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Abstract  

This thesis focuses on the functional study of the Central Nervous System 

(CNS) with non-invasive techniques. The work focuses on two different aspects: 

nonlinear aspects of the cerebrovascular system, and the muscle synergies model to 

describe motor control strategies. The main objective of this thesis is to propose novel 

protocols, post-processing procedures or indices to enhance the analysis of 

cerebrovascular system and human motion analysis with noninvasive devices or 

wearable sensors in clinics and rehabilitation.  

One the one hand, we investigated cerebrovascular system with nonlinear 

methods. Some physiological systems are characterized by nonlinearity: for 

instance, neurovascular coupling showed nonlinearity between excitatory and 

inhibitory neuronal processes, due to the many feedback circuits of circulatory 

system. Near-infrared Spectroscopy (NIRS) was adopted as a method of measuring 

blood oxygenation at the level of microcirculation, whose modification reflects 

cerebrovascular response to neuronal activation. NIRS signal is nonlinear and 

nonstationary. Indeed, it describes nonlinear phenomena and it is characterized by 

time-varying chromophore concentration. We adopted Empirical Mode 

Decomposition (EMD) to decompose signal into a finite number of simple 

functions, called Intrinsic Mode Functions (IMF). For each IMF, we computed 

entropy-based features to characterize signal complexity and variability. Nonlinear 

features of the cerebrovascular response were employed to characterize two 

different kind of treatments: psychotherapy and ozonetherapy. As for the 

psychotherapy, we administered eye movement desensitization and reprocessing 

(EMDR) and we compared two groups of patients suffering by post-traumatic stress 

disorder: the first group performed therapy with eye movements, the second 

without. NIRS analysis with EMD and entropy based features revealed a different 

cerebrovascular pattern between the two groups, that may indicate the efficacy of 

the psychotherapy administered with eye movements. Secondly, we administered 

ozone autohemotherapy to two groups of subjects: healthy subjects and a group of 

patients suffering by multiple sclerosis (MS). We monitored the microcirculation 

with NIRS from oxygen-ozone injection up 1.5 hours after therapy, and 24 hours 

after therapy. We observed that, after 1.5 hours after the ozonetherapy, oxygenation 

levels improved in both groups, that may indicate that ozonetherapy reduced 

oxidative stress level in MS patients. Furthermore, we observed that, after 



 

 

ozonetherapy, autoregulation improved in both groups, and that the beneficial 

effects of ozonetherapy persisted up to 24 hours after the treatment in MS patients.  

On the other hand, we investigated how CNS controls musculoskeletal system. 

Due to the complexity of musculoskeletal system, CNS adopts strategies to control 

efficient execution of motor tasks. A model of motor control are muscle synergies, 

defined as functional groups of muscles recruited by a unique central command. 

Human locomotion was the object of investigation, due to its importance for daily 

life and the cyclicity of the movement. Firstly, by exploiting features provided from 

statistical gait analysis, we investigated consistency of muscle synergies in human 

locomotion. We demonstrated that synergies are highly repeatable within-subjects. 

Our results reinforce the hypothesis of modular control in human motor 

performance. Secondly, in locomotion, we distinguish principal from secondary 

activations of electromyography. Principal activations are necessary for the 

generation of the movement. Secondary activations generate supplement and non-

necessary movements, for instance slight balance correction. We investigated the 

difference in the motor control strategies underlying muscle synergies of principal 

(PS) and secondary (SS) activations. We found that PS and SS are different in terms 

of muscle weights vector, activation signal, and consistency. PS are constituted by 

a few modules with many muscles each; SS are described by many modules, 

between eight and ten for each subject, with one or two muscles each. Furthermore, 

amplitude of activation signals of PS is higher than SS. Finally, both weight vectors 

and activation signals of PS are more consistent and flexible than SS. Our results 

demonstrated that muscle synergies, which reflect motor control, vary according to 

the task. Finally, muscle synergies were adopted to investigate the efficacy of 

rehabilitation of stiffed-leg walking in lower back pain (LBP). A pilot study was 

conducted in San Camillo Hospital, Torino. We recruited a group of patients 

suffering from non-specific LBP stiffening the leg at initial contact. Muscle 

synergies during gait were extracted before and after rehabilitation. Our results 

showed that muscles recruitment and consistency of synergies improved after the 

treatment, showing that the rehabilitation may affect motor control strategies. 
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the CW transform. The time course of the SE was averaged to compute a single 

value for each signal. ............................................................................................. 63 

Figure 5-2. Boxplot showing the time evolution of the average concentration of 

O2Hb (A) and HHb (B) in the seven analysis windows. All the values are 

normalized and scaled w.r.t. the first window. Controls are depicted in white, MS 

patients in gray. +: outlier values. .......................................................................... 67 

Figure 5-3. Changes in the power associated to the LF band compared to the 

overall signal power. Controls are depicted in gray, MS patients in white. The 

vertical bars superimposed to the histogram represent the standard error. (A) Power 

in the LF band for the O2Hb. (B) Power in the LF band for the HHb. +: outlier 

values. .................................................................................................................... 69 

Figure 5-4. Results of the empirical mode decomposition applied to the HHb 

signal acquired in baseline conditions (A) and at the end of the monitoring (B) from 

a MS subject. The upper panels report the HHb time course; then the three IMFs 

are depicted. It can be observed that in panel (B) the IMFs are characterized by 

random bursts and changes, which make the signals less predictable. .................. 72 

Figure 5-5. Representation of the MANOVA analysis for the subjects in three 

windows during therapy: (A) baseline (window 1); (B) end of the blood reinfusion 

(window 4); (C) end of monitoring (window 7). Controls are represented by white 

squares, MS patients by black circles. In (A) the subjects belong to two different 

groups (p = 1.910-4), whereas in (B) and (C) the hypothesis that the subjects belong 

to the same group cannot be rejected (p > 0.5). ..................................................... 73 

Figure 5-6. BHI values for O2Hb (top) and HHb (bottom) for Control and SM-

RR groups. BHI has been computed at three different time points: at the beginning 

of therapy (BHI0), 1.5 hours after reinjection (BHI1.5-hours), and 24 hours after 

therapy (BHI24-hours). .............................................................................................. 75 

Figure 6-1. Fields of static forces associated with electrical stimulation of a 

spinal cord site in a deafferented frog. Forces were measured for different 

hindlimb’s positions at the ankle level in two conditions: at resting state and after 

electrical stimulation of the spinal cord. (a) spatial locations of force recording; (b) 

force vector fields. Each arrow represents the vectoral summation between force 

vectors at resting state and after electrical stimulation condition respectively. It can 

be observed that vectors point towards an equilibrium-point (black filled dot) (from 

Bizzi et al., 2002). .................................................................................................. 86 
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Figure 6-2. Linear superposition of electric fields of stimulation in frog’s spinal 

cord for two couples of muscles. (Left) stimulus of sartorius (SA) and 

gastrocnemius (GA)(upper); co-stimulation of SA and GA (&) and vector sum (+). 

(Right) Stimulation of Vastus intermedius (VI) and GA (upper); co-stimulation of 

VI and GA (&) and vector sum (+). It can be observed that co-stimulation electric 

fields are the linear combination of the stimulation of the single muscles. (Copyright 

1994 National Academy of Sciences). ................................................................... 87 

Figure 6-3. A schematic representation of motor patterns generation. 

Telencephalon and brain stem neural circuitry generate activation signals, and are 

continuously modulated by sensory and proprioceptive feedbacks. Supraspinal 

signals are sent to neuronal circuitry in the spinal cord to generate movement. CPGs 

generate rhythmic signals modulating motoneurons signaling on effector muscles. 

Interneurons are cyclically influenced by the CPG but are not part of the rhythm 

generation process itself of the CPG. Spinal circuitry is modulated by feedback 

information coming from proprioceptive and cutaneous reflex systems. F= flexor, 

E=extensor. (from Rossignol et al., 2006) ............................................................. 89 

Figure 6-4. Scheme of muscle synergies formation for human locomotion. 

Supraspinal descending commands recruit motor modules, located at spinal level. 

From the combination of the motor modules with descending commands, the 

muscle synergies are generated. In this example, four motor modules are recruited 

to form four muscle synergies to describe motor subtasks of gait cycle. Individual 

muscle activations, recorded by EMG, are given by the linear combination of the 

four muscle synergies. In this manner, biomechanics behavior is fully described by 

nervous systems elements (from Ting et al., 2015). .............................................. 91 

Figure 7-1. Scheme of a BSS system. Observations [y1(t), y2(t),…, yI(t)] are the 

output of a mixing system where the source signals [x1(t), x2(t),…, xJ(t)]  are 

unknown. ................................................................................................................ 94 

Figure 7-2. A schematic representation of NMF decomposition. A source 

matrix V, of dimensions m×t, is decomposed as a combination of non-negative 

matrices W, of dimension m×n, and H, of dimension n×t. .................................... 95 

Figure 7-3. Example of muscle synergies extraction. Reported data are taken 

from 3 gait cycles of a representative healthy subject. (A) Original EMG for 12 

muscles of the lower limb and the trunk after preprocessing (filtering, rectification, 

envelop). (B) Muscle synergies obtained with NMF. Muscle synergies are a linear 

combination of non-negative vectors of muscle weightings and activation signals. 

The number of synergies can vary from 1 to the number of muscles. In this case, 
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muscle synergies are computer for 3,4, and 5 set of synergies. (C) For each synergy, 

the Variance Accounted For (VAF) measures the correlation between original EMG 

and data obtained from synergies (reconstructed EMG). In this case, 5 synergies 

reconstruct original EMG with a VAF>90%. (D) Superposition of original EMG 

(Black line) and reconstructed EMG with 3, 4, and 5 synergies. .......................... 99 

Figure 8-1. EMG probes positioning in lower limb and trunk. ..................... 104 

Figure 8-2. Schematic representation of the walking path. Subjects walked from 

point A to point B at their natural pace, then turned back and proceeded in the 

opposite direction. ................................................................................................ 105 

Figure 8-3. Scheme of HFPS foot switches signals sequence. (A): the timing of 

foot switches is reported for the gait phases. A black dotted circle indicates the 

switch is closed. (B): the four-levels signal obtained by the configurations of foot-

switches. In the stance phase can be recorded three sub-phases, that are Heel-

contact, Flat foot contact, and Push off. .............................................................. 106 

Figure 8-4. Scheme of the entire experimental processing, from data acquisition 

to muscle synergies parameters extraction. ......................................................... 110 

Figure 8-5. Onset/Offset EMG activation intervals of the tibialis anterior of a 

representative subject relative to 163 GCs of her walking trial. In each row, the 

black bars represent the EMG activation intervals within stride. ........................ 112 

Figure 8-6. Number of synergies satisfying the VAF > 90% criterion of each 

subgroup of GCs for a representative subject. ..................................................... 113 

Figure 8-7. Analysis of the consistency of muscle synergies in a representative 

subject. (A) Muscle synergy weights: each bar represents weights of a subgroup of 

10 concatenated GCs. The black line represents the average across bars. (B) Muscle 

synergy activation signals: each line represents activation signal of a subgroup of 

10 concatenated GCs. (C) Cosine Similarity for the weights of each synergy. (D) 

Cross-Correlation coefficient for the activation signals of each synergy. Data are 

reported as mean ± standard error of the mean. ................................................... 114 

Figure 8-8. Weights (left) and coefficients (right) of the common muscle 

synergies across subjects. Muscle labels are reported below the weight plots. Data 

are reported as mean ± standard deviation. .......................................................... 116 

Figure 9-1. Results of CIMAP clustering algorithm for tibialis anterior muscle 

of a representative subject. Each grey bar represents the activation interval in 

percent of GC. Activation intervals are clustered according to number and duration 

of onset/offset intervals. Principal activations (green bar) are those common to all 
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Chapter 1 

Introduction 

 

1.1 Aims of the work 

In last decades, non-invasive investigation of the central nervous system (CNS) has 

been increasingly gained interest. It involves an interdisciplinary research 

integrating methods from neuroscience and engineering to analyze neurological 

functions and to design solutions to problems associated with neurological 

limitations and dysfunctions. Despite this research area is relatively new, the field 

is developing rapidly, and it requires continuous updates. Actually, relevant neural 

processes cannot be directly recorded, and even if one had an opportunity to get 

information about activity of all neurons within the human body, it is not at all 

obvious what to do with these hypothetical recordings. The logic of the functioning 

of the CNS cannot be deduced from knowledge about functioning of all its 

elements. This makes CNS something like “physics of unobservable”, because 

relevant variables are not directly accessible for measurement (M. Latash and 

Zatsiorsky 2015). Particularly, there are two main areas are of interest: 

cerebrovascular system and motor control. The first consists of investigating 

cerebral activity by stimuli by means of the neurovascular coupling. The latter 

refers to the processes adopted by the CNS to coordinate muscles and limbs activity 

to perform a motor task. 

Cerebrovascular system can be intended both nonlinear and nonstationary. 

Traditionally, the randomness in biological signals has been ascribed to noise or 

interactions between very large numbers of constituent components (Akay 2000). 

However, it has been demonstrated that some physiological systems are 
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characterized by nonlinearity: neurovascular coupling, for instance, showed 

nonlinearity between excitatory and inhibitory neuronal processes, due to the many 

feedback circuits of circulatory system. Also, the neurovascular response to a 

cognitive task and somatosensory stimulation reveled nonlinear components in 

neurovascular coupling. Cerebrovascular system can be explored by means of Near-

Infrared Spectroscopy (NIRS). NIRS is a non-invasive functional technique that 

monitors cerebral metabolism and hemodynamics by measuring relative 

concentrations of oxy and deoxy-hemoglobin in the brain. It is based on 

measurement of infrared light intensity absorption that reflects the different 

oxygenation condition of the underlying tissue (Scholkmann et al. 2014). NIRS has 

been widely adopted to investigate cognitive processes (León-Carrion et al. 2008), 

to differentiate pathological conditions (K Sakatani et al. 1998), and to localize 

cerebral lesions (Van Haren et al. 2013). 

Motor control aims at describing the interactions between the CNS, the body, 

and the environment during the production of voluntary and involuntary 

movements. Indeed, the motor control problem takes origin from the redundancy 

of the musculoskeletal system, that is a motor task can be performed in many ways. 

Furthermore, hierarchic levels of motor action construction mask upper level of 

motor control, and the interaction with environment do not allow a direct 

measurement of central commands generating movements. Particularly, the way 

CNS coordinates muscles and limbs to act together in motor tasks remains 

unsolved. A hypothesis is that CNS works in terms of movement efficacy to reduce 

system complexity. To this aim, groups of motor units and muscles are recruited 

with a single central command: this model is named muscle synergy. Muscle 

synergies are adopted to model many human activities, in healthy and pathological 

conditions. One of the most studied activity, for its importance in daily life 

activities, is locomotion. It is characterized by a cyclicity of movements and it 

requires a hard activity of force and balance control, and a rapid muscles-joints 

coordination. For these reasons, the description of locomotion by means of muscle 

synergies may provide insightful information how movements are generated and 

controlled. In recent years, many works explored muscle synergies in the human 

walking. They revealed the main muscle groups and activation timing of the 

synergies. Also, they investigated how muscle synergies adapt to biomechanical 

and environmental constraints and how they reduce the complexity of motor 

control. However, certain aspects have not been investigated yet, and 

methodological aspects limit their employment and generalization. This part of the 
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thesis work aims to deal with some of these aspects to improve the comprehension 

of motor control by means of muscle synergies. Particularly, two aspects are 

explored: the consistency of muscle synergies during a single task, and the 

difference in the motor control strategies between needed and auxiliary movements. 

Then, the main objective of this thesis is to propose novel protocols, post-

processing procedures or indices to enhance the cerebrovascular system and human 

motion analysis performed with noninvasive devices or wearable sensors in clinics and 

rehabilitation.  

 

1.2 Thesis organization 

The present thesis is divided in two parts: the first part focuses on the studies of the 

cerebrovascular system with NIRS. The second part describes studies on motor 

control problem and muscle synergies. 

Part one is dedicated to study the cerebral microcirculation by means of 

nonlinear analysis of NIRS signals. Chapter 2 summarizes the basic concepts of 

NIRS methodology and the main methods implemented to acquire the signals. 

Furthermore, the chapter provides a summary of the function of prefrontal cortex 

in integrating information and executing actions, to underline the importance of 

investigating this cerebral area due to its involvement in all human activities. 

Chapter 3 describes the nonlinear methods adopted to study the NIRS signal. 

Particularly, Empirical Mode Decomposition (EMD) is a method adopted to extract 

the so called Intrinsic Mode Functions, that are characterized to have a single 

frequency component. EMD is based on the empirical analysis of the evolution of 

the signal, rather than mathematically defined theory, hence it is suitable to analyze 

nonlinear signals. The chapter also describes some entropy-based metrics. Entropy 

is a concept translated from thermodynamics to the information theory. From the 

first definition of entropy applied to information theory, called Shannon entropy, 

other measures of entropy have been developed to describe the periodicity and 

complexity of a signal. EMD and entropy metrics described in Chapter 3 have been 

applied to study NIRS signals in two different fields: neuropsychology and ozone 

therapy. Chapter 4 describes the application of nonlinear analysis of NIRS signal to 

study the effects of ocular movements in a psychotherapy called Eye Movement 

Desensitization and Reprocessing (EMDR). Chapter 5 the nonlinear analysis of 
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NIRS signals evidences the modification of cerebrovascular patterns during ozone 

therapy in multiple sclerosis patients. 

Part two is devoted to study muscle synergies. An introduction chapter (Chapter 

6) provides the background to the muscle synergies theory. It describes how the 

muscle synergy concept raised from the motor control problem. Also, it defines 

some basic keywords and concepts, that are the redundancy of degrees of freedom, 

the equilibrium point hypothesis, the role of central pattern generator, and the 

definitions of motor module and muscle synergy. Chapter 7 provides an overview 

of the factorization method adopted to extract muscle synergies from EMG signal, 

called nonnegative matrix factorization. Chapter 8 describes the experimental setup 

and protocol. Muscle synergies are extracted during a 5 minutes walking of young 

healthy subjects by integrating the statistical gait analysis, a tool that in a user-

independent manner filters out atypical gait patterns. Finally, the chapter focuses 

on how the synergies are consistent within-subject. Chapter 9 introduces the 

concept of principal and secondary activations: principal activations are those 

necessary to execute the movement, whereas secondary activations are auxiliary to 

the movement. This chapter studies the difference of muscle synergies underlying 

principal and secondary activations. Finally, Chapter 10 is a pilot study of the effect 

of rehabilitation on the muscle synergies of patients suffering from lower back pain 

with stiffed leg walking. It is worth to be observed that, in the second part, the work 

described in each chapter is based on the methods and measurements defined in the 

previous chapters. That is, Chapter 8 describes experimental protocol, sample 

description, and methods adopted to extract muscle synergies. Chapter 9 and 

Chapter 10 also adopted the same dataset and protocol. Similarly, algorithm 

described in Chapters 9 to compute principal activations is also adopted in Chapter 

10 to study muscle synergies in lower back pain patients. Therefore, this second 

part of the thesis is intended as a whole, and, where required, a reference to previous 

chapters for a full description of the methods is provided. 
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Chapter 2 

Background: NIRS fundamentals 

and the prefrontal cortex 

 

2.1 Introduction 

The Near Infrared spectroscopy (NIRS) is a technique, which allows measuring the 

oxygenation of the brain tissue (Gersten 2015). It uses intensity changes of scattered 

light related to regional blood volume and oxygenation changes in brain cortex 

(neurovascular coupling). The main advantages of adopting this technique in 

medical imaging are: it is non-invasive and portable. It is safe, since it does not 

adopt ionizing radiation, and it is rapid and continuous. However, it is affected by 

several limitations: scattering limits spatial resolution to nearly 1 cm. Light 

penetration is limited to brain cortex in adult. NIRS provides no absolute 

measurements, hence NIRS monitoring is limited to protocols evaluating the 

response to external stimuli. Finally, it is contaminated by systemic hemodynamic 

signals. For these reasons, it is still adopted mainly at research level (Strangman, 

Boas, and Sutton 2002). 

The history of NIRS applied to biological tissues is relatively recent: it was 

firstly applied by Frans Jobsis in 1977, who showed how the average hemoglobin-

oxyhemoglobin equilibrium can be effectively and continuously recorded (Jobsis 

1977). A major contribution to early works on NIRS was provided by Britton 

Chance (L. Z. Li et al. 2014): in the late eighties, he started working on in vivo 

NIRS, mainly with Nioka (Tamura et al. 1988) and Leigh (Chance, Leigh, et al. 
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1988). Chance then published with Patterson and Wilson the first work on time-

resolved optical spectroscopy. That work made it possible to measure scattering and 

absorption coefficients in biological tissue, giving birth to the diffusive biomedical 

photonics (Patterson, Chance, and Wilson 1989). Then, in early nineties, different 

groups started exploring cerebral function in adult and newborn infants brain by 

using NIRS (Hoshi and Tamura 1993b; Hoshi and Tamura 1993a; Chance et al. 

1993; Kato et al. 1993; A. Villringer et al. 1993; von Siebenthal, Bernert, and 

Casaer 1992). In the last twenty years, NIRS have been increasingly used in 

behavioral and cognitive development in infants and children, psychiatric 

conditions, stroke, and brain injury (Ferrari, Norris, and Sowa 2012; Davies et al. 

2015; Boas et al. 2014). 

This chapter briefly introduces basic concepts of NIRS and the methods of 

measuring modification in concentration of tissue oxygenation. The chapter 

concludes with a short introduction to the functions of prefrontal cortex, since it is 

the investigated area in the studies of the next chapters. 

 

2.2 NIRS Fundamentals 

The basics and main characteristics of NIRS can be summarized as follows: 

1) human tissues are relatively transparent to light in the NIRS spectral window 

(650 – 1000 nm) 

2) NIR light is either absorbed by pigmented compounds (chromophores) or 

scattered in tissues 

3) NIR light is able to penetrate human tissues, since the dominant factor in its 

tissue transport is scattering, which is typically about 100 times more probable than 

absorption. Approximately, 80% of the total attenuation of NIR light in tissue is 

due to scattering, and the remaining 20% to absorption. 

4) the relatively high attenuation of NIR light in tissue is mainly due to the 

chromophore hemoglobin, the oxygen transport red cell protein. Hemoglobin is 

located in small vessels (1 mm diameter) of microcirculation, such as capillary, 

arteriolar and venular beds. NIRS is weakly sensitive to blood vessels > 1mm 

because they completely absorb the light. Given the fact that arterial blood volume 

fraction is approximately 30% in human brain, the NIRS technique offers the 
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possibility to obtain information mainly concerning concentration oxygenation 

changes occurring within the venous compartment. 

Hemoglobin is the most influential absorber, whose absorption characteristics 

depends on its oxygenation level. Other absorbers (e.g. water) contributing to 

overall attenuation, are assumed to remain relatively constant in concentration. The 

absorption spectrum of hemoglobin depends on its level of oxygenation. 

Oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin show different behavior 

when tissue is irradiated by an electromagnetic field in the infrared bandwidth. 

Figure 2-1 evidences how adsorption spectra of oxygenated (red) and 

deoxygenated (blue) hemoglobin are different. Hence, by comparing sent versus 

emitted light intensities, it is possible monitoring separately the modification in 

concentration of O2Hb and HHb. 

 

NIRS signal modifies when neural activity changes after a stimulus. Change in 

neuronal activity is detected through the measurement of Cerebral Blood Flow 

(CBF). CBF is adopted as an index of neuronal activity based on the concept of a 

relationship, called neurovascular coupling, existing between local brain metabolic 

variations and CBF variations (Gsell et al. 2000). Neuronal activity is fueled by 

glucose metabolism, so when neural activity increases after a stimulus, glucose and 

oxygen consumption from the local capillary bed increases too. Subsequently, the 

reduction in local glucose and oxygen concentration stimulates local arteriolar 

 

Figure 2-1. Absorption spectra of oxygenated (red) and deoxygenated (blue) hemoglobin 

in the infrared bandwidth. 
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vasodilation, which increases local CBF (Bunce et al. 2006). Within several 

seconds, the increased CBF carries oxygen to the area by means of oxygenated 

hemoglobin in the blood. The carried oxygen is higher than the oxygen 

consumption rate (CMRO2). It results in an overabundance of cerebral blood 

oxygenation in active areas (Ances et al. 2001) and a slight reduction in HHb in the 

cerebral vessels (Kaoru Sakatani et al. 1998). 

 

2.3 Measurements principles 

Three main categories of near-infrared light spectrometers have been developed: 

continuous wave, time domain and frequency domain spectrometers. Figure 2-2 

schematizes principles of the three main categories of NIRS (Bakker et al. 2012). 

Continuous wave (CW) NIRS instruments are the earliest and most common 

commercial NIRS devices. CW instruments generally employ a multiple discrete 

wavelength source or a filtered white light source. They measure the light 

attenuation by using a photomultiplier, photodiode or an avalanche photodiode 

detector (Delpy and Cope 1997; Scholkmann et al. 2014). 

The Modified Beer-Lambert Law (MBLL) is generally adopted to measure 

modification in concentration of O2Hb and HHb (Owen-Reece et al. 1999; Arno 

Villringer and Obrig 2002). According to traditional Beer-Lambert Law, light 

attenuation in a solution (A; logarithmic scale) is proportional to the concentration 

of the compound measured in the solution (C), to the coefficient of absorption 

specific for the compound (a), and the light pathlength (d): 

 

𝐴 = 𝑎 ∙ 𝑑 ∙ 𝐶 
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However, it has been demonstrated that the above equation is incorrect  because 

it is applicable only if there is no optic diffusion in the solution (Sassaroli and 

Fantini 2004). In the event of light diffusion, the formula is modified as follows 

 

𝐴 = 𝑎 ∙ 𝐿 ∙ 𝐶 + 𝑋 

 

In this formula, two new parameters have been added: L and X. Because of 

diffusion, light pathlength is not straightforward, so the real light pathlength (L) 

 

Figure 2-2. Schematic representation of three NIRS acquisition modalities: (A) Continuous 

wave, (B) Time resolved, and (C) Frequency resolved (from Bakker et al., 2012).  
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increases with respect to physical light transmission (d). Furthermore, even in the 

case of absence of light absorption (i.e. a = 0), only a fraction of incident light can 

be detected as transmitted light. Hence, an attenuation factor X is introduced. Since 

X is unknown, C cannot be directly measured. In real measurements, X can be 

considered constant in time (t). Hence, X can be removed by subtracting A(t0) from 

A(t), and it provides the variation in concentration ΔC in the time interval t-t0, as 

described by the MBLL 

 

𝛥𝐴 = 𝑎 ∙ 𝐿 ∙ 𝛥𝐶, hence 𝛥𝐶 = 𝛥𝐴/(𝑎 ∙ 𝐿) 

 

Time-resolved systems generally employ a semiconductor or solid state laser 

to generate ultrashort pulses. Attenuation is measured by a time-correlated single 

photon counting, in which a photon counting detector detects and sorts the received 

photons by their time of arrival (Delpy and Cope 1997). In time domain 

spectrometers a light pulse of a few picoseconds long propagates in the tissue. 

Because of scattering, the timeline of photons exiting the tissues has a broad 

distribution, called temporal point spread function (TPSF). A typical tissue TPSF 

is characterized by a relatively rapidly rising intensity, peaking around 600-1000 ps 

and then a slow decay often several nanoseconds in duration (Chance, Nioka, et al. 

1988). The main advantages of time domain spectrometers are the spatial 

resolution; the penetration depth and the accuracy in separating absorption and 

scattering effects. However, there are several disadvantages, including the sampling 

rate, the instrument size and the weight, the necessity for cooling, the lack of 

stabilization and the cost. 

Frequency domain spectrometers generally employ a laser diode, LED or 

modulated white light sources. They measure the attenuation, phase shift and 

modulation depth of the exiting light by a photon counting detector or gain 

modulated area detector (Chance et al. 1990; Delpy and Cope 1997). In frequency 

domain spectrometers radio frequency modulated light propagates through tissue. 

The resulting signal is the Fourier transform of the TPSF, relating time domain 

results to frequency domain results. Therefore, the same information as measured 

with the time domain spectrometers can be found with the frequency domain 

spectrometers. The frequency domain spectrometers measure changes in intensity, 

phase and modulation using: (1) single wavelength and a fixed inter-optode 

distance, (2) multiple wavelengths and a fixed inter-optode distance, or (3) single 
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wavelength and multiple inter-optode distances. The main advantages of frequency 

domain spectrometers are the sampling rate and the relative accurate separation of 

absorption and scattering effects, and the main disadvantage is the penetration depth 

(Bakker et al. 2012; Delpy and Cope 1997). 

 

2.4 The prefrontal cortex 

The cortex of the anterior pole of the mammalian brain is commonly designated the 

prefrontal cortex (PFC) (J. Fuster 2008). It is defined as the part of the cerebral 

cortex that receives projections from the mediodorsal nucleus of the thalamus. 

Currently, PFC is one of the five most important topics in the field of neuroscience 

research (Yeung, Goto, and Leung 2017). The anatomical complexity of the PFC 

makes its functional homogeneity implausible. Furthermore, a unitary role for the 

PFC is also inconsistent with clinical findings in certain patients. 

The entirety of the frontal cortex, including its prefrontal region, is “action 

cortex” in the broadest term. It is cortex devoted to action, whether skeletal 

movement, ocular movement, the expression of emotion, speech, or visceral 

control. The frontal cortex is “doer”, whereas posterior cortex is “sensor” cortex. In 

recent years, it has become increasingly evident that PFC is involved in emotional 

and social behavior. Certain portions of this cortex, which are closely connected to 

limbic structures, are implicated in the control emotions and of the autonomic 

system. A complex system that includes prefrontal areas, the hypothalamus, the 

anterior thalamus, and the amygdala, appears essential for the evaluation of the 

emotional significance of environmental events and for decision making (S. M. 

Smith and Vale 2006). This evidence has provided with functional significance the 

connections between the prefrontal areas and those subcortical centers.  

A large amount of experimental evidence indicates that PFC has few basic 

functions. These functions seem interrelated, mutually supporting and 

complementing one another. The three main functions of PFC are: 

1) organizing actions in the time domain. Coherence and coordination of 

actions are essential to reach a goal, and they derive from the capacity of 

PFC to organize actions in time. Without organization, there is no execution 

of new behavior, no speech fluency, no higher reasoning, no creative 

activity. 

2) executive functions, which essentially consist of the utilization of the neural 

substrate of permanent long-term memory. The substrate is utilized for the 
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acquisition of further executive memory and for the organization of 

behavior, reasoning, and language. 

3) executive attention, which is indispensable for the two functions 1) and 2).  

Organizing actions in the time domain consists of activating PFC with sensory 

areas in processing sensory information. For instance, in auditory system, PFC is 

activated in the same time or slightly after temporal lobes. Auditory system, 

including only primary auditory cortex, is not sufficient to percept audial temporal 

pattern, but information of frontal processing is required. PFC is also activated also 

during the processing of visual information. Concurrent activation of frontal and 

sensory cortices may relate to conscious awareness. EEG studies evidenced 

interaction between prefrontal regions and the rest of the brain. Probably, PFC plays 

a role in synchronizing rhythmic firing rate of neurons in various regions of brain. 

Many studies revealed the connections between the prefrontal region and other 

cortical areas implicated in sensory and motor processing (J. M. Fuster 2001). The 

disruption of various cortical interconnections was related to pathogenesis of 

neurological syndromes involving the higher integrative functions. Particularly, 

there are two class of frontal lobe syndromes: one class is characterized by loss of 

initiative, creativity, and concentration power, with a property of apathy and 

emotional blandness. In the second type, patients lost judgment, insight, and 

foresight. Furthermore, they do not seem to learn from experience, and impulsively 

stumble from one disastrous situation into another.  

Executive function is essential for achieving a precise goal in a flexible and 

appropriate manner and is the product of the coordinated operation of various neural 

systems. Executive control permits: (1) to deal with novel tasks, (2) to properly 

interpret past events, (3) to interrupt an ongoing sequence of actions and initiate a 

new one, (4) to prevent inappropriate response, (5) to effectively switch from one 

task to another, (6) to correct errors. PFC performs executive functions by sending 

command signals, called top-down signaling, to other cerebral areas (Funahashi and 

Andreau 2013). 

