768 research outputs found

    Solution processed metal oxide microelectronics: from materials to devices

    Get PDF
    Owing to their many interesting characteristics, the application of metal oxide based electronics has been growing at a considerable rate for the past ten years. High performance, optical transparency, chemical stability and suitability toward low cost deposition methods make them well suited to a number of new and interesting application areas which conventional materials such as silicon, or more recently organic materials, are unable to satisfy.The work presented in this thesis is focussed on the optimisation of high performance metal oxide based electronics combined with use of spray pyrolysis, as a low cost deposition method. The findings presented here are split into three main areas, starting with an initial discussion on the physical and electronic properties of films deposited by spray pyrolysis. The results demonstrate a number of deposition criteria that aid in the optimisation and fabrication of high performance zinc oxide (ZnO) based thin-film transistors (TFTs) with charge carrier mobilities as high a 20 cm2/Vs. Solution processed gallium oxide TFTs with charge carrier mobilities of ~0.5 cm2/Vs are also demonstrated, highlighting the flexibility of the deposition method. The second part of the work explores the use of facile chemical doping methods suitable for spray pyrolysed ZnO based TFTs. By blending different precursor materials in solution prior to deposition, it has been possible to adjust certain material characteristics, and in turn device performance. Through the addition of lithium it has been possible alter the films grain structure, leading to significantly improved charge carrier mobilities as high as ~54 cm2/Vs. Additionally the inclusion of beryllium during film deposition has been demonstrated to control TFT threshold voltages, leading to improved integrated circuit performance. The final segment of work demonstrates the flexibility of spray pyrolysis through the deposition of a number of high-k dielectric materials. These high performance dielectrics are integrated into the fabrication of TFTs already benefiting from the findings of the previously discussed work, leading to highly optimised low-voltage TFTs. The performance of these devices represent some of best currently available from solution processed ZnO TFTs with charge carrier mobilities as high as 85 cm2/Vs operating at 3.5 V.Open Acces

