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ABSTRACT 

Biomarkers can be described as molecular signatures that are associated with a 

trait or disease.  RNA expression data facilitates discovery of biomarkers underlying 

complex phenotypes because it can capture dynamic biochemical processes that are 

regulated in tissue-specific and time-specific manners.  Gene Coexpression Network 

(GCN) analysis is a method that utilizes RNA expression data to identify binary gene 

relationships across experimental conditions.  Using a novel GCN construction algorithm, 

Knowledge Independent Network Construction (KINC), I provide evidence for novel 

polygenic biomarkers in both plant and animal use cases.   

Kidney cancer is comprised of several distinct subtypes that demonstrate unique 

histological and molecular signatures.  Using KINC, I have identified gene correlations 

that are specific to clear cell renal cell carcinoma (ccRCC), the most common form of 

kidney cancer.  ccRCC is associated with two common mutation profiles that respond 

differently to targeted therapy.  By identifying GCN edges that are specific to patients 

with each of these two mutation profiles, I discovered unique genes with similar 

biological function, suggesting a role for T cell exhaustion in the development of ccRCC.  

Medicago truncatula is a legume that is capable of atmospheric nitrogen fixation 

through a symbiotic relationship between plant and rhizobium that results in root 

nodulation.  This process is governed by complex gene expression patterns that are 

dynamically regulated across tissues over the course of rhizobial infection.  Using de 

novo RNA sequencing data generated from the root maturation zone at five distinct time 

points, I identified hundreds of genes that were differentially expressed between control 
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and inoculated plants at specific time points.  To discover genes that were co-regulated 

during this experiment, I constructed a GCN using the KINC software.  By combining 

GCN clustering analysis with differentially expressed genes, I present evidence for novel 

root nodulation biomarkers.  These biomarkers suggest that temporal regulation of 

pathogen response related genes is an important process in nodulation.   

Large-scale GCN analysis requires computational resources and stable data-

processing pipelines.  Supercomputers such as Clemson University’s Palmetto Cluster 

provide data storage and processing resources that enable terabyte-scale experiments.  

However, with the wealth of public sequencing data available for mining, petabyte-scale 

experiments are required to provide novel insights across the tree of life.  I discuss 

computational challenges that I have discovered with large scale RNA expression data 

mining, and present two workflows, OSG-GEM and OSG-KINC, that enable researchers 

to access geographically distributed computing resources to handle petabyte-scale 

experiments.   
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CHAPTER ONE 

INTRODUCTION 

Biomarker Discovery 

Reductionism refers to the scientific approach of explaining a complex 

phenomenon through a small number of discrete measurements [1].  While molecular 

biology approaches to dissect the cause of complex phenotypes are often described as 

reductionist methods, they are complementary to the holistic approaches of systems 

genetics that embrace the complexity of biological systems [2].  The human population 

faces many challenges that must be addressed through a combination of reductionist and 

holistic approaches.  The second leading cause of death in America is cancer, a disease 

that demonstrates a seemingly unlimited number of molecular drivers [3, 4].  As an 

example, efforts to identify precise mechanisms for kidney cancer development have 

pinpointed specific genetic lesions associated with various clinical subtypes [5-7].  

However, advanced stage kidney cancer remains an incurable disease in most patients 

[8].  Agriculture is another field that must be improved to support the growing human 

population.  Experts estimate that we must double the current rate of food production by 

the year 2050 in order to support the growth of our human population [9].  One challenge 

in crop productivity is the application of nitrogen fertilizer, which is consumed at a rate 

of over 100 tons per year globally [10].  Root nodulation is a process that allows several 

legume species to fix atmospheric nitrogen through a symbiotic rhizobial infection, 

reducing the need for nitrogen fertilizer application [11, 12].  This process is governed by 

complex gene expression patterns that result in signaling cascades in specific tissues of 
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the root [13, 14].  While the model legume Medicago truncatula has been used to study 

these complex expression dynamics, there is potential to translate this trait to other crops 

due to its evolutionary conserved pathways that are involved in a fungal symbiosis called 

mycorrhiza [12, 15].  Gaps in our understanding of how legumes have acquired the 

specialized functions to enable root nodulation must be solved before this trait can be 

translated into other crops.  

