. The window of archived data is spread
over 10 years, from 2008 to 2018. It has more than 3.7 billion sensor observation records which are
represented in the SSN/SOSA observation triple layout (seven triples/records). Hence, the data
contains approximately 26 billion triples if it is stored in a native RDF store.

Additionally, in order to give a more practical overview of the engine, we evaluated it on
even more realistic datasets, especially ones consisting of both spatial and text data. To meet such
requirements, we select several datasets from GoT data sources [18]. In particular, to evaluate the spatial
data loading throughput, in addition to the sensor station location, we also import the transportation
dataset which contains 360 million spatial records. These records were collected from 317,000 flights
and 20,000 ships during the time 2015-2016. Similarly, for the text data loading evaluation, we import
a Twitter dataset that consists of five million tweets. The detailed statistics of all the datasets used for
our evaluations are listed in Table 5.

Table 5. Dataset.

Sources Sensing Objects Historical Data  Archived Window
Meteorological 26,000 3.7B since 2008
Flight 317,000 317M 2014-2015
Ship 20,000 51 M 20152016
Twitter - 5M 2014-2015

7.1.3. Queries

We have selected a set of 11 queries that were performed over our evaluation datasets. In general,
our queries aim to check the engine processing capability with respect to their provided features
for querying linked sensor data. Because the standard SPARQL 1.1 language does not support
spatio—temporal queries nor full-text search queries, some RDF stores have to extend the SPARQL
language with their own specific syntax. Therefore, some of these queries need to be rewritten so they
can be compatible with the engine under test.

We summarize some highlighted features of the queries as follows: (i) if the query has an input
parameter; (ii) if it requires geospatial search; (iii) if it uses a temporal filter; (iv) if it uses full-text search
on string literals; (v) if it has a group-by feature; (vi) if the results need to be ordered via an order-by
operator; (vii) if the results are using the limit operator; (viii) the number of variables in the query;
and (ix) the number of triple patterns in the query. The group-by, order-by, and limit operators impact
on the effectiveness of the query optimization techniques used by the engine (e.g., parallel unions,
ordering or grouping using indexes, etc.), and the number of variables and triple patterns give a
measure of query complexity. This summary of highlighted features and their SPARQL representations
are described in Appendixes A and B, respectively.

7.2. Experimental Results

7.2.1. Data Loading Performance

We evaluated EAGLE’s performance with respect to data loading throughput on our physical
setup and compared it to the state-of-the-art systems. Benchmark data were stored in files and
imported via bulk loading. Unlike the general performance comparisons that only focus on triple data
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loading performance, we measure separately the loading performance of spatial, text and temporal
data. The loading speed was calculated via the number of objects that can be indexed per second,
instead of the number of triples. This evaluation helped us to have a better understanding of the
indexing behavior of the test engines for specific types of data such as geospatial and text.

Spatial Data Loading Performance With Respect to Dataset Size

Figure 13 depicts the average spatial data loading speed of the four evaluated RDF systems,
with respect to various dataset sizes. The data loading time is shown in Figure 14. Overall, the results
reveal that the increase in the data size can significantly affect the loading performance of all systems.
Among them, Apache Jena has the worst performance. The average data loading speed is below 10,000
obj/s for all dataset sizes, slower than the other systems. Moreover, it takes almost two days (46.23 h)
for loading 658 million spatial data objects. The data loading performance of EAGLE and GraphDB
are very close, followed by Virtuoso. For example, EAGLE loads 658 million spatial objects in 7.74 h.
Its average throughput is 23,620 obj/s. In the meantime, GraphDB is one hour behind, resulting in
8.72 h and the average speed is 20,960 obj/s. Virtuoso achieves a speed of 17,500 obj/s. The slower
insert speed of Virtuoso and Jena can be explained by the limit of single data loading processes in these
systems, which are deployed on a single machine. This sharply contrasts with the parallel data loading
processes supported by the distributed back-end DBMS in EAGLE (ElasticSearch and OpenTSDB)
and GraphDB.