    ํ”Œ๋ผ์ฆˆ๋งˆ ํ™”ํ•™ ๊ธฐ์ƒ ์ฆ์ฐฉ๋ฒ•์„ ์ด์šฉํ•œ ๋ฒ ๋ฆฌ์–ด ํ•„๋ฆ„ ํ•ฉ์„ฑ๊ณผ ๋””์Šคํ”Œ๋ ˆ์ด ์‘์šฉ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ™”ํ•™๋ถ€, 2019. 2. ํ™๋ณ‘ํฌ.์ž๋ฐœ๊ด‘ํ˜• ๋””์Šคํ”Œ๋ ˆ์ด์ด๋ฉฐ, ์ €์ „์•• ๊ตฌ๋™์ด ๊ฐ€๋Šฅํ•˜๊ณ  ์–‡์€ ๋‘๊ป˜๋กœ ์ œ์ž‘์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ ๋™์ž‘์†๋„๊ฐ€ ๋งค์šฐ ๋น ๋ฅผ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋†’์€ ํ•ด์ƒ๋„ ๊ตฌํ˜„์ด ๊ฐ€๋Šฅํ•œ OLED๋Š” ๋””์Šคํ”Œ๋ ˆ์ด์—์„œ ๋น ๋ฅธ ์„ฑ์žฅ์„ธ๋ฅผ ๋ณด์ด๊ณ  ์žˆ๋‹ค. ์ตœ๊ทผ OLED์˜ ๊ฐ€์žฅ ํฐ ๊ด€์‹ฌ ๋ถ„์•ผ๋Š” ๋ชจ๋ฐ”์ผ์šฉ ๋””์Šคํ”Œ๋ ˆ์ด์™€ ๋Œ€๋ฉด์  TV, ๊ทธ๋ฆฌ๊ณ  ํ”Œ๋ ‰์‹œ๋ธ” ๋ฐ ํˆฌ๋ช… ๋””์Šคํ”Œ๋ ˆ์ด ๊ตฌํ˜„์ด๋‹ค. ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ๊ตฌ๋™ํ•˜๊ธฐ ์œ„ํ•œ ๊ตฌ๋™์†Œ์ž๋Š” ์ˆ˜๋™ํ˜•(passive matrix)๊ณผ ๋Šฅ๋™ํ˜•(active matrix, AM)๋กœ ๋‚˜๋‰˜๋ฉฐ, ์ˆ˜๋™ํ˜•์— ๋น„ํ•˜์—ฌ ๊ณ ํ™”์งˆ, ๋‚ฎ์€ ์†Œ๋น„ ์ „๋ ฅ, ๋Œ€ํ˜•ํ™”์— ์œ ๋ฆฌํ•œ ๋Šฅ๋™ํ˜• ๋””์Šคํ”Œ๋ ˆ์ด๊ฐ€ ์„ ํ˜ธ๋œ๋‹ค. ํ‘œ์‹œ์†Œ์ž๋ฅผ ๋Šฅ๋™ ๊ตฌ๋™ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฐ ํ™”์†Œ๋งˆ๋‹ค ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ(thin-film transistor, TFT)์™€ ๊ฐ™์€ ์Šค์œ„์นญ ์†Œ์ž๋ฅผ ๋ถ€์ฐฉ์‹œ์ผœ์•ผ ํ•œ๋‹ค. ๋Šฅ๋™ํ˜• ๊ตฌ๋™์†Œ์ž์˜ ๊ฒฝ์šฐ ํ˜„์žฌ์˜ TFT-LCD๋‚˜ AMOLED์šฉ ๋ฐฑํ”Œ๋ ˆ์ธ์— ์ฃผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ๋น„์ •์งˆ ์‹ค๋ฆฌ์ฝ˜(a-Si), ์ €์˜จ ๋‹ค๊ฒฐ์ • ์‹ค๋ฆฌ์ฝ˜ (LTPS) ๊ธฐ์ˆ ์ด ์šฐ์„  ๊ฐœ๋ฐœ๋˜์–ด ์‘์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ตœ๊ทผ์—๋Š” ํฐ ๋ฐด๋“œ ๊ฐญ์„ ๊ฐ€์ง€๋Š” ๋น„์ •์งˆ ์‚ฐํ™”๋ฌผ ๋ฐ˜๋„์ฒด๋ฅผ ์ด์šฉํ•ด ํˆฌ๋ช…ํ•˜๋ฉด์„œ ๋น ๋ฅธ ์‘๋‹ต์†๋„์˜ ๋””์Šคํ”Œ๋ ˆ์ด ๊ตฌ๋™์†Œ์ž์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ ๋ฐฐ์„ ์˜ RC Delay๋ฅผ ์ตœ์†Œํ™” ์‹œ์ผœ์•ผ ํ•˜๊ณ , ํŒŒ์›Œ์†Œ๋น„๋Ÿ‰์„ ์ค„์—ฌ์•ผ ํ•˜๋Š” ๊ธฐ์ˆ ์ ์ธ ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๊ณ ํ•ด์ƒ๋„์ธ UHD (Ultra High Definition)์˜ backplane์—์„œ ๊ณ ์† TFT ๊ตฌํ˜„์„ ์œ„ํ•˜์—ฌ SD(Source-Drain) ๋ฉ”ํƒˆ ๋ฐฐ์„  ๊ตฌํ˜„์€ ํ•„์ˆ˜์ ์ธ ์š”์†Œ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” SD ๋ฉ”ํƒˆ ๋ฐฐ์„ ์œผ๋กœ์จ ์ €์ €ํ•ญ ๋ฐฐ์„ ์ธ Copper ๋ฐฐ์„ ์˜ diffusion barrier ์—ญํ• ์„ ํ•˜๋Š” Graphite ์„ฑ์žฅ์„ ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด์˜ Graphene ํ•ฉ์„ฑ์€ ๊ธฐ๊ณ„์  ๋ฐ ํ™”ํ•™์  ๋ฐ•๋ฆฌ ๋ฐฉ๋ฒ•์—๋Š” ๋Œ€๋ฉด์  ํŒจ๋„ ๊ตฌํ˜„์œผ๋กœ์จ ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ํ˜„์žฌ๊นŒ์ง€ ๋Œ€ํ˜• Size scale Graphene ์‹œ๋„๋Š” ์ „๊ทน์œผ๋กœ์จ Graphene ํ™œ์šฉ์€ ์žˆ์ง€๋งŒ, ์ด ๊ตฌํ˜„์€ Thermal CVD (900~1000โ„ƒ)์—์„œ Graphene ์„ ํ•ฉ์„ฑํ•˜๊ณ , Glass์— transfer ํ•œ ๋…ผ๋ฌธ์œผ๋กœ์จ ์‹ค์ œ ๋Œ€๋ฉด์ ์œผ๋กœ ๋งŒ๋“œ๋Š” ๊ณต์ • ์ ์šฉ์—๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์ด์— ํ˜„์žฌ ๋งŽ์ด ์—ฐ๊ตฌ๋Š” ์ง„ํ–‰ ์ค‘์ด๊ณ  ์žˆ์ง€๋งŒ, PECVD (Plasma Enhanced Chemical Vapor Deposition)๋ฅผ ์ด์šฉํ•œ graphite ๋ฐ•๋ง‰ ํ•ฉ์„ฑ์€ ๋Œ€ํ˜• size, mass production์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋ฉฐ, ์•„์ง mass production ์ ์šฉ์„ ์œ„ํ•ด ์—ฐ๊ตฌํ•ด์•ผ ํ•  ์ ์€ ๋งŽ์ง€๋งŒ, ์ €์˜จ ๊ณต์ • Graphite ํ•ฉ์„ฑ์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋ฉด, large scale device ๊ตฌํ˜„์— ํ•œ์ธต ๋” ์ง„๋ณด๋œ ๊ธฐ์ˆ ์ด ๋  ๊ฒƒ์ž„์„ ํ™•์‹ ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ Copper diffusion barrier ์œผ๋กœ์จ์˜ ์—ญํ• ์„ ๊ฒ€์ฆํ•˜๊ณ , ์ฆ์ฐฉ ์˜จ๋„๋ฅผ ์ €์˜จ์œผ๋กœ ํ•ฉ์„ฑํ•จ์œผ๋กœ์จ TEM ๋ฐ EDAX ๋ถ„์„์œผ๋กœ Graphite barrier ๋ฐ mass production์˜ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ์ง์ ‘์ ์ธ PECVD ํ•ฉ์„ฑ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋Œ€๋ฉด์ ์ด ๊ฐ€๋Šฅํ•จ์„ ์ œ์‹œํ•จ์œผ๋กœ์จ ๊ธฐ์กด์˜ ๋Œ€๋ฉด์  ํ•ฉ์„ฑ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•ด ์ค„ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ์•ˆ์ด ๋  ๊ฒƒ์ด๋‹ค. ๋˜ํ•œ ๋””์Šคํ”Œ๋ ˆ์ด์˜ TFT ํŠน์„ฑ๋„ ๊ธฐ์กด์˜ Active