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Abstract 

Neuromechanical Turning in Arm Motor Control 

Russell Hardesty 

Movement is a fundamental behavior that allows us to interact with the external world. Its 
importance to human health is most evident when it becomes impaired due to disease or 
injury. Physical and occupational rehabilitation remains the most common treatment for 
these types of disorders. Although therapeutic interventions may improve motor function, 
residual deficits are common for many pathologies, such as stroke. The development of 
novel therapeutics is dependent upon a better understanding of the underlying 
mechanisms that govern movement.  

Movement of the human body adheres to the principles of classic Newtonian mechanics. 
However, due to the inherent complexity of the body and the highly variable repertoire of 
environmental contexts in which it operates, the musculoskeletal system presents a 
challenging control problem and the onus is on the central nervous system to reliably 
solve this problem. The neural motor system is comprised of numerous efferent and 
afferent pathways with a hierarchical organization which create a complex arrangement 
of feedforward and feedback circuits. However, the strategy that the neural motor system 
employs to reliably control these complex mechanics is still unknown. 

This dissertation will investigate the neural control of mechanics employing a “bottom-up” 
approach. It is organized into three research chapters with an additional introductory 
chapter and a chapter addressing final conclusions. Chapter 1 provides a brief description 
of the anatomical and physiological principles of the human motor system and the 
challenges and strategies that may be employed to control it. Chapter 2 describes a 
computational study where we developed a musculoskeletal model of the upper limb to 
investigate the complex mechanical interactions due to muscle geometry. Muscle lengths 
and moment arms contribute to force and torque generation, but the inherent redundancy 
of these actuators create a high-dimensional control problem. By characterizing these 
relationships, we found mechanical coupling of muscle lengths which the nervous system 
could exploit. Chapter 3 describes a study of muscle spindle contribution to muscle 
coactivation using a computational model of primary afferent activity. We investigated 
whether these afferents could contribute to motoneuron recruitment during voluntary 
reaching tasks in humans and found that afferent activity was orthogonal to that of muscle 
activity. Chapter 4 describes a study of the role of the descending corticospinal tract in 
the compensation of limb dynamics during arm reaching movements. We found evidence 
that corticospinal excitability is modulated in proportion to muscle activity and that the 
coefficients of proportionality vary in the course of these movements. Finally, further 
questions and future directions for this work are discussed in the Chapter 5. 
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Chapter 1 - Introduction 
The Social and Clinical Relevance of Movement 

Movement is among the most fundamental of human behaviors. It provides the means to 

interact with our environment and to execute our decisions. It should be no surprise then 

that a properly functioning motor system is critical to an individual’s quality of life.  This 

observation is perhaps most evident in circumstances where the motor system has 

become impaired, such as after a stroke or spinal cord injury. Indeed, previous studies 

have shown that motor deficits have a detrimental effect on numerous metrics of quality 

of life, including physical, economic, social, sexual, and psychological circumstances 

(Cholewa et al., 2017; Lo Buono et al., 2017; Martinez-Martin, 2017; Wit et al., 2017; 

Duzgun Celik et al., 2018; Ramos-Lima et al., 2018; Gendre et al., 2019). Physical and 

occupational rehabilitation remains the primary treatment for these disorders and while 

these methods can improve motor function, residual deficits are common (Kelly et al., 

2018). Furthermore, motor deficits result in significant societal costs. The indirect costs 

of stroke alone are estimated to be $126.4 billion from 2012 to 2013 (Benjamin et al., 

2017). Because of these high costs, both to the individual and the society, there is a need 

for novel treatments of these disorders. Importantly–, a better understanding of the 

underlying mechanisms that govern movement are necessary to accomplish this aim. 

The Physics of Movement 

At its core, human movement can be defined as a classical mechanics problem. The 

human body is comprised of over 600 bony segments joined together by over 200 diverse 

joints with each joint having one or more rotational degrees of freedom (DOF). The motion 

of a specific segment can therefore be described by the second Newtonian law of 

rotational motion (Newton, 1713): 

∑𝜏𝜏 = 𝐼𝐼 �⃑�𝛼 (eq. 1-1) 

Here, τ is net torque and α is the resulting angular acceleration of the segment with I 

inertia . Defined by this law, an object experiencing no net force or torque will be at static 

equilibrium, while objects experiencing some non-zero torque will accelerate. Therefore, 
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movement results from  all active forces  applied  by muscle actuators (see Muscle 

Anatomy and Force Generation), external passive forces (e.g., gravity), and other passive 

torques (e.g. inertia) (Olesh et al., 2017a). These  torques summate to accelerate a limb 

and generate movement.  

�𝜏𝜏 = 𝜏𝜏𝑀𝑀����⃑ + 𝜏𝜏𝑃𝑃����⃑  

Here, τM is torque due to muscle contraction and τP is torque generated passively due to 

external forces and the inertia of the limb. Despite the universal robustness of this 

mathematical description, human movement is complicated by a high number of DOFs 

and the variety of forces that may act upon a limb. Due to this complexity, there exists an 

infinite number of kinematic arrangements which will result in the same desired endpoint. 

This apparent redundancy is referred to as the “motor redundancy problem”, first coined 

by Nikolai Bernstein (Bernstein, 1967). Furthermore, the environmental context of a 

movement creates external and passive torques that act upon a limb (e.g. the lower limb 

will experience different forces running on a sandy beach versus running on rigid 

pavement). Therefore, generating the same kinematic trajectory in a different 

environmental context always require distinct muscle forces/torques. Finally, one must 

consider the mechanical variability that would exist between individual persons due to 

different body sizes and compositions, such as differences in segment mass, the 

distribution of mass per segment, or inter-joint distances. Additional variability arises from 

anatomical differences in muscle paths and force production. This high degree of 

complexity and apparent redundancy creates a difficult control problem that the nervous 

system must solve.  

Muscles 

Muscle Anatomy and Force Generation 

While various forces may act upon a limb, it is muscles that are the physiological 

actuators. Muscle force production is inherently determined by the underlying physiology 

and anatomy of muscle tissue. Skeletal muscle is comprised of parallel single-celled 

muscle fibers which, in turn, consist of tubular myofibrils. These myofibrils have repeating 

sections called sarcomeres containing overlapping thick and thin filaments — consisting 
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of myosin and actin respectively — which form cross-bridges via the myosin heads. 

Multiple muscle fibers are innervated by a single α-motoneuron originating from the 

ventral horn of the spinal cord forming a motor unit. Action potentials propagating along 

the α-motoneuron axons depolarize the presynaptic membrane of the axon terminal and 

release acetylcholine into the neuromuscular junction opening Na+ ion channels on the 

postsynaptic muscle fiber membrane (motor end plate). As Na+ ions enter the cell via ionic 

diffusion, the muscle fiber depolarizes generating a motor unit action potential (MUAP). 

The MUAP propagates to the T-tubules which penetrate into the cell resulting in the 

opening of voltage-gated Ca2+ channels. As the intracellular Ca2+ concentration 

increases, it binds to the myosin heads causing a conformational change which shortens 

the sarcomere length (i.e. muscle contraction) and generates force. This process, called 

the “power stroke” is repeatedly cycled to maintain contractile force over time. These 

intracellular dynamics are important in describing two characteristics of muscle force 

generation: the force-length and force-velocity relationships. 

Skeletal muscle generates force in a length-dependent manner, termed the force-length 

relationship. The resulting force generated by muscle contraction is proportional to the 

overlapping of the thick and thin filaments. At the extremes of the sarcomere length, there 

is less overlapping, resulting is less cross-bridging and less subsequent force generation. 

This relationship results in a nonlinear force-length dependency; force generation is 

largest at an optimal length where cross-bridging is at its highest proportion and 

decreases at lengths above or below this optimum. Furthermore, force generation is also 

dependent upon the velocity of contraction. The temporal dynamics of the contraction 

cycle (myosin binding, Ca2+-mediated phosphorylation, conformational changes, and 

dephosphorylation) rate-limit the efficiency of force generation. At higher velocities, a 

smaller proportion of myosin heads will be actively bound to the actin filaments and 

dephosphorylated at a given time step. Therefore, muscle force decreases as a product 

of contractile velocity during concentric contractions.  

Electromyography 

The synchronous firing of motor units generates a myoelectric potential that can be 

measured using dipolar electrodes either inserted into the muscles (intramuscular) or 
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placed superficially on the skin (surface). This technique, called electromyography or 

EMG, can record electrical potentials generated by propagating MUAPs which can be 

interpreted as a proxy for muscle activation. To achieve this aim, EMG signals are 

commonly rectified to address the polarity due to electrode placement and then filtered to 

approximate an “envelope” of muscle activity (De Luca et al., 2010). This technique 

provides a means to experimentally measure the end-effector of the neural motor system, 

motoneuron activity. 

Mathematical Descriptions of Muscle Force 

The absolute magnitude of force that a given muscle generates is a product of the gross 

muscle architecture and underlying physiology. Several mathematical models have been 

proposed which aim to generalize force production in terms of specific physiological 

parameters, e.g. optimal fiber length or passive elasticity. Winters and Stark broadly 

classified these models into one of three categories, 1) simple 2nd order systems, 2) Hill-

based Lumped Parameter Models, and 3) Huxley-Based Distributed-Parameter Models 

(Winters and Stark, 1987). For brevity, this manuscript will introduce the Hill-type muscle 

model, with the He-Zajac-Levine (HZL) model as it is widely used and the basis of the 

data presented in chapter 2. 

The Hill-type muscle model describes the transformation of muscle activation to force 

(Zajac, 1989; He et al., 1991). Motoneuron discharge triggers the release of calcium into 

the sarcoplasmic reticulum (see Muscle Anatomy and Force Generation) which results in 

an intermediate state of “active muscle” as described by Hill (Hill, 1938). The dynamics 

of this transformation, neural excitation (u) to muscle activation (a), is termed excitation-

contraction coupling and can be modeled as a simple first-order equation, 

𝑑𝑑 𝑎𝑎(𝑡𝑡)
𝑑𝑑𝑡𝑡

+  � 1
𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎

· (𝛽𝛽 + [1 −  𝛽𝛽]𝑢𝑢(𝑡𝑡))� · 𝑎𝑎(𝑡𝑡) =  � 1
𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎

�  · 𝑢𝑢(𝑡𝑡)    (Eq. 1-2) 

where 𝛽𝛽 =  𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎
𝜏𝜏𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎

, and 𝜏𝜏𝑎𝑎𝑎𝑎𝑡𝑡 and 𝜏𝜏𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑡𝑡 are rate constants for muscle activation and 

deactivation, respectively (Zajac, 1989). 

Once muscle fibers enter this activated state, the transformation of muscle activation to 

contractile force is governed by the mechanical properties of muscle, tendons, and 
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connective tissues. The Hill-type muscle model approximates the contraction dynamics 

due to these mechanical properties (Zajac, 1989). It generally consists of a contractile 

element, which describes the non-linear transformation of activation to force including the 

force-length and force-velocity relationships, and a parallel passive element, which 

describes the viscoelastic properties of muscles (Figure 1-1).  

 

 

 

Figure 1-1: Schematic of Hill-type muscle model.  

Ft is the passive force due to tendon compliance; Fp is passive force due to passive tissues inside 
the muscle, i.e. aponeurosis, membranes, etc; Fa is active force of the contractile element; alpha 
is pennation angle; is a viscous component due to force velocity relationship 

____________ 
Muscle force is transferred to bony segments via tendons and the mechanical compliance 

of tendons contribute to the dynamics of force production. An additional passive 

component may be included in series which accounts for tendon compliance (He et al., 

1991). The pairing of excitation-contraction coupling with the Hill-type muscle model 

provides a mathematical approximation which relates neural excitation to muscle force 

production. 

Muscle Moment Arms 

Movement results from the net summation of torques around a DOF. While the nervous 

system can directly control the force production of muscles, the torque generated by each 

muscle is also a product of the distance from that muscle to the center of rotation of each 

joint that it spans, termed the moment arm (R). Muscle moment arms are therefore 
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defined by their physiological path, which can change with the kinematic posture of a limb 

as muscles slide or shift after a change in posture and during movement. Boots et al. 

found that dynamic moment arms resulted in significantly different torque production than 

constant moment arms (Boots et al., 2020). It would logically follow that the nervous 

system would therefore need to consider the posture-dependent states of moment arms 

to produce appropriate muscle forces for a desired movement. Whether dynamic moment 

arm compensation is the result of a feed-forward approximation, such as an internal 

model, or sensorimotor feedback is not well understood. 

Motoneuron Recruitment 

Muscle contraction is the product of neural discharges from motoneurons located in the 

ventral horn of the spinal cord which each innervate one or more muscle fibers, termed a 

motor unit. These motor units are recruited by the nervous system to generate muscle 

force and subsequent movement. To maintain muscle force production beyond the short 

time scales of neural action potentials, multiple motor units must be sequentially 

recruited.. Smaller motoneurons innervate smaller slow-twitch fatigue-resistant fibers, 

which produce lower forces, while larger motoneurons innervate larger fast-twitch 

muscles, which generate larger forces but fatigue quicker. As force production increases, 

motoneurons are recruited in a specific order according to their size where smaller 

motoneurons are recruited first followed by those innervating fast-twitch/fatigue resistant 

muscle fibers, and finally fast-twitch/fatigable muscle fibers, termed Henneman’s size 

principle.  

Spinal Reflexes 

Muscle Spindles 

In addition to motoneurons, the spinal cord contains significant neural circuitry that can 

modulate the likelihood of motoneuron action potentials. Amongst the most widely studied 

are those termed spinal reflexes, which are mediated by afferent pathways in the spinal 

cord that can synapse directly onto motoneurons. One such pathway originates in muscle 

spindles. Muscle spindles are mechanotransducers consisting of intrafusal muscle fibers 

attached to the force-producing extrafusal fibers of a muscle. These structures also 
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consist of a primary afferent sensory neuron (Ia) which project via the dorsal horn onto 

spinal motoneurons and interneurons in the spinal cord. These afferent projections can 

form 1) excitatory monosynaptic connections onto motoneurons of the homonymous 

muscle, 2) excitatory monosynaptic connections onto motoneurons of agonist muscles, 

or 3) inhibitory connections on motoneurons of antagonist muscles via an interneuron. 

When a muscle lengthens, the primary afferent is excited resulting in the recruitment of 

the homonymous muscle and its agonists while the antagonists are inhibited. This 

structural-functional relationship creates a negative-length feedback loop which can 

quickly respond to mechanical perturbations. The resulting behavior is referred to as the 

stretch-reflex, where a sudden lengthening of a muscle causes an immediate contraction 

of that muscle in response. A recent study has suggested that muscle spindles may also 

encode characteristics of force, particularly the transient change in muscle force at the 

onset of muscle lengthening (Blum et al., 2017). Whether muscle spindles simply act as 

length sensors or they encode a more complex sensory signal, this pathway provides a 

mechanism to provide sensory information about the state of a muscle back to the 

nervous system as first hypothesized by Charles Sherrington Indeed muscle spindle 

afferents project not only to spinal motoneurons but also to spinal interneurons which then 

have projections to the somatosensory cortex and the cerebellum (Liddell and 

Sherrington, 1924).  

Muscle spindles contain primary (Ia) afferents and secondary (II) afferents which respond 

primarily to either changes in the rate of change of muscle length (velocity) or simply 

changes in muscle length, respectively. Matthews 1959 showed that muscle spindle 

sensitivity could be modulated in two distinct manners: 1) the afferent sensitivity to 

changes in length magnitude (static) or 2) the sensitivity to changes in muscle length 

velocity (dynamic) (Matthews, 1959a). This modulation of sensitivity is driven by β- and 

γ- motor neurons which innervate the intrafusal muscle fibers of the muscle spindle, called 

fusimotor neurons. This fusimotor input keeps the intrafusal fibers taut across the range 

of muscle lengths. However, the role of fusimotor neurons during movement is still poorly 

understood due, in part, to the difficulty in directly recording from these neurons in moving 

animals.  
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Golgi Tendon Organs 

In addition to muscle spindles, another mechanotransducer of note is the Golgi tendon 

organs. This sensory organ is located in muscle tendons and its tree-like sensory endings 

become deformed when force is exerted on the tendon increasing the firing of Ib sensory 

afferents. These Ib afferents project via the dorsal horn onto inhibitory spinal interneurons 

which then synapse onto spinal motoneurons. This pathway creates a negative-force 

feedback loop which begins to inhibit motoneuron firing with increasing force. 

Interestingly, during locomotion, the effect of Ib afferents is reversed from inhibitory to 

excitatory creating positive-force feedback, which aids muscle force generation (Grey et 

al., 2007). However, the effect of the Ib projections during reaching is still unknown. 

Furthermore, Golgi tendon organs provide sensory information about the state of muscle 

force and, similar to muscle spindle afferents, Ib afferents have downstream projections 

to the somatosensory cortex and cerebellum. 

Descending Motor Input 

Motor Cortex 

In addition to spinal reflexes, spinal motoneurons are excited by a number of inputs 

descending from supraspinal areas of the nervous system. Stimulation of regions of the 

frontal cortex can induce transient muscle contractions implying an anatomical and 

functional relationship (Penfield and Rasmussen, 1950a; Graziano et al., 2002). Single-

cell, electrocorticographic (ECoG), and electroencephalographic (EEG) recordings during 

movement show a marked increase in neuronal activity in these same regions. Finally, 

lesions to these areas, either observed clinically or in reduced experimental preparations, 

lead to severe motor deficits or paralysis(Hoffman and Strick, 1995; Ghika-Schmid et al., 

1997).  

Primary Motor Cortex (M1) 

The primary motor cortex is located at the precentral gyrus and is widely considered 

responsible for controlling voluntary movement. It has a somatotopic organization with 

direct and indirect projections to spinal motoneurons (Leyton and Sherrington, 1917; 

Lawrence and Kuypers, 1968; Lesser et al., 1998).  While its importance in voluntary 

movement is well established from stimulation and lesion experiments, the precise role 
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that it plays in the broader control strategy of the motor system is still a point of 

controversy (Lawrence and Kuypers, 1968). Single-cell recordings in the primary motor 

cortex have correlated neuronal firing rates with physical characteristics of movement 

such as endpoint direction (Georgopoulos et al., 1986), velocity (Moran and Schwartz, 

1999), and muscle force (Evarts, 1968). These pyramidal neurons project both to the 

brainstem and the spinal cord with a small portion synapsing directly onto spinal 

motoneurons via the corticospinal tract in humans. 

Other Supraspinal Structures 

In addition to the cortex, there are a number of other regions in the CNS which contribute 

to the descending motor pathways. As these are not the focus of the work presented in 

this dissertation, they will only be briefly introduced. For example, the reticular formation 

which projects to spinal motoneurons via the reticulospinal tract. This descending input is 

associated primarily with proximal muscles involved in maintaining posture and balance. 

Lesions in the reticulospinal tract in macques show an impaired ability to maintain upright 

posture (Lawrence and Kuypers, 1968). Furthermore, reticulospinal neuronal activity is 

increased with both timings and magnitudes which correspond to periods of postural 

adjustments in walking cats (Prentice and Drew, 2001). In addition to the reticular 

formation, the vestibulospinal tract originates in the vestibular nucleus in the brainstem. 

The vestibular nucleus integrates sensory input from the semi-circular canals and otolith 

organs and projects to spinal motoneurons. Similar to the reticulospinal tract, the 

vestibulospinal tract is primarily associated with maintaining posture, interlimb 

coordination and balance. Furthermore, the cerebellum receives numerous sensory 

afferents from the spinal cord and projects to several brainstem nuclei and the cortex. 

The cerebellum has been shown to be critical for both movement error reduction and 

motor learning (Kawato et al., 1987; Bastian et al., 1996; Wolpert et al., 1998). Finally, 

the basal ganglia plays an important role in movement initiation which can clinically 

observed in the symptoms of Parkinson’s patients in the form of hypokinesia (Wichmann 

et al., 2017). All of these structure, and those previously described, form a complex 

network of efferent and afferent projections which ultimately integrate at the final common 

pathway of spinal motoneurons (Figure 1-1).  
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Figure 1-2: Hierarchical organization of motor system 

Partial schematic of the efferent (black) and afferent (red) projections within neural motor 
system. It is important to note that this schematic is not comprehensive of the entire motor 
system (e.g. it does not include the cerebellum or basal ganglia). 

____________ 
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Neural Control of Movement 

Despite the mechanical complexity and inherent variability of human motion, there are 

characteristics of movement which seem to be well conserved across individuals. For 

example, during arm reaching tasks the limb endpoint consistently travels along a linear 

trajectory between two target locations, which has been observed both in primate and 

human studies. Additionally, the endpoint velocity consistently follows a bell-shaped 

curve, where the velocity peak occurs halfway through an intended movement 

(Hollerbach and Flash, 1982; Dekleva et al., 2018). These invariant characteristics are 

maintained even when the external or passive torques acting on the limb differ between 

target locations. These findings suggest that the nervous system must have some means 

of compensating/controlling for these extrinsic and passive torques (Crevecoeur et al., 

2009). Furthermore, if the dynamics of a movement is altered – such as by the application 

of an external force field – participants will quickly adapt to these novel dynamics, 

restoring the linear trajectory (Giszter et al., 1993; Shadmehr and Mussa Ivaldi, 1994; 

Rancourt and Hogan, 2001; Franklin et al., 2003; Pasalar et al., 2006; Leclere et al., 

2019). This observation further suggests that the nervous system actively shapes these 

characteristics of movement and that they are not just incidental occurrences. Therefore, 

to control the limb, the motor system must generate muscle forces that either compensate 

or take advantage of these extrinsic dynamics. 

