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Abstract

Background: Modules of muscle recruitment can be extracted from electromyography (EMG) during motions, such
as walking, running, and swimming, to identify key features of muscle coordination. These features may provide
insight into gait adaptation as a result of powered assistance. The aim of this study was to investigate the changes
(module size, module timing and weighting patterns) of surface EMG data during assisted and unassisted walking in
an powered, myoelectric, ankle-foot orthosis (ankle exoskeleton).
Methods: Eight healthy subjects wore bilateral ankle exoskeletons and walked at 1.2 m/s on a treadmill. In three
training sessions, subjects walked for 40 min in two conditions: unpowered (10 min) and powered (30 min). During
each session, we extracted modules of muscle recruitment via nonnegative matrix factorization (NNMF) from the
surface EMG signals of ten muscles in the lower limb. We evaluated reconstruction quality for each muscle individually
using R2 and normalized root mean squared error (NRMSE). We hypothesized that the number of modules needed to
reconstruct muscle data would be the same between conditions and that there would be greater similarity in module
timings than weightings.

Results: Across subjects, we found that six modules were sufficient to reconstruct the muscle data for both
conditions, suggesting that the number of modules was preserved. The similarity of module timings and weightings
between conditions was greater then random chance, indicating that muscle coordination was also preserved. Motor
adaptation during walking in the exoskeleton was dominated by changes in the module timings rather than module
weightings. The segment number and the session number were significant fixed effects in a linear mixed-effect model
for the increase in R2 with time.

Conclusions: Our results show that subjects walking in a exoskeleton preserved the number of modules and the
coordination of muscles within the modules across conditions. Training (motor adaptation within the session and
motor skill consolidation across sessions) led to improved consistency of the muscle patterns. Subjects adapted
primarily by changing the timing of their muscle patterns rather than the weightings of muscles in the modules. The
results of this study give new insight into strategies for muscle recruitment during adaptation to a powered ankle
exoskeleton.
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Background
Understanding how the central nervous system coordi-
nates the muscles in the human body is vital to advance
our understanding of pathological gait impairment, motor
learning, and the effect of assistive devices [1]. One
method for testing hypotheses of control structure is to
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express the muscle signals as a linear combination of
a small set of representative functions, called modules,
and examine changes in organization of those modules.
Motor modules [2], task-based constraints [3], geometric
organization of the musculoskeletal system [4], and opti-
mal (or “good-enough”) control theories [5, 6] potentially
influence muscle coordination and can constrain muscle
signal data to a low-dimensional set of modules. While
the underlying mechanisms that drive the organization
of these modules are unknown, expressing muscle sig-
nals using concise representative functions can provide
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insight into coordination patterns, improve rehabilitation
protocols and inform diagnostic algorithms by facilitat-
ing physiological comparisons across different patient
populations. [7–9].
For patients with mobility problems, powered robotic

devices (e.g. exoskeletons) can help restore normal gait
patterns and provide feedback on mechanical and neuro-
logical performance [10]. A lack of adaptability and poor
response to human intent currently limit the effectiveness
of exoskeletons in rehabilitation research [11]. Investi-
gating changes in the patterns of muscle coordination
during adaptation to walking in a powered exoskeleton
can help future devices provide more natural and effective
assistance.
Research into the patterns of muscle coordination have

shown that for many activities (e.g. walking [12, 13], run-
ning [14, 15], cycling [16, 17], and balancing [18, 19])
the activity of a set of n muscles, measured via sur-
face electromyography (EMG) can be approximated by
a set of k modules (k < n). Each muscle signal can
be approximated by the linear combination of its mod-
ule weightings and the corresponding timing patterns for
each module.
Previous studies on the factorization of walking data

have shown that 4-6 modules can explain the majority
of variance in the EMG data [14, 19–22]. Several stud-
ies of the upper limb have also shown that representative
modules can be used to describe horizontal reaching [23]
and 3-D reaching with upper arm support [24]. Prosthetic
control of upper-limb devices have also used modules
to generate more natural, intuitive control schemes [25].
Research into the motor modules used during isometric
force generation have shown that motor module struc-
ture is preserved during visuomotor rotation [26], and that
control algorithms that are compatible with the subject’s
original motor modules lead to faster adaptation to new
tasks [27].
The structural properties of the extracted motor mod-

ules can also highlight differences in motor control
between groups. For example, compared to a healthy
population, sub-acute stroke survivors had similar timing
patterns of muscle recruitment but significantly differ-
ent weighting patterns [28]. A separate study on stroke
survivors showed that significantly fewer modules were
needed to reconstruct the muscle signals in the paretic leg
compared to the non-paretic leg and healthy controls [29].
While these studies have evaluated the properties

of muscle patterns during steady-state and perturbed
learned movements, there is little research on the muscle
patterns during adaptation to walking in an exoskeleton.
Previous studies on both healthy and patient populations
in exoskeletons have shown that providing assistance can
both increase and decrease the muscle activity in specific
muscles surrounding a single joint as well as change the

recruitment patterns of muscles at other joints [30, 31]. It
is not known whether these changes reflect the creation,
destruction, or merging of different representative muscle
recruitment patterns during adaptation to walking with
powered assistance. Recently, Steele et al. (2017) investi-
gated motor synergies under different power and torque
inputs to an ankle exoskeleton [32] and found that sub-
jects changed the timings or weightings depending upon
whether the exoskeleton control algorithm was varying
exoskeleton torque or work. However, it is still unclear
whether these changes persist over longer durations of
time and under alternative control methods. In a pre-
vious study on ankle exoskeletons, subjects saw greater
reductions in the soleus and gastrocnemius and less per-
turbation of normal ankle kinematics when walking under
myoelectric control compared to kinematic control [33].
Because myoelectric control uses muscle activity to con-
trol the exoskeleton, we hypothesized that we may see a
larger influence on the motor modules than that other
controllers.
The aims of this study were: 1) determine if there is a

