13 research outputs found

    Analysis of muscle synergies and activation–deactivation patterns in subjects with anterior cruciate ligament deficiency during walking

    Get PDF
    The knowledge of muscle activation patterns when doing a certain task in subjects with anterior cruciate ligament deficiency could help to improve their rehabilitation treatment. The goal of this study is to identify differences in such patterns between anterior cruciate ligament–deficient and healthy subjects during walking. Methods Electromyographic data for eight muscles were measured in a sample of eighteen subjects with anterior cruciate ligament deficiency, in both injured (ipsilateral group) and non-injured (contralateral group) legs, and a sample of ten healthy subjects (control group). The analysis was carried out at two levels: activation-–deactivation patterns and muscle synergies. Muscle synergy components were calculated using a non-negative matrix factorization algorithm. Findings The results showed that there was a higher co-contraction in injured than in healthy subjects. Although all muscles were activated similarly since all subjects developed the same task (walking), some differences could be observed among the analyzed groups. Interpretation The observed differences in the synergy components of injured subjects suggested that those individuals alter muscle activation patterns to stabilize the knee joint. This analysis could provide valuable information for the physiotherapist to identify alterations in muscle activation patterns during the follow-up of the subject’s rehabilitation.Postprint (author's final draft

    Physics-based simulations to predict the differential effects of motor control and musculoskeletal deficits on gait dysfunction in cerebral palsy : a retrospective case study

    Get PDF
    Physics-based simulations of walking have the theoretical potential to support clinical decision-making by predicting the functional outcome of treatments in terms of walking performance. Yet before using such simulations in clinical practice, their ability to identify the main treatment targets in specific patients needs to be demonstrated. In this study, we generated predictive simulations of walking with a medical imaging based neuro-musculoskeletal model of a child with cerebral palsy presenting crouch gait. We explored the influence of altered muscle-tendon properties, reduced neuromuscular control complexity, and spasticity on gait dysfunction in terms of joint kinematics, kinetics, muscle activity, and metabolic cost of transport. We modeled altered muscle-tendon properties by personalizing Hill-type muscle-tendon parameters based on data collected during functional movements, simpler neuromuscular control by reducing the number of independent muscle synergies, and spasticity through delayed muscle activity feedback from muscle force and force rate. Our simulations revealed that, in the presence of aberrant musculoskeletal geometries, altered muscle-tendon properties rather than reduced neuromuscular control complexity and spasticity were the primary cause of the crouch gait pattern observed for this child, which is in agreement with the clinical examination. These results suggest that muscle-tendon properties should be the primary target of interventions aiming to restore an upright gait pattern for this child. This suggestion is in line with the gait analysis following muscle-tendon property and bone deformity corrections. Future work should extend this single case analysis to more patients in order to validate the ability of our physics-based simulations to capture the gait patterns of individual patients pre- and post-treatment. Such validation would open the door for identifying targeted treatment strategies with the aim of designing optimized interventions for neuro-musculoskeletal disorders

    Task constraints and minimization of muscle effort result in a small number of muscle synergies during gait

    Get PDF
    Contains fulltext : 139255.pdf (publisher's version ) (Open Access)Finding muscle activity generating a given motion is a redundant problem, since there are many more muscles than degrees of freedom. The control strategies determining muscle recruitment from a redundant set are still poorly understood. One theory of motor control suggests that motion is produced through activating a small number of muscle synergies, i.e., muscle groups that are activated in a fixed ratio by a single input signal. Because of the reduced number of input signals, synergy-based control is low dimensional. But a major criticism on the theory of synergy-based control of muscles is that muscle synergies might reflect task constraints rather than a neural control strategy. Another theory of motor control suggests that muscles are recruited by optimizing performance. Optimization of performance has been widely used to calculate muscle recruitment underlying a given motion while assuming independent recruitment of muscles. If synergies indeed determine muscle recruitment underlying a given motion, optimization approaches that do not model synergy-based control could result in muscle activations that do not show the synergistic muscle action observed through electromyography (EMG). If, however, synergistic muscle action results from performance optimization and task constraints (joint kinematics and external forces), such optimization approaches are expected to result in low-dimensional synergistic muscle activations that are similar to EMG-based synergies. We calculated muscle recruitment underlying experimentally measured gait patterns by optimizing performance assuming independent recruitment of muscles. We found that the muscle activations calculated without any reference to synergies can be accurately explained by on average four synergies. These synergies are similar to EMG-based synergies. We therefore conclude that task constraints and performance optimization explain synergistic muscle recruitment from a redundant set of muscles