To generate appropriate muscle forces for an intended movement, the nervous system 

must select which muscles to excite and to what extent. This selection process would 

necessarily require the nervous system to consider the current state of the 

musculoskeletal system as well as any extrinsic and intrinsic passive forces that may 

impact movement. This information, both intrinsic and extrinsic, is provided via the various 

sensory inputs such as vision and proprioception. Sensory feedback must then be 

integrated and transformed into motor output, i.e., muscle excitation. This transformation 

involves numerous areas of the central and peripheral nervous system, including the 

cortex, brainstem, cerebellum, basal ganglia, and spinal cord. Subsequently, the 

transformation from muscle excitation to kinematic movement is determined by the 
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physiological and mechanical properties of muscle as well as the  mechanics of the 

skeletal system and the external environment.  

Feedback Control 

Sensory feedback provides a mechanism for error correction by integrating delayed 

information about the ongoing movement into the motor control strategy. This contribution 

can most aptly be observed in the presence of error-inducing perturbations. For example, 

when an external force is applied to the limb that deviates an intended trajectory, sudden 

changes in muscle length excite compensating muscles via the Ia and/or Ib afferent 

pathways. The activation of these muscles then quickly corrects the muscle length and 

force error. In this regard, spinal reflexes act to maintain mechanical homeostasis, 

correcting for any unexpected limb dynamics.  

In addition to providing error correction, sensory feedback can provide a more generalized 

control strategy by responding to an updated desired state of the musculoskeletal system. 

In this view, much the same way that a mechanical perturbation may result in muscle 

contraction via the stretch reflex, different stimuli may evoke a new state, which in turn 

drives other motor responses to form more complex movements (Sherrington, 1910). For 

example, the presentation of food or the occurrence of an obstacle would evoke an 

appropriate motor response to either reach for the food or step over the obstacle. In this 

framework, sensory feedback drives muscle activation to match the current 

musculoskeletal state with that of the new desired state. The equilibrium-point hypothesis 

suggests such a control strategy mediated by muscle spindles (Asatryan and Feldman, 

1965). This theory states that joint kinematics are the result of the tuning of agonist-

antagonist stretch reflex gains to create an equilibrium point (λ) for the joint which defines 

its current state. To then move, a new equilibrium point is selected, and muscle 

contractions are generated based upon the resulting imbalance between the agonist-

antagonist muscle spindle feedback. One of the advantages of this hypothesis is that it 

provides a singular mechanism which integrates both voluntary movement and posture 

maintenance. 
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Feedforward Control 

While the motor system can respond to unexpected perturbations via feedback 

mechanisms such as spinal reflexes, it can also form preemptive motor commands in 

anticipation of expected limb dynamics (Gatev et al., 1999; Kagaya and Patek, 2016). 

This feedforward control strategy enables the motor system to preemptively recruit 

muscles to compensate for sources of joint torque not directly created by muscle 

contraction, e.g. passive torques (Hirashima et al., 2003). This approach may be 

particularly helpful for fast movements that are susceptible to destabilizing  feedback 

delays. Another example is catching a falling object, which requires not only anticipation 

of the trajectory and position of the object, but also a prediction of the object’s weight and 

the force that it may exert on the limb (Lacquaniti and Maioli, 1989). By preemptively 

recruiting appropriate muscle forces to not only position the hand but to also stiffen the 

limb and compensate for impact, the control system can minimize the limb displacement 

upon impact. In this framework, sensory feedback provides a means of error correction 

and performance assessment while the feedforward mechanisms execute a motor plan. 

These predictive processes have been associated with the primary motor cortex 

(Gritsenko et al., 2011a), brainstem (Prentice and Drew, 2001), supplementary motor 

cortex (Richard et al., 2017), spinal cord (Prentice and Drew, 2001), and the cerebellum 

(Shadmehr et al., 2010; Richard et al., 2017).  

Internal Models 

The mechanisms of feedforward and feedback control create an integrated control system 

that can both anticipate expected limb dynamics and respond to unexpected 

disturbances. One method for achieving this system is by a neural representation of an 

internal model of limb dynamics (Wolpert and Kawato, 1998; Wolpert et al., 1998; Kawato, 

1999). The internal model could predict the expected motor output given a particular input 

(i.e. motor intent) as well as the expected sensory feedback. During movement execution, 

this expected sensory feedback is compared to actual feedback. Discrepancies between 

the expected vs actual feedback are then used to 1) adjust and/or update the motor plan 

and 2) update the internal model. This process provides a means for both error correction 

and the acquisition of new movements or novel dynamics.  
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Neuromechanical Tuning Hypothesis 

The neural strategy that leads to the selection and recruitment of muscles must consider 

the dynamic characteristics of motoneuron recruitment, muscle force generation, muscle 

moment arms, and both intrinsic and extrinsic sources of joint torques. The 

neuromechanical tuning hypothesis states that the mechanical characteristics of 

movement are embedded within the neural hierarchy (Prochazka and Yakovenko, 

2007a). This hypothesis suggests that these properties must be incorporated into the 

motor system’s internal model, which can then be refined or adapted via sensory 

feedback.  

Dissertation Summary 

In this dissertation, I explored the role of limb dynamics and musculoskeletal properties 

in the formation of motor commands. Chapter 2 describes the development and validation 

of a musculoskeletal model of the shoulder and the implications that these dynamics may 

have for muscle recruitment. Chapter 3 describes a computational and experimental 

study in which I used a mathematical approximation of muscle spindle primary afferent 

activity to determine whether the monosynaptic feedback pathway could shape 

motoneuronal recruitment during voluntary movements. Finally, Chapter 4 describes a 

study of the descending corticospinal contribution to the control of dynamically distinct 

reaching tasks. 

Chapter 2 – Biomechanical constraints underlying motor 
primitives derived from the musculoskeletal anatomy of the 
human arm 
(this chapter has been adapted from Gritsenko V, Hardesty RL, Boots MT, Yakovenko S 
(2016) Biomechanical constraints underlying motor primitives derived from the 
musculoskeletal anatomy of the human arm. PLoS ONE 11:1–18. The subsection 
“Additional Model Development” contains both model development and analysis beyond 
the publication.) 

Abstract 

Neural control of movement can only be realized though the interaction between the mechanical 

properties of the limb and the environment. Thus, a fundamental question is whether anatomy 
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has evolved to simplify neural control by shaping these interactions in a beneficial way. This 

inductive data-driven study analyzed the patterns of muscle actions across multiple joints using 

the musculoskeletal model of the human upper limb. This model was used to calculate muscle 

lengths across the full range of motion of the arm and examined the correlations between these 

values between all pairs of muscles. Musculoskeletal coupling was quantified using hierarchical 

clustering analysis. Muscle lengths between multiple pairs of muscles across multiple postures 

were highly correlated. These correlations broadly formed two proximal and distal groups, where 

proximal muscles of the arm were correlated with each other and distal muscles of the arm and 

hand were correlated with each other, but not between groups. Using hierarchical clustering, 

between 11 and 14 reliable muscle groups were identified. This shows that musculoskeletal 

anatomy does indeed shape the mechanical interactions by grouping muscles into functional 

clusters that generally match the functional repertoire of the human arm. Together, these results 

support the idea that the structure of the musculoskeletal system is tuned to solve movement 

complexity problem by reducing the dimensionality of available solutions. 

Introduction 

Movements are the product of interactions between neural control signals and the 

musculoskeletal dynamics that depend on limb anatomy (Yakovenko, 2011). This complex 

dynamical system depends on the active and passive forces that arise directly or indirectly from 

muscle contractions and segmental inertia, and requires complex control by the neural motor 

system. The skeletal limb structure can simplify the control complexity, for example locomotor 

dynamics is stabilized by advantageous passive dynamics (Collins, 2005). Musculoskeletal 

morphology has traditionally been viewed as an additional complexity with redundant 

characteristics that the central nervous system (CNS) is required to solve (Bernstein, 1967). 

However, evidence has been mounting for the simplifying role of muscle anatomy through 

increased stability due to viscoelastic properties, which help resist perturbations (Asatryan and 



16 
 

Feldman, 1965; Brown and Loeb, 2000; Yakovenko et al., 2004; Prochazka and Yakovenko, 

2007a; Valero-Cuevas et al., 2015). These properties may even contribute to shaping the 

multidimensional and state-dependent control parameter space for volitional movements in the 

“uncontrolled manifold" theory (Latash et al., 2002). In particular, Kutch and Valero-Cuevas have 

suggested that muscular anatomy may help reduce the dimensionality of control space through 

mechanical coupling even in the absence of a common neural command (Kutch and Valero-

Cuevas, 2012). However, the extent and topography of muscle coupling across more than several 

muscles has not been previously described. In the current study, we have used an inductive data-

driven approach to further test this idea and to quantify the dimensionality reduction accomplished 

by the mechanical coupling of muscle actions across the physiological range of arm and hand 

postures using a validated dynamic musculoskeletal model (Thelen and Anderson, 2006; Delp et 

al., 2007; Saul et al., 2015b).  

Muscles have been traditionally classified into agonist and antagonist pairs using their anatomy 

(Lombard, 1903; Kuo, 2002) or innervation and participation in sensory-evoked actions 

(Sherrington, 1909, 1910). For example, stimulation of sensory pathways activates ilia-psoas, 

tibialis anterior, and extensor digitorum longus that together participate in flexion of hip and ankle 

of the lower limb (Yakovenko et al., 2004). Using this definition, excitation and inhibition patterns 

give the physiological binary membership of muscles in mutually-opposing functional groups. This 

idea has been extended further to the concept of motor primitives or synergies, where a smaller 

subset of grouped muscle actions can accomplish a variety of tasks (Patla, 1985; Bizzi et al., 

1991; Giszter et al., 1993). Alternatively, the anatomical joint-based nomenclature can be used to 

identify muscle actions around specific joints. For example, the biceps brachii and triceps brachii 

act as antagonists around the elbow, because the former causes elbow flexion, while the latter 

causes elbow extension. The latter definition does not rely on neural activations and is purely due 

to the anatomy of muscle origins and insertions on the bone and their moment arms around the 
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joints. In this study, our goal was to quantify mechanical coupling that underlies the basic 

functionality and dimensionality of the musculoskeletal system and represents the lowest 

hierarchical level of movement control. This coupling constrains neural actions and, thus, bears 

directly on the concept of motor primitives or synergies. 

Methods 

Model 

The musculoskeletal model based on the dynamic upper limb model created by Saul et al. (Saul 

et al., 2015b) was constructed in OpenSim (version 3.0, Stanford University, Stanford, CA, USA) 

(Fig. 2-1) and modified in several aspects. Separate bodies for each segment of the hand digits 

were created to recreate an additional 16 DOFs of the human hand. Metacarpals of digits 2 

through 5 (index through little fingers) were modeled as a single body with the inertia of a right 

rectangular prism. All carpometacarpal joints but the first one were represented by a single wrist 

joint with 2 DOFs. These corresponded to the rotations between the fused metacarpals 2-5 and 

ulna coordinate systems around the x-axis for flexion/extension (Fig. 2-1C). Pronation and 

supination was achieved by the rotation of radius around ulna as in the published model. The first 

carpometacarpal joint of the thumb was modeled with 2 DOFs. These corresponded to the 

rotations between the first proximal phalanx and radius coordinate systems around the x-axis for 

flexion/extension and around the Z axis for abduction/adduction. A single DOF (flexion/extension) 

was assigned to all metacarpophalangeal joints corresponding to the rotations around the x-axes 

of the coordinate systems of the proximal phalanges 2-5 and the corresponding metacarpals (Fig. 

2-1C). Phalanges were modeled as cylinders with lengths and radii of a human subject. A single 

DOF (flexion/extension) was assigned to all proximal and distal interphalangeal joints. The axes 

of rotations of all joints of the arm, with the exception of pronation/supination of the forearm, were 

adjusted to correspond to Euler angles between adjacent body Cartesian coordinate systems 

(Fig. 2-1C) to maximize the utility of this analysis for forward and inverse dynamics, where the 
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motion is described in terms of changes in joint Euler angles caused by muscle and inertial 

torques. The total number of model DOFs, including the arm and hand, was 23. The list of 

abbreviated names of musculotendinous actuators included in the model and the muscles they 

represent is in Table 1. Two intrinsic hand muscles, the Opponens Pollicis (OP) and Flexor Pollicis 

Brevis (FPB), were added to the published model, with their origin and insertion points estimated 

from Gray’s anatomy [23]. 

 

Figure 2-1: Illustration of the model and local coordinate systems. 

 (A) and (B) Musculotendinous paths from anatomical origins to insertions on the skeleton are illustrated 
with red lines with selected labels. (C) Coordinate systems for each segment are illustrated with the color-
coded cartesian exes in red, yellow, and green for x-, y- and z-axes respectively. Euler angles around these 
axes represent joint angles. The illustrated posture of the model corresponds to all joint angels at zero. The 
local coordinate systems are shown only for thumb and index finger. The coordinate systems of the other 
digits follow the orientation of the coordinate systems for the index finger. 
____________ 

Human subjects 

This research was approved by the West Virginia University Institutional Review Boards (IRBs) 

for Protection of Human Research Subjects (protocol number 1311129283A004). Informed 

written consent was obtained on the forms approved by IRBs from 10 healthy young human 

subjects. The subjects were 5 males and 5 females of mean age 26.2 ± 6.2 (standard deviation, 

SD) years, mean weight 77.5 ± 14.1 kg, and mean height 1.74 ± 0.04 m. In addition to participant 

height and weight, the lengths of all major arm segments represented as individual bodies in our 
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model were measured (Table 1). These measurements were used to scale the model (subject 0) 

to the dimensions of each individual (subjects 1-10). Each of the model segments and origins and 

insertions of all muscles were scaled proportionally to the length of each subject’s segment (Delp 

et al., 2007). 

Analysis of mechanical coupling 

We calculated musculotendinous lengths (referred to as muscle lengths) across the full range of 

motion of the arm using MATLAB (MathWorks Inc.) pipeline tools of OpenSim by permuting 

postures through all joint excursion combinations within the physiological range of motion in 20% 

increments. The obtained muscle length data about each of the DOFs at each posture for each 

muscle of each individually scaled model were then passed through a regression analysis to 

explore the relationships between muscle lengths for each subject. In this analysis, the correlation 

coefficients (r) for muscle lengths between all pairs of muscles across all postures were 

calculated. Due to computational limitations associated with the multidimensional datasets, a 

random selection of up to 10,000 postures to describe all possible arm and hand state variations 

was used for the mechanical coupling analysis (see below). Postures when both shoulder 

abduction and flexion angles were above 90 degrees were excluded from the analysis due to 

limitations of a gimbal joint. All correlations between muscle lengths were done using 1,000 

postures randomly selected from the full dataset. This number of postures was selected because 

the residual unexplained variance (1 - r2) at this and higher numbers of postures approached zero 

(Fig. 2-2). 
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Figure 2-2: The difference between r2 values for the correlations between muscle lengths as a function of 
the number of selected postures 

Error bars show standard deviations around the mean. 
____________ 

The agonistic and antagonistic relationships between the muscles of each subject were quantified 

using hierarchical clustering of the muscle length correlation matrix in MATLAB. Hierarchal 

clustering was applied to all muscles and separately to only distal muscles. The criterion for 

inclusion into distal (hand-related) or proximal (shoulder-related) clusters was the level of muscle 

length correlation between the muscle of interest and either the muscles spanning the shoulder 

joint or the muscles spanning the wrist joint in all subjects. For clustering, the correlation matrix 

was transformed into the heterogeneous variance explained (HVE) as described next. The 

transformation ensured that agonist muscle pairs grouped together, i.e. had small distance values 
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in proportion to shared variance, whereas antagonist muscles appeared relatively far apart, i.e. 

had larger distance values. Agonist muscles were characterized by positive r-values, and 

antagonists were characterized by negative r-values. The coefficient of determination (r2) was 

used in the HVE equation as the measure of shared variance between the changes in lengths of 

muscle pairs.  The HVE for agonists was thus set to be equal to (1 - r2), while the HVE for 

antagonists was equal to (1 + r2). This resulted in agonist muscle pairs with large positive r-values 

being defined by short distances close to 0, while antagonist muscle pairs with large negative r-

values were defined by long distances close to 2. Zero or insignificant correlations were defined 

by intermediate distances close to 1. Hierarchical clustering was applied using the linkage function 

with unweighted average distance method to the HVE matrix to identify between 2 and 20 clusters 

in each subject. The reliability of clustering was evaluated based on the number of muscles that 

did not fall into the same cluster across subjects. Trivial results with single-muscle clusters were 

excluded from the reliability analysis. 

Unless otherwise stated, all data is referenced by mean ± SD. 

Results 

The musculoskeletal model comprised 52 musculotendinous actuators (model muscles) that 

spanned 23 DOFs. Of the 52 actuators, 26 represented compartments of 7 muscles, e.g. 3 triceps 

actuators representing long, lateral, and medial heads of the triceps brachii. Thus, the model 

represented the anatomical arrangement of 33 individual muscles. There were 15 actuators that 

spanned only the shoulder joint (3 DOFs), 3 actuators that spanned both the shoulder and elbow 

(4 DOFs) joints, 6 actuators that spanned only the elbow joint (2 DOFs due to flexion-extension 

and pronation-supination), and 8 actuators that spanned both the elbow and wrist (3 DOFs, not 

including pronation/supination) joints, with the remaining 20 actuators spanning the wrist and at 

least 1 finger joint. Thus, most muscles were associated with several DOFs. For example, the 

length of the pronator teres depends on the angles of forearm pronation/supination and elbow 
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flexion/extension shown in Figure 3. The lengths of the actuators changed non-linearly as a 

function of the DOFs they controlled, as do their moment arms (Sartori et al., 2012). This implies 

that a constant activation of a given muscle results in a different contribution of that muscle to the 

net joint torque when the arm is held at different postures or throughout the motion. These non-

linearities are the result of complex anatomical paths that the muscles take as they wrap around 

each joint, particularly joints with multiple DOFs. 
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Figure 2-3: Examples of muscle lengths for the pronator teres, a single 2-DOF muscle originating on the 
humerus and attaching on the radius, in two subjects 

The data points (circles) correspond to muscle lengths throughout the physiological range of motion for 
each DOF. 
____________ 

The action of each musculotendinous actuator in the model depends on its attachment to the 

bones and the path it takes around the joint. These data are based on human anatomical data 

(Saul et al., 2015b). To investigate the effect of individual skeletal proportions on mechanical 

coupling, the lengths of arm segment were scaled to the values from each of 10 human subjects. 

This changed the values for muscle lengths associated with each arm posture. The skeletal 

proportions across subjects varied with SD, ranging from 5% to 27% of the average segment 

length (Table 2). However, the relationships between muscle lengths were highly stable across 

subjects, as described in detail in the following sections. 

As expected, the muscle lengths across muscles were highly correlated in agonistic or 

antagonistic fashion (Fig. 2-4A). Positive correlations indicate that the muscle length increases or 

decreases together, representing agonistic action across multiple arm postures (Fig. 2-4B).   