We also learned that in the beginning, EAGLE performs slightly behind GraphDB in the case
of loading a small dataset (<350 million). We hypothesize that this is due to several reasons such as
load imbalance, increased I/O traffic and platform overheads in EAGLE. However, for loading larger
datasets, this comparison result is reversed and the spatial data loading performance of GraphDB is
slower than ours. This highlights the capabilities of our system for dealing with the “big data” nature
of sensor data.
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Text Data Loading Performance With Respect to Dataset Size

To evaluate the text data loading performance, we load the Twitter dataset that consists of
five million tweets in the RDF format. The loading speed and loading time are reported in Figures 15
and 16, respectively. According to the results, EAGLE outperforms the other systems. We can see in
Figure 15 that its loading speed is just lightly affected by the data size increase. The highest speed
EAGLE can reach is 11,800 obj/s for loading 0.64 million tweets. We attribute this to the outstanding
performance of EAGLE’s databases, namely ElasticSearch, which is originally a document-oriented
database. In the case of loading the same data size, GraphDB is slower than EAGLE. Its average speed
is 9700 obj/s. Virtuoso and Jena follow at two and five times slower than EAGLE, respectively.
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Figure 16. Text data loading time.

In comparison with the spatial data loading performance, the text data loading speed of EAGLE is
much slower. This is reasonable because in order to index the text data, the system needs to analyze the
text and break it into a set of sub-strings. Consequently, this requires more computation and resource
consumption, and hence, increases the overall loading time.

Temporal Data Loading Performance With Respect to Dataset Size

We evaluated the temporal data loading performance by importing our 10 years of historical
linked meteorological data. In this evaluation, we also measured the performance of EAGLE when
disabling the spatio—temporal partitioning feature, denoted by EAGLE-NP. Instead of loading the
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entire temporal dataset, we terminated the loading process at 7.78 billion triples due to the long data
loading time, and some of the evaluated systems stop responding.

The results in Figures 17 and 18 draw our attention to the performance of all systems when
loading the small dataset. Regardless of the poor performance of Apache Jena, it is apparent that
Virtuoso had better loading performance than EAGLE and GraphDB in the case of loaded data sizes
under 100 million data points. A possible explanation for this phenomena is the communication
latency of the distributed components in GraphDB and EAGLE. More precisely, in these distributed
systems, the required time for loading data, plus the time for coordinating the cluster and the network
latency are more than the data loading time in Virtuoso. Nevertheless, the difference is acceptable and
we believe EAGLE is still applicable for interactive applications that only import a limited amount
of data.
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Figure 18. Temporal data loading time.

Another interesting finding is that our system performs differently if the spatio—temporal
partitioning strategy is disabled. In this case, the highest insert speed that EAGLE-NP can achieve is
30k obj/s. However, this speed drops dramatically with the growth of the imported data. Moreover,
we also observe that EAGLE-NP stops responding when the data size reaches 3.72 billion records,
as depicted in Figures 17 and 18. Looking at the system log files, we attribute this to a bottleneck in
performance that happens with the OpenTSDB tsdb table. As previously explained in Section 4.3,
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if the spatio-temporal data partitioning is disabled, the tsdb table is not pre-split, thus, there is only
one region of this table that is initialized. In this case, data are only inserted into this region. As a
result, when the I/O disk writing speed cannot adapt to a large amount of fed data, the bottleneck
phenomena happens.

