1,579 research outputs found

    Efficient Parallel Statistical Model Checking of Biochemical Networks

    Full text link
    We consider the problem of verifying stochastic models of biochemical networks against behavioral properties expressed in temporal logic terms. Exact probabilistic verification approaches such as, for example, CSL/PCTL model checking, are undermined by a huge computational demand which rule them out for most real case studies. Less demanding approaches, such as statistical model checking, estimate the likelihood that a property is satisfied by sampling executions out of the stochastic model. We propose a methodology for efficiently estimating the likelihood that a LTL property P holds of a stochastic model of a biochemical network. As with other statistical verification techniques, the methodology we propose uses a stochastic simulation algorithm for generating execution samples, however there are three key aspects that improve the efficiency: first, the sample generation is driven by on-the-fly verification of P which results in optimal overall simulation time. Second, the confidence interval estimation for the probability of P to hold is based on an efficient variant of the Wilson method which ensures a faster convergence. Third, the whole methodology is designed according to a parallel fashion and a prototype software tool has been implemented that performs the sampling/verification process in parallel over an HPC architecture

    Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures

    Full text link
    Quantum computers have recently made great strides and are on a long-term path towards useful fault-tolerant computation. A dominant overhead in fault-tolerant quantum computation is the production of high-fidelity encoded qubits, called magic states, which enable reliable error-corrected computation. We present the first detailed designs of hardware functional units that implement space-time optimized magic-state factories for surface code error-corrected machines. Interactions among distant qubits require surface code braids (physical pathways on chip) which must be routed. Magic-state factories are circuits comprised of a complex set of braids that is more difficult to route than quantum circuits considered in previous work [1]. This paper explores the impact of scheduling techniques, such as gate reordering and qubit renaming, and we propose two novel mapping techniques: braid repulsion and dipole moment braid rotation. We combine these techniques with graph partitioning and community detection algorithms, and further introduce a stitching algorithm for mapping subgraphs onto a physical machine. Our results show a factor of 5.64 reduction in space-time volume compared to the best-known previous designs for magic-state factories.Comment: 13 pages, 10 figure

    Multi-Scale Simulations of Collagen Failure and Mechanoradicals

    Get PDF
    Collagen, the most abundant protein in the human body, must withstand high mechanical loads due to its structural role in tendons, skin, bones, and other connective tissue. It was recently found that tensed collagen creates mechanoradicals by homolytic bond scission in the sub-failure regime. The locations and types of initial rupture sites critically decide on both the mechanical and chemical impact of these micro-ruptures on the tissue, but are yet to be explored. We here employ hybrid scale-bridging simulations to determine these first breakage points in collagen, combining existing and newly developed methods tailored towards collagen’s hierarchical structure. We improved our Kinetic Monte Carlo/Molecular Dynamics scheme to simulate bond scissions at the all-atom level, and also developed a mesoscopic ultra coarse-grained description of a collagen fibril. We find collagen crosslinks to rupture first, and identify individual sacrificial bonds in trivalent crosslinks that break preferentially, without compromising structural integrity. Collagen’s weak bonds funnel ruptures such that the potentially harmful mechanoradicals are readily stabilized. Our simulations further suggest the length of helices between pairs of crosslinks to determine the trade-off between overall strength and breakage specificity. The combined results suggest this unique failure mode of collagen to be tailored towards combatting an early onset of macroscopic failure and material ageing

    Integration of Spiking Neural Networks for Understanding Interval Timing

    Get PDF
    The ability to perceive the passage of time in the seconds-to-minutes range is a vital and ubiquitous characteristic of life. This ability allows organisms to make behavioral changes based on the temporal contingencies between stimuli and the potential rewards they predict. While the psychophysical manifestations of time perception have been well-characterized, many aspects of its underlying biology are still poorly understood. A major contributor to this is limitations of current in vivo techniques that do not allow for proper assessment of the di signaling over micro-, meso- and macroscopic spatial scales. Alternatively, the integration of biologically inspired artificial neural networks (ANNs) based on the dynamics and cyto-architecture of brain regions associated with time perception can help mitigate these limitations and, in conjunction, provide a powerful tool for progressing research in the field. To this end, this chapter aims to: (1) provide insight into the biological complexity of interval timing, (2) outline limitations in our ability to accurately assess these neural mechanisms in vivo, and (3) demonstrate potential application of ANNs for better understanding the biological underpinnings of temporal processing

    A self-rectifying TaOy/nanoporous TaOx memristor synaptic array for learning and energy-efficient neuromorphic systems