Here, the method is limited to the examination under the isometric condition that does not take 

into account dynamics or history-dependent muscle properties (Joyce and Rack, 1969; Rack and 

Westbury, 1974; Gillard et al., 2000). Negative correlations indicate coincident increase of one 

muscle length while the other is decreased, representing antagonistic action. Not surprisingly, the 

lengths of all actuators representing compartments of the same muscle were highly correlated 

(bright yellow squares around the unity line in Fig. 2-4A). Surprisingly, however, most of the 

muscles showed strong correlations that broadly formed two large clusters, where proximal 

muscles of the arm were correlated with each other and distal muscles of the arm and hand were 

correlated with each other, but not as much with the proximal cluster. For example, the length of 

LATD_M was highly correlated with that of PECM_C (r2 = 0.594), but the correlation with the distal 

cluster was minimal (r2 = 0.004 with FDP5). Similarly, the length of ED5 was highly correlated with 

that of ED_M (r2 = 0.793), but the correlation with the proximal cluster was minimal (r2 = 0.004 with 
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LATD_C). This is the first time the agonistic and antagonistic actions of muscles have been 

quantified across the whole workspace of the human arm. 
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Figure 2-4: Examples of the correlations between muscle lengths in a single subject 

Only significant correlations are plotted (p < 0.05). (A) Pearson correlation coefficient (r) between muscle 
lengths of all muscle pairs. Blue colors indicate negative correlations; yellow colors indicate positive 
correlations. (B) Histogram of r-values for each subject across all muscle pairs. The bar plots are binned 
with 0.2 increments, and only significant values were included in the analysis.  
____________ 

The hierarchical clustering analysis of muscle lengths quantitatively identified muscle groups at 

multiple levels of detail. The first 2 clusters in all subjects represented broadly flexor and extensor 

actions across all joints or DOFs (Fig. 2-5C, dark blue and red clusters emanating from the 

center). However, two groups were insufficient for the consistent classification of all muscles 

across subjects. Some muscles may be classified differently for different subsets of subjects. For 

example, the subgroup that contains latissimus dorsi and pectoralis major was clustered either 

with extensors in 5 out of 11 subjects or with flexors in the rest of the subjects (see Fig. 2-5C, 

subgroup marked * in two different subjects). Note that the composition of this subgroup remained 

unchanged. The separate analysis of distal musculature showed the same pattern of clusters as 

the analysis of all muscles. For example, the same subgroup consisting of thumb muscles 

remained unchanged in both analyses (see Fig. 2-5C, subgroup marked ^ in the same subject). 
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Figure 2-5: Hierarchical clustering methodology and examples for two subjects 
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 (A) Geometric illustration of heterogenous variance explained (HVE). HVE distance is determined by the 
correlations of musculotendon length between muscle pairs determined by the equation in (B). (B) The 
equation for calculating HVE distance. The negative regressions (r-) indicate opposite or antagonistic 
actions of muscle pairs, when the positive ones (r+) correspond to the synergistic or agonistic actions. Insert 
shows a histogram of HVE values for one subject across all muscle pairs. (C) Examples of hierarchical 
clustering for individual subjects. Clustering across all muscles is shown in the top two polar dendrograms. 
The bottom plot shows clustering across only the distal muscles for one of the subjects. Lines emanating 
from the center indicate the distance between muscle clusters calculated from HVE. The main agonist-
antagonist division can be established using a high clustering threshold (2 clusters with dark red and dark 
blue lines), and further subdivisions are revealed by the progressive lowering of the threshold. Example 
matching clusters are marked by outside brackets with * or ^.  
____________ 

The consistency of muscle cluster assignment across subjects changes as a function of the 

number of clusters selected in the analysis (Fig. 2-6). The number of unclassified muscles was 

generally high when muscles were divided into 3 to 8 clusters, which means less consistent 

clusters across subjects (Fig. 2-6A). This followed by a plateau of 9 to 13 more consistent clusters, 

in which the same muscle groups were identified across subjects. Further subdivision into more 

than 13 clusters generated increasingly more trivial results with single-muscle clusters, which is 

evidenced by increasing normalized number of  unclassified muscles (Fig. 2-6A, right plot).  When 

the inclusion threshold for cluster assignment across subjects was increased from 50% (muscle 

belongs to the same cluster in 50% of subjects) to 100% (muscle belongs to the same cluster in 

all subjects), the number of unclassified muscles changed for the different numbers of clusters. 

All muscles were classified into the same clusters in at least half of all subjects when 2 or 9 – 16 

clusters were selected (Fig. 2-6A, dark blue line). The increase in the inclusion threshold to 100%, 

i.e. the muscle had to belong to the same cluster across all subjects, increased the peak number 

of unclassified muscles from 15 to 30 (Fig. 2-6A red line on left plot). The most reliable number of 

clusters, based on the minimal number of unclassified muscles across all thresholds, was 11 (Fig. 

2-6A, black arrows). Normalizing the number of unclassified muscles to cluster size did not 

change this estimate (Fig. 2-6A, right). Similar trends were seen in the reliability of clustering of 

distal muscles (Fig. 2-6B). Here, the most reliable number of clusters was 6 (Fig. 2-6B, black 

arrows). This analysis identified the minimum number of reliable clusters, which are illustrated on 

the mean polar dendrogram across all subjects in Figure 2-7. These clusters of muscles that span 
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multiple joints represent the simplest actions that can be accomplished through mechanical 

coupling. 

 

Figure 2-6: Reliability of clustering across subjects 

 (A) The average number of unclassified muscles is shown as a function of the number of clusters. Each 
colored line corresponds to the level of stringency for the variability in classification across subjects, e.g. 
100% stringency corresponds to the same classification in all subjects. The right panel shows the same 
values normalized to the average number of muscles in all clusters. (B) The same analysis as in A for distal 
muscles only. Vertical black arrow indicates the nontrivial minimum for the number of clusters (11 clusters 
for all and 6 clusters for distal muscles), which represents the most reliable number of muscle clusters. 
____________ 



31 
 

 

Figure 2-7: Mean hierarchical clustering across all subjects 

The polar dendrogram illustrates hierarchical clustering as described in Fig. 2-5C. Inserts along the 
perimeter illustrate the directions of motion (green arrows) produced by the activation of muscles in the 
model shown in Fig. 2-1. Only muscles that belong to the corresponding cluster are shown on each insert. 
____________ 

Discussion 

In this work, we have described for the first time the low-dimensional structure of agonistic or 

antagonistic mechanical actions, termed the mechanical coupling, of major arm and hand muscles 
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across their physiological range of motion. We demonstrated that a low-dimensional structure 

emerges even from the musculoskeletal anatomy without the presence of common neural 

feedforward or feedback signals (Fig. 2-7). We found that there exists an optimal range for the 

number of clusters that reliably group muscles according to actions (Fig. 2-6). Thus, these results 

may help us address the unresolved controversies associated with the definition of motor 

primitives by detailing the lowest level in the bottom-up organization of the motor control system. 

This mechanical coupling between muscles defines the natural repertoire of actions that the 

musculoskeletal system can produce in presence of inertial and gravitational forces, external 

perturbations, and neural control signals. Therefore, our results provide further evidence to 

support the idea that musculoskeletal anatomy helps to reduce the dimensionality of control space 

through the mechanical coupling (Asatryan and Feldman, 1965; Brown and Loeb, 2000; 

Yakovenko et al., 2004; Prochazka and Yakovenko, 2007a; Kutch and Valero-Cuevas, 2012; 

Valero-Cuevas et al., 2015) 

One prevalent theoretical explanation of how the nervous system resolves limb control problems 

is based on the idea of motor primitives, i.e. groups of muscles sharing the same common source 

of neural activation (Bizzi et al., 1991; Giszter et al., 1993; Tresch et al., 1999; d’Avella et al., 

2003a). Inherent in this concept is the idea that motor primitives reduce the complexity of neural 

control signals by enabling the production of any movement from a smaller selection of control 

actions (Bizzi et al., 1991; Giszter et al., 1993). However, the theory of motor primitives, or 

synergies, defined this way has recently come under increased scrutiny due to the indivisible 

interaction and mutual dependency between neural control of muscle activations and 

biomechanics of the resulting movement (Tresch and Jarc, 2009). These interactions and 

dependencies may emerge in the synergy analyses when limb movement engages sensory 

feedback from mechanically coupled muscle groups (Valero-Cuevas et al., 2015) or, alternatively, 

constitute evidence for common feedforward drive within neural code (Overduin et al., 2015; Rana 
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et al., 2015; Yakovenko and Drew, 2015). The common neural drive would also originate if the 

neural networks are embedding movement dynamics for processing motor commands. The 

concept of central pattern generators (CPG) in the spinal cord, in particular, is a representative 

example of low-dimensional neural processing for rhythm generation that is coupled to 

mechanical oscillations between limbs and the environment to produce locomotion (Prochazka 

and Yakovenko, 2007a). Also, the evolving predominant view is that neural processing can be 

represented by a dynamical system acting through available neuromuscular elements to generate 

appropriate signals for desired movements (Shenoy et al., 2013). Taken together, neural activity 

within the hierarchical CNS contains the representation of downstream processing that may 

reflect the low-dimensional representations of targeted mechanisms resulting in neural signals 

consistent with the idea of common drive.  

The neuromechanical tuning may be used to redefine motor primitives in terms of individual 

actions being controlled. The hierarchal structure of both the neural motor system and the 

mechanical coupling implies that the control complexity can be broken down into specific actions 

produced by common signals to muscle groups at different levels of the identified mechanical 

coupling hierarchy. Then, CPGs in the spinal cord, which are modeled as a dynamical system 

(Yakovenko, 2011), could be viewed as neural motor primitives that are entrained with the 

inverted pendulum oscillator formed by the mechanical interactions of limbs with the ground (Taga 

et al., 1991a; Full and Koditschek, 1999; Prochazka and Yakovenko, 2007a). Because the 

entraining originates in the sensors associated with muscles, the musculoskeletal organization 

has bearing on this unit of control. The CPG generates antagonistic activity that results in gross 

mechanical oscillatory actions through interactions between antagonistic groups of muscles 

(Yakovenko et al., 2002). The CPGs are also thought to contribute to arm motor control (Taga et 

al., 1991a; Full and Koditschek, 1999; Prochazka and Yakovenko, 2007a; Zehr et al., 2007; Drew 

and Marigold, 2015). The antagonistic groups observed in our analysis as the first two clusters in 
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the mechanical coupling diagram may reflect the same concept (Fig. 2-5C). When dexterous 

movements are required, e.g. to step over obstacles during locomotion or reaching, the gross 

CPG motor primitive must be fractioned into smaller components specific to the task (Yakovenko 

and Drew, 2015). In our analysis, this would be equivalent to following the polar dendrogram from 

the center with gross representations to periphery with fractured fine representations (Fig. 2-7). 

The neighboring fine motor primitives in our analysis could be combined to represent functional 

movements. Defensive limb movements can be generated by three combinations of 10, 5, and 6 

groups; feeding movement can arise from the recruitment of all groups in 6 - 8; and the 

manipulation movements can be generated by four combinations 2, 6, and 11, followed by 7 for 

grasping. While these combinations are qualitatively similar to those observed in response to the 

long-train intracortical microstimulation of the motor cortex (Graziano et al., 2002; Graziano and 

Aflalo, 2007; Stepniewska et al., 2009), the link between neural activity and the composition of 

coupled muscle groups remains to be tested in future studies. 

Another result in this study is the salient separation between muscle motor primitives of proximal 

and distal arm joints. This is unexpected, because the subsets of proximal and distal muscles 

span the same elbow joint and contribute to pronation/supination DOF. Only sparse correlations 

between the pairs of muscles spanning primarily proximal and primarily distal joints are present 

in our study (Fig. 2-4). This result indicates that the anatomical arrangement of muscles is 

consistent with the idea of two distinct control targets: proximal arm and distal hand groups. 

Coincidentally, the spatiotemporal separation between the activation of proximal and distal 

muscles is present in goal-directed reaching movements that are traditionally separated into two 

phases: gross arm motion to transport the hand to the desired location and fine hand motion to 

manipulate objects. It has also been suggested that these phases are controlled separately by 

the nervous system (Jeannerod et al., 1998; Kawato and Samejima, 2007). Such muscle 

organization and the possible separation within neural control pathways may be the result of 
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evolutionarily-driven expansion of distal musculature to enable the increased dexterity of object 

manipulation characteristic of primates. The spatiotemporal separation of muscle activity during 

limb transfer, generally controlled by proximal muscles, and limb placement, generated by distal 

musculature, is also evident in the regulation of evolutionarily connected phases of reaching 

movement and precise modifications in quadruped stepping. Moreover, these separate temporal 

phases are correlated to the activity of distinct corticospinal circuits (Yakovenko and Drew, 2015). 

Our analysis uses the incidence of length excursions in different postures as a measure of 

functional similarity in muscle actions. The analysis is based on sampling representative postures 

within the physiological range of motion (ROM); yet, this posture space may not be functionally 

homogenous. It included both likely and unlikely joint configurations based on the frequency of 

observing their representation in daily use (Ingram et al., 2008; Howard et al., 2009). For these 

subsets of joint configurations there may exist distinct relationships within subsets of muscles. 

The method of uniform sampling used here may not capture the coupling or uncoupling among 

the muscle pairs within these subsets of likely and unlikely postures. Then there may also be a 

subset of muscles with changing relationships within different postures. Because these muscle 

pairs would have low correlations in our analysis, the only groups that could be affected would be 

those associated with the weak relationships between antagonistic muscles acting on scapular 

(groups 3 & 5 of Fig.2-7). Fig. 2-4 shows that these are the only large groups with r-values within 

medium to low correlations, i.e. between -0.5 and 0.5 values, that may be affected. It is tempting 

to speculate that the proximal arm muscles may change their functional affiliation based on the 

familiarity with task. This could be reflected in different biomechanical advantages or affordances 

that influence movement planning (Cos et al., 2014). This question will be addressed in the future 

research. In the presented analysis, the correlations across postures indicate the shared 

dependence on joint constraints to define functionally similar muscles over the full physiological 

ROM that includes all possible limb postures with the exclusion of extremes. 
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Several methods are commonly used to derive motor primitives from muscle activity, and all rely 

on extracting shared signal redundancy among neural discharge and/or muscle activity (d’Avella 

et al., 2003a; Tresch et al., 2006; Cheung et al., 2009; Yakovenko et al., 2011; Krouchev and 

Drew, 2013; Yakovenko and Drew, 2015). Cumulatively, these studies support the idea that 

muscle motor primitives are reflected in the neural activity; however, the confounding factors may 

offer alternative explanations for coupled activity (Kutch et al., 2008; Kutch and Valero-Cuevas, 

2012; Valero-Cuevas et al., 2015). The mechanical coupling derived from the correlations of 

muscle lengths across physiological postures qualitatively matches the groups observed in the 

decomposition analyses. For example, the biceps long, brachioradialis, brachialis, and pronator 

teres are in the same muscle group 6 (Fig. 2-7) and are also part of the W1 synergy identified 

with time-varying synergy analysis (d’Avella et al., 2006). Similarly, the teres major and latissimus 

dorsi are part of a single muscle group 3 and posterior deltoid is a part of an adjacent group 5 

identified through the mechanical coupling analysis (Fig. 2-7) and are also part of the W5 synergy 

identified with time-varying synergy analysis (d’Avella et al., 2006). This result is consistent with 

observations that the underlying musculoskeletal dynamics can constrain the space of neural 

commands to a low-dimensional subspace identified with decomposition methods (Kutch and 

Valero-Cuevas, 2012). Thus, the existence of the mechanical coupling of muscles generally 

agrees with the findings of alternative methods.  

In conclusion, our analysis of arm and hand muscles is a quantitative description of the functional 

organization within the musculoskeletal system that contributes to the concept of motor primitives. 

The organization of movement derived from the musculoskeletal architecture offers a novel 

perspective on the motor control problem solved by CNS.  
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Tables 

Table 1: The abbreviations of muscles included in the analyses.  

Muscle 
Abbreviation 

Muscle Name Muscle 
Abbrevia
tion 

Muscle Name 

DELT_A Deltoid (anterior) FCR Flexor Carpi Radialis 

DELT_L(AT) Deltoid (lateral) FCU Flexor Carpi Ulnaris 

DELT_P Deltoid (posterior) PALL Palmaris Longus 

SSPI Supraspinatus PTER Pronator Teres 

ISPI Infraspinatus PQUAD Pronator Quadratus 

SSCAP Subscapularis FDS5 Flexor Digitorum Superficialis (5th digit) 

TERMI Teres Minor FDS4 Flexor Digitorum Superficialis (4th digit) 

TERMA Terer Major FDS3 Flexor Digitorum Superficialis (3rd digit) 

PECM_R Pectoralis Major (rostral) FDS2 Flexor Digitorum Superficialis (2nd digit) 

PECM_M Pectoralis Major (medial) FDP5 Flexor Digitorum Profundus (5th digit) 

PECM_C Pectoralis Major (caudal) FDP4 Flexor Digitorum Profundus (4th digit) 

LATD_R Latissimus Dorsi (rostral) FDP3 Flexor Digitorum Profundus (3rd digit) 

LATD_M Latissimus Dorsi (medial) FDP2 Flexor Digitorum Profundus (2nd digit) 

LATD_C Latissimus Dorsi (caudal) ED5 Extensor Digitorum (5th digit) 

CORBR Coracobrachialis ED4 Extensor Digitorum (4th digit) 

TRI_LO Triceps (long) ED3 Extensor Digitorum (3rd digit) 

TRI_LAT Triceps (lateral) ED2 Extensor Digitorum (2nd digit) 

TRI_M Triceps (medial) ED_M Extensor Digitorum Minimi 

ANC Anconeus EIND Extensor Indicis 

SUP Supinator EPL Extensor Pollicis Longus 

BIC_LO Biceps Brachii (long) EPB Extensor Pollicis Brevis 

BIC_SH Biceps Brachii (short) FPL Flexor Pollicis Longus 

BR Brachialis APL Abductor Pollicis Longus 

BRR Brachioradialis OP Opponens Pollicis  

ECR_LO Extensor Carpi Radialis Longus FPB Flexor Pollicis Brevis 

ECR_BR Extensor Carpi Radialis Brevis ECU Extensor Carpi Ulnaris 
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Table 2: The summary of anthropometric measurements. All distance measurements, unless 

indicated otherwise in brackets, were made between the estimated centers of joint rotation. 

Segment name Length (m) Length (% of subject height) 

Thorax 0.217 ± 0.032 12.5 ± 1.9 

Shoulder (between clavicle 
and scapula acromial tip) 0.194 ± 0.016 11.2 ± 0.8 

Humerus 0.279 ± 0.026 16.1 ± 1.4 

Ulna 0.262 ± 0.014 15.1 ± 0.8 

Radius 0.262 ± 0.014 15.1 ± 0.8 

Hand (mean metacarpal 
length of phalanges 2-5) 0.085 ± 0.009 4.9 ± 0.5 

First metacarpal 0.046 ± 0.009 2.7 ± 0.5 

First proximal phalanx 0.0369 ± 0.004 2.1 ± 0.3 

First distal phalanx 0.0276 ± 0.004 1.6 ± 0.2 

Second proximal phalanx 0.046 ± 0.005 2.7 ± 0.2 

Second middle phalanx 0.028 ± 0.003 1.6 ± 0.1 

Second distal phalanx 0.023 ± 0.002 1.3 ± 0.1 

Third proximal phalanx 0.048 ± 0.009 2.8 ± 0.5 

Third middle phalanx 0.033 ± 0.004 1.9 ± 0.2 

Third distal phalanx 0.024 ± 0.002 1.4 ± 0.1 

Forth proximal phalanx 0.043 ± 0.010 2.5 ± 0.0 

Forth middle phalanx 0.031 ± 0.005 1.8 ± 0.2 

Forth distal phalanx 0.023 ± 0.002 1.3 ± 0.0 

Fifth proximal phalanx 0.035 ± 0.008 2 ± 0.4 

Fifth middle phalanx 0.023 ± 0.006 1.3 ± 0.3 

Fifth distal phalanx 0.012 ± 0.003 1.1 ± 0.2 
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Additional Model Development 

As previously described, the state of muscle lengths determines muscle force production 

due to the force-length relationship. However, it is torque that ultimately acts around a 

joint and generates movement. Torque generation relates to not only the muscle forces 

but also muscle paths. Similar to muscle lengths, muscle moment arms are posture 

dependent. For example, as the elbow is flexed, the distance between the elbow joint and 

the biceps muscle increases, which in turn increases the torque that is generated with the 

same amount of muscle force. Therefore, musculoskeletal models must have accurate 

representation of muscle geometry to properly approximate the mechanical interactions 

of musculoskeletal system and torque generation. The following sections will briefly 

describe our process for validating moment arms in the musculoskeletal model and the 

current state of this model development. 

Moment Arm Validation 

We evaluated the anatomical accuracy of our musculoskeletal model by comparing 

simulated musculotendon moment arms with published measurements from the literature 

(Ackland et al., 2008; Quental et al., 2012; Folgado et al., 2013; Boots et al., 2020). 

Moment arms were simulated using the OpenSim software. A physiological coordinate 

system was added to the shoulder joint to allow comparison of simulated moment arms 

to values measured in the literature (see Shoulder DOFs). Each DOF was permuted 

across the defined range of motion uniformly at a sampling rate of 9 postures per DOF. 

Musculotendon moment arms were acquired for each DOF that a muscle crossed for 

each iteration (Fig. 2-8). Moment arm profiles were then interpolated using a polynomial 

fitting procedure described in Sobinov, 2019 (Sobinov et al., 2019). These polynomials 

approximated the musculotendon moment arms as a function of model posture. 
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Figure 2-8: Example of changes in moment arms as a function of posture 

____________ 

To validate the physiological accuracy, we evaluated the polynomial approximations 

using the same postures that were used during moment arm measurements in the 

literature (Ackland et al., 2008; Quental et al., 2012; Folgado et al., 2013). The simulated 

moment arms were then compared to the published measurements by calculating the 

root mean square (RMS) normalized to the range of motion. Additionally, moment arm 

profiles were qualitatively assessed by classifying discordant moment arm profiles based 

upon the error that was induced. Boots et al, 2020 provides a more comprehensive 

description of the validation procedure along with results for the elbow, wrist, and hand 

(Boots et al., 2020). The remainder of this chapter will describe the validation of muscles 

spanning the shoulder. 

Shoulder DOFs 

The shoulder joint consists of three bony segments, each of which are comprised of three 

rotational and three translational DOFs (Fig. 2-9). The complex movement of these 

segments influence the dynamics of muscles spanning the shoulder because they alter 
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and direct the muscle paths in a posture-dependent manner. Therefore, to accurately 

represent muscle lengths and moment arms, it is necessary to adequately emulate the 

behavior of all three of these segments across their respective range of motion. 

 

Figure 2-9: Coordinates of the shoulder joint. 

The local coordinate systems of the three bony segments that comprise the shoulder joint are 
shown. Each body can move along 3 rotational DOFs and 3 translational DOFs. 

