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Summary

Medicinal inorganic chemistry can exploit the unique properties of metal ions for the

design of new drugs. This has, for instance, led to the clinical application of

chemotherapeutic agents for cancer treatment, such as cisplatin. The use of cisplatin

is, however, severely limited by its toxic side effects. This has spurred chemists to

employ different strategies in the development of new metal-based anticancer agents

with different mechanisms of action. Recent trends in the field are discussed in this

review. These include the more selected delivery and/or activation of cisplatin-related

prodrugs and the discovery of new non-covalent interactions with the classical target,

DNA. The use of the metal as scaffold rather than reactive centre and the departure

from the cisplatin paradigm of activity towards a more targeted, cancer cell-specific

approach, a major trend, are discussed as well. All this, together with the observation

that some of the new drugs are organometallic complexes, illustrates that exciting

times lie ahead for those interested in ‘metals in medicine’.

Introduction

Medicinal inorganic chemistry [1-3] is a field of increasing prominence as metal-

based compounds offer possibilities for the design of therapeutic agents not readily

available to organic compounds. The wide range of coordination numbers and

geometries, accessible redox states, thermodynamic and kinetic characteristics, and

the intrinsic properties of the cationic metal ion and ligand itself offer the medicinal

chemist a wide spectrum of reactivities that can be exploited. Although metals have

long been used for medicinal purposes in a more or less empirical fashion [4], the
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potential of metal-based anticancer agents has only been fully realised and explored

since the landmark discovery of the biological activity of cisplatin [5]. To date, this

prototypical anticancer drug remains one of the most effective chemotherapeutic

agents in clinical use. It is particularly active against testicular cancer and, if tumours

are discovered early, an impressive cure rate of nearly 100% is achieved. The clinical

use of cisplatin against this and other malignancies is, however, severely limited by

dose-limiting side-effects such as neuro-, hepato- and nephrotoxicity [5]. In addition

to the high systemic toxicity, inherent or acquired resistance is a second problem often

associated with platinum-based drugs, with further limits their clinical use. Much

effort has been devoted to the development of new platinum drugs and the elucidation

of cellular responses to them to alleviate these limitations [5,6]. These problems have

also prompted chemists to develop alternative strategies based on different metals and

aimed at different targets. We summarize here recent activities in the field of metal-

based anticancer drugs. Space limitations mean that this overview is not

comprehensive, but aims to highlight significant advances and illustrate emerging

trends.

New modes of interaction with the classical target, DNA

In classical chemotherapy, anticancer agents target DNA directly according to the

cisplatin paradigm to generate lesions which ultimately trigger cell death. Much effort

has been directed towards combatting the high systemic toxicity of traditional

platinum anticancer agents by designing drug delivery systems capable of delivering

platinum to tumour cells only.
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A recent example of the latter strategy is the encapsulation of cisplatin and carboplatin

in the hollow protein cage of the iron storage protein ferritin, which can be

internalized by some tumour tissues. Indeed, the drug-loaded protein showed

cytotoxic activity against the rat pheochromocytoma cell line (PC12) [7]. In a

different approach, minicells, bacterially-derived 400 nm anucleate particles, have

been packed with chemotherapeutics, such as cisplatin, and labelled with bispecific

antibodies. This resulted in endocytosis and ultimately drug release in cancer cells [8].

Platinum(IV) prodrugs can be used to overcome some of the problems associated with

cisplatin and its analogues [9]. The high kinetic inertness of Pt(IV) complexes relative

to their Pt(II) analogues introduces drug stability and the two extra ligands on the

octahedral metal centre offer many possibilities for modification of pharmacokinetic

parameters. As intracellular reduction of platinum(IV) to platinum(II) is usually

essential for activation and subsequent cytotoxicity, these prodrugs essentially present

better ways of delivering cisplatin (or its analogues) to the target tumour cell.

Synthetic advances now allow the inclusion of various bioactive ligands in the axial

positions, and, hence, targeting to specific types of cancer cells.