This dissertation addresses the challenges mentioned above through a holistic 

approach to biomarker discovery.  By utilizing the common systems genetics technique 

of gene coexpression network (GCN) analysis using a novel algorithm, I demonstrate 

evidence for a specific set of candidate biomarkers involved in kidney cancer and root 

nodulation.  The results demonstrate that a holistic approach such as GCN analysis can be 

combined with other sources of data to obtain a set of hypotheses that can be tested using 

reductionist approaches.  Chapter 2 describes the identification of gene correlations that 

are specific to a distinct clinical subtype of kidney cancer, and Chapter 3 applies a similar 

approach to identify root nodulation biomarkers.  During this process I encountered 

significant computational challenges in data storage and processing.  As the wealth of 

publicly available data grows, opportunity for data mining is matched by computational 

limitations.  Chapters 4 and 5 discuss the development of computational workflows that 

enable researchers to access grid computing resources across the country in order to 

process and interpret large volumes of genomic data.  This dissertation describes a novel 

approach to polygenic biomarker identification and demonstrates specific use-cases for 

this framework.     
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Gene Expression Biomarkers 

Biomarkers are measurable blends of biological molecules that are associated 

with a specific trait or disease.  These molecules can be genetic markers such as DNA 

base composition and sequence, biochemical markers such as RNA signatures, metabolite 

profiles such as cholesterol levels, or physical attributes such as cell morphology [16].   

Data-driven approaches to biomarker discovery involve analyzing large volumes of next 

generation sequencing (NGS) data.  Genetic biomarkers such as single nucleotide 

polymorphisms (SNPs) can be used to identify genetic changes that are associated with 

specific traits.  However, such biomarkers are often not causal but are located in 

proximity to a causal genomic sequence [17, 18].  Alternately, gene products such as 

RNA molecules can be quantified and associated with phenotypes.  Such gene products 

are dynamic and must be measured in a specific tissue under specific conditions to be 

consistent [19].  Gene expression patterns are important because epigenetic changes can 

cause disease or affect phenotypes without altering any underlying DNA sequences [20, 

21].  Identifying patterns of gene expression that are specific to a certain trait or disease 

thus becomes a valuable technique for biomarker discovery.   

Clustering algorithms have demonstrated that RNA expression profiles can sort 

samples into meaningful groups.  Commonly used techniques include principal 

component analysis and k-means clustering [22, 23].  Another dimensionality reduction 

technique, t-Distributed Stochastic Neighbor Embedding (t-SNE), has been applied to 

transcriptomes from 25 human tissue types [24, 25].  This technique has also been 

applied to data from 19 cancer types, revealing relatedness and distinctions between 
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cancer types [24].  Roche at al. applied Dynamic Quantum Clustering (DQC) [26], a 

clustering algorithm that utilizes variations in features of the data to reveal relationships 

between datasets, to RNA expression data from five cancer subtypes.  DQC revealed 

specific biomarkers, but even after removing these biomarkers the data could be clustered 

into cancer sub-groups using a large number of random genes [27].  Thus, techniques to 

identify biomarkers that specifically affect biochemical pathways related to a disease or 

trait may pave the road for personalized medicine, plant and animal breeding, and 

fundamental biological discovery.   

Differential gene expression analysis is a popular technique to compare the 

expression levels of genes, treated as independent variables, between two or more 

conditions to identify biomarkers [28].  For example, Lu et al. identified 29 genes whose 

expression levels could be used to identify tissues that had been exposed to radiation 

[29].  While this technique is useful for identifying up and down-regulated genes, there 

are often hundreds to thousands of differentially expressed genes between two conditions, 

making it difficult to find useful biomarkers.  GCN analysis is a holistic approach to 

deciphering complex gene interaction patterns by performing correlation analysis of gene 

expression values between biological samples [30].  GCN analysis can be performed 

across hundreds to thousands of samples to identify robust gene correlation patterns [31].  