____________ 
The Saul model previously addressed this complexity by applying several kinematic 

constraints which would drive the movement of the scapula and clavicle based upon the 

elevation of the humerus, such that �𝜃𝜃𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎,𝜃𝜃𝑎𝑎𝑠𝑠𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎𝑠𝑠𝑑𝑑� = 𝑓𝑓(𝜃𝜃ℎ𝑠𝑠𝑢𝑢𝑑𝑑𝑢𝑢𝑠𝑠𝑠𝑠) (Saul et al., 2015b). 

To implement this method, a non-Euler set of coordinate rotations were used to 

accommodate the limitations of these constraints. To validate the musculotendon paths 

of shoulder muscles to values published in the literature, the shoulder coordinates were 

first transformed into the Euler coordinates (flexion/extension, abduction/adduction, 

internal/external rotation). The simulated moment arms were acquired as previously 

described using the non-Euler coordinate system to articulate the joint. The matrix of 

postures was then transformed into the Euler defined coordinate system prior to 

polynomial fitting. This transformation was achieved by first converting the model’s axis-
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angle representation into a quaternion representation. The coordinates were then rotated 

using the Hamilton product. 

𝑞𝑞′ = 𝑞𝑞1𝑞𝑞2 

Here q1 and q2 are the first and second rotation respectively. Finally, the newly rotated 

quaternion coordinate was converted into Euler angles corresponding to 

flexion/extension, abduction/adduction, and internal/external rotation. 

 Moment arm profiles were plotted relative to the reference dataset created from the 

published values. Then, the differences between published and simulated moment arm 

values were iteratively changed by modifying muscle path in OpenSim to reduce the 

discrepancy (Fig. 2-10).  

 

Figure 2-10: Example of moment arm validation. 

____________ 

The development and validation of shoulder muscle moment arms is ongoing, but the 

current status of the model is described using the aforementioned qualitative metric in 

Fig. 2-11. Moment arms around internal and external rotation are not included as 

experimental measurements have not yet been found in the literature. 
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Figure 2-11: Qualitative assessment of moment arm quality. 

____________ 

Preliminary Results 

The validated musculotendon moment arms were analyzed using the hierarchical 

clustering of HVE previously described in Methods. Shoulder muscle moment arms 

cluster into two distinct clusters based upon their action around each DOF (Fig. 2-12). 

This result is consistent with moment arm relationships at the elbow, wrist, and hand 

(Boots et al., 2020). The correlation of muscle moment arms with similar function means 

that moment arms change together in different postures, they do so as a functional group, 

e.g. if the moment arm of the anterior deltoid in increasing so too are the moment arms 

of other shoulder flexors. It is noteworthy that these clusters are not conserved across 
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DOF, i.e. a shoulder flexor is not always an abductor nor is a shoulder extensor. Further 

model validation will confirm the robustness of these relationships. 
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Figure 2-12: Hierarchical clustering of shoulder muscle moment arms. 

Shoulder muscle moment arms cluster as distinct agonist-antagonist pairs. 

____________ 
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Chapter 3 - Computational evidence for nonlinear feedforward 
modulation of fusimotor drive to antagonistic co-contracting 
muscles 
(this chapter has been directly adapted from Hardesty RL, Boots MT, Yakovenko S, 
Gritsenko V (2020) Computational evidence for nonlinear feedforward modulation of 
fusimotor drive to antagonistic co-contracting muscles. Scientific Reports 10:10625.) 

Abstract 

The sensorimotor integration during unconstrained reaching movements in the 

presence of variable environmental forces remains poorly understood. The objective of 

this study was to quantify how much the primary afferent activity of muscle spindles can 

contribute to shaping muscle coactivation patterns during reaching movements with 

complex dynamics. To achieve this objective, we designed a virtual reality task that 

guided healthy human participants through a set of planar reaching movements with 

controlled kinematic and dynamic conditions that were accompanied by variable muscle 

co-contraction. Next, we approximated the Ia afferent activity using a phenomenological 

model of the muscle spindle and muscle lengths derived from a musculoskeletal model. 

The parameters of the spindle model were altered systematically to evaluate the effect of 

fusimotor drive on the shape of the temporal profile of afferent activity during movement. 

The experimental and simulated data were analyzed with hierarchical clustering. We 

found that the pattern of co-activation of agonistic and antagonistic muscles changed 

based on whether passive forces in each movement played assistive or resistive roles in 

limb dynamics. The reaching task with assistive limb dynamics was associated with the 

most muscle co-contraction. In contrast, the simulated Ia afferent profiles were not 

changing between tasks and they were largely reciprocal with homonymous muscle 

activity. Simulated physiological changes to the fusimotor drive were not sufficient to 

reproduce muscle co-contraction. These results largely rule out the static set and α-γ 

coactivation as the main types of fusimotor drive that transform the monosynaptic Ia 

afferent feedback into task-dependent co-contraction of antagonistic muscles. We 

speculate that another type of nonlinear transformation of Ia afferent signals that is 
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independent of signals modulating the activity of α motoneurons is required for Ia afferent-

based co-contraction. This transformation could either be applied through a complex 

nonlinear profile of fusimotor drive that is not yet experimentally observed or through 

presynaptic inhibition. 

Introduction 

Movement is the product of interactions between neural signals and the 

musculoskeletal dynamics that depends on limb anatomy(Nishikawa et al., 2007a; 

Prochazka and Yakovenko, 2007b; Yakovenko, 2011; Gritsenko et al., 2016). The motor 

control problem is then solved within a system with coupled neural and mechanical 

dynamical elements(Schöner and Kelso, 1988; Taga et al., 1991b; Ting et al., 2015a). 

Therefore, the relationship between neural signals driving muscle contraction and the 

resulting motion is nonlinear. Muscle contractions generate forces that sum into active 

moments defined by the agonistic or antagonistic relationships between the muscle’s 

moment arms around a given axis of rotation of the joint. The components of these forces 

that sum to zero moment, such as forces produced by balanced co-contraction of 

antagonistic muscles, define joint stiffness and viscosity. The remaining unbalanced 

moments are often termed muscle torques; they produce motion. In this bottom-up 

reasoning, muscle contractions represent the output of the central nervous system (CNS) 

that also reflects the mechanical properties of the limb being moved by these muscles. 

For example, muscle torques derived from motion capture share a large amount of 

variance with muscle activity profiles during reaching movements in certain 

directions(Olesh et al., 2017b), while in other directions co-contraction defines the muscle 

activity profiles more than muscle torques. Joint stiffness is the product of co-contraction 

of antagonistic muscles. However, without the knowledge of the moment arms and motor 

unit recruitment of these muscles, it is often difficult to estimate experimentally joint 

stiffness from surface electromyography. Some studies estimate co-contraction using 

“wasted contraction”, i.e. the minimal value of estimated muscle recruitment between 

antagonistic muscles(Thoroughman and Shadmehr, 1999; Gribble et al., 2003; Darainy 

and Ostry, 2008). Other studies measure joint stiffness more directly with 

perturbations(De Serres and Milner, 1991; Damm and McIntyre, 2008; Wong et al., 2009). 
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These studies found that both co-contraction and stiffness change with task demands, so 

that the co-contraction increases in the novel, precise, or demanding tasks and the 

resulting stiffness depends on limb dynamics. The joint and, possibly, whole arm stiffness 

is thought to be a controlled parameter in the CNS ensuring movement stability(Milner 

and Franklin, 2005; Franklin et al., 2007). An important question in motor control is how 

the co-contraction of antagonistic muscles that modulate stiffness with stability is 

produced.  

It is well established that at the lowest level of the CNS, the primary afferents (Ia) 

from muscle spindles can increase the activity of the homonymous muscle and its 

agonists, thus increasing their stiffness, through the homonymous monosynaptic 

reflex(Angel et al., 1996). It is also well established that the same Ia feedback through an 

interneuron can inhibit the activity of the antagonistic muscle, contributing to the reciprocal 

muscle activation during locomotion(Hongo et al., 1966; Lundberg, 1969). The 

contribution of these pathways to muscle activation can be modulated via the activity of 

dynamic and static γ motoneurons that change the profile of activity of the Ia 

afferent(Boyd, 1985). During movement, the dynamic fusimotor action changes mainly 

the velocity sensitivity of the Ia afferents, while the static fusimotor action changes mainly 

the length sensitivity of the Ia afferents(Matthews, 1959b; Prochazka, 2011). How exactly 

the activity of γ motoneurons changes during reaching movements in humans is unknown 

(for the reviews of afferent recording studies see(Prochazka, 2011; Macefield and 

Knellwolf, 2018)). However, the effect the fusimotor drive has on shaping the muscle 

spindle output can be broadly classified based on whether the fusimotor drive is constant 

or changing during movement. The former is defined as the static set, where γ 

motoneuron activity remains constant during a given movement, but its level changes 

between different movement types adjusting muscle spindle sensitivity to the anticipated 

demands of the task(Prochazka et al., 1985; Prochazka, 1986). Alternatively, the Ia 

feedback could be coupled to the ongoing motor activity via α-γ coactivation, where the 

sensitivity of muscle spindles is maintained during muscle shortening by coupling the 

activity of γ motoneurons to the activity of α motoneurons(Granit, 1970; Hagbarth, 1993). 

The fusimotor drive provided by β motoneurons, which innervate both extrafusal and 

intrafusal muscle fibers(Kakuda et al., 1998), can also modulate Ia afferent activity. 
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However, in our correlative study, the effect of β motoneurons is indistinguishable from 

the effect of α-γ coactivation. Given such complex and flexible Ia feedback that could be 

transmitted through the mono- and disynaptic pathways, the role that it plays in co-

contraction and ultimately limb stiffness is unknown. It has been suggested the co-

contraction of antagonistic muscles can be modulated by descending signals through the 

concurrent fusimotor drive, e.g. C command in lambda-model(Feldman, 1966). A 

pathological change in the strength of the monosynaptic connection of Ia afferents to α 

motoneurons is also implicated in spasticity, a condition that is characterized by abnormal 

co-contraction of antagonistic muscles(Brown, 1994). The question arises whether the 

common fusimotor drive to muscle spindles in antagonists can contribute significantly to 

their co-contraction through the monosynaptic Ia feedback under normal conditions, such 

as during reaching. Answering this question will help constrain the space of possible 

solutions for descending neural control signals. 

The current methods of directly observing primary afferent firing in humans, such as 

microneurography, are limited in the number of observable signals and the types of 

behaviors these observations can be made under. In presence of these limitations, the 

experimentally validated models of primary afferents(Prochazka and Gorassini, 1998) 

and the musculoskeletal anatomy of the arm(Saul et al., 2015a) used together can 

provide unique insight into the transformation through the motoneuron pool. The 

computational approach enables a holistic computational estimation of the Ia afferent 

activity from multiple muscles during reaching movements in humans. Here, we used the 

model of muscle spindle with the two types of fusimotor drive, static set and α-γ 

coactivation, to address the question of Ia afferent contribution to the co-contraction of 

multiple muscles during reaching movements. The movements were selected based on 

the roles of passive forces, assistive or resistive, during reaching that were expected to 

be accompanied by different patterns of muscle co-contraction. We then used a 

mathematical model of Ia afferent with two parameters that define the sensitivity of muscle 

spindle to muscle length and velocity changes(Prochazka and Gorassini, 1998). We 

changed these parameters across tasks according to the experimental observations that 

informed the two types of fusimotor drive. We took advantage of the linearizing properties 

of the motoneuron pool in transforming synaptic drive into neural command to the 
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muscles(Farina et al., 2014). We used electromyography (EMG) to estimate the 

ensemble activity of the motoneuron pool(Hoffer et al., 1987; De Luca and Hostage, 2010; 

Farina et al., 2014). During reaching without heavy objects, the maximal EMG in arm 

muscles is estimated to be low, 5-10% of maximal voluntary contraction (Tagliabue et al., 

2015; Aurbach et al., 2020). At that range, the relationship between EMG and the 

recruitment of motoneuron pool is largely linear (De Luca and Hostage, 2010). This 

justified employing a hierarchical clustering analysis to quantify the linear relationships 

between time-varying muscle activity (EMG), including co-contraction, and simulated Ia 

afferent activity. We expected that the activity of co-contracting antagonistic muscles will 

positively correlate with the activity of their Ia afferents shaped by static set and α-γ 

coactivation, which would be evident from observing these signals in the same clusters. 

 

Materials and Methods 

Experimental design and human participants 

We recruited 9 healthy adults (5 males, 4 females; age, 24.3 ± 1.8 years; weight, 

76.3 ± 14.5 kilograms) to perform reaching movements to visual targets in a virtual reality 

(VR, Oculus Rift, developer kit 2). All procedures were approved by the West Virginia 

University Institutional Review Board (IRB). All methods were performed in accordance 

with the IRB guidelines and regulations; informed consent was obtained from all 

individuals prior to their participation in the study. All data analysis and simulations were 

performed in Matlab (MathWorks, RRID:SCR_001622). 
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Figure 3-1: Illustrations of the experimental setup and arm models.  

Oculus DK1 is shown, but all data collection occurred with Oculus DK2 headset. A. Annotated photo of the 
setup; insert shows participant's monocular view. Reaching target is in green, origin target is in red. Yellow 
sphere shows the location of individual's fingertip and the black lines outline the major arm segments for 
visual feedback of arm location in VR. B. Colored lines show the fingertip trajectories of each of the three 
tasks. Arrows indicate the direction of motion toward the reaching target. The grey blocks show the locations 
and orientations of local coordinate systems used to obtain joint torques from motion capture. Circles with 
black and white quarters indicate the locations of the centers of mass and the orientations of local 
coordinate systems. C. Illustration of the OpenSim model used to derive muscle lengths for the calculations 
of Ia afferent discharge. Red lines show the anatomical paths of each muscle from which EMG signals were 
recorded during experiments. 

____________ 
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Participants performed three reaching tasks in VR (Fig. 3-1A). Pairs of visual targets 

defined the starting and goal target locations for each task (Fig. 3-1B). The virtual 

environment provided two distinct advantages: 1) it allowed target locations to be quickly 

calculated and scaled based upon an individual participant’s proportions and 2) it 

provided visual guidance to constrain movement trajectories without physically interacting 

with the participant, i.e. altering limb dynamics. To minimize inter-subject variability in 

angular kinematics, the locations of virtual targets were derived using planar trigonometry 

based on the lengths of individual's arm and forearm segments and displayed relative to 

the subject’s shoulder location in VR. This resulted in the same shoulder, elbow, and wrist 

angles at the start and end of each movement across participants. The pairs of starting 

and goal visual targets were shown in a random sequence to minimize bias. The cue to 

move was the change of target color from red to green. Trunk motion was restricted with 

straps, wrist was instructed to be kept at neutral palm down (Fig. 3-1A). Each task was 

repeated 24 times. At the beginning of each 60-trial block, the virtual target positions were 

re-calibrated to the participant’s shoulder location. 

The tasks were based on planar pointing movements selected for their diverse 

dynamical contexts. The Control movement (Fig. 3-1B, black) was largely passive with 

the arm being lowered with gravity. The Resistive movement (Fig. 3-1B, red) was 

accompanied by increasing gravitational load at the shoulder and resistive interaction 

torques between the shoulder and elbow(Gritsenko et al., 2011b). Finally, the Assistive 

movement (Fig. 3-1B, blue) was accompanied by decreasing gravitational load at the 

shoulder and assistive interaction torques between the shoulder and elbow. The 

dynamical contexts were identified based on inverse simulations in Simulink 

(RRID:SCR_014744) with a mechanical planar model of the arm(Olesh et al., 2017b) that 

predicted shoulder and elbow torques for a given linear trajectory between an arbitrary 

set of starting and ending postures. 

During the performance of each task, we recorded the kinematics of the shoulder, 

elbow, and wrist joints and electromyography (EMG) of 12 muscles that span those joints. 

The recorded muscles were the anterior and posterior deltoids (AD and PD, respectively), 

pectoralis major (Pec), teres major (TM), biceps brachii long and short heads (BicL and 

BicS, respectively), triceps brachii lateral and long heads (TriLa and TriLo, respectively), 
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brachioradialis (Br), extensor carpi radialis (ECR), flexor carpi radialis (FCR), and flexor 

carpi ulnaris (FCU). These muscle abbreviations are used consistently throughout the 

manuscript and figures. Motion capture data were recorded at 480 hertz (Hz) using an 

Impulse system (PhaseSpace), and EMG signals were recorded at 2000 Hz with an 

MA400-28 system (MotionLab Systems). Nine LED markers were placed on bony 

landmarks of the arm and trunk (Cervical Vertebrae 7, Xiphoid Process, Sternoclavicular 

Joint, Acromial Edge, Acromioclavicular Joint, Lateral Olecranon Process, Radioulnar 

Joint, Styloid Process, and the Distal Phalanges Head). The start and end of each 

movement was defined by finding a local maximum in the 3rd derivative of the vector 

distance profile of the wrist and elbow LED markers. The motion capture data were used 

to derive joint angles by fitting local coordinate systems into the markers defining each 

major segment and deriving Euler angles between them using linear algebra(Robertson 

et al., 2013b). The EMG was processed consistent with SENIAM recommendations, it 

was high-pass filtered at 10 Hz, rectified, and low-pass filtered at 20 Hz. The resulting 

EMG profiles were time-normalized between onset and offset of each movement, 

averaged per task, and amplitude-normalized to the maximum across all tasks per 

participant. Co-contraction was calculated as “wasted contraction”(Thoroughman and 

Shadmehr, 1999; Gribble et al., 2003; Darainy and Ostry, 2008) between normalized 

EMG profiles of pairs of antagonists defined as follows, AD-PD, Pec-TM, BicL-TriLo, 

BicS-TriLa, Br-TriLa, FCR-ECR, and FCU-ECR.  

Primary afferent model 

To estimate the sensory contribution from muscle spindles during movement, we 

used Prochazka’s model of primary afferent discharge(Prochazka, 1999), which offers a 

clear parametrization of static and dynamic responses. The spindle model relates afferent 

firing rate (Ia) to the time-varying muscle length (l) and its rate of change (v) as follows: 

𝐼𝐼𝑎𝑎(𝑣𝑣, 𝑙𝑙) = 𝐴𝐴𝑣𝑣0.5 + 𝐵𝐵𝑙𝑙 + 𝐶𝐶                                                                 (1) 

where the constant parameters (A = 65, B = 200, and C = 10) were validated 

empirically to reflect human microneurography data(Malik et al., 2016).   

The changes of musculotendon length during movement were calculated in 

OpenSim (RRID:SCR_002683) using a modified musculoskeletal model of the human 
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arm(Saul et al., 2015a) (Fig. 3-1C). This model was adjusted for each individual using 

segment lengths to scale model’s segments and move proportionally the origin and 

insertion of each simulated muscle. Muscle lengths were simulated by driving the 

adjusted model with the mean angular trajectories for each task and participant. This 

resulted in temporal profiles of muscle length (𝑙𝑙) in units of meters and its derivative (𝑣𝑣) 

in units of meters per second for each movement per participant. Muscle lengths profiles 

used in the Ia model were converted to the rest-length units based on the minimal and 

maximal muscle lengths observed across all the possible postures of the OpenSim model 

in Gritsenko et al.(Gritsenko et al., 2016). The rest length was defined as half the length 

between the maximal and minimal muscle length values(Yakovenko et al., 2004). The 

muscle shortening/lengthening velocity profiles used in the Ia model were converted to 

the rest length per second units. The parameter space of A and B variations was explored 

in the context of variable fusimotor drive. To simulate a change in the dynamic fusimotor 

drive, we varied the velocity coefficient A; to simulate a change in the static fusimotor 

drive, we varied the length coefficient B. The following parameter ranges were explored: 

A∈[33 200] and B∈[50 400], which resulted in 4 models of static set  referred to below as 

follows: V33-L50, V33-L400, V200-L50, V200-L400, where V stands for velocity 

coefficient and L stands for muscle length coefficient. This also served as a sensitivity 

analysis of the two parameters of the Ia model. 

Separately, we approximated α-γ coactivation that affects both the dynamic and 

static fusimotor drive using EMG profiles which transformed equation (1) as follows: 

𝐼𝐼𝑎𝑎(𝑎𝑎, 𝑣𝑣, 𝑙𝑙) = 𝑎𝑎 ∙ 65𝑣𝑣0.5 + 𝑎𝑎 ∙ 200𝑙𝑙 + 10                                                    (2) 

where a is the normalized mean EMG profile for a given task and participant. The 

model in (2) is referred to below as EMG-coupled Ia model. 

The time-varying primary afferent profiles calculated with Eq. (1) and (2) are referred 

to below as Ia profiles. For the regression analysis described below, the Ia profiles were 

amplitude-normalized to the maximum across all tasks per participant to obtain unitless 

values. 
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Verifying task dynamics 

 

Figure 3-2: Signals calculated from motion capture.  

Thick lines show normalized mean trajectories for each movement across all participants, shaded areas 
show standard deviations across participants. Only rotatum signals calculated for shoulder 
flexion/extension degree of freedom included in the following analyses are shown. Movement phase 
represents normalized duration of each movement with 0 indicating the start of movement (vertical onset 
line) and 1 indicating the end of movement. A. joint angles; B. joint angular velocity; C. muscle torques. 