material ์ธ a-Si TFT๋ณด๋‹ค ํ›จ์”ฌ ๋” ๋†’์€ ๊ณ ์ด๋™๋„ ์†Œ์ž๋ฅผ ์š”๊ตฌํ•˜๋ฉฐ, ํŠนํžˆ ํˆฌ๋ช… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์ ์šฉ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ๊ณ ์ด๋™๋„ ํŠน์„ฑ์„ ๊ท ์ผํ•˜๊ฒŒ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋Š” ์‹ ๊ทœ TFT๋ฅผ ์š”๊ตฌํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค. ์ด์— ๋Œ€ํ•œ ๋ฐฉ์•ˆ์œผ๋กœ ์‚ฐํ™”๋ฌผ TFT๋กœ์จ ZnO (Zinc Oxide), IZO (Indium Zinc Oxide), a-IGZO (Amorphous Indium Gallium Zinc Oxide) ๋“ฑ์˜ ์žฌ๋ฃŒ๊ฐ€ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด์˜ a-Si์˜ ์ด๋™๋„ (<1cm2/VยทS) ๋ณด๋‹ค ๋†’์€ ์ด๋™๋„๋ฅผ ๊ฐ€์ง„ IGZO ์žฌ๋ฃŒ๋Š” ํˆฌ๋ช…ํ•œ ์†Œ์ž๋กœ์จ ํˆฌ๋ช…๋””์Šคํ”Œ๋ ˆ์ด์—์„œ๋„ ํ™œ์šฉ์ด ๊ฐ€๋Šฅํ•˜์—ฌ, ์‘์šฉ์„ฑ์„ ํ™•๋Œ€ํ•˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํˆฌ๋ช…๋””์Šคํ”Œ๋ ˆ์ด ์—์„œ๋„ ํ™œ์šฉ์ด ๊ฐ€๋Šฅํ•˜๋„๋ก a-IGZO๋ฅผ substrate๋กœ ํ•˜๋Š” Graphite ๋ฐ•๋ง‰์„ ํ•ฉ์„ฑ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ , ๋Œ€๋ฉด์  ๊ตฌํ˜„์œผ๋กœ์จ ๊ทธ ์‘์šฉ์„ฑ์„ ๊ธฐ๋Œ€ํ•˜๊ณ  ์žˆ๋‹ค. Graphite์˜ ์ €์˜จ ํ•ฉ์„ฑ ๊ธฐ์ˆ  ๊ฐœ๋ฐœ์€ ๊ธฐ์กด ๋ผ์ธ์˜ CVD ์žฅ๋น„ ๊ต์ฒด ์—†์ด ๋‹จ์ง€ Graphene Gas ์‚ฌ์šฉ๋งŒ์œผ๋กœ ๊ณต์ •์„ ๊ตฌํ˜„ํ•œ๋‹ค๋Š” ์ ์ด cost ๋ฐ ๊ณต์ • ๋‹จ์ˆœํ™”์˜ ๊ด€์ ์—์„œ ๋งŽ์€ ์žฅ์ ์ด ์žˆ๋‹ค. ๋˜ํ•œ ๊ณ ์† ๊ตฌ๋™์„ ์œ„ํ•˜์—ฌ SD ๋ฐฐ์„ ์œผ๋กœ metal๋ฟ ์•„๋‹ˆ๋ผ ์‚ฐํ™”๋ฌผ ๋ฐ˜๋„์ฒด๋กœ๋„ Graphite ํ•ฉ์„ฑ์˜ catalyst๋กœ์จ ์‚ฌ์šฉ๋˜์–ด, ํŒจ๋„ ๊ตฌํ˜„์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ด์ค€๋‹ค๋Š” ๊ด€์ ์—์„œ ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค. ๋˜ํ•œ Graphite ํ•ฉ์„ฑ ๊ธฐ์ˆ ์„ thin film ๋ฐ•๋ง‰์„ ๋งŒ๋“ค์–ด ๋‹ค๋ฅธ application ์—์„œ๋„ ํ™œ์šฉ ๊ฐ€๋Šฅํ•จ์„ ๋ณด์—ฌ์คŒ์œผ๋กœ์จ ํŒŒ๊ธ‰ ํšจ๊ณผ๊ฐ€ ํฌ๋‹ค๊ณ  ํŒ๋‹จ๋œ๋‹ค. ๋‹ค์Œ ์—ฐ๊ตฌ์—์„œ๋Š” LCD ๋””์Šคํ”Œ๋ ˆ์ด์—์„œ Backlight ์‚ฌ์šฉ์ด ํ•„์ˆ˜์ ์ด๋‹ค. Back light๋Š” ๊ฐ€์‹œ๊ด‘์„  ์˜์—ญ ๋ฟ ์•„๋‹ˆ๋ผ UV ํŒŒ์žฅ์˜์—ญ๋„ ํฌํ•จํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, Active ์žฌ๋ฃŒ์ธ a-IGZO ์†Œ์ž์—์„œ TFT ํŠน์„ฑ์˜ ๋ถˆ์•ˆ์ •์„ฑ์˜ ๋ฌธ์ œ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. IGZO์˜ ํŠน์„ฑ์ƒ UV ํŒŒ์žฅ๋Œ€์—์„œ์˜ ๋น›๊ณผ์˜ ๋ฐ˜์‘์œผ๋กœ TFT ์†Œ์ž์˜ ์‹ ๋ขฐ์„ฑ ํŠน์„ฑ์ด ์•…ํ™”๋˜๋Š” ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ณ ์ž Barrier ๋ฐ•๋ง‰์„ ์‚ฌ์šฉ์ด ํ•„์ˆ˜์ ์ธ ์š”์†Œ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” TFT์˜ ์‹ ๋ขฐ์„ฑ ๋ฐ ์•ˆ์ •์„ฑ์„ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด์„œ Photo blocking barrier๋กœ์จ SiGe (Silicon Germanium) ๋ฐ•๋ง‰ ์žฌ๋ฃŒ ํ•ฉ์„ฑ์„ ํ†ตํ•˜์—ฌ TFT ์‹ ๋ขฐ์„ฑ์˜ ํŠน์„ฑ ๋ณ€ํ™” ์—†๋Š” ๊ฒƒ์„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ์ด์ „ SiGe ์—ฐ๊ตฌ๋˜์–ด์ง„ ๋ฐ”๋กœ๋Š” ํƒœ์–‘์ „์ง€์—์„œ P-I(intrinsic layer)-Nํ˜• ๊ตฌ์กฐ์—์„œ ์ค‘๊ฐ„ ์‚ฝ์ž…์ธต์—์„œ ๋ถˆ์ˆœ๋ฌผ์ด ์ฒจ๊ฐ€๋˜์ง€ ์•Š์€ ๋ฌด์ฒจ๊ฐ€์ธต (Intrinsic layer)์—์„œ SiGe ์ด ๊ด‘ํก์ˆ˜์ธต์œผ๋กœ ์‚ฌ์šฉ๋˜์–ด์ง„ ์—ฐ๊ตฌ๊ฐ€ ์žˆ์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” TFT ์†Œ์ž์—์„œ a-IGZO ๊ฐ€ ๊ด‘๋ฐ˜์‘์œผ๋กœ ์ธํ•ด ์‚ฐ์†Œ ๊ฒฐํ• (Oxygen Vacancy)์„ ๋ง‰์•„ TFT ํŠน์„ฑ์˜ ์ €ํ•˜ ํšจ๊ณผ๋ฅผ ๋ง‰๊ณ ์ž SiGe์˜ ๊ด‘ ์ฐจ๋‹จ ๋ฐ•๋ง‰ ํ˜•์„ฑ์„ ํ†ตํ•ด ๊ด‘๋ฐ˜์‘์œผ๋กœ ์ธํ•œa-IGZOํŠน์„ฑ ๋ณ€ํ™”๊ฐ€ ๋˜์ง€ ์•Š๋„๋ก ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋ฐ•๋ง‰ ํ˜•์„ฑ ๋ฐ ์ ์ธต ๊ตฌ์กฐ์—์„œ SiGe ์™€ IGZO์˜ ๋ฐ•๋ง‰ ์‚ฌ์ด์— Capacitance ํ˜•์„ฑ์œผ๋กœ ์ „์ž์˜ charge๊ฐ€ IGZO ๋ฐ•๋ง‰ ๊ณ„๋ฉด์— ๋ˆ„์ ๋˜์–ด, ํŠธ๋žœ์ง€์Šคํ„ฐ ํŠน์„ฑ์ด ๋‹จ๋ฝ(short) ํ˜„์ƒ์ด ๋ฐœ์ƒ ํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด Buffer layer ์˜ ๋‘๊ป˜ ์กฐ์ ˆ์ด ์ค‘์š”ํ•˜์˜€๋‹ค. ์ด์— Buffer layer์˜ ๋‘๊ป˜ ์ตœ์ ํ™”๋ฅผ ํ†ตํ•ด ํ•˜๋ถ€์—์„œ ๋“ค์–ด์˜ค๋Š” ๋น›์—๋„ ์ฐจ๋‹จ์„ ํ•  ์ˆ˜ ์žˆ๋Š” Barrier ์ ์ธต ๊ตฌ์กฐ๋ฅผ ๋งŒ๋“ค์–ด TFT ์†Œ์ž์˜ ์‹ ๋ขฐ์„ฑ ๊ฐœ์„ ๋จ์„ ๋ณด์—ฌ์ฃผ๊ณ ์ž ํ•˜์˜€๋‹ค. ์Šค๋งˆํŠธ Window ๋ฐ ๋ƒ‰์žฅ๊ณ ์—์„œ ๋ฌธ์„ ์—ด์ง€ ์•Š๊ณ  ๋‚ด์šฉ๋ฌผ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋Š” ํˆฌ๋ช… ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐ ํ”Œ๋ ‰์‹œ๋ธ” ๋””์Šคํ”Œ๋ ˆ์ด ๊ตฌํ˜„์„ ์œ„ํ•ด ์—ฌ๋Ÿฌ ์š”์†Œ์˜ ๊ธฐ์ˆ  ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด ๊ตฌํ˜„์„ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์˜ Barrier ๋ฐ•๋ง‰ ๊ตฌํ˜„์€ ํ•„์ˆ˜์ ์ธ ์š”์†Œ๋กœ ์‘์šฉ์„ฑ์ด ํ™•๋Œ€๋˜์–ด ํ™œ์šฉ๋จ์„ ๊ธฐ๋Œ€ํ•ด ๋ณธ๋‹ค.OLED is a self-emissive display can be driven at low voltage and manufactured in a thin layer. In addition, this display operates at a very high speed and emit a color that can be rapidly implemented. Recently, OLEDs main interest is mobile screen, large screen TV, flexible and transparent display. The driving device for display is classified to the passive matrix and active matrix. Active matrix is preferred because of higher resolution, lower energy consumption, and large size screen. To apply active matrix on display device, a switching device such as thin-film transistor (TFT) is attached to each pixel. For active driving devices, amorphous silicon (a-Si) and low-temperature polycrystalline silicon (LTPS) technologies are applied in current TFT โ€“LCD or AMOLED back frame. Recently, there is an ongoing research on using amorphous oxide semiconductors with large bandgaps to research transparent and fast responsive display driving devices. Moreover, RC delay has a technical problem that must be minimized and reduce power consumption. Implementation of Source Drain (SD) is a metal wiring essential element for high-speed TFT execution in high-resolution UHD (Ultra High Definition) displays backplane. In this study, the graphite growth plays the role of diffusion barrier of copper wiring that has low resistance wiring with SD metal wiring. The chemical and mechanical stripping methods of conventional graphene synthesis application on large area panels is limited. Up to now, the large size graphene has been used as an electrode, but this implementation is limited to making the large-scale process by synthesizing graphene at thermal CVD (900~1000ยฐC) and transferring it to the glass. Despite the fact, a lot of ongoing studies, graphites thin film synthesis using Plasma Enhanced Chemical Vapor Deposition (PECVD) enables large size and mass production. Furthermore, this area still requires more research on mass production. If low-temperature process for graphite synthesis is possible, this will become a more advanced technology for device implementation. In this study, the role of copper diffusion barrier was verified, and the possibility of graphite barrier and mass production was verified by TEM and EDAX analysis by synthesizing the deposition temperature at low temperature. In addition, this study suggests the large size display can be obtained through direct PECVD synthesis that will solve the existing problems of large size synthesis. The displays TFT characteristics also require a high mobility device that is much higher than the conventional active material a-Si TFT. In particular, a new TFT capable of applying a transparent display and uniformly having high mobility characteristics is required. Materials such as ZnO (Zinc Oxide), IZO (Indium Zinc Oxide) and IGZO (Indium Gallium Zinc Oxide) have been studied as oxide TFTs. IGZO materials with higher mobility than conventional a-Si mobility (<1 cm2 / V ยท s) are transparent devices and can be used in transparent displays, thus extending applicability. In this study, we propose a graphite synthesis based on IGZO to be applicable to transparent display and expect the application on large size displays. The