change in module organization (i.e. number of modules
and module function) between powered and unpowered
exoskeleton conditions, and 2) determine if the changes
in the muscle recruitment with bilateral assistance are
best explained by changes in timing patterns or in muscle
weightings. We hypothesized that the number of mod-
ules needed to reconstruct muscle data would be the same
between the unpowered and powered conditions, because
the exoskeleton would perturb but not change the overall
biomechanical task, similar to other studies of perturbed
walking [34]. We also hypothesized that across conditions
there would be greater similarity in muscle timings than
weightings, because previous research on powered ankle
exoskeletons has shown that the devices primarily influ-
ence the peak value and have a lesser effect on muscle
recruitment shape [31].
The authors previously published the results of the

kinematic, metabolic, and joint moment analyses results
[35]. The published results demonstrated how the adap-
tation strategy can be affected by the exoskeleton control
strategy. In previous studies in proportional myoelectric
control in the same lab [36, 37], no differences were
found in the total ankle joint moment between the pow-
ered and unpowered conditions. These prior studies also
found that the changes in muscle signal occurred pri-
marily in muscles around the ankle (soleus and tibialis
anterior) but there was no change in the quadriceps or
hamstring groups [36, 37]. In contrast, we found that
subjects using the adaptive gain proportional myoelectric
controller increased their total ankle joint moment and
reduced the hip joint moment while achieving a substan-
tial metabolic decrease. In the new controller, subjects
decreased the muscle activity in both muscles spanning
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the ankle, hip and knee (soleus, the rectus femoris, and the
biceps femoris long head).

Methods
Subjects
Eight healthy male subjects participated in this study:
(mean + standard error of the mean) age 21 ± 1 years,
height 1.80 ± .03 m, mass 74.0 ± 2.7 kg. Subjects exhib-
ited no gait abnormalities and had no previous experience
walking in a powered exoskeleton.

Protocol
Each subject wore a custom, bilateral set of plantarflexion-
assisting ankle exoskeletons, similar to previous studies
[36, 37], that were created in coordination between the
Human Neuromechanics Laboratory and the University
of Michigan Orthotics and Prosthetics Center. All of the
modifications were done by licensed technicians at the
Orthotics and Prosthetic Center. The orthotics were a
modified two-piece plantarflexion and dorsiflexion ankle-
foot orthosis consisting of hard plastic sections connected
by a stainless steel single-axis ankle joint. The lower end
of the ankle joint was embedded between the midsole and
the outsole of the shoe. The upper plastic cuff was lightly
padded and secured around the subject’s shin by ratchet-
ing clamps. Posterior flanges were welded to both pieces
to attach the actuator. We actuated the exoskeleton using
custom artificial pneumatic muscles connected to pro-
portional pressure regulator values (MACValues,Wixom,
MI)[38].
The control algorithm for the exoskeleton was a pro-

portional myoelectric controller with a time-varying gain
[35]. Myoeletric control gives the subject direct, neuro-
logical control of the device by using the linear envelope
of the subject’s electromyographic (EMG) signals as the
input control signal [36, 37]. For this study, we used the
subject’s left and right soleus muscles.
In classic, proportional, myoelectric control, the gain

between the linear envelope of the muscle signal and the
control signal is fixed. For the time-varying controller,
the gain between the muscle signal and the control signal
varied based on the peak soleus signal from previous 50
strides. The gain was calculated such that the average peak
activation of the last 50 strides commanded the maximum
actuator output. Therefore, if subjects choose to decrease
their soleus signal over time due to walking with the ankle
exoskeleton, they continue to receive the maximum out-
put of the actuator due to an increase in the gain. However,
in a fixed-gain controller, if the gain was selected based
only on the initial soleus signal, reducing the soleus activa-
tion by 50% using the exoskeleton assistance would result
in a 50% reduction in actuator command as well.
Subjects walked on a split belt instrumented treadmill

(Bertec Corporation, Columbus, OH) at 1.2 m/s (Fig. 1).

The testing protocol was split into three identical training
sessions over the course of 1-2 weeks with at least one full
day of rest (mean: 3.43 days, std. dev. 1.75 days) [36, 39] for
consolidation. Each training session consisted of 50 min
of level ground walking split between the two conditions:
powered and unpowered (wearing the exoskeleton with
the actuation turned off ). The order of conditions was
not randomized. Each subject walked for 10 min in the
unpowered condition, followed by 30 min in the powered
condition, then 10 min again in the unpowered condi-
tion. We analyzed the first 40 min for our modular control
investigation. During each session, we collected 1min seg-
ments of gait data every other minute for post-processing,
resulting in a a total of 5 unpowered trials and 15 pow-
ered trials each session. The EMG system, the exoskeleton
control system, and the motion capture system were syn-
chronized by co-recording a square wave from a signal
generator and aligning the streams in post-processing.
Figure 1 shows a side view of a representative subject in
the experimental setup and representative trial with the
muscle signal data segmented into strides.
We partitioned each segment into strides based on the

instant the vertical force exceeded 5% of body weight. We
removed errors (e.g. two feet on the same force plate)
by detecting if the stride time or the peak force was
1.5 times the standard deviation away from the mean
of the segmented strides. Each stride was time normal-
ized to 400 time points and then the 40 clean steps were
concatenated.