Thus, mining petabytes of RNA expression data that are publicly available becomes a 

feasible method for biomarker identification.  This dissertation will provide an overview 

of GCN analysis as a method for discovering polygenic biomarkers and discuss the 

computational challenges that arise from such efforts.   
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Gene Coexpression Network Analysis 

GCN analysis is a method that can be used to discover polygenic biomarkers.  A 

GCN is a graph in which nodes in the graph represent genes and edges represent 

connections between genes [32].  Edges are discovered through correlation analysis of all 

possible pairwise gene combinations in the genome.  For each gene to gene comparison, a 

Spearman or Pearson correlation is typically performed across all available biological 

samples.   A representative GCN edge with a positive correlation is presented in Figure 

1.1.  A graph of significant edges can then be extracted using hard-threshold techniques 

such as random matrix theory [31, 33], or soft-threshold techniques such as WGCNA 

[34].  GCN networks can then be used to identify clusters of genes, modules, which are 

highly connected to each other in the graph.  The link community module (LCM) is a 

method of module detection that allows for a given node in the GCN to be a member of 

multiple modules [35].  This makes sense given that genes can be pleiotropic, functioning 

in different pathways, tissues, and time [36].  GCN modules tend to be co-functional, thus 

guilt-by-association inferences can be made about the function or regulation of genes in a 

module [30, 37].  In addition, these GCN modules can serve as polygenic biomarkers.  

For example, Geschwind et al. identified GCN modules that were specific to brain 

regions in humans and chimpanzees.  While the modules that corresponded to some 

regions of the brain were well conserved across species, others were not [38].  In this 

case, the researches constructed GCN modules from different datasets separately and then 

compared the resulting gene clusters.  However, knowledge-independent methods of 
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identifying polygenic biomarkers through GCN analysis can provide the same power 

while identifying rare biomarkers that would otherwise not be discovered.   

 

Figure 1.1 A representative GCN edge.  In this edge, there is only one cluster of samples 

present.  The resulting correlation value is not specific to any subset of samples or 

condition, but results in a significant edge in the GCN.   

 

Challenges in GCN analysis include extrinsic noise due to variation in input 

samples, statistical noise due to inappropriate use of correlation metrics, and technical 

noise due to error in RNA library preparation, sequencing, or software tools used to 
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quantify gene expression.  Correlation metric choice has a large impact on the resulting 

GCN topology [39].  Furthermore, inappropriate usage of a correlation test can result in 

false edges in the GCN.  For example, a Pearson correlation assumes that the input data is 

linear, continuous, and free of outliers [40].  In GCN analysis, researchers often conduct 

Pearson correlations across the genome without checking these assumptions.  This issue 

becomes apparent when a GCN constructed using Pearson correlations is compared to a 

GCN constructed using Spearman correlations, revealing very little similarity in the 

resulting networks [41].  These violations may be the result of extrinsic noise in the input 

datasets, causing multi-modal distributions of expression.  One method to address this 

noise is to cluster input samples and construct separate GCNs from each cluster.  Feltus et 

al. utilized k-means clustering to sort 7,105 expression datasets, then constructed 86 

GCNs from the resulting clusters.  These 86 GCNs were able to cover 94.7% of the 

genome space, compared to only 15.9% when one GCN was constructed with all of the 

data [42].  While this study clustered samples using the gene expression values across the 

entire genome, it also possible to cluster samples on a gene by gene basis prior to 

performing correlation analysis.  Ficklin et al. demonstrated the use of Gaussian Mixture 

Models (GMMs) in clustering samples based on the local pairwise gene expression 

values for a given correlation test [41].  Using this method, clusters were identified in 

every gene to gene comparison in the genome prior to performing correlation analysis, 

which results in GCN edges that are specific to subset of the input samples.  This resulted 

in a higher concordance in a GCN constructed using Pearson correlation compared to a 

GCN constructed using Spearman correlation, demonstrating that this method can be 
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used to reduce the negative impacts of extrinsic noise [41].  During my PhD studies, I 

contributed to a software development collaboration between Washington State 

University and Clemson University led by Professor Stephen Ficklin.  To address the 

issues described above, we developed a novel GCN construction algorithm, KINC, that 

clusters input samples prior to performing correlation analysis on a given gene pair.   

