4,343 research outputs found

    New trends for metal complexes with anticancer activity

    Get PDF
    Medicinal inorganic chemistry can exploit the unique properties of metal ions for the design of new drugs. This has, for instance, led to the clinical application of chemotherapeutic agents for cancer treatment, such as cisplatin. The use of cisplatin is, however, severely limited by its toxic side-effects. This has spurred chemists to employ different strategies in the development of new metal-based anticancer agents with different mechanisms of action. Recent trends in the field are discussed in this review. These include the more selective delivery and/or activation of cisplatin-related prodrugs and the discovery of new non-covalent interactions with the classical target, DNA. The use of the metal as scaffold rather than reactive centre and the departure from the cisplatin paradigm of activity towards a more targeted, cancer cell-specific approach, a major trend, are discussed as well. All this, together with the observation that some of the new drugs are organometallic complexes, illustrates that exciting times lie ahead for those interested in ‘metals in medicine

    HDAC inhibitors increase NRF2-signaling in tumour cells and blunt the efficacy of co-adminstered cytotoxic agents

    Get PDF
    The NRF2 signalling cascade provides a primary response against electrophilic chemicals and oxidative stress. The activation of NRF2-signaling is anticipated to have adverse clinical consequences; NRF2 is activated in a number of cancers and, additionally, its pharmacological activation by one compound can reduce the toxicity or efficiency of a second agent administered concomitantly. In this work, we have analysed systematically the ability of 152 research, pre-clinical or clinically used drugs to induce an NRF2 response using the MCF7-AREc32 NRF2 reporter. Ten percent of the tested drugs induced an NRF2 response. The NRF2 activators were not restricted to classical cytotoxic alkylating agents but also included a number of emerging anticancer drugs, including an IGF1-R inhibitor (NVP-AEW541), a PIM-1 kinase inhibitor (Pim1 inhibitor 2), a PLK1 inhibitor (BI 2536) and most strikingly seven of nine tested HDAC inhibitors. These findings were further confirmed by demonstrating NRF2-dependent induction of endogenous AKR genes, biomarkers of NRF2 activity. The ability of HDAC inhibitors to stimulate NRF2-signalling did not diminish their own potency as antitumour agents. However, when used to pre-treat cells, they did reduce the efficacy of acrolein. Taken together, our data suggest that the ability of drugs to stimulate NRF2 activity is common and should be investigated as part of the drug-development process

    Emerging role of nuclear factor erythroid 2-related factor 2 in the mechanism of action and resistance to anticancer therapies

    Get PDF
    Nuclear factor E2-related factor 2 (NRF2), a transcription factor, is a master regulator of an array of genes related to oxidative and electrophilic stress that promote and maintain redox homeostasis. NRF2 function is well studied in in vitro, animal and general physiology models. However, emerging data has uncovered novel functionality of this transcription factor in human diseases such as cancer, autism, anxiety disorders and diabetes. A key finding in these emerging roles has been its constitutive upregulation in multiple cancers promoting pro-survival phenotypes. The survivability pathways in these studies were mostly explained by classical NRF2 activation involving KEAP-1 relief and transcriptional induction of reactive oxygen species (ROS) neutralizing and cytoprotective drug-metabolizing enzymes (phase I, II, III and 0). Further, NRF2 status and activation is associated with lowered cancer therapeutic efficacy and the eventual emergence of therapeutic resistance. Interestingly, we and others have provided further evidence of direct NRF2 regulation of anticancer drug targets like receptor tyrosine kinases and DNA damage and repair proteins and kinases with implications for therapy outcome. This novel finding demonstrates a renewed role of NRF2 as a key modulatory factor informing anticancer therapeutic outcomes, which extends beyond its described classical role as a ROS regulator. This review will provide a knowledge base for these emerging roles of NRF2 in anticancer therapies involving feedback and feed forward models and will consolidate and present such findings in a systematic manner. This places NRF2 as a key determinant of action, effectiveness and resistance to anticancer therapy

    A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs

    Get PDF
    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents

    PIM kinase inhibition: co-targeted therapeutic approaches in prostate cancer

    Get PDF
    PIM kinases have been shown to play a role in prostate cancer development and progression, as well as in some of the hallmarks of cancer, especially proliferation and apoptosis. Their upregulation in prostate cancer has been correlated with decreased patient overall survival and therapy resistance. Initial efforts to inhibit PIM with monotherapies have been hampered by compensatory upregulation of other pathways and drug toxicity, and as such, it has been suggested that co-targeting PIM with other treatment approaches may permit lower doses and be a more viable option in the clinic. Here, we present the rationale and basis for co-targeting PIM with inhibitors of PI3K/mTOR/AKT, JAK/STAT, MYC, stemness, and RNA Polymerase I transcription, along with other therapies, including androgen deprivation, radiotherapy, chemotherapy, and immunotherapy. Such combined approaches could potentially be used as neoadjuvant therapies, limiting the development of resistance to treatments or sensitizing cells to other therapeutics. To determine which drugs should be combined with PIM inhibitors for each patient, it will be key to develop companion diagnostics that predict response to each co-targeted option, hopefully providing a personalized medicine pathway for subsets of prostate cancer patients in the future