The observation that estrogen receptor-positive, ER(+), breast cancer cells treated

with estrogen are sensitized to cisplatin, led Lippard et al. to synthesize the estrogen-

tethered platinum(IV) complex 1 (see Figure 1a). Intracellular reduction releases one

equivalent of cisplatin and two equivalents of estradiol. The latter induces up-

regulation of high-mobility group (HMG) domain protein HMGB1, a protein that

shields platinated DNA from nucleotide excision repair [10].

Along a similar vein, but with the intention of overcoming platinum drug resistance

rather than cell sensitization, Dyson et al. used the Pt(IV) complex 2 (Figure 1a) to
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target cytosolic glutathione-S-transferase (GST), which constitutes the main cellular

defence against xenobiotics. Ethacraplatin (2) has the GST inhibitor ethacrynic acid, a

diuretic in clinical use, attached. Reduction of ethacraplatin in the cell results in the

release of two equivalents of a potent GST inhibitor together with one equivalent of

the cytotoxic cisplatin [11].

Lippard et al. have tackled the problem of drug delivery by attaching a Pt(IV) prodrug

to functionalized soluble single-walled carbon nanotubes (SWNT), highly effective

carriers that can transport various cargos across the cell membrane through clathrin-

dependent endocytosis [••12]. Platinum(IV) complex 3 has two different axial ligands

(Figure 1a) and binds non-covalently to the nanotube surface and one SWNT longboat

carries on average 65 platinum complexes. The conjugate shows a substantial increase

in cytotoxicity compared to the untethered complex and to cisplatin.

Sadler et al. are using a strategy that relies on the photochemical activation of

platinum(IV) drugs to release active antitumour agents, rather than spontaneous

intracellular reduction. This can then provide localized treatment of cancers accessible

to irradiation. The trans-dihydroxy platinum(IV) prodrugs are non-toxic in the dark

and incorporate two azide ligands, either positioned cis (4) [•13] or trans (5) [14] to

each other (Figure 1b). Irradiation results in growth inhibition of human bladder

cancer cells (5) and cytotoxicity towards human skin cells (HaCaT keratinocytes) (4

and 5). The discovery that the trans-isomer, a potential precursor of the inactive

transplatin, is as active as cisplatin is notable [14]. It is also notable that the cis-azide

complex is not cross-resistant to cisplatin and different DNA platination pathways

seem to be involved [•13]. Incorporation of a pyridine ligand into these complexes can

greatly increase their potency (FS Mackay et al., unpublished).
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The activity of the clinically ineffective transplatin itself is markedly enhanced upon

irradiation [15]. This, together with the observed increase in cytotoxicity upon

irradiation of dirhodium complexes [16], further illustrates the potential of

photoactivation.

A variety of ruthenium complexes have been designed which interact specifically with

the classical target, DNA [17,18]. A family of ruthenium(II)-arene complexes

developed by Sadler et al. [•19], for instance, exhibits high in vitro and in vivo

anticancer activity [20]. For example, the direct coordinative binding of the

monofunctional Ru-arene complex (6) (Figure 1c) to N7 of G bases in DNA is

complemented by intercalative binding of the biphenyl ligand and specific hydrogen

bonding interactions of the ethylenediamine NH2 groups with C6O of guanine. These

additional interactions result in unique binding modes to duplex DNA and induce

different structural distortions in DNA compared to cisplatin, which may explain why

these complexes are not cross-resistant with cisplatin [18]. Interestingly, this

chemistry has recently been extended to include osmium(II)-arene analogues, such as

7 (Figure 1c), whose hydrolytic properties can be tuned to achieve promising activity

against human A549 and A2780 ovarian cancer cells [•21].

Other ruthenium-based anticancer drugs, including the NAMI-A (9) and KP1019 (10)

drugs which are under clinical evaluation, have different modes of action and

specifically aim at non-classical targets such as gene products and cellular

transduction pathways [22]. This shift in interest, which complements the classical

approach, is one of the major trends in the field and is discussed in the later sections

of this review.
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Although much less studied than the metallodrug-DNA interactions, the interaction

of metallodrugs with protein targets and the proteome deserves more attention,

especially since such studies will not only shed light on the mechanisms of action, but

also help to identify new targets for drug therapy [17,23]. Metallodrug-protein

interactions studied by various advanced analytical techniques have been recently

reviewed [23]. Recent characterization of protein adducts of platinum and ruthenium

anticancer drugs by X-ray crystallography [24,25] or advanced mass spectrometry

[26,27] show the timeliness of this approach.
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Figure 1.