 

Knowledge Independent Network Construction 

KINC is a software package that constructs GCNs from heterogeneous expression 

datasets.  As described in Chapter 5, three steps must be executed to build a GCN using 

KINC: KINC similarity, KINC threshold, and KINC extract 

(https://github.com/SystemsGenetics/KINC).  KINC similarity constructs a correlation 

matrix using the provided input file.  Before performing a correlation test on a given gene 

pair, samples are clustered using GMMs.  A correlation test using Spearman or Pearson is 

then performed on each cluster individually.  This process is repeated for every possible 

pairwise gene combination, which typically reaches billions of comparisons for a 

eukaryotic genome.  This process is computationally demanding, often requiring 

advanced computing resources to complete in a reasonable amount of time (Chapter 5).  

Next, KINC threshold is performed to identify a significance threshold.  For a given gene 

pair, if the absolute value of the correlation is above the significance threshold, it will be 

included in the final GCN.  KINC uses random matrix theory (RMT) to identify this 

cutoff.  To identify this threshold, RMT iterates through successively lower threshold 

values and looks for the distribution of eigenvalues in the similarity matrix to change 

https://github.com/SystemsGenetics/KINC
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from Gaussian to Poisson.  Once the threshold is identified, the GCN can be extracted 

using the KINC extract command.    

KINC is unique from other methods of GCN construction because it has the 

ability to identify condition-specific edges [41].  Condition-specific edges occur when a 

subset of the samples present in a cluster, and this cluster produces a significant 

correlation value.  In the event that only one cluster of samples is identified, a GCN edge 

will not be condition-specific.  Figure 1.1 demonstrates an example of an edge that is not 

condition-specific.  In contrast, Figure 1.2 demonstrates an edge that is specific to only a 

subset of the input samples.  In this example, two sample clusters were identified.  The 

samples highlighted in red were members of the cluster that produced the significant 

correlation.  Similar edges that are specific to a subset of input samples can be annotated 

for attributes in the input data.  For example, a Fisher’s exact test can be performed to test 

for overrepresentation of a particular attribute in the cluster that produced a given GCN 

edge.  The KINC.R package (https://github.com/SystemsGenetics/KINC.R) facilitates 

such statistics by providing functions for loading the input GCN and performing edge 

enrichment tests.   
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Figure 1.2 A representative condition-specific GCN edge that was generated using the 

KINC software.  The cluster highlighted in red was used to conduct a Spearman 

correlation, resulting in a significant edge in the resulting GCN.  Samples not in this 

cluster did not produce a significant correlation value.   

 

KINC enables GCNs to be constructed from a large number of diverse datasets.  

For example, Dunwoodie et al. used KINC to construct GCNs for cancerous and non-

cancerous brain samples [43].  By comparing LCM modules from these networks, 

glioblastoma (GBM)-specific coexpression patterns were identified.  The genes from this 
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module were up-regulated and hypomethylated relative to the other brain samples, thus 

identifying these genes as biomarkers for GBM [43].  Given that KINC can identify 

condition-specific GCN edges, it is possible to identify rare and specific coexpression 

patterns from a large dataset without prior knowledge of the underlying sample clusters.  

Thus, exploiting a large number of publicly available datasets that span hundreds of 

different conditions becomes possible.  Dunwoodie utilized a binary gene detection 

method to identify a list of biomarker genes by identifying condition-specific GCN 

modules.  However, edge-based grouping is an equally powerful biomarker detection 

method.  In Chapter 2, I discuss the construction of a condition-annotated kidney cancer 

GCN.  The list of biomarkers produced by this study are binary edge-based biomarkers.  

In Chapter 3, I discuss the construction of a root nodulation GCN, which I utilize to 

produce a list of biomarker genes from GCN modules, similar to the approach the 

Dunwoodie et al. utilized.  KINC provides a novel method for edge-based biomarker 

discovery, an approach that is ideal for complex experiments that span thousands of 

datasets.   