low-temperature Graphite synthesis has many advantages in terms of cost and process simplification because it implements the process only by using Graphene gas without replacing existing CVD equipment. In addition, it can be used as a graphite synthesis catalyst not only for metal but also for the oxide semiconductor, to raise activation. Moreover, the graphite synthesis to make a thin film can be applied to other fields. In the next study, it is essential to use backlight in LCD display. The backlight not only includes the visible light but also the UV region, and has instability of TFT characteristics in the active material IGZO device. Due to IGZOs reaction to light in UV region, it is essential to use a barrier film in order to solve the reliability characteristics of the TFT device deterioration. To maintain the reliability and stability of the TFT, this study on reliability of the TFT was not changed by SiGe (Silicon Germanium) synthesis thin film as a photo blocking barrier. Based on previous research on SiGe has been used as the light absorbing layer in the intrinsic layer in which a P-I (intrinsic layer)-N type structure in a solar cell that is not doped with an impurity in an intermediate insertion layer. In this study, in order to prevent oxygen vacancy during a-IGZO photoreaction on TFT device, the formation of a light-shielding film of Si-Ge prevents oxygen deficiency. Capacitance formation between SiGe and IGZO thin film in the thin film formation and lamination structure accumulates electrons charge on the IGZO thin film interface. The characteristics of the transistor were short, and to prevent this shortness, it is important to control the thickness of the buffer layer. Therefore, this shows that the reliability of the TFT device is improved by making the barrier laminate structure that can block the light from the bottom through the optimization of the thickness of the buffer layer. There are various ongoing technological studies on transparent and flexible displays that to observe the contents without opening the door through the smart window and refrigerator. For this application, the thin film barrier is an essential element and expect to be implemented.Table of Contents Abstract.........................................................................1 Contents........................................................................6 List of Figures.................................................................9 List of Tables................................................................15 Chapter 1. Introduction................................................16 1.1. Graphene characteristics 1.2. Amorphous Si:H and LTPS TFT backplane technology in display 1.3. High performance amorphous In-Ga-Zn-O TFTs 1.4. Overview of PECVD system 1.5. References Chapter 2. Growth of thin graphite films for solid diffusion barriers .......................................................60 2.1. Large-scale transfer-free growth of thin graphite films at low temperature for solid diffusion barriers 2.1.1. Introduction 2.1.2. Experimental 2.1.3. Results and discussion 2.1.4. Conclusion 2.1.5. References Chapter 3. Growth of silicon germanium films for photo-blocking layers in industrial display.................99 3.1. Silicon germanium photo-blocking layers for a-IGZO based industrial display 3.1.1. Introduction 3.1.2. Experimental 3.1.3. Results and Discussion 3.1.4. Conclusion 3.1.5. References Abstract in Koreanโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ130 Appendixโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ135Docto