Electromyography
Weused bipolar surface electrodes with an inter-electrode
distance of 20 mm and an electrode diameter of 10 mm to
record surface electromyography data from the subjects
(SX230, Biometrics, Ltd, Newport, UK). Muscle signal
data were multiplied by a gain of 1000 through an ampli-
fier with a bandwidth of 20-460 Hz. We prepared the skin
and placed our electrodes following the recommendations
of the SENIAM group [40].
EMG data was collected at 1 kHz. We calculated the lin-

ear envelope of the EMG post-trial in three stages: 1) band
pass filtering with a 20-450 Hz band [12, 20], 2) full-wave
rectification, and 3) low-pass filtering at 10 Hz. All filters
were second-order Butterworth filters with zero lag.
Originally, we recorded 16 channels of muscle signal

data during walking from the right side leg and torso.
Due to the relatively low magnitude of the signals from
the hip muscles (tensor fasciae latae and adductor mag-
nus) and the torso (rectus abdominus, erector spinae, and
external obliques) during the walking task, we removed
them from the analysis and considered the following 10
muscles: soleus (SOL), tibialis anterior (TA), peroneus
longus (PER), medial gastrocnemius (MG), biceps femoris
long head (BF), semitendenosis (SM), rectus femoris (RF),
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Fig. 1 Sample module factorization of a representative subject. a Individual strides (light blue solid) and mean muscle signal (black dot-dash) for the
ten muscle signals recorded during walking in an exoskeleton b Individual strides (solid) and mean value (dash) of the timing signal for the six
modules extracted using nonnegative muscle factorization. cWeighting signals for the six modules. d The mean measured (light blue solid) and
mean reconstructed value (black dot-dash) for the ten muscle signals. e Photo of the subject standing in the exoskeleton. Muscle Abbreviations:
Soleus (SO), Tibialis anterior (TA), Peroneus longus (PL), Medial gastrocnemius (MG), Biceps femoris long head (BF), Semitendenosis (SM), Rectus
femoris (RF), Vastus lateralus(VL), Vastus medialis(VM), and Gluteus maximus(GX)

vastus lateralis (VL), vastus medialis (VM), and gluteus
maximus (GX).

Nonnegative matrix factorization
Researchers in the field of motor control have proposed
several different methods for extracting motor modules
from a set of muscle signals. Principal component analysis
[20, 41, 42], independent component analysis [20], factor
analysis [43], and nonnegative matrix factorization [44]
have been used to calculate motor modules. We employed
nonnegative matrix factorization (NNMF) because it con-
strains the timing signals to be nonnegative which follows
the established activation dynamics of muscle.
Given am × nmatrix of EMG data, F, and a module set

size, k, the NNMF algorithm calculates the reduced order
factorization F = TW , where m is the number of samples,
n is the number of muscle signals, and k the module size.
In this analysis, each column of F is a time series of sur-
face EMG data from a single muscle, T is a m × k matrix
where each column is a representative timing pattern, and
W is a k × n matrix of weightings where each column
corresponds to the contribution of each muscle activation
pattern to the final muscle signal [43–45].
We employed the NNMF routines in Matlab

�(Mathworks, Inc. Natick, MA) using an alternative

least squares method [46]. Our input data for the NNMF
algorithm was the first 40 clean strides from a trial during
one of the sessions 1. The convergence criteria was set for
relative function tolerance of 1E-12 and a step size change
of 1E-12 [47]. Each factorization was replicated 12 times
from randomized starting values and the best replication
was chosen at the end.
Before NNMF, we normalized eachmuscle signal to unit

variance [19]. After NNMF, we sorted each module, in
ascending order, by the index of the peak timing signal.

Reconstruction qualitymeasures
The selection of a reconstruction quality measure is
non-trivial [13]. Variance accounted for, called VAF, is
as common reported quality but can be challenging
to interpret. Previous researchers have defined VAF as
100∗uncentered Pearon’s correlation coefficient [48, 49]
and 100∗uncentered coefficient of determination [19, 34].
Other common measures are the centered coefficient of
determination (R2) [20, 45, 50] and the normalized root
mean square error (NRMSE) [51]).
Because the objective function of NNMF is to minimize

the error between the measured muscle signals and the
reduced-order, factorized representation, we chose the
centered coefficient of determination and the normalized
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root mean square error as measures of reconstruction
quality because they are directly related to the objective
function and the error. In order to minimize confusion in
the terminology, we will refer to the reconstruction quality
measures directly and avoid using the term VAF.
Although the coefficient of determination has been used

previously, the interpretation of the results can be chal-
lenging because selected method of calculating R2 can
lead to different results in certain circumstances. For lin-
ear fits to linear data with an intercept, the calculation
of R2 is consistent. However, in this case we are regress-
ing nonlinear data where the total sum of squares is not
equal to the sum of the residual sum of squares and the
regression sum of squares [52].
Given a set of measured EMG data fi to fn, and a set of

predicted EMG data xi to xn, the centered coefficient of
determination and the normalized root mean square error
of the NNMF reconstruction of a single muscle can be
calculated as:

R2 = 1 − SSerror
SStotal

= 1 −

n∑

i=1

(
fi − xi

)2

n∑

i=1

(
fi − f

)2 (1)

NRMSE = RMSE
range(f )

=

√

1
n

n∑

i=1

(
fi − xi

)2

max(f ) − min(f )
(2)

When calculating R2 using Eq. 1, the range of values for
R2 is (−∞, 1] because there is no bound on the error in
the numerator. A R2 value of 1 corresponds to a perfect fit
and a R2 value of 0 indicates a fit equivalent to using the
mean of the measured data as the estimator (i.e xi = f ).
Negative values indicate a fit worse than estimated by the
mean of the measured data.
To determine if the function of themodules were similar

between conditions, we calculated the similarity between
the timing and weighting data of the unpowered and
powered conditions using the normalized scalar product
(also referred to as the Uncentered Pearson Correlation
Coefficient and cosine similarity) [8, 17].
All three reconstruction quality measures, R2, NRMSE,

and similarity were calculated individually for each mus-
cle. Evaluating the muscles in a group can lead to underes-
timation of the number of modules needed to reconstruct
muscle activity because the poor reconstructed muscles
can be hidden by the group performance [13].