Metal-based anticancer drugs that primarily target DNA. (a) Pt(IV) complexes that

deliver cisplatin and two equivalents of estradiol (1) and the GST inhibitor ethacrynic

acid (2) after activation. (b) Photolabile platinum diazide complexes 4 and 5

demonstrate good cytotoxicity upon irradiation. (c) Typical, cytotoxic examples of the

ruthenium- and osmium-arene family of complexes.
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Non-covalent interactions with DNA

Single-stranded ends of human telomeric DNA, which consist of guanine-rich

TTAGGG repeats known to fold into G-quadruplex structures (Figure 2a), provide

interesting targets for drug design. Telomeric DNA shortens after every cell division

and after critical shortening of the telomeres, cells stop dividing and commit suicide.

Telomerase, however, maintains the length of the telomeric DNA and overexpression

of this enzyme endows the (cancer) cell with the ability to replicate indefinitely and

thus proliferate. Since telomerase accepts only the single-stranded overhang,

stabilization of the G-quadruplexes provides an attractive means of preventing

telomerase from maintaining telomere length. The Ni(II)-salphen complex (11)

(Figure 2a) incorporates the main requirements for quadruplex-stabilizing molecules,

i.e. a -delocalized system prone to stacking on a G-quartet, a positive charge that is

able to lie in the centre of the quartet, and finally, positively-charged substituents

which can interact with the grooves and loops of the quadruplex. Indeed, 11 induces a

high degree of quadruplex DNA stabilization and telomerase inhibition with telEC50

values in the range of 0.1 M [28].

An important challenge in this field is the design of complexes that bind selectively to

quadruplex over duplex DNA. Whereas the Ni(II)-salphen complex 11 shows

selectivity of > 50-fold, the manganese porphyrin 12 (Figure 2a) which follows the

same design criteria as mentioned previously, shows an exceptional 10,000-fold

selectivity for quadruplex over duplex DNA (IC50 of around 0.6 M) [•29]. These

results illustrate the potential of metal complexes as telomere-targeted

chemotherapeutics.
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Besides direct coordinative binding of metallo-agents to DNA bases, other potential

DNA binding modes include intercalation and groove binding. The latter modes are

generally non-covalent in nature.

Farrell et al. have described a discrete binding mode based on interactions that utilize

exclusively backbone functional groups [•30]. The new binding mode was observed in

the crystal structure of a double-stranded B-DNA dodecamer with TriplatinNC (13)

(Figure 2b). This trinuclear Pt(II) complex is related to the trinuclear trans-platinum

drug BBR3464, but lacks the reactive chloride ligands. TriplatinNC displays

micromolar activity against human ovarian cancer cell lines [31]. The phosphate-

selective complex binds through a multitude of specific “phosphate clamps” (see

Figure 2b), bifurcated ammine(NH)phosphate(O)amine hydrogen bonds. A series

of such phosphate clamps with one strand of DNA results in so-called “backbone

tracking”, and a combination of two interstrand clamps gives rise to (minor) “groove-

spanning”. Both interactions may be present in solution [•30].

A X-ray crystallographic study of the adduct between triple helicate [Fe2L3]
4+ (Figure

2c) and palindromic DNA 5’-d(CGTACG) by Hannon, Coll et al. reveals the

metallosupramolecular helicate comfortably occupying the central hydrophobic cavity

of a three-way (Y-shaped) junction (Figure 2c) [•32]. The positive charge of the

helicate, together with the large hydrophobic surface of the aromatic rings (together

with its -stacking potential), are the driving forces behind this specific interaction.