    Highly transparent and reproducible nanocrystalline ZnO and AZO thin films grown by room temperature pulsed-laser deposition on flexible zeonor plastic substrates

    Get PDF
    Zeonor plastics are highly versatile due to exceptional optical and mechanical properties which make them the choice material in many novel applications. For potential use in flexible transparent optoelectronic applications, we have investigated Zeonor plastics as flexible substrates for the deposition of highly transparent ZnO and AZO thin films. Films were prepared by pulsed laser deposition at room temperature in oxygen ambient pressures of 75, 150 and 300 mTorr. The growth rate, surface morphology, hydrophobicity and the structural, optical and electrical properties of as grown films with thicknessesโˆผ65โ€“420 nm were recorded for the three oxygen pressures. The growth rates were found to be highly linear both as a function of film thickness and oxygen pressure, indicating high reproducibility. All the films were optically smooth, hydrophobic and nanostructured with lateral grain shapes ofโˆผ150 nm wide. This was found compatible with the deposition of condensed nanoclusters, formed in the ablation plume, on a cold and amorphous substrate. Films were nanocrystalline (wurtzite structure), c-axis oriented, with average crystallite sizeโˆผ22 nm for ZnO andโˆผ16 nm for AZO. In-plane compressive stress values of 2โ€“3 GPa for ZnO films and 0.5 GPa forAZO films were found. Films also displayed high transmission greater than 95% in some cases, in the 400โ€“800 nmwavelength range. The low temperature photoluminescence spectra of all the ZnO and AZO films showed intense near band edge emission. A considerable spread from semi-insulating to n-type conductive was observed for the films, with resistivityโˆผ103 ฮฉ cm and Hall mobility in 4โ€“14 cm2 Vโˆ’1 sโˆ’1 range, showing marked dependences on film thickness and oxygen pressure. Applications in the fields of microfluidic devices and flexible electronics for these ZnO and AZO films are suggested