    Get PDF
    The human brain intrinsically operates with a large number of synapses, more than 10(15). Therefore, one of the most critical requirements for constructing artificial neural networks (ANNs) is to achieve extremely dense synaptic array devices, for which the crossbar architecture containing an artificial synaptic node at each cross is indispensable. However, crossbar arrays suffer from the undesired leakage of signals through neighboring cells, which is a major challenge for implementing ANNs. In this work, we show that this challenge can be overcome by using Pt/TaOy/nanoporous (NP) TaOx/Ta memristor synapses because of their self-rectifying behavior, which is capable of suppressing unwanted leakage pathways. Moreover, our synaptic device exhibits high non-linearity (up to 10(4)), low synapse coupling (S.C, up to 4.00 x 10(-5)), acceptable endurance (5000 cycles at 85 degrees C), sweeping (1000 sweeps), retention stability and acceptable cell uniformity. We also demonstrated essential synaptic functions, such as long-term potentiation (LTP), long-term depression (LTD), and spiking-timing-dependent plasticity (STDP), and simulated the recognition accuracy depending on the S.C for MNIST handwritten digit images. Based on the average S.C (1.60 x 10(-4)) in the fabricated crossbar array, we confirmed that our memristive synapse was able to achieve an 89.08% recognition accuracy after only 15 training epochs

    Simulation of networks of spiking neurons: A review of tools and strategies

    Full text link
    We review different aspects of the simulation of spiking neural networks. We start by reviewing the different types of simulation strategies and algorithms that are currently implemented. We next review the precision of those simulation strategies, in particular in cases where plasticity depends on the exact timing of the spikes. We overview different simulators and simulation environments presently available (restricted to those freely available, open source and documented). For each simulation tool, its advantages and pitfalls are reviewed, with an aim to allow the reader to identify which simulator is appropriate for a given task. Finally, we provide a series of benchmark simulations of different types of networks of spiking neurons, including Hodgkin-Huxley type, integrate-and-fire models, interacting with current-based or conductance-based synapses, using clock-driven or event-driven integration strategies. The same set of models are implemented on the different simulators, and the codes are made available. The ultimate goal of this review is to provide a resource to facilitate identifying the appropriate integration strategy and simulation tool to use for a given modeling problem related to spiking neural networks.Comment: 49 pages, 24 figures, 1 table; review article, Journal of Computational Neuroscience, in press (2007

    High-Throughput Polygenic Biomarker Discovery Using Condition-Specific Gene Coexpression Networks

    Get PDF
    Biomarkers can be described as molecular signatures that are associated with a trait or disease. RNA expression data facilitates discovery of biomarkers underlying complex phenotypes because it can capture dynamic biochemical processes that are regulated in tissue-specific and time-specific manners. Gene Coexpression Network (GCN) analysis is a method that utilizes RNA expression data to identify binary gene relationships across experimental conditions. Using a novel GCN construction algorithm, Knowledge Independent Network Construction (KINC), I provide evidence for novel polygenic biomarkers in both plant and animal use cases. Kidney cancer is comprised of several distinct subtypes that demonstrate unique histological and molecular signatures. Using KINC, I have identified gene correlations that are specific to clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer. ccRCC is associated with two common mutation profiles that respond differently to targeted therapy. By identifying GCN edges that are specific to patients with each of these two mutation profiles, I discovered unique genes with similar biological function, suggesting a role for T cell exhaustion in the development of ccRCC. Medicago truncatula is a legume that is capable of atmospheric nitrogen fixation through a symbiotic relationship between plant and rhizobium that results in root nodulation. This process is governed by complex gene expression patterns that are dynamically regulated across tissues over the course of rhizobial infection. Using de novo RNA sequencing data generated from the root maturation zone at five distinct time points, I identified hundreds of genes that were differentially expressed between control and inoculated plants at specific time points. To discover genes that were co-regulated during this experiment, I constructed a GCN using the KINC software. By combining GCN clustering analysis with differentially expressed genes, I present evidence for novel root nodulation biomarkers. These biomarkers suggest that temporal regulation of pathogen response related genes is an important process in nodulation. Large-scale GCN analysis requires computational resources and stable data-processing pipelines. Supercomputers such as Clemson University’s Palmetto Cluster provide data storage and processing resources that enable terabyte-scale experiments. However, with the wealth of public sequencing data available for mining, petabyte-scale experiments are required to provide novel insights across the tree of life. I discuss computational challenges that I have discovered with large scale RNA expression data mining, and present two workflows, OSG-GEM and OSG-KINC, that enable researchers to access geographically distributed computing resources to handle petabyte-scale experiments
    corecore