This unprecedented mode of non-covalent DNA recognition shows that three-way

junctions, naturally occurring both in DNA and RNA, provide a new structural target

for design of novel, highly specific drugs [•32]. In principle, the palindromic sequence

allows for the formation of any oligomeric formulation through Watson-Crick

hydrogen bonding, thus presenting a dynamic combinatorial library. Addition of the
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triple helices then drives the selective formation of the three-junction member of this

library. The DNA junction recognition compliments the previously reported major

groove binding of the iron metallohelicates, which led to remarkable intramolecular

DNA coiling [33]. The ruthenium metallohelicate induces a similar bending/coiling

effect, further illustrating that the cylinder is responsible for this effect [34]. The Ru

triple helicate exhibits cytotoxicity towards human breast cancer HBL-100 and T47D

cells, albeit with modest activity (2-5 fold less potent than cisplatin). Related

unsaturated dinuclear ruthenium double helicates, capable of classic coordinative

binding to DNA, show greatly improved cytotoxicity towards the same cell lines (30-

fold more active than cisplatin). These complexes illustrate the many possibilities of

using metallosupramolecular architectures in anticancer drug design [35].

These examples not only illustrate the role of non-covalent DNA interactions, but also

the newly-emerging trend of using the metal in a scaffold, rather than as the reactive

centre. In a highly modular approach, the use of a metal centre as a building block

allows for the spatial orientation of other functionalities (as part of the ligands), which

in turn interact favourably with the target via, for instance, hydrogen bonds

(phosphate clamps) or -stacking interactions (helicates). This trend will be discussed

in the next section.
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Figure 2.

New (non-covalent) interactions with DNA. (a) G-quadruplex binding complexes 11

and 12 show high affinity and good (11) to exceptional (12) selectivity for telomeric

DNA (centre, 1KF1.pdb). (b) The highly modular TriplatinNC (13) complex binds to

DNA via so-called ‘phosphate clamps’ (2DYW.pdb). (c) The saturated iron triple

helicate binds to a three-way DNA junction (2ET0.pdb).
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The metal as scaffold

Metals ions have been traditionally included in anticancer agents to exploit their

reactivity and have been particularly attractive because of the exceptionally wide

range of reactivities available. On the other hand, metals can also be used as building

blocks for well-defined, three-dimensional constructs. In this way, the availability of

many different coordination geometries allows for the synthesis of structures with

unique stereochemistry and orientation of organic ligands and structures which are not

accessible through purely organic, carbon-based compounds. The kinetic inertness of

the coordination/organometallic bonds make these compounds in principle behave

like organic compounds. This approach immensely expands our ability to chart

biologically-relevant chemical space [••36]. The group of Meggers has pioneered this

approach in their development of organometallic ruthenium complexes that mimic

organic enzyme inhibitors. The natural product staurosporine, for instance, is a highly

potent inhibitor for various kinases (Figure 3a). Meggers et al. replaced the

carbohydrate unit with ruthenium fragments. Structural variation by simple

substitution of the ligands on the metal to optimize the enzyme-inhibitor interactions

has resulted in the discovery of nanomolar and even picomolar protein kinase

inhibitors (Figure 3b) [37]. The co-crystal structures of Pim-1 with the organometallic

complexes nicely illustrate all salient features of these potent kinase inhibitors (Figure

3c) [38]. The relevance of these organometallic inhibitors as anticancer agents has

been demonstrated recently. They are highly cytotoxic towards human melanoma

cells. The organometallic GSK-3 inhibitor DW1/2 is a potent activator of p53 and

thus induces p53-activated apoptosis via the mitochondrial pathway in otherwise

highly chemoresistant melanoma cells [39]. The anticancer agent DW1/2 works by
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specifically targeting a protein, rather than DNA. The development of novel drugs

with non-classical protein targets is becoming a major new theme in metal-based drug

development and will be discussed in the next section.

Figure 3.

The metal as scaffold. (a) Concept: mimicking the protein kinase inhibitor

staurosporine with an octahedral ruthenium complex. (b) DW1 (the R enantiomer of

the DW1/2 racemic mixture) activates p53 and induces apoptosis in human melanoma

cells. (c) The concept is demonstrated by the crystal structure of with the protein

kinase Pim-1. (d) The remarkably close match is illustrated by the superimposed

cocrystal structures of the organometallic inhibitor (white, 2BZI.pdb) and

staurosporine (purple, 1YHS.pdb).
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Proteins and enzymes as non-classical targets

Traditional anticancer drugs that target DNA make use of the fact that malignant cells

divide rapidly. A drawback of this strategy is that rapidly dividing healthy cells are

affected as well, causing severe toxic side-effects. Alternatively, the design of novel

agents that target cellular signalling pathways specific to cancer cells would therefore

be preferred. As genomics and proteomics have resulted in an explosion of available

information concerning the biology of cancer cells, such targeted therapies have come

within reach and offer much potential. This current shift of focus will be illustrated

with a few typical examples [17].