The efficiency of EAGLE is demonstrated when applying our proposed spatio—temporal data
partitioning strategy. It is even more explicit in the case of loading a large dataset. As evidenced
in Figure 17, unlike the others, the average insert speed of EAGLE almost remains horizontal when
the number of data instances increases. In particular, the highest speed that EAGLE can reach is
55,000 obj/s, and there is no significant difference when the number of data points rises from 0.02 to
7.78 billion. Moreover, for loading 7.78 billion temporal triples, EAGLE took only 48.51 h. However,
in the same case, GraphDB and Virtuoso need 106.97 h and 113.71 h, respectively. The better rank of
EAGLE is attributed to our data partitioning strategy in which we pre-split the tsdb table into multiple
data regions in advance of the data loading operation. Because each region is assigned with a range of
geohash prefixes, data that has different geohash prefixes managed by different regional servers can be
inserted in parallel, resulting in a significant increase in terms of data loading performance. However,
when the amount of data stored in a pre-split region reaches the given threshold capacity, the region
will be re-split automatically. Together with the splitting process, all related data has to be transferred
and distributed again. This step will cause additional cost and will affect the system performance. This
explains the slight fluctuation of our system insert speed in Figure 17 during the data loading process.

7.2.2. Query Performance with Respect to Dataset Size

This experiment is designed to demonstrate the query performance of all evaluated systems with
respect to different data aspects and dataset size. In this experiment, for each query, we measure the
average query execution time by varying the dataset imported. In order to give a more detailed view
on query performance, based on the query complexity, we group the test queries into several main
categories: spatial query, temporal query, full-text search query, non-spatio—temporal query, and mixed
query. These query categories are described in Table 6.

Table 6. Categorizing queries based on their complexity.

Category Non Spatio-Temporal Query Spatial Query Temporal Query Full-Text Search Query = Mixed Query
Query Q2,Q11 Q1 Q5,Q6 Q8, Q9 Q3,0Q4,Q7,Q10

To conduct a precise performance comparison, we load different datasets that correspond to
the query categories. For example, our spatial datasets are used to evaluate the spatial query
performance while the sensor observation dataset is for queries that require a temporal filter. For the
non-spatio-temporal queries, we use the static dataset that describes the sensor metadata. It is
important to mention that our data partitioning approach is only applied for temporal data stored
in OpenTSDB and does not explicitly affect the spatial and full-text search query performance in
ElasticSearch. Therefore, in the experiments for spatial and full-text search query performance,
the performances of EAGLE and EAGLE-NP are not differentiated.

Non-Spatio-Temporal Query Performance

We first evaluated the performance of non-spatio—-temporal queries, which were Q2 and Q11.
These were the standard SPARQL queries which only query on the semantic aspect of sensor data and
have neither spatio-temporal computation nor full-text search. The average query execution times
are plotted in Figure 19. The results demonstrate the close performance of EAGLE and Apache Jena
in regard to non-spatio—temporal queries. This is explained by the use of similar processing engines.
In fact, the SPARQL query processing components in EAGLE are extended from Apache Jena ARQ
with some modifications. Meantime, Virtuoso and GraphDB prove their reputations in SPARQL query
performance by being faster then EAGLE. However, the difference is still acceptable, in the order of ms.
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Figure 19. Non spatio—temporal query execution time with respect to dataset size.
Spatial Query Performance

Figure 20 depicts the query execution time of the spatial query, which is represented by Q1,
with respect to varying spatial dataset size. According to the evaluation result, we find that Apache
Jena performs poorly. Its spatial query performance linearly increases with increments of the loaded
data. In contrast, Virtuoso, GraphDB, and EAGLE perform closely and are weakly influenced by the
data size. GraphDB is recognised as having good performance, followed by Virtuoso. Compared
to these systems, EAGLE is slightly slower, only in the order of ms. A possible reason could be
the overhead of the join operation between the BGP matching and the spatial filter results. Note
that, parallel join operations are not yet supported in EAGLE and have to be performed locally in a
single thread.
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Figure 20. Q1 execution time with respect to spatial dataset size (in logscale).
Full-Text Search Query Performance

In the following, we discuss the performance of the full-text search queries (Q8, Q9) for the test
systems. The evaluation results are reported in Figure 21. Despite the impressive query execution time
of GraphDB and Virtuoso, which are generally less than 500 ms for both Q8 and Q9, EAGLE is still
slightly faster. This is again thanks to the outstanding performance of ElasticSearch on full-text search
queries. Note that, although Apache Jena, GraphDB and ElasticSearch support full-text search through
the use of Lucene, ElasticSearch is notable for having a better optimization.