Normalization of reconstruction qualitymeasures to random
chance
For high dimensional signals, such as EMG data in syn-
ergy analyses, random similarity between the timings and
weightings data is substantial. To compare the timing

and weighting data across conditions, it is important to
normalize the similarity, r2, and NRMSE values by the
values found using a randomly generated dataset. Previ-
ous researchers have used three different techniques to
generate random data: random shuffling of the experi-
mental muscle signals [50, 53], random sampling from
the muscle signal’s distribution or a chosen distribution
[23, 54], and random generation of the timings and
weightings [21, 43, 54, 55].
We chose the random generation scheme previous

research [21, 43, 55] for our baseline because it does not
assume any a priori knowledge of the amplitude distribu-
tion or the frequency content of the muscle signals. Using
a uniform random generator, we generated 100 timing and
weighting matrices. For each timing matrix in the ran-
dom set, we estimated the optimal weighting matrix that
minimized the prediction error ‖F−TW‖.We used a non-
negative least-squares algorithm, identical to an iterative
step of a single pass of NNMF, to estimate the optimal
weighting. We calculated the R2 and NRMSE values for
combination of the random timing matrix and optimized
weighting matrix. Similarly, for each weighting matrix in
the random set, we estimated the optimal timing matrix
that minimized the prediction error.
Nonnegative matrix factorization generates the timing

matrix, T, and the weighting matrix,W, that best satisfies
F = TW given muscle signal data F, and the module size
k using an alternating least squares approach where either
the timing or the weightingmatrix is fixed during the opti-
mization. For the cases where we wanted to fix either the
timing matrix, T, or the weighting matrix, W, a priori,
we used a nonnegative least-squares optimization rou-
tine to generate the matching matrix that minimized the
objective. For each trial, we also calculated mean similar-
ity between the randomly generated timing and weighting
matrices and the timing and weightings extracted by using
NNMF on that trial.
For a given set of timings, we estimated the least squares

weighting matrix, W to the original matrix equation F =
TW and for a fixed set of weightings we estimated the
least squares timing matrix of the transposed matrix
equation F� = W�T�. We used a linear least squares
algorithm with nonnegativity constraints with termina-
tion settings of 1E-12 for both function tolerance and step
size criteria.
We grouped the R2, NRMSE, and similarity values of the

100 sets of randomly generated timing data and weighting
data using the entire set of collected data (all subjects, ses-
sions, trials and muscles). The Sign Test, which we used
for statistical comparisons, tests for a shift in the median
value between the two groups. As a result, we used the
median value of the R2, NRMSE and similarity values cal-
culated from the random data set to normalize the values
in the experimental data.
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We define the normalized measures, scaled R2 (R2) and
scaled NRMSE (NRMSE) as

Scaled R2 (R2) = 100
R2 − cr
cmax − cr

(3)

Scaled NRMSE (NRMSE) = 100
NRMSE − cr
cmax − cr

(4)

where cr denotes the median value calculated from the
randomly generated data set and cmax denotes the max-
imum theoretical signal (1 for R2 and 0 for NRMSE). A
scaled measure of 0 corresponds to the same value as the
randomly generated data set and 1 is the maximum poten-
tial measure. The value of cr was calculated for the timing
andweightings separately. To scale the values extracted via
NNMF, the value of cr was set to zero and values outside
of (0, 100) were truncated to the boundaries.

Module organization analysis
To calculate how many modules were needed for suffi-
cient reconstruction, we ran nonnegative matrix factor-
ization (NNMF) on each trial for a series of modules sizes
from 1 to 8. Similar to previous research [20, 34, 56],
we set a threshold value of R2 for sufficient reconstruc-
tion. The value of R2 is affected not just by the muscle
coordination but also the number and choice of which
muscles to use [55] and the use of concatenated vs aver-
aged muscle signal data [21]. The threshold value of R2 is
also different based on whether not the quality measures
are calculated as a group for all the muscles in the trial
or for each muscle individually [13]. We are using con-
catenated data which often requires more modules for a
given threshold [21]. We also are using a more stringent
individual-muscle criteria vs a grouped-muscle criteria
because grouped muscle criteria can result in very poor
reconstruction of specific muscles [13].
We split all of the subjects, trials, sessions, and muscle

data into two subgroups for the powered and unpowered
conditions. We calculated the minimum number of mod-
ules necessary to reconstruct the data set by evaluating
the R2 value for all the data at each condition and module
size (N[dataset size] = 1200: 8 subjects, 3 sessions, 5 tri-
als, 10 muscles). Previous researchers have used a range of
values, such as 0.8 [8, 13], and 0.9 [57] as thresholds. We
considered the minimum number of modules to be that
where the median R2 value of the set selected for module
size and conditions was greater than 0.9. A sample module
factorization of a representative subject is shown in Fig. 1.
For each module size, we partitioned the resulting

reconstruction quality measures into two subgroups for
the powered and unpowered conditions. We tested each
subgroup for normality using the Kolmogorov-Smirnov
Test. The data sets were significantly different from nor-
mal (p < 0.05) and were skewed. For each module size, we
used the Sign test to evaluate median differences in the R2

and NRMSE measures between the powered and unpow-
ered conditions (N = 1200: 8 subjects, 3 sessions, 5 trials,
10 muscles).

Module components analysis
To determine if the motor modules were preserved
at different assistant levels, we calculated the similar-
ity between the module timings and weightings of the
unpowered and powered conditions. For balance, we
grouped the five trials of the unpowered condition with
the last five trials of the powered condition, creating a
10x10 grid of tests within and between conditions. We
removed the diagonal from the grid as they represented
testing the timings and weightings from the same trial.
In total we found 2160 similarity values. (N = 2160: 8
subjects, 3 sessions, 90 tests in the grid).
Although similarity can describe the relationship

between timings and weightings, it does not describe the
error as directly as R2 and the normalized root mean
squared error (NRMSE). In order to directly quantify how
much mutual information is shared between the timings
and the weightings of the powered and unpowered con-
ditions, we calculated the R2 and NRMSE measures for
three different combinations of the timing and weighting
data for three groups with different assumptions as to how
module timings and weightings might be shared between
different trials. For each test, we formed a grid from the
last 5 trials of the unpowered and powered conditions to
create set of tests for each group.