____________ 

A mechanical model of a human upper-limb(Olesh et al., 2017b) was used to 

compute joint torques from joint angles inferred from motion capture. The mechanical 

model described above was expanded to comprise three segments and five degrees of 

freedom, including the shoulder (flexion/extension, abduction/adduction, internal/external 

rotation), elbow (flexion/extension), and wrist (flexion/extension). The height and weight 

of each individual were used with anthropometric tables(Winter, 2009a) to estimate the 

lengths and cylindrical inertias of the arm, forearm, and hand segments (Fig. 3-1B). To 

calculate active torques that result from muscle action, mean angular trajectories from 

each individual and task were used to drive the subject-specific model in inverse dynamic 

simulations (Fig. 3-2). The motion defined by our tasks was in the vertical plane. 

Participants showed minimal out-of-plane motion as measured by angular trajectories 

about shoulder abduction/adduction and internal/external rotation degrees of freedom. 
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Therefore, only muscle torques about the shoulder flection/extension degree of freedom 

was included in the analysis described below. 

To describe the limb dynamics of each task, the three muscle torques about 

shoulder, elbow, and wrist were then used to calculate the following parameters. 1) The 

postural torque change was calculated as the difference between muscle torques 

averaged over 100 ms prior to onset and following the offset of movement. These postural 

torques are produced to maintain the arm in starting and final postures against the force 

of gravity. 2) The peak torque change in acceleration phase was calculated as the 

maximal change in torque between the start of movement to its halfway point. The first 

half of movement was used to ascertain the amount of muscle force that is required to 

start the motion, thought to represent largely feedforward activation. 3) The mechanical 

muscle work was calculated by integrating a product between muscle torques and angular 

velocity as described in(Winter, 2009a). When the direction of action matches between 

muscle torque and angular velocity, as indicated by the same sign (both positive or both 

negative), the mechanical muscle work is positive. This means that agonist muscle 

contractions about the corresponding degree of freedom are concentric and they are 

actively producing the motion. When the direction of action is opposite between muscle 

torque and angular velocity, as indicated by opposite signs, the mechanical muscle work 

is negative. This means that agonist muscle contractions about the corresponding degree 

of freedom are eccentric and the motion is produced by passive torques, such as gravity, 

interaction torques, etc. In our tasks, the wrist joint does not move, therefore the 

mechanical muscle work about the wrist is zero. This means that the muscle torque about 

the wrist reflects the isometric contraction of wrist and hand muscles that is required to 

stabilize the joint at a constant angle. 

Analysis 

To quantify the common and distinct features in EMG and Ia profiles and to compare 

them to features obtained from muscle lengths we used hierarchical clustering. The 

relationships between the normalized averaged EMG and Ia profiles were characterized 

by a matrix of Pearson’s correlation coefficients (r). To reduce the probability of Type I 

errors, the α for determining the significance of r values was adjusted using the two-stage 

Benjamini, Krieger, and Yekutieli procedure for controlling false detection rate(Benjamini 
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et al., 2006). The correlation matrix was then transformed into the heterogeneous 

variance explained (HVE) as follows:  

 

𝐻𝐻𝐻𝐻𝐻𝐻 = �
1 − 𝑟𝑟2, |𝑟𝑟 > 0,𝑝𝑝 < 𝛼𝛼
1 + 𝑟𝑟2, |𝑟𝑟 < 0,𝑝𝑝 < 𝛼𝛼

1, |𝑝𝑝 ≥ 𝛼𝛼
                                                   (4) 

 

The HVE transforms the large positive r values that are characteristic of agonistic 

relationships into short distances close to 0 and the large negative r values corresponding 

to antagonistic relationships into long distances close to 2. To identify synergistic 

relationships between EMG and Ia, we applied hierarchical clustering to an unbiased HVE 

distance matrix using the linkage function with an unweighted average distance 

method(Gritsenko et al., 2016). The goodness of fit of the clustering model was assessed 

using the cophenetic correlation coefficient, which quantified how faithfully the 

hierarchical cluster tree represented the dissimilarities among observations. The 

magnitude of this value should be very close to 1 for a high-quality solution. As a result 

of this analysis, the strongly and positively correlated signals will be labeled belonging to 

the same cluster, and we will be able to assess the degree of similarity between these 

clusters based on the strength of the positive and negative correlations between them. 

This approach is advantageous in examining the correlation structure while still 

distinguishing between positive and negative correlations. Hierarchal cluster analysis has 

captured the relationship between EMG and Ia signals with high precision, as evidenced 

by high cophenetic coefficient of 0.81 ± 0.044, mean and standard deviation across 

participants. 

Clusters were compared using the Fowlkes-Mallows index (Bk) to assess cluster 

similarity between separate hierarchical cluster trees(Fowlkes and Mallows, 1983). The 

Fowlkes-Mallows index represents a normalized number of common elements between 

clusters from different trees at the same cluster height. For example, B2 indicates that the 

hierarchical trees were compared at the height, where only 2 clusters occur. Here, we 

explored k = [2, …, n], where n is half the number of signals being included in the 
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hierarchical clustering. Thus, for two cluster trees with arbitrarily numbered clusters i = 1, 

…, k and j = 1, …, k we can use the number of objects between the ith cluster of one tree 

and jth cluster of the other tree (mij) to calculate the index as follows: 

 

𝐵𝐵𝑘𝑘 =
𝑇𝑇𝑘𝑘

�𝑃𝑃𝑘𝑘 ∙ 𝑄𝑄𝑘𝑘
,                                                                           (5) 

where  
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At each cluster division, the index is calculated such that 0 ≤ Bk ≤ 1, where Bk = 1 indicates 

two identical clusters and provides a means to compare the multi-muscle clustering of 

EMG and Ia signals. A further benefit of the Fowlkes-Mallows index is that it approaches 

0 with an increasing number of data points, making it less sensitive to spurious 

correlations than the commonly used Rand index (Fowlkes and Mallows, 1983). 

In an earlier study(Gritsenko et al., 2016), we quantified the synergistic relationships 

between muscles based on their anatomy using the same musculoskeletal model of the 

arm used here for muscle length measurements. The muscle lengths were calculated 

over the whole range of physiological joint postures and analyzed using the same 

hierarchal clustering method described above. Here we selected a subset of muscles 

recorded in this study and compared the clustering structure of the muscle lengths across 

all postures in Gritsenko et al.(Gritsenko et al., 2016) study to the clustering structure of 

simulated Ia afferent activity. We used the muscle lengths obtained from Gritsenko et 

al.(Gritsenko et al., 2016) rather than the muscle lengths calculated for the Ia modeling, 
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because the former was calculated over a wider range of postures than the latter. 

Because the muscle lengths data is part of the Eq. (1), similar clustering structure is 

expected between muscle lengths and Ia profiles. These muscle length data were used 

as one of the controls for the statistical analysis of clustering structure described below. 

Statistics 

All values reported in results are means with standard deviations across 

participants, unless stated otherwise. The shared variance (R2) between clusters defined 

by hierarchical clustering was assessed using t-tests. The t-tests were applied to R2 

values averaged across members of the cluster per participant per task. Individuals were 

assumed to represent independent samples. The combined p-values across participants 

included in the tables were obtained using the Fisher's combined probability test(Fisher, 

1970). Correction for multiple testing was based on Bonferroni adjustment of alpha, the 

acceptable probability of making type I error(Dunn, 1959).  

The statistical comparison of hierarchical clustering between multiple signal 

modalities was based on permuting the hierarchical clustering trees to estimate the 

chance of observing spurious correlations. The hierarchal tree for each participant each 

movement type and each signal modality (Ia, EMG, muscle length) was randomly 

permuted 1000 times. Then the Fowlkes-Mallows index (B) was calculated between each 

of the permuted trees, which resulted in a population of B values that represents the 

distribution of noise. The distribution of experimental B values across tasks and 

individuals was compared to the corresponding noise distribution of B values to test the 

hypothesis that Bexperimental ≠ Bnoise. The p-value for each experimental B value was 

determined from the corresponding noise distribution for each individual using the 

percentile method(Efron and Tibshirani, 1994). The combined p-values across cluster 

subdivisions included in the supplementary tables were obtained using the Fisher's 

combined probability test(Fisher, 1970). The significant alpha was set to 0.0056 to adjust 

for repeating tests across 9 participants. This permutation analysis was applied to test 

three hypotheses. The 1st hypothesis was that the similarity between Ia and muscle-length 

clusters is not spurious. This is a test of the chosen statistical method. We expect to 

support the 1st hypothesis, because the Ia and muscle length profiles are not independent, 

i.e. the former is derived from the latter as described in Eq. 1. The 2nd hypothesis was 
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that the similarity between Ia and EMG clusters is not spurious. The 3rd hypothesis was 

that EMG and Ia clusters change the same way between tasks. Supporting either 2nd or 

3rd hypothesis means that the compared trees are similar to a greater extent than is 

expected by chance, and that the afferent activity clusters comprise the same muscles as 

the muscles that co-activate in a given task.  

The statistical comparison of hierarchical clustering between tasks was based on 

bootstrapping the B values(Efron and Tibshirani, 1994). The B values for EMG clustering 

(BEMG) and Ia clustering (BIa) calculated between tasks were resampled with replacement 

1000 times. This resulted in two distributions of 45,000 BEMG and BIa values for each task 

pair (Control-Resistive, Control-Assistive, and Resistive-Assistive). These data were 

used to test the 3rd hypothesis that EMG and Ia clusters change the same way between 

tasks. To test this hypothesis, we calculated the difference between the two distributions 

of BEMG and BIa values across tasks, each comprising 1000 bootstraps per cluster number 

(k = 2, …, 6) per participant (N = 9). The p-value for each task pair was determined from 

the location of the 0 value in the resulting distribution of differences, which indicated no 

difference between cluster structures, using the percentile method(Efron and Tibshirani, 

1994).  

The last set of hypotheses addressed the extent to which the fusimotor drive can 

shape Ia afferent discharge and capture muscle co-contraction. The hypothesis for each 

altered Ia model was that the similarity between Ia and EMG clusters is increased by 

alternative fusimotor drives. To test these hypotheses, the B values were calculated 

between the hierarchical clustering of Ia and EMG profiles for each of the models with 

altered coefficients (V33-L50, V33-L400, V200-L50, V200-L400, and EMG-coupled). The 

distribution of B values from each of the altered model was subtracted from the 

corresponding B values based on Ia profiles from the Prochazka model. The p-value for 

each model with altered coefficients was determined based on the location of the 0 value 

in the resulting distribution of differences using the percentile method(Efron and 

Tibshirani, 1994). 
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Results 

Participants performed reaching tasks with consistent angular kinematics within the 

constraints defined by the VR targets. The angular excursions of each joint were similar 

across individuals for the three tasks (Fig. 3-2A), the angular velocity was most variable 

across participants in the Assistive task (Fig. 3-2B). Because the individual’s movements 

were not restricted, most participants moved slightly out of the sagittal plane and the 

experimental angular displacement differed somewhat from those defined by virtual 

targets (Table 1). In the Control and Assistive tasks, the virtual targets defined joint 

excursions that required the shoulder and elbow joints to rotate in opposite directions. 

This caused assistive interaction torques between these joints similar to the Assistive task 

in Gritsenko et al.(Gritsenko et al., 2011b), which were associated with negative muscle 

work at the shoulder and positive muscle work at the elbow (Table 1). The sign of work 

indicates the direction of energy flow. The positive sign of work indicates concentric 

contractions that transfer energy from muscles to segments, while the negative sign of 

work indicates eccentric contractions during which the energy from external forces are 

overpowering the muscle action and doing the work(Winter, 2009a). Thus, in the Control 

and Assistive tasks, the shoulder motion was largely passive, and the activity of shoulder 

muscles was compensating for external forces due to gravity and interaction torques. In 

the Control task, elbow and wrist torques were the lowest across the three tasks (Fig. 3-

2C, black lines). The Assistive task was accompanied by decreasing postural torques in 

all joints, low acceleration shoulder torques, but high deceleration elbow and wrist torques 

(Fig. 3-2C, blue lines; Table 1, third column). This shows that in the Assistive task most 

of the muscle action was to decelerate the limb accelerated primarily by the interaction 

torques and gravity. In contrast, in the Resistive the joint excursions were such that 

required the shoulder and elbow to rotate in the same direction, causing resistive 

interaction torques similar to the Resistive task in(Gritsenko et al., 2011b). Altogether, this 

caused the opposite pattern of shoulder torques compared to that in the Control and 

Assistive tasks, while maintaining the same elbow and wrist torques to that in the Assistive 

task (Fig. 3-2C). In the Resistive task, the mechanical muscle work was always positive, 
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indicating that muscle contractions were concentric and that the motion was produced 

with the least reliance on passive limb dynamics and gravity. 

 

Table 1. Table of task parameters. 

 Control Resistive Assistive 

Shoulder                  target-defined excursion 

(deg) 

-60 -45 -40 

experimental excursion (deg) -48 ± 2 E 40 ± 4 F -35 ± 5 E 

postural torque change (Nm) -2.7 ± 0.3 F 1.3 ± 0.5 F -3.2 ± 0.5 F 

peak torque change in acceleration phase 

(Nm/s) 

8.3 ± 3.6 E 9.0 ± 3.1 F 4.5 ± 1.8 E 

mechanical muscle work (J) -3.80 ± 0.39 3.05 ± 0.42 -2.60 ± 0.23 

Elbow                     target-defined excursion 

(deg) 

60 10 100 

experimental excursion (deg) 42 ± 4 F 7 ± 3 F 81 ± 8 F 

postural torque change (Nm) 0.3 ± 0.2 F -1.0 ± 0.2 F -0.9 ± 0.4 F 

peak torque change in acceleration phase 

(Nm/s) 

1.8 ± 0.5 F 5.2 ± 2.3 E 5.3 ± 3.4 E 

mechanical muscle work (J) 0.99 ± 0.20 0.28 ± 0.06 1.93 ± 0.24 
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 Control Resistive Assistive 

Wrist                       target-defined excursion 

(deg) 

0 0 0 

experimental excursion (deg) 0.7 ± 4.3 N 1.4 ± 3.7 N 7.5 ± 13.3 E 

postural torque change (Nm) 0.0 ± 0.03 N -0.15 ± 0.05 F -0.14 ±0.10 F 

peak torque change in acceleration phase 

(Nm/s) 

0.3 ± 0.2 E 0.8 ± 0.3 F 0.9 ± 0.6 F 

mechanical muscle work (J) -0.00 ± 0.01 0.00 ± 0.01 -0.01 ± 0.03 

 

All joint angles are around flexion/extension axes of rotation for the three major joints included in the 
analysis. The sign of angles and torques indicates the direction of change of the corresponding measure, 
positive for increase and negative for decrease. Experimental values are averages with standard deviations 
across participants. Target-defined excursion is different from the experimental excursion due to out-of-
plane arm motion. F indicates flexion direction of action; E indicates extension direction of action; N 
indicates no change. Negative values of mechanical muscle work imply work done by external forces, e.g. 
gravity and reaction from distal segments in the mechanical chain. 

____________ 
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Figure 3-3: Normalized EMG, co-contraction, and Ia profiles for muscles spanning the shoulder.  

Thick lines show averages for each movement across all participants. Shaded areas show the standard 
error of the mean across participants for EMG and co-contraction signals and standard deviation across 
participants for Ia signals. Movement phase represents normalized duration of each movement as in Fig. 
3-2. Signals are subdivided into antagonist pairs AD-PD (A), Pec-TM (B), and BicL- TriLo (C). 

____________ 
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Figure 3-4: Normalized EMG, co-contraction, and Ia profiles for muscles spanning the elbow and wrist.  

Formatting of plots are as in Fig. 3-3. Signals are subdivided into antagonist pairs Br, BicS-TriLa (A) and 
FCU, FCR-ECR (B). 

____________ 
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The EMG and Ia profiles varied between tasks, but in a different manner from each 

other (Fig. 3-3, 3-4). The EMG profiles showed variable levels of co-contraction that 

changed between tasks and joints. In the Assistive task, in which passive forces assist at 

the shoulder, the EMG profiles of multiple muscles that span the elbow and wrist joints 

were ramping up during movement (Fig. 3-3C & 3-4, blue lines). The co-contraction 

between pairs of antagonists represented by shared variance between their normalized 

EMG profiles was the largest in the Assistive task (Supplementary Table S1). Hierarchal 

cluster analysis has shown that in the Assistive task multiple agonists and antagonists 

spanning the elbow and wrist (TriLa/TriLo/BicL/BicS/Br/FCR/FCU/ECR) comprised a 

single EMG cluster, i.e. all these muscles co-activated in this task (Fig. 3-5 Assistive). In 

the Resistive task with the least reliance on passive dynamics, co-contraction was high 

in AD-PD (Fig. 3-3A) and low in elbow and wrist muscles (Fig. 3-3C, 3-4; Supplementary 

Table S1). Hierarchal cluster analysis has shown that in the Resistive task, muscle 

coactivation was present in two different smaller clusters (Br/FCR/FCU/ECR and 

TM/AD/PD/TriLa; Fig. 3-5 Resistive), while in the Control task muscle coactivation was 

present in even smaller clusters (Br/FCR/FCU/ECR, TriLo/TriLa, BicS/BicL, and Pec/TM; 

Fig. 3-5 Control). Overall this analysis shows that the muscle groups defined by shared 

variance across EMG profiles are task-dependent and that they consist of both agonistic 

and antagonistic muscles.  



67 
 

 

Figure 3-5: The relationships between EMG and Ia profiles per task in a representative individual.  

A. The correlation matrix between normalized EMG and Ia profiles one participant. B. Hierarchical 
clustering of the correlation matrix in A. Lines represent the strength of the relationship between each 
cluster at different cluster subdivisions. 

____________ 
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Figure 3-6: Comparison between muscle length and Ia clustering.  

A. The relationships between muscle length profiles per task in a default “average subject” model used in 
(Gritsenko et al., 2016). The plots are formatted as in Fig. 3-4. B. Fowkles-Mallow Index (B) for the 
comparison between muscle length and Ia cluster assignments (blue) and for the comparison between 
muscle length and permuted Ia cluster assignments representing random match (black) at different cluster 
subdivisions. Error bars shows pooled standard deviation across participants. 

____________ 

In contrast to EMG profiles, the Ia profiles largely reflected the kinematic differences 

between tasks. For example, the Ia profiles of muscles spanning only the shoulder 

reversed in the Resistive task, in which the direction of shoulder excursion reversed 

relative to Control and Assistive tasks (Fig. 3-2, 3-3A & B); the Ia profiles of muscles 

spanning the elbow largely followed the profiles of elbow excursions (Fig. 3-2, 3-4). The 

amount of shared variance between Ia profiles from antagonistic muscles did not change 

between tasks and the correlations were primarily negative, except for Pec-TM 

(Supplementary Table S2). The negative correlations between Ia profiles of antagonists 
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are consistent with the reciprocal actions of antagonistic muscles. This also suggests that 

Pec and TM are not acting as antagonists in the selected movements. The Ia profiles of 

smaller groups of mainly agonistic muscles, such as Pec/PD/TM, TriLo/TriLa, 

BicS/BicL/Br, and FCR/FCU, were positively correlated (Fig. 3-5A, right bottom corners 

of correlation matrices). Hierarchal clustering analysis comparing Ia profiles and muscle 

length from Gritsenko et al.(Gritsenko et al., 2016) showed that the Ia clusters were 

significantly more similar than expected by chance to muscle length clusters for all tasks 

at most cluster subdivisions (Fig. 3-6, Supplementary Table S3). Thus, we have 

supported the 1st hypothesis as expected. The significant similarity index at multiple 

cluster subdivisions confirms that the same muscles that shorten or lengthen together 

also have similar Ia feedback across multiple postures or movements. Overall, this 

analysis suggests that the Ia afferents in synergistic muscles signal similar information 

related to the kinematics of reaching. 

 

Figure 3-7: The consistency of hierarchical clustering between EMG and Ia within and across movements.  

A. Fowkles-Mallow Index (B) for the comparison between EMG and Ia cluster assignments (red) and for 
the comparison between EMG and permuted Ia cluster assignments representing random match (black) 
at different cluster subdivisions. Error bars shows pooled standard deviation across participants. B. 
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Histograms of the differences in BIa and BEMG between tasks across bootstrapped hierarchal cluster trees. 
The abscissa indicates no difference in B values between tasks; thick line is at the mean of the 
distribution; thin lines show standard deviations of the distributions. 

____________ 

To address the question of Ia afferent contribution to muscle co-contraction, we 

compared the time varying normalized Ia and EMG profiles in each task (Fig. 3-5A, right 

top corners of correlation matrices). The shared variance between Ia and EMG profiles 

from homonymous muscles was variable between muscles and tasks in both the strength 

and sign of the correlation (Supplementary Table S4). Pectoralis and biceps muscles 

shows the largest negative correlations, while the triceps muscle showed that largest 

positive correlations. This indicates that Ia feedback can both potentiate and inhibit the 

activity of its homonymous muscle in different tasks, even at the same level of static set 

across tasks represented by unchanging coefficients A and B from Eq. (1). The direct 

contribution of Ia afferents to muscle co-contraction can be quantified with hierarchal 

cluster analysis that groups positively correlated EMG profiles of co-contracting muscles 

and their Ia profiles into the same clusters. This predicts that, for example, the two clusters 

of co-activating muscles in the Resistive task should also contain the Ia profiles from the 

same muscles so that the Fowlkes-Mallows similarity index (B) between EMG and Ia 

clusters would lie outside the noise distribution. However, the distribution of similarity 

indices between EMG and Ia clusters was indistinguishable from noise at most cluster 

subdivisions in all tasks (Fig. 3-7A, Supplementary Table S5). This result did not support 

the 2nd hypothesis, indicating that the similarity between Ia and EMG clusters is spurious. 