Executive attention has three components: (1) preparatory set, (2) working 

memory, and (3) inhibitory interference control. The three components are not 

executed directly from PFC, but PFC controls temporal organization of activities in 

other neural structures that participate in executive attention.  
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Preparatory set is the readying or priming of sensory and motor neural 

structures for the performance of an act contingent on a prior event, and thus the 

content of the working memory of that event. 

Working memory is the memory in active state, that is the memory required for 

short-term performance. Daily activities, from keeping a telephone number in mind 

to considering alternative consequences of a moral dilemma rely on working 

memory. The content may be sensory, motor, or mixed. Working memory has a 

perspective toward recent past, preparatory set has a perspective toward recent 

future. Working memory is an attentional function that enables the on-line holding 

and mental manipulation of information. Working memory transforms information 

access from a sequential and disjunctive processes, where every event is classified 

into a separate cluster, to a conjunctive pattern where several selected clusters are 

connected into the stream of consciousness. Working memory plays a crucial role 

in shifting the focus from external events to internal representation, that is the 

thinking activity. The second function of working memory, the “manipulation” of 

the on-line information, is likely to play an important role in the reorganization of 

mental content (Stuss and Knight 2002). 

Inhibitory control plays the role of enhancing and providing contrast to 

excitatory function. In PFC, inhibition is the mechanism by which, during the 

temporal organization of actions, sensory inputs and motor impulses that may 

impede action are considered. It is a critical component of attention, because 

inhibition selectively suppress interfering cognitive or emotional contents.  
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Chapter 3 

Empirical mode decomposition and 

entropy-based metrics 

3.1 Introduction 

The traditional way of analysis of physiological systems has been based on linear 

system theory, even if many biomedical signals are apparently random or aperiodic 

in time. Traditionally, the randomness in biological signals has been ascribed to 

noise or interactions between very large numbers of constituent components (Akay 

2000). However, it has been demonstrated that some physiological systems are 

characterized by nonlinearity: neurovascular coupling, for instance, showed 

nonlinearity between excitatory and inhibitory neuronal processes, due to the many 

feedback circuits of circulatory system. Also the neurovascular response to a 

cognitive task and somatosensory stimulation reveled nonlinear components in 

neurovascular coupling (E. E. Smith and Jonides 1997; Gsell et al. 2000; Rivadulla 

et al. 2011). Furthermore, traditional analysis of physiological systems is based on 

the hypothesis of stationarity. A random process (or signal) is said to be stationary 

in the strict sense if its statistics are not affected by a shift in the origin of time. 

Also, a random process is said to be stationary in the wide sense if its mean is a 

constant and its autocorrelation function depends only upon the difference (or shift) 

in time. Conversely, signals or processes that do not meet the conditions described 

above are called nonstationary. Stationary signals provide the same statistical 

measures for all the time course, or at least over the duration of observation, and 

the power spectral density (PSD) does not vary over time. As the Fourier spectra 

can only give meaningful interpretation to linear and stationary processes, its 

application to data from nonlinear and nonstationary processes may be 
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meaningfulness. Furthermore, probability distributions, which can represent global 

properties, imply stationarity in the population (Rangayyan 2015). 

NIRS describes nonlinear processes and it cannot be considered stationary, nor 

in a wide sense (Caicedo 2012). Indeed, NIRS is characterized by time-varying 

chromophore concentration average (Molinari et al. 2013). Furthermore, it has been 

observed a phase shift between the oscillations in LF bandwidth in the blood 

oxygenation parameters (Obrig et al. 2000). Consequently, the traditional way of 

analysis based on linear system theory may be limiting. Nonlinearity and 

nonstationarity should be adequately analyzed with other techniques. In the past 

few decades, random behavior has been described in deterministic nonlinear 

systems. In this way, simple mathematical models allow to analyze and control 

physiological systems. The approach to revealing nonlinearity and nonstationarity 

is data-driven, rather than based on mathematical rules: in this way, the method of 

analysis is adaptive to the nature of the data, that is the definition of the components 

of a signals derives from the data, and it can be achieved by decomposing data in 

adaptive basis. (N. E. Huang and Wu 2008). A data-driven method of signal 

decomposition is the empirical mode decomposition (EMD), a part of the Hilbert-

Huang Transform. EMD decomposes a signal into a finite number of simple 

functions, called Intrinsic Mode Functions (IMF). 

In the present chapter, we introduce the traditional EMD and several algorithms 

developed to overcome its limitations. Subsequently, we introduce some entropy-

based measures adopted to measure the complexity of the IMFs. 

 

3.2 Empirical mode decomposition 

3.2.1 Traditional EMD 

The Hilbert-Huang transform (HHT) decomposes a signal to obtain instantaneous 

frequency. Differently from Fourier transform, HHT is an algorithm based on the 

characteristics of the data, rather than a theoretical approach (N. E. Huang and Wu 

2008). Hence, unlike any other time-frequency techniques, it does not assume 

linearity as a requirement (Molinari et al. 2015). The fundamental part of HHT is 

the Empirical Mode Decomposition (EMD). The objective of EMD is identifying 

intrinsic oscillatory modes of a signal, called Intrinsic Mode Function (IMF). An 

IMF is a function that satisfies two conditions: (1) In the whole data set, the number 

of extrema and the number of zero crossings must either equal or differ at most by 

one; and (2) At any point, the mean value of the envelope defined by the local 
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maxima and the envelope defined by the local minima is zero. In summary, EMD 

is an iterative procedure to decompose a signal into a finite number of simple 

signals, the IMFs, and each IMF contains only one oscillatory mode (Yang and 

Yang 2009). 

The traditional EMD algorithm is composed by three steps: the “sifting 

process” to compute an IMF, the computing of the new signal, and the iteration to 

compute all the IMF (Molinari et al. 2015; Rilling, Flandrin, and Es 2003; N. E. 

Huang et al. 1998). 

The first step is the “sifting process”. Given an arbitrary signal 𝑥(𝑡), the sifting 

process can be summarized as following: 

1. identify all extrema of 𝑥(𝑡) 

2. interpolate with a cubic spline points between minima, ending up with the 

envelope 𝑒𝑚𝑖𝑛(𝑡). The same is applied to maxima, ending up with the 

envelope 𝑒𝑚𝑎𝑥(𝑡) 

3. compute the mean between the envelopes 

 

𝑚1(𝑡) =  
𝑒𝑚𝑖𝑛(𝑡) +  𝑒𝑚𝑎𝑥(𝑡)

2
 

 

4. extract the detail 

 

ℎ1(𝑡) = 𝑥(𝑡) −  𝑚1(𝑡) 

 

An example of sifting process for a nonlinear signal is represented in Figure 3-

1. At the end of the sifting process, the detail function ℎ1(𝑡) should meet the 

following criteria to be an IMF: it should be symmetrical and have positive maxima 

and negative minima. An IMF could be not obtained at the first iteration, since 

EMD is not a mathematically strict method. Hence, the sifting process is iterated 

until ℎ1(𝑡) meets the criteria to be the first IMF (Figure 3-2). 
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As a second step, the derived ℎ1(𝑡) is considered as the new signal and the 

mean of lower and upper envelopes 𝑚11 is computed. The new IMF is computed 

as 

 

ℎ11(𝑡) = ℎ1(𝑡) −  𝑚11(𝑡) 

 

Figure 3-1. EMD decomposition process. For a nonlinear signal x(t) (black line) the 

maxima (blue dots) and minima (green dots) are computed. The envelop of maxima (dotted 

blue line) and the envelop of minima (dotted green line) are computed with a cubic spline. 

Finally, the mean of the envelopes (m(t), red line) is subtracted to x(t) to obtain the first 

IMF.  

 

Figure 3-2. First IMF for the signal showed in Figure 3-1. It can be observed that the slow 

frequencies trend has been removed. 
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The whole procedure is iterated to compute k IMF 

 

ℎ1𝑘(𝑡) = ℎ1(𝑘−1)(𝑡) −  𝑚1𝑘(𝑡). 

 

To avoid obtaining IMF without any physical meaning, the normalized standard 

deviation (NSD) is imposed as a stop criterion. The iterations stop if the NSD 

between two consecutive IMF h1 and h1(k-1) 

 

𝑁𝑆𝐷 =  
∑ |ℎ1(𝑘−1)(𝑡) −  ℎ1𝑘(𝑡)|𝑇

𝑡=1

ℎ1(𝑘−1)
2 (𝑡)

 

 

is lower than a threshold (usually between 0.001 and 0.2). 

 

3.2.2 Alternative EMD algorithms 

The traditional EMD is affected by several limitations: since the sifting process is 

highly adaptive and extremes are interpolated with a cubic spline, it is unstable. It 

means that a small change in data (i.e. random noise) can lead to different IMFs 

(Lin, Wang, and Zhou 2009). This problem affects convergence of the sifting 

process, the orthogonality of IMFs, and other undefined problems. For this reason, 

new algorithms have been proposed to solve the principal issues of traditional 

EMD. It has been proposed to adopt B-spline rather than cubic spline to interpolate 

maxima and minima, and to exclude peaks at the extrema points, since they may 

diverge due to the instability of cubic interpolation. (Q. Chen et al. 2006). 

Furthermore, EMD may introduce some artificial peaks that may lead to 

meaningfulness IMFs. To avoid this problem, peak prominence threshold was 

introduced and generally ranges between the 20% and the 80% of the total length 

of the signal. 

An alternative approach to the traditional EMD is the moving average based 

approach. In this approach, the mean of the extrema envelopes 𝑚1(𝑡) is substituted 
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by a moving average (Lin, Wang, and Zhou 2009). Given a signal x(t), at the 

iteration n it is masked with a fixed mask a(x,t) of length l(x),  

𝑓𝑛+1(𝑥) =  𝑓𝑛(𝑥) −  ∫ 𝑓𝑛(𝑥 + 𝑡)𝑎(𝑥, 𝑡)𝑑𝑡
+𝑙(𝑥)

−𝑙(𝑥)

 

 

The IMFs are now obtained via the same sifting algorithm, where the operator 

m11(t) is now replaced by f(x). The moving average operator a(x,t) is computed as 

an adaptive local weighted average. A simple class of filters with uniform mask is 

the double averaging filter: 

 

𝑎(𝑡) =  
𝑙−1+|𝑡|

(𝑙+1)2 ,  𝑡 =  −𝑙, −(𝑙 − 1), … , (𝑙 − 1), 𝑙 

 
 

The convergence of the sifting process has been established mathematically for 

uniform mask filters, where a and l are independent from x (Wang and Zhou 2012). 

The iterative filtering EMD method is more stable under perturbation (i.e. 

random noise). Indeed, small changes in one segment of the data can lead to very 

different decompositions with traditional EMD, whereas the moving average based 

approach is more stable. 

For extremely non-stationary time series, an adaptive EMD method better 

captures the non-stationary changes in the frequency and time domains. In the 

adaptive EMD, a moving average filter mask with nonuniform length is adopted. 

The length of the mask depends on the local density of the extrema, and it is 

computed as a multiple of the distance of subsequent local minima and maxima 

(Lin, Wang, and Zhou 2009).  

If the signal x(t) has k local extreme points, and xi denotes the position of the i-

th local extreme point of x(t), the filter mask length ln(xi) is given by the difference 

between the extrema 𝑥𝑖+1 and 𝑥𝑖−1 

 

𝑙𝑛(𝑥𝑖) =  𝑥𝑖+1 −  𝑥𝑖−1,  i = 2,3,..., k-1 
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Once the lengths of the masks at the extreme are determined, the length of the 

filter mask for the intermediate points of the signal is obtained by interpolating the 

known filter length pairs (xi, ln(xi)). However, the derived mask length may 

introduce high frequency oscillations, producing artifacts and diverging. To avoid 

these problems, the high frequency oscillations contained in ln(x) are filtered out. 

Figure 3-3 shows an example of adaptive EMD for a strongly non-linear signal. 

Signal is obtained by the superposition of a chirp signal and an increasing 

monotonically curve (Figure 3-3A). Adaptive EMD adaptively changes the mask 

length from point to point. Hence, it decomposes correctly the signal and it 

separates the two components in a first IMF with the chirp signal (Figure 3-3B) 

and in a second IMF with a trend curve (Figure 3-3C). 
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Figure 3-3. Adaptive EMD of a strongly nonlinear signal. (A) Original signal obtained 

from the superposition of a chirp signal and a linear trend. (B) and (C). The IMFs with 

the separate signals. 
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3.3 Entropy and entropy-based features 

Entropy was introduced in thermodynamics by Clausius (1862) and Boltzmann 

(1896). The concept was applied by Shannon (Shannon 1948) and Jaynes (Jaynes 

1957) to information theory to indicate the amount of unexpected data contained in 

a message. In the last decades, alternative entropy measures have been proposed 

and allowed the analysis of complex systems (Machado, Costa, and Quelhas 2011; 

Henriques et al. 2013). 

 

3.3.1 Shannon entropy 

Shannon defined the expression of entropy in theory of information from the 

expression for entropy in the theory of statistical mechanics established by 

Boltzmann in 1896 (Shannon 1948): 

 

𝐻 =  −𝐾 ∑ 𝑝𝑖 𝑙𝑜𝑔𝑏 𝑝𝑖

𝑖

 

 

where K is a positive constant, pi is the probability of a message mi taken from 

the message space M, and b is the base of the logarithm used. Given a time series 

x(t), H measures the mean conditional uncertainty of the future x(t+1) given the 

whole past …x(t−1), x(t). H may be interpreted as the average information taken 

over an information space, and it may vary between 0 and logbM. H = 0 means that 

the series is perfectly predictable from the past, whereas we obtain H = logbM if all 

values are independent and uniformly distributed. Hence, large H indicates high 

complexity (Bandt and Pompe 2002).  

 

3.3.2 Sample Entropy 

Since Shannon Entropy is affected by a bias caused by self-matching, Richman and 

Moorman developed another measure of time series regularity named Sample 

Entropy (SampEn) (Joshua S Richman et al. 2011). The SampEn is based on the 

temporal time series instead of relying on the PSD to capture “the rate generation 

of new information” (J S Richman and Moorman 2000). The new information is 

related to the degree of similarity between a sequence of length m (called 
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embedding dimension) and the same sequence extended by a time point m+1 

(Duran et al. 2013). The time series is used to derive vector sequences of length m 

(Pincus 2001; Pincus and Goldberger 1994), so that each vector sequence has the 

form: 

 

𝑢(𝑛) = {ℎ𝑖(𝑛), ℎ𝑖(𝑛 + 1), … , ℎ𝑖(𝑛 + 𝑚 − 1)} 

 

where h(1), h(2), …, h(N) are the N samples of the time series. The distance 

between each vector segment and the others is computed by using the Chebyshev 

distance (Shieh and Tsai 2010). Given a distance threshold equal to r (generally 

varying between 10% and 20% of the time series standard deviation), each vector 

sequence is considered and the number of other segments with a distance lower than 

r is computed. This number, divided by the total number of vectors, indicates the 

probability 𝐶𝑛𝑖
𝑚 of locating another vector not beyond the distance r from the 

considered vector u(ni). The overall conditional probability 𝜙𝑚(𝑟) is given by the 

sum over the total number of vector sequences: 

 

𝜙𝑚(𝑟) = (𝑁 − 𝑚 + 1) ∑ 𝐶𝑛𝑖
𝑚(𝑟)

𝑁−𝑚+1

𝑖=1

 

 

The SampEn is then defined considering also the overall probability found for 

an embedding dimension equal to m+1; hence SampEn is defined as 

 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) =  −𝑙𝑛 [
𝜙𝑚(𝑟)

𝜙𝑚+1(𝑟)
] 
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Figure 3-4 shows an example of SampEn for a generic time series, given m=2 

and a generic positive tolerance r. 

 

3.3.3 Fuzzy Entropy  

The Fuzzy Entropy (FE) is a measure of a time series regularity, and it is 

particularly suitable for short datasets. FE is defined as the negative natural 

logarithm of the conditional probability that two vectors similar for m points remain 

similar for the next m + 1 points (W. Chen et al. 2007). FE takes origin from the 

concept of “fuzzy sets” introduced by Zadeh (Zadeh 1965). Zadeh’s theory 

measures the degree to which a pattern belongs to a given class C. It introduces the 

“membership degree”, a fuzzy function that assigns a value µC(x) to each point x by 

associating a real number in the range [0 1]. The higher the value of µC(x), the 

higher the membership grade of x in the set C. Fuzzy sets provide a scheme for 

handling a variety of problems in which a fundamental role is played by an 

indefiniteness arising more from a sort of intrinsic ambiguity than from a statistical 

variation (De Luca and Termini 1972). In FE, the concept of fuzzy sets is employed 

 

Figure 3-4. A generic time series of N points for the computation of SampEn for m=2 and 

a generic positive value r. Dotted horizontal lines indicate distance r around data points 

h(1), h(2), and h(3). Two data points of the time series match if the absolute distance 

between them is lower than r. Black filled dots represent data point matching with h(1). 

Similarly, red and green points match with h(2) and h(3) respectively. Consider the two 

components sequence (h(1), h(2)) and the three components sequence (h(1), h(2), h(3)). 

There are 4 sequences matching with sequence (h(1), h(2)), and three sequences matching 

with sequence (h(1), h(2), h(3)). Then, the number of matching sequences is repeated for 

the next two-components sequence (h(2), h(3)) and three components (h(2), h(3), h(4)). 

The calculation is repeated for the next N-m+1 sequences to compute the ratio between 

the number of two components sequences and the three components sequences. The 

negative natural logarithm of this ratio provides the SampEn of the time series. It 

indicates the probability that sequences that match each other for the first two data points 

will also match for the next point. (Modified from Costa, 2005). 
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by adopting a family of exponential membership functions exp(−(𝑑𝑖𝑗
𝑚)𝑛/𝑟)), 

where d is the distance between two sequences i and j of length m and n and r are 

the tolerance and the gradient of the exponential function respectively. In FE, the 

two sequences of a time series are compared by measuring their distance, and the 

fuzzy measurement of two vectors similarity is based on their shapes. Fuzzy entropy 

has been widely adopted in EEG signal analysis to discriminate complexity of the 

EEG in neurological diseases (Cao et al. 2015), and to the analysis of complexity 

in heart rate (Zaylaa et al. 2015; Ji et al. 2015), surface electromyography (W. Chen 

et al. 2007; Xie, Guo, and Zheng 2010), and image processing (Di Zenzo, Cinque, 

and Levialdi 1998; Sil Kar and Maity 2016; Sokunbi et al. 2015). 

A general N samples time series {µ(i), i = 1,…, N} forms a series of m-

dimensional vectors by 

 

𝑋𝑚
𝑖 = {𝑢(𝑖), 𝑢(𝑖 + 1), … , 𝑢(𝑖 + 𝑚 − 1)} −  𝑢0(𝑖), 

 

where 

 

𝑢0(𝑖) =  
1

𝑚
∑ 𝑢(𝑖 + 𝑗)

𝑚−1

𝑗=0

 

  

The distance between the i-th and the j-th vectors 𝑋𝑖
𝑚 and 𝑋𝑗

𝑚 is defined as 

 

𝑑𝑖𝑗
𝑚 = 𝑑[𝑋𝑖

𝑚, 𝑋𝑗
𝑚] = max|𝑢(𝑖 + 𝑘) −  𝑢0(𝑖) − (𝑢(𝑗 + 𝑘) − 𝑢0(𝑖))|, (𝑖, 𝑗 =

1 ~ 𝑁 − 𝑚 + 1). 

 

For certain vector 𝑋𝑖
𝑚 and given a tolerance r and gradient n, the similarity 

degree between the two vectors is determined by a fuzzy function 

 

𝐷𝑖𝑗
𝑚 =  µ(𝑑𝑖𝑗

𝑚, 𝑛, 𝑟) = exp (−(𝑑𝑖𝑗
𝑚/𝑟)𝑛) 

 

We define the overall conditional probability 𝜙𝑚 as the normalized sum of all 

the similarity degrees for a distance m 
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𝜙𝑚(𝑛, 𝑟) =  
1

𝑁 − 𝑚
∑ (

1

𝑁 − 𝑚 − 1
∑ 𝐷𝑖𝑗

𝑚

𝑁−𝑚

𝑗=1,𝑗≠𝑖

)

𝑁−𝑚

𝑖=1

 

 

Similarly, we define 𝜙𝑚+1 

 

𝜙𝑚+1(𝑛, 𝑟) =  
1

𝑁 − 𝑚
∑ (

1

𝑁 − 𝑚 − 1
∑ 𝐷𝑖𝑗

𝑚+1

𝑁−𝑚

𝑗=1,𝑗≠𝑖

)

𝑁−𝑚

𝑖=1

 

 

 

FE is defined as the negative natural logarithm of the deviation of 𝜙𝑚 from 

𝜙𝑚+1 

 

𝐹𝐸(𝑚, 𝑛, 𝑟, 𝑁) = 𝑙𝑛𝜙𝑚(𝑛, 𝑟) − 𝑙𝑛𝜙𝑚+1(𝑛, 𝑟) 

 

There are three parameters that must be fixed for the calculation of FE. The 

first parameter m is the length of the sequences to be compared. A large m allows 

more detailed reconstruction of dynamic process, but a too large m requires a large 

dataset or a broad boundary, which may cause information loss. The other two 

parameters are the tolerance r and the gradient of the exponential function n. 

Similarly to m, too narrow parameters may be influenced by noise, whereas too 

broad a boundary may cause information loss. The value of r is recommended to be 

in the range 0.1-0.25 (Abásolo et al. 2006). Furthermore, due to the monotonicity 

and continuity of fuzzy membership functions, FE changes smoothly along with 

the change of the parameter r. The value of n should be a small positive integer 

such as 2 or 3. Indeed, when n tends to infinity, the exponential function 

exp(−(𝑑𝑖𝑗
𝑚)𝑛/𝑟 is degenerated into Heaviside function, and the information at the 

boundary is lost (Cao et al. 2015). An example of exponential fuzzy function is 
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reported in Figure 3-5, where the effect of changing curvature parameters is also 

showed. 

 

3.3.4 Permutation Entropy  

The permutation entropy (PE) the complexity of a signal is determined by 

comparing the permutation patterns in the samples of the signal. This type of 

entropy is simple and robust towards noise (Bandt and Pompe 2002; X. Li, Ouyang, 

and Richards 2007). Also PE has been adopted as a complexity measure in several 

biosignal applications, particularly those related to EEG (Liang et al. 2015) and to 

reveal abnormalities in epilepsy (Zhu et al. 2014; Ferlazzo et al. 2014). 

 

The computation of PE depends on the sequence length e and delay time τ. For 

a sequence of length e, a total number of e! permutations are possible. If Bk denotes 

the probability of occurrence of the k-th permutation pattern, then PE can be 

computed as 

 

𝑃𝐸 =  − ∑ 𝐵𝑘 𝑙𝑜𝑔(𝐵𝑘)

𝑒!

𝑘=1

 

 

Figure 3-5. Exponential fuzzy function with different parameter choices. (a) Exponential 

function with fixed n=2 and r varying in the range 0.1-0.3. (b) Exponential function with 

fixed r = 0.2 and n varying between 1 and 5. For a certain distance between two vectors d, 

a value between 0 and 1 is given according to an exponential symmetric curve (from Chen 

2007). 
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3.3.5 Hurst Exponent 

The Hurst exponent (HE) aims to measure the presence/absence of long-range in a 

signal and dependence degree (Hurst 1951). Neurological studies evidenced that a 

change in the behavior of a physiological system causes a corresponding change in 

the HE. In the investigation of physiological systems, HE was used to discriminate 

between interictal and epileptic EEG (Geng et al. 2013) and to characterize the EEG 

in different sleep stages (Acharya U et al. 2005).  

HE detects long-range dependency in the data and it relates to the 

autocorrelations of the time series. It varies between 0 and 1, and it provides 

information about long-range signal dependency. A HE next to 0 indicates random 

data (i.e. white noise), and HE < 0.5 indicates short-range dependency. A HE next 

to 1 indicates high long-range dependency (i.e. periodic signal). More generally, 

HE significantly greater than 0.5 means a long-term dependency of data. Normal 

signals are usually characterized by HE values that decrease as the system is 

normalizing its activity (Kannathal et al. 2005). 

Given a time series h(n) of time length equal to T, the mean of the time series 

is computed and then subtracted by the time series itself. This produces a zero mean 

time series h’(n). The cumulative deviation of h’(n) is then computed by summing 

up all the elements. Let’s define R as the range of the cumulative deviation of h’(n) 

(i.e. the difference between the maximum and the minimum value) and S as the 

standard deviation of h’(n). The HE is then defined as 

 

𝐻𝐸 =
log (𝑅/𝑆)

log (𝑇)
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Chapter 4 

Effect of Ocular Movements 

During Eye Movement 

Desensitization and Reprocessing 

(EMDR) Therapy: a Near-Infrared 

Spectroscopy Study1 

4.1 Introduction 

Eye Movement Desensitization and Reprocessing (EMDR) is a recent 

psychotherapy technique. It initially was born to treat patients suffering by post-

traumatic stress disorder (PTSD), but nowadays EMDR is adopted to manage a 

wider range of clinical disturbs due to traumatic experiences (Fernandez I., 

Maxfield L. 2009). 

EMDR, within a global therapeutic plan, adopts a standardized procedure 

composed by eight phases, with the aim of working on experiences and traumatic 

memories that cause actual disturbs. The main characteristics of EMDR is helping 

                                                 
1 This chapter is based on the paper: Rimini, D., Molinari, F., Liboni, W. et al. PloS One 

(2016) 11(10): e0164379. https://doi.org/10.1371/journal.pone.0164379 

https://doi.org/10.1371/journal.pone.0164379
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the patient access the memory and metabolize it by asking the patient to focus on 

the most disturbing aspects of the memory (images, negative cognition, negative 

emotions, body sensation). In the meanwhile, a bilateral eye stimulation is induced. 

The natural mechanism of cerebral information processing is resumed by the 

alternating a rhythmic stimulation of cerebral hemispheres, obtained by means of 

eye movements (EM), and the recalling of the memory itself and its cognitive, 

behavioral and somatic elements (RECALL)(Zarghi, Zali, and Mehdi 2013). By 

EMDR, patient creates a more adaptive material that is integrated with traumatic 

memories. Therefore, the disturbing aspects of the memory are resolved. It allows 

to renovate cognitions in a more positive and adaptive way (Wilson, Tinker, and 

Becker 1995).  

Currently, EMDR is recommended in the management of stress syndromes, 

such as PTSD (Shapiro and Maxfield 2002; World Health Organisation 2013). 

EMDR has been validated as an effective treatment for PTSD by American 

Psychological Association, based on empirical evidence obtained from researches 

conducted at the Department of Clinical Psychology of American Psychological 

Association (Fernandez I., Maxfield L. 2009). The International Society for 

Traumatic Stress Studies (ISTSS) classified EMDR as an efficient treatment for 

PTSD (Shalev et al. 2000). Furthermore, EMDR, together with CBT, has been 

declared the main treatment for PTSD (Ursano et al. 2004; CREST 2003). EMDR 

is also one of three methods to treat victims of terrorism (Bleich et al. 2002). 

The physiological effects of EMDR have been explored by adopting a wide 

range of functional imaging techniques: nuclear imaging (Oh and Choi 2007), 

electroencephalography (EEG)(Pagani et al. 2012), and functional Magnetic 

Resonance Imaging (Herkt et al. 2014). All the studies evidenced modifications in 

the patterns of cerebral activity. These studies evidenced that the brain areas 

involved in EMDR are those involved in stress management: the so-called 

hypothalamus-pituitary-adrenal (HPA) axis (an articulated response network to a 

stressful condition which involves deep brain regions, such as hypothalamus and 

amygdala) and cortical areas, such as the prefrontal cortex (PFC) (Lupien et al. 

2009). Nevertheless, one limitation of these studies is they investigated only pre- 

and post-treatment conditions. 

By comparing a testing group performing the treatment with respect to a control 

group without eye movements evidenced the effect of ocular movements 

characterizing the EMDR protocol. Some specific studies aimed at exploring the 

difference between the use of EMDR with and without eye movements. Engelhard 

et al. showed that eye movement causes a decrease in arousal, flexibility in attention 
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and memory processing, as well as an improved semantic recalling (Engelhard et 

al. 2010). Lee and Cuijpers performed a meta-analysis of 15 clinical trials 

comparing EMDR with Vs. without eye movement and pointed out the beneficial 

effects of eye movement (C. W. Lee and Cuijpers 2013). However, these studies 

used self-reported measures as indicators of performance, without any functional 

investigation. 

EMDR is a dynamic protocol in which the patient switch from a condition of 

eye movement to a providing feedback. To evaluate adequately the vasomotor 

response to the EMDR protocol, a neuroimaging technique with high temporal 

resolution is required. To this aim, NIRS is the suitable device because it allows to 

monitor PFC microcirculation in real time and during a therapy treatment. In this 

way autoregulation and neuronal activity can be effectively monitored. In a 

previous work on EMDR, NIRS established that O2Hb decreases in the PFC during 

RECALL (Ohta ni et al. 2009).  

The primary objective of the present study was to examine the effect of eye 

movement in PFC activity during an EMDR session, focusing on the modification 

in local hemodynamics. As a secondary endpoint, we explored the underlying 

complexity of the mechanisms of cerebral autoregulation induced by a response to 

EMDR stimulation. The study was conducted by comparing a treatment group with 

a control group: the first group received complete EMDR therapy with EM, whereas 

the second group received the same EMDR Protocol without the EM. 

 

4.2 Material and Methods 

4.2.1 Patients recruitment 

We recruited twenty-one patients among the ones treated at “Un passo insieme” 

Foundation. They were randomly divided in two groups: a test group underwent the 

treatment with eye movements (wEM), and a control group performed the EMDR 

protocol without eye movements (woEM). wEM was constituted by 11 subjects (2 

males, 9 females mean age 33.3 ± 6.34), woEM was constituted by 10 subjects (5 

males, 5 females mean age 31.8 ± 5.60). All patients received all information about 

the aim and modalities of the study and all of them signed an informed consent. The 

study was approved by the Ethical Committee of the EMDR Italy Association. 

We preliminary assessed recruited subjects with a battery of self-administered 

psychological tests: a Test Evaluation Checklist (TEC), an Impact of Event Score 

(IES) (Horowitz, Wilner, and Alvarez 1979), and a Symptom Checklist-90 (SCL-
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90) (Derogatis and Cleary 1977). Afterwards, we assigned trauma severity to each 

subject, according to clinical history. We defined two levels of severity: major 

trauma (T), referring to all the events which may threaten life of the subject, such 

as natural disaster, or car accident, and minor trauma (t) referring to relational 

trauma, such as family conflicts, separations, betrayals, bullying. 

 

4.2.2 EMDR Protocol 

EMDR procedures have been designed to access dysfunctional experiences and 

stimulate a proper information elaboration. EMDR allows the transformation of 

information with an adaptive resolution, shifting the information to a more 

appropriate memory system. When information is completely elaborated, useful 

information is assimilated and the individual's memory structures are reorganized 

on the basis of the new information (Shapiro, Klaslow, and Maxfield 2007). On this 

basis, EMDR procedure adopts several instruments to recall memories and rework. 

Particularly, the eight fundamental EMDR components are (Greenwald 1999):  

- Images repertoire: patient choices the most annoying images, or anyway 

the most characteristic, the most representative of the negative effect on the 

patient; 

- Negative cognition: it is not just a description of the event, but the 

interpretation of the patient about himself that emerges from the memory. 

The characteristic of the negative cognition is that it remains after the 

traumatic event, and occasionally emerges in patient’s lifespan; 

- Positive cognition: like negative cognition, positive cognition is not a 

merely description, but rather an adaptive self-affirmation, more positive, 

and it represents the objective of the treatment, that is how patient sees 

himself. Some examples are: “I am a good person”, “I can do it”; 

- Emotion: patient should externalize emotional reaction with respect to the 

chosen image of the memory. Some examples of the most frequent 

emotions are: sadness, fear, rage; 

- Validity of cognition scale (VOC): VOC represents a measurement of how 

much truthful the patient considers the positive information that should be 

installed during the treatment. VOC ranges from 1 (completely false) to 7 

(completely true). The scale represents the progress of the patient during 

and after EMDR; 

- Subjective Units of Disturbance scale (SUD): SUD indicates the intensity 

of the felt disturbance. It measures how much intense is the negative 

emotion. SUD ranges from 1 (the emotion isn’t distressing) to 10 (the worst 
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feeling you’ve ever had). It allows the patient and therapist to verify 

progresses obtained during and after EMDR; 

- Physical sensation: it is considered an integrative part of the memory, since 

mnemonic traces are conserved in the body too. Affective states not 

adequately integrated survive in somatic states (van der Kolk 2005). Patient 

is asked to indicate where he feels physical sensation accomplishing the 

memory. The most frequent sensations are: nausea, tiredness, localized 

tension; 

- Ocular movements: rapid eye movements allow the patient access to the 

memory-target, the elaboration and integration. They are induced by 

rhythmically moving fingers at a distance of 30-60 cm from the patient’s 

face. If ocular movements are inadequate, other rhythmic stimulations can 

be adopted.  