Data Mining Resources 

Public databases host a wealth of RNA expression data.  The Cancer Genome 

Atlas (TCGA) hosts normalized RNA expression data, mutation profiles, and clinical 

attributes that correspond to patients from 37 cancer types.  In some cases, these samples 

include data from primary tumors, metastatic tumors, and adjacent normal tissue.  In 

Chapter 1, I constructed a kidney cancer GCN using 1,021 kidney cancer patients, and 

incorporated DNA mutation data to identify GCN edges that were specific to distinct 
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clinical subtypes of cancer.  The data available on TCGA also spans varying tumor stages 

and patient attributes such as gender, age, ethnicity, alcohol history, etc.  These datasets 

are freely available for download from the TCGA Genomic Data Commons 

(https://portal.gdc.cancer.gov/).  The Genotype-Expression (GTEx) project is another 

source of human gene expression and mutation data (https://gtexportal.org/home/).  This 

database contains data from over 700 individuals and spans 53 tissues (Figure 1.3).  In 

contrast to the TCGA, all data hosted on GTEx was obtained from healthy tissue.  Both 

TCGA and GTEx provide raw transcript and gene counts in addition to normalized 

expression values.  Thus, comparing expression of tumor samples to normal samples 

becomes possible at a large scale.  Resources such as Gene Expression Profiling 

Interactive Analysis (GEPIA) have enabled convenient access to pre-computed 

differential expression analysis through a web interface [44].  Large scale data commons 

are not limited to human samples.  For example, the European Bioinformatics Institute 

provides an expression data from 791 plant experiments [45, 46].   

https://portal.gdc.cancer.gov/
https://gtexportal.org/home/
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Figure 1.3 Gene Expression Samples available through the GTEx portal.  Samples were 

clustered using 1000 iterations of t-SNE followed by consensus cluster identification.  

Figure credit: Yuqing “Iris” Hang <yhang@g.clemson.edu>   
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In addition to databases that host preprocessed expression quantification and 

mutation profiles, a large volume of raw sequencing datasets is available.  It is now 

common practice to upload sequencing reads to the Sequence Read Archive (SRA), 

which is hosted by the National Center for Biotechnology Information 

(https://www.ncbi.nlm.nih.gov/sra/docs/). The SRA hosts over 8 petabytes of raw, 

unprocessed sequencing reads from hundreds of organisms, which includes over 4 

petabytes of public access data (Figure 1.4).  The growth of this data has been parabolic 

over the past decade and will continue to grow as high-throughput sequencing techniques 

become a staple in molecular biology and clinical diagnostic labs.  De novo sequencing 

experiments are also worthy of data mining.  In chapter 3, I discuss the construction of a 

root nodulation GCN using 30 samples that were generated as part of an NSF-funded 

grant at Clemson University (PGRP award # 1444461).  As the growth of DNA 

sequencing continues at a rapid rate, the need for stable computing resources grows 

exponentially. 
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Figure 1.4 Growth of DNA sequencing data available in the SRA archive.  This graph 

was produced using publicly available data (https://www.ncbi.nlm.nih.gov/sra/).   

 

Computational Workflows and Cyberinfrastructure  

Processing NGS datasets requires computational resources beyond those available 

on a desktop computer or laptop.  DNA sequencing reads are stored in FASTQ files, 

which are text files that contain nucleotide strings that represent sequencing reads and 

quality scores that represent the confidence that a given nucleotide was called correctly 

[47].  These files typically contain a minimum of 10 million reads, which results in 40 

million lines per file.  Significant memory (RAM) and disk storage are necessary to 

process these files.   In addition, software tools and computational pipelines are necessary 
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to interpret the data in a manner that becomes useful to the biologist.  An example RNA 

sequencing data processing workflow is presented in Figure 1.5.  SRR771467 is a human 

RNAseq dataset that is stored on the SRA database.  This dataset contains 28,013,763 

paired-end sequencing reads which comprise 17 GB of uncompressed text files.  To 

process this data, the raw reads are purged of poor quality reads and adapter sequences 

using Trimmomatic [48].  The resulting clean FastQ files total 15.6 GB in size.  These 

cleaned reads are mapped to the GRCh38 [49] reference genome, resulting in a 18 GB 

SAM alignment file.  This alignment file is filtered, sorted, and compressed into a BAM 

using Samtools [50], resulting in a file that is 2.7 GB.  Transcript abundances are 

quantified using StringTie [51, 52], producing GTF files that gene expression values can 

be parsed from.  In total, 39 GB of files were produced by processing this single dataset.  

As experiments scale to hundreds or thousands, terabytes of data are quickly generated.  