Further analysis comparing directly the co-contraction profiles from antagonists to the Ia 

profiles from their host muscles further supported the lack of similarity in profiles. It 

showed that the Ia profiles from antagonistic muscle pairs were correlated reciprocally, 

either positively or negatively but never both positively, with the corresponding co-

contraction profile (Supplementary Table S6). This indicates that muscle co-contraction 

can be potentiated by monosynaptic Ia feedback from one of the antagonistic muscles, 

but not both. 

To contribute meaningfully to co-contraction, the Ia profiles from co-contracting 

muscles need to change between tasks the same way as EMG profiles of these muscles 

change between tasks. Therefore, we compared cluster structure between tasks. We 
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observed that the similarity of Ia clusters (BIa) between tasks was higher than the similarity 

of EMG clusters (BEMG) between tasks (Fig. 3-7B; p < 0.001 for all task comparisons). 

This shows that Ia clusters were more consistent between tasks than EMG clusters were 

(Fig. 3-6B). Therefore, 3rd hypothesis that the EMG and Ia clusters change the same way 

between tasks was not supported. Instead, this result supports the conclusion above that 

Ia clusters contain information related to the kinematics of reaching, which changed less 

between our tasks than limb dynamics and co-contraction did. 

Lastly, we evaluated to what extent the fusimotor drive could alter Ia signal profiles 

to capture muscle co-contraction. To achieve this, we manipulated Ia model coefficients 

to simulate alternative fusimotor inputs, such as static set and α-γ coactivation. The 

models of different static sets with large coefficients produced firing rates that were above 

those reported for human large fiber afferents (Human afferents from(Malik et al., 2016): 

40 imp/s; simulated afferents from Pec: 174 ± 49 imp/s; AD: 331 ± 48 imp/s; PD: 332 ± 

49 imp/s; TM: 305 ± 37 imp/s; TriLo: 170 ± 25 imp/s; TriLa: 243 ± 38 imp/s; BicL: 171 ± 

49 imp/s; BicS: 177 ± 63 imp/s; Br: 304 ± 93 imp/s; FCR: 129 ± 42 imp/s; FCU: 139 ± 40 

imp/s; ECR: 142 ± 35 imp/s with SD across participants). However, the maximal simulated 

firing rates increased linearly with the increases in model coefficients (data not shown). 

Therefore, the conclusions drawn based on the data simulated at extremes using models 

with large coefficients will apply to the data obtained using models with lower coefficients.  
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Figure 3-8: Fusimotor-based changes in the clustering of Ia profiles.  

A. Similarity indices B between clusters produced by models with altered fusimotor coefficients and those 
produced by the original Prochazka model, boxes define the interquartile range across participants with the 
medians denoted by dots. B. Similarity indices B between EMG and Ia clusters for models with altered 
coefficients. Formatting is the same as in A. C. The histograms of differences between B of the Prochazka 
model and each of the alternative Ia models across individual participants, tasks, and cluster subdivisions. 
Zero difference is denoted by horizontal lines. 
____________ 
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We first evaluated how different static sets and α-γ coactivation can change the 

clustering structure of Ia profiles relative to that produced by the model with original 

coefficients (Prochazka model). We found that altering the Ia model coefficients did affect 

the clustering pattern of Ia signals as evident from the similarity indices between 

alternative models and the Prochazka model being less than 1 (Fig. 3-8A). The largest 

changes in Ia cluster structure were caused by the EMG-coupled Ia model simulating α-

γ coactivation compared to those simulating altered static set. However, these changes 

in cluster structure did not increase the similarity between EMG and Ia profiles (Fig. 3-

8B). Therefore, last set of hypotheses stating that the similarity between Ia and EMG 

clusters is not increased by alternative fusimotor drives were not supported (Fig. 3-8C; 

Supplementary Tables S7-S11). This shows that the changes in the Ia afferent activity 

caused by known fusimotor input, such as static set or α-γ coactivation, are not likely to 

potentiate sufficiently the amount of monosynaptic Ia feedback to the co-contraction of 

antagonists. 

Discussion 

Here we addressed the question of the degree to which the Ia afferent activity from 

muscle spindles in antagonists can contribute to their co-contraction through 

monosynaptic feedback under normal conditions, such as reaching movements. We 

asked human participants to reach toward virtual targets at different locations, which 

instructed planar movements in a transverse vertical plane. These reaching tasks were 

accompanied by different roles of passive limb dynamics, assistive or resistive. We found 

that EMG patterns changed between tasks and were associated with different levels of 

co-contraction, while the Ia patterns did not change between tasks and were primarily 

reciprocal between antagonists. Altering Ia model coefficients to simulate different types 

of fusimotor drive, such as static set and α-γ coactivation, did not change these 

conclusions. Although these results cannot rule out any given motor control theory, they 

do constrain the space of possible neural control solutions. Our results suggest a limited 

contribution of direct projections from the Ia afferents to muscle co-contraction, even with 

“simple” task-dependent changes in the fusimotor drive, such as static set and α-γ 

coactivation.  
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The reaching tasks selected for this study represent unique dynamical contexts 

experienced by the multisegmented limb during movement in the presence of gravity. 

This was reflected in different active muscle torques and mechanical muscle work around 

the major joints in the three tasks (Table 1). Motion in the Control and Assistive tasks was 

produced with reliance on passive interaction torques and gravity. In the Assistive task, 

this was accompanied by the coactivation of the largest group of muscles (Fig. 3-3, 3-4). 

This may have served to increase distal limb stiffness, which helped to stabilize the 

movement against the potentially de-stabilizing whiplash interactions between 

joints(Hogan et al., 1987a; Burdet et al., 2001; Darainy and Ostry, 2008; Tee et al., 2010; 

Gritsenko et al., 2011b). In contrast, motion in the Resistive task was produced against 

the opposing action of gravity and interaction torques between shoulder and elbow. This 

was accomplished with concentric contractions of two different groups of proximal and 

distal muscles, biarticular biceps and triceps muscles changed their coactivation patterns 

the most (Fig. 3-3, 3-4). Overall, our results suggest that the dynamical demands of each 

task define specific patterns of coactivation of agonist and antagonist muscles that form 

broadly defined proximal and distal groups. These flexible task-dependent groups of 

coactivating muscles may reflect the neural compensation of limb dynamics through limb 

impedance(Hogan et al., 1987b; De Serres and Milner, 1991; Loeb et al., 1999; Burdet et 

al., 2001; Perreault et al., 2001; Damm and McIntyre, 2008; Wong et al., 2009).38,55  

There is a known monosynaptic relationship between Ia afferents and motoneurons 

innervating the same and synergistic muscles that underlies stretch reflexes, which 

compensate for perturbations. This anatomical arrangement with high gain, i.e. strong 

coupling, could result in similar profiles of the activity of Ia afferents and the profiles of the 

activity of homologous motoneurons, measured with EMG. Here, we tested this idea 

using two methods, hierarchal clustering of the correlation matrix between simulated Ia 

and EMG profiles and shared variance between profiles of antagonist co-contraction and 

Ia profiles. Hierarchal clustering revealed low similarity between Ia and EMG clusters, that 

resulted from inconsistent positive correlations between EMG and Ia profiles from the 

same muscles across tasks (Fig. 3-7; Supplementary Table S5). The comparison of co-

contraction profiles with Ia profiles showed that only one of the antagonistic muscles was 

associated with positively correlated profiles, but not the other, and those relationships 
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varied across tasks (Supplementary Table S6).  Furthermore, we found that changing the 

parameters of the Ia model to simulate different levels of fusimotor static set between 

tasks did not increase the similarity between Ia and EMG clusters (Fig. 3-8). This suggests 

that simply changing the constant level of fusimotor drive between tasks cannot transform 

the Ia afferent activity so that it could contribute more to the co-contraction of antagonistic 

muscles observed during reaching movements. This may explain the findings of 

decreased gain of H-reflexes, which are indicative of the strength of the monosynaptic 

connection between the Ia afferents and α motoneurons, during tasks that require more 

co-contraction, such as learning to co-contract antagonistic muscles during standing 

reduces the gain of soleus H-reflex in humans(Perez et al., 2007). A recent simulation 

study has also shown that low gain of afferent feedback, both Ia and Ib, combined with 

co-contraction driven by mainly descending signals results in the optimal combination of 

stable control of movement and timely response to perturbations(Dideriksen et al., 2015). 

Altogether, this suggests that the monosynaptic Ia afferent feedback needs to be 

modulated nonlinearly during movement to contribute significantly to the co-contraction 

of antagonistic muscles.  

Here we explored one type of nonlinear fusimotor drive that coupled the changes in 

muscle spindle sensitivity to muscle length and its rate of change to the activity of 

homonymous motoneurons. Such α-γ coactivation is thought to potentiate the recruitment 

of homonymous motor pools, increase muscle stiffness, and decrease the response times 

to perturbation(Pruszynski et al., 2009; Crevecoeur and Scott, 2014). Our results have 

shown that the nonlinear transformation of the Ia afferent signal by α-γ coactivation can 

change the profiles and, consequently, the clustering of Ia afferent signals more than all 

other models (Fig. 3-8A, EMG-coupled model). However, these changes were not enough 

to alter the Ia afferent profiles in a way that would reflect muscle co-contraction (Fig. 3-

8B & C). This suggests that another type of nonlinear transformation of Ia afferent signals 

that is independent of signals modulating the activity of α motoneurons is required for Ia 

afferent-based co-contraction of antagonistic muscles. This transformation could either 

be applied through a complex nonlinear profile of fusimotor drive or nonlinear modulation 

of the gain of Ia afferent feedback onto the α motoneurons through presynaptic inhibition 

and/or spinal interneurons. Our results and approach can be used to test the first 



76 
 

possibility. We can derive the temporal profile of the static and dynamic γ motoneuronal 

activity that would create the task-dependent coactivation pattern seen in EMG by solving 

Eq. 2 with least squares for two separate a coefficients (static and dynamic) for every 

phase of movement using EMG co-contraction as a cost function. The second possibility 

is more open-ended. The second type of nonlinear transformation may be accomplished 

by state-dependent nonlinear presynaptic inhibition of the monosynaptic pathway from Ia 

afferents to α motoneurons in some of the co-contracting antagonistic muscles(Seki et 

al., 2003; Perez et al., 2007) or by state-dependent nonlinear inhibition of Ia interneurons 

that mediate the reciprocal inhibition of antagonists (for review see(Burke, 1999)). The 

propriospinal system can also be engaged in task-dependent modulation of afferent 

feedback gains(Roberts et al., 2008). Ultimately, the task-dependency is thought to be 

determined by the higher-level neural circuits that modulate presynaptic inhibition, 

fusimotor drive, and the activity of spinal interneurons(Feldman, 1966; Latash, 2008; 

Roberts et al., 2008; Pruszynski et al., 2009; Crevecoeur and Scott, 2014). Future 

perturbation studies that alter the Ia feedback, for example with vibration, during reaching 

with different dynamical contexts is the next logical step to test the predictions from this 

computational study. 

A potential limitation of the Ia afferent model used here is its simplicity. More 

complex models of Ia afferents take into account intrafusal muscle properties and may 

have somewhat different profiles of Ia afferent activity(Chen and Poppele, 1978; Mileusnic 

et al., 2006). Specifically, these models capture the transient bursts in afferent firing due 

to short range stiffness of the intrafusal muscle fiber. It is not known how these transient 

bursts are used by the nervous system, a recent paper suggested they may help sense 

changes in muscle force(Blum et al., 2017). However, the scientific consensus is that the 

muscle spindle is primarily a sensor of muscle length and its rate of change, so that all 

models capture these features in their predictions of Ia afferent discharge. Therefore, our 

conclusions from the simple model are likely to be generalizable to simulations with other 

more complex models.  

Another limitation our Ia simulations is the assumption that the muscle rest lengths 

is a halfway length between min and max of all possible muscle lengths across the whole 

physiological range of motion simulated in Gritsenko et al.(Gritsenko et al., 2016). We 
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observed that the distributions of muscle lengths across degrees of freedom in the 

Gritsenko et al.(Gritsenko et al., 2016) were often not normal. Therefore, the half-way 

estimate of rest length could bias it to be outside of the most common operational range. 

To mitigate this limitation and test the generality of our results, we re-ran all analyses 

using rest lengths calculated differently. The new rest lengths were calculated as median 

lengths using the distributions from Gritsenko et al.(Gritsenko et al., 2016). The results 

were the same (data no included), further supporting the generalizability of our results. 

The linear correlative approach used here to compare the primary Ia and EMG 

signals does not take into account the non-linear aspects of the transformation between 

them through the motoneuron pool. However, Farina et al. (Farina et al., 2014) have 

shown that motoneuron pools, unlike individual motoneurons, display linearizing 

properties in transforming the common synaptic input into the neural drive to the muscle, 

i.e. EMG. This shifts the bulk of non-linearities in the transformation from the 

monosynaptic Ia feedback to EMG toward other synaptic inputs, such as spinal 

interneuronal and descending inputs discussed above. Moreover, the non-linearities in 

the transformation from the activity of a motoneuron pool to EMG are likely to be minimal 

in the low range of ~5-10% of maximal voluntary contraction during reaching (Tagliabue 

et al., 2015; Aurbach et al., 2020) examined here. At that range, the rate coding of 

recruited motor units is likely to drive linearly the EMG amplitude and, thus, muscle force 

(De Luca and Hostage, 2010). Therefore, within the constraints of our experiment the 

non-linear transformation of the monosynaptic primary Ia inputs to the motoneuron pool 

into EMG is likely to capture a smaller component of the transformation than the linear 

one quantified here.  

Chapter 4 – Corticospinal Excitability is Modulated During 
Dynamically-distinct Reaching Tasks 
(this chapter has been submitted to eNeuro and is currently undergoing revisions based 
on peer review) 

Abstract 

The modality of neural control signals and how they are generated appropriately for the 

task demands are a matter of active debate. We used single-pulse transcranial magnetic 
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stimulation over the primary motor cortex to measure how the excitability of the 

corticospinal tract is modulated during reaching tasks in humans. We designed 

unconstrained reaching tasks in virtual reality to precisely manipulate the passive forces 

acting on the human arm. During these tasks, we probed the amplitude and gain of the 

corticospinal contribution to the compensation for these forces. We observed active 

corticospinal control of all recorded muscles, as evidenced by the presence of motor 

evoked potentials in all muscles during stimulation below the resting motor threshold. We 

further found that during movement the corticospinal excitability was modulated 

proportionally to the motoneuronal excitability. Furthermore, the coefficient of 

proportionality was also modulated during motion in some muscles distinctly in each 

dynamic task.  

Introduction 

Movement and Limb Dynamics 

The central nervous system (CNS) is thought to imbed the physical laws of nature, which 

determine how forces exerted by the muscles and tendons cause motion of body 

segments in the  presence of anatomical constraints, inertia of the body, and external 

forces such as gravity or contact forces (Nishikawa et al., 2007b; Prochazka and 

Yakovenko, 2007c; Ting et al., 2015b; Hardesty et al., 2020). However, the location of 

this imbedding and means by which these physical laws are represented remain 

unknown. It has been shown that the motor commands generated by the primary motor 

cortex include the compensation for active interaction moments during planar reaching 

movements in humans (Gritsenko et al., 2011c) and monkeys (Kurtzer et al., 2006; 

Pruszynski et al., 2011) which may then recruit appropriate muscle activations via the 

corticospinal tract. Motor evoked potentials (MEPs) elicited by transcranial magnetic 

stimulation (TMS) provide a quantification of the underlying excitability of both pre- and 

post-synaptic elements of the corticospinal tract (Terao et al., 1995; Rothwell, 1997; Di 

Lazzaro et al., 2004; Chen et al., 2008; Bestmann and Krakauer, 2015). Changes in MEP 

characteristics therefore reflect changes in the neural state. For example, MEP 

magnitudes have previously been shown to be decreased during movement preparation 

suggesting increased cortical inhibition prior to movement onset (Rothwell). Furthermore, 
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MEP magnitudes display a linear relationship with muscle activity under isometric 

conditions (Darling et al., 2006); however, this relationship has not previously been 

verified during active movements with distinct limb dynamics. We applied single-pulse 

transcranial magnetic stimulation (TMS) to the human primary motor cortex to perturb the 

inputs into the neuromechanical dynamical system and observed the gains of the control 

signals. This approach is commonly used in control systems engineering; here we have 

applied it to study the control systems of the human CNS. Notably, single-pulse TMS is 

rarely applied during motion of the limb due to the increased variability of the motor 

evoked potentials (MEPs), the amplitude of which depends on the excitability of motor 

cortex neurons, spinal interneurons, and motor neurons at the time of stimulation (Kiers 

et al., 1993; Thickbroom et al., 1999). Here we designed the study to control for several 

sources of this variability in order to obtain reliable MEPs during movement, which 

allowed us to examine the modulation of MEPs during posture and movement under 

different dynamical conditions. 

 

Materials and Methods 

Subjects 

The WVU Institutional Review Board approved all procedures in this study (Protocol 

#1309092800). Potential participants with any musculoskeletal pathologies or injuries, 

prior history of seizures or fainting, or tinnitus were excluded. We obtained informed 

consent prior to the start of experiments.  We recruited 10 healthy human participants (6 

male, 4 female, 24.3 ± 1.8 years old, 76.3 ± 14.5 kg). All participants reported to be right-

hand dominant. 

Motion capture and tasks 

Concurrently with EMG, we recorded reaching movements with motion capture using the 

Impulse system (PhaseSpace).  We placed nine LED markers on bony landmarks of the 

arm and trunk using the best practice guidelines (Robertson et al., 2013a). Marker 

coordinates were sampled at 480 Hz using Recap software (PhaseSpace) and were low-

pass filtered at a cutoff frequency of 10Hz. The mean residuals of marker triangulation ± 
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standard deviation across subjects were 5.7 ± 0.45 mm. Joint angles were calculated by 

defining local coordinate systems for the trunk, humerus, forearm, and hand using at least 

3 markers per rigid body. During the experiment, arm postures and reaching goals were 

defined using color-coded spherical targets 8 cm in diameter in virtual reality (VR) 

environment created using Vizard software (WorldViz) and Oculus headset (Fig. 4-1A). 

To minimize the inter-subject variability in kinematics, the locations of all targets were 

calculated based on subject’s segment lengths in order to obtain common shoulder and 

elbow joint angles for each task (Table 1; wrist angle was instructed to be kept at zero 

and hand pronated). The VR system displayed the targets relative to each subject’s 

shoulder marker on the acromion (Fig. 4-1B). The targets defined a set of “designer” 

movements in the sagittal plane with diverse dynamical contexts, where the movement 

was either largely passive (Control task), or interaction torques were resistive with 

increasing gravitational load (Resistive task), or interaction torques were assistive with 

decreasing gravitational load (Assistive task). The dynamical contexts of these 

movements and their selection was driven by inverse simulations performed with a 

dynamical model of the arm (Fig. 4-1B). Movements from different starting points were 

simulated in the presence of gravity to determine tasks which would vary the 

assistive/resistive interaction torques. The movements that most varied the dynamical 

conditions while maintaining similar endpoint trajectory length were selected.  

To perform the tasks, participants were asked to reach only with their right (dominant) 

arm (without moving the trunk) with their elbow close to their trunk and a neutral, pronated 

wrist. The three tasks were presented to the participants in the same pseudorandom 

order, i.e. a randomized task order was generated prior to the study’s data collection and 

each participant received this same order. Each trial started with the appearance of start 

(green) and stop (red) targets (Fig. 4-1C). The colors and target locations did not change 

until the participants placed their index finger, indicated with a yellow sphere, into the start 

target. One second after this occurred, the stop target changed color from red to green, 

directing the participants to begin the movement (Fig. 4-1C). Each movement was 

repeated for 138 repetitions (total of 414 trials). During experiments, motion capture was 

used to visualize the participant’s arm in VR. The marker locations were streamed to VR 

and used to represent the three main segments of the arm (hand, forearm, and upper 
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arm) as a stick figure (Fig. 4-1A). Motion capture, electromyography (EMG), and virtual 

events were synchronized using custom hardware as described in Talkington et al. 

(Talkington et al., 2015).  

 

Figure 4-1: Experimental Paradigm 

A. Participant’s view of the tasks in virtual reality. Black lines connect LED markers and show the arm 
position and orientation in VR relative to targets. The yellow sphere represents the fingertip LED on the 
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index finger, which the participants were instructed to move to the center of the green target. B. Schematic 
of the dynamic model used to calculate joint angles and torques from motion capture and representative 
endpoint trajectories from the three tasks. Positive directions for each joint are shown with black arrows. 
The start and stop target locations are shown for the Control, Resistive, and Assistive tasks (black, red, and 
blue, respectively). The motion capture marker locations are shown as yellow circles (marker on medial 
portion of wrist not visible). C. Visual representation of the experimental paradigm. D. Example timeline of 
events during a single trial of a movement task. RT stands for reaction time; GO represents the color cue 
to start movement. 