Sensors 2019, 19, 4362 32 of 42

4000 5000
4500

3500 K
R 4000

3000
7 £ 3500
/ o

2500 » £ 3000

[
wu
o
]

Query Execution Time (ms)
S
o
o

0 0
1 2 3 4 5 1 2 3 4 5
Dataset size (million) Dataset size (million)
—/—EAGLE -® Apache Jena —i-Virtuoso -m-GraphDB ——EAGLE -® Apachelena —+-Virtuoso -m-GraphDB
(a) Q8 execution time (b) Q9 execution time

Figure 21. Text-search query execution times with respect to dataset size.

Temporal Query Performance

The temporal query performance is evaluated over our historical meteorological observation data.
Figure 22 presents the query execution time of all systems with respect to observation dataset size. It is
apparent that query performance is affected by an increase in the amount of data. For Apache Jena,
along with a linear increase in the query execution time, we also notice that it is only able to run up to
a certain amount of data. As we can see in the figure, it could ideally execute queries with datasets
under 0.5 billion data points. However, when executing these queries on a dataset which is over 1.31
billion data points, Apache Jena stops responding. The performances of EAGLE and EAGLE-NP are
significantly different. For example, when executing over a dataset of 0.53 billion data observations,
if the spatio—temporal data partitioning strategy is not applied, the average execution time of Q6 in
EAGLE-NP is 2147 (ms). Meanwhile, if the data partitioning strategy is enabled, EAGLE takes only
589 (ms) to execute the same query, resulting in it running four times faster. Furthermore, we also see a
better performance of the EAGLE system in comparison with Virtuoso and GraphDB. The explanations
for this performance could be: (1) the effectiveness of our data partitioning strategy so that the engine
can quickly locate the required data partition and then organize the scans for a large number of data
rows; (2) the power of OpenTSDB query functions that we rely on, especially for data aggregation.

Mixed Query Performance

Another aspect to be considered is the performance of the analytics-based queries that require
the mixing of spatial, temporal computations or full-text search (Q4, Q7, Q10). For these queries,
we increase the query timeout to 120 (s) due to their high complexities. The evaluation results are
shown in Figure 23. Apache Jena undergoes time outs for all queries when the loaded data size is
over 0.5 billion. Another fact that can be clearly observed is that EAGLE is orders of magnitude
faster than the others. This is demonstrated by the case of Q7. Note that, this query implies a heavy
computation on both spatial and temporal data. Additionally, it also requires that thhe results have to
be ordered by time. As shown in Figure 23b, for executing a query over the dataset with 3.08 billion
records, EAGLE performs Q7 much better (1420 ms), follows by GraphDB (7289 ms) and Virtuoso
(10,455 ms). There can be several reasons for our impressive performance: (1) The effectiveness of the
OpenTSDB time-series data structure such that data are already sorted by time during the loading
process. Consequently, in the EAGLE system, for the query that has an order-by operator on date-time,
the ordering operation cost, in this case, is eliminated. (2) The second reason again sheds light on the
success of our data partitioning strategy and our row-key design so that the time cost for locating the
required data partition and the data scan operation is significantly minimized.
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Figure 22. Temporal queries execution time with respect to dataset size (in logscale).
7.2.3. Query Performance with Respect to Number of Clients

This experiment is designed to test the concurrent processing capability of EAGLE in a scenario
where the system has to deal with a high volume of queries which are sent from multiple users. Rather
than serving as a comparison with other stores, this experiment only focuses on analyzing EAGLE’s
query processing behavior when receiving concurrent queries from multiple clients. This experiment
is performed as follows. In the first step, a dedicated script is built to randomly select and send
queries to the system. The query parameters are also randomly generated. In the second step, we
perform measurement runs with 10, 100, 250, 500 and 1000 clients concurrently. Finally, for each query,
the query execution times are summarized to compute the average value.