Swapped group
In the swapped group, we tested whether timings and
weightings extracted from an individual trial using NNMF
could be used to reconstruct data from another trial. We
define the swapped group:

Timings:
{
Fu
i = Tp

j W
u
i ∪ Fp

j = Tu
i W

p
j

}
(5)

Weightings:
{
Fu
i = Tu

i W
p
j ∪ Fp

j = Tp
j W

u
i

}
, (6)

where the superscripts u and p refer to the unpowered and
powered conditions respectively and i and j refer to the
ith trial of the unpowered condition in the 5 × 5 test grid
and the jth trial of the powered condition 5 × 5 test grid
respectively.
The swapped group used the data from all subjects and

sessions with the unpowered and powered trials set into
a test grid of size 25 (5 unpowered and 5 powered trials).
The final data set was size 1200: 8 subjects, 3 sessions, 25
tests, 2 swaps(1 timing and 1 weighting).

Paired group
In the paired group, we tested whether a pair of trials,
one of each condition, could be reconstructed by NNMF
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modules if they were paired such that they have the same
timing matrix or the same weighting matrix.

Timings:
[
Fu
i Fp

j

]
= T

[
Wu

i Wp
j

]
(7)

Weightings:
[
Fu
i

Fp
j

]

=
[
Tu
i

Tp
j

]

W , (8)

where the superscripts u and p refer to the unpowered and
powered conditions respectively and i and j refer to the
ith timing block of the unpowered condition and the jth
timing block of the powered condition respectively.
The paired group used the data from all subjects and

sessions to calculate R2 and NRMSE along a test grid of
size 100 (5 unpowered and 5 powered trials). The 2 off-
diagonal 5x5 sub-grids representing the between condi-
tion tests were used. The grid values were not symmetric
because of local minimums in the NNMF algorithm so we
pooled the entire grid. The tests were repeated (N = 2400:
8 subjects, 3 sessions, 100 tests) using the average R2 and
NRMSE of the muscles for that trial.

Shared group
In the shared group, we tested whether a single shared
timing or weighting matrix could reconstruct the entire
data set (all 5 unpowered trials and all 15 powered trials).

Timings:
[
Fu
1 Fu

2 . . . Fu
5 Fp

1 Fp
2 . . . Fp

15
] =

T
[
Wu

1 Wu
2 . . . Wu

5 Wp
1 Wp

2 . . . Wp
15

]
(9)

Weightings:
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎢
⎢
⎣
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1
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2
...
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5

Fp
1

Fp
2
...
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15

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Tu
1
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2
...
Tu
5

Tp
1

Tp
2
...

Tp
15

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

W , (10)

where the superscripts u and p refer to the unpowered and
powered conditions respectively.
The shared group used the data from all subjects and

sessions and tested the shared timings and weightings on
the last 5 unpowered trials and the last 5 powered trials
(N = 2400: 8 subjects, 3 sessions, 5 unpowered and 5
powered trials, and 10 muscles)

Statistics
All statistical analyses were performed in IBM SPSS
Statistics 22b® (IBMCorp. Armonk, NY). All tests were set
at a significance level of 0.05.
We pre-tested the R2 and NRMSE results for normal-

ity and skew in order to choose the appropriate statistical
test. We used Kolmogorov-Smirnov tests for normality
and we characterized distributions as symmetric when the

ratio of skewness to the standard error of skewness was
< |1.96| [58, 59]. Our testing showed that all of the data
was skewed so we used the non-parametric Sign Test
to test for differences in R2 and NRMSE between the
powered and unpowered conditions.
We used a linear, mixed-effects model to test the effect

of training time on the R2 value during the powered con-
dition. The trial number and the session were fixed effects
and the subject was a random effect. We assumed a vari-
ance components structure and used restricted estimation
maximum likelihood in the model. The input data was all
of the subjects, sessions and trials of the powered condi-
tion with the average R2 of the 10 muscles in each trial
(N = 360: 8 subjects, 3 sessions, 15 trials). We set the
module size to six based on the previous result for the
minimum module size for adequate reconstruction and
the significance level to 5%. If the fixed effects are sig-
nificant, it would indicate that the time spent walking in
the exoskeleton, as measured in session number and seg-
ment number within session, can explain the changes in
the consistency of muscle signals.

Results
Module organization
The number of modules was preserved across powered
and unpowered conditions. Based on our selection cri-
teria, 6 modules were sufficient to reconstruct both the
unpowered and powered condition data (Fig. 2). At this
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Fig. 2Module size selection. R2 and normalized root mean squared
error (NRMSE) for module sizes of 1, 2, 4, 6, 8 for the unpowered (gray)
and powered (blue) conditions. We selected six modules because the
median was greater than 90% (dashed line) and the minimum was
greater than 70% (dotted line). Sign tests (p < 0.05) with a significant
difference in median are bracketed with a label indicating the
direction of the shift. The median shifts were small relative to the
median value of the group and not consistent across all sizes
suggesting little difference in module organization due to assistance
level. Violin plots are similar to the box and stem plots. The violin
body is the probability density function which shows the estimated
frequency of each point in the data set, the white dot is the median,
and the black bar represents the middle two quartiles
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module size, a few values were beneath the R2 thresh-
old of 0.7. However, values less than 0.7 were rare so
we considered six factors satisfactory. For module sizes
4 and 5, the distribution of R2 had longer and thicker
tails which meant that several individual muscles were not
being reconstructed well at smaller sizes.
The module timings and weightings were also pre-