____________ 

Table 1: Posture defined by VR targets at start and end of each movement 

  Control Resistive Assistive 

Shoulder 

Target-defined initial angle 

(deg) 
-70 -10 -55 

Target-defined final angle 

(deg) 
-10 -55 -10 

Elbow 

Target-defined initial angle 

(deg) 
20 80 35 

Target-defined final angle 

(deg) 
80 90 135 

 

Dynamics 

After experiments, motion capture was used to calculate active muscle torques at 

shoulder, elbow, and wrist joints using the same dynamical model used for the selection 

of tasks (Fig. 4-1B) as described in Olesh et al. (Olesh et al., 2017c). The model was 

customized to each participant’s morphology by scaling model segment lengths to match 

the participant’s arm length and scaling model mass to participant’s weight using Winter’s 

morphology (Winter, 2009b). We then ran inverse simulations using the motion capture 

data to obtain active torques produced by the muscles to make the movements in the 

presence of gravity and limb inertia. These active torques were then provided as input 

into a forward dynamics model and the simulated motion was compared to angular 



83 
 

kinematics by calculating a root-mean-squared error (RMSE: 0.059 ± 0.035 rad). Positive 

rotations, based upon the model’s local coordinates are illustrated in Fig. 4-1B. Analysis 

was done on the angles and torques around the X axes, i.e. flexion/extension degrees of 

freedom at all three joints, because motion was primarily in the sagittal plane and out-of-

plane torques were negligible. The active muscle torques at each joint were then 

subdivided into gravitational and dynamic components to examine the different roles CNS 

may play in the compensation for gravity and movement production as described in 

(Olesh et al., 2017c).  

Electromyography 

 Muscle activity and responses to TMS were recorded in twelve upper limb muscles using 

Trigno (Delsys Inc.), a wireless surface electromyography (EMG) system. The recorded 

muscles included four muscles spanning the shoulder, three muscles spanning both 

shoulder and elbow, two muscles spanning only the elbow, and three muscles spanning 

the wrist (Table 2). Muscles were identified based on anatomical landmarks and palpation 

during contraction; EMG sensors were placed on muscle bellies oriented longitudinally 

along the muscle fibers EMG signals were sampled at 2 kHz with a gain of 1000. EMG 

recordings were high-pass filtered at 10Hz to remove any signal drift and rectified prior to 

any EMG/MEP quantification. EMG profiles from trials without TMS were low-pass filtered 

at a cutoff frequency of 20Hz and normalized per subject using a maximum value for each 

muscle across all tasks. 

Table 2: Muscles Recorded with EMG and Abbreviations 

Muscle Abbr. Joints Spanned 

pectoralis Pec Shoulder 

anterior deltoid AD Shoulder 

posterior deltoid PD Shoulder 

teres major TM Shoulder 

triceps (long head) TriLo Shoulder, Elbow 

triceps (lateral head) TriLa Elbow 
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biceps (long head) BicL Shoulder, Elbow 

biceps (short head) BicS Shoulder, Elbow 

brachioradialis BR Elbow 

flexor carpi radialis FCR Wrist 

flexor carpi ulnaris FCU Wrist 

extensor carpi 

radialis ECR 

Wrist 

 

Transcranial magnetic stimulation 

We assessed corticospinal excitability for each participant using single-pulse TMS 

delivered by the Super Rapid stimulator with a figure-of-eight coil (Magstim). The coil was 

placed tangentially to the scalp, oriented at a 45° angle to the midline with the handle 

pointing posteriorly and laterally (Fig. 4-1C). The coil location over the scalp and its 

orientation was maintained using the Brainsight neuronavigation system (Rogue 

Research). The location of stimulation was selected using the hot-spot method (Traversa 

et al., 1997; Ellaway et al., 1998), during which the coil was moved over the estimated 

location of the primary motor cortex until a location with at least 50 µV motor evoked 

potential (MEP) in BicS was evoked. This controlled for the anatomical differences 

between subjects and defined a consistent stimulation location on the motor homunculus 

(Penfield and Rasmussen, 1950b). This was done with anticipation that stimulating the 

same anatomical location with the lowest corticospinal excitability for BicS would produce 

proportionally similar responses in other muscles across participants. Resting motor 

threshold was then determined at the hot-spot location by varying the stimulation intensity 

until a MEP > 50 µV was evoked 50% of the time in BicS. This procedure ensured that 

the stimulation amplitude was adjusted to individual differences in corticospinal excitability 

at rest at the time of experiment and, thus, further minimized intersubject differences in 

MEP amplitudes. TMS pulses were applied at intervals greater than 5 s (0.2 Hz) to avoid 

any long-term changes in corticospinal excitability (Chen et al., 1997). The experiment 

consisted of two consecutive sessions conducted on the same day. 
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Session 1: static posture 

To evaluate the “background” state of the motor system for maintaining posture without 

goal-directed motion, we measured MEPs when the participants held their arm at 

postures corresponding to locations of virtual targets used to direct motion tasks (Fig. 4-

1B). Participants held their arm in one of five static postures, as the starting position for 

the Resistive task was the same as the ending position for the Control task. Participants 

were asked to reach to the displayed VR target that corresponded to one of the postures 

and hold their arm in that posture while we applied 12 TMS pulses at <0.2 Hz at 90% of 

resting motor threshold. They were then instructed to reach to the next target and hold 

the next posture, etc. 

Session 2: movement trials 

Movement trials during three tasks described above were used to probe corticospinal 

excitability at multiple time points directly preceding and during movement. These trials 

were divided into stimulation trials (126 per movement, 378 total) with non-stimulation 

control trials (12 per movement, 36 total) interspersed randomly. TMS was performed at 

90% of the resting motor threshold. In one half of trials (189 of 378), the TMS was 

triggered at a random delay of 0 – 550 ms after the participant touched the start target. 

This triggering method targeted times directly preceding or directly after movement onset. 

In the other half of trials, the TMS pulses were triggered when the participant left the start 

target after a random delay of 0 – 550 ms. These trials targeted TMS towards movement 

offset. The different triggering events ensured a distribution of TMS pulses prior to and 

during movement. The timing of each TMS pulse was recorded relative to both EMG and 

kinematics for post-hoc synchronization, binning, and analysis.  

Session 1 MEP analysis 

We quantified the probability of evoking MEPs in the biceps muscle by comparing the 

peak-to-peak amplitude of MEPs to the variation of EMG amplitude preceding stimulation. 

The maximum peak-to-peak amplitude was calculated using a 40ms window of time either 

directly following stimulation (MEP) or 5ms preceding stimulation (EMG) for single trials. 

We defined the presence of a MEP as a peak-to-peak amplitude of at least 5 standard 
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deviations above EMG amplitude. The probability was calculated by dividing the number 

of detected MEPs by the number of stimuli under the same conditions. MEP latencies 

were calculated using a procedure similar to that used to determine kinematic onsets. 

EMG recordings were low pass filtered at 100Hz and averaged across trials. A local 

maximum was found for the third derivative of this averaged signal. 

We assessed postural corticospinal excitability by quantifying MEPs in static postures. 

Rectified EMG was first integrated over a 40-ms period beginning 10ms after each TMS 

pulse. The selected window ensured that the integrated time period encompassed the 

entire MEP. MEP amplitude (𝑀𝑀𝐻𝐻𝑃𝑃𝑎𝑎𝑢𝑢𝑠𝑠) during isometric contraction has been shown to 

follow the Boltzmann equation (Darling, 2006; Devanne, 2002): 

  

𝑀𝑀𝐻𝐻𝑃𝑃𝑎𝑎𝑢𝑢𝑠𝑠 =  
𝑀𝑀𝐻𝐻𝑃𝑃𝑢𝑢𝑎𝑎𝑚𝑚

1 + 𝑒𝑒�
𝑆𝑆50−𝑆𝑆
𝑘𝑘 �

+ 𝐵𝐵 × 𝑃𝑃𝑟𝑟𝑒𝑒𝐻𝐻𝑀𝑀𝑃𝑃 + 𝐶𝐶1               (1) 

  

Where 𝑀𝑀𝐻𝐻𝑃𝑃𝑢𝑢𝑎𝑎𝑚𝑚 is the maximum MEP amplitude, S50 is the stimulation intensity to elicit an 

MEP at 50% of the maximum amplitude, S is the stimulation intensity, and 𝑃𝑃𝑟𝑟𝑒𝑒𝐻𝐻𝑀𝑀𝑃𝑃 is the 

amplitide of EMG measured directly preceding stimulation, and 𝐶𝐶1 is a constant. In this 

study, we performed all stimulations at a consistent intensity of 90% the RMT, which 

makes the first term a constant. Therefore equation (1) simplifies to the following:  

  

𝑀𝑀𝐻𝐻𝑃𝑃𝑎𝑎𝑢𝑢𝑠𝑠 =  𝐵𝐵 × 𝑃𝑃𝑟𝑟𝑒𝑒𝐻𝐻𝑀𝑀𝑃𝑃 + 𝐶𝐶2               (2) 

  

The 𝑃𝑃𝑟𝑟𝑒𝑒𝐻𝐻𝑀𝑀𝑃𝑃 term was calculated by integrating rectified EMG over a 40-ms period prior 

to TMS pulse. The slope 𝐵𝐵 was used to normalize the MEP amplitudes during movement 

as described below.  

To determine the consistency of MEP amplitudes, we calculated the coefficient of 

variation (CV) across repetitions recorded per subject/muscle/time bin.  



87 
 

Session 2 MEP analysis 

The MEP magnitudes during movement are also dependent on changes in the 

motoneuronal excitability that are reflected in the profile of EMG in each task. We used 

the linear MEP-EMG relationship observed in static postures to normalize MEPs 

observed during movement to EMG. To normalize MEPs during movement we calculated 

predicted MEPs using the slopes or ratios between static MEPs and background EMG 

obtained from Session 1 as follows: 

𝑀𝑀𝐻𝐻𝑃𝑃𝑃𝑃𝑢𝑢𝑑𝑑𝑑𝑑 = 𝐵𝐵 ∙ 𝐻𝐻𝑀𝑀𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑢𝑢𝑐𝑐𝑎𝑎     (3), 

where 𝑀𝑀𝐻𝐻𝑃𝑃𝑃𝑃𝑢𝑢𝑑𝑑𝑑𝑑 is expected or ‘predicted’ MEP amplitude at a given phase of movement; 

𝐻𝐻𝑀𝑀𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑢𝑢𝑐𝑐𝑎𝑎 is the background EMG averaged across control trials without TMS in the 

corresponding phase, muscle, and task. These predicted MEPs were then used to 

normalize the MEPs obtained during movement at the corresponding phase. TMS 

responses during movement were grouped into 5 bins, each corresponded to 20% 

increments of phase duration from onset to offset of movement (Fig. 4-2). The 𝐻𝐻𝑀𝑀𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑢𝑢𝑐𝑐𝑎𝑎 

was similarly binned. To accurately estimate MEP amplitudes preceding movement, TMS 

responses that occurred up to 20% phase duration prior to movement were grouped into 

a bin 0.  This binning procedure amalgamated MEPs occurring at similar times during 

movement, providing adequate repetitions to estimate mean values. We defined a 

minimum repetition criterion of 5 MEPs based upon (Lewis et al., 2014). Bins that 

contained < 5 MEPs were excluded from subsequent analyses. 

Two measures were used for estimating corticospinal excitability. The first measure was 

MEP magnitude, which was defined as the ratio between the median MEP in a given 

phase during movement and the median MEP in the starting posture for the 

corresponding task and muscle. Thus, MEP magnitudes equal to 1 indicated that the 

MEPs during movement were equal to those at the starting posture for that movement. 

The second measure, Gain, was defined by equation 3: 

𝑃𝑃𝑎𝑎𝐺𝐺𝑛𝑛 = 𝑀𝑀𝑀𝑀𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷
𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑

      (4), 
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where 𝑀𝑀𝐻𝐻𝑃𝑃𝐷𝐷𝑑𝑑𝑑𝑑 is the MEP magnitude during movement and the 𝑀𝑀𝐻𝐻𝑃𝑃𝑃𝑃𝑢𝑢𝑑𝑑𝑑𝑑 is calculated 

using eq. (3). The MEP gain equal to 1 means that the median MEP at a given phase is 

equal to the predicted MEP based on the linear relationship between EMG and MEPs 

described in eq. (2) with the same slope as that observed in static trials. MEP gain values 

< 1 indicate a decrease in corticospinal excitability relative to that observed in static trials. 

By controlling for the linear relationship between EMG and MEP, the gain metric reveals 

changes in the corticospinal tract that are independent of motoneuronal excitability. 

 

 

Figure 4-2: Quantifying TMS responses during movement 

A. EMG in individual trials aligned on TMS pulse (red line). Grey area shows the integration window used 
to quantify MEP amplitude from rectified signals (not shown). B. Magnitudes of background EMG, predicted 
MEPs, and recorded MEPs binned according to the phase of movement, where 0 denotes the kinematic 
onset of movement and 1 denotes the kinematic offset.  

____________ 



89 
 

Statistical Analyses 

The statistical analysis of corticospinal modulation relative to static condition was based 

on non-parametric bootstrap method because MEP amplitudes and gains were not 

normally distributed (Efron and Tibshirani, 1993). The MEP amplitude and gain values 

were bootstrapped independently for 100 iterations while preserving the structure of the 

data (Efron and Tibshirani, 1993). This means that single-trial MEPs and corresponding 

EMG values were sampled with replacement separately for each movement phase, each 

task, each muscle, and each participant. Each bootstrap was averaged first within each 

subject and then across subjects to maintain equal contribution of individuals to the 

overall distribution. Significance was determined using a percentile measure with alpha = 

0.0001 with correction for multiple comparison using a conservative Bonferroni method. 

Significant values are reported in Figures 6 and 7 as dots above bars.  

To test a hypothesis that the TMS gain profiles are linearly related to EMG and muscle 

torques, we performed two types of regression analyses. First, the amount of shared 

variance between binned EMG and TMS amplitude or TMS gain was calculated using the 

coefficient of determination (R2) across all movement phases and tasks per muscle per 

participant. The amount of shared variance between binned joint torques and TMS 

amplitude or TMS gain was calculated using the coefficient of determination (R2) across 

all movement phases per task, muscle, and participant. The degrees of freedom were 

matched to muscles as follows, shoulder flexion/extension torques were compared to 

Pec, Ad, PD, and TM, elbow flexion/extension torques were compared to TriLo, TriLa, 

BicS, BicL, BR, and wrist flexion/extension torques were compared to FCR, FCU, and 

ECR. Second, we created a generalized linear model to test whether MEP variance may 

be explained by a combination of EMG, kinematics, and torques. We used a stepwise 

regression to add or remove predictors based upon the Bayesian Information Criterion 

(BIC). All values in Results are means ± standard deviations (SD) unless otherwise 

specified. 
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Results 

Corticospinal Excitability During Posture Maintenance 

Maintaining limb posture against gravity requires active neural control to compensate for 

the complex anatomy of our bodies and the imprecise and noisy biological control signal 

(Harris and Wolpert, 1998). In the current study, we found evidence supporting the 

contribution of the corticospinal tract to this posture maintenance. At stimulation 

amplitudes below resting motor threshold, we observed MEPs in most muscles, even in 

those muscles that did not show changes in EMG associated with holding the arm against 

gravity. Specifically, the biceps long muscle participates in posture maintenance by 

holding the elbow and shoulder flexed in the tested postures (Fig, 4-3A). We found that 

the probability of evoking a MEP in this muscle was higher than expected from stimulation 

at the resting motor threshold in a majority of participants (Fig. 4-3B). Furthermore, the 

probability of evoking a MEP was higher than expected in all muscles, even those not 

directly involved in holding the arm against gravity (Pec: 0.81 ± 0.14; AD: 0.77 ± 0.23; PD: 

0.87 ± 0.18; TM: 0.88 ± 0.15; TriLo: 0.88 ± 0.17; TriLa: 0.92 ± 0.12; BicL: 0.93 ± 0.14; 

BicS: 0.90 ± 0.17; Br: 0.95 ± 0.17; FCR: 0.93 ± 0.18; FCU: 0.94 ± 0.16; and ECU: 0.95 ± 

0.17). 
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Figure 4-3: Postural corticospinal excitability in BicL 

A. EMG traces of the biceps muscle during static postures are displayed for all participants. The black line 
corresponds to the time of TMS pulse (stim). B. Each bar corresponds to the probability of an MEP occurring 
for each participant across all postures. The solid black line denotes the probability of MEP occurrence at 
RMT and the dashed line corresponds to the increase in probability that could be detected given the 
statistical power of our study design (β=0.9). C. Coefficient of variation for all muscles in each posture are 
shown in red. The values from published studies are shown in black. D. The linear relationship between 
integrated MEP magnitude and background EMG. An example of the “best” (left) and “worst” (right) linear 
fit as determined by R2. 

____________ 

MEPs observed during static postures displayed highly consistent characteristics with 

previous studies. MEP latencies (15 ± 1.9ms) were consistent with previously reported 

values for muscles of the upper arm indicating that the same motor cortical location was 

stimulated in each participant. The latencies broadly reflected the proximal to distal 

distribution of muscles (Pec: 15 ± 3.2; AD: 13 ± 2.4; PD: 13 ± 3.0; TM: 14 ± 2.1; TriLo: 13 

± 2.9; TriLat: 12 ± 1.1; BicL: 13 ± 1.1; BicS: 14 ± 3.2; Br: 16 ± 2.0; FCR: 17 ± 1.5; FCU: 

18 ± 2.2; ECR: 16 ± 2.3 ms). To determine the consistency of integrated MEP magnitudes, 
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we calculated the coefficient of variation for MEP repetitions recorded in the same 

condition (Fig. 3C). The median coefficient of variation across all muscles was 0.35 which 

is comparable to reported values recorded at rest.  

MEP magnitudes during static postures were linearly related to the background muscle 

activity at the time of stimulation as predicted by the Botlzmann equation (Eq. 2). The 

linear model accounted for 25% of the MEP variance on average across muscles (R2 = 

0.25 ± 0.13) with a small mean squared error (MSE = 2.2e-5 ± 4e-5). The regression slopes 

were consistent across multiple muscles and subjects, the values of the slope B from eq. 

(2) across subjects were Pec: 1.00 – 1.35 – 1.53 (lower – median – upper quartile ranges), 

AD: 0.93 - 1.76 - 3.13; PD: 1.15 - 1.97 - 3.64; TM: 1.13 - 1.66 - 2.09; TriLo: 1.36 - 2.31 - 

4.22; TriLa: 1.47 - 3.09 - 5.46; BicLo: 1.56 - 4.41 - 6.83; BicS: 1.64 - 3.75 - 5.90; Br: 3.94 

- 5.89 - 10.10; FCR: 1.73 - 4.85 - 7.44; FCU: 3.43 - 4.49 - 9.46; ECR: 2.84 - 5.05 - 5.58. 

We used the regressions from the linear model to control for the expected modulation 

with EMG in the analysis of MEPs during movement. 

The Role of Limb Dynamics During Reaching  

The locations of virtual targets used in this study were selected using a biomechanical 

model of the arm so that movement was accompanied by gravitational and other inertial 

forces in specific directions. These forces created unique challenges for the control of 

limb dynamics by the CNS and defined our Control, Assistive, and Resistive tasks (see 

Methods: Movement Tasks). The virtual targets were very effective in evoking the desired 

behavior and standardizing the movement kinematics and dynamics across all 

participants (Fig. 4-4). The shoulder motion was mostly passive in the Assistive task, 

which was associated with reducing gravitational active torque (Fig. 4-4C Shoulder blue) 

and the lowest dynamic muscle torque (Fig. 4-4D Shoulder blue). In contrast, the shoulder 

motion was produced actively in the Resistive task, which required increasing 

gravitational muscle torque (Fig. 4-4C Shoulder red) and large dynamic muscle torque 

(Fig. 4-4D Shoulder red). The same tasks created different dynamic conditions at the 

elbow and wrist. The Assistive and Resistive tasks were similar and associated with 

decreasing gravitational muscle torque (Fig. 4-4C, Elbow & Wrist, blue and red). The 

Resistive task was associated with the largest acceleration dynamic muscle torque at the 
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elbow (Fig. 4-4D Elbow red), while the Assistive task was associated with the largest 

deceleration dynamic muscle torque at both the elbow and wrist (Fig. 4-4D, Elbow & Wrist, 

blue). The Control task was mainly associated with constant muscle torque against gravity 

(Fig. 4-4C, elbow & Wrist, black). 

 

 

Lines are mean trajectories; error bars are standard deviations across all participants. A. Joint angles 
calculated from motion-capture B. Muscle torques obtained from inverse simulations with the dynamic arm 
model. C. The gravity-related component of muscle torque obtained from comparing simulations with and 
without gravity. D. The dynamic component of muscle torque obtained from simulations without gravity. 