Figure 24 reports the evaluation results. In general, the execution time for all queries linearly rises
when more clients are added. It can be clearly observed that, when the number of clients increases
from 250 to 1000, the query execution time increases dramatically. Firstly, this is due to the growing
workload applied to the system. Secondly, by deeply analyzing the query cost breakdown, another
possible reason is the inefficiency of our query plan cache mechanism. According to our observation,
the query cache only works for the non-spatio-temporal queries. However, for the duplicated queries
that share the same spatial, temporal and full-text filters, instead of reusing the cached query plan,
the query optimizer has to re-generate a new query execution plan. For example, if there are 100
query instances of Q4 that have been sent from 100 clients, the query optimizer has to re-generate
the query execution plan for Q4 for 100 times. Obviously, this leads to a dramatic increase for the
total query execution time of Q4. As previously mentioned, the EAGLE’s query processing engine
has been implemented by extending the widely-known query engine, Jena ARQ, thus, its query cache
is identical to the one in Jena ARQ. Unfortunately, the original one was only developed for standard
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SPARQL queries and does not work for the spatio—temporal queries. Moreover, we also learned that
Jena ARQ'’s query cache does not work correctly with queries that share similar query patterns but
different literals. This is also the case for our tested query patterns, in which the literals are randomly
generated. We address this issue by proposing a novel learning approach for spatio—temporal query
planning, that is described in [33].
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Figure 23. Mixed queries execution time with respect to dataset size (in logscale).
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7.2.4. System Scalability

In this experiment, we measure how EAGLE’s performance scales when adding more nodes to the
cluster. We vary the number of nodes in the Google Cloud cluster with 2, 4, 8, 12 nodes, respectively.

Figure 25 presents the average loading throughput of spatial, temporal and text data when
increasing the number of nodes. The results reveal that the index performance linearly increases with
the size of the cluster. This is because scaling out of the cluster causes the working data that needs to
be indexed on each machine to be small enough to fit into main memory, which dramatically reduces
the required disk I/O operations.
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Figure 25. Average index throughput by varying number of cluster nodes.

In the following, we look at the query performance evaluation results shown in Figure 26.
According to the results, the query execution times of Q2 and Q11 remain steady and are not affected
by the cluster size. This is due to the fact that these queries are non-spatio—temporal queries and only
query on the static dataset. Recall that, we store the static dataset on centralized storage (Apache
Jena TDB), which is not scalable and is hosted on a single machine. Queries on static data are only
executed on this machine. Therefore, it is understandable that, for the non-spatio-temporal queries
being executed over the same dataset, scaling out of the cluster has no effect on their performance.
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Figure 26. Average query execution time by varying number of cluster nodes.

Unlike Q2 and Q11, the performance of other queries scales perfectly with the cluster size.
The results indicate that EAGLE has a considerable decrease in query execution time for mixed
queries (Q4, Q7, Q10). Meanwhile, other queries have a slightly decreased query execution time.
A representative example of mixed queries to demonstrate the scalability of EAGLE is Q4. This query
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required a heavy spatio-temporal computation on a large number of historical observation data items
for a given year. However, along with the scaling out of the cluster, the amount of data processing
for this query on each node was also reduced significantly. This explains the rapid drop in the query
execution time from 1120 (ms) to 514 (ms) for Q4 when the cluster size scales out from two to 12 nodes,
respectively.

7.3. Discussion

We have presented an extensive quantitative evaluation of EAGLE’s implementation and
conducted a comparison with a top-performing RDF store running on a single node as well as a
clustered RDF store. To conduct a precise performance comparison, we measure separately the loading
performance of spatial, text and temporal data. The experimental results show that EAGLE performs
better than other tested systems in terms of spatio-temporal and text data loading performance.
For query performance, we have learned that EAGLE is highly efficient for queries that require heavy
spatio—temporal computations on a large amount of historical data. However, it is slightly behind
Virtuoso and GraphDB for non-spatio-temporal queries. This is understandable, as improving query
performance on semantic data is not our main target.

