52 research outputs found

    Adaptação da cor da tipografia páginas web para pessoas com deficit na visão da cor

    Get PDF
    A legibilidade do texto é fundamental à sua leitura, sendo para isso determinante o contraste entre as cores usadas para a tipografia e para o fundo. Ainda que a escolha das cores seja adequada, o contraste pode ser insuficiente quando a tipografia é observada por pessoas com deficit na visão da cor, comprometendo assim a legibilidade. Sendo que é significativa a taxa de incidência do deficit na visão da cor, correntemente conhecido por daltonismo, assim como o índice de utilização da web pela população em geral, onde é frequente a existência de blocos de texto - com recurso à cor para tipografia e para o fundo-, são frequentes as situações em que se torna difícil uma leitura adequada, limitando o acesso à mensagem escrita. Neste contexto, este artigo vem propor um método para melhoria das condições de visualização dos blocos de texto, que passa pela aplicação de um algoritmo de adaptação, que efetua a alteração da cor da tipografia para preto ou para branco, dependendo da forma como a cor de fundo é vista pela daltónico. Dessa forma, é incrementado o contraste e é proporcionada uma integral acessibilidade aos conteúdos tipográficos

    Does Genotype Correlate With Phenotype? Evaluating Ruffed Lemur (Varecia spp.) Color Vision Using Subject Mediated Automatic Remote Testing Apparatus (SMARTA)

    Full text link
    Ruffed lemur (Varecia spp.) color vision research was conducted using a multidisciplinary approach: psychophysics, genetic analysis, technology, and animal training. The behavioral manifestation of Varecia spp. trichromacy was shown using a touchscreen apparatus (SMARTA). Trichromats performed better than dichromats when discriminating red from green (G2 = 78.10, p \u3c 0.001)

    Can Applications Designed to Evaluate Visual Function Be Used in Different iPads?

    Get PDF
    SIGNIFICANCE: Apple devices could be suitable for vision tests, provided that the test has been correctly adapted to the device, after considering the spatial and colorimetric characterization of the screen. PURPOSE: The majority of vision applications has not been developed by vision or colorimetry experts and suffers from conceptual and design errors that may lead average users to an erroneous assessment of their visual capabilities. The reliability of vision tests depends on the accurate generation of the necessary visual stimuli in a particular device. Our aim was to ascertain whether a given color test, designed for a colorimetrically characterized device, might be used in another similar device. METHODS: We evaluated color reproduction errors in three iPad tablets of different models with Retina screens, using their individual color characterization models and the model derived for another device. RESULTS: Our results showed, even with this small sample, the high degree of error caused when disregarding the fact that the colorimetric design valid for a given device may not be correct when displayed in another. CONCLUSIONS: The distortion of the chromatic content may lead to subjects with vision defects to pass as normal or vice versa, compromising diagnosis reliability

    Flexible Technique to Enhance Color-image Quality for Color-deficient Observers

    Get PDF
    Color-normal observers (CNOs) and color-deficient observers (CDOs) have different preferences and emotions for color images. A color-image quality-enhancement algorithm for a CDO is developed to easily adjust images according to each observer`s preference or image quality factors. The color-perception differences between CDO and CNO are analyzed and modeled in terms of the YCbCr chroma ratio and hue difference; then the color-shift method is designed to control the degree of color difference

    Live Video and Image Recolouring for Colour Vision Deficient Patients

    Get PDF
    Colour Vision Deficiency (CVD) is an important issue for a significant population across the globe. There are several types of CVD\u27s, such as monochromacy, dichromacy, trichromacy, and anomalous trichromacy. Each of these categories contain specific other subtypes. The aim of this research is to device a scheme to address CVD by using variations in pixel plotting of colours to capture colour disparities and perform colour compensation. The proposed scheme recolours the video and images by colour contrast variation of each colour for CVD patients, and depending on the type of deficiency, it is able to provide live results. Different types of CVD’s can be identified and cured by changing the particular colour related to it and based upon the type of diseases, it performs RGB (Red, Green, and Blue) to LMS (Long, Medium, and Short) transformation. This helps in colour identification and also adjustments of colour contrasts. The processing and rendering of recoloured video and images, allows the affected patients with CVD to see perfect shades in the recoloured frames of video or images and other modes of files. In this thesis, we propose an efficient recolouring algorithm with a strong focus on real-time applications that is capable of providing different recoloured outputs based on specific types of CVD