The researcher must locate appropriate computing resources to handle the volume of data 

that their experiment will generate.   
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Figure 1.5 An example RNAseq workflow.  SRR771467 was processed using 

Trimmomatic, Hisat2, Samtools, and StringTie software packages.   
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Computing clusters are a common source of resources for genomic researchers to 

utilize for NGS data processing.  A high performance computing (HPC) cluster is 

comprised of many computers, referred to as nodes, which are connected to each other 

through local networks.  These nodes can be comprised of diverse computer hardware, 

with some nodes having large volumes of disk storage and memory [53, 54].  A user can 

access a computing cluster through a single login host, and have access to hundreds to 

thousands of computers.  Thus, computation can be easily scaled by running multiple 

tasks as the same time [53].  Tasks are submitted to a scheduler node that decides which 

computer to send the task to.  On university campuses that have HPC clusters, resources 

are often provisioned equally among users, with user’s jobs being placed into queues 

when all nodes are busy.  For example, Clemson University’s Palmetto cluster uses the 

PBS job scheduling system to manage the submission of computing tasks from users.  

Even though the Palmetto cluster is a Top 200 ranked supercomputer in the world, there 

is often a saturation of resources, resulting in long wait time for users to complete their 

tasks.  During my PhD research, I encountered bottlenecks in my ability to produce 

results using the Palmetto Cluster alone.  As a result, I was forced to develop 

cyberinfrastructure skills through collaborations with diverse scientists.  Scientists 

performing terabyte to petabyte scale experiments must obtain additional computing 

resources such as cloud computing or grid computing.  

Grid computing refers to the utilization of geographically distributed computing 

resources from a remote host [55].  The Open Science Grid (OSG) is a grid computing 

resource that is available free of charge to US based researchers.  Universities across the 
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United States participate in the OSG.  When a node is not being used at a local 

institution, this resource becomes available to researchers on the OSG.   The HTCondor 

job scheduler enables users to submit thousands of jobs to the OSG, without the user 

needing to specify where the job will run [56].  A researcher on the OSG has access to 

these opportunistic resources all across the country, allowing for thousands of compute 

jobs to be run at the same time, which would not be possible on a local HPC cluster such 

as the Palmetto Cluster.   In chapter 4, I discuss the development of an RNA sequencing 

data processing workflow that can run on the OSG, and compare this workflow to a 

comparable workflow on the Palmetto Cluster.  However, workflows on the Open 

Science Grid encounter troubles that HPC clusters such as the palmetto cluster do not.  

Computing tasks are expected to be small on the OSG, typically only 2 GB of RAM and 

10 GB of disk storage are available for a job on the OSG. Thus, users must carefully 

monitor the progress of jobs that they submit to the OSG, because job failure is common.  

Job failure occurs when the hardware on a computer fails, or when the owner of the 

computer reclaims the resource that they own while a job is running.  Given that a 

workflow run on the OSG will typically submit thousands of jobs, monitoring and 

resubmitting failed jobs by hand becomes nearly impossible.  Workflow managers solve 

this problem by automating error detection and job submission.   

A workflow manager is a piece of software that interacts with a job scheduler 

node to automatically submit and monitor user-defined tasks.  When a user submits a 

workflow that utilizes a workflow manager, they do not have to submit jobs one by one, 

and they do not have to execute various stages of a pipeline individually.  The Pegasus 
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Workflow Management system is used on the OSG to automate HTCondor job 

submission [57].  Pegasus handles data movement between resources, job submission, 

error detection, and task dependencies.  A Pegasus workflow is described as an abstract 

workflow, meaning the execution environment is not defined when a workflow is 

designed.  At the time of workflow submission, Pegasus attaches the execution 

environments to the workflow, allowing for computing resources to be identified by the 

workflow.  This abstraction allows Pegasus workflows to be portable, meaning they can 

be executed in different computing environments with minimal modifications.  Pegasus is 

crucial to enabling genomics workflows on the OSG, but the workflows can be difficult 

to design and implement for new users to the OSG.  Thus, developing Pegasus workflows 

for common genomics applications serves a valuable purpose.   NGS sequencing datasets 

can be processed in parallel by splitting large FastQ files into small pieces to run on the 