Another fact that should be highlighted is the effectiveness of our spatio-temporal partitioning
strategy and OpenTSDB row-key scheme. This is evidenced by the evaluation results so that EAGLE
has outstanding performance when applying the partitioning strategy. In the case where no partitioning
strategy is used, it performs poorly and stops responding at a certain dataset size.

For the scalability test, EAGLE scales perfectly with the cluster size. However, we also learned of
some query planning issues that still exist in our system with respect to multiple concurrent queries.
This challenge is separately addressed in our recent publication [33].

8. Conclusions and Future Work

The paper presented our solution, EAGLE, on how to scale the processing pipelines of linked
sensor data. The solution includes a system design, a spatio—temporal storage model, a query language
proposal, and an extensive set of experiments. The architecture of our design is based on NoSQL
technologies, such as OpenTSDB and ElasticSearch, so that we can leverage their scalable indexing and
querying components tailored for document, time series, and spatial data. Based on this architecture,
we were able to isolate the I/O and processing bottlenecks with the storage model derived from
spatio-temporal data patterns. Such patterns are the inputs that drive our data partitioning mechanism
for enabling parallel writing and reading behaviors. Therefore, this mechanism makes EAGLE scale
better than other state of the art systems as shown in our various experiments. The experiments show
insightful quantitative figures on what the scalability issues of other systems and how our solution
can overcome such issues. Furthermore, the paper also proposed a query language dedicated for
linked sensor data by consolidating recent proposals for enabling spatio-temporal query patterns
on SPARQL.

For future work, we intend to integrate a distributed triple store within EAGLE to handle larger
non-temporal-spatial data partitions. We are looking into both commercial and open-source clustered
RDEF stores such as CumulusRDF [45], AllegroGraph [46], Blazegraph (http://www.blazegraph.com/),
etc. Furthermore, we are implementing some query optimization algorithms to speed up query
performance based on machine learning [33]. Another feature that we want to add in the next
version of EAGLE is enabling Allen’s temporal relations by developing additional temporal index
algorithms. Finally, to highlight the advantages of EAGLE, further evaluations, such as concurrent
read/write loads and detailed system scalibility, will be performed. Furthermore, the comparison
of EAGLE’s performance with other well-known distributed triple stores such as GraphDB, Neo4j
(https:/ /neodj.com/), etc., is also needed.
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Appendix A. Query Characteristics

Table A1l. Benchmark query characteristics on linked meteorological data.

Query Parametric Spatial Filter ~Temporal Filter ~Text Search Group By Order By LIMIT Num. Variables Num. Triple Patterns

1 v v 3 3
2 v 3 4
3 v v 7 8
4 v v v v v v o7 8
5 v v v v 4 5
6 v v 5 8
7 v v v v v o7 8
8 v v 3 4
9 v v 6 7
10 v v v v 7 9
11 v 2 1
12 v v
13 v v

Appendix B. Sparql Representation

PREFIXES

PREFIX sosa: <http://www.w3.org/mns/sosa/>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX temporal: <http://jena.apache.org/temporal#>
PREFIX wgs84: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX got:<http://graphofthings.org/ontology/>

PREFIX geoname: <http://www.geonames.org/ontology#>
PREFIX spatial: <http://jena.apache.org/spatial#>

Query 1. Given the latitude and longitude position, it retrieves the nearest weather station within
10 miles.

SELECT ?station ?coor

WHERE

{
?station a got:WeatherStation.
?station geo:hasGeometry 7geoFeature.
7geoFeature wgs84:geometry 7coor.
#V0S FILTER (<bif:st_within>(?coor, <bif:st_point>($long$, $lat$),$radius$)).
#EAGLE #RDF4J <?geoFeature geo:sfWithin ($lat$ $long$ $radius$)
#GraphDB ?7geoFeature omgeo:within ($lat$ $long$ $radius$).
#Stardog 7geoFeature geof:within ($lat$ $long$ $radius$).
#Jena 7geoFeature spatial:withinCircle ($lat$ $long$ $radius$)

Query 2. Given the country name, it retrieves the total number of weather station deployed in this
country.