    Recoloração de imagens para dicromatas baseada em mapas elásticos

    Get PDF
    TCC(graduação) - Universidade Federal de Santa Catarina. Campus Araranguá. Engenharia da Computação.A deficiência na percepção de cores (DPC) afeta 8% da população caucasiana masculina, causada pela falha ou ausência de células fotorreceptoras do tipo cone na retina, e proveniente de causa genética, alguma lesão no olho, ou também devido a outras doenças, como diabetes, leucemia, etc. O indivíduo com DPC tem dificuldades na percepção de cores, que variam dependendo do tipo de deficiência. Dicromatas são os indivíduos com DPC causada pela ausência de um dos tipos de fotorreceptores cone, causando dificuldades na percepção das cores. A DPC causa dificuldades na realização de tarefas que necessitam da distinção de cores, o que pode prejudicar o indivíduo tanto na vida pessoal quanto profissional. Este trabalho propõe uma técnica de recoloração de imagens para dicromatas baseada na técnica de redução de dimensionalidade Mapas Elásticos, onde o objetivo é proporcionar aos indivíduos imagens que preservam detalhes da imagem original, como contrastes entre cores, os quais, os dicromatas não percebem. A técnica foi implementada tanto para CPU como para GPU, apresentando bons tempos de execução, além de apresentar bons resultados no aspecto da preservação de contrastes após a recoloração, a técnica também se propõe a preservar o aspecto de naturalidade da imagem, escolhendo o mapeamento final que minimiza a soma total das distância entre a cor original e o mapeamento dela no plano de percepção dos dicromatas.Color Vision Deficiency (CVD) affects 8% of caucasian male populations, caused by failure or absence of cone-like photorreceptor cells in the retina. CVD may be from genetic cause, some eye injury, or from other diseases such as diabetes, leukemia, etc. Individuals with CVD have difficulty in color perception, whose variation depends on the type of disability. Dichromats are individuals with CVD caused by the abscence of one of the types of cone photoreceptors, causing difficulties in the perception of colors. CVD causes difficulties in performing tasks that require color distinction, which can harm the individual in both personal and professional life. This work proposes an image recoloring technique for dichromats based on the Elastic Maps dimensionality reduction technique, where the objective is to provide images that preserve details of the original image, such as color contrasts. The technique was implemented both CPU and GPU, presenting good execution times, and good results in the aspect of preservation of contrasts after recoloring, the technique also proposes to preserve the aspect of naturality of image, choosing the final mapping that minimizes the total sum of the distance between the original color and the mapping of it in the plane of dichromat perception

    Individualized Models of Colour Differentiation through Situation-Specific Modelling

    Get PDF
    In digital environments, colour is used for many purposes: for example, to encode information in charts, signify missing field information on websites, and identify active windows and menus. However, many people have inherited, acquired, or situationally-induced Colour Vision Deficiency (CVD), and therefore have difficulties differentiating many colours. Recolouring tools have been developed that modify interface colours to make them more differentiable for people with CVD, but these tools rely on models of colour differentiation that do not represent the majority of people with CVD. As a result, existing recolouring tools do not help most people with CVD. To solve this problem, I developed Situation-Specific Modelling (SSM), and applied it to colour differentiation to develop the Individualized model of Colour Differentiation (ICD). SSM utilizes an in-situ calibration procedure to measure a particular user’s abilities within a particular situation, and a modelling component to extend the calibration measurements into a full representation of the user’s abilities. ICD applies in-situ calibration to measuring a user’s unique colour differentiation abilities, and contains a modelling component that is capable of representing the colour differentiation abilities of almost any individual with CVD. This dissertation presents four versions of the ICD and one application of the ICD to recolouring. First, I describe the development and evaluation of a feasibility implementation of the ICD that tests the viability of the SSM approach. Second, I present revised calibration and modelling components of the ICD that reduce the calibration time from 32 minutes to two minutes. Next, I describe the third and fourth ICD versions that improve the applicability of the ICD to recolouring tools by reducing the colour differentiation prediction time and increasing the power of each prediction. Finally, I present a new recolouring tool (ICDRecolour) that uses the ICD model to steer the recolouring process. In a comparative evaluation, ICDRecolour achieved 90% colour matching accuracy for participants – 20% better than existing recolouring tools – for a wide range of CVDs. By modelling the colour differentiation abilities of a particular user in a particular environment, the ICD enables the extension of recolouring tools to helping most people with CVD, thereby reducing the difficulties that people with CVD experience when using colour in digital environments

    Increasing Accessibility for Map Readers with Acquired and Inherited Color Vision Deficiencies: A Re-Coloring Algorithm for Maps

    Full text link
    Approximately 8% of the male population suffer from an inherited form of color vision deficiency (CVD). Age, diabetes, macular degeneration, cataracts and glaucoma result in eye defects including an acquired form of CVD. Inherited CVD is marked by a difficulty in discerning red from green, while acquired CVD is marked by a difficulty in discerning blue from green. A recent review of the cartographic literature revealed a deficit in studies on accessible maps for readers with the acquired form of CVD. In addition, research on accessible maps for readers with the inherited form of CVD was restricted to the design or pre-publication stage. An approach is needed to render maps already in circulation accessible to an audience with CVD. The purpose of this research is to improve the accessibility of maps post-publication. Image re-coloring is a method of altering an image\u27s color composition in such a way as to make it accessible to a color vision deficient audience. An innovative algorithm is presented that produces a re-colored map that can be perceived by individuals with red-green (inherited) CVD, blue-green CVD (acquired) and normal color vision alike. The algorithm was tested on a control group of participants with normal color vision and a case group of participants with impaired color vision through a series of matching, content and personal preference questions about six pairs of maps. Each map pair represented one of the following color schemes: balance, diverging, qualitative area, qualitative dot, sequential polychrome, and two variable. Each map pair is composed of two renditions: a map using a color palette that is potentially confusing to viewers with impaired color vision (original rendition) and a map where the original color palette has been re-colored by the algorithm (re-colored rendition). According to the results of a Wilcoxon signed-rank test, the performance of the case group improved when using the re-colored renditions compared to when using the original renditions while the performance of the control group was the same for both renditions. A Mann-Whitney rank sum test revealed that while the scores of the case group were lower than the control group when using the original renditions, they were the same when using the re-colored renditions. A binomial test revealed that subjects in the case group displayed a preference towards all the re-colored renditions while subjects in the control group displayed a preference to two of the six original renditions
    corecore