According to the original setting proposed by Shapiro (Shapiro 2001), EMDR 

is an eight-phases protocol. Each phase deals with a specific aspect of the 

treatment, even if it should be observed that each phase may affect the others.  

Dworkin (Dworkin 2013) conceptualized the EMDR procedure in three stages, 

and the eight phases are distributed within: 

Stage 1: evaluation and preparation 

- Phase 1: understanding the case referring to the trauma (anamnesis and 

therapeutic plan) 

- Phase 2:  evaluation of patient’s capacity of emotional tolerance and 

physical sensations awareness (patient preparation). 

Stage 2: active work on trauma 

- Phase 3: trauma activation (assessment) 

- Phase 4: trauma elaboration (desensitization) 

- Phase 5: linkage to an adaptive perspective (installation) 

- Phase 6: intensive awareness of body sensations (body scan) 

Stage 3: closure and reassessment 

- Phase 7: debriefing (closure) 

- Phase 8: reassessment 

All the subjects received the entire EMDR protocol. The study focused 

specifically on phase 4 (desensitization).  We compared the RECALL phases in 

which the subjects were recalling the event per se as well as the phase in which they 

were asked to focus on the worst image on the event itself (pre-RECALL): along 
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with eye movements in wEM groups and without eye movements in the woEM 

group. 

 

4.2.3 NIRS data recording 

A commercially NIRS device (NIRO-200NX, Hamamatsu Photonics K. K., Japan) 

equipped by two probes was adopted in our study. Each probe consisted of a photo 

- emitter and three infrared LED photo - detectors (peak wavelength nominally 

equal to 735, 810, and 850 nm). Before probes application, we carefully cleaned 

subject's frontal skin, to avoid the thin lipid film may reflect back part of the NIR 

energy. Probes were positioned bilaterally on the subject's forehead with detector 

placed medially with respect to the emitter. Receiver probe was placed 2 cm away 

from midline and 1 cm above the supraorbital ridge. Figure 4.1 shows the probes 

placement with dotted line representing midline and supraorbital ridge.  

 

 

Figure 4-1. NIRS probes placement on patient forehead. Detectors are placed 

medially with respect to emitters. Detectors are placed 2 cm away from midline and 1 cm 

from supraorbital ridge. 
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Relative concentration of O2Hb and HHb were continuously measured at a 

sampling frequency of 2 Hz. In addition, the adopted NIRS device measures the 

Total Oxygenation Index (TOI), and Tissue Hemoglobin Index (THI). TOI and THI 

represent the oxygen saturation of tissue hemoglobin and the relative concentration 

of total tissue hemoglobin, respectively. TOI provides information about mixed 

arterial - venous saturation, and it is a robust metric of tissue oxygen supply-demand 

balance (Waltz et al. 2015), whereas THI is representative of cerebral vasomotor 

reactivity (Rebet et al. 2015; Myers et al. 2009). 

Differently from the O2Hb and HHb, that are computed with the modified Beer-

Lambert law (Owen-Reece et al. 1999), TOI and THI are measured by adopting the 

Spatially Resolved Spectroscopy (SRS). Indeed, the reliability of the NIRS 

measurements can be affected by confounding factors, such as high skin light 

absorption. For this reason, some recent NIRS devices introduced SRS technique 

to lower the effect of the confounding factors (Canova et al. 2011). In SRS, the 

slope of light attenuation versus distance is measured at a distant point from the 

light input using photon diffusion theory (S. Suzuki et al. 1999). 

 

Since the apparent THI varies depending on tissue types and the geometry of the 

measured parts, the following normalized THI (nTHI), is measured: 

 

𝑛𝑇𝐻𝐼(𝑡) =  
𝑇𝐻𝐼(𝑡)

𝑇𝐻𝐼(0)
=  

𝑐𝐻𝐵(𝑡)

𝑐𝐻𝑏(0)
,     𝑛𝑇𝐻𝐼(1) = 0 

 

nTHI represents the ratio of the current value to the initial value of total 

hemoglobin. 

Each EMDR session was recorded with a digital video camera (DCS-900. D-LINK 

Corporation, Taiwan) placed behind the therapist and filming patient’s eyes. The 

video and NIRS recording began synchronously. In this way, pre-RECALL and 

RECALL phases were individualized and separated. 

 

4.2.4 Data analysis 

Initially, for each subject, we identified the beginning of pre-RECALL and 

RECALL events from the recorded video and utilized them to separate the NIRS 

signals in the corresponding phases. Within each event, we preprocessed data: we 

adopted a low-pass filtering with a 16th order Chebyshev filter with a cut-off 

frequency of 250 mHz, followed by a fifth-order high-pass Chebyshev filter at 25 

mHz. Within each pre-RECALL and RECALL, we normalized data to a 100 time 

points. Then, we computed the mean and the angular coefficient of the curves of 

O2Hb, HHb, TOI, and nTHI. A positive angular coefficient indicates the parameter 
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is increasing, whereas a negative angular coefficient states for a diminishing 

parameter. For each subject and for each parameter, we computed the percentage 

of positive angular coefficients for pre-RECALL and RECALL separately. 

NIRS signals were also analyzed in the frequency domain as slow frequency 

drifts convey autonomous nervous system information. We analyzed low frequency 

(LF) bandwidth. LF correlates to M-waves in the bandwidth of 60 to 140 mHz and 

represent vascular regulation of the autonomic nervous system. NIRS signal was 

analyzed with a time–frequency technique because of its nonstationarity. A time–

frequency distribution belonging to Cohen class was computed, and a Choi–

Williams distribution was adopted as kernel (Castiglioni 2005; Choi and Williams 

1989) 

 

𝐷𝑥𝑥(𝑡, 𝑓) =  ∭ 𝑥 (𝑡′ −  
𝜏

2
) 𝑥∗ (𝑡′ + 

𝜏

2
) 𝑔(𝜏, 𝜃) ∙ 𝑒𝑗2𝜋𝜃(𝑡′−𝑡)𝑒−𝑗2𝜋𝑓𝜏𝑑𝑡′𝑑𝜃𝑑𝜏

+∞

−∞

 

 

where 

𝑔(𝜏, 𝜃) =  𝑒
𝜃2𝜏2

𝜎  

 

Scaling factor σ is the selectivity of the kernel and may vary from 0.1 to 10. We 

chose a value of 0.5, as it was low enough to attenuate interference terms, but it 

guaranteed a good representation of frequency components. Once 𝐷𝑥𝑥(𝑡, 𝑓) was 

computed, power spectral density within LF bandwidth was extracted from CW 

distribution (Salvi et al. 2017). 

After preprocessing, time and frequency domains parameters computing, NIRS 

signals of O2Hb and HHb of pre-RECALL and RECALL intervals were 

decomposed using the Empirical Mode Decomposition (EMD) to obtain one 

intrinsic mode function (IMF1). We adopted an adaptive algorithm with the 

following parameters: normalized standard deviation threshold = 0.1, minimum 

peak prominence = 0.1, and order of the low pass filter for the nonuniform filter 

length = 100. Then, to measure signal complexity, we computed the Permutation 

Entropy (PE) and Fuzzy entropy (FE) of the obtained IMF1s (see Chapter 3). 
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We finally computed Relative Power (PIMF1) to measure the amount of 

spectral power associated to the IMF1. PIMF1 was computed as the ratio between 

the variance of IMF1 and the variance of the corresponding original signal x  

 

𝑃𝐼𝑀𝐹1 (%) =  
𝑣𝑎𝑟(𝐼𝑀𝐹1)

𝑣𝑎𝑟(𝑥)
∙ 100 

 

4.2.5 Statistical analysis 

Trauma severity levels and previous EMDR experiences with NIRS parameters 

were correlated by means of a Pearson’s Chi-Square test and the correlation ratio 

(η). We analyzed the efficacy of the EMDR treatment for wEM and woEM by 

comparing the VOC and SUD at the beginning and at the end of the treatment 

between wEM and woEM. Since they were score data, we adopted a Wilcoxon 

signed rank test to compare them.  

As a primary endpoint, we analyzed NIRS time parameters to understand the 

main effects of eye movement on brain oxygenation. Firstly, we compared mean 

slope changes of O2Hb, HHb, TOI, and nTHI during pre-RECALL/RECALL for 

wEM and woEM groups: for each parameter, a 2-way analysis of variance 

(ANOVA) was carried out, considering group (wEM, woEM) and hemisphere 

(right, left) as factors, and number of pre-RECALL/RECALL periods, trauma 

severity (t or T), and previous EMDR experiences (present or absent) as covariates. 

ANOVA analysis was exploited to select only variables that showed a statistically 

significant difference. The percentage of positive angular coefficients between 

wEM and woEM groups was compared by a two samples t-test, to explore different 

trends of the EMDR sessions. Finally, we performed a paired t-test to compare the 

different percentage of positive slopes of pre-RECALL/RECALL periods within 

the wEM and woEM groups. For all tests, we assumed a significance level α was 

set equal to 0.05, and all tests were performed considering different variance, since 

the two groups had different numerosity. 

As a secondary endpoint, we performed a multivariate analysis to find the most 

important variables characterizing the NIRS patterns of complexity in EMDR 

therapy. We performed an unsupervised and supervised classification of collected 

variables.  
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The process starts with features selection and extraction: it is essential when 

dealing with systems characterized by many data and possible redundancy (Rosati, 

Balestra, and Molinari 2012; Molinari et al. 2014). 

 

In multivariate analysis, we included two clinical features: 

- T: trauma severity 

- N: number of pre-RECALL/RECALL events 

Also, for O2Hb and HHb of right and left hemispheres, we included the 

following parameters:  

- M: temporal mean of the original signal 

- PLF: relative power in the low frequency band 

- PE: permutation entropy of IMF1 

- FE: fuzzy entropy of IMF1 

- PIMF1: relative power of IMF1 

 

In summary, we collected two clinical parameters and 5 parameters for 2 

signals for 2 hemispheres, for an overall number of 22 parameters for each pre-

RECALL and RECALL events. 

As a first step of unsupervised classification, we removed collinear variables 

(Giustetto et al. 2010). To detect the most significant variables, we performed a 

one-way ANOVA. We considered group as independent variable (two levels: 

wEM, woEM) and the 22 parameters as independent variables. A parameter was 

considered significant in discriminating wEM from woEM if the ANOVA p-value 

was lower than 0.05. Afterwards, we performed an unsupervised learning by means 

of Principal Component Analysis (PCA). The difference between the coefficients 

of the most discriminant principal components wEM and woEM was tested by a 

two samples t-test. 

We chose a multivariate analysis of variance (MANOVA) to perform a 

supervised classification of the two groups. By means of a MANOVA we 

performed a linear combination of the available parameters, to group the parameters 

into one, called Canonical Variable. To discriminate those variables responsible for 

the biggest part of the total variance, we performed a multivariate feature selection 

of the original 22 parameters. For each parameter, we performed a Wilk’s lambda 

test: 
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Λ =  
|𝑊|

|𝑊| +  |𝐵|
 

 

where |𝑊| is the determinant of the within group variance matrix and |𝐵| is the 

between groups variance matrix. The returned value is between 0 and 1, and 

provides a measure of the mean differences between the groups: the smaller this 

value, the greater these differences. (Kshirsagar 2004). We chose, for the 

subsequent MANOVA analysis, the first 3 most significant variables (i.e. with the 

lowest Λ values).  

 

4.3 Results 

Initial and final SUD scores, and VOC scores are reported in Table 4-I. We found 

a significant difference in the final SUD between wEM and woEM patients 

(Wilcoxon signed rank test P = 0.03), but not a significant difference in the VOC 

values. 

Two subjects (1 belonging to the wEM group and 1 woEM) were excluded 

from the analysis due to bad quality of NIRS registrations. Table 4-II summarizes 

the demographics of the remaining 10 wEM and 9 woEM subjects. No significant 

Pearson’s Chi-Square coefficients (P > 0.1) and correlation ratio (η < 0.32) were 

found. 

 

Table 4-I. VOC and initial and final SUD for wEM and woEM patients. P is the significance 

of the Wilcoxon signed rank test between the scores at the beginning and at the end of the 

therapy. *: P<0.05 

 wEM woEM P 

Initial SUD 7.95 ± 1.59 7.40 ± 1.43 0.41 

Final SUD 0.10 ± 0.30 2.85 ± 3.56 0.03* 

VOC 2.23 ± 1.50 2.60 ± 1.51 0.58 
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Table 4-II. Summary demographic data. Trauma severity has been categorized as low (t) or 

severe (T). 

Case Group  Sex Age 

Previous 

EMDR 

treatment 

Trauma 

severity 

Number of 

pre-RECALL 

- RECALL 

periods 

1 wEM F 40 No t 20 

2 wEM F 25 Yes T 25 

3 wEM F 34 No T 8 

4 wEM F 41 No T 6 

5 wEM F 24 Yes T 13 

6 wEM F 37 No T 9 

7 wEM F 31 Yes t 17 

8 wEM F 41 No T 22 

9 wEM F 29 Yes t 12 

10 wEM M 31 Yes t 16 

11 woEM F 29 Yes T 8 

12 woEM F 25 Yes t 5 

13 woEM M 34 Yes T 27 

14 woEM M 42 Yes t 13 

15 woEM F 31 No T 12 

16 woEM M 35 Yes t 21 

17 woEM F 38 No T 16 

18 woEM M 28 No T 8 

19 woEM M 25 Yes t 11 
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4.3.1 wEM – woEM angular coefficients 

Figure 4-2 shows the slope of O2Hb and HHb curves of each patient averaged for 

pre-RECALL and RECALL. It can be noticed that in wEM O2Hb slightly decreased 

during pre-RECALL, whereas it increased in RECALL. Indeed, in 7 out 10 

subjects, O2Hb diminished during pre-RECALL and it increased during RECALL. 

Conversely, HHb weakly increased in woEM during pre-RECALL, followed by a 

decrease in subsequent RECALL. A 2-way ANOVA evidenced a significant main 

effect of group (wEM vs woEM) on the mean slope of O2Hb (F(1,37) = 7.6, P = 0.01) 

and HHb (F = 6.2, P = 0.02) in pre-RECALL. As for the RECALL, a 2-way 

ANOVA revealed a significant effect of group on the slope of O2Hb (F = 7.274, P 

= 0.011), and HHb (F = 7.763, P < 0.01). No further significant effect for 

hemisphere, or interaction between group and hemisphere were observed. 

 

 

Figure 4-2. Right hemisphere O2Hb and HHb slopes for pre-RECALL and RECALL. 

Subjects are numbered from 1 to 10 for wEM group and from 1 to 9 for woEM group. 

Data are reported as mean ± standard error. 
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4.3.2 wEM – woEM percentage of positive angular coefficients 

We averaged O2Hb and HHb values of left and right hemispheres, and we computed 

the percentage of positive angular coefficients for O2Hb and HHb within pre-

RECALL and RECALL. Table 4-III reports results of paired t-test of percentage 

of positive slopes of wEM with respect to woEM. It can be observed that both O2Hb 

and HHb decreased during pre-RECALL, followed by an increase during 

RECALL. Particularly, two observations can be done: 1) during pre-RECALL, 

woEM subjects have a significant higher percentage of HHb positive angular 

coefficients than wEM subjects, and 2) during RECALL, woEM subjects have a 

significant lower percentage of positive angular coefficients with respect to wEM 

group. In woEM patients, the HHb increased during the simulated pre-RECALL 

more frequently than wEM subjects did, whereas during RECALL the mean 

concentration of HHb slightly went down. 

 

Table 4-III. two-sample t-test of mean percentage of positive slopes of wEM and woEM groups 

  Periods Mean ± Ste 

95% Confidence 

interval  Sig. 

Lower Upper 

O2Hb 
pre-RECALL -10.01 ± 9.71 -31.84 11.82 0.33 

RECALL 9.86 ± 7.48 -5.96 25.68 0.21 

HHb 
pre-RECALL -21.48 ± 8.90 -40.19 -2.77 0.027* 

RECALL 19.28 ± 7.27 3.74 34.81 0.018* 
* P < 0.05 

 

We compared pre-RECALL and RECALL mean percentage of positive coefficients 

for O2Hb and HHb.  Figure 4-3 shows the mean percentage of positive coefficients 

for each group and condition. Black bars represent pre-RECALL periods, red bars 

represent RECALL periods. In wEM patients, 27.26% of O2Hb angular coefficients 

were positive, whereas 57.16% of O2Hb angular coefficients were positive in 

RECALL events. A paired t-test of mean percentage positive angular coefficients 

showed that wEM subjects a significant higher percentage of positive coefficient of 

O2Hb in RECALL than pre-RECALL (27.26% versus 57.16%, P < 0.002). 

Conversely, woEM group did not show statistically difference in O2Hb between 

pre-RECALL and RECALL (34.24% versus 46.76%, P > 0.4). woEM subjects have 

a percentage of positive coefficient of HHb in pre-RECALL significatively higher 
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with respect to RECALL (68.02% versus 33.96%, P < 0.03), differently from wEM 

group (43.79% versus 55.32%, P = 0.39).  

 

 

4.3.3 Unsupervised analysis - PCA 

The most significant parameters for pre-RECALL and RECALL obtained from 

ANOVA are reported in Table 4-IV. It can be observed that Components are 

mainly related to frequency domain parameters. This result confirms the importance 

of vasomotricity and sympathetic action in the EMDR therapy. It can also be 

observed that number of repetitions, HHb mean concentration and complexity 

parameters provide a contribute in the separation of the two groups. Then, from raw 

data of the selected parameters, we computed the covariance matrix. From the 

covariance matrix, we obtained the eigenvalues for pre-RECALL and RECALL 

(Figure 4-4). It can be observed that, in both cases, two eigenvalues are higher than 

1: hence, two components convey nearly all the variance of the original variables. 

Particularly, the first two components convey for the 71.66% and for the 63.59% of 

the total variance for the pre-RECALL and RECALL periods respectively. 

 

 

Figure 4-3. Mean percentage of positive angular coefficients of O2Hb (A) and HHb (B) in 

pre-RECALL and RECALL periods for wEM and woEM groups. * : P < 0.05. Data are 

reported as mean ± standard error. 
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Table 4-IV. Significant variables after ANOVA analysis. R stands for right hemisphere, L 

stands for Left hemisphere. 

 

 

 

 

 

pre-RECALL  RECALL 

Variable Hemisphere  Variable Hemisphere 

PLF O2Hb R  PLF O2Hb R 

PLF HHb R  PLF HHb L 

PLF O2Hb L  
PE HHb L 

FE HHb L  FE HHb L 

M HHb L  M HHb L 

N     N   

 

Figure 4-4. Eigenvalues applied to the dataset consisting of 6 variables for pre-

RECALL (left panel) and RECALL (right panel) summarized in Table IV. The first two 

eigenvalues are higher than 1 (horizontal filled line). Therefore, these two eigenvalues were 

adopted to represent the subjects in a reduced domain of two principal components. 



Effect of Ocular Movements During Eye Movement Desensitization 

and Reprocessing (EMDR) Therapy: a Near-Infrared Spectroscopy 

Study 

49 

 

Figure 4-5 reports the subjects’ distribution on the hyperplane formed by 

components 1 and 2. White circles represent wEM subjects, whereas black circles 

are the woEM subjects. The black continuous lines represent the projection of 

original variables on the hyperplane. It can be observed that PLF variables have 

positive components 1 and 2, and that first component well separates the two 

groups. Table 4-V reports the results of the t-test for the wEM versus woEM in pre-

RECALL and RECALL periods. It can be noticed that Component 1 significantly 

separates the two groups in both pre-RECALL and RECALL periods. 

 

Table 4-V. T-test comparing the scores of the Component 1 and Component 2 of wEM vs 

woEM groups in pre-RECALL and RECALL periods. The significance threshold is 0.05. First 

component significantly separates wEM from woEM subjects in both pre-RECALL and 

RECALL periods. Data are reported as mean ± standard deviation. 

Period Variable wEM woEM p 

pre-

RECALL 

Component 1 1.20 ± 1.25 -1.33 ± 0.82 <0.0001* 

Component 2 0.09 ± 1.54 -0.1 ± 0.86 0.75 

RECALL 
Component 1 0.82 ± 1.38 -0.91 ± 1.16 0.01* 

Component 2 0.25 ± 1.44 -0.28 ± 0.92 0.35 

     *: P<0.05  
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Figure 4-5. PCA representation of the subjects in the hyperplane of principal components 

1 and 2. Top panel: pre-RECALL. Bottom panel: RECALL. White circles represent wEM 

subjects, black circles those in the woEM group. The black lines represent the projection 

of the original variables in the hyperplanes. In variable names, R stands for right 

hemisphere, L stands for Left hemisphere. 
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4.3.4 Supervised analysis – MANOVA 

Table 4-VI reports the three variables with the most significant Λ for pre-RECALL 

and RECALL. It can be noticed that, in both cases, the power of HHb in LF band, 

FE of HHb, and the total number of repetitions are the most important variables. 

Table VI reports also the mean values of the most significant variables for wEM 

and woEM groups. It can be notices that wEM group has higher values of PLF and 

FE than woEM in pre-RECALL and RECALL periods. It may confirm that the 

vascular activity and the complexity of the physiological system during the EMDR 

therapy increases due to the eye movements. Figure 4-6 represents the subjects in 

the hyperplane of the first and second Canonical Variables. MANOVA shows that 

the dimension of the space containing the two groups means is equal to 1, and that 

one Canonical Variable separates the two groups. 

 

Table 4-VI. Most significant variables after Wilk’s Lambda analysis. The values of the 

variables are reported as mean ± standard deviation. In variable names, R stands for right, L 

stands for left hemispheres. 

Periods Variable wEM woEM Λ 

pre-RECALL 

PLF HHb - R 19.09 ± 6.44 11.99 ± 5.91 0.60 

FE HHb - L 0.014 ± 0.011 0.008 ± 0.013 0.69 

N 25.2 ± 11.6 16.2 ± 11.0 0.65 

     

RECALL 

FE HHb - L 0.025 ± 0.023 0.015 ± 0.015 0.85 

PLF HHb - L 20.80 ± 8.88 13.62 ± 6.70 0.84 

N 25.2 ± 11.6 16.2 ± 11.0 0.65 
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Figure 4-6. Representation of the subjects in the hyperplane of the first and second 

Canonical Variables. Upper panel shows the pre-RECALL periods, bottom panel 

represents the RECALL periods. The subjects of wEM group are represented with white 

markers. The subjects of the woEM group are represented with black markers. One 

Canonical Variable well separates the two groups. 
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4.4 Discussion 

Our results showed different oxygenation of PFC and system physiology pattern in 

the case of EMDR therapy with ocular movements with respect to a control group 

without them. In wEM subjects, O2Hb decreased during pre-RECALL, followed by 

an increase during RECALL. Conversely, in woEM subjects, we observed HHb 

increased during pre-RECALL, compensated by a decrease during RECALL. 

Finally, by considering descriptors of the complexity of the system physiology, we 

registered two different underlying patterns mainly due to a different sympathetic 

regulation. 

Several functional studies have been performed to study effects of EMDR on 

cerebral activation. Pagani and colleagues found a pattern of resynchronization of 

cerebral EEG waves and an increase of interhemispheric connectivity during 

EMDR sessions (Pagani et al. 2012). Nuclear medicine was adopted to explore the 

CBF by comparing cerebral activation during exposure to the traumatic memory 

before and after therapy. It was showed that EMDR therapy induces a significant 

modification of neuropsychological condition and CBF. Several modifications 

were observed in areas involved in stress management belonging to HPA axis 

(Pagani et al. 2007). However, to the best of our knowledge, EMDR was 

investigated only in one study with NIRS (Ohta ni et al. 2009). Differently from the 

present work, Ohta ni and colleagues compared patients with and without eye 

movements after 2 to 10 EMDR sessions to explore the effect of therapy over time, 

whereas our work was limited to only one session. However, authors observed an 

improvement in brain perfusion for both patients with and without eye movement 

Hence, no clear association between EMDR and lateral PFC over-activity over the 

time can be deduced. 

As a first result of interest of the present study, we observed a slight decrease 

of PFC microcirculation in the woEM group during the pre-RECALL period, as 

demonstrated by the decrease in HHb concentration. This phenomenon has been 

seldom reported in literature as negative BOLD response (NBR)(Mullinger et al. 

2014). It is a not fully understood phenomenon, hence several hypothesis about 

underlying physiological mechanisms have been provided (Maggioni et al. 2015). 

One of the most reliable is that some brain regions require a raising in oxygen 

consumption due to the increase of their activity. Then, to satisfy its supply, oxygen 

is taken from contiguous areas, coinciding with monitored areas and where NBR is 

observed. In our recorded cases, slight but significant NBR in PFC has been 

recognized, maybe due to the raising of activity in closer brain areas which probably 

required a supplement consumption of oxygen.  
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Subjects in two groups, during the experimental protocol, dealt with an 

identical stressful condition, but with two different instruments to face it. Indeed, 

woEM subjects during RECALL were not focusing on a particular activity, so the 

resting state was theoretically the only activated network. Nevertheless, we suppose 

that subjects could feel in a stressful condition: while recalling the event, a traumatic 

memory emerged without resolution, and this could lead to the alteration of the 

network at rest. Subjects in wEM group showed an opposite behavior: during 

RECALL, they focused their attention on a secondary activity due to EM. It allowed 

the subjects to diminish their anxiety. The reduction in hardship was expressed in a 

differential modification of O2Hb in PFC, since it increased significantly during 

RECALL, then decreased to lower values during pre-RECALL: therefore, by 

focusing on the particular activity of eye movement, activity shifts toward the areas 

highlighted by previous functional studies. 

The study of complexity evidenced also an important role of frequency 

variables to define new variables in unsupervised and supervised learning. It is in 

good agreement with previous studies on EMDR, where a reduction in sympathetic 

activity (Schubert, Lee, and Drummond 2011) and mostly an increase in 

parasympathetic (Gunter and Bodner 2009) during pre-RECALL were reported, 

reinforcing the hypothesis that eye movements are dearousing. 

 

4.5 Conclusion 

We submitted two groups of subjects to EMDR therapy with and without eye 

movement respectively in order to observe the effects of cerebral hemodynamics, 

by assessing PFC with NIRS. Our outcomes revealed a different oxygenation 

pattern between pre-RECALL and RECALL periods in wEM group which is not 

observable in woEM. They evidenced a different hemodynamics induced by eye 

movements that may be helpful in resolving the stressful condition of trauma 

recalling. 
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Chapter 5 

Cerebrovascular pattern improved 

by ozone autohemotherapy: an 

entropy-based study on multiple 

sclerosis patients2 

5.1 Introduction 

5.1.1 General overview of ozone therapy 

Ozone is defined as a water-soluble molecule, chemically instable and with a strong 

oxidant power, composed by three atoms of oxygen and one odd electron. Oxygen-

ozone therapy refers to the administration of an oxygen-ozone compound: 

concentration, quantity and modalities vary according to physio-pathological 

condition of the subject and to the purpose of the treatment. The only 

contraindications to ozone administration are: hyperthyroidism and deficit of 

Glucose-6-phosphate dehydrogenase (N. Smith et al. 2017). 

One of the first applications of ozone in medicine was described by Leux Curtis 

in 1902 (Curtis 1902). In the paper, Curtis applied a combination of electricity, 

light, heat, and ozone to treat the phthisis of fifty patients suffering from 

                                                 
2 This chapter is based on the paper: Molinari, F., Rimini, D., Liboni, W. et al. Med Biol Eng 

Comput (2017) 55: 1163. https://doi.org/10.1007/s11517-016-1580-z 
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tuberculosis, including several cases of consolidation of lung and twelve cases of 

tuberculous ulcer. The objective of this early study was “oxygenating the blood, 

destroying pathogenic organisms in the body, and eliminating the products of 

retrograde metabolism”. Good results were obtained in nearly all the treated cases, 

with recovery of lung capacity and tuberculous infiltration resolution. Nowadays, 

ozone therapy is administered by autohemotherapy, subcutaneous and intra-

articular injection, rectal, nasal and vaginal insufflation. The only dangerous 

administration is inhalation, because it would cause bronchospasm and the irritation 

of the mucous membranes. The way of administration, the quantity, and the 

concentration percentage of oxygen and ozone in the compound vary according to 

the pathology and condition of the patient (“WFOT’s Review on Evidence Based 

Ozone Therapy” 2015).  

According to Arthur C. Guyton, “blood is a functional whole and any pain, 

suffering or chronic illness is also caused by insufficient oxygenation at the cellular 

level” (Guyton and Hall 2005). It means that good functioning of physiological 

systems depends on the equilibrium between oxidant and antioxidant species. An 

imbalance of oxidant compounds, called oxidative stress, may be the cause or a 

consequence of a disease. Oxidative stress is the imbalance between pro-oxidant 

and free radicals versus antioxidant system. It is induced by chemical and physical 

agents or by mitochondrial metabolic disorders. Oxidative stress is considered the 

responsible of inflammation and several pathologies, including atherosclerosis, 

neoplasia, arterial hypertension, rheumatoid arthritis, neurodegenerative diseases, 

and aging (Flora 2007). Since ozone is an oxidant and free radical generator, it was 

considered harmful for the organism until the nineties of the last century. Indeed 

ozone, by reacting with unsaturated fatty acids and antioxidants, generates a 

transitory increase of reactive oxygen species (ROS) and Lipid Oxidation Products 

(LOPs). However, further studies evidenced a natural ozone release in human 

reactions. For instance, Marx and Bardi demonstrated that immunoglobulin exert 

the bactericidal action by freeing ozone (Marx 2002). Ozone therapy is based on a 

controlled oxidative stress generated by ozone.  Within controlled blood volume 

and body compartments, oxygen-ozone compound induces a transitory increase of 

ROS and LOPs. ROS and LOPs increase glycolysis and mitochondrial and 

plasmatic antioxidant capacities, followed by all the consequent biological 

reactions (Velio Bocci 1995; Viebahn 1994; Velio Bocci et al. 2009; Muñoz 1993; 

Poppler et al. 1994; Simonetti, Liboni, and Molinari 2014). Particularly, LOPs 

interact with endothelium and activate NO synthetase: it induces NO release 

regulating vasodilation and inflammatory processes (Nakao et al. 2009; Pryor et al. 

2006).  
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5.1.2 The action of ozone on microcirculation pathologies 

Microcirculation is the thick network of small blood (capillaries, pre-capillaries, 

venule) and lymphatic vessels that allow the exchange of nutritious and cellular 

catabolites between blood and interstitial fluid. Vascular damage to the 

microcirculation vessels may vary according to the cause, entity, and location, and 

can be chronical or acute. Oxidative stress is one of the main risk factors, such as 

arterial hypertension, diabetes and insulin resistance, dyslipidemia, smoking, 

chronical inflammation, trauma. 

Ozone in red blood cells increases glycolysis and adenosine triphosphate (ATP) 

production (Clavo et al. 2003). Furthermore, it has been demonstrated that ozone 

does not induces hemoglobin oxidation in methemoglobin. Indeed, by increasing 

membrane negative electric charge, it prevents erythrocyte adhesion to 

endothelium. Furthermore, by shortening lipid chain of cytoskeleton of red blood 

cells, it improves perfusion in microcirculation. Further researches demonstrated 

the antibody action and static virus of ozone (Agrillo et al. 2007; Marx 2002; 

Ohmine 2005; Madej et al. 2007). 

Ozone eases blood flow, and reduces filterability, viscosity and platelet 

aggregation of red blood cells. In this way, ozone eases release of oxygen, stimulate 

release of growing factors, and rebalance cellular redox system (Valacchi and Bocci 

1999; Giunta et al. 2001). 