SELECT (count(?station) as 7total)
WHERE
{
?station a got:WeatherStation.
?station geo:hasGeometry 7geoFeature.
?7geoFeature wgs84:geometry 7coor.
7?geoFeature geoname:parentCountry "$country name$".
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Query 3. Given the country name and year, it detects the minimum temperature value that has
been observed for that specified year.

SELECT min(?value) as ?min ?station
#EAGLE SELECT ?value ?station
WHERE
{
?station a got:WeatherStation.
?station geo:hasGeometry 7geoFeature.
7geoFeature geoname:parentCountry "$country name$".
?sensor sosa:isHostedBy 7?station.
?sensor sosa:observes got:SurfaceTemperatureProperty.
7obs sosa:madebySensor ?sensor;
sosa:resultTime 7time;
sosa:hasSimpleResult ?value.
FILTER (year (?time)=$year$).
#EAGLE ?value temporal:min ("$start time of year$" "$end time of year$").

Query 4. Given the area location and radius, it detects the hottest month of that area in a given year.

SELECT 7?month (avg(?value) as 7avgTemp)
WHERE
{
?station a got:WeatherStation.
?station geo:hasGeometry 7geoFeature.
?geoFeature wgs84:geometry ?coor.
#V0S FILTER (<bif:st_within>(7coor, <bif:st_point>($long$,$lat$),$radiuss$)).
#EAGLE #RDF4J 7geoFeature geo:sfWithin ($lat$ $long$ $radius$)
#GraphDB 7geoFeature omgeo:within ($lat$ $long$ $radiuss$).
#Stardog 7geoFeature geof:within ($lat$ $long$ $radius$).
#Jena ?geoFeature spatial:withinCircle ($lat$ $long$ $radius$)
?sensor sosa:isHostedBy ?station.
?sensor sosa:observes got:SurfaceTemperatureProperty.
?obs sosa:madebySensor ?sensor;
sosa:resultTime 7time;
sosa:hasSimpleResult ?value.
FILTER (year(?time)=$years$).
#EAGLE ?value temporal:avg ("$start time of year$" "$end time of year$").
}
GROUP BY (month(?time) as ?month)
ORDER BY DESC (avg(?7value)) limit 1

Query 5. Given the station URI and year, it retrieves the average wind speed for each month of
year.

SELECT 7month (avg(?7value) as 7avgTemp)
WHERE
{
?sensor sosa:isHostedBy $station URIS$.
?sensor sosa:observes got:WindSpeedProperty.
?7obs sosa:madebySensor ?sensor;
sosa:resultTime 7time;
sosa:hasSimpleResult ?value.
FILTER (year (?time)=$year$).
#EAGLE ?value temporal:avg ("$start time of year$" "$end time of year$").
}
GROUP BY (month(?time) as ?month)
ORDER BY 7month
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Query 6. Given a date, it retrieves the total number of observation that were observed in California
state.

SELECT count (?obs) as ?number
WHERE
{
?station a got:WeatherStation.
?station geo:hasGeometry 7geoFeature.
7geoFeature geoname:parentADM1 "Califormnia".
?geoFeature geoname:parentCountry "United States".
?sensor sosa:isHostedBy 7?station.
?sensor sosa:observes got:SurfaceTemperatureProperty.
7obs sosa:madebySensor ?sensor;
sosa:resultTime ?time.
FILTER (year(?time)=$year$ && month(?time)=%month$ && day(7time)=$day$).
#EAGLE 7count temporal:count ("$start time$" "$end time$")

Query 7. Given the latitude, longitude and radius , it retrieves the latest visibility observation value
of that area.