served across powerd and unpowered conditions. The
subject-mean, step-averaged, timings and weightings of
the modules extracted from the muscle data both had
strong agreement between the powered and unpowered
conditions. (Fig. 3).
For a module size of 6, a Sign test showed that the mus-

cle signal data during the powered condition had slightly
better median reconstruction quality than the unpowered
condition for both R2 (N = 1200, Z = −1.992, p = 0.046,
Powered > Unpowered, δ = 0.002) and NRMSE (N =
1200, Z = −9.324, p < 0.000, Powered < Unpowered,
δ = −0.286). Similarly, at the other modules sizes, the
median difference between the conditions was statistically
significant but of negligible magnitude (Fig. 2).
The reconstruction quality of the extracted modules

increased with training time. The linear, mixed-effects
model generated from the data with a module size of
six, had a significant fixed effect for session (N = 360,
t = 7.962, p < 0.001, estimated value = 0.0059, 95%
Confidence Interval = 0.0044 − 0.0073) and trial (N =
360, t = 5.188, p < 0.001, estimated value = 0.0007, 95%

Confidence Interval = 0.0004 − 0.0010) and the subject
was not significant (p = .064).
Randomweightings had better reconstruction than ran-

dom timings. Non-negative, least squares optimization of
the estimation residual using fixed, randomly generated
timing and weighting matrices led to reduced reconstruc-
tion quality compared to matrices calculated via NNMF
(Fig. 4). The set of random weightings and optimized tim-
ings had a median R2 of .40 and the set of random timings
and optimized weightings had a median R2 of -.048.
The weightings had higher similarity than the timings.

The timing and weighting data was more similar both
within and between conditions (unpowered, powered)
than the random data (Fig. 5). For both conditions, the
similarity within conditions was greater than the similar-
ity between conditions. The similarity of the weighting
data was greater than the similarity of the timing data for
both conditions. A Sign test showed a large significant
difference in the medians between the timings and the
weightings for the concatenated data set (N = 2160, Z =
− 46.0240, p < 0.001, Weightings > Timings, δ = 14.10).

Module components
Evaluating the timings and weightings extracted by
NNMF showed that across-group and mixed group com-
parisons (swapped, paired, and shared set), the weightings
could explain more of the variance of the EMG data than
the timings.
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Fig. 3Mean subject module timing and weighting data. Normalized across subject mean and 95% confidence intervals for the timing and
weighting components of the muscle recruitment modules extracted from the unpowered (gray) and powered (blue) condition data via NNMF.
Individual subject weightings are shown as thin bars with the group mean and standard error in the transparent wide bar. There is strong
agreement across conditions in both the timing and weighting data indicating that module organization was preserved during the adaptation to
walking in an exoskeleton. Muscle Abbreviations: Soleus (SO), Tibialis anterior (TA), Peroneus longus (PL), Medial gastrocnemius (MG), Biceps femoris
long head (BF), Semitendenosis (SM), Rectus femoris (RF), Vastus lateralus(VL), vastus medialis(VM), and Gluteus maximus(GX)
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Fig. 4 Reconstruction quality of timing and weightings across
conditions compared to randomly generated baseline. R2 and
normalized root mean squared error (NRMSE) of randomly generated
weightings and timings for the unpowered (gray) and powered
conditions (blue). The randomly generated weightings and timings
could not reconstruct the muscle signals (R2 ≤ 0). However, the
randomly generated weightings could produce a poor
reconstruction (R2 > 0) demonstrating that the variability in timing is
harder to reproduce than in weighting

Swapping the timing and weighting data between con-
ditions tested if timing and weighting information was
shared between conditions. The swapped weighting set
had a statistically significant increase in the median vari-
ance accounted for (Sign Test: N = 1200, Z = −34.497,
p < 0.001, weightings > timings, δ = 27.7%) and the
error accounted for (Sign Test: N = 1200, Z = −34.612,
p < 0.001, weightings > timings, δ = 33.2%) compared
to the swapped timing set (Fig. 6).
The paired weighting set tested whether a single rep-

resentative set of timing or weighting data could explain
the variance of a mixed data set consisting of EMG signals
from both the powered and unpowered conditions. The
paired weighting set had a statistically significant increase
in the median variance accounted for (Sign Test: N =
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Fig. 5 Similarity of timing and weightings across conditions
compared to randomly generated baseline. Cossine Similarity of the
timing and weighting matrices for the unpowered (gray) and
powered conditions (blue) for three groups: randomly generated
data, within condition data, and between conditions data. The
threshold of similarity was set at 75% (dashed gray line). The timing
and weightings were more similar than the random data set both
within and between conditions. Essentially, all of the weighting data
collected had similarity greater than the threshold of 75%. For the
timing data, within and between conditions, the percentage of trials
greater than the threshold ranged from 75.2 to 99.8% respectively

1200, Z = −34.612, p < 0.001, weightings > timings,
δ = 9.55%) and the error accounted for (Sign Test: N =
1200, Z = −34.612, p < 0.001, weightings > timings,
δ = 20.1%) compared to the paired timing (Fig. 7).
Finally, the shared weighting set tested whether a sin-

gle timing or weighting set could explain the variance of
a data set consisting of all of the unpowered and pow-
ered condition data collected on that session. The shared
weighting set had a statistically significant increase in the
median variance accounted for (Sign Test: N = 2400, Z =
−34.497, p < 0.001, weightings > timings, δ = 27.7%)
and the error accounted for (Sign Test: N = 2400, Z =
−30.006, p < 0.001, weightings > timings, δ = 33.2%)
compared to the shared timing set (Fig. 8).