____________ 

 

Figure 4-4: Movement kinematics and dynamics 
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Figure 4-5: BicL & TriLo corticospinal excitability during movement 

MEP/EMG magnitudes binned relative to movement where bin 1 denotes MEPs preceding the 
kinematic onset of movement and bins 2-6 denote MEPs occurring during movement. Each bin 
size equals 20% of the total movement time. Black circles denote median magnitudes across 
participants and boxes denote interquartile range. A. Percent-change in MEP size relative to those 
recorded in each movement’s starting posture. B. Muscle activity as recorded by EMG and the 
binned magnitudes corresponding to the binning procedure used for TMS responses. C. MEP 
gain defined as the ratio of MEP magnitudes to predicted MEP magnitudes based on background 
EMG. 

____________ 
Corticospinal Excitability During Movement 

Motor evoked potentials recorded during movement displayed similar characteristics to 

static MEPs. MEPs were observed during movement with high frequency despite 

subthreshold stimulation and similarly had an average latency of 14.2 ± 2.5ms. 

Conversely, MEPs during movement were more variable than those recorded in static 

postures. The median coefficient of variation was 0.50 during movement compared to 

0.35 observed during static postures. 

MEP magnitudes were temporally modulated during movement in a task dependent 

manner (Fig. 4-5A). The percent-change was calculated by dividing the magnitudes of 

MEPs recorded during movement with the MEP magnitude that was observed at the 

same initial posture in Session 1. Across all three movements, MEP magnitudes were 

greater than what was observed in static posture. In the Resistive task, MEPs were 

increased in the beginning of movement (bin 2). In the Assistive task, MEPs were 
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increased during the middle of movement. The temporal profiles of MEPs reflected those 

of EMG suggesting that MEPs during movement may similarly follow the Boltzmann 

equation as observed in static postures (Fig. 4-5B). Therefore, we calculated MEP gain, 

as described in the Methods, to remove the contribution of EMG to MEP magnitude (Fig. 

4-5C). We found that MEP gain values, which normalize the MEP to background EMG, 

were much closer to 1. This suggests that MEP magnitude during movement may be 

explained largely by background EMG. We performed a linear regression between MEP 

magnitudes and EMG and found that median variance explained (R2) for BicL was 0.38 

± 0.27, 0.26 ± 0.28, and 0.55 ± 0.30 for the Control, Resistive, and Assistive tasks 

respectively. . The R2 in the Assistive task, which also displayed the most co-activation of 

muscles, was greater than the Resistive task (paired t-test; p-value: 0.0087) (Fig. 4-6).  

Similarly, the antagonist TriLo muscle showed task-dependent modulation of MEP 

magnitudes. However, this modulation was distinct from that observed in the BicL. For 

example, the percent-change in MEPs was largest in the Resistive task, in contrast to the 

BicL which showed the largest increase in the Assistive task, while the Control task 

showed no change. This difference was expected since background EMG for these two 

muscles also differs within tasks. Interestingly, MEP gain was greater than 1 in the 

beginning of both the Control and Assistive tasks, suggesting that some modulation of 

MEP magnitudes may be occurring independently of background EMG.  
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Figure 4-6: BicL MEP variance explained by EMG 

A linear regression was performed between integrated MEP and EMG magnitudes. The 
distribution of R2 values across participants is shown for the Control (black), Resistive (red), and 
Assistive (blue) movements. 

____________ 
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Figure 4-7: Multi-muscle MEP magnitude and gain 
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MEP magnitude and gain across all recorded muscles for the control (black), resistive (red), and 
assistive (blue) movements. Median values across subjects are denoted with dots, while the bars 
denote interquartile range. MEP magnitudes which are statistically different from the initial static 
posture and MEP gains which differ from a value of 1 are denoted with dots.  

____________ 
Multi-muscle Corticospinal Excitability 

 Although our stimulation location targeted the biceps muscle, we observed MEPs 

in all recorded muscles. MEPs recorded in these muscles were also temporally modulated 

in a task-dependent manner similar to what was observed in the biceps and triceps (Fig. 

4-7). Once again, these magnitudes largely reflected the activity of each muscle. For 

example, shoulder flexors (Pec & AD) displayed increased MEP magnitude during the 

Resistive task which required flexion of the shoulder against gravity. Conversely, in both 

the Control and Assistive tasks which required shoulder extension, MEP magnitudes were 

decreased compared to the static start posture. Unsurprisingly changes in MEP 

magnitudes were prominent across all muscles. MEP gain also demonstrated modulation 

that was independent of muscle activity (i.e. gains not equal to 1), although this 

modulation occurred less frequently than those observed in MEP magnitudes.  

The Role of Limb Dynamics in Corticospinal Excitability 

Previously, it was shown that MEP gain correlated with resistive interaction torques 

(Gritsenko et al., 2011c). Our results show that while MEP magnitude is largely explained 

by background EMG, MEP gain are also modulated independently from background 

EMG. We used a generalized linear model to test whether changes in corticospinal 

excitability reflected not only EMG but also limb kinematics and/or dynamics. We used 

EMG, joint angles, muscle torques, and their components as predictors of either MEP 

magnitude or MEP gain across all subjects and muscles. The stepwise regression found 

EMG (slope: 0.32; SE: 0.01; t-stat: 23.5; p<0.001) and dynamic torques (slope: -0.17; SE: 

0.03; t-stat: -6.8; p<0.001)  to be significant predictors of MEP magnitude along with the 

interaction of kinematics/gravity torque (slope: -0.15; SE: 0.03; t-stat: -4.7; p<0.001) and 

muscle torque/dynamic torque (slope: 0.13; SE: 0.04; t-stat: 3.6; p<0.001). The adjusted 

R2 was 0.23. As can be seen from the slope estimates, EMG was unsurprisingly the 

strongest predictor of MEP magnitude. Conversely, when the same procedure was used 
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to predict MEP gain instead of magnitude, EMG alone was found to be a significant 

predictor of MEP gain (slope: -0.17; SE: 0.03; t-stat: -5.0; p<0.001) along with the 

interaction between EMG/gravity torque (slope: 0.19; SE: 0.06; t-stat: 3.3; p=0.0011), 

suggesting that at higher levels of EMG, MEP magnitude is also correlated with gravity 

torques. 

Discussion 

Here we have taken advantage of Newtonian physics to design unconstrained reaching 

tasks in VR and precisely manipulate the passive forces acting on the human arm. During 

these tasks, we probed the gain of the corticospinal contribution to the compensation for 

these forces. We observed active corticospinal control of all recorded muscles, as 

evidenced by the presence of MEPs in all muscles during stimulation below resting motor 

threshold. We further found that during movement the corticospinal excitability was 

modulated largely proportionally to motoneuronal excitability with on average the same 

coefficient of proportionality as that during posture maintenance (Fig. 4-5). MEP variance 

explained by EMG did not differ between tasks (Fig. 4-6). The gain of corticospinal 

excitability during movement did not strongly correlate with limb dynamics. MEP gain was 

modulated in different tasks independent of muscle activity and correlated both inversely 

to EMG and directly with the EMG:gravity torque interaction. Altogether we interpret these 

results as evidence that corticospinal pathways are being actively modulated to 

compensate for distinct limb dynamics. 

Here we used a novel TMS paradigm to investigate the temporal modulation of 

corticospinal excitability inspired by previous work with TMS during planar movements 

with unchanging gravity (Gritsenko et al., 2011c). We applied TMS over the primary motor 

cortex at 90% of resting motor threshold with a 45o posterior-anterior coil orientation to 

preferentially activate pyramidal tract neurons (Kaneko et al., 1996; Nakamura et al., 

1996; Di Lazzaro et al., 1998) and generate responses proportional to cortical activity 

(Baker et al., 1995; Carson et al., 1999; MacKinnon and Rothwell, 2000a; Di Lazzaro et 

al., 2003; Cros et al., 2007). The corticospinal tract and other descending tracts converge 

on the motoneurons, the final common pathway. Therefore, TMS responses are also 

modulated by the excitability of those motoneurons (MacKinnon and Rothwell, 2000a; 
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Darling et al., 2006; Taylor, 2006; Groppa et al., 2012). Here we too observed that the 

TMS responses were linearly modulated by the motoneuronal excitability estimated from 

EMG during static postures (Table 3). This linear relationship is consistent with previous 

work by Darling et al. (Darling et al., 2006). Alternatively, Tazoe et al. (Tazoe et al., 2007) 

found that increases in MEP amplitude become saturated at higher intensities of muscle 

activity (> 60% MVC). However, in our study participants were asked to complete gross 

reaching tasks with no additional load than the weight of the arm, which made it unlikely 

that any movement exceeded this linear range.  Moreover, this simple linear relationship 

between MEP and EMG captured a lot of variance in TMS responses during movement 

(see Results and changes between MEP amplitude and gain in Fig. 4-6 and 4-7). The 

MEPs proportional to EMG with a constant coefficient can be interpreted as evidence for 

a tonic excitatory drive from corticospinal projections that rely on other sub-cortical and/or 

spinal pathways to shape motoneuronal excitability, not unlike a tonic speed command to 

drive spinal Central Pattern Generator, which produces phasic motoneuronal excitability 

patterns during locomotion (Yakovenko et al., 2018). 

The putative tonic excitatory drive, however, explained only partially the modulation of 

corticospinal excitability during movement. Changes in corticospinal excitability during 

movement were largely explained by background EMG which was consistent with 

observations during isometric contractions (Darling et al., 2006). However, MEP gain, 

which controlled for motoneuronal excitability, was also modulated in a task dependent 

manner in some muscles. Characteristics of MEPs correspond to neurophysiological 

properties of the corticospinal pathways being stimulated (Di Lazzaro et al., 2004). For 

example, subthreshold stimulation using TMS has been shown to be an effective 

technique for probing changes in corticospinal excitability (Pascual-Leone et al., 1994; 

Chen et al., 1998; MacKinnon and Rothwell, 2000b; MacKinnon et al., 2004). The role of 

the primary motor cortex in the formation of the motor commands is still poorly 

understood, but single-cell recordings of pyramidal neurons have been correlated with 

kinematic and dynamic variables of movement including direction (Georgopoulos et al., 

1986; Georgopoulos and Carpenter, 2015), force (Evarts, 1968), and velocity (Moran and 

Schwartz, 1999). TMS has previously been used to probe the modality of corticospinal 

pathways during movement and found that MEP gain correlated with resistive interaction 
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torques (Gritsenko et al., 2011c). While our generalized linear model found a significant 

relationship with gravity component of active torques and MEP gain that was conditional 

on EMG. Furthermore, MEP magnitude was correlated with the dynamic torques although 

to a lesser extent than EMG. It is noteworthy that the movements performed in this study 

were unconstrained with changing gravity load on the joints, while the previous findings 

used an exoskeleton to constrain the reaching tasks on a plane with unchanging gravity 

load. The additional weight of the exoskeleton may exaggerate passive interaction 

torques causing an increased effect which was not observed in unconstrained 

movements. Conversely, the presence of changing gravity moments about the joints can 

explain the novel result observed here. Overall, we observed that MEP gain correlated 

weakly with kinematic and dynamic variables, which suggests that these variables are not 

the directly controlled parameters within the central nervous system. In contrast, the clear 

differences in MEP gains observed between tasks in individual muscles suggest that the 

corticospinal excitability is modulated during movement with different passive limb 

dynamics based on the functional roles of individual muscles. This modulation could be 

the product of broader cell population dynamics that represent neuromechanical variables 

in a different state space (Pandarinath et al., 2018).  

Chapter 5 – Discussion and Future Directions 
This dissertation explores the important role of neuromechanics in the arm motor control 

strategy. We applied a “bottom-up” approach which described and characterized the 

complex mechanics of the arm using biomechanical models and inferred neural control 

based upon electrophysiological recordings in humans. Specifically, we created 1) a 

musculoskeletal model of the upper limb which described muscle path geometry across 

a wide range of motion and 2) a mechanical model of the limb capable of approximating 

inverse dynamics of the shoulder, elbow, and wrist. In Chapter 2, we analyzed the 

mechanical co-dependencies of muscle lengths which constrain the neural control 

problem. In Chapter 3, we implemented this musculoskeletal model with a mathematical 

description of muscle spindle primary afferent firing frequency to quantify the activity of 

this afferent pathway during voluntary reaching tasks. The movements for these tasks 

were selected based upon their mechanical properties approximated from our inverse 

dynamics model. Finally, in Chapter 4, we probed the corticospinal pathways using 
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transcranial magnetic stimulation to investigate changes in the excitability of these 

pathways in the same dynamically distinct reaching tasks. This discussion will 

recapitulate the major findings of each chapter in the broader context of the motor control 

strategy and discuss future directions for this work. 

Musculoskeletal Model 

In Chapter 2, we analyzed the complex relationships of muscle lengths across a wide 

range of motion. We found that the high dimensionality of the musculoskeletal system 

contains a degree of mechanical coupling that could effectively constrain this system. The 

“motor redundancy” problem, formalized by Nikolai Berstein, observes that the mechanics 

of the musculoskeletal system has inherent redundancy, making it an underdefined 

control system (Bernstein, 1967).This feature raises questions as to how the nervous 

system can select and control this system in the presence of such redundancy. Our 

results provide a possible mechanism for reducing this dimensionality via mechanical 

constraints. An alternative, although possibly complementary, theory of dimensionality 

reduction is that of motor primitives or muscle synergy (Torres-Oviedo et al., 2006; 

Chvatal and Ting, 2013; Ting et al., 2015a). Muscle synergies describe the co-activation 

of muscles through some common neural input, which could also serve to reduce the 

dimensionality of the motor control problem (Bizzi et al., 1991; Giszter et al., 1993; Tresch 

et al., 1999; d’Avella et al., 2003b; Takei et al., 2017). Our results are consistent with 

previous locomotion studies that suggest that this dimensionality reduction can, at least 

in part, be achieved by the mechanical constraints inherent in the musculoskeletal system 

(Taga et al., 1991b; Full and Koditschek, 1999; Prochazka and Yakovenko, 2007b).  

These results have important implications when considering the theory of muscle 

synergies as a control strategy. Traditionally, muscle synergies are extracted from EMG 

via signal decomposition techniques such as principal component analysis (PCA) or non-

negative matrix factorization (NNMF)(Torres-Oviedo et al., 2006; Chvatal and Ting, 2013; 

Ting et al., 2015b; Olesh et al., 2017c). These techniques compute orthogonal vectors 

which represent shared variance across the data matrix, in this case, EMG across 

multiple muscles. However, it may be difficult to determine if this lower dimensional space 

is due to kinematic/task constraints or common neural input (De Groote et al., 2014; 
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Tagliabue et al., 2015). The presence of a common neural input is typically inferred 1) 

due to correlation between muscle synergies and decomposed neural recordings (Takei 

et al., 2017) or 2) due to complex movements being elicited from microstimulation of motor 

cortices (Graziano et al., 2002; Graziano and Aflalo, 2007). If we assume that muscle 

synergy does arise from a common neural input into multiple pools of spinal motoneurons, 

then it would follow that multiple muscles would receive similar activation profiles 

simultaneously. This common input could be advantageous when multiple muscles 

require similar recruitment. For example, when performing a whole-hand grasp, one could 

imagine a similar activation of finger flexors across all digits. However, if this common 

input is to generate a similar mechanical output, then there must be a similarity between 

the underlying musculoskeletal parameters, such as muscle lengths and moment arms. 

Our results demonstrate that finger flexors are mechanically coupled and change the 

same way across   postures. As the finger digits are flexed, the muscle length shortens 

generating less force due to the force-length relationship. However, because muscle 

lengths are changing synchronously, a common input could still be appropriate to 

generate a similar force across all finger flexor muscles. Similarly, finger moment arms 

increase across all digits which once again could enable a common input to control. While 

our results cannot be said to explicitly provide evidence of this common input, the 

observed coupling does demonstrate that the musculoskeletal system is mechanically 

compatible with this low-dimensional input. Furthermore, our results suggest that 

musculoskeletal constraints must be considered when interpreting muscle activation 

patterns and their neural origin (De Groote et al., 2014). 

Validation of muscle moment arms in this model is ongoing, but future work could examine 

whether the structural relationships in muscle lengths is conserved within muscle moment 

arms. The shoulder, in particular, presents an interesting study in complexity due to its 

high number of DOFs (3 rotation and 3 translational). The moment arm measurements of 

shoulder muscles in the literature suggest that a large number of muscles have both 

positive and negative moment arm values, i.e. the muscle’s direction of action and 

functional role is posture-dependent. Once all moment arms of the shoulder have been 

validated, an analysis of the number of physiologically accurate zero crossings could 

provide insight into this complex joint. 
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Muscle Spindle Feedback 

In Chapter 3, we explored the contribution of the muscle spindle primary afferent pathway 

to muscle activity. Muscle spindles have long been associated with maintaining 

mechanical homeostasis but are also active during voluntary movement (Prochazka and 

Gorassini, 1998; Prochazka, 1999; Mileusnic et al., 2006). We simulated muscle spindle 

primary afferent activity using our musculoskeletal model to approximate muscle length 

profiles during reaching tasks. We found afferent firing frequency to be orthogonal to 

muscle activity and to be more closely related to the kinematics of each movement rather 

than the dynamics. We then modified the primary afferent model to simulate different 

fusimotor modulation, specifically modelling different ‘fusimotor sets’ (Prochazka et al., 

1985; Prochazka, 1986) and α-γ coupling (Granit, 1970; Hagbarth, 1993), but found that 

neither increased the congruency with EMG. 

These results suggest two possibilities. The first possibility is that muscle spindles do not 

greatly contribute to motoneuron recruitment during voluntary movement. Although 

muscle spindle primary afferents will inevitably discharge during the lengthening of 

muscles during movement, muscle activity is instead driven by other neural circuitry 

(Yakovenko et al., 2004) that overrides and/or suppresses the incongruent afferent 

contribution to motoneuronal excitability. This interpretation would conflict with the 

spindle-centric equilibrium-point hypothesis which states that both movement and posture 

result from the balance of antagonist muscle spindle feedback. Additionally, the 

observation that Ia feedback is more consistent across movements than EMG suggests 

that muscle activity may instead be driven by more feedforward mechanisms than the 

muscle spindle feedback. The second possibility is that muscle spindles do contribute to 

motoneuron recruitment but require more complex fusimotor modulation than we modeled 

in our study. This limitation is important to note as our computational study cannot   

exclude this second possibility, nor can it  “disprove” the equilibrium-point hypothesis. 

However, our findings do constrain the possible framework in which muscle spindles 

could drive muscle activity. Future work could inversely solve for this required theoretical 

fusimotor input by maximizing the EMG congruency to examine its features. Additionally, 

other spinal reflexes could be modeled and their activity integrated with muscle spindles, 
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such as Golgi Tendon Organs, to examine whether muscle activity may instead result 

from some combination of these spinal circuits. 

Descending Corticospinal Contribution 

In Chapter 4, we probed the excitability of corticospinal pathways during dynamically 

distinct reaching tasks. We found evidence that the excitability of corticospinal pathways 

was increased during static postures suggesting that the primary motor cortex is involved 

in posture maintenance. During movement, we found that MEP gain was modulated in a 

task-dependent manner across multiple muscles. The differential modulation of MEPs 

during dynamically distinct tasks, independent from motoneuron activity, suggests that 

these dynamics are being actively compensated for by these descending pathways. 

However, this modulation correlated weakly with the kinematic and dynamic variables 

associated with these tasks. One possible explanation for this result may be that the 

descending corticospinal projections may represent limb dynamics in another state space 

which integrates these dynamics with other mechanical variables of movement to form a 

motor command(Pandarinath et al., 2018).  This command is then integrated with primary 

afferent projections and spinal interneurons to form muscle activity patterns that can 

compensate for the complex mechanical interactions of musculoskeletal system. 

Future work could explore whether the modulation of corticospinal excitability is impaired 

after neural injury, such as a cortical infarct. Stroke survivors have been shown to have 

an impaired ability to compensate for limb dynamics (Beer et al., 2000) and atypical 

muscle activation patterns (Ramos-Murguialday et al., 2015). If this modulation is, in fact, 

due to the compensation of limb dynamics, we would expect that individuals who have an 

impaired ability to compensate for these dynamics to have atypical modulation of MEPs. 

Conclusions 

In conclusion, my dissertation explored the representation and integration of limb 

dynamics/mechanics into the arm motor control strategy on the musculoskeletal, spinal, 

and cortical levels of the control hierarchy. The musculoskeletal system was found to 

contain inherent mechanical coupling constraints which may decrease the dimensionality 



106 
 

of the control system. Muscle spindle activity was found to be largely orthogonal to muscle 

activity patterns and may instead serve primarily to supply information of the limb state 

via long-latency reflex pathways. Finally, the corticospinal tract was directly driving 

muscle contraction patterns in dynamically distinct reaching tasks, particularly when 

muscles were recruited to support the weight of the arm. Collectively, this hierarchical 

system provides a control structure which enables motor control despite the high 

complexity of the system and the variability of the external environment on which it acts. 

Future work will more comprehensively characterize these complex relationships with 

more physiologically accurate models and experimental data. Furthermore, it will lead to 

a better understanding of the necessary sensorimotor transformations that must occur at 

each level of this control hierarchy. 
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