SELECT ?value ?time
WHERE
{
?station a got:WeatherStation.
?station geo:hasGeometry 7geoFeature.
7geoFeature wgs84:geometry 7coor.
#V0S FILTER (<bif:st_within>(?coor,<bif:st_point>($long$,$lat$),$radius$)).
#EAGLE #RDF4J “?geoFeature geo:sfWithin ($lat$ $long$ $radius$)
#GraphDB ?7geoFeature omgeo:within ($lat$ $long$ $radius$).
#Stardog ?geoFeature geof:within ($lat$ $long$ $radius$).
#Jena 7geoFeature spatial:withinCircle ($lat$ $long$ $radius$).
?sensor sosa:isHostedBy 7station.
?sensor sosa:observes got:AtmosphericVisibilityProperty.
7obs sosa:madebySensor ?sensor;
sosa:resultTime 7time;
sosa:hasSimpleResult ?value.
#EAGLE ?value temporal:values ("$current time$").
}
ORDER BY DESC (7time)
LIMIT 1

Query 8. Given a keyword, it retrieves all the places matching a keyword.

SELECT 7?station 7place 7?sc

WHERE

{
?station a got:WeatherStation.
?station geo:hasGeometry 7geoFeature.
?geoFeature geoname:parentADM1 7place.
#V0S 7place bif:contains "’$keyword$’" OPTION (score 7?sc).
#Stardog ?7place <tag:stardog:api:property:textMatch> "’$keyword$’".
#RDF4J 7geoFeature text:matches [text:query ’$keyword$’].
#EAGLE ?7geoFeature text:match (geoname:parentADM1 "’$keyword$x’").
#Jena (7geoFeature 7sc) text:query (geoname:parentADM1 "’$keyword$x’" ).
#GraphDB ?place luc:myIndex "$keyword$x".

}ORDER BY ?sc
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Query 9. Given a place name prefix, it summaries the number of observation of places that match a
given keyword. The results are grouped by place and observed property.

SELECT count (?obs) as ?totalNumber ?place ?observedType
WHERE

{

}GROUP BY ?place 7observedType

?station a got:WeatherStation.

?station geo:hasGeometry 7geoFeature.

7geoFeature geoname:parentCountry ?place.

#V0S 7place bif:contains "’$name prefix$’*" OPTION (score 7?sc).

#EAGLE 7geoFeature text:match (geoname:parentCountry "’$name prefix$*x’").
#Stardog ?7place <tag:stardog:api:property:textMatch> "’$name prefix$’*".
#RDF4J 7geoFeature text:matches [text:query ’$name prefix$’].

#Jena (7geoFeature 7sc) text:query (geoname:parentCountry "’$name prefix$*’" ).
#GraphDB ?place luc:myIndex "$name prefix$x".

?sensor sosa:isHostedBy 7station.

?sensor sosa:observes 7observedType.

7obs sosa:madebySensor ?sensor.

Query 10. Given a keyword, it retrieves the average humidity value for places that matches a
keywords since 2013.

SELECT avg(?value) as 7avgValue 7place
WHERE

{

}GROUP BY ?place

?station a got:WeatherStation.
?station geo:hasGeometry 7geoFeature.
7geoFeature geoname:parentCountry ?place.
#V0S 7?place bif:contains "’$keyword$*’" OPTION (score 7?sc)
#EAGLE 7geoFeature text:match (geoname:parentCountry "’$keyword$x’").
#Jena (7geoFeature ?sc) text:query (geo:parentCountry "’$keyword$x’" ).
#Stardog 7place <tag:stardog:api:property:textMatch> "’$keyword$’".
#RDF4J 7geoFeature text:matches [text:query ’$keyword$’].
#GraphDB ?place luc:myIndex "$keyword$x".
?sensor sosa:isHostedBy 7?station.
?sensor sosa:observes got:AtmosphericPressureProperty.
7obs sosa:madebySensor ?sensor;
sosa:resultTime 7time;
sosa:hasSimpleResult ?value.
FILTER (year (?time) >=2013)
#EAGLE ?value temporal:avg ("01/01/2013").

Query 11. It retrieves the total number of sensor for each observed properties.

SELECT (count(?sensor) as 7number) 7obsType
WHERE

{

}GROUP BY ?obsType

?sensor sosa:observes 7obsType
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