    On improvements in metal oxide based flexible transistors through systematic evaluation of material properties

    Get PDF
    Thin-film metal oxide (MOx) semiconductors have opened the way to a new generation of electronics based on their unique properties. With mobilities, mu, of up to 80 cm2V-1s-1, metal oxides do not rival crystalline silicon (mu~1000 cm2V-1s-1) for complex applications. But such oxides do have three unique characteristics driving great interest: their mobilities persist in the amorphous form, contrary to the thousandfold drop seen in silicon; they are transparent; and they can be processed at, or near, room temperature. Most work on MOx semiconductors, in particular indium gallium zinc oxide (IGZO), has focused on display applications, where MOx thin-film transistors (TFTs) are used to drive individual pixels, reducing power consumption by blocking less light than alternatives, and allowing smaller pixels due to reduced TFT sizes. Such work has seen great advances in IGZO, but has generally not considered the thermal budget during production. By utilising the low temperature processing possible with MOx, a new world of applications becomes possible: flexible electronics. This work aims to improve the characteristics of TFTs based on amorphous IGZO (a-IGZO) through detailed study of the thin-film structure in relation to functional performance, looking at the material structure of three critical layers in an a-IGZO TFT. A study of optimisation of a dielectric layer of Al2O3, deposited by atomic layer deposition (ALD), is presented. This dielectric, between the a-IGZO and the gate electrode, shows a three-layer substructure in what has previously been regarded as a single homogeneous layer. A study of the insulating Al2O3 buffer layer below the a-IGZO compared the properties of Al2O3 deposited by ALD and sputtering. Sputtered material has a more complex structure than ALD, consisting of multiple sublayers that correlate with the sputtering process. The structure of the two materials is discussed, and the impact on device performance considered. A detailed systematic study of the effects of annealing of a-IGZO shows a strong dependence of the density on both time and temperature. A two mechanism model is proposed which consists of structural relaxation of the amorphous material followed by absorption of oxygen from the environment. Finally, investigation of the influence of the buffer material on the a-IGZO, and the structure of this interface showed little difference in the growth of the a-IGZO, but did reveal some changes in the interface, while a systematic study of annealing effects on the a-IGZO-dielectric interface showed some interesting changes in this structure, both of which are likely to significantly impact the operational characteristics of TFT devices