 

5.1.3 Ozone therapy in the multiple sclerosis 

Multiple sclerosis (MS) is a disease of the central nervous system, characterized by 

multicentric inflammation, which causes neurodegeneration, and destruction of 

myelin (Trapp et al. 1998). MS is considered the major cause of neurological 

disability among young adults and affects approximately 2.5 million people 

worldwide. There are three different manifestations of MS: relapsing remitting, 

primary progressive, and secondary progressive. In most of MS patients, the disease 

course is relapsing remitting (MS-RR): it is characterized by acute relapses 

(demyelinating and inflammatory episodes) followed by periods of clinical 

remission. Nearly in 15% of MS patients it is characterized by the absence of 

remissions, and the disease course is primary progressive (Debouverie et al. 2008). 

Eventually, nearly 50-60% of MS-RR patients will progress to a very debilitating 

form of the disease, called secondary progressive, defined by sustained functional 

deterioration without periods of remission (Gaciasa and Casaccia 2013). Hence, 

clinical disability is a prominent feature of this disorder, as a result from axonal 

damage and neurodegeneration (Trapp and Nave 2008). 
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 If the vascular implications of chronic venous insufficiency in MS are still 

debated (Morovic and Zamboni 2012; Dake 2012), the increased level of oxidative 

stress found in MS patients has been clearly demonstrated (Lu et al. 2000). 

Therefore, due to the inflammatory nature and oxidative stress in MS, ozone 

therapy is suitable to be an adjuvant treatment. 

The quantification of vascular and metabolic cerebral effects of ozone therapy 

on patients is affected by cerebral autoregulation. In fact, cerebral autoregulation 

maintains a constant the level of oxygen which is supplied to the brain, 

independently with possible changes in the systemic oxygen saturation (Schytz et 

al. 2012). Therefore, complex methods and techniques are needed to investigate the 

cerebrovascular and metabolic effects of ozone therapy. Previous studies analysed 

the long-term effects of ozone autohemotherapy in MS patients and controls by  

using transcranial Doppler sonography and NIRS (Molinari et al. 2014; Lintas et al. 

2013). Previous works well documented that ozone autohemotherapy increases the 

level of oxygen in the brain up to 1.5 hours after the reinfusion of the ozonized 

blood. We also demonstrated that, to avoid adverse vascular effects during ozone-

autohemotherapy, oxygen-ozone compound should be administered slowly. Indeed, 

fast reinfusion causes vasoconstriction due to sympathetic and parasympathetic 

systems response (Rimini et al. 2016). 

NIRS is generally adopted to monitor the changes in the concentrations of the 

oxygenated (O2Hb) and reduced (HHb) haemoglobin in brain tissues (Elwell et al. 

1994), thus providing vascular and flow related information. Some NIRS devices 

quantify brain metabolism by measuring the concentration changes of the 

cytochrome-c-oxidase. Cytochrome-c-oxidase is a biological enzyme and it is the 

terminal oxidase of the mitochondrial electron transport chain. Cytochrome-c-

oxidase can be considered the pacesetter of mitochondrial oxidative metabolism 

and ATP synthesis, and its concentration is related to the level of mitochondrial 

activity of the neurons (Arnold 2012; Srinivasan and Avadhani 2012). We showed 

that the MS subjects increased the cytochrome-c-oxidase activity and concentration 

about 40 minutes after the end of the treatment. This result demonstrated the 

positive metabolic effect of ozone in reducing the level of oxidative stress and 

promoting brain metabolism (Molinari et al. 2014). However, due to the interaction 

with possible cofounding effects, such as skin light adsorption and low tissue 

concentration, newest NIRS devices do not measure cytochrome-c-oxidase 

anymore.  
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The NIRS signals, carry considerable information in the frequency domain as 

well. Obrig et al. showed that cerebral NIRS signals allow the evaluation of the 

cerebral vasomotor reactivity and  autoregulation (Obrig et al. 2000). In our 

previous studies, we combined time and frequency analysis of NIRS signals in order 

to extract physiological information while trying to avoid the possible noise sources 

(Molinari et al. 2006; Molinari et al. 2015; Liboni et al. 2007). Furthermore, 

cerebral NIRS signals acquired when the subject is not in resting conditions might 

be nonstationary in nature; hence, ad-hoc time-frequency analysis should be used 

(Molinari et al. 2010; Liboni et al. 2007). Given the complex interaction between 

infrared light and tissues, NIRS signals are nonlinear in nature. Therefore, the time 

and time-frequency analysis might be insufficient to capture the subtle variations 

from the signals, whereas nonlinear techniques can provide more accurate 

information (Acharya, Molinari, et al. 2012; Molinari et al. 2013; Faust et al. 2012; 

Molinari et al. 2015). 

In this chapter, we performed a linear and nonlinear analysis of cerebral NIRS 

signals acquired from MS patients and controls during major ozone 

autohemotherapy. The objective of the present work is assessing the effect of the 

ozone autohemotherapy on the cerebral pattern of MS patients even without 

monitoring the cytochrome-c-oxidase concentration. Furthermore, we also 

investigated the long term effect of ozone autohemotherapy in brain metabolism, 

by comparing autoregulation at the beginning of therapy, at the end of the therapy, 

and 24 hours after therapy. 

 

5.2 Material and methods 

5.2.1 Patients demographics 

The experiment was conducted after having obtained the approval from the Review 

Institutional Board of the “Un Passo Insieme ONLUS Foundation” (Valdellatorre, 

Torino, Italy), of the “KAOS ONLUS Foundation” (Caselle Torinese, Torino, 

Italy), and of the Italian Society for the Oxygen and Ozone Therapy (SIOOT, Gorle 

(BG), Italy). The approved informed consent was read and explained to the subjects 

before the tests and they were required to sign it. 

We recruited 10 subjects suffering from MS-RR, with a confirmed diagnosis of 

pathology whose onset was at least five years before. Two MS-RR subjects 

successfully underwent therapy, but interrupted the recording and did not reach the 

end of the monitoring. These two subjects were excluded from the analysis. Thus, 
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our sample group consists of 8 MS-RR (age: 40.2±3.9, 4 females) and 10 healthy 

controls (age: 60.1±4.2 years, 6 females). In MS-RR group, the years from the onset 

of the pathology were 7.3±3.3 years, the EDSS average score was in the range 1.5 

– 3.5. All the subjects followed a therapy consisting in beta interferons injections, 

and corticosteroids administered in correspondence of attacks. In control group, we 

enrolled 10 volunteers without any neurological, metabolic, or cardiovascular 

disease. Heavy smoking and hypertension subjects were excluded.  

 

5.2.2 Experimental protocol 

The experiment was performed in two days. On day one, we administered major 

ozone-autohemotherapy and measured autoregulation before and after the therapy. 

On the second day, we only monitored autoregulation. Two end-points were 

analyzed: first end-point was assessing the effect of the ozone autohemotherapy on 

the cerebral pattern of MS patients even without monitoring the cytochrome-c-

oxidase concentration. At this aim, we measured time and time-frequency entropy-

based features within 7 windows of analysis. As a secondary end-point, we 

investigated long-term effects of ozone on microcirculation, by measuring cerebral 

autoregulation just before and up to 24 hours after the major ozone-

autohemotherapy.  

Cerebral oxygenation was monitored with NIRS from the forefront of the 

subjects. We adopted a NIRO200 device (Hamamatsu Photonics K.K., Japan), 

equipped by two probes, which consisted of a photo-detector and four infrared LED 

sources (wavelengths equal to 775, 810, 830 and 910 nm). Each probe was placed 

on the subject’s forehead, 2 cm away from midline and 1 cm above the supraorbital 

ridge to avoid the sinuses (Molinari et al. 2006). The sampling frequency of the 

system was set to 2 Hz. The pre-processing consisted in a IIR digital 8th order 

Butterworth band-pass filter, with lower frequency equal to 20 mHz and an upper 

bound set to 250 mHz. 

 

5.2.3 Primary end-point: effect of ozone autohemotherapy on 

cerebral patterns 

The major ozone autohemotherapy protocol consists of the following steps: 

1. drowning of 240 grams of whole blood from the antecubital vein of the 

subjects by using SanO3 bags (Haemopharm, Milan, Italy); 
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2. mixing of the blood with 240 ml of O2/O3, composed by O2 at 50%, with an 

O3 concentration equal to 40 μg/ml (Medical 95 CPS, Multiossigen, Gorle 

(BG), Italy); 

3. slow blood re-infusion in the same vein.  

 

The subjects were asked to stay supine, keeping eyes closed and breathing 

normally. The NIRS device measured in real-time the concentration changes of the 

O2Hb and HHb for both the hemispheres. Since we did not find any statistically 

significant difference in the concentration changes of the two hemispheres (paired 

Student’s t-test; p > 0.8), we averaged the signals of the two hemispheres. Hence, 

for each subject, we recorded the O2Hb and HHb concentrations. We analysed the 

acquired signals in 7 different time intervals, lasting 256 s each: 

1. baseline recording; 

2. blood drawing; 

3. middle of reinfusion; 

4. end (last 256 s) of reinfusion; 

5. 40 minutes after reinfusion; 

6. 1 hour after reinfusion; 

7. 1.5 hours after the reinfusion.  

We chose these analysis windows in order to observe specific event related and 

long-term changes. For each window and on each patient, we performed time 

domain analysis of the signals, by computing the average O2Hb and HHb 

concentration within each observation windows. 

The NIRS signals are characterized by a marked nonstationary nature and hence 

time-frequency analysis is required (Molinari et al. 2010; Molinari et al. 2014; 

Liboni et al. 2007). Within each monitoring window, we performed a time-

frequency analysis and we computed a Choi-Williams (CW) distribution for O2Hb 

and HHb (see Chapter 5) (Barry 1992; Molinari et al. 2010).  

From the time-frequency representation, we computed the relative power of the 

low-frequency band (LF 40 mHz – 150 mHz): LF power was computed as the ratio 

between the power in the LF band over the total signal power (Obrig et al. 2000).  

The Shannon Entropy (SE) is a measure derived from the field of information 

theory (Kumar, Kumar, and Kapur 1986). SE is based on the probability 

distribution; hence, to make it applicable in signal processing, the power spectral 

densities must be normalized. However, our signals are nonstationary, so, we 
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defined the SE based on the time-frequency representation 𝐷𝑥(𝑡, 𝑓) of the signals. 

Firstly, we normalized the power of the 𝐷𝑥(𝑡, 𝑓) as follows: 

 

𝑑𝑥(𝑡, 𝑓) =  
𝐷𝑥(𝑡, 𝑓)

∬ 𝐷𝑥(𝑡, 𝑓)𝑑𝑡𝑑𝑓
+∞

−∞

 

 

in order to make the overall power equal to 1. Then we defined the 

instantaneous SE as: 

 

𝑆𝐸(𝑡) =  − ∫ 𝑑𝑥(𝑡, 𝑓) ∙ ln(𝑑𝑥(𝑡, 𝑓))  𝑑𝑓

+∞

−∞

 

 

Figure 5-1 shows an example of time-frequency analysis for a representative 

subject. Figure 5-1A reports the O2Hb concentration changes during the baseline 

recording of healthy subject. Figure 5-1B is its corresponding CW representation 

with function of time and frequency (grey box indicates LF band). Figure 5-1C 

reports the SE. The time course of the SE was averaged to compute a single value 

for each signal. 

Within each window, we performed and Empirical Mode Decomposition 

(EMD) for the O2Hb and HHb signals. From the EMD, we extracted the first three 

Intrinsic Mode Functions (IMFs) of O2Hb and HHb signals, and, for each IMF, we 

computed two nonlinear metrics: Sample Entropy (SampEn) and Hurst Exponent 

(HE) (see Chapter 3). 

 

 

 

 



Cerebrovascular pattern improved by ozone autohemotherapy: an 

entropy-based study on multiple sclerosis patients 
63 

 

 

 

 

Figure 5-1. (A) Time course of the concentration of O2Hb during baseline. (B) CW 

transform of the signal. The gray zone represents the LF band. The gray rectangle depicts 

the LF band. (C) Corresponding instantaneous SE derived from the CW transform. The 

time course of the SE was averaged to compute a single value for each signal. 
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5.2.4 Secondary end-point: short- and long-term effects of ozone on 

cerebral autoregulation 

Autoregulation aims to maintain constant cerebral blood flow (CBF), despite 

the systemic pressure variation. It is essential maintaining CBF constant, in order 

to preserve brain activity and metabolic demand (Basso Moro et al. 2014). Hence, 

as a secondary end-point, we investigated how ozonetherapy affected 

autoregulation in healthy controls and MS patients. A good and easy-to-measure 

indicator of autoregulation is the modification of O2Hb during apnea (Gersten 

2015). Indeed, during apnea, to provide oxygen to the brain constantly, CNS 

activates an autoregulatory/hyperemia mechanism. During apnea, the relative 

pressure of CO2 (PCO2) increases, hence H+ ions increases and pH decreases. To 

favor CO2 removal, section of vessels increases (vasodilatation), with a consequent 

O2Hb increase. Hence, ΔO2Hb, the difference between the O2Hb at baseline and 

O2Hb at the end of apnea, was measured. Autoregulatory response was measured 

with the Breath Holding Index (BHI) (Molinari et al. 2006), computed as the ratio 

between the slope of O2Hb concentration during apnea and the duration (in seconds) 

of apnea itself: 

 

𝐵𝐻𝐼 =  
𝑂2Hb 𝐵𝐻 − 𝑂2Hb 𝐵𝐴𝑆𝐸

𝐷𝐵𝐻
 

where O2HbBH is mean O2Hb concentration during the last 10 seconds of apnea, 

O2HbBASE is O2Hb mean concentration during the last 10 seconds before apnea, and 

DBH is apnea duration.  

We investigated how autoregulation varies at short- and long-term after 

ozonetherapy. The short-term autoregulation was measured during the 

experimental setup previously described (paragraph 5.2.3). BHI was measured 

between the observation windows 1 and 2, and just after the observation window 7. 

As for the long-term autoregulation, a second NIRS monitoring was administered 

24 hours after ending the first one. For the second NIRS monitoring, the 

experimental conditions were maintained as equal as possible to the first. Second 

monitoring consisted of a 5 minutes baseline recording, followed by a breath 

holding test. In summary, we measured BHI in three different periods: before ozone 

autohemotherapy (BHI0), 1.5 hours after ozone autohemotherapy (BHI1.5-hours), and 

24 hours after ozone autohemotherapy (BHI24-hours). 
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5.2.5 Statistical Analysis 

Grouped data are expressed by mean ± SD. Data normality was tested by a 

Kolmogorov–Smirnov test, followed by a Student’s t-test to check differences in 

the mean values. For all the tests, we adopted a confidence level of 95%.  

As for the primary end-point, multivariate analysis of variance (MANOVA) 

was used to compare the entropy data among the two groups and their change from 

the beginning to the end of the major ozone autohemotherapy. The overall number 

of the original features was 98 for each subject, 14 for each analysis window. The 

14 features were: 

- SE of O2Hb and HHb signals (2 features) 

- SampEn and HE of the three IMFs from O2Hb and HHb signals (12 

features).  

Feature reduction was performed by removing the variables that explained a 

statistically low amount of  overall data variability by using the Wilk’s lambda (el 

Ouardighi, el Akadi, and Aboutajdine 2007). The number of features decreased 

from 98 to 35 and the MANOVA was performed on these remaining variables. The 

original features that contributed the most to the canonical variables were 

considered as the most important to assess the changes in the cerebrovascular 

pattern induced by the ozone therapy and captured by NIRS. 

As for the secondary end-point, BHI at the 3 time points were compared by an 

analysis of variance (ANOVA), with time point as a factor, and BHI measures (i.e. 

BHI0, BHI1.5-hours, BHI24-hours) as dependent variables. 

 

5.3 Results 

5.3.1 Time Changes in Brain Oxygenation 

Figure 5-2 depicts the average concentrations of O2Hb (Figure 5-2A) and HHb 

(Figure 5-2B) signals. The concentrations are normalized and scaled with respect 

to the first window (baseline), which is thus zero valued. Controls are depicted in 

white, and MS are depicted in gray. In accordance to previous studies, we found 

that ozone autohemotherapy increased the level of brain oxygenation both in 

controls and MS subjects (Lintas et al. 2013; Molinari et al. 2014) (Figure 5-2A). 

However, it can be observed the MS subjects showed a decreasing concentration of 

O2Hb, more evident in the 5-th window (40 minutes after the end of blood 
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reinfusion). Then the oxygen concentration raised and reached positive levels 

(compared to window 1) 1.5 hours after the end of blood reinfusion. Conversely, 

controls maintained positive O2Hb concentration during the monitoring. This 

difference in the two groups might be explained by an increase in the oxygen 

consumption caused by the therapy on MS subjects. In fact, previous studies (Lintas 

et al. 2013; Molinari et al. 2014) showed that ozone therapy increased the level of 

mitochondrial activity, which lead to a higher oxygen consumption by neurons. 

Hence, a hypothesis is that the increase in the metabolic brain activity, occurring in 

MS subjects, lowered the overall O2Hb concentration, despite the reinfusion of 

highly saturated blood. Figure 5-2B shows the same HHb concentration change in 

MS patients and controls. The numerical values of concentrations of O2Hb and HHb 

are reported in Table 5-I. A Student’s t-test evidenced no significant difference 

from zero in the concentration of O2Hb and HHb (i.e. from the baseline; p > 0.1). 
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Figure 5-2. Boxplot showing the time evolution of the average concentration of O2Hb (A) 

and HHb (B) in the seven analysis windows. All the values are normalized and scaled w.r.t. 

the first window. Controls are depicted in white, MS patients in gray. +: outlier values. 
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Table 5-I. Relative concentration of O2Hb and HHb in the analysis windows. The first window 

(baseline) is taken as reference 

Time 

interval 

window 

Controls MS-RR 

O2Hb (%) HHb (%) O2Hb (%) HHb (%) 

Window 1 - - - - 

Window 2 0.362 ± 2.657 -0.633 ± 0.545 -0.151 ± 1.963 -0.180 ± 0.755 

Window 3 0.029 ± 2.394 -0.386 ± 1.436 -0.625 ± 1.463 -0.050 ± 0.750 

Window 4 -0.247 ± 2.126 -0.593 ± 1.716 -0.644 ± 2.002 -0.100 ± 0.574 

Window 5 1.453 ± 4.549 -0.791 ± 2.223 -1.768 ± 2.474 0.062 ± 0.771 

Window 6 1.334 ± 5.004 0.037 ± 1.766 -1.410 ± 2.882 0.045 ± 0.308 

Window 7 1.997 ± 4.743 0.201 ± 1.449 0.160 ± 2.489 0.009 ± 0.715 

 

5.3.2 Frequency Changes in NIRS Signals 

Time-frequency analysis evidenced how the power associated in the LF band, 

representative of the vasomotor tone, changed during the therapy. Figure 5-3 

represents the changes in the LF power (normalized to the total power of the signal) 

of control and MS subjects during the therapy. It can be noticed that during blood 

drawing (window 2), the power in the LF band increased significantly compared to 

baseline (p = 0.01) for the O2Hb signal of control subjects, and for the HHb signal 

of MS patients (p = 0.02). This effect is due to the vagal response to the needle 

insertion for blood drawing. In the rest of the therapy, we did not observe significant 

LF changes in the O2Hb and HHb signals. Table 5-II summarizes the LF relative 

powers in the seven analysis windows. 
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Table 5-II. Relative power in the LF band for the O2Hb and HHb signals in the analysis 

windows. 

Time 

interval 

window 

Controls MS-RR 

O2Hb (%) HHb (%) O2Hb (%) HHb (%) 

Window 1 0.098±0.059 0.115±0.060 0.077±0.023 0.081±0.037 

Window 2 0.231±0.219 0.163±0.128 0.142±0.115 0.159±0.115 

Window 3 0.104±0.046 0.115±0.052 0.117±0.059 0.115±0.038 

Window 4 0.119±0.096 0.102±0.033 0.096±0.052 0.097±0.031 

Window 5 0.116±0.052 0.117±0.064 0.120±0.061 0.105±0.052 

Window 6 0.126±0.085 0.091±0.030 0.113±0.083 0.080±0.029 

Window 7 0.128±0.053 0.102±0.036 0.096±0.034 0.145±0.131 

 

Figure 5-3. Changes in the power associated to the LF band compared to the overall 

signal power. Controls are depicted in gray, MS patients in white. The vertical bars 

superimposed to the histogram represent the standard error. (A) Power in the LF band 

for the O2Hb. (B) Power in the LF band for the HHb. +: outlier values. 
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5.3.3 Signals’ entropy and HE changes 

The total of 98 descriptors of the signals in the analysis windows are reduced to 35 

after the feature selection procedure with Wilk’s Lambda test. These 35 features are 

considered as descriptive of the complexity of the cerebrovascular pattern of the 

subjects. The MANOVA is then applied to the set of 35 features per subject in order 

to evidence differences in the overall cerebrovascular patterns of MS patients versus 

controls. Table 5-III reports the statistical analysis results of three most 

discriminant features resulting from the Wilk’s Lambda analysis. We considered 

three windows: window 1 (baseline), window 4 (end of blood reinjection) and 

window 7 (1.5 hours after blood reinjection). In all the three considered windows, 

the most significant features are the SampEn of first IMF obtained from HHb signal, 

the SampEn of the third IMF from O2Hb signal, and HE of the first IMF from HHb 

signal. It can be observed that the entropy of the IMF is increasing as effect of ozone 

therapy, whereas the HE is decreasing. This result is observed on controls and on 

MS patients as well, although only for controls the increase in the SampEn of IMF3 

from O2Hb signal and HE of the IMF1 from HHb signal are statistically higher at 

the end of the monitoring compared to the baseline conditions (p < 0.001). The 

increase in the SampEn and decrease of the HE can be considered as indicators of 

increasing complexity of the physiological system under analysis. 

Figure 5-4 reports the results of three IMFs extracted from the HHb signal of 

a MS subject. The left panel (Figure 5-4A) depicts the signal and its three IMFs 

during the baseline (1st window). The right panel (Figure 5-4B) depicts the signal 

and its IMFs at the end of the therapy (7th window). It can be noted that three IMFs 

show a markedly higher complexity at the end of the monitoring. More specifically, 

the IMF1 during baseline (Figure 5-4A) results in a quasi-periodic signal, clearly 

dominated by a single frequency. In this condition, it is expected that the entropy is 

low, due to the repeatability of the signal. Conversely, at the end of the ozone 

therapy (Figure 5-4B), the same IMF1 is characterized by random bursts of 

different amplitude and frequency, which make the signal less repeatable. 
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Figure 5-5 reports the representation of the subjects in the canonical plane of 

the first and second variables as computed by MANOVA for three different analysis 

windows: Figure 5-5A is relative to the baseline (window 1), Figure 5-5B is 

relative to the end of the blood reinjection (window 4), and Figure 5-5C to the end 

of the monitoring (window 7, approximately 1.5 hours after the end of the 

reinfusion). Control subjects are depicted as white squares, MS patients are depicted 

as black circles. In baseline condition (Figure 5-5A), the MANOVA analysis 

reveals that subjects can be considered coming from different groups (p = 1.910-4). 

In fact, the MANOVA dimension, which intuitively correspond to the number of 

variables sufficient to separate groups, is equal to 1. It can be noticed that the MS 

patients have a positive value of first canonical variable, whereas the controls have 

a negative one. At the end of the reinjection of the ozonized blood (Figure 5-5B), 

the dimension of the MANOVA is already lowered to zero (p > 0.5), thus indicating 

that subjects can be considered coming from the same group. Similarly, 1.5 hours 

after blood reinjection (Figure 5-5C), the MANOVA dimension is still zero and 

the MS patients and controls are superimposed (p > 0.5).  
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Table 5-III. Numerical values of the three most discriminant features in the 1st, 4th, and 7th 

analysis windows. The first three rows are relative to controls, the bottom three rows to the 

MS patients. Increasing values of sample entropy and decreasing values of the Hurst exponent 

are observable. * : p < 0.05 

Group Parameter Window 1 Window 4 Window 7 

C
o
n
tr

o
ls

 

SampEn 

IMF1 (HHb) 
0.370±0.109 0.401±0.132 0.431±0.059 

SampEn 

IMF3 (O2Hb) 
0.201±0.057 0.244±0.098 0.266±0.091* 

HE  

IMF1 (HHb) 
0.529±0.200 0.406±0.137 0.315±0.132* 

M
S
-R

R
 

SampEn 

IMF1 (HHb) 
0.387±0.081 0.410±0.109 0.429±0.113 

SampEn 

IMF3 (O2Hb) 
0.281±0.104 0.287±0.073 0.318±0.076 

HE  

IMF1 (HHb) 
0.518±0.156 0.471±0.148 0.408±0.184 

 

Figure 5-4. Results of the empirical mode decomposition applied to the HHb signal 

acquired in baseline conditions (A) and at the end of the monitoring (B) from a MS subject. 

The upper panels report the HHb time course; then the three IMFs are depicted. It can be 

observed that in panel (B) the IMFs are characterized by random bursts and changes, 

which make the signals less predictable. 
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Figure 5-5. Representation of the MANOVA analysis for the subjects in three windows 

during therapy: (A) baseline (window 1); (B) end of the blood reinfusion (window 4); (C) 

end of monitoring (window 7). Controls are represented by white squares, MS patients by 

black circles. In (A) the subjects belong to two different groups (p = 1.910-4), whereas in 

(B) and (C) the hypothesis that the subjects belong to the same group cannot be rejected 

(p > 0.5). 



74 
Cerebrovascular pattern improved by ozone autohemotherapy: an 

entropy-based study on multiple sclerosis patients 

 

5.3.4 24 hours monitoring 

As a secondary endpoint, we evaluated the effect of ozone therapy on cerebral 

autoregulation by computing BHI at three different time-points for Controls and 

SM-RR groups separately. Since no significant difference was found between left 

and right BHI for both groups and parameters (p > 0.1), the values were averaged 

between the two hemispheres. 

Figure 5-6 shows the BHI in the three observation windows: at the beginning 

of ozone-therapy (BHI0), at the end of therapy (BHI1.5-hours), and 24 hours after the 

therapy (BHI24-hours). BHI have been computed for the two groups separately and 

for O2Hb (top panels) and HHb (bottom panels). It can be observed that, for Control 

group, BHI O2Hb 1.5 hours after reinjection is as half as the BHI at the beginning 

of therapy and 24 hours after therapy. Conversely, BHI in SM-RR group seems to 

not vary in the three observation time points. A one-way ANOVA evidenced a 

significative effect of time for BHI O2Hb in Control group (F = 5.12, p = 0.01). BHI 

measured on HHb did not vary in both Control and SM-RR groups. In Control 

group, apnea duration was 23.8 ± 7.3 s at BHI0, 28.3 ± 7.8 s at BHI1.5-hours and 24.3 

± 5.1 at BHI24-hours. A one-way ANOVA evidenced a no significant difference in 

duration of apnea duration in the three observation windows. Conversely, time 

duration of apnea increased in SM-RR group at the end of ozone-therapy. Indeed, 

apnea duration was 20.5 ± 5.1 at BHI0, 26.81 ± 6.4 at BHI1.5-hours, and 26.8 ± 4.0 at 

BHI24-hours. A one-way ANOVA evidenced a significative effect of time in apnea 

duration for SM-RR subjects (F=3.74, p = 0.04). 
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5.4 Discussion 

This chapter investigated the long-term effects of ozone therapy on cerebral 

circulation in MS patients compared to healthy controls. We administered major 

ozone autohemotherapy and we monitored the cerebral microcirculation up to 1.5 

hours after the therapy by means of NIRS. We measured time, time-frequency and 

entropy-based features within 7 windows of interest. We observed that modification 

in concentration of O2Hb and HHb were not significantly different between MS 

patients and healthy controls. However, entropy features evidenced different 

cerebrovascular patterns between MS patients and controls, and a different 

evolution during and after the therapy. Furthermore, we monitored cerebral 

circulation 24 hours after therapy and we compared the autoregulation capabilities 

of the two groups. We evidenced a different behaviour of MS patients from healthy 

controls, and different long-term effects of the ozone therapy on the two groups. 

 

Figure 5-6. BHI values for O2Hb (top) and HHb (bottom) for Control and SM-RR groups. 

BHI has been computed at three different time points: at the beginning of therapy (BHI0), 

1.5 hours after reinjection (BHI1.5-hours), and 24 hours after therapy (BHI24-hours). 
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5.4.1 Primary end-point: effect of ozone autohemotherapy on 

cerebral patterns 

In recent years, many studies evidenced positive effects of the oxygen and ozone 

therapy on a wide range of pathophysiological processes (H. Chen et al. 2008; Di 

Filippo et al. 2008), metabolism (Molinari et al. 2013), and organs (Velis Bocci, 

Zanardi, and Travagli 2011; Zaky et al. 2011; H. Chen et al. 2008). Certain studies 

focused on measuring ozone therapy efficacy at peripheral level. For instance, it 

was measured concentration changes of infective agents on the healing process (He 

and Ma 2015). Other studies showed how ozone autohemotherapy is effective in 

healing the leg of a patient with the post-surgical complications due to 

staphylococcus aureus infection causing a necrotic wound (Shah, Shyam, and Shah 

2011). At a molecular level, Re et al. (Re et al. 2014) first demonstrated that ozone 

autohemotherapy helped the synthesis of proteins which collectively favoured cell 

survival. 

However, there is still a lack of in-vivo evidence about the ozone action at the 

cerebral level. Indeed, there are several physiological limitations to non-invasively 

investigate the brain, including: autoregulation, that masks the most of vascular 

effects of therapies, and brain-blood barrier, that blocks the exchange of many 

chemical compounds between brain tissue and blood. Thus, many markers of 

inflammation, oxidation, and metabolic functions cannot be directly measured by 

blood samples. A few of studies adopted functional imaging to demonstrate ozone 

therapy efficacy. Wu and colleagues, by adopting diffusion tensor imaging, 

demonstrated the recovery of neurological function in acute cerebral infarction 

patients by reducing remote injury (Wu et al. 2016). 

Previous studies showed that during ozone therapy, MS patients underwent an 

increase in the activity level of the cytochrome-c-oxidase of the brain tissues 

(Molinari et al. 2014; Lintas et al. 2013). The study is based on the spectral analysis 

of the NIRS signals by using a time-frequency approach. However, from a signal 

processing point of view, time-frequency transforms can only capture changes in 

the power distribution of the signals, but they cannot capture subtle changes in the 

signal. Hence, we integrated time and frequency analysis with nonlinear analysis of 

the NIRS signals. 

In accordance to previous studies, the ozone therapy increased the overall level 

of tissue oxygenation (Clavo et al. 2004; Di Filippo et al. 2008; Molinari et al. 

2014). Particularly, the oxygen increased more in controls than in MS patients 

(Figure 2-A). The latter group of subjects reached an increase in the level of oxygen 

concentration only at the end of the monitoring, about 1.5 hours after the end of the 
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reinfusion of the ozonized blood. This result might be explained by the metabolic 

boost induced by ozone. It is proved that MS patients are characterized by lower 

level of mitochondrial activity, possibly due to an oxidative damage to the DNA 

(Broadwater et al. 2011; Lu et al. 2000). Since ozone improved the level of 

mitochondrial activity (Molinari et al. 2014), it may be that the increment in the 

metabolic function of neurons caused an increase in the level of oxygen 

consumption. Therefore, just after the end of blood reinjection, the oxygen demand 

could have increased, thus leading to vascular response to increase the 

concentration at a later stage (about 1 hour after the end of the reinfusion). The 

analysis of the relative power in the LF band of the NIRS signals supports this 

consideration (Figure 3). It can be noticed a slight but not statistically significant 

increase in the LF relative power in the last three observation windows (compared 

to the window 1). The increase is more evident in the last window of the HHb 

signals analysis (Figure 3-B). Being the LF band a fingerprint of the vasomotor 

reactivity, this observation supports the hypothesis of increased metabolic demand 

by the brain cells, which triggers the cerebral autoregulation. 