    Motor modules during adaptation to walking in a powered ankle exoskeleton

    Get PDF
    Abstract Background Modules of muscle recruitment can be extracted from electromyography (EMG) during motions, such as walking, running, and swimming, to identify key features of muscle coordination. These features may provide insight into gait adaptation as a result of powered assistance. The aim of this study was to investigate the changes (module size, module timing and weighting patterns) of surface EMG data during assisted and unassisted walking in an powered, myoelectric, ankle-foot orthosis (ankle exoskeleton). Methods Eight healthy subjects wore bilateral ankle exoskeletons and walked at 1.2 m/s on a treadmill. In three training sessions, subjects walked for 40 min in two conditions: unpowered (10 min) and powered (30 min). During each session, we extracted modules of muscle recruitment via nonnegative matrix factorization (NNMF) from the surface EMG signals of ten muscles in the lower limb. We evaluated reconstruction quality for each muscle individually using R2 and normalized root mean squared error (NRMSE). We hypothesized that the number of modules needed to reconstruct muscle data would be the same between conditions and that there would be greater similarity in module timings than weightings. Results Across subjects, we found that six modules were sufficient to reconstruct the muscle data for both conditions, suggesting that the number of modules was preserved. The similarity of module timings and weightings between conditions was greater then random chance, indicating that muscle coordination was also preserved. Motor adaptation during walking in the exoskeleton was dominated by changes in the module timings rather than module weightings. The segment number and the session number were significant fixed effects in a linear mixed-effect model for the increase in R2 with time. Conclusions Our results show that subjects walking in a exoskeleton preserved the number of modules and the coordination of muscles within the modules across conditions. Training (motor adaptation within the session and motor skill consolidation across sessions) led to improved consistency of the muscle patterns. Subjects adapted primarily by changing the timing of their muscle patterns rather than the weightings of muscles in the modules. The results of this study give new insight into strategies for muscle recruitment during adaptation to a powered ankle exoskeleton.https://deepblue.lib.umich.edu/bitstream/2027.42/140718/1/12984_2017_Article_343.pd

    Neuromechanical Tuning for Arm Motor Control

    Get PDF
    Movement is a fundamental behavior that allows us to interact with the external world. Its importance to human health is most evident when it becomes impaired due to disease or injury. Physical and occupational rehabilitation remains the most common treatment for these types of disorders. Although therapeutic interventions may improve motor function, residual deficits are common for many pathologies, such as stroke. The development of novel therapeutics is dependent upon a better understanding of the underlying mechanisms that govern movement. Movement of the human body adheres to the principles of classic Newtonian mechanics. However, due to the inherent complexity of the body and the highly variable repertoire of environmental contexts in which it operates, the musculoskeletal system presents a challenging control problem and the onus is on the central nervous system to reliably solve this problem. The neural motor system is comprised of numerous efferent and afferent pathways with a hierarchical organization which create a complex arrangement of feedforward and feedback circuits. However, the strategy that the neural motor system employs to reliably control these complex mechanics is still unknown. This dissertation will investigate the neural control of mechanics employing a “bottom-up” approach. It is organized into three research chapters with an additional introductory chapter and a chapter addressing final conclusions. Chapter 1 provides a brief description of the anatomical and physiological principles of the human motor system and the challenges and strategies that may be employed to control it. Chapter 2 describes a computational study where we developed a musculoskeletal model of the upper limb to investigate the complex mechanical interactions due to muscle geometry. Muscle lengths and moment arms contribute to force and torque generation, but the inherent redundancy of these actuators create a high-dimensional control problem. By characterizing these relationships, we found mechanical coupling of muscle lengths which the nervous system could exploit. Chapter 3 describes a study of muscle spindle contribution to muscle coactivation using a computational model of primary afferent activity. We investigated whether these afferents could contribute to motoneuron recruitment during voluntary reaching tasks in humans and found that afferent activity was orthogonal to that of muscle activity. Chapter 4 describes a study of the role of the descending corticospinal tract in the compensation of limb dynamics during arm reaching movements. We found evidence that corticospinal excitability is modulated in proportion to muscle activity and that the coefficients of proportionality vary in the course of these movements. Finally, further questions and future directions for this work are discussed in the Chapter 5