    EFFECT OF THE DISTRIBUTION OF STATES IN AMORPHOUS IN-GA-ZN-O LAYERS ON THE CONDUCTION MECHANISM OF THIN FILM TRANSISTORS ON ITS BASE

    Get PDF
    Amorphous In-Ga-Zn-O Thin Film Transistors (a-IGZO TFTs) have proven to be an excellent approach for flat panel display drivers using organic light emitting diodes, due to their high mobility and stability compared to other types of TFTs. These characteristics are related to the specifics of the metal-oxygen-metal bonds, which give raise to spatially distributed s orbitals that can overlap between them. The magnitude of the overlap between s orbitals seems to be little sensitive to the presence of the distorted bonds, allowing high values of mobility, even in devices fabricated at room temperature.ย In this paper, we show the effect of the distribution of states in the a-IGZO layer on the main conduction mechanism of the a-IGZO TFTs, analyzing the behavior with temperature of the drain current.

    Solution-processed metal oxide dielectrics and semiconductors for thin film transistor applications

    Get PDF
    Transparent thin film transistors (TFTs) have been the subject of extensive scientific research over the last couple of decades, for applications in displays and imaging, as their implementation in active-matrix liquid crystal displays backplanes is expected to improve their performance in terms of switching times and stability. To this end, several material systems have emerged as contenders to address this need for a high performance, low power, large-area electronics i.e. thin film silicon, organic semiconductors and metal oxides. The electronic limitations of thin film silicon are well documented, and although organic semiconductors have seen significant improvements in recent years, their persistent low mobility and instability means that they are unlikely to progress beyond niche applications. This thesis is focused on the investigation of the physical properties of metal oxides and their implementation in TFTs. Metal oxide based TFTs were fabricated by spray pyrolysis, a simple and large-area-compatible deposition technique. More precisely, the implementation of titanium-aluminate and niobium-aluminate both wide band gap and high-k gate dielectric metal oxides in solution processed ZnO-based TFTs was studied and high performance, low operational voltage devices were fabricated. ZnO-based TFTs employing stoichiometric Al2O3-TiO2 (k~13, Eg~4.5 eV) or Nb2O5-Al2O3 (k~13.5, Eg~5.1 eV) as gate dielectric exhibited low leakage currents, high on-off current modulation ratios, high field-effect mobilities and low subthreshold voltage swings. Furthermore, the implementation of solution-processed crystalline indium-zinc oxide (c-IZO) as active channel material in TFTs was equally investigated and high-performance c-IZO-based TFTs employing Al2O3 were fabricated. The effects of metal cation doping in c-IZO matrix were investigated in particular, and c-IZO:X (X:Ga,Y,Zr,Nb) based TFTs were fabricated and their properties were assessed for each dopant. Amongst them, Yttrium doped c-IZO (c-YIZO)-based TFTs exhibited the best performance in terms of low off-state currents, high field-effect mobilities and low subthreshold voltage swings

    Transparent rectifying contacts on wide-band gap oxide semiconductors

    Get PDF
    Die vorliegenden Arbeit befasst sich mit der Herstellung und Charakterisierung von transparenten Metall-Halbleiter- Feldeffekttransistoren. Dazu werden im ersten Kapitel transparente gleichrichtende Kontakte, basierend auf dem Konzept von Metalloxidkontakten, hergestellt und im Hinblick auf chemische Zusammensetzung des Kontaktmaterials, Barriereninhomogenitรคt und Kompatibilitรคt mit amorphen Halbleitern untersucht. AuรŸerdem wird die Anwendbarkeit der Kontakte als UV-Sensor studiert. Im zweiten Kapitel werden transparente leitfรคhige Oxide vorgestellt und insbesondere deren optische und elektrische Eigenschaften in Abhรคngigkeit von den Herstellungsbedingungen studiert. Das dritte Kapitel beinhaltet Untersuchungen zu transparenten Feldeffektransistoren, die auf den im ersten Kapitel untersuchten transparenten gleichrichtenden Kontakten basieren (TMESFETs). Insbesondere die elektrischen Stabilitรคt der Bauelemente hinsichtlich Beleuchtung, erhรถhten Temperaturen und Spannungsstress wird untersucht. Auch die Langzeitstabilitรคt, Reproduzierbarkeit und der Effekt gepulster Spannungen wird betrachtet. Weiterhin wird die Verwendung amorpher Halbleiter im Kanal und damit auch die Herstellung flexibler Transistoren auf Folie demonstriert. Zuletzt werden die TMESFETs integriert und als Inverterschaltkreise aufgebaut und untersucht. AuรŸerdem wird die Eignung der Transistoren zur Messung von Aktionspotentialen von Nervenzellen studiert

    Toxic gas sensors using thin film transistor platform at low temperature

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2009.Includes bibliographical references (leaves [71-73]).Semiconducting metal-oxides such as SnOโ‚‚, TiOโ‚‚, ZnO and WOโ‚ƒ are commonly used for gas sensing in the form of thin film resistors (TFRs) given their high sensitivity to many vapor species, simple construction and capability for miniaturization. Furthermore, they are generally more stable than polymer-based gas sensors. However, unlike polymers, metal oxide gas sensors must typically be operated between 200-400ยฐC to insure rapid kinetics. Another problem impacting TFR performance and reproducibility is related to poorly understood substrate-semiconductor film interactions. Space charges at this heterojunction are believed to influence chemisorption on the semiconductor-gas interface, but unfortunately, in an unpredictable manner. In this study, the feasibility of employing illumination and the thin film transistor (TFT) platform as a means of reducing operation temperature was investigated on ZnO based TFTs for gas sensors applications. Response to NOโ‚‚ is observed at significantly reduced temperature. Photoconductivity measurements, performed as a function of temperature on ZnO based TFRs, indicate that this results in a photon-induced desorption process. Also, transient changes in TFT channel conductance and transistor threshold voltage are obtained with application of gate bias, suggesting that TFTs offer additional control over chemisorption at the semiconductor-gas interface.by Yoonsil Jin.S.M
    • โ€ฆ
    corecore