The nonlinear analysis of the NIRS signals structure showed that complexity 

of the cerebrovascular pattern increased during the therapy (Table III). Among all 

the descriptors used, the most significant are the SampEn of the first IMF of the 

HHb signals and the third IMF of the O2Hb signals, along with the HE of the first 

IMF of the HHb signals. The first IMF obtained from EMD characterizes higher 

frequencies (Figure 5), whereas the third IMF lower frequencies. It is worth to 

observed that the most important feature for the MANOVA analysis is the SampEn 

of the first IMF of the HHb: it reveals a more complex structure indicating the rapid 

changes of the signal. Conversely, for the O2Hb signal, we found that the structure 

of the signal changes in the third IMF. The third IMF is characterized by lower 

frequencies and higher amplitude compared to the first one. This result is in good 

accordance to the time changes reported by Figure 2: indeed, the HHb signal did 

not show major changes during the therapy, while the O2Hb concentration changed 

considerably in both two groups. Therefore, the complexity and entropy-based 

analysis can capture subtle and more accurate differences in the overall 

cerebrovascular pattern, which are difficult to observe by time and/or time-

frequency analysis alone. 

We computed the SampEn and HE also on the raw NIRS signals. However, we 

did not find any significant difference of these descriptors when comparing controls 

to MS subjects, and when comparing the signals acquired on the same subjects in 

different windows. This may be due to the fact that the NIRS signals are a 
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combination of low amplitude and low frequency oscillations and of higher 

amplitude and higher frequency ones (Obrig et al. 2000). The computation of the 

structural characteristics of all the oscillations together, as in the raw NIRS signals, 

provides an “averaged” result, which is unable to capture the changes occurring 

during the therapy and the differences between controls and patients. 

It is well known that the complexity of biosignals is linked to the state and 

properties of the underlying physiological system. In several studies, it is shown 

how the entropy of the EEG signal can be used to classify the sleep stages (Acharya 

et al. 2010), and identify (Acharya, Sree, et al. 2012) and predict (Martis et al. 2013) 

epileptic seizures. It is also shown that diabetes mellitus decreased the complexity 

of the EMG signals (Watanabe et al. 2012) of the subjects, and that physical activity 

helped to restore more complex muscular pattern in diabetic subjects (Molinari et 

al. 2013). Complexity of biosignals is usually connected to the unpredictability of 

the control mechanisms. In this case, since we are monitoring brain vascular and 

metabolic conditions, an increased entropy or decreased HE could be the effect of 

an increased level of control by means of cerebral autoregulation. Since the level of 

cerebral autoregulation is linked to the functional state of neurons, it can be 

hypothesized that, after a major ozone autohemotherapy, there is a boost in the 

metabolic and functional response of MS patients which brings the overall 

cerebrovascular pattern close to that of controls (Figure 5). The entropy of the 

NIRS signals increases in control subjects. Hence, we can conclude that the ozone 

autohemotherapy is beneficial to improve the overall cerebrovascular pattern of 

subjects. 

Our study shows that changes in the cerebrovascular pattern cannot be properly 

observed by relying only on time and/or time-frequency analysis. Major changes in 

oxygen or carbon dioxide concentrations in the brain tissues are clearly linked to 

blood ozonisation and reinfusion. However, they cannot explain which are the 

positive effects of the therapy at a functional and molecular level. Therefore, more 

complex frameworks for data analysis are required. In this work, we have shown 

that EMD is an efficient tool for the analysis of the cerebral NIRS signals. Thus, 

the principal innovative contribution of this work is the demonstration that linear 

and non-linear NIRS signal analysis are needed for the characterization of the 

cerebrovascular pattern changes occurring after ozone autohemotherapy. This 

could have a direct impact in the numerical characterization of the cerebrovascular 

changes of subjects undergoing ozone therapy, and could lead to personalized and 

more effective therapies. 
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5.4.2 Secondary end-point: 24-hours effects of ozone on cerebral 

autoregulation 

To the best of our knowledge, no study investigated long term effects of ozone 

therapy on cerebral autoregulation yet. We investigated the permanence of ozone 

effects on microcirculation up to 24 hours after the therapy. In our study, we 

evidenced that ozone-therapy induced a different autoregulation mechanism in the 

two groups. Indeed, we observed a lower BHI in Controls 1.5 hours after ozone-

therapy, whereas it remained unchanged in SM-RR group 1.5 hours and 24 hours 

after ozone-therapy (Figure 6). To understand if BHI increased because apnea was 

shorter or because ΔO2Hb, and so vasodilatation, increased, we compared the apnea 

duration in the three observation windows. Our analysis evidenced that, in healthy 

subjects, vasodilatation decreased after ozone-therapy: this is in good agreement 

with the increase of regional O2Hb concentration (Figure 2). The hyperoxia after 

ozone-therapy improved autoregulation, in good agreement with previous studies 

(Rangel-Castilla et al. 2010; Nishimura et al. 2007). However, in this group of 

subjects, the effect of ozone exhausted 24 hours after the therapy. In SM-RR, we 

observed a different autoregulation mechanism. In fact, apnea duration increased 

significantly 1.5 hours after the ozone-therapy: since BHI remained constant, it 

means that vasodilatation was lower in the second apnea, after the therapy. The 

longer apnea duration may indicate that efficacy of autoregulation improved in SM-

RR patients. Mostly, this different mechanism of autoregulation, differently from 

healthy subjects, persisted also 24 hours after the therapy. This demonstrates that 

the positive action of ozone is not limited just after the therapy, but produced a 

persistent improvement in cellular metabolism and reduced oxidative stress, at least 

up to 24 hours after the therapy. 

 

5.4.3 Study limitations and further perspectives 

A limitation of this study is the low number of enrolled subjects. However, being 

the protocol focused on the assessment of long-term effects of ozone therapy, it is 

difficult to find MS patients that can hold the NIRS monitoring for about three 

hours. NIRS requires continuous monitoring. An interruption in monitoring will 

cause a change in the optical coupling that introducing random variability in the 

signals. Another limitation is that the NIRS equipment we used did not measure the 

concentration changes of the cytochrome-c-oxidase. To the best of our knowledge, 

the only reliable biomarker of brain metabolism which can be non-invasively 

monitored is by NIRS signals. Nevertheless, we believe that our results documented 

an improvement in the cerebral pattern of the subjects, which also correlated with 

the subjective sensation of patients and clinical observations. Finally, the two 

groups are not exactly age-matched. We compared the cerebrovascular pattern of 

MS patients to a group of controls that was older. Actually, this was a specific 
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choice aimed at balancing the level of oxidative stress (with consequent reduction 

of the cytochrome-c-oxidase activity), which is typical of healthy brain cells during 

aging (Das and Muniyappa 2013). It would not have been proper to demonstrate a 

difference in the cerebral pattern of MS patients compared to healthy subjects of 

same age, since, in that case, the original level of cerebral oxidative stress would be 

very different. Elderly people show a progressive increase in the cerebral oxidative 

stress, which is physiological. Therefore, we believe that the ozone therapy is acting 

on this overt oxidative stress induced by MS, and by rebalancing it for a relatively 

long period (over 3h monitoring), we can document an increase in the O2Hb 

consumption (indicating a metabolic boost). 

 

5.5 Conclusion 

In this study, we have analysed the changes in the cerebrovascular pattern of MS 

patients and normal subjects after a major ozone autohemotherapy. We have 

observed an increase in the complexity of the cerebrovascular pattern caused due 

to an increase in the metabolism. The changes in brain metabolism and oxygenation 

are monitored by a NIRS system. We have shown that time analysis of the NIRS 

signals is not able to explain the complex effects of ozone therapy. Hence, we have 

proposed non-linear and structural features to assess the functional cerebrovascular 

changes using NIRS signals.
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Chapter 6  

Background: from motor control 

problem to the muscle synergies 

definition 

 

6.1 The motor control problem 

The motor control problem refers to the actions that Central Nervous System (CNS) 

must take to transform a planned gesture into an action (Mussa-Ivaldi and Bizzi 

2000). To achieve a motor task, CNS designs a map between accomplishing control 

signals and desired movements. A complex integration of inborn abilities, sensory 

information, and new strategies learning are the main aspects that CNS integrates 

in motor programs (Flash and Sejnowski 2001). Hence, motor control modifies 

movements in the event of motor learning, loads, or dynamic conditions (Ostry and 

Feldman 2003).  

To translate motor plans into action, many elements must be integrated, such 

as positioning in space of the joints center of mass, and coordinating many muscles 

acting on the same joint (M. L. Latash, Scholz, and Schöner 2007).To accomplish 

the integration of these elements, CNS has to deal with the many degrees of freedom 

of musculoskeletal system (Bernstein 1967). This problem is referred to as motor 

redundancy, that is one task can be performed in many ways and involves mutually 

overlapping parts of the nervous system (Sporns and Edelman 1993). CNS finds the 
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optimal solution accomplishing a task, and it constantly corrects movement to 

reduce motor errors (M. L. Latash 2012). As an example, in a reaching task study, 

linear and curvilinear arm movements were compared. Investigators observed that, 

when the movement is linear, kinematics parameters (i.e. velocity, arm position) 

are constant. Conversely, in the case of curvilinear movements, variability in 

kinematics parameters raise (Abend, Bizzi, and Morasso 1982). Hence, for a given 

problem, there is no unique solution accomplishing a motor task. On the contrary, 

there are many possible solutions to allow biological systems to adapt to different 

conditions and environments.  

 

6.2 The equilibrium point hypothesis and spinal force 

fields 

Since musculoskeletal system is characterized by high redundancy, the way CNS 

optimizes movement and finds efficient solutions was explored. From the late ‘70s 

Bizzi and colleagues performed animal studies to investigate the influence of 

proprioceptive information on motor performance. In these studies, monkeys 

performed experiments in two conditions: in normal condition and without the sight 

of the arm (i.e. deafferented monkeys). Experiments consisted of reaching a target 

with the upper limb, and in repeating task after having moved the initial position. 

Surprisingly, deafferented monkeys performed as good as the animals in normal 

condition. The results demonstrated that motor tasks can be performed without 

proprioceptive information, that is likely adopted in optimizing movement. 

Therefore, there may be pre-built central patterns of neural impulses controlling 

limb movements (Polit and Bizzi 1978; Polit and Bizzi 1979). It was hypothesized 

that centrally generated commands modulate kinematic features, such as stiffness, 

rest-length and length-tension properties. CNS signals define a single equilibrium 

position of these features, which is continuously corrected with feedback 

corrections. Trajectories are generated by control signals determining the 

equilibrium-point position. Despite authors pointed out some criticisms of being a 

too simple theory for describing complex motor control tasks (Sainburg 2015), 

further studies formally enounced and adopted the equilibrium-point hypothesis to 

describe single joint and multi-joint arm movement, or speech movement 

(Shadmehr 1995; Perrier, Ostry, and Laboissière 1996). 

The relationship between the equilibrium-point hypothesis and motor control 

was further explored. Indeed, it remained unclear if body movements were a mere 

sequence of equilibrium-points, or instead the same equilibrium-point was driven 

by descending neural commands over a trajectory. In the first case, only kinematic 

parameters were required to describe movement, otherwise equilibrium-point 
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hypothesis would be suitable to describe neural origin of motor control. In (Bizzi et 

al. 1984) the hypothesis that movements are produced by a sequence of equilibrium-

points was rejected. Indeed, they observed that, after forcing a monkey’s arm to the 

target, the arm did not remain there, but had the tendency to come back to the onset 

point. This result showed that muscular activation does not specify the force, but 

rather it causes the equilibrium shifting from onset position to the target. The 

equilibrium-point hypothesis represents a simplification of motor control, because 

CNS must compute only the difference between actual and target positions, without 

computing trajectory for all joints positions (Giszter, Mussa-Ivaldi, and Bizzi 

1993). It was demonstrated that an interaction with nervous system is required. In 

(Bizzi, Mussa-Ivaldi, and Hogan 1986) the interaction with nervous system was 

proved. It was found that a gradual control signal exists and it drives the limb 

movement from an equilibrium point to another.  

The equilibrium-point hypothesis in movement control was proved by 

electrophysiological studies of the spinal cord in deafferented frogs. Mostly, these 

studies demonstrated the modular nature of this kind of motor control (Giszter, 

Mussa-Ivaldi, and Bizzi 1993; Saltiel et al. 1998). In a series of experiments, 

authors electrically stimulated frog hindlimbs and mapped the force distribution for 

different hindlimb positions (Figure 6-1).  
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Firstly, these studies proved that limb’s movements are generated to direct 

force fields toward an equilibrium-point. Secondly, since frogs were deafferented, 

all forces were generated by neural circuits located at spinal level. Hence, these 

experiments demonstrated that motor control is generated and controlled by the 

circuitry located in the spinal cord. (Bizzi, Mussa-ivaldi, and Giszter 1991; Giszter, 

Mussa-Ivaldi, and Bizzi 1993). Also, they provided evidence for modular 

organization of motor control. In (Mussa-Ivaldi, Giszter, and Bizzi 1994), authors 

electrically stimulated several couples of frog hindlimb muscles in two ways: each 

muscle separately and both muscles together. By adopting the method of the force 

fields representation, authors observed that the force fields obtained stimulating two 

muscles together, was the vectoral summation of the individual responses (Figure 

6-2). The linear behavior of hindlimbs was due to the force fields patterns shared 

by different muscles. Results demonstrated that CNS generates movements by 

superimposing motor primitives, or “modules”, stored in neural circuits of spinal 

cord. 

 

Figure 6-1. Fields of static forces associated with electrical stimulation of a spinal cord 

site in a deafferented frog. Forces were measured for different hindlimb’s positions at the 

ankle level in two conditions: at resting state and after electrical stimulation of the spinal 

cord. (a) spatial locations of force recording; (b) force vector fields. Each arrow 

represents the vectoral summation between force vectors at resting state and after 

electrical stimulation condition respectively. It can be observed that vectors point towards 

an equilibrium-point (black filled dot) (from Bizzi et al., 2002). 
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6.3 Spinal motor modules and muscle synergies 

A ‘‘module’’ is a functional unit of the spinal cord circuitry that generates a specific 

motor output. (D’Avella and Bizzi 1998). Modular hypothesis may simplify 

intermuscular coordination by enabling the nervous system to control muscles in 

group rather than controlling each muscle as a unit. In this way, CNS reduces the 

number of neural activation output controlled. This strategy may provide an 

efficient neural control solution that still maintains adequate flexibility to general 

task-specific muscle activity (Aoi and Funato 2016). Indeed, studies demonstrated 

that different motor tasks can be executed using the same motor modules and just 

varying the activation patterns (Bizzi et al. 2008; Chvatal and Ting 2013; d’Avella, 

Saltiel, and Bizzi 2003). Furthermore, it has been observed that a reaching task is 

better described by underlying motor plans rather than arm kinematic (Bizzi and 

Mussa-Ivaldi 1998; Thoroughman and Shadmehr 2000). Therefore, modules are 

recruited and flexibly combined by nervous system to control a variety of locomotor 

tasks (Fox et al. 2013).  

Modules are largely controlled by brainstem and spinal neural networks 

(Tresch, Saltiel, and Bizzi 1999; Roh, Cheung, and Bizzi 2011). The circuitry in the 

spinal cord that specifies patterns of muscle activation are called Central Pattern 

 

Figure 6-2. Linear superposition of electric fields of stimulation in frog’s spinal cord for 

two couples of muscles. (Left) stimulus of sartorius (SA) and gastrocnemius (GA)(upper); 

co-stimulation of SA and GA (&) and vector sum (+). (Right) Stimulation of Vastus 

intermedius (VI) and GA (upper); co-stimulation of VI and GA (&) and vector sum (+). It 

can be observed that co-stimulation electric fields are the linear combination of the 

stimulation of the single muscles. (Copyright 1994 National Academy of Sciences). 
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Generator (CPG) (Grillner 1981; Saltiel et al. 1998). They are assumed to be located 

within the spinal cord and they involve relatively small and autonomous neural 

networks (M. Latash and Zatsiorsky 2015). CPGs are hierarchically organized and 

separately control the locomotor rhythm and motor activity pattern (Aoi and Funato 

2016). CPGs are modulated by sensory and reflex feedbacks within the spinal cord 

without descending or afferent inputs (Rossignol, Dubuc, and Gossard 2006; 

Forssberg, Grillner, and Halbertsma 1980; Giszter and Hart 2013). Afferent 

feedbacks are not required for generating basic locomotor pattern, but they are of 

critical importance in adapting and modulating the CPG action in the real situation 

(Rossignol, Dubuc, and Gossard 2006; Chvatal and Ting 2012). Figure 6-3 

schematizes how CPGs are modulated by supraspinal commands and interact with 

spinal interneurons to generate motor patterns (Rossignol, Dubuc, and Gossard 

2006; Zehr 2005). In summary, CPGs generate rhythmic motor patterns to produce 

rhythmic activities without feedback information that peripheral nervous system 

can provide. Nonetheless, CPGs receive supraspinal control commands, which 

initiate motor programs, interacts with proprioceptive signals and correct motor 

patterns to interact properly with the environment (Haghpanah, Farahmand, and 

Zohoor 2017).  



Background: from motor control problem to the muscle synergies 

definition 
89 

 

 

Motor output of modules produces a muscle synergy, a specific pattern of 

muscle activation (D’Avella and Bizzi 1998). Muscle synergies can be defined as 

basic patterns of muscle activation representing elementary components or building 

blocks for the generation of limb movements. This organization may help in 

 

Figure 6-3. A schematic representation of motor patterns generation. Telencephalon and 

brain stem neural circuitry generate activation signals, and are continuously modulated 

by sensory and proprioceptive feedbacks. Supraspinal signals are sent to neuronal 

circuitry in the spinal cord to generate movement. CPGs generate rhythmic signals 

modulating motoneurons signaling on effector muscles. Interneurons are cyclically 

influenced by the CPG but are not part of the rhythm generation process itself of the CPG. 

Spinal circuitry is modulated by feedback information coming from proprioceptive and 

cutaneous reflex systems. F= flexor, E=extensor. (from Rossignol et al., 2006) 
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organizing movement by reducing degrees of freedom (Bizzi et al. 2008). The goal 

of muscle synergies is mapping high-level tasks into action (Torres-Oviedo and 

Ting 2010). Several studies proved the neurophysiological basis of muscle 

synergies directed by both supraspinal and afferent pathways to facilitate motor 

control. CNS selects the appropriate set of synergies from a larger pool, according 

to motor function (Barroso et al. 2014). In muscle synergies, a single command 

from CNS recruits several pools of α-motoneurons quasi-synchronously, as defined 

by modules, and activates several muscles. In modular control hypothesis, a given 

muscle synergy involves a basic activation pattern (temporal structure) and the 

weight of distribution (spatial structure) to different muscles (Lacquaniti, Ivanenko, 

and Zago 2012). Muscle synergies are shared by multiple muscles involved in each 

motor task (Lacquaniti, Ivanenko, and Zago 2012), and they represent the basic 

control signals required to generate the large repertoire of muscle-specific 

excitation needed for executing a specific motor task (Gonzalez-Vargas et al. 2015). 

Figure 6-4 shows how supraspinal descending commands recruit motor modules 

located at spinal level to generate the muscle synergies to perform motor subtasks 

in human locomotion. Interneurons are supposed to play a role in assembling the 

synergies, by integrating supraspinal and CPGs commands, and drive them as a unit 

(Giszter 2015).  
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Synergies can be thought of as a neural network organized at spinal or 

brainstem level, with each synergy specifying an invariant profile of activation for 

the motoneurons innervating a set of muscles (Cheung et al. 2009). Also, it has been 

proposed that subpopulations of pyramidal tract neurons act through the neuronal 

circuits in the spinal cord that produce the basic locomotor patterns (Drew, Kalaska, 

and Krouchev 2008). Besides the role of spinal cord and pyramidal tract neurons, 

also the motor cortex is involved in modulating the activity of muscle synergies.  

However, its role needs to be more defined. Indeed, fMRI studies demonstrated that 

motor cortical regions with significantly different functional connections, activate 

different muscle synergies (Rana et al. 2015). Other authors claimed that the major 

role of motor cortex may be inhibiting synergies to permit fractionated movements 

(Drew, Kalaska, and Krouchev 2008; Lemon and Griffiths 2005).  

 

Figure 6-4. Scheme of muscle synergies formation for human locomotion. Supraspinal 

descending commands recruit motor modules, located at spinal level. From the 

combination of the motor modules with descending commands, the muscle synergies are 

generated. In this example, four motor modules are recruited to form four muscle 

synergies to describe motor subtasks of gait cycle. Individual muscle activations, recorded 

by EMG, are given by the linear combination of the four muscle synergies. In this manner, 

biomechanics behavior is fully described by nervous systems elements (from Ting et al., 

2015). 
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Modular architecture has been interpreted as a way for CNS to simplify motor 

control (Berniker et al. 2009; D’Avella et al. 2008; Cheung et al. 2005; Borzelli et 

al. 2013). Indeed, it was found that muscle synergies reduce dimensionality 

compared with independent muscle control (Bizzi et al. 2008; Zelik et al. 2014). 

However, it was also observed that modular strategies may not take into account 

more complex tasks, i.e. multi-joint movements, or fine movements (Zelik et al. 

2014). The objective of simplifying motor control can be reached by sharing 

synergies across conditions or by mixing synergies to achieve more complex tasks. 

Also, synergies could be the same across tasks or can just adapt by modulating 

muscle weights or shifting descending command curves (Ivanenko, Poppele, and 

Lacquaniti 2004; Gonzalez-Vargas et al. 2015). For instance, cyclic tasks, such as 

pedaling or walking, showed high similarity of synergies (Barroso et al. 2014). 

Furthermore, it has been observed that certain cycling synergies can be obtained by 

combining walking synergies. Walking has been demonstrated sharing synergies 

with perturbated balance too (Anderson Souza Oliveira et al. 2013). Authors 

demonstrated that synergies recruited for perturbed walking are also recruited for 

perturbed balance. Furthermore, changes in the modular organization of walking 

affect both walking and balance function. All these findings demonstrate that CNS 

likely simplify motor control by adopting common strategies for different 

biomechanical context, for instance balance control during walking and static 

balance or by combining basilar synergies to perform more complex tasks.
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Chapter 7 

Muscle synergies extraction method 

7.1 Blind source separation 

Blind source separation (BSS) refers to the problem of recovering source signals 

from signal mixtures without or with a very limited information about the sources 

and the mixing process (Mirzal 2017). The term blind denotes a method based on 

output observation only (Comon and Jutten 2010). The goal of BSS is the 

estimation of physical sources and parameters of a mixing system. The objective is 

to find such a transformation or coding with a reliable physical meaning and 

interpretation (Cichocki et al. 2009).  
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Figure 7-1 schematize a general BSS problem decomposition. The system is 

composed by I sensors recording signal y(t) = [y1(t), y2(t),…, yI(t)] coming from a 

MIMO (multiple input/multiple output) system, where t is a discrete time sample. 

These signals are usually a superposition (mixture) of J unknown source signals 

x(t) = [x1(t), x2(t),…, xJ(t)] and noises e(t) = [e1(t), e2(t),…, eI(t)]. The primary 

objective of decomposition methods is to estimate all the source signals xj(t), or part 

of them, only from output signals yi(t) (i.e. sensors or observations). 

 

The simplest BSS model can be expressed algebraically in the form of matrix 

factorization. Given a set of observations Y = [yi(t)] = [y(1),…,y(T)], source 

components are linked to the observations with the matrix factorization 

Y = AX + E 

where A represents the unknown basis matrix or mixing matrix, and E is a 

matrix representing errors or noises. X = [xj(t)] = [x(1), x(2),…, x(T)] contains the 

latent (hidden) components giving the contribution of each basis vector, and T is 

the number of available samples. In general, the amount of source signals J is 

unknown and can be larger, equal or smaller than the number of observations I 

(Cichocki et al. 2009). 

 

Figure 7-1. Scheme of a BSS system. Observations [y1(t), y2(t),…, yI(t)] are the output of a 

mixing system where the source signals [x1(t), x2(t),…, xJ(t)]  are unknown. 
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7.2 Basic Nonnegative Matrix Factorization algorithm 

Non-Negative Matrix Factorization (NMF) decomposes a matrix of observations V 

into the product of two non-negative matrix factors W and H (Figure 7-2): 

 

𝑽𝑚×𝑡  ≈  𝑾𝑚×𝑛𝑯𝑛×𝑡 

 

where: 

- V is the source matrix 

- W and H are non-negative matrices of decomposition. They are the basis 

matrix and hidden components matrix of the BSS system. 

- n represents the number of basis used to represent original matrix. It is a 

positive integer lower than m and t  

 

The objective of NMF is finding the pairs of matrices W and H which minimize 

the error of approximation. BSS methods based on Independent Component 

Analysis (ICA), the source components are not assumed to be independent. 

 

Figure 7-2. A schematic representation of NMF decomposition. A source matrix V, of 

dimensions m×t, is decomposed as a combination of non-negative matrices W, of dimension 

m×n, and H, of dimension n×t. 
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Conversely, in NMF the only assumption is the non-negativity of the weight matrix 

W and the mixing matrix H. By disallowing negative entries in W and H, NMF 

implements a non-subtractive combination of parts to form a whole. Examples of 

NMF application are clustering textual data, face recognition, spectral analysis 

(Berry et al. 2007). 

The basic NMF update algorithm is described in (D. D. Lee and Seung 1999; 

D. D. Lee and Seung 2001), and based on the work of Paatero (Paatero 1997). In 

the Lee and Seung NMF algorithm, a cost function is defined as the squared 

Euclidian distance between the source matrix V and factorization matrix WH: 

𝐷(𝑉‖𝑊𝐻) =  
1

2
‖𝑉 − 𝑊𝐻‖2 

W and H are initialized with random non-negative values, before the iteration 

starts. Then, a multiplicative update algorithm with the mean squared error 

objective function is iteratively applied. The factors W and H are chosen to 

minimize the root-mean-squared error between V and WH. To avoid local minima, 

the algorithm is repeated several times, i.e. 20 times per dataset (Frère and Hug 

2012). 

 

7.3 Checking the quality of muscle synergies: the VAF 

criterion 

To determine the decomposition of EMG matrix into the WH matrix, the matrix of 

experimental EMG need to be correlated with the matrix of reconstructed EMG. 

The comparison generally requires the Variance Accounted For (VAF, uncentered 

Pearson coefficient) of the overall EMG matrix reconstruction. VAF is defined as 

1 - 
𝑆𝑆𝐸

𝑆𝑆𝑇
 , where SSE (sum of squared error) is the unexplained data variation and 

SST (total sum of squares) is the total variation of data (Gizzi et al. 2011; Zelik et 

al. 2014). Practically, 
𝑆𝑆𝐸

𝑆𝑆𝑇 
 is the ratio between the squared difference between the 

original and reconstructed EMG, and the squared original signal (Katherine M 

Steele, Rozumalski, and Schwartz 2015). VAF depends on the magnitude and the 

shape of the original and reconstructed datasets (Hagio, Fukuda, and Kouzaki 

2015). Most of the studies select the number of synergies that provide at least 90 % 

of the VAF (Turpin et al. 2010; Frère and Hug 2012; Chvatal and Ting 2013; Zelik 

et al. 2014)(Serrancolí, Monllau, and Font-Llagunes 2016). VAF is generally 

evaluated globally over all muscles, but certain authors evaluated VAF for each 
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muscle individually as additional criterion (De Groote, Jonkers, and Duysens 2014). 

Certain authors measured the goodness of synergy approximation by calculating 

the multivariate R2, where the SST is substituted by the summed squared residual 

from the mean normalized activation vector (de Rugy, Loeb, and Carroll 2013). 

However, VAF generally provided higher values than R2.  

 

7.4 Application of NMF to extract muscle synergies 

Factorization techniques have been largely adopted in motor control studies to 

decompose patterned motor output into muscle synergies. Statistical and signal 

processing pattern separation methods such as NMF, ICA, Factor Analyses (FA), 

and Principal Component Analyses (PCA) have been widely used. (K. Suzuki, 

Nishida, and Mitsutomi 2014)(Tresch, Cheung, and d’Avella 2006). The advantage 

of these methods is to represent locally linear mechanisms adopted by CNS to adapt 

to the complex nonlinearities in the environment (Ting et al. 2015). These methods 

largely confirmed the construction mechanisms observed in spinal and decerebrate 

preparation physiology, with data collected in intact animal models and humans in 

freely moving conditions (Giszter 2015; Overduin et al. 2008; D’Avella and 

Lacquaniti 2013). Hart and Giszter, in an animal experiment, directly measured 

firing rate in the innervation zone of spinal motoneurons. They investigated how 

neural activity correlates with synergies obtained using ICA and with original 

EMG. They showed that firing rate shared higher mutual information with 

independent components than EMG. In this manner, they demonstrated that 

factorization techniques represent neuronal firing better than contraction of the 

single muscle (Hart and Giszter 2010; Delis, Chiovetto, and Berret 2010). 

The fundamental assumption is that modular organization of neural systems can 

be deducted without regarding their origin, since only the features extracted from 

muscle activity during movement are necessary. In addition, factorization approach 

ignores the neurophysiological basis of the control patterns, such as neural output 

precision (Zelik et al. 2014). However, these methods only measure neural activity 

indirectly, and they may be influenced by physiological and non-physiological 

factors. For instance, cross-talk may generate or exaggerate a positive correlation 

among EMG records, and so introduce a bias in results (Ivanenko, Poppele, and 

Lacquaniti 2004). Hence, results of these decomposition methods have to be 

analyzed very carefully, being affected by several critical issues, as proponents and 

critics evidenced (Katherine M. Steele, Tresch, and Perreault 2013; Katherine 

Muterspaugh Steele, Tresch, and Perreault 2015).  

In recent years, NMF has been widely adopted as a decomposition method since 

non-negativity constraints reflect spiking activity of neurons (Ting et al. 2015). 
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Many real-world data are nonnegative and the corresponding hidden components 

have a physical meaning only when nonnegative. In practice, nonnegative 

decomposition of data is often either desirable or necessary when the underlying 

components have a physical interpretation. NMF was selected since it provides 

robust estimates of EMG muscle coordination with no constraints on the correlation 

of activations across a broad range of motor tasks (Hayes et al. 2014). The 

sinusoidal-like basic activation patterns identified by the NMF model represent 

alternating bursts of activity (Danner et al. 2015). 

Figure 7-3 shows an example of muscle synergies extracted for a representative 

healthy subject during walking. All the phases are reported in the figure: input EMG 

matrix, that represents the observation matrix (Figure 7-3A). Muscle synergies are 

reported in Figure 7-3B: muscle weightings are the basis function and activation 

signals are the hidden components of the BSS that describes motor control. Initially, 

the number of synergies is computed for a number of basis from 1 to the number of 

muscles recorded. Since muscle synergies aim to simplify motor control, the 

number of synergies is chosen lower that the number of muscles. Motor functions 

can be associated to each muscle synergy by observing muscle weights and 

activation signals. The VAF criterion is adopted to select a number of synergies 

conveying all the information (Figure 7-3C). In the reported example, VAF values 

increase from 80% (three synergies) to 88% (four synergies) up to 92% with five 

synergies. Hence, in this last case, original and reconstructed signals can be 

considered correlated more than 90%. Figure 7-3D shows that the signal 

reconstructed with five synergies well superimposes the original EMG signal. The 

biomechanical role of the extracted synergies can be derived by the most activated 

muscles and the timing of the activation signal. For instance, in the event of 3, 4, 

and 5 synergies, it can be observed a synergy involving muscles inserting on the 

hip and the knee: VM, TFL, GMD. By observing the activation signal, it can be 

noticed that these muscles are activated at the initial contact and in limb phase. It 

can be deduced that the biomechanical role of these synergies is hip and knee 

stabilizing during these phases. A fully detailed description of biomechanical role 

of muscle synergies during gait is presented in a next section (see Chapter 8). 
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Figure 7-3. Example of muscle synergies extraction. Reported data are taken from 3 gait 

cycles of a representative healthy subject. (A) Original EMG for 12 muscles of the lower 

limb and the trunk after preprocessing (filtering, rectification, envelop). (B) Muscle 

synergies obtained with NMF. Muscle synergies are a linear combination of non-negative 

vectors of muscle weightings and activation signals. The number of synergies can vary 

from 1 to the number of muscles. In this case, muscle synergies are computer for 3,4, and 

5 set of synergies. (C) For each synergy, the Variance Accounted For (VAF) measures the 

correlation between original EMG and data obtained from synergies (reconstructed 

EMG). In this case, 5 synergies reconstruct original EMG with a VAF>90%. (D) 

Superposition of original EMG (Black line) and reconstructed EMG with 3, 4, and 5 

synergies. 
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Chapter 8 

Muscle synergies during 

locomotion: consistency of muscle 

weights and activation signals3 

8.1 Introduction 

Human gait is characterized by intrinsic complexity due to the many subtasks 

that are repeated cyclically (Perry 1992). This complexity reflects in muscle 

activity: indeed, while lower limb kinematics remain invariant during locomotion, 

underlying muscle activity can vary greatly (Winter 1987; Di Nardo et al. 2015; 

Rosati et al. 2017). Electromyographic (EMG) studies demonstrated high degree of 

variability of the onset/offset EMG time intervals for individual muscles, according 

to subject, muscle, or task. For instance, it was demonstrated that forward versus 

backward locomotion modes show different EMG patterns, but the kinematics 

parameters were identical in both directions (Grasso, Bianchi, and Lacquaniti 

1998). Similarly to locomotion, it was demonstrated that segmental kinematics 

waveforms remain unmodified across several postures, but kinetics parameters are 

corrected to maintain balance (Grasso, Zago, and Lacquaniti 2000).  