Human thioredoxin reductase (hTrxR) is associated with many cellular processes such

as antioxidant defence and redox homeostasis. hTrxR is found at elevated levels in

human tumour cell lines. A strong connection with the apoptosis regulator protein p53

has been established and it is strongly associated with tumour proliferation, making

hTrxR an interesting target for anticancer drugs [40]. Gold(I) complexes are amongst

the most potent inhibitors of hTrxR, a feature attributable to the high electrophilicity

of Au(I) and its preference for the selenocysteine residue of hTrxR. For example,

phosphole-gold(I) complexes (14, Figure 4a) are highly potent, nanomolar inhibitors

of hTrxR and the related human glutathione reductase (hGR) [41]. A crystal structure

of 14 with hGR shows, surprisingly, the coordinative binding of one phosphole-gold

unit to an exposed cysteine and a second gold atom that has lost both its chloride and

phosphole ligand to form a linear S-Au-S adduct at the active site (Figure 4a). IC50

values for gliobastoma cells are in the 5-15 M range.



16

This is one example from the active field of gold anticancer drugs [42], many of

which target mitochondria, increasingly recognized as a regulator of cell death.

Another promising group of gold-containing anticancer agents are the gold(III)

porphyrins (15) studied by Che et al. (Figure 4b). These complexes exhibit potent in

vitro and in vivo anticancer activity towards hepatocellular and nasopharyngeal

carcinoma [•43]. A functional proteomics study indeed suggests involvement of the

mitochondria in the induced apoptosis [•44]. Finally, gold(III) thiocarbamates are

more cytotoxic in vitro than cisplatin, including intrinsically-resistant cell lines. The

primary target is thought to be the proteasome, inhibition of which results in induction

of apoptosis [45].

Other metal-containing anticancer agents are known to target specific enzymes. The

cobalt-alkyne analogue 16 of the non-steroidal anti-inflammatory drug aspirin

(acetylsalicylic acid) (Figure 4c) exhibits high cytotoxicity in breast cancer cell lines.

The cytotoxicity correlates with cyclooxygenase (COX) inhibition. COX is involved

in eicosanoid metabolism and interference with this pathway is a promising strategy

for the development of new cytostatics [46].

Hambley et al. have explored the use of cobalt-containing compounds for the selective

inhibition of enzymes involved in the process of tumour metastasis [47]. Their

interesting strategy focuses on the selective delivery of the established maxtrix

metalloproteinase (MMP) inhibitor marimastat by complexing it to a ‘chaperone’

Co(III)-complex (17, Figure 4c). MMPs are overexpressed in tumour cells and high

levels of MMPs in cancer patients correlate with poor prognosis. The Co(III) carrier

provides an inert framework for the transportation of the inhibitor and the prodrug is

activated by a bioreduction pathway generating the more labile Co(II)-complex, which
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leads to inhibitor release. Back-oxidation to the prodrug would be prevented by the

hypoxic nature of tumour tissue, thus achieving selective release in targeted cells

only. showed that Prodrug 17 shows significantly more growth inhibition towards

4T1.2 tumours in vivo in mice than marimastat alone, but also, unexpectedly, that both

the inhibitor and the prodrug complex potentiates metastasis [47].

Inspired by the remarkable properties of NAMI-A (9), a compound devoid of in vitro

cytotoxicity but capable of in vivo metastasis inhibition, metastasis was identified as a

primary new target [•48] and a number of other ruthenium(III) complexes have been

studied for such potential activity [•48]. Remarkably, the lead complexes of the

RAPTA family of ruthenium(II)-arene compounds (18, Figure 4d) developed by

Dyson et al. also showed the same low in vitro cytotoxicity but in vivo inhibition of

lung metastases in CBA mice bearing MCa mammary carcinoma [49].

These examples illustrate the need to develop new assays that look beyond traditional

in vitro cytotoxicity tests [22].
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Figure 4.