Discussion
The number of modules and their structure was preserved
across exoskeleton assistance levels and training time
The results confirmed our hypothesis that the organiza-
tion of the motor modules would not change between
conditions. Six modules could explain the majority of
the variance in EMG data during walking in a pow-
ered, bilateral ankle exoskeleton in both the unpowered
and powered condition. Although 4 and 5 modules could
explain a large portion of the data, Fig. 2 shows that 4
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Fig. 6 Reconstruction quality of timing and weightings swapped
across conditions. Variance accounted for and Error accounted for the
swapped data set, where either the timing or the matrix data of one
condition was swapped with data from the opposing condition and
the value normalized against random chance. A Sign test showed
that the swapped weightings had significantly higher reconstruction
values than the timings demonstrating that the subject’s preferred
weighting varied less than timing during the adaptation period

modules had a long tail, indicating that a substantial num-
ber of muscles had low R2 values. Our results are similar
to previous research which showed that a set of 4 to 6
modules [13, 14, 20] could explain the majority of the vari-
ance in EMG data during unassisted walking. Although
there were noticeable inter-subject differences in modules
as shown in Fig. 1, the number of modules necessary to
meet the median threshold of 90% was consistent across
subjects.
The number of motor modules needed for an accurate

reconstruction was preserved across conditions and the
timings and weightings across conditions were more sim-
ilar than random chance suggesting structural robustness
of the modules. The similarities between conditions are
striking given the biomechanical changes of the subjects
highlighted in our previous work [35]. Although the high-
level task (i.e. walking on a treadmill at a fixed speed)

Fig. 7 Reconstruction quality of timing and weightings paired across
conditions. Variance accounted for and Error accounted for the paired
data set, where either the timing or the matrix data of one condition
was paired with data from the opposing condition before NNMF was
applied. The resulting reconstruction quality measures were
normalized against random chance. A Wilcoxon signed-rank test
showed that the paired weightings had significantly higher
reconstruction values than the timings demonstrating that assuming
fixed weightings between conditions can produce high quality
reconstructions

was not changed, the low-level strategy for achieving the
task (i.e. the kinematics and kinetics of gait) and the ener-
getic cost of walking did change substantially. On average,
the subjects walked with greater plantarflexion, generated
more positive work during plantarflexion, and lowered
their energy expenditure in the powered condition.
The number of modules needed to reconstruct the data

was also preserved with regard to training time in the
exoskeleton. Previous studies on the effect of training and
expertise on the organization of motor modules have con-
flicting results. One hypothesis is that experts, as a result
of training, have more individual muscle control and less
co-activation which requires a greater number of modules
to capture. For example, in a balance beam task, an expert
group of beam walkers showed more individual muscle
control which required a greater number of modules than
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Fig. 8 Reconstruction quality of timing and weightings shared across
conditions. Variance accounted for and Error accounted for the fixed
data set, where either the timing or the matrix data was assumed
constant for all trials in both conditions. A Sign test showed that the
fixed weightings had significantly higher reconstruction values than
the timings. Although assuming fixed weighting lead to high
variability in variance accounted for and error accounted for, the
majority of the data could be reconstructed by assuming fixed
weighting indicating a strong preference for recruiting similar muscle
patterns during adaptation

a novice group [60]. In contrast, expert rowers did not
have any differences in module organization or muscle
organization within modules when compared to novice
rowers [61]. One interpretation is that basic movements
(e.g walking) require less cortical involvement than highly
trained tasks (e.g. balance beam walking) and do not show
changes in module organization.
For a given number of modules (k = 6), we were able

to explain greater variance in the EMG data during the
powered condition compared to the unpowered condi-
tion, suggesting a reduction in the complexity of control
during exoskeleton assistance. One potential explana-
tion is that the amount of time in each condition was
mismatched. Subjects walked for only 10 min in the
unpowered condition before walking for 30 min in the
powered condition. Because we compared the last 5 min

of each trial, it is possible that the slight increase in
reconstruction quality is due the greater amount of time
adapting to exoskeleton assistance.
Although the number of subjects was sufficient for

statistical significance of our hypotheses, this results
of the study may be limited by the small sample size
of 8. Furthermore, our testing protocol always had a short
unpowered acclimation period followed by a longer pow-
ered period [37] and we did not randomize the order of
conditions.

The reconstruction quality of the extracted modules
increased with training time
Although the organization of the motor modules did not
change over the course of the training period, the recon-
struction quality increased with training time. Using a
linear mixed model regression for R2 and a module size
of six, we found significant fixed effects for the train-
ing session and the trial number. This suggests that R2

may reflect improvement in the consistency of muscle
recruitment due to both motor adaptation and motor
consolidation [60, 62].
In the mixed-effects model, the estimated coeffi-

cient for training session was substantially larger than
the coefficient for trial number demonstrating that
R2 captured the importance of motor consolidation
between training sessions relative to motor adaptation
during a training session. Together, these results sug-
gest that reconstruction quality could be a potential
method for measuring adaptation during training in an
exoskeleton.

The timing and weighting data was similar between
exoskeleton assistance levels
Following our hypothesis that the organization of motor
modules would not change between conditions, we also
expected that the timing and weighting data would be
similar across conditions. In healthy subjects, previous
research has shown that the timings of the motor modules
are similar when subjects undergo whole-body kinetic
changes (e.g. walking speed, bodyweight support [20], and
incline [22]). Our results showed that motor modules are
also similar when subjects undergo kinetic changes at
individual joints. In contrast to those studies which only
demonstrated similar timings across conditions, subjects
walking in an exoskeleton showed substantial similarity
in both timing and weighting data. Although the timing
and weighting matrices across conditions were more sim-
ilar than random chance (Fig. 3 and 5), our results showed
that changes occurred in both the timing and weighting
components (Figs. 6, 7, and 8). These results support the
characterization of healthy walking as a robust task that
can handle variations in parameters without large changes
to the underlying coordination.
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Randomweightings had better reconstruction than
random timings
Similar to previous studies, we found that randomly gen-
erated data was able to reconstruct some of the EMG data
recorded during walking [28]. The reconstruction quality
measured via r2 and normalized root mean square error
(NRMSE) was greater when the weighting matrices were
randomized than when the timing matrices were random-
ized (Fig. 4). The set of randomly generated weighting
data and optimized timing data produced a useful esti-
mate (R2 > 0) but the randomly generated timing data
and optimized weightings did not (R2 < 0). These results
support the concept that gait variability is reflected more
in the timing data of extractedmodules than the weighting
data [21].