                                                 
3 This chapter is based on the paper: Rimini D., Agostini V., Knaflitz M. Front. Hum. Neurosci 

(2017) 11. https:\\ 10.3389/fnhum.2017.00586   
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Despite muscle activity may vary, depending on many factors, early works 

demonstrated that the locomotion subtasks can be described by a few underlying 

muscle synergies that properly combine to generate the desired activation pattern 

(Davis and Vaughan 1993; Patla 1985; Ivanenko, Poppele, and Lacquaniti 2004). 

In each synergy, muscles are recruited at a certain degree (muscle weights) and at 

a precise percent of the gait cycle (GC), referred to as activation signals (Zehr 2005; 

Lacquaniti, Ivanenko, and Zago 2012; Danner et al. 2015). In recent years, several 

studies investigated the structure of muscle synergies in locomotion (Lacquaniti, 

Ivanenko, and Zago 2012). Many studies demonstrated that four (Gizzi et al. 2012; 

Ranganathan and Krishnan 2012; De Groote, Jonkers, and Duysens 2014) or five 

(Ivanenko, Poppele, and Lacquaniti 2004; Cappellini et al. 2006; McGowan et al. 

2010), muscle synergies are good enough to describe locomotion. Muscle synergies 

have been demonstrated to be the same across subjects for different biomechanical 

tasks, such as in response to posture perturbation or during running (Chvatal and 

Ting 2013). However, it has been also demonstrated that the ability of muscle 

synergies to describe motor control depends on whether they can be adapted to 

specific task demands, for instance by integrating sensory feedback (Zelik et al. 

2014). A simulation study showed the adaptability of muscle synergies to different 

conditions by simply scaling the mechanical output from modules associated with 

specific biomechanical subtasks (McGowan et al. 2010). Adaptability of muscle 

synergies has been confirmed in different gait conditions and demanding tasks. 

Early studies evidenced shared and specific muscle synergies, demonstrating that 

locomotor behaviors are mostly generated by a small number of centrally organized 

synergies, activated by central commands and modulated by sensory feedbacks 

(Cheung et al. 2005). Further studies observed that different subjects show similar 

muscle synergies, and that muscle synergies adapt to different walking speeds: 

indeed, it has been evidenced that muscle weights are velocity-dependent, whereas 

activation signals vary to a lesser extent across several locomotion speeds 

(Gonzalez-Vargas et al. 2015). Similar conclusions have been done by comparing 

synergies of several gait patterns during running: some synergies are shared among 

subjects, and they were similar across different running speeds and patterns. 

Finally, it has been proved that some muscle weights and activation signals may 

vary across gait patterns and speeds (Nishida et al. 2017). However, the robustness 

of both shared and subject-specific muscle synergies within a subject during a trial 

has not been investigated yet. The objective of the present work is exploring muscle 

synergies consistency during a locomotion task. We refer to as “intra-subject 

consistency”, that is the subject showing synergies with similar muscle weights and 

activation signals along the whole trial. It can be practically investigated by 
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comparing muscle synergies obtained by many consecutive GCs extracted during a 

single motor task. 

To evaluate muscle synergies consistency, we extracted muscle synergies in a 

group of healthy subjects by adapting the factorization method NMF to the case of 

many GCs. We analyzed the muscle synergies at two levels: firstly, we clustered 

muscle synergies showing the same motor functions across subjects, called “shared 

synergies”. Then, the remaining synergies were classified as “subject-specific”. We 

quantified the consistency of muscle weights and activation signals for the shared 

and subject-specific synergies, and we analyzed them.  

  

8.2 Material and Methods 

8.2.1 Subjects 

Twelve young healthy females (age: 24.6 ± 1.6 years, height: 164.1 ± 6.8 cm, body 

mass: 54.1 ± 5.7 kg) were recruited for the study. None of the subjects reported 

lower limb injuries or interventions, and none of them had neurological or 

musculoskeletal disorders that could compromise their gait. Participants signed a 

written informed consent before being enrolled in the study. 

 

8.2.2 Recording system and signal acquisition 

A multichannel system for gait analysis (STEP32, Medical Technology, Italy) was 

used to acquire the following data: 1) surface EMG, 2) foot-switch signals, 3) knee 

joint goniometry. Surface EMG probes had the following characteristics: single 

differential configuration, size 19 × 17 × 7 mm3, 4-mm diameter Ag-disks, 

interelectrode distance 12 mm, CMRR over 126 Db. EMG signals were amplified 

to minimize, for each specific muscle, the quantization error; gain ranged from 60 

dB to 86 dB. EMG probes were placed on 12 muscles of the dominant leg, defined 

according to (Sadeghi et al. 2000) and the trunk. Muscles were chosen on the trunk 

and around the hip, knee, and ankle joints (Netter 2014; Palastanga and Soames 

2012): longissimus dorsii, at L4 level, right (LDR), and left (LDL), medial hamstring 

(MH), lateral hamstring (LH), tensor fasciae latae (TFL), gluteus medius (GMD), 

vastus medialis (VM), rectus femoris (RF), tibialis anterior (TA), lateral 

gastrocnemius (LGS), peroneus longus (PL), soleus (SOL). Figure 8-1 reports the 

EMG probes positioning on trunk and lower limb. 
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Three thin foot-switches of size 10 × 10 × 0.5 mm3, were placed under the foot 

in the following positions: under the heel, under the first and fifth metatarsal-heads. 

Knee joint kinematics were acquired bilaterally in the sagittal plane by means of 

electrogoniometers. All the data were acquired with a sampling frequency of 2000 

Hz. 

Once instrumented, subjects were instructed to walk barefoot back and forth 

over a straight pathway of 15 meters for 5 minutes (Figure 8-2). Subjects walked 

at a self-pacing rhythm with a constant speed in the A-B tract. The experimenter 

timed each subject’s passage through the A-B tract. The average gait speed was 

defined as the total distance walked in a straight line divided by the total time 

required going through it (Agostini, Lo Fermo, et al. 2015). 

 

 

 

 

Figure 8-1. EMG probes positioning in lower limb and trunk. 
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8.2.3 Statistical gait analysis 

Instrumented gait analysis studies the human walking by measuring body 

movements, body mechanics, and the activities of muscles (Whittle 2007). It 

provides quantitative, reliable, and repeatable measures of gait parameters and it 

allows to remove atypical gait patterns and GCs devoted to curve negotiation 

(Agostini and Knaflitz 2011).  

Firstly, GCs were separated by using the foot-switches, which provide a four 

levels signal (Agostini, Balestra, and Knaflitz 2013). The foot-switches allow to 

individualize three sub-phases of the stance phase: Heel contact (H), Flat foot 

contact (F), and Push off (P). In normal gait, most of the GCs consist of sequence 

of the three sub-phases of stance, followed by the limb Swing (S) (Agostini, 

Balestra, and Knaflitz 2014). Figure 8-3 shows the foot-switches configurations 

and four-levels signal of the HFPS gait pattern. Only GCs consisting of the 

sequence of H–F–P–S were considered, discarding other possible non-standard 

cycles.  

 

 

 

 

 

 

 

Figure 8-2. Schematic representation of the walking path. Subjects walked from point A 

to point B at their natural pace, then turned back and proceeded in the opposite direction. 
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Once non-standard gait patterns were removed, the knee range of motion and 

gait phases durations were exploited together to remove undesired strides relative 

to direction changes. A multivariate statistical procedure was adopted to discard 

strides related to curve negotiation, deceleration and acceleration before and after 

changing direction. In details, the following procedure was adopted (Di Nardo et 

al. 2017): 

(1) a multivariate dataset is built with six variables: duration of H, F, P, and 

S gait-phases, and knee joint angles at 70 and 95% of GC; 

(2) multivariate (Mahalanobis) distance between the value of each GC 

parameter and the average GC corresponding parameter is calculated; 

(3) cycles that have a very high Mahalanobis distance with respect to the 

average GC are considered outlier and discarded. This is determined 

using a Hotelling t-test for multivariate data, choosing a confidence 

level α = 0.05; 

(4) average GC is re-calculated; 

 

Figure 8-3. Scheme of HFPS foot switches signals sequence. (A): the timing of foot switches 

is reported for the gait phases. A black dotted circle indicates the switch is closed. (B): the 

four-levels signal obtained by the configurations of foot-switches. In the stance phase can 

be recorded three sub-phases, that are Heel-contact, Flat foot contact, and Push off. 
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(5) previous steps are iterated until all outlier cycles are removed. 

We assessed stride-to-stride variability by computing Coefficient of Variation (CV) 

of the stride time (Agostini, Lo Fermo, et al. 2015): 

 

𝐶𝑉 𝑜𝑓 𝑠𝑡𝑟𝑖𝑑𝑒 𝑡𝑖𝑚𝑒 (%) =  
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑠𝑡𝑟𝑖𝑑𝑒 𝑡𝑖𝑚𝑒)

𝑚𝑒𝑎𝑛 (𝑠𝑡𝑟𝑖𝑑𝑒 𝑡𝑖𝑚𝑒)
∙ 100 

 

8.2.4 Muscle synergies extraction 

GCs were concatenated prior to filtering, with the aim of attenuating the cutting 

artifact (Gizzi et al. 2015). Indeed, in concatenating consecutive GCs it can happen 

that they are not also contiguous, e.g. when they are separated by 

deceleration/acceleration or by other outlier cycles.  

The EMG of each specific muscle was concatenated considering 10 

consecutive HFPS GCs. To study the consistency of muscle synergies, N subgroups 

of 10 GCs each were generated: subgroup 1 contained the EMG signal of HFPS 

GCs from 1 to 10, subgroup 2 from 11 to 20, and so on. The last subgroup was 

discarded if it contained less than 10 GCs. An EMG matrix 𝑀(𝑡) of dimension 

m×n, where m was the number of muscles and n was the time points of 10 GCs, 

described each subgroup. After concatenation, the EMG signals were pre-processed 

before muscle synergies extraction. They were high-pass filtered at 35 Hz, 

demeaned, full-cycle rectified, and low-pass filtered at 12 Hz by a 5th order 

Butterworth filter. Afterwards, EMG of each channel was normalized between 0 

and 1 with respect to its global maximum, through the entire walk. Finally, the 

duration of each GC was resampled into 1000 time points (Clark et al. 2009). 

For each subgroup, muscle synergies were extracted with Non-negative matrix 

factorization (NMF) (D. D. Lee and Seung 1999; Torres-Oviedo and Ting 2007). 

NMF models muscular activity as a linear combination of muscular synergies 

activated by time-varying coefficients: 

 

𝑴(𝒕) = ∑ 𝑪(𝒕)𝒌𝑾𝒌 + 𝒆

𝑲

𝒌=𝟏
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where 𝑀(𝑡) is the EMG signal, 𝑊𝑘 are the weights of the linear combination, 

𝐶𝑘(𝑡) are the recruiting coefficients that vary in time, and 𝑒 is the residual error. 

𝑊𝑘 defines the 𝑘-synergy (𝑘 = 1,…,𝐾), whereas 𝐶𝑘(𝑡) expresses the neural signal 

that controls the 𝑘-synergy (Ting and Chvatal 2010; Danner et al. 2015). Since the 

NMF algorithm was applied to each subgroup of 10 GCs, we obtained 𝑁 sets of 𝐾 

muscle synergies, one for each subgroup. A reconstructed EMG is obtained as a 

linear combination of muscle synergies. The similarity between original EMG and 

the reconstructed EMG computed with NMF was evaluated by the Variance 

Account For (VAF). VAF expresses the amount of variation explicated by the 

model: the higher the VAF, the smaller the prediction error and, consequently, the 

better the model (Zar 2010). A minimum value of 90% for VAF was used to 

consider the quality of reconstruction quality acceptable (Barroso et al. 2014). 

Notice that, for each subgroup i, it may be required a different number of synergies 

𝐾𝑖 to accurately reconstruct the original signal. We chose the number of 

synergies 𝐾, common to all subgroups, in such a way as to obtain a VAF ≥ 90% for 

every subgroup. This requires calculating 𝐾 as: 

 

𝑲 = 𝒎𝒂𝒙(𝑲𝟏, 𝑲𝟐, … , 𝑲𝑵) 

 

The k-means algorithm was adopted to order the  synergies according to their 

weights 𝑊𝑘 (Katherine Muterspaugh Steele, Tresch, and Perreault 2015). The 

number of k-means classes was set equal to 𝐾. Clusters were randomly initialized 

and 10000 permutations, repeated 5 times, were performed. The coefficient 

matrices 𝐶𝑘 were ordered correspondingly. 

8.2.5 Synergy consistency 

We evaluated the intra-subject consistency of muscle synergies by quantifying the 

similarity of muscle weights and activation signals among subgroups of 10 

concatenated GCs.  

For each synergy, we adopted cosine similarity (CS) as a metric of similarity 

between two muscle weights vectors. The CS between two general subgroups 𝑖 and 

𝑗 of a synergy 𝑘 is the normalized scalar product 
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𝑪𝑺𝒌
𝒊𝒋

=
𝒘𝒌

𝒊 ∙ 𝒘𝒌
𝒋

‖𝒘𝒌
𝒊 ‖‖𝒘𝒌

𝒋
‖

 

 

where 𝑤𝑘
𝑖  and 𝑤𝑘

𝑗
 are the vectors of muscle weights of the i- and j-th subgroups, 

respectively. CS values range between 0 and 1: 0 indicates no similarity, whereas 1 

demonstrates complete similarity (D’Avella and Bizzi 2005; Han and Kamber 

2007). 

The cross-correlation at zero time lag (CC) was adopted as a measure of 

similarity of activation signals (Godlove et al. 2016; Gizzi et al. 2011). CC is a 

measure of correlation, and can vary between -1 and 1. Figure 8-4 resumes the 

entire experimental framework with the main four phases: data acquisition, 

statistical gait analysis, muscle synergies extraction, and consistency features 

computation.  
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8.2.6 Shared muscle synergies  

Muscle synergies were divided in shared, across subjects, and subject-specific. To 

individualize shared muscle synergies, we randomly chose a reference subject Sr. 

We calculated CS between the weights of Sr and all the weights vectors of a general 

subject Si. The highest CS defined the first shared function between Sr and Si. This 

procedure was iterated for each weight vector of Sr to define the other shared 

functions with Si. We repeated the algorithm for all subjects. (Hagio, Fukuda, and 

Kouzaki 2015; Torres-Oviedo and Ting 2007). 

 

8.2.7 Data analysis 

For each synergy, we computed the average CS and CC across the GCs. For the 

shared synergies, we compared mean CS and CC values, to verify if motor functions 

were consistent to the same extent. Normality of CS and CC values were tested by 

means of a Kolmogorov-Smirnov test. Since data could not be assumed as normally 

distributed, we adopted a Kruskal-Wallis test followed by a post-hoc Fisher Least 

 

Figure 8-4. Scheme of the entire experimental processing, from data acquisition to muscle 

synergies parameters extraction. 
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Significant Difference (LSD) to test the difference in median between synergies of 

CS and CC. Significance level α was set at 0.05 for all tests. For the subject-specific 

synergies, we computed mean and standard deviation of CS and CC values. 

 

8.3 Results 

The twelve analyzed subjects walked at an average self-selected speed of 1.2 ± 0.1 

m/s. On the average, 277  11.5 GCs were recorded for each subject. After outlier 

removal, 181  10 GCs were analyzed. CV of stride time was 1.76 ± 0.30 %, in 

good agreement with previous studies (Agostini, Lo Fermo, et al. 2015). Instead, 

EMG showed high stride-to-stride variability. Figure 8-5 shows onset/offset 

activation intervals of the tibialis anterior muscle of a representative subject relative 

to 163 GCs of her walking trial. It can be observed a great variability of activation 

interval duration among GCs, particularly between 10% and 40% of the GC. It is 

worth to be observed that this is the residual variability after removing outlier GCs. 

Hence, variability due to direction and speed changes is not considered for the 

investigation of muscle synergies consistency. On average, 18  1 subgroups of 10 

concatenated GCs were available for each subject. Altogether, muscle synergies 

were extracted from 213 subgroups of 10 GCs. 
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8.3.1 Number of extracted muscles synergies and analysis of 

synergy consistency  

On the average 5.8 ± 0.6 muscle synergies were extracted for each subject. More 

specifically, 5 synergies were extracted in 3 subjects (VAF: 92.1%  0.6), 6 muscle 

synergies were extracted in 8 subjects (VAF: 92.1%  0.3) and 7 synergies were 

extracted in only 1 subject (VAF: 92.0%). An example of the number of synergies 

satisfying VAF > 90% criterion of each subgroup of GCs is reported in Figure 8-

6. Dashed dotted line represents the number of synergies selected for the within-

subject analysis. 

 

 

 

 

 

Figure 8-5. Onset/Offset EMG activation intervals of the tibialis anterior of a 

representative subject relative to 163 GCs of her walking trial. In each row, the black bars 

represent the EMG activation intervals within stride. 
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Figure 8-7 reports the muscle synergies for a representative subject. The 

weights (Figure 8-7A) and coefficients (Figure 8-7B) of the muscle synergies are 

reported for each subgroup of 10 concatenated strides. It is evident that some 

synergies are very consistent among subgroups. As an example, synergy 2 is 

consistently dominated by muscles LGS, and SOL. In this case, these 2 muscles 

show a high value of weights (close to 1), similar among all subgroups, while the 

other muscles are scarcely represented (weights very close to zero). On the contrary, 

it can be observed that, in synergy 6, the contribution of the muscles is very variable. 

In some of the subgroups, weights are equal to 1 while in others they are zero. These 

observations are confirmed by the CS values reported in Figure 8-7C: CS is close 

to 1 in very consistent synergies (synergies 2, 3, and 5), while it decreases to 0.5 for 

the synergy 6 which is the least consistent. Figure 8-7D reports CC values for the 

activation signals. It can be observed that all activation signals are consistent across 

the task, with CC values above 0.8. 

 

Figure 8-6. Number of synergies satisfying the VAF > 90% criterion of each subgroup of 

GCs for a representative subject. 
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8.3.2 Shared motor functions and their muscle synergies 

consistency 

We attributed biomechanical functions to muscle synergies by observing the 

involved muscles (weights > 0.5) and the timing of activation signals, according to 

the literature (Perry 1992; Winter 1987). 

We found five motor functions shared by all the subjects, and we labeled them 

from F1 to F5 (Figure 8-8). Three shared motor functions were related to the 

generation of the cyclic pattern of gait (F2, F4, F5), while the remaining two 

functions aimed to stabilize body and control balance dynamically (F1, F3). 

Function F1 was principally devoted to the hip joint stabilization. Muscle 

activation was found in the terminal swing and initial/mid-stance phases of gait. 

 

Figure 8-7. Analysis of the consistency of muscle synergies in a representative subject. (A) 

Muscle synergy weights: each bar represents weights of a subgroup of 10 concatenated 

GCs. The black line represents the average across bars. (B) Muscle synergy activation 

signals: each line represents activation signal of a subgroup of 10 concatenated GCs. (C) 

Cosine Similarity for the weights of each synergy. (D) Cross-Correlation coefficient for the 

activation signals of each synergy. Data are reported as mean ± standard error of the mean. 
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TFL and GMD muscles, devoted to hip abduction and hip flexion, had weights 

above 0.5 and hence were predominant, while other muscles were activated to a 

lesser extent (weights below 0.5) and in a less repetitive manner. 

Function F2 generated propulsion in mid and terminal stance phases of gait. 

Ankle plantarflexors muscles, LGS, PL, and SOL, had weights over 0.5 and hence 

were the most relevant to this function. 

Function F3 controlled the trunk position in the frontal plane at the heel strike 

of the homolateral and contralateral foot. LDR and LDL muscles had weights above 

0.5; other muscles, particularly PL and VM, were also activated to a lesser extent. 

Function F4 slowed down the foot during first rocker and controls forefoot 

clearance during swing phase. This function was accomplished by the TA muscle, 

an ankle dorsiflexor, which had a weight close to 1. 

Finally, function F5 decelerated the leg at the end of the swing phase. MH and 

LH muscles, whose principal motor function is knee flexion, were recruited with 

average weights above 0.5. 
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Mean CS and CC values of the shared muscle synergies are reported in Table 

8-I. It can be observed that all the values are above 0.90. No significant difference 

was found among CS, whereas a significant difference was found for CC values (p 

= 0.17 and p=0.03, respectively). A LSD post-hoc test evidenced a significant 

difference between CC activation signals of motor function F2 and motor functions 

F1 and F4. 

 

Figure 8-8. Weights (left) and coefficients (right) of the common muscle synergies across 

subjects. Muscle labels are reported below the weight plots. Data are reported as mean ± 

standard deviation. 
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Table 8-I. Cosine similarity for the weights and cross-correlation coefficients for the activation 

signals for the five shared muscle synergies. Data are reported as mean ± standard deviation. 

  Motor Function 

  F1 F2 F3 F4 F5 

Muscle 

weights (CS) 
0.94 ± 0.07 0.97 ± 0.05 0.98 ± 0.06 0.95 ± 0.06 0.95 ± 0.06 

Activation 

signals (CC) 
0.96 ± 0.03 0.98 ± 0.02 0.98 ± 0.01 0.96 ± 0.03 0.97 ± 0.03 

 

8.3.3 Characteristic subject-specific synergies 

From 1 to 2 muscle synergies were characteristic of subjects. Table 8-II reports CS, 

CC, principal weights and biomechanical functions of the subject-specific 

synergies. More specifically, we found subject-specific synergies in 9 out of 12 

subjects: 8 subjects showed 1 subject-specific synergy, while 1 subject showed 2 

subject-specific synergies. Overall, we found 10 subject-specific synergies, with an 

average CS equal to 0.80 ± 0.20 and CC equal to 0.89 ± 0.14. VM was activated in 

6 out 10 synergies, followed by GMD (5 out 10), RF (3 out 10), and TFL, LGS, 

SOL and (1 out 10). A motor function was assigned to each subject-specific 

synergy, similarly to the shared ones. The main motor functions aimed at 

decelerating leg at the heel strike and terminal swing phase. 
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Table 8-II. Intra-subject consistency of muscle weights and activation signals across subgroups 

of GCs, principal muscles recruited, and biomechanical functions of the subject-specific 

muscle synergies. Data are reported as mean ± standard deviation. 

Subject 

Consistency of motor functions 
Principal 

muscles 

Biomechanical 

function 

Muscle weights 
Activation 

signals 
  

Subject #1 - - - - 

Subject #2 0.50 ± 0.22 0.80 ± 0.09 VM - RF 

Stiff the knee at 

heel strike and the 

load acceptance 

phase 

Subject #3 - - - - 

Subject #4 0.83 ± 0.08 0.91 ± 0.05 
GMD - 

LGS - SOL 

Stabilize hip joint 

and the foot at the 

heel strike 

Subject #5 0.97 ± 0.01 
0.99 ± 

0.004 
PL Not defined 

Subject #6 
0.98 ± 0.03 

0.99 ± 

0.004 
TFL - RF 

Stabilize hip joint 

during swing 

0.74 ± 0.25 0.80 ± 0.17 VM Not defined 

Subject #7 0.49 ± 0.16 0.56 ± 0.09 GMD 

Control the hip 

joint at heel strike 

and the end of the 

swing 

Subject #8 
0.99 ± 

0.004 

0.99 ± 

0.004 

VM - 

GMD - RF 

Stiff the knee and 

control the hip 

joint at heel strike 

and the end of the 

swing 

Subject #9 - - - - 

Subject #10 0.70 ± 0.17 0.87 ± 0.11 VM 

Stiff the knee at 

heel strike and the 

end of the swing 

Subject #11 0.96 ± 0.02 0.98 ± 0.01 
VM - 

GMD 

Stiff the knee and 

control the hip 

joint at heel strike 

and the end of the 

swing 

Subject #12 0.97 ± 0.02 0.99 ± 0.01 
VM - 

GMD 

Stiff the knee and 

control the hip 

joint at heel strike 

and the end of the 

swing 

Subjects #1, #3 and #9 showed no subject-specific synergies, but only shared synergies. 
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8.4 Discussion 

In the present chapter we evaluated, in young adults, the consistency of muscle 

synergies during a 5-minutes walking trial. The trial was divided into subgroups of 

10 concatenated GCs each. Then, we extracted muscle synergies from each 

subgroup of GCs. To quantify muscle synergies consistency, we adopted the cosine 

similarity metric, for the weights, and the cross-correlation, for the activation 

signals.  

 

8.4.1 Methodological observations 

It has been demonstrated that methodological choices affect the outcome of muscle 

synergies computation at each stage (Sartori et al. 2017). Particularly, the cut-off 

frequency of the low-pass filter is of paramount importance: a very low cut-off, 

such as 0.5 Hz, may oversmooth signal, whereas a very high cut-off, up to 20 Hz, 

introduces noise affecting muscle weights (Kieliba et al. 2018). Shuman et al. (B. 

R. Shuman, Schwartz, and Steele 2017) and Krogt et al. (Krogt et al. 2016) also 

evidenced the effect of low-pass filtering on the quality of extracted muscle 

synergies, expressed by the VAF: the higher the cut-off frequency is, the lower the 

VAF. It has been also observed that the higher the cut-off frequency of EMG 

envelop, the higher the amount of computed synergies (Hug et al. 2012). Hence, we 

choose a cut-off frequency of low-pass filter of 12 Hz, that is a good compromise 

between signal smoothing and introduced noise. Furthermore, it has been 

investigated how the unit variance scaling affects the EMG envelop (B. R. Shuman, 

Schwartz, and Steele 2017). Some works pointed out the number of strides and the 

difference between concatenating and averaging EMG (Anderson S Oliveira et al. 

2014). Finally, extraction algorithms have been optimized to obtain more repeatable 

synergies and to reduce model error (Shourijeh, Flaxman, and Benoit 2015). We 

designed our study to limit the constraints to the walking: for this reason, we 

preferred natural pacing, since it has been demonstrated that constrained rhythm 

may influence the synergies with biomechanical constraints (Katherine 

Muterspaugh Steele, Tresch, and Perreault 2015). Similarly, we avoided shoed 

treadmill walking that may influence the synergies (Sloot, van der Krogt, and 

Harlaar 2014). The number of GCs within each subgroup was chosen to obtain a 

robust set of muscle synergies, that is enough subgroups of GCs to compute 

similarity across them. Experimental protocols generally adopt a few GCs to extract 

muscle synergies during walking. Most of the studies adopts 10 GCs (Ivanenko et 

al. 2003; Ivanenko, Poppele, and Lacquaniti 2004; Monaco, Ghionzoli, and Micera 

2010; Chvatal and Ting 2012; Coscia et al. 2015; Haghpanah, Farahmand, and 

Zohoor 2017). However, there is a wide range of experimental protocol, where 

synergies are computed for 1 (Lencioni et al. 2016; Katherine Muterspaugh Steele, 

Tresch, and Perreault 2015) to a maximum of 20 GCs (Kim, Bulea, and Damiano 
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2016). It was demonstrated that, in healthy subjects, when calculated for small 

numbers of GCs the expected margin of error can change dramatically as a result 

of cycle-to-cycle variability. As the number of GCs increases, the margin of error 

decreases and stabilizes (B. Shuman et al. 2016). In addition, synergies extracted 

from 10 concatenated GCs are comparable with those obtained from more GCs 

(Anderson S Oliveira et al. 2014).  

 

8.4.2 Five motor functions: coherence with literature and 

biomechanics 

Overall, we found 5 to 7 muscle synergies per subject. Among these, five were 

shared by the entire sample, in good agreement with previous studies. Each synergy 

contributes to a precise biomechanical motor function, in good accordance with 

those described in previous works. For instance, (Lacquaniti, Ivanenko, and Zago 

2012) reviews the motor functions described in previous works (Ivanenko, Poppele, 

and Lacquaniti 2004; Ivanenko, Poppele, and Lacquaniti 2006a; Cappellini et al. 

2006). Motor function F1 is devoted to body support and load acceptance at heel 

contact, with a burst of activation at nearly 10% of GC and involves primarily hip 

and knee extensors. Synergies with the function of hip joint stabilization at initial 

contact were also found in (Zelik et al. 2014; Hagio, Fukuda, and Kouzaki 2015). 

Ankle plantar flexors constitute synergy F2, which contribute to body support, 

swing initiation and forward propulsion in late stance. Finally, a synergy dominated 

by TA muscle, with peak of activation signal at nearly 75% of GC, and a synergy 

decelerating the leg in late swing in preparation for heel contact were also found in 

previous studies (Coscia et al. 2015; Barroso et al. 2014). The difference across 

studies raises from the number and choice of muscles and the goodness of synergies 

criterion (B. Shuman et al. 2016). 

 

8.4.3 Consistency of shared and subject-specific muscle synergies 

Shared muscle synergies had CS and CC values close to 1. These high values 

indicate a good consistency of these synergies over the entire walking trial. Shared 

synergies represent biomechanical tasks cyclically repeated. They represent motor 

control strategies that remain consistent across many GCs. 

In addition to the shared synergies, one or two subject-specific synergies were 

also found, in accordance with previous works (Chvatal and Ting 2012; Chvatal 

and Ting 2013). Subject-specific synergies were mainly present during two 

demanding phases of gait, which are heel strike and terminal swing. Recruited 

muscles suggest that these synergies were devoted to maintaining balance, a critical 
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end-point of motion control (Bauby and Kuo 2000). In fact, due to dynamic balance 

demand, locomotion is characterized by a high variability of the hip and knee 

angular moments (Winter 1995). Therefore, muscle synergies aimed at controlling 

the hip and knee joints may vary across subjects to optimize the balance task. It has 

also been demonstrated that foot contact is a challenging phase during gait, which 

requires an high degree of integration of internal models with sensory feedback 

inputs (van der Linden et al. 2007). This confirms the adaptability of muscle 

synergies, since they aim at adapting the global activity patterns to the kinetic and 

kinematic limb demands during locomotion (Ivanenko, Poppele, and Lacquaniti 

2004). In most cases, subject-specific synergies had CS and CC close to 1, like 

shared ones. Subject-specific synergies, like shared ones, may refer to motor tasks 

that subjects execute cyclically, and, consequently, they are consistent during 

walking. It may be speculated that muscle synergy consistency reflects the 

contribution of lower motor neuron circuitries or the locomotion rhythmic signals 

produced by Central Pattern Generator (CPG) (Dimitrijevic, Gerasimenko, and 

Pinter 1998). However, some subject-specific synergies had a CS and CC value 

consistently lower, while others had undefined motor functions. Specific sensory 

inputs may play a role in these synergies (Cheung et al. 2005). It was demonstrated 

that synergies can vary due to obstacle negotiation,  speed transitions or specific 

motor tasks (Cheung, D’Avella, and Bizzi 2009; Chvatal and Ting 2012; Hagio, 

Fukuda, and Kouzaki 2015). Furthermore, some researchers demonstrated that 

muscle synergies are influenced by step-related sensory feedback and 

biomechanical events of the GC (Ivanenko et al. 2003).  