Proteins and enzymes as non-classical targets. This cross-section illustrates the

diversity in structure of the complexes and the many organometallic agents being

studied. (a) The Au(I)-phosphole complex 14 inhibits hTrxR. The crystal structure

shows the two gold binding sites (insets, gold atoms as orange spheres, 2AAQ.pdb).

(b) Gold(III)-porphyrin anticancer agent 15. (c) The cobalt-alkyne (16) and cobalt-

marimastat chaperone (17) complexes inhibit COX and MMP, respectively. The

cobaltocenium complex (22) carries a nuclear localization signal for directed nuclear

delivery. (d) NAMI-A (9) and the RAPTA-ruthenium complexes (18) show

antimetastatic activity. (e) Ferrocifen (19) constitutes a prototypical example of a

bioorganometallic drug. The nucleotide-appended organometallic iron complexes 20

and 21 show pronounced cytotoxicity.
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From inorganic to bioorganometallic drugs

The fact that many of the compounds mentioned above are organometallic complexes

illustrates the emergence of the field of medicinal organometallic chemistry. More

generally, bioorganometallic chemistry is relatively new, but has already led to

exciting developments [50]. A prototypical example of a promising organometallic

(pro)drug is the now well-established ferrocifen (19, Figure 4e) system. Ferrocifen, in

contrast to its parent tamoxifen, is active against both ER(+) and ER(-) human breast

cancer cell lines. The antiproliferative effect arises from the anti-estrogenic effect of

the tamoxifen-like unit combined with cytotoxicity caused by the redox properties of

the attached ferrocene group. Electrochemical studies on a variety of ferrocifen-like

compounds have revealed a structure-activity relationship and thus established

minimal structural requirements for cytotoxic effect [••51]. Organometallic iron

complexes with nucleosides appended to either a ferrocenyl [52] (21) or an 4-

butadiene-Fe(CO)3 group[53] (20) also show pronounced cytotoxic activity resulting

induction of apoptosis.

Metzler-Nolte et al. have reported the directed nuclear delivery of an organometallic

cobalt compound (22). To achieve this, the SV4-40 T antigen nuclear localization

signal (NLS) was modified with a cobaltocenium cation and other groups. These

cobaltocenium-NLS-bioconjugates present an intriguing opportunity for the targeted

delivery of therapeutics to the cell nucleus [•54].

The large diversity in recently-reported organometallic anticancer complexes,

illustrate that the full arsenal of synthetic organometallic chemistry, is now available

to the medicinal chemist. Many more exciting developments can therefore be

expected.
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Conclusions

This survey of recent literature illustrates that many different new creative approaches

are being taken towards the design of innovative metal-based anticancer drugs. The

clinical success of cisplatin remains a stimulus for the development of new complexes

that address the downsides associated with cisplatin, especially the systemic toxicity

and (acquired) resistance. Targeted delivery and/or controlled prodrug activation, be it

by light, intracellular reduction or other means, hold the promise of more selective

and effective drug administration. The field of classical chemotherapy with DNA as

the established target continues to produce interesting discoveries. A clearly

discernible, emerging trend, however, is the departure from the cisplatin paradigm of

activity. The newly discovered, mainly non-covalent DNA interactions offer a

glimpse of the rich chemistry that remains to be discovered, most possibly with

applications reaching further than medicinal chemistry. The concept of the metal as

scaffold for the construction of unique, yet well-defined three-dimensional structures,

rather than reactive centre, holds much promise. This highly modular approach,

combined with currently available combinatorial techniques and knowledge of

supramolecular chemistry, yields a very powerful method for optimizing drug

interactions with carefully selected targets.

Future clinical success will benefit from targets which are highly specific for cancer

cells. The rapidly expanding knowledge of their cellular characteristics offers many

new opportunities for drugs that show low systemic toxicity and efficiently tackle the

problem of drug resistance. The different examples mentioned in this review offer a

promising start. Finally, the advent of medicinal bioorganometallic chemistry has
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further expanded the toolbox of the medicinal inorganic chemist. The nature of the

research will rely ever more heavily on interdisciplinary collaboration, but many

exciting discoveries and applications almost certainly lie ahead.
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