    Development and Biomechanical Analysis toward a Mechanically Passive Wearable Shoulder Exoskeleton

    Get PDF
    Shoulder disability is a prevalent health issue associated with various orthopedic and neurological conditions, like rotator cuff tear and peripheral nerve injury. Many individuals with shoulder disability experience mild to moderate impairment and struggle with elevating the shoulder or holding the arm against gravity. To address this clinical need, I have focused my research on developing wearable passive exoskeletons that provide continuous at-home movement assistance. Through a combination of experiments and computational tools, I aim to optimize the design of these exoskeletons. In pursuit of this goal, I have designed, fabricated, and preliminarily evaluated a wearable, passive, cam-driven shoulder exoskeleton prototype. Notably, the exoskeleton features a modular spring-cam-wheel module, allowing customizable assistive force to compensate for different proportions of the shoulder elevation moment due to gravity. The results of my research demonstrated that this exoskeleton, providing modest one-fourth gravity moment compensation at the shoulder, can effectively reduce muscle activity, including deltoid and rotator cuff muscles. One crucial aspect of passive shoulder exoskeleton design is determining the optimal anti-gravity assistance level. I have addressed this challenge using computational tools and found that an assistance level within the range of 20-30% of the maximum gravity torque at the shoulder joint yields superior performance for specific shoulder functional tasks. When facing a new task dynamic, such as wearing a passive shoulder exoskeleton, the human neuro-musculoskeletal system adapts and modulates limb impedance at the end-limb (i.e., hand) to enhance task stability. I have presented development and validation of a realistic neuromusculoskeletal model of the upper limb that can predict stiffness modulation and motor adaptation in response to newly introduced environments and force fields. Future studies will explore the model\u27s applicability in predicting stiffness modulation for 3D movements in novel environments, such as passive assistive devices\u27 force fields

    Segmental Movement Compensations in Patients with Transtibial Amputation Identified Using Angular Momentum Separation

    Get PDF
    Patients with unilateral dysvascular transtibial amputation (TTA) adopt movement compensations that are required to maintain balance and achieve ambulation in the absence of ankle plantar flexion, and result in increased and asymmetric joint loading patterns. As a result, this population is at an increased risk of overuse injuries, such as low back pain (LBP). Clinical gait analysis is used to guide diagnostics in movement retraining following amputation, and is performed using instrumented (research based) or observational analyses (clinically based). However, instrumented analyses are currently impractical in most clinical settings due to expense and computational limitations. This dissertation presents the use of segmental angular momentum to describe movement compensations in patients with TTA, and assess their effects on the musculoskeletal system; which provides a potential platform applicable in both instrumented and observational settings. Ten patients with unilateral dysvascular TTA and two cohorts (patients with diabetes mellitus and healthy controls) completed one experimental study in which whole-body kinematics and core muscle demand were collected during walking and bilateral stepping tasks. Specific Aim 1 described the foundations of the separation of angular momentum into two components, translational (TAM) and rotational angular momentum (RAM) to describe movement coordination during healthy walking. Euler\u27s rotational laws were used to calculate segmental translational and rotational moments, which provide insight into the effort required to generate and arrest momentum by their relation to external forces and moments. Specific Aim 2 described trunk and pelvis movement compensations in patients with TTA during walking using TAM and RAM. Specific Aim 3 described the trunk translational and rotational moments in patients with TTA during step ambulation. Finally, Specific Aim 4 described the demand from the core musculature that supports trunk movement compensations in patients with TTA during step ambulation. The results from these Specific Aims indicate that patients with TTA generate larger amounts of TAM and RAM, which were caused by larger translational and rotational trunk moments and demand from core muscles, than healthy controls. These compensations alter the low back loading patterns, which may be reduced by targeted strengthening and retraining motor control compensations to better support trunk movements