 

8.5 Conclusion 

In this chapter, we described the method we adopted to extract muscle synergies in 

a 5-minutes walking trial. Secondly, we explored the intra-subject consistency of 

muscle synergies. We analyzed a sample of healthy young adults during a 5-minutes 

walking trial. We adopted cosine similarity yo measure consistency of muscle 

weights, and cross-correlation to measure consistency of activation signals. We 

found 5 synergies describing the same motor function in all subjects. These 

synergies showed a high degree of consistency. In addition, 9 out of 12 subjects 

showed also subject-specific synergies. Subject-specific muscle synergies were 

also consistent, although to a lesser extent. Our results confirm that CNS may adopt 

muscle synergies to effectively control human movement. Indeed, while motor 

output may vary, a set of basic functions are recruited cyclically, and they remain 
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unmodified during a repetitive task. This behavior could be verified at different 

speeds and for other cyclic movements, such as cycling or running.
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Chapter 9 

Muscle synergies of principal and 

secondary activations during gait 

9.1 Introduction 

Human locomotion is characterized by the cyclic repetition of biomechanical tasks 

with the aim of translating over a defined path with the less expenditure of energy. 

In (Basmajian and De Luca 1985), six major determinant of human gait are defined. 

However, human walking is quite more complex, because it requires the integration 

with sensory information and environment. For this reason, that are the basic 

constituents of the translation, but there are also adjunctive movements that seldom 

appear, but they are necessary for stability control and movement correction. This 

implies a modification in muscle activity, which reflects in different EMG 

activations. Therefore, two types of EMG activations can be defined: principal and 

secondary activations. Principal activations are the muscular activity required to 

generate movement. Secondary activations are generated by movements not 

necessary for the movement. The former describes movements repeated cyclically 

all Gait Cycles (GCs) and with a well-defined biomechanical function. The latter, 

are less repeatable across GCs and their function is auxiliary to the movement and 

less repeatable. To obtain principal and secondary activations, many consecutive 

GCs are required. Then, activation intervals of each GC are given as input of a 

classifier, which defines the principal and secondary activation intervals (Rosati et 

al. 2017; Agostini and Knaflitz 2011). 

However, motor control strategies of walking activation patterns have been not 

analyzed yet. The objective of the present chapter is investigating if different 
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activation patterns are controlled by different neural circuits, that is if they recruit 

different motor modules or if they are controlled differently by supraspinal 

commands. For this reason, we investigated a sample of healthy subjects 

performing a walking task. Then, principal and secondary activations were 

computed from EMG, and corresponding muscle synergies were extracted. In this 

way, muscle synergies relative to three modalities were available. We call Principal 

Synergies (PS) the muscle synergies obtained from EMG corresponding to 

principal activation intervals. Similarly, we call Secondary Synergies (SS) the 

muscle synergies obtained from EMG corresponding to secondary activations. 

Finally, we call Original Synergies (OS) the muscle synergies obtained from 

original EMG, disregarding the activation intervals. We hypothesize that principal 

and secondary activations have different neural control mechanism. Furthermore, 

since secondary activations are occasional and repeatable to a lesser degree than 

principal activations, we hypothesize that SS are very different from PS in muscle 

weights and activation signals.  

 

9.2 Material and methods 

The dataset of the walking session relative to twelve healthy subjects (All females, 

right side dominant; mean age 24.58 ± 1.62; mean body mass index 20.07 ± 1.79) 

fully described in Chapter 8 was adopted for this section. Briefly, subjects were 

instructed to walk at a self-selected pace for 5 minutes, maintaining a constant 

walking velocity. They walked back and forth over a 10-m pathway. EMG from 12 

muscles of the trunk and the dominant leg were recorded and preprocessed. After 

data acquisition, we identified onset and offset of GCs by an automatic algorithm 

(Agostini, Balestra, and Knaflitz 2014). Then, outlier GCs, including acceleration, 

deceleration, and turning in correspondence of direction changes, were discarded. 

 

9.2.1 Principal and secondary activations algorithm 

Principal activations were extracted from each muscle individually. We computed 

principal activations intervals with the Clustering for Identification of Muscle 

Activation Patterns (CIMAP), a hierarchical dendrogram clustering algorithm 

described in (Rosati et al. 2017).  

EMG is preprocessed before computing principal activations, and the following 

steps are performed:  
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- separate each GC and normalize to 1000 time points 

- select a specific gait pattern (H-F-P-S) 

detect activation intervals by means of a double threshold algorithm. The algorithm 

detects when EMG signal is above the background-noise level (ON) or when it is 

below (OFF) (Bonato, D’Alessio, and Knaflitz 1998). An activation interval j 

begins at the timing points ONj and ends at OFFj. 

CIMAP algorithm is divided in three parts: dataset preparation, clustering 

algorithm, and extraction of principal activations. 

Dataset preparation consists of pooling together strides with similar activation 

modality, that is activations with the same number of ON/OFF timing points. 

Datasets with less than 50 GCs are excluded from the analysis. 

GCs of each dataset are clustered with a hierarchical dendrogram clustering 

algorithm. Initially, each GC is a single-element cluster. In an iterative manner, for 

a general cluster A with m ON/OFF timing points, the centroid is computed as the 

mean of ON and OFF timing points of the GCs inside the cluster, normalized by 

the number of GCs: 

 

𝐶𝐿𝐶𝐴 =  
1

|𝐴|
∑ 𝑎𝑖

𝑎𝑖 ∈𝐴

= {𝑂𝑁1
̅̅ ̅̅ ̅̅ , 𝑂𝐹𝐹1

̅̅ ̅̅ ̅̅ ̅̅ , … , 𝑂𝑁𝑗
̅̅ ̅̅ ̅̅ , 𝑂𝐹𝐹𝑗

̅̅ ̅̅ ̅̅ ̅, … , 𝑂𝑁𝑚
̅̅ ̅̅ ̅̅ ̅, 𝑂𝐹𝐹𝑚

̅̅ ̅̅ ̅̅ ̅̅ } 

 

Then, the two closest clusters A and B are merged in the same cluster. L-infinity 

norm is adopted as a measure of similarity between two clusters A and B: 

 

𝑑(𝐶𝐿𝐶𝐴, 𝐶𝐿𝐶𝐵) =  max (max
𝑚

(𝑂𝑁𝐴 −  𝑂𝑁𝐵) , max
𝑚

(𝑂𝐹𝐹𝐴 −  𝑂𝐹𝐹𝐵)) 

 

The rule to select the final number of clusters is defined to have clusters with a 

comparable number of elements, a small intra-cluster variability, and a great 

distance between clusters. The intra-cluster variability is computed as the Euclidian 

distance between each GC within the cluster and the cluster centroid. At each level 

k of the dendrogram, two clusters A and B are merged in a cluster A∪B, and an 
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index Rk is computed. Rk is the ratio between intra-cluster variability of the new 

cluster A∪B and the maximum between the intra-cluster variability of the two 

original clusters A and B. To have a reasonable number of clusters, Rk is computed 

only for the last 20% of iterations. k is identified as the maximum Rk, and the final 

number of clusters is k - 1.  

Finally, principal activations common to all datasets are computed for each 

muscle. A cluster centroid is computed for each cluster. The principal activations 

are given by the intersection of the clusters centroids. Figure 9-1 shows an example 

of activation intervals of tibialis anterior muscle for a representative subject. In this 

case, GCs have been divided in two datasets with 2 and 3 activation intervals. The 

CIMAP algorithm clustered GCs into a) 3 clusters with 2 activations and b) 4 

clusters with 3 activations. Overall, 7 clusters were created. Clusters centroids are 

computed, and the principal activations are the intersection of the clusters centroids. 

Otherwise, activations are labeled as secondary activations. 

 

 

Figure 9-1. Results of CIMAP clustering algorithm for tibialis anterior muscle of a 

representative subject. Each grey bar represents the activation interval in percent of GC. 

Activation intervals are clustered according to number and duration of onset/offset 

intervals. Principal activations (green bar) are those common to all clusters prototypes 

extracted with the CIMAP algorithm, while secondary activations (red bar) are those 

present only in a subset of clusters. 
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Once we obtained principal and secondary activations for each muscle, we 

computed three binary masks, in order to collect the EMG within the specified 

activation interval: 

• a mask equal to one everywhere, for to the original EMG; 

• a mask with one in correspondence of principal activations, zero 

elsewhere; 

• a mask with one in correspondence of secondary activations, zero 

elsewhere. 

Before masks superposition, EMG of each channel was scaled from 0 to 1 

according to the maximal activation within muscle, and each GC was normalized 

to 1000-time points. Then, we multiplied the binary masks with the EMG of the 

corresponding muscle. Where a mask was one, the signal remained unmodified, 

elsewhere the signal was set to zero. Figure 9-2 shows an example of the three 

masks superposed to the EMG of the tibialis anterior for a representative GC. We 

repeated the masking with all muscles. Hence, we obtained the following three 

EMG matrices: a first one, with original EMG (EMGOS), a second one with 

principal activations (EMGPS), and a third EMG matrix with the bursts of the 

secondary activations (EMGSS). 
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We pre-processed the three EMG matrices in the same way: they were high-

pass filtered at 35 Hz, then demeaned, rectified, and low-pass filtered at 12Hz.  

Muscle synergies were extracted from each EMG matrix with the methods fully 

described in Chapter 8 (see paragraph 8.2). Briefly, we divided each EMG matrix 

(i.e EMGOS, EMGPS, and EMGSS) in subgroups of 10 GCs each. For each subgroup, 

we extracted muscle synergies with NMF method. Hence, for a subject with N 

subgroups of 10 GCs, N sets of muscle synergies were computed. The goodness of 

fit of the data reconstruction using these synergies was quantified by the Variance 

Accounted For (VAF), defined as 100 × uncentered Pearson’s correlation 

coefficient. For each modality, we selected a number of synergies accounting for at 

least 90% of the overall data variability (Chvatal et al. 2011). Since every subgroup 

may satisfy the VAF > 90% criterion with a different number of synergies, a further 

criterion was added: we choose the maximum number of synergies satisfying the 

 

Figure 9-2. Example of activation masks applied to the EMG of a representative GC. The 

mask for original (blue line, panel A), principal activations (green line, panel B), and 

secondary activations (red line, panel C), are superimposed to the EMG of the tibialis 

anterior.  Black line represents the EMG included in the mask, grey line represents the 

EMG excluded for the specified activation modality. 
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VAF > 90% criterion among the N subgroups. In this way, an equal number of 

synergies was obtained for each subgroup of each subject, and, contemporary, the 

VAF > 90% criterion was satisfied. 

 

9.2.2 Data analysis 

We compared the constitution, flexibility and biomechanical role of muscle 

synergies obtained from the three modalities: OS, PS, and SS. We tested normality 

of the data distribution in the analyzed subsets by means of a Shapiro-Wilks test, 

and we choose an α level of 0.05 for all tests.  

We compared the number of synergies and the reconstruction VAF. Due to 

categorical nature of the number of synergies, we compared the number of 

synergies satisfying the VAF>90% criterion by means of a Wilcoxon Signed Rank 

test (Hayes et al. 2014). We compared VAF by means of a one-way ANOVA 

(factor: modality, three levels: OS, PS, SS) followed by post-hoc tests with 

Bonferroni correction, as the VAF distributions in the three modalities were not 

different from normal. 

Flexibility is the feature of a muscle synergy to adapt to different motor tasks: 

the more flexible it is, the more the motor tasks it describes (M. L. Latash, Scholz, 

and Schöner 2007). Flexibility of two sets of muscle synergies can be compared in 

this manner: given a matrix EMG1, it can be decomposed in the product of matrices 

of weights W1 and coefficients curves C1. The goodness of synergy modelization is 

described by the VAF computed between the original EMG and reconstructed data 

matrix: 

𝑉𝐴𝐹1 =  1 −  
(𝐸𝑀𝐺1 − 𝑊1𝐶1)2

𝐸𝑀𝐺1
2  

 

Similarly, the same description can be done for a matrix EMG2 and synergies 

W2C2 with a goodness of modelization described by VAF2.  

To describe the flexibility of synergies of EMG1, the cross-VAF can be 

computed as 
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𝑉𝐴𝐹12 =  1 −  
(𝐸𝑀𝐺2 −  𝑊1𝐶1)2

𝐸𝑀𝐺2
2  

 

where VAF12 represents the flexibility of synergies W1C1 to describe the motor 

task corresponding to EMG2. Similarly, 

 

𝑉𝐴𝐹21 =  1 −  
(𝐸𝑀𝐺1 − 𝑊2𝐶2)2

𝐸𝑀𝐺1
2  

 

describes the flexibility of synergies obtained from motor task EMG2 (Fox et al. 

2013).  

We analyzed flexibility of muscle synergies by computing the within-subject 

cross-VAF. Iteratively, we used the synergies computed for one subgroup of GCs 

to reconstruct the EMG matrices of all the other subgroups. The following 

procedure was adopted to analyze intra-subject flexibility. N sets of synergies were 

available, each one corresponding to 10 GCs. For a subgroup of GCs i, we 

computed the reconstruction signal WiCi. Then, we obtained the cross-VAF with 

respect to the EMG of the remaining N-1 GCs. We repeated this procedure 

iteratively to obtain a cross-VAF for all the subgroups. Finally, the cross-VAF 

values were averaged across subgroups to obtain the within-subject flexibility. We 

computed cross-VAFs for OS, PS, and SS synergies, and they were compared by 

means of a one-way ANOVA, followed by post-hoc test if necessary.  

We also analyzed consistency of muscle synergies, that is how well they 

describe the basic motor patterns (Clark et al. 2010). We adopted cosine similarity 

to compare muscle weights, and zero-lag cross-correlation to compare activation 

signals among subgroups of a subject (Gizzi et al. 2011). To compute the cosine 

similarity, the same number of synergies was required. We computed the cosine 

similarity iteratively among the N subgroups and for all the synergies between each 

pair of synergies. Finally, the average cosine similarities were compared with a 

paired-t test to test the null hypothesis the consistency of muscle synergies remained 

unaltered before and after principal activations calculation. The same procedure and 

statistical test was performed for the cross-correlation of activation signals. Cosine 
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similarity and cross-correlation were compared among the three modalities by 

means of a one-way ANOVA with factor modalities (three levels: OS, PS, SS), 

followed by post hoc analyses of pairwise comparisons when required. 

Finally, we analyzed the number of dominant muscles of muscle weights of 

each synergy for PS and SS. A muscle was considered dominant in a synergy if it 

was within the 20% of the maximum weight (Katherine M. Steele, Tresch, and 

Perreault 2013). Like the number of synergies, we considered the number of 

muscles as categorical data. Then, the number of dominant weights was compared 

between PS and SS by means of a Wilcoxon signed-rank test. 

 

9.3 Results 

Across all participants, an average number of 181.17±10.19 GCs were analyzed. 

Subjects walked at a mean velocity of 1.18±0.10 m/s, with a cadence of 54.91±2.29 

cycles/min. Overall, we observed nearly the same synergies extracted from EMGOS 

and EMGPS, but a better flexibility and stability came out after computing principal 

activations. On the contrary, muscle synergies obtained from EMGSS were very 

different from those obtained from EMGOS and EMGPS, which may be indicative of 

a different neural origin. 

 

9.3.1 Muscle synergies of a representative subject 

Figure 9-3 shows muscle synergies for a representative subject. It reports synergies 

obtained from original EMG (Figure 9-3A) and synergies after principal 

activations filtering (Figure 9-3B). Overall, it can be observed that muscle weights 

were more uniform in amplitude in PS than OS. For instance, in W3OS there is a 

great variability in LGS and SOL recruitment. Conversely, in W1PS all the 

ankleflexors muscles are recruited equally. In addition, activation curves improved 

after principal activations filtering, particularly during the stance phase. Indeed, PS 

show coefficient curves that are nearly identical for all subgroups, whereas 

activation curves from C1OS to C3OS varied greatly in amplitude and shape. First 

and second synergies OS mixed in a single synergy PS (W1PS and C1PS), which is 

formed by hip abductors TFL and GMD and, to a lesser extent, ankleflexors LGS 

and SOL and describes load acceptance. 

 



132 Muscle synergies of principal and secondary activations during gait 

 

Figure 9-4 shows muscle synergies obtained from secondary activations, SS, 

for the same representative subject. It can be observed that much more synergies 

than OS and PS are required to satisfy VAF>90% criterion. Furthermore, the most 

of synergies are dominated by only one muscle, and rarely from two muscles. 

Finally, it can be noticed that the amplitude of activation signals for SS is lower 

than PS and OS. 
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Figure 9-3. Muscle weights and activation signals for a representative subject. (A) muscle 

synergies obtained from original EMG signal. (B) muscle synergies obtained after 

principal activations processing. Black lines represent mean weights across subgroups of 

GCs. 
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Muscle synergies consistency in the three modalities has been evaluated by 

measuring cosine similarity of muscle weights and cross-correlation of activation 

signals. Consistency measures of the synergies of the representative subject are 

reported in Figure 9-5. It can be observed that PS have the best consistency in both 

muscle weights and activation signals across subgroups of GCs (Figure 9-5B). 

Conversely, OS show a lower degree of consistency, particularly in the stance phase 

(Figure 9-5A, synergies W1-W3 and C1-C3). However, cosine similarity and 

cross-correlation remained above 0.8 in all the synergies. Finally, Figure 9-5C 

shows cosine similarity and cross-correlation for the synergies obtained from 

 

Figure 9-4. Secondary activations muscle synergies for a representative subject. One to 

two muscles are recruited within each muscle weight vector (Left), and activation signal 

have low amplitude (Right). Black lines represent mean weights across subgroups of GCs. 

 



Muscle synergies of principal and secondary activations during gait 135 

 

secondary activations only, SS. It can be observed that muscle synergies 

consistency decreased dramatically. In both stance and swing phases it can be 

observed that muscle weights and activation signals varied over time. For SS, 

differently from OS and PS, it can be noticed that certain synergies had consistency 

mean values of cosine similarity and cross-correlation well below 0.5 (W1ss, W2ss) 

and 0.7 (C1ss and C3ss) respectively. They indicate a large amount of synergies of 

subgroups of GCs with very low levels of consistency with other subgroups. 
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Figure 9-5. Muscle synergies consistency measurements for the representative subject. For 

the muscle weights, it has been adopted cosine similarity (Left panel), while for the 

activation signals it has been adopted zero lag cross-correlation (Right panel). Consistency 

measurements have been reported for OS (A), PS (B), and SS (C) Data are reported as 

mean ± standard error. Each bar represents the mean consistency measurement between 

the same synergy of all subgroups of GCs. Measures have been labeled according to the 

muscle weights vectors or activation signals (Figure 9-3 and Figure 9-4). 
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9.3.2 Number of synergies and reconstruction VAF 

On the average, each subject satisfied the VAF>90% criterion with 5.6 ± 0.5 

synergies OS, whereas with principal activations EMG 5.0 ± 0.5 synergies PS and 

with secondary activations 8.8 ± 0.6 SS were extracted. In details, 7 subjects had 

one less synergy when principal activations were extracted, while in 5 subjects OS 

and PS had the same number of synergies. A Kruskal-Wallis test showed a 

significant difference in the number of synergies among the three modalities OS, 

PS, SS. A post-hoc test indicated a significative difference between the ranks of OS 

and PS (p = 0.01), between PS and SS (p = 0.02), and OS and SS (p = 0.02). A one-

way ANOVA showed no statistical difference for the mean reconstruction VAF of 

the extracted synergies (VAF 92.1 ± 0.5 OS, 92.2 ± 1.1 PS and 91.52 ± 0.3 SS, p = 

0.05).  

 

9.3.3 Number of muscles within synergies 

We compared the composition of PS and SS, by comparing the number of dominant 

muscles. For PS and SS, we determined the amount of dominant muscles. Then, we 

divided synergies in two groups: synergies with less than 2 dominant muscles (1-2 

group) and synergies with more than three muscles (3+). Table 9-I reports the 

number of synergies of PS and SS modalities divided according to the number of 

dominant muscles. It can be observed that the most of SS were dominated by 1-2 

muscles. On the other hand, the PS modality showed, on the average, an equal 

number of synergies with 1-2 and 3+ dominant muscles for each synergy. A 

Wilcoxon signed rank test showed a significative difference in the number of 

dominant muscles between the PS and SS modalities for both 1-2 and 3+ groups (p 

< 0.0001). 

 

Table 9-I. Number of synergies according to the number of dominant muscles for PS and SS 

modalities. Data are reported as mean ± standard deviation. 

  Number of synergies 

  
Total 

1-2 

muscles 

3+ 

muscles 

PS 5.0 ± 0.6 2.5 ± 0.9 2.5 ± 0.7 

SS 8.4 ± 1.2 8.0 ± 2.0 0.4 ± 0.9 

 



138 Muscle synergies of principal and secondary activations during gait 

 

9.3.4 Synergies flexibility and consistency 

We computed cross-VAF to evaluate within-subject flexibility of muscle synergies. 

Figure 9-6 shows the distribution of the within-subject cross-VAF. It can be 

observed that cross-VAF PS is slightly higher than OS. It may indicate that PS are 

more repeatable within-subject than OS. On the average, cross-VAF improved by 

7.0%, from a minimum of 4.6% to 12.8%. Only in one subject (S6) cross-VAF of 

PS decreased by 16%. A Kruskal-Wallis test showed a significant difference in the 

median cross-VAF among the three modalities (p<0.0001). A Wilcoxon signed 

rank test indicated a significative difference of median cross-VAF between OS and 

PS (p = 0.03), between PS and SS (p<0.0001), and between OS and SS (p<0.0001).  

 

We compared consistency of the three modalities by computing the cosine 

similarity of muscle weights and cross-correlation of activation signals. On the 

average, PS had the highest cosine similarity (0.98 ± 0.03), whereas OS and SS had 

a lower cosine similarity, equal to 0.93 ± 0.06 and 0.82 ± 0.07 respectively. A one-

way ANOVA showed a significant difference in the mean cosine similarity of 

muscle weights between the three modalities (F = 29.18, p<0.0001). A post-hoc 

paired t-test evidenced also a significative difference in the cosine similarity of PS 

from OS (T = -3.31, p = 0.007), PS from SS (T = 7.6, p < 0.0001), and OS from SS 

 

Figure 9-6. Within-subject cross-VAF for synergies obtained from original EMG (OS), 

principal activation (PS), and secondary activation (SS). +: outlier subject. 
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(T = 5.33, p = 0.0002). As for the cross-correlation, muscle synergies showed the 

same trends of consistency across GCs. Indeed, PS had the higher mean cross-

correlation, equal to 0.99 ± 0.01, whereas OS and SS showed a value of cross-

correlation equal to 0.96 ± 0.03 and 0.88 ± 0.03 respectively. A post-hoc paired t-

test evidenced also a significative difference in the cross-correlation of PS from OS 

(T = -3.85, p = 0.002), PS from SS (T = 14.94, p < 0.0001), and OS from SS (T = 

9.21, p < 0.0001). 

 

9.4 Discussion 

In recent years, many studies evidenced that walking task is not achieved by 

repeating the same motor patterns cyclically, but there are several patterns of 

muscular activation. For instance, it has been observed that LGS activates not only 

during midstance as ankle flexor (Perry 1992; Sutherland 2001), but also in the pre-

swing, to correct foot position in heel strike preparation (Agostini et al. 2010; Di 

Nardo, Ghetti, and Fioretti 2013). It has also been observed that extra activations of 

GMD appear between terminal stance and pre-swing, probably with the function of 

hip abduction when the hip is unloaded (Agostini et al. 2014). Other studies 

evidenced that children affected by hemiplegic cerebral palsy may have different 

patterns of muscular activation, even if classified in the same Winter class 

(Agostini, Nascimbeni, et al. 2015). All these results demonstrate the richness of 

muscular activation patterns during gait. This richness is mainly due to the 

redundancy of skeletal-muscle system, because a motor task can be accomplished 

by adopting one among many possible solutions (Bernstein 1967; Abend, Bizzi, 

and Morasso 1982; Sharif Razavian, Mehrabi, and McPhee 2015). 

More recently, it has been developed a novel algorithm that, in an automatic 

way, classifies activation patterns on the base of onset and offset instant times of 

muscular activity. It allows to separate the more frequent muscular activation 

patterns from those that seldom appear. In this manner, two kind of activation 

patterns with different biomechanical roles emerged for each muscle: principal 

activations, that allow the movement execution, and secondary activations, that 

have auxiliary functions (Rosati et al. 2017).  

The present work aimed to understand if different activation patterns are 

controlled with a different neural organization. For this reason, muscle synergies 

were computed for principal and secondary activations separately. Muscle 

synergies were obtained by applying a factorization algorithm to the EMG signal, 

to compute vectors of muscle weights and curves of activation signals (Torres-

Oviedo and Ting 2007). In this way, muscle synergies put in evidence the functional 
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groups of muscles coded at spinal level, and the supraspinal signals that synchronize 

the activation of the specific muscle group (Ivanenko, Poppele, and Lacquaniti 

2006b; Bizzi et al. 2002). The criterion we adopted to choose the number of 

synergies of each subject, that is guaranteeing a VAF>90% for each set of 

synergies, allowed to obtain synergies that well reconstruct the starting data, 

without significant difference among the modalities (see Paragraph 8.3.1). 

Furthermore, by recording nearly two hundred GCs during a single task, we could 

measure consistency and flexibility of muscle synergies, that may indicate how 

synergies are repeatable and independent from the motor task.  

The main outcome of the present work is that different muscular activations 

need different neuronal activation. Indeed, our results demonstrated that PS and SS 

were significantly different in all the measured parameters. PS were constituted by 

a few motor modules with three or more muscles each. On the contrary, SS were 

formed by many motor modules with less muscles than PS. In our study, we limited 

the analysis of the number of dominant muscles per synergy only to PS and SS 

because we were interested to determine if there were different muscle recruitment 

between the two modalities. Furthermore, the study of PS and SS evidenced how 

nervous system integrates the two modalities to adapt and optimize movement. 

Indeed, we observed that SS accomplished selective tasks, through prolonging or 

anticipating PS. For instance, certain subjects needed to improve stability in the 

stance to swing transition. To this aim, the bilateral activation of trunk muscles in 

late-stance, as defined by PS, was followed by a SS of the contralateral muscle. The 

same mechanism may be devoted to increase stability in leg control at the heel 

strike. This behavior can be observed in the synergies obtained for the 

representative subject we reported in Results section (Figure 9-4 and Figure 9-5). 

It has been hypothesized that muscle synergies represent motor control of the 

CNS (Roh, Cheung, and Bizzi 2011; Bizzi and Cheung 2013; Ting et al. 2015). 

Neural circuits located in the spinal cord drive muscular activations during 

locomotion while intermediating between descending signals and peripheral 

sensory information (Monaco, Ghionzoli, and Micera 2010). Previous studies 

evidenced that task-specific synergies could raise to adapt to motor control, 

indicating that synergies may depend on intended action (de Rugy, Loeb, and 

Carroll 2013; Sharif Razavian, Mehrabi, and McPhee 2015). Also (McGowan et al. 

2010) evidenced flexible weightings may be required, with substantial changes in 

mechanical demands. Nevertheless, it remains unclear if synergies represent the 

activity of nervous system, or rather, they represent the constraints of articular joints 

to the accomplishment of motor task (Aoi and Funato 2016; McGowan et al. 2010). 
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In this sense, we observed that, according to the motor function, different neuronal 

control mechanisms may coexist. As for the PS, we observed muscle synergies very 

similar to those generally reported in the literature (Cappellini et al. 2006; 

Lacquaniti, Ivanenko, and Zago 2012; Chvatal and Ting 2013). Otherwise, in the 

SS modality, we cannot talk of motor modules really, because each synergy 

accounted for one or two muscles only. The very low amplitude of SS activation 

signals reinforces this hypothesis. Furthermore, PS are highly repeatable within 

subject, whereas there is high variability in SS, as results of consistency and 

flexibility demonstrated. We suppose that SS may not represent synergies coded at 

the spinal level, but rather be sensitive responses managed at a peripheral level. In 

summary, nervous system seems to manage differently the motor tasks during the 

same GC. This could be interpreted as an optimization strategy that nervous system 

adopts for motor control: motor tasks that are frequently repeated are stored at 

spinal level as motor modules, whereas task-specific adjustments, requiring 

secondary activations, may be only a peripheral reflex. Our results imply that results 

obtained from muscle synergies during gait may be affected by the secondary 

activations. To properly study the framework of neural control of gait, principal 

activations only are required, whereas secondary activations should be discarded if 

not of specific interest. 

 

9.5 Conclusion 

In this chapter, we analyzed the muscle synergies of principal and secondary muscle 

activations during gait. We computed the principal and secondary activation 

intervals by means of CIMAP algorithm and we extracted muscle synergies 

associated to the original EMG signal and the two different activation modalities. 

The main outcome of this work is that different gait patterns are originated by 

different neural control mechanisms. Indeed, results we obtained evidenced 

significant difference between PS and SS in terms of composition, flexibility, and 

consistency. We found that PS had a few muscle synergies composed by many 

muscles and large activation curves. Conversely, SS had many synergies with one 

or two muscles and activation curves close to zero. Furthermore, we found 

significant differences between synergies obtained from raw EMG and PS. Our 

results demonstrate that activation patterns are controlled differently by nervous 

system: it seems that only principal activations are originated by motor modules, 

whereas secondary activations may be only peripheral reflexes acted to adjust 

movement to the biomechanical task 
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Chapter 10 

Clinical cases of muscle synergies 

analysis in lower back pain patients 

after one-month physiotherapy 

rehabilitation 

 

10.1 Introduction 

Lower Back Pain (LBP) is an acute or chronic pain in the lumbar or sacral regions, 

which may be associated with muscular-ligamentous sprains and strains, 

intervertebral disk displacement, and other conditions (Parker and Parker 2004). 

LBP is classified as being specific or nonspecific. Specific LBP is caused by 

specific patho-physiological mechanisms, such as infections, inflammations, 

osteoporosis, rheumatoid arthritis, fracture or tumor. However, the vast majority of 

patients are labelled as having nonspecific LBP, which is defined as symptoms 

without a clear specific cause (van Middelkoop et al. 2010). Furthermore, it could 

be an accompanying pain of spine disorders such as sciatica (El Barzouhi et al. 

2014; Jones, Pandit, and Lavy 2014). LBP is generally a long-term experience pain 

with significant recurrence, rather than a single case episode (Campbell et al. 2013). 

The lifetime prevalence of LBP is reported to be as high as 84%, and best estimates 

suggest that the prevalence of chronic LBP is about 23%, with 11–12% of the 

population being disabled by it (Balagué et al. 2012). Treatments of LBP generally 
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include pharmacological treatment, surgical intervention, transcutaneous electrical 

stimulation, and physical therapies such as spinal manipulations (Herndon, Zoberi, 

and Gardner 2015). A very recent review showed that LBP is related to hip, trunk 

and spine strength imbalances and low flexibility levels, but there is no evidence 

that the normalization of these variables may reduce pain and functionally improve 

subjects with LBP (Victora Ruas and Vieira 2017). 

Little is known about the gait abnormalities of people suffering from this 

pathology (Lamoth et al. 2006). It has been observed that LBP patients adapt gait 

pattern at the trunk level (Y. P. Huang et al. 2011). An excessive foot pronation 

during gait in women suffering from LBP has been viewed, which may indicate a 

role of the foot position in the LBP (Menz et al. 2013). A particular gait alteration 

that has been observed is the stiffed-leg walking: it means that LBP patients have 

the tendency of to walk with the knee extended during the load acceptance phase 

(Agostini et al. 2009; Müller, Ertelt, and Blickhan 2015). The correction of this 

alteration is of great importance, because walking is a daily activity, but it requires 

a reeducation to the normal gait. 

It has been evidenced that muscle synergies may be helpful in designing 

rehabilitation therapies (McMorland, Runnalls, and Byblow 2015), for instance as 

a tool for monitoring the recovery of the physiological muscle recruitment 

(Safavynia, Torres-Oviedo, and Ting 2011; Ting et al. 2015). Therefore, muscle 

synergies have been sometimes adopted to evaluate therapies. For instance, some 

previous works adopted muscle synergies to show the effect of gait rehabilitation 

in persons suffering by multiple sclerosis (Jonsdottir et al. 2015) and in the 

rehabilitation of the upper limb of stroke patients (Urra, Casals, and Jané 2014).  

The present chapter is a pilot study with the objective of investigating how 

rehabilitation of LBP patients with stiffed-leg walking may affect their motor 

control strategies. A group of LBP patients were evaluated with a brief walking 

trial. Then, we enrolled a small subgroup of patients with stiffed-leg walking. 