    Co-targeting PIM and PI3K/mTOR using multikinase inhibitor AUM302 and a combination of AZD-1208 and BEZ235 in prostate cancer

    Get PDF
    PIM and PI3K/mTOR pathways are often dysregulated in prostate cancer, and may lead to decreased survival, increased metastasis and invasion. The pathways are heavily interconnected and act on a variety of common efectors that can lead to the development of resistance to drug inhibitors. Most current treatments exhibit issues with toxicity and resistance. We investigated the novel multikinase PIM/PI3K/mTOR inhibitor, AUM302, versus a combination of the PIM inhibitor, AZD-1208, and the PI3K/mTOR inhibitor BEZ235 (Dactolisib) to determine their impact on mRNA and phosphoprotein expression, as well as their functional efcacy. We have determined that around 20% of prostate cancer patients overexpress the direct targets of these drugs, and this cohort are more likely to have a high Gleason grade tumour (≄Gleason 8). A co-targeted inhibition approach ofered broader inhibition of genes and phosphoproteins in the PI3K/mTOR pathway, when compared to single kinase inhibition. The preclinical inhibitor AUM302, used at a lower dose, elicited a comparable or superior functional outcome compared with combined AZD-1208 +BEZ235, which have been investigated in clinical trials, and could help to reduce treatment toxicity in future trials. We believe that a co-targeting approach is a viable therapeutic strategy that should be developed further in pre-clinical studies

    Co-Targeting PIM Kinase and PI3K/mTOR in NSCLC

    Get PDF
    PIM kinases are constitutively active proto-oncogenic serine/threonine kinases that play a role in cell cycle progression, metabolism, inflammation and drug resistance. PIM kinases interact with and stabilize p53, c-Myc and parallel signaling pathway PI3K/Akt. This study evaluated PIM kinase expression in NSCLC and in response to PI3K/mTOR inhibition. It investigated a novel preclinical PI3K/mTOR/PIM inhibitor (IBL-301) in vitro and in patient-derived NSCLC tumor tissues. Western blot analysis confirmed PIM1, PIM2 and PIM3 are expressed in NSCLC cell lines and PIM1 is a marker of poor prognosis in patients with NSCLC. IBL-301 decreased PIM1, c-Myc, pBAD and p4EBP1 (Thr37/46) and peIF4B (S406) protein levels in-vitro and MAP kinase, PI3K-Akt and JAK/STAT pathways in tumor tissue explants. IBL-301 significantly decreased secreted pro-inflammatory cytokine MCP-1. Altered mRNA expression, including activated PIM kinase and c-Myc, was identified in Apitolisib resistant cells (H1975GR) by an IL-6/STAT3 pathway array and validated by Western blot. H1975GR cells were more sensitive to IBL-301 than parent cells. A miRNA array identified a dysregulated miRNA signature of PI3K/mTOR drug resistance consisting of regulators of PIM kinase and c-Myc (miR17-5p, miR19b-3p, miR20a-5p, miR15b-5p, miR203a, miR-206). Our data provides a rationale for co-targeting PIM kinase and PI3K-mTOR to improve therapeutic response in NSCLC

    Resveratrol suppresses gastric cancer cell proliferation and survival through inhibition of PIM-1 kinase activity

    Get PDF
    The proviral integration site for Moloney murine leukemia virus (PIM) family of serine/threonine-specific kinases consist of three isoforms, that regulate proliferation, apoptosis, metabolism, invasion, and metastasis of cancer cells. Among these, abnormally elevated kinase activity of PIM-1 contributes to the progression of gastric cancer and predicts poor prognosis and a low survival rate in gastric cancer patients. In the present study, we found that resveratrol, one of the representative chemopreventive and anticarcinogenic phytochemicals, directly binds to PIM-1 and thereby inhibits its catalytic activity in human gastric cancer SNU-601 cells. This resulted in suppression of phosphorylation of the proapoptotic Bad, a known substrate of PIM-1. Resveratrol, by inactivating PIM-1, also inhibited anchorage-independent growth and proliferation of SNU-601 cells. To understand the molecular interaction between resveratrol and PIM-1, we conducted docking simulation and found that resveratrol directly binds to the PIM-1 at the ATP-binding pocket. In conclusion, the proapototic and anti-proliferative effects of resveratrol in gastric cancer cells are likely to be mediated through suppression of PIM-1 kinase activity, which may represent a novel mechanism underlying its chemopreventive and anticarcinogenic actions.
    • 

    corecore