    Nonlinear and factorization methods for the non-invasive investigation of the central nervous system

    Get PDF
    This thesis focuses on the functional study of the Central Nervous System (CNS) with non-invasive techniques. Two different aspects are investigated: nonlinear aspects of the cerebrovascular system, and the muscle synergies model for motor control strategies. The main objective is to propose novel protocols, post-processing procedures or indices to enhance the analysis of cerebrovascular system and human motion analysis with noninvasive devices or wearable sensors in clinics and rehabilitation. We investigated cerebrovascular system with Near-infrared Spectroscopy (NIRS), a technique measuring blood oxygenation at the level of microcirculation, whose modification reflects cerebrovascular response to neuronal activation. NIRS signal was analyzed with nonlinear methods, because some physiological systems, such as neurovascular coupling, are characterized by nonlinearity. We adopted Empirical Mode Decomposition (EMD) to decompose signal into a finite number of simple functions, called Intrinsic Mode Functions (IMF). For each IMF, we computed entropy-based features to characterize signal complexity and variability. Nonlinear features of the cerebrovascular response were employed to characterize two treatments. Firstly, we administered a psychotherapy called eye movement desensitization and reprocessing (EMDR) to two groups of patients. The first group performed therapy with eye movements, the second without. NIRS analysis with EMD and entropy-based features revealed a different cerebrovascular pattern between the two groups, that may indicate the efficacy of the psychotherapy when administered with eye movements. Secondly, we administered ozone autohemotherapy to two groups of subjects: a control group of healthy subjects and a group of patients suffering by multiple sclerosis (MS). We monitored the microcirculation with NIRS from oxygen-ozone injection up 1.5 hours after therapy, and 24 hours after therapy. We observed that, after 1.5 hours after the ozonetherapy, oxygenation levels improved in both groups, that may indicate that ozonetherapy reduced oxidative stress level in MS patients. Furthermore, we observed that, after ozonetherapy, autoregulation improved in both groups, and that the beneficial effects of ozonetherapy persisted up to 24 hours after the treatment in MS patients. Due to the complexity of musculoskeletal system, CNS adopts strategies to efficiently control the execution of motor tasks. A model of motor control are muscle synergies, defined as functional groups of muscles recruited by a unique central command. Human locomotion was the object of investigation, due to its importance for daily life and the cyclicity of the movement. Firstly, by exploiting features provided from statistical gait analysis, we investigated consistency of muscle synergies. We demonstrated that synergies are highly repeatable within-subjects, reinforcing the hypothesis of modular control in motor performance. Secondly, in locomotion, we distinguish principal from secondary activations of electromyography. Principal activations are necessary for the generation of the movement. Secondary activations generate supplement movements, for instance slight balance correction. We investigated the difference in the motor control strategies underlying muscle synergies of principal (PS) and secondary (SS) activations. We found that PS are constituted by a few modules with many muscles each, whereas SS are described by more modules than PS with one or two muscles each. Furthermore, amplitude of activation signals of PS is higher than SS. Finally, muscle synergies were adopted to investigate the efficacy of rehabilitation of stiffed-leg walking in lower back pain (LBP). We recruited a group of patients suffering from non-specific LBP stiffening the leg at initial contact. Muscle synergies during gait were extracted before and after rehabilitation. Our results showed that muscles recruitment and consistency of synergies improved after the treatment, showing that the rehabilitation may affect motor control strategies
    corecore