Enrolled patients underwent a one-month physiotherapy to reduce the stiffness of 

the leg and to correct the trunk posture. Before and after the physiotherapy, we 

analyzed the muscle synergies extracted during a walking trial. Muscle synergies 

were extracted and analyzed with the methods we developed and described in the 

previous chapters. In details, we analyzed muscle synergies only for principal 

activations, computed as described in Chapter 9. We adopted the experimental 

protocol and muscle synergies extraction procedure described in Chapter 8. 
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10.2 Material and methods 

10.2.1 Participants and experimental setup 

Participants were recruited from the Rehabilitation Division of IRCCS San Camillo 

Hospital, Torino (Italy) across the hospital population with diagnosis of chronic 

LBP. Patients with comorbidity of neurological or vascular disease, BMI > 30, non-

autonomous or aided walking were excluded from the study. Hence, eights patients 

(2 males and 6 females, age 59 ± 6.5 years, BMI 22.15 ± 1.5) were included in the 

study. The experimental protocol was approved by the local ethical committee and 

all participants gave their written informed consent to be included in the study. 

The flow chart in Figure 10-1 resumes the phases of this study. The work was 

divided into three phases: a preliminary assessment session, to enroll eligible 

patients (Enrollment). At the end this session, three out the 8 patients met the criteria 

to be enrolled in the rehabilitative protocol (see next Section). The selected three 

patients were analyzed with gait analysis in order to investigate muscle synergies 

before (Pre-treatment) and after one-month rehabilitation (Post-treatment). 

 

 

 

Figure 10-1. Flow chart of the study. At each stage, n patients were analyzed. 
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10.2.2 Enrollment 

The enrollment stage consisted of recording a walking session, to compute the 

goniometry of the knee during walking. Subjects were equipped with a system for 

the gait analysis (STEP32, Medical Technology, Italy). Signals were acquired at 2 

kHz. The system recorded: foot-switches signals, for timing the gait cycle, and knee 

joint angle curves in the sagittal plane. Foot-switch signals were acquired by three 

thin switches (size 10 × 10 × 0.5 mm3; activation force: 3N) placed beneath the 

heel, the first, and fifth metatarsal-heads of each barefoot sole. Knee joint 

kinematics in the sagittal plane was collected, bilaterally, by electrogoniometers 

(accuracy: 0.5°) placed on the lateral side of each lower limb. 

After sensors positioning, subjects were asked to walk at self-selected speed 

back and forth over a straight pathway of 15 meters for 2 minutes. 

Foot-switches signals were adopted for timing the gait cycles and removing 

outlier gait cycles, i.e. with abnormal timing, like those relative to deceleration, 

acceleration, and reversing (Agostini, Balestra, and Knaflitz 2013). Gait cycles 

were then normalized at 1000-time points. 

Knee joint kinematic of the right leg was recorded for each gait cycle and 

averaged across gait cycles. To evaluate the knee kinematic at the initial contact, 

two parameters were computed: the angle of heel contact at initial stride (ai), and 

angle of the peak of first knee flexion (ap). For the two parameters, we set the 

following thresholds to define extended knee at initial contact: 1) ai < 5 degrees, 2) 

ap < 10 degrees, and 3) ap – ai < 5 degrees. The stiffed-leg walking condition was 

met if at least one of the three conditions were not satisfied, and the subject was 

considered eligible for the rehabilitation phases. Figure 10-2 shows an example of 

measured parameters in two reference subjects, one with normal knee parameters 

(Figure 10-2A), and a second one with extended knee at the initial contact (Figure 

10-2B). 
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10.2.3 Physiotherapy protocol 

The enrolled subjects underwent a one-month physiotherapy treatment. The 

treatment lasted 4 weeks, 3 days a week. Patients were assessed before and after the 

treatment period with the following scales:  

• Numeric Pain Rating Scale (NPRS): a unidimensional measure of pain 

intensity in adults. It assigns a value from 1 (minimum pain) to 10 

(maximum pain) to quantify pain (Rodriguez 2001; Hawker et al. 2011); 

 

Figure 10-2. Comparison of knee joint kinematic between good (A) and stiff-legged (B) 

initial contact. Black line is the mean knee joint goniometry of all recorded gait cycles. 2-

A reports the parameters adopted to define knee extension at initial contact: ai is the angle 

at initial contact, ap is the peak angle at first extension, and ap - ai is the difference between 

the two parameters.  
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• Body chart: patient is asked to localize painful body parts on a human body 

scheme. Pain is quantified by means of NPRS and sorted by patient 

according to relevance. There is no range, but the evaluation is based on the 

number of individualized painful points; 

• Oswestry Low Back Pain Disability Questionnaire: it provides a subjective 

percentage score of disability in daily living activities. The scores range 

from 0 (no pain at the moment) to 5 (the pain is the worst imaginable at the 

moment). The Oswestry Disability Index (ODI) is the percentage of marked 

disability points over the total available points (Fairbank JC, Couper J, 

Davies JB 1980); 

• Physiotherapy evaluation according to Clarkson criteria (Clarkson 2012). 

The rehabilitative protocol consisted of two sets of exercises: the first aimed at 

recovering LBP, the second to correct stiffed-leg walking. 

• Rehabilitative exercises for LBP were defined as follows: 

• to prevent lumbar pain 

• to improve passive and active range of movement of lumbar spine and 

basin 

• Selective recruitment of stabilizing muscles of the lumbar spine during 

AAII and AASS activities 

• Selective recruitment of Longissimus dorsii muscle 

As for the stiffed-leg walking, the protocol aimed: 

• To improve knee flexion perception in initial contact and load 

acceptance phases 

• To improve knee stabilization in flexion-extension phase 

 

10.2.4 Muscle synergies 

Muscle synergies were extracted from a walking session before the rehabilitation 

(pre-treatment) and from another walking session at the end of the rehabilitation 

period (post-treatment). Experimental protocol and muscle synergies extraction 

methods were the same as described elsewhere (see Material and Methods in 

Chapter 8 and Chapter 9) and briefly resumed here. 

Subjects walked on a straightforward 10-meters path for 5 minutes. 

Electromyography (EMG) from the right lower limb, foot-switches signals, and 
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knee goniometry in the sagittal plane were recorded. Gait cycles were segmented 

by using foot-switches and knee goniometry and outlier cycles were filtered out. 

Afterwards, principal activations were extracted by using the CIMAP algorithm 

described in (Rosati et al. 2017). EMG was preprocessed and gait cycles were 

divided in 10-gait cycles subgroups. Muscle synergies were extracted from EMG 

matrix for each subgroup separately by using non-negative matrix factorization, as 

introduced by (D. D. Lee and Seung 1999), and applied to EMG by (Ting and 

Macpherson 2005; McKay and Ting 2008). An overall variance accounted for 

(VAF, uncentered Pearson Coefficient), adopted to quantify the goodness of the 

matching between measured and reconstructed EMG, was set to 90% to choose the 

suitable number of synergies. Afterwards, to compare synergies between 

subgroups, synergies were ordered with K-means clustering. K was set equal to the 

number of extracted synergies, and clustering was repeated five times with different 

random initial clusters for selecting the solution with the lowest within-cluster sums 

of point-to-centroid distance. For a given 10-cycle subgroup i, synergies were 

permutated in order to minimize the distance of a synergy with respect to the 

centroid of the synergies of the other subgroups.  

We obtained a set of muscle synergies for the pre-treatment and another one for 

the post-treatment analysis. Pre-treatment synergies were characterized by vectors 

of muscle weights Wpre and coefficients Cpre. Post-treatment synergies were 

characterized by vectors of muscle weights Wpost and coefficients Cpost (Figure 10-

1). CS was adopted to measure the within-subject similarity of weight vectors. CS 

was computed between each pair of muscle weight vectors of each subgroup of gait 

cycles. Then, it was averaged across subgroups. We obtained a mean CS pre-

treatment (CSpre) and post-treatment (CSpost). 

 

10.2.5 Data analysis 

To individualize the main motor functions of the synergies of LBP patients, we 

selected the best matching synergies with a set of reference synergies. Reference 

synergies were the synergies we obtained from a sample of twelve healthy controls 

previously computed (see Chapter 8). At this purpose, we computed the mean 

muscle weights and activation signals across the subgroups of gait cycles for each 

synergy of LBP patients. Afterwards, we adopted the following procedure for 

comparing synergies of LBP with reference synergies. We selected a reference 

synergy; them, we compared the reference muscle weights with the muscle weights 

of a LBP patient by computing the cosine similarity between them (CSLBP-Control). 
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We iterated the comparison for each LBP synergy. We selected the LBP synergy 

with the highest CSLBP-Control, since it shared the motor function with the reference 

synergy. An example of comparison between two good-matching synergies 

between reference (black line) and LBP (red line) is reported in Figure 10-3. In this 

case, the mean similarity of muscle weights and activation signals between LBP 

and the reference is 0.98. This procedure was repeated iteratively for all the 

reference synergies to define all the functions. In summary, we collected 5 

synergies pre-treatment and 5 synergies post-treatment for each LBP patients. 

These synergies were the best matching with reference synergies of healthy controls 

previously extracted, hence they described precise motor functions. 

To verify an improvement of muscle synergies after rehabilitation, we 

compared the VAF, the number of synergies, and the CS of the pre-treatment 

synergies with those of the post-treatment synergies. All statistical tests were 

performed at a significance level of 0.05. We tested the normality of the VAF and 

CS parameters with a Kolmogorov-Smirnov test. Since not all the datasets followed 

a normal distribution, we adopted non parametric tests to perform the statistical 

analysis.  

First, we performed a Wilcoxon rank sum test to test the null hypothesis that 

the reconstruction VAF of pre- and post-treatment are samples from continuous 

distributions with equal medians. The same test was adopted to compare the number 

of synergies with VAF>90 pre-treatment and post-treatment.  
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10.3 Results 

10.3.1 Enrollment  

Knee joint parameters at the enrollment stage are reported in Table 10-I. Patients 

have been labelled from S1 to S8. Four patients showed at least one parameter under 

the threshold (i.e. extended leg at initial contact) and so they resulted recruitable for 

the rehabilitation stage. This result is in accordance with previous study, since near 

the half of investigated subjects suffering from LBP showed extended knee at initial 

contact during gait (Agostini et al. 2009). They had the following knee joint 

kinematics parameters: patients S3, S4, and S5 showed an angle of impact lower 

than 4 degrees. Patient S7 had ai and ap over threshold, but the difference between 

the two angles was lower than 5 degrees. Subject S4 renounced to continue the 

study, hence three subjects were enrolled to undergo the rehabilitation: S3, S5, and 

S7 (Mean age 62.67 ± 4.73, weight 55.67 ± 5.86 kg, height 162 ± 4.62 cm). 

  

 

 

Figure 10-3. Comparison between reference synergy (black) and a representative LBP 

subject (red). Top figure reports the muscle weights and bottom the activation signals. A 

good similarity between the two synergies reflects in the high cosine similarity (CSLBP-Control 

= 0.98). 
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10.3.2 Rehabilitation 

Table 10-II shows the results of the scales before and after rehabilitation. It can be 

observed that scores of the three subjects improved after the rehabilitation. 

Table 10-I. Results of the knee joint kinematic of the patients investigated during 

enrollment stage. Each subject is labelled progressively from S1 to S8. For each subject, 

the following parameters are reported: angle at initial contact (ai), peak angle at first knee 

extension (ap), knee excursion at first extension (ap - ai), and knee range of motion (ROM). 

In last column, it is reported if the subject met the threshold criteria to be enrolled in the 

following stages. 

Subject age sex 

knee ROM 

 (mean ± std 

dev) 

ai  

(deg) 

ap  

(deg) 

ap – ai  

(deg) 
recruitable 

S1 59 F 52.30 ± 2.30 7.34 14.14 6.80 no 

S2 66 F 57.05 ± 3.92 8.23 18.89 10.66 no 

S3 59 F 61.42 ± 4.97 3.51* 3.22* -0.29* yes 

S4 67 M 57.88 ± 1.15 3.52* 8.09* 4.57* yes 

S5 68 F 43.74 ± 2 29 3.30* 7.33* 4.03* yes 

S6 77 F 45.51 ± 1.49 9.65 17.09 7.45 no 

S7 61 F 54.49 ± 1.36 15.02 20.11 5.09* yes 

S8 64 M 57.96 ± 2.89 7.17 13.95 6.78 no 

*: under threshold. 

Table 10-II. Results of the physiotherapy tests adopted to evaluate patients in pre-

treatment and post-treatment phases. 

Subject  pre-tratment post-treatment 

  

Body chart NPRS Oswerty 

Body 

chart NPRS Oswerty 

S3  3 4 16 1 2 10 

S5  1 6 20 1 3 16 

S7  2 3 38 1 2 30 
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Figure 10-4 shows the mean knee joint angle of the three LBP patients 

measured before and after the rehabilitative treatment. Red line represents the mean 

pre-treatment knee joint angle, blue line represents the post-treatment knee joint 

angle. Black circles indicate knee angle at the initial contact (ai) and peak angle at 

first knee extension (ap). S3 and S5 modified markedly the knee joint angle profile 

after the treatment, whereas S7 maintained the same knee joint profile. In details, it 

can be observed that ap and ap - ai of S3 were under threshold at pre-treatment: in 

fact, their amplitudes were 6.6 and 2.9 degrees respectively. After the treatment, ap 

raised over the threshold of 10 degrees, with an amplitude of 14.5 degrees. 

Therefore, ap - ai increased nearly to the threshold, with an amplitude of 4.7 degrees. 

In patient S5, ai and ap were under threshold at the pre-treatment, with an amplitude 

of 4.3 and 4.0 degrees respectively. Angle amplitude raised to 6.1 and 11 degrees 

after the treatment. Finally, S7 showed ai and ap above threshold before and after 

the treatment, whereas ap - ai remained under the threshold of 5 degrees.  

 

Figure 10-4. Mean knee joint angle pre-treatment (red) and post-treatment (blue) in 

the LBP patients. Black circles indicate knee angle at the initial contact and peak angle 

at first knee extension. 
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10.3.3 Muscle synergies 

Table 10-III shows gait parameters for the three subjects before and after treatment. 

It can be observed that subject S5 had gait parameters lower than the other two 

patients, particularly the number of gait cycles and gait velocity. 

 

 

VAF reconstruction from 3 to 8 muscle synergies are reported in Figure 10-5. 

It can be observed VAF values increased after rehabilitation, which demonstrated 

an improvement in quality of muscle synergies. S3 showed the best improvement, 

because VAF post-treatment was higher than VAF pre-treatment for all the set of 

synergies. By contrast, S5 showed nearly the same VAF post-treatment with respect 

to pre-treatment. Eventually, S7 VAF post-treatment was higher than pre-treatment, 

even if to less extent than S3. It can also be observed that, by averaging the VAF of 

the synergies of all subgroups of gait cycles, the number of synergies to overcome 

the threshold of VAF > 90 varied before pre-treatment and post-treatment for S3 

patient. Indeed, S3 required 7 synergies to reconstruct original signal before 

treatment (VAF 92.71 ± 1.17), which reduced to 5 synergies after treatment (VAF 

91.23 ± 0.55). By contrast, S5 and S7 satisfied the VAF > 90 criterion to reconstruct 

original EMG signal with the same number of synergies before and after 

rehabilitation, that are 7 and 5 synergies respectively. 

 

Table 10-III. Gait parameters obtained from gait analysis before and after rehabilitative 

treatment. 

Subject 

pre-treatment post-treatment 

cadence 

(cyc/min) 

number 

gait cycles 

velocity 

(m/s) 

cadence 

(cyc/min) 

number gait 

cycles 

velocity 

(m/s) 

S3 50.7 148 1.05 ± 0.07 57.2 207 1.12 ± 0.07 

S5 45.6 83 0.69 ± 0.05 49.0 60 0.84 ± 0.04 

S7 54.1 166 1.05 ± 0.03 50.3 143 1.25 ± 0.08 
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Significance of the Wilcoxon rank sum test for VAF from 3 to 8 synergies is 

reported in Table 10-IV. It can be observed that S3 significantly improved VAF 

for all the sets of synergies, whereas S5 and S7 just for the synergies explaining the 

lowest VAF. 

Table 10-IV. P-values for the Wilcoxon rank sum test for VAF pre-treatment vs. post-

treatment when 3 to 8 synergies are adopted to reconstruct original EMG signal. 

Subject 
# of synergies 

3 4 5 6 7 8 

S3 0.008* 0.000* 0.000* 0.000* 0.000* 0.000* 

S5 0.001* 0.013* 0.345 0.755 0.181 1.000 

S7 0.001* 0.009* 0.026* 0.659 1.000 0.274 

*:P<0.05 

 

Figure 10-5. VAF of the synergies for the patients submitted to rehabilitation before (red 

line) and after (blue line) rehabilitation. Data are reported mean ± standard error. 
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The five muscle synergies representing the motor functions of the three LBP 

patients and healthy controls group are reported in Figure 10-6. Motor functions of 

LBP patients before (red) and after treatment (blue) are compared with reference 

synergies of healthy subjects (green). Overall, rehabilitation caused a modification 

in the recruitment of muscles in the weights vectors, whereas activation signals 

remained unmodified. Synergies recruiting longissimi dorsii (F3), which described 

the motor function devoted to trunk stabilization at terminal stance, showed the 

most relevant modification in weight vector. Indeed, it can be noticed that in the 

pre-treatment analysis all LBP patients recruited only one muscle, whereas both of 

longissimi dorsii were recruited after treatment. Particularly, LDR in S3 increased 

from 0.14 to 1. Patient S5 also augmented LDR recruitment, from 0.14 to 0.8. S7 

increased LDL recruitment from 0.06 to 0.5. S3 patient modified also F1 weights, 

where TFL, VM, and LH where recruited after treatment. S5 varied synergy F2, by 

increasing recruitment of PL muscle. Furthermore, in F4, recruited SOL and TA 

muscles in the post-treatment, whereas it recruited only TA in pre-treatment. 

Finally, S7 maintained unaltered weights of 4 out 5 synergies. Activation signals 

remained unmodified in the most of synergies after treatment, in both timing and 

amplitude. Only two main modifications can be observed: in F1 of patient S3, the 

peak of activation curve shifted from the midstance phase to the early stance. In F5 

post-treatment of S5, a predominant activity during stance and terminal swing can 

be evidenced. Peak amplitude of activation signals pre-treatment and post-treatment 

are close to peak amplitude of healthy subjects. However, it can be observed that 

peak amplitude of F3 pre-treatment and post-treatment in S5 is lower than healthy 

subjects. 
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Figure 10-6. Muscle weights and activation signals for the motor functions of the three 

LBP subjects before (red line) and after (blue line) rehabilitation. Data are compared with 

muscle synergies of healthy controls (green line).  



158 
Clinical cases of muscle synergies analysis in lower back pain 

patients after one-month physiotherapy rehabilitation 

 

Within-subject CS of the three patients pre- and post-treatment is pictured in 

Figure 10-7. Each bar represents the averaged CS between each pair of subgroups 

of gait cycles. It can be observed an overall improvement of CS between pre-

treatment and post-treatment stages. Significance of the difference of CS before and 

after treatment have been compared by a Wilcoxon rank sum test. Significance of 

Wilcoxon test is reported in Table 10-V. Median CS significantly improved for all 

the synergies of S3 and S7, while 3 out 5 synergies of S5 had significant 

improvement.  

 

 

 

Figure 10-7. CS of the motor functions of the three patients before (red) and after 

(blue) the rehabilitation. 

 

Table 10-V. Wilcoxon rank sum test p-values for CS pre- and post-treatment. 

Subject 
Synergies 

F1 F2 F3 F4 F5 

S3 0.000* 0.000* 0.000* 0.000* 0.033* 

S5 0.073 0.343 0.073 0.003* 0.149 

S7 0.000* 0.000* 0.046* 0.000* 0.000* 

         *: p<0.05 
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10.4 Discussion 

The objective of the present chapter was verifying the efficacy of a physiotherapy 

treatment to correct the stiffed-leg walking in patients suffering from LBP by 

analyzing muscle synergies. To this end, we performed a screening session to enroll 

a small group with a stiffed-leg walking. To verify the efficacy of physiotherapy on 

rearranging neuromuscular control of gait, we analyzed muscle synergies before 

and after one month of physiotherapy. Our results demonstrated that patients 

improved kinematic parameters and muscle synergies. In detail, we observed a 

recovery of functional groups of recruited muscles. 

Several studies analyzed the kinematic of gait in patients suffering from LBP. 

Huang and colleagues observed a larger pelvis rotation and lower relative phase 

between pelvis and thorax horizontal rotations (Y. P. Huang et al. 2011). It was 

observed that LBP patients show the tendency to walk with the knee extended 

during the load acceptance phase. It was also observed that, after treatment, this 

tendency diminished (Agostini et al. 2009). The same conclusion was made by 

Müller and colleagues: they observed that in chronic non-specific LBP patients the 

knee joint angle at initial contact was more extended with respect to healthy controls 

during level and uneven walking (Müller, Ertelt, and Blickhan 2015). Furthermore, 

several studies have been performed on posture in LBP. Jacobs and colleagues 

studied postural response to perturbation in LBP patients. They evidenced that 

patients had a broader baseline than healthy controls. In addition, the response to 

perturbation was more likely a modulation of baseline rather than an activation 

burst. This was observed at the levels of erector spinae, internal and external 

oblique, and gastrocnemius. Further studies evidenced a reduced and delayed 

response, that may indicate an altered neuromuscular response (Cholewicki et al. 

2005).  

Nevertheless, at which level the neuromuscular alteration is, it was not 

investigated yet. In this sense, muscle synergies may provide a useful tool. In the 

muscle synergies model, functional muscle activation patterns are used to reliably 

produce motor functions during natural motor behavior. They represent a set of 

subtasks that nervous system can flexibly combine to produce complex and natural 

movements. Muscle synergies are muscle co-activation necessary to coordinate 

body segments. A single neural command can recruit a muscle synergy to reliably 

produce the motor subtask. It means that muscle synergies may reflect a general 

principle of neural control, and they may better characterize a patient’s motor deficit 

and/or compensations and assess degree of flexibility and adaptability. 
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Effectiveness of rehabilitative treatment can be evidenced by observing 

modification of evaluation scales (Table 10-II) and knee joint angle profile (Figure 

10-4). Scores describing pain demonstrated that patients’ pain reduced, as well as 

difficulties in daily living activities. Knee kinematics demonstrated that, after the 

rehabilitation, S3 and S5 reduced markedly leg stiffening at initial contact: indeed, 

initial contact angle and peak at first knee flexion moved above the thresholds. It 

can be noticed that knee joint angle values are different at enrollment and pre-

treatment. This can be due to the different experimental conditions, since equipment 

and trial duration were different. However, knee angles were under threshold at the 

enrollment and pre-treatment. Hence, the analysis of physiotherapy scales and knee 

kinematics demonstrated the efficacy of rehabilitative treatment in stiffed leg gait, 

and results in muscle synergies can be ascribed to this improvement.  

A first result of this work is the evidence of altered of muscle synergies in 

stiffed-leg walking. To the best of our knowledge, this pathological walking was 

not described with muscle synergies yet. We observed that the number of synergies 

and the activation signals remained substantially unmodified with respect to healthy 

synergies, but muscle weights were recruited not functionally. Furthermore, this is 

also the first essay of describing LBP walking with muscle synergies. Only one 

previous study named muscle synergies in LBP (Jacobs et al. 2011). However, the 

muscle synergies were referred to as centrally organized response patterns, rather 

than functional groups of muscles that combine to generate motor patterns. 

From a clinical point of view, three aspects of synergies are of relevance to be 

analyzed: the number, the structure, and the recruitment of synergies. Firstly, the 

number of synergies indicates the number of independent subtasks that can be 

performed. Furthermore, it has been proposed that the number of synergies may be 

an index of complexity of motor control (Clark et al. 2010; Frère and Hug 2012; 

Kim, Bulea, and Damiano 2016). Structure of synergies affects muscle coordination 

patterns and could reflex changes in neural connectivity and excitability. Finally, 

recruitment affects timing and force of the motor subtask, that may result in 

abnormal motor patterns. For instance, there can be an anomalous recruitment in 

the event of deficiency of motor cortex inhibition. Previous studies evidenced an 

alteration in at least one of the aforementioned aspects (Safavynia, Torres-Oviedo, 

and Ting 2011). In this work, we observed that stiffed-leg walk patients had an 

alteration in the structure of muscle synergies, and that the rehabilitation protocol 

recovered it to a functional one. Furthermore, an improvement in the consistency 

of synergies could be also indicative of a recovery of the structure of synergies to 

be more functional. Indeed, by recovering functional synergies which execute a 
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cyclic motor task, they better reflect the action of Central Pattern Generators in 

generating rhythmic movements. 

Several limitation of this study need to be addressed. First, in this pilot study, 

the small and heterogeneous sample size limits the ability to generalize results. 

However, subjects showed similar improvement in consistency and modules 

recruitment. A second limitation is in a slight gait speed difference between pre- 

and post-treatment evaluation. Since patients adopted a self-selected speed, they 

choose the most comfortable. Previous studies evidenced that speed may affect 

muscle synergies, particularly in activation curves profile (Clark et al. 2010; Buurke 

et al. 2016). However, it was showed that locomotor activation patterns remain the 

same across speeds, and that muscle weightings change according to biomechanical 

requirements. In our study, the difference in the speed between pre- and post-

treatment were very subtle and they were considered not influencing the muscle 

synergies. Furthermore, the speed of LBP patients was comparable with the speed 

of healthy controls on the average (see chapter 8). Finally, we performed our 

analysis on principal activations only, without considering secondary activations. 

Since secondary activations are extra muscular activations due to, for instance, body 

balance or walking scheme adaption, the subsequent muscle synergies may 

represent reflexes rather motor control strategies of the central nervous system. 

Hence LBP patients, by adapting walking scheme to pathological conditions, may 

show additional or merging muscle synergies obtained from secondary activations. 

Future developments should involve the analysis of a larger cohort of LBP patients 

and the analysis of muscle synergies obtained from secondary activations. 

 

10.5 Conclusion 

We investigated the muscle synergies in a small group of subjects suffering from 

LBP with stiffed-leg walking. We preliminary analyzed the gait in a group of LBP 

patients, then we recruited those with at least one of these characteristics: small 

angle at initial contact, small angle at first knee extension, and small difference 

between the two angles. Three patients were enrolled from an initial sample of eight 

subjects. A one-month of rehabilitation was administered to the enrolled patients, 

and we investigated muscle synergies during a five-minute overgound walking 

before and after the rehabilitation. We computed muscle synergies for the principal 

activations during gait and we compared the number, the quality and the 

consistency of synergies. We observed an alteration in the consistency and quality 

of muscle synergies before rehabilitation. Furthermore, we observed an altered 
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composition of muscle weights vectors with respect to healthy muscle synergies. 

All these parameters slightly improved after the rehabilitation. Our results 

demonstrated how LBP may affect the recruitment of muscles in the generation of 

movement during gait and that rehabilitation can effectively recover muscle 

synergies composition. Muscle synergies can be an effective instrument to evaluate 

gait abnormalities in stiffed-leg walking and they can better address the 

rehabilitation protocol to recover muscle synergies.
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Chapter 11 

Conclusions 

This thesis aimed to investigate two aspects of CNS: nonlinear features of 

cerebrovascular patterns and motor control strategies described by means of muscle 

synergies. In the first part of the thesis, we analyzed NIRS signals with nonlinear 

techniques. We adopted well known entropy metrics translated from information 

theory to characterize the complexity and periodicity of biosignals. Our results 

demonstrate that nonlinear characteristics of biosignals cannot be ascribed only to 

randomness. Conversely, we evidenced that nonlinearity are characteristics of 

physiological systems and that they may vary with different stimuli (Chapter 4) or 

in pathological conditions (Chapter 5). 

In the second part of the work, we investigated the motor control strategies 

adopted by CNS. Muscle synergies can effectively describe motor control. In 

muscle synergies model, a muscular activation is the combination of fixed muscle 

weights and time varying activation signal. Muscle synergies codify movement as 

a few motor modules, stored in spinal cord, activated by a central command signal. 

We investigated walking activity, because it is a movement characterized by 

defined patterns. Despite walking is considered a repetitive movement, it is 

characterized by a richness of walking patterns, and kinetic and kinematic features 

may vary from stride to stride. This richness of walking patterns reflects the 

redundancy of musculoskeletal system and the adaptability to many factors, 

including the environment, energy consumption, or pathological conditions. To 

properly record the variability of walking, many gait cycles must be recorded and 

properly analyzed. In this thesis, we explored the motor control strategies 

underlying the variability of walking patterns.  



164 Conclusions 

 

We explored two new aspects: the consistency of muscle synergies during a 

single walking trial (Chapter 8) and the muscle synergies associated to principal 

and secondary activations (Chapter 9). To this aim, we recorded a 5 minutes 

walking trial in a group of healthy subjects. Statistical gait analysis was exploited 

to remove atypical gait, such as turning points, acceleration and deceleration. We 

observed two groups of synergies: a first group was constituted by five muscle 

synergies common to all subjects and were related to the execution of the 

movement. These synergies well matched with the typical phases of gait and were 

devoted to movement generation and balance. A second group of synergies was 

constituted by one or two synergies per subject. They were devoted to extra activity 

during gait, particularly balance control in challenging phases, such as leg control 

during swing or load acceptance. These synergies were consistent, that is they 

appeared cyclically in nearly all investigated phases. The consistency of muscle 

synergies well reflects the movement generation of CPGs. As a secondary work, 

we investigated muscle synergies associated to principal and secondary activations. 

Principal activations are those related to movement generation, secondary 

activations are supplementary activation to improve movement efficacy, such as 

balance or speed control. We investigated if different walking patterns are 

generated to different muscle synergies. We compared muscle synergies 

constitution (i.e. number of muscles), consistency, and flexibility. Our results 

evidenced a great difference between the muscle synergies of the two motor 

patterns. Indeed, gait patterns of principal activations are associated to few muscle 

synergies with many muscles per synergy, great amplitude of activation signal. By 

contrast, secondary activations are constituted by many synergies with one or two 

muscles per synergy, and with a very low signal amplitude. Furthermore, muscle 

synergies of principal activations are very repeatable and flexible during a walking 

trial, whereas muscle synergies of secondary activations are less flexible and 

consistent. These results confirm that: (1) muscle synergies well reflect CNS motor 

control and CPGs activity, and (2) walking is not a simple cyclic movement, hence 

CNS may adapt according to several factors, including pathological conditions, or 

environment. Principal activations are effectively controlled by CNS, by adapting 

a few sets of modules stored in spinal cord. However, muscle synergies also record 

muscle patterns that may be recruited at the peripheral level and that not reflect 

CNS control. Hence, this type of synergies should be removed because they may 

mask the effective CNS control. Finally, we explored muscle synergies in a small 

group of LBP patients with stiffed-leg walking as a pilot study, before and after 

rehabilitation (Chapter 10). The methods of analysis previously described (i.e. 

muscle synergies computation during a prolonged walking trial and principal 
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activations) were applied to a small group of patients. Our results demonstrated how 

LBP may affect the recruitment of muscles in generating the movement during gait 

and that rehabilitation can effectively recover muscle synergies composition. 

Muscle synergies can be an effective instrument to evaluate gait abnormalities in 

stiffed-leg walking and they can better address the rehabilitation protocol to recover 

muscle synergies.  

This second part of the thesis also is affected by several limitations. A first 

limitation is methodological. Non-negative matrix factorization with fixed muscle 

weights and time-varying activation curves was considered for the analysis. Several 

studies were carried out to improve the reliability of muscle synergies, such as 

developing algorithms of time-varying muscle weights vectors or optimization 

methods. Furthermore, only one walking scheme was investigated, that is normal 

walking. Future works should be addressed to cover all the variability of human 

locomotion, by considering speed, obstacles, or direction change.  

There are many directions that future works may adopt in the noninvasive 

analysis of biosignals related to CNS. Novel entropy metrics could be adopted to 

characterize cerebrovascular system. Furthermore, new methods may be 

implemented to extract features from NIRS signal. Finally, feature extracted from 

NIRS and muscle synergies analysis could be adopted to improve design of 

rehabilitative devices or brain-computer interfaces, in order to reduce disturbing 

noise and recover as much as possible human abilities. 
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