The weightings had higher similarity than the timings
For both within and between condition comparisons, the
similarity between the extracted timing and weighting
data was greater than that of random chance (Fig. 5). For
the selected threshold of 75%, most of the timing data and
almost all of the weighting data was similar. We found
that, both within and between conditions, the weighting
data had higher similarity than the timing data. This sug-
gests that both natural variability and the variability due
to perturbations by the exoskeleton were dominated by
changes in the timing of recruitment not weightings.

The weightings had higher reconstruction quality than the
timings for the swapped, paired, and shared sets.
Although subjects reduced their energetic cost of walk-
ing and made substantial changes to the organization and
effort of their joints during walking [35], the number,
function, and organization of modules was preserved. Our
results showed that assuming partial information from
one condition could be used to reconstruct data from
other conditions (Figs. 6, 7, and 8). Using a single set of
muscle weightings (shared set), generalized across all con-
ditions and training time, could account for the majority
of the variance and error of all the measured data. Consis-
tent with the idea of spinal circuity modulating the timing
of activation, our results suggest that the muscle weight-
ing data could be a low level construct which is shared
and adapted by subjects when adapting to walking in the
exoskeleton. These results agree with simulation studies
that show that several different human movements pat-
tern can potentially be synthesized from a small library of
activation patterns [51].
One interpretation of these results is that the motor

control strategy for walking in an exoskeleton is not based
on high level changes to module organization but rather
the strategy is based on making adjustments to the timing
and weighting of individual muscles. This interpretation
challenges one of major concepts in the hypothesis of

motor modules, which is that they allow for reduction of
the dimensionality of the control space [9, 63]. Our results
agree with the hypothesis that there is a strong underlying
pattern of coordination. When walking in an exoskeleton,
the number of modules and the function of each model
was preserved across exoskeletonassistance levels.
Following the hypothesis of motor modules, one would

expect a scaling of muscles inside themodule based on the
original weighting ratio when the exoskeleton assistance
level changes but muscles were adapted individually. Our
study shows that subjects adapted to walking by changing
both the module timing patterns and the module weight-
ings. Our results agree with Steele et al. [32] that subjects
are able to modulate both the timings and weightings
of these modules in response to the assistance provided
by the exoskeleton. The smaller number of modules they
found for their study is likely the result of them using
a smaller set of muscles (up to 8) and because their set
included medial and lateral measurements of the soleus
and gastrocnemius muscles. Differences in motor mod-
ules resulting from differences in exoskeleton design and
control algorithm are a potential avenue of further study
in order to help design future devices.
One potential reason for the similarity in coordination

strategies is that the motor modules reflect the biome-
chanical constraints of the task. Previous research has
shown that a similar reduction of motor signals to a lower-
order dimensional space can be done on signals produced
solely through task constraints and optimization of mus-
cle activation signals [55, 56]. As our two conditions are
both walking at a fixed speed, it is possible that the sim-
ilarities in the motor modules are driven by biomechan-
ical task constraints. If the subject’s preferred gait in an
exoskeleton were to causes greater changes to the biome-
chanics of the task, it is possible that greater changes in
muscle recruitment and coordination would be necessary.
Another potential reason for the motor module simi-

larity is that the central nervous system manages control
complexity by searching in the area around a previously
found solution. The similarity in the subject’s preferred
solution to the new walking task may reflect recall of
a “good-enough” robust solution learned over years of
walking rather than a online generated “optimal” solution
[64, 65].Motormodulesmay also reflect neuromechanical
solutions that have been chosen for their generalization
rather than specificity [60, 66]. An “optimal” solution, that
is singular, may not be ideal because it lacks the robust-
ness that can be conferred by generalizing and selecting
from modules that can be used for multiple biomechan-
ical tasks [67]. Similarly to the preservation of modules
during adaptation to an isometric task in the upper arm
[26, 27], the subject’s adaptations to the exoskeleton may
be most compatible with their current knowledge and
easier to learn by being similar to the original modules.
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Understanding what portions of the muscle recruit-
ment patterns are preserved during walking and what
portions reflect responses to dynamic perturbations could
help develop algorithms for assistive devices to respond
fluidly and rapidly to the user in real-world walking envi-
ronments. We speculate that there may be an advantage
to analyzing human movement in modules that extends
beyond the idea of simple reduction. It is possible that
preservation of motor modules measured during walking
in an ankle exoskeleton could also be found for devices
spanning other joints leading to greater understanding of
whole body coordination in an exoskeleton.

Conclusion
We investigatedmuscle recruitment patterns during walk-
ing in a powered bilateral ankle exoskeleton and found
the organization (module size and function) did not
change between powered and unpowered conditions. Fur-
thermore, across conditions, the timings and weightings
were more similar than would be expected by random
chance suggesting that module components were pre-
served across assistance levels. We found that for a fixed
module size, the reconstruction quality of NNMF of the
subject’s muscle signal data improved over time, suggest-
ing that training resulted in greater consistency of muscle
recruitment. The weighting data could better reconstruct
EMG signals across conditions than the timing data sug-
gesting that adaptation to walking in an exoskeleton was
dominated by changes in timing of the modules.
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