OSG.  However, this technique is not common practice in the Genomics community and 

requires significant testing.  In Chapter 4, I discuss the OSG-GEM workflow which splits 

FastQ files into small pieces to process in parallel.  Other genomics workflows such as 

GCN construction are naturally ideal for the OSG, since billions of correlation tests can 

be performed independently.  In Chapter 5, I discuss the OSG-KINC workflow, which 

enables massively parallel gene correlation analysis on the OSG.  Constructing 

reproducible and automated workflows for these use-cases will enable researchers to tap 

into the grid computing resources of the OSG.   
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A Diverse Contribution to Science 

This dissertation presents biological evidence for specific biomarkers involved in 

kidney cancer and root nodulation.  During my studies I contributed to the development 

of a novel GCN construction algorithm called KINC [41], which enables edges in a GCN 

to be annotated for specific attributes or conditions.  By combining mutational profiles 

and differential gene expression analysis to the GCNs described in this dissertation, I 

provide evidence that specific sets of genes are important to kidney cancer and root 

nodulation.  The resulting biomarkers are candidates for functional validation for their 

potential causative role in these processes.  I demonstrate that a holistic approach such as 

GCN analysis can be incorporated with other common systems biology techniques to 

distill a list of thousands of genes into a small list of highly specific biomarkers.  During 

this process I encountered computational roadblocks that prevented me from generating 

results in the timeframe of my PhD studies.  As a result, I developed collaborations with 

computer engineers and scientists across diverse disciplines.  Ultimately, the Open 

Science Grid enabled me to utilize geographically distributed computing resources across 

the United States to generate these results [58].  I led the development of two automated 

computational workflows, OSG-GEM and OSG-KINC, which enable researchers to tap 

into these resources to process large genomic datasets [59, 60].  The approaches 

described in this dissertation can be applied to the endless wealth of data that is available 

for mining in online database, as well as data that is generated de novo in a molecular 

biology lab.   
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Abstract 

Renal cell carcinoma (RCC) subtypes are characterized by distinct molecular 

profiles.  Using RNA expression profiles from 1,009 RCC samples, we constructed a 

condition-annotated gene coexpression network (GCN).  The RCC GCN contains binary 

gene coexpression relationships (edges) specific to conditions including RCC subtype 

and tumor stage.  As an application of this resource, we discovered RCC GCN edges and 

edge sets (modules) that were associated with genetic lesions in known RCC driver 

genes, including VHL, a common initiating clear cell RCC (ccRCC) genetic lesion, and 

PBRM1 and BAP1 which are early genetic lesions in the Braided Cancer River Model 

(BCRM).  Since ccRCC tumors with PBRM1 mutations respond to chemotherapy 

differently than tumors with BAP1 mutations, we focused on ccRCC-specific edges 

associated with tumors that exhibit alternate mutation profiles: VHL-PBRM1 or VHL-

BAP1.  We found specific blends of genes and molecular functions associated with these 

two mutation paths.  Despite these mutation-associated edges having unique genes, they 
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were enriched for the same immunological functions suggesting a convergent functional 

role for alternate gene sets consistent with the BCRM.  The condition annotated RCC 

GCN described in this report is a novel data mining resource for the assignment of 

polygenic biomarkers and their relationships to RCC tumors with specific molecular and 

mutational profiles.    

 

Introduction 

Renal cell carcinoma (RCC) is a type of cancer that originates from tubular 

epithelial cells of the kidney.  Subtypes of RCC – clear cell, papillary, and chromophobe– 

demonstrate unique molecular and histological profiles (1).  In recent years, hundreds of 

RCC tumors from The Cancer Genome Atlas (TCGA; (2,3)) and other sources have been 

deeply analyzed for genes underlying tumor etiology and progression.  While many 

biomarkers have been associated with RCC, there are few causal genes with consistent 

and stable genetic lesions driving RCC. 

In the case of the most common RCC subtype, ccRCC, several biomarkers have 

been discovered with variable prevalence between individual tumors.  The VHL gene is a 

common initiating mutation, leading to an accumulation of lipids and glycogens in the 

tissue (4).  Loss of VHL function is insufficient to develop ccRCC.  Epigenetic regulators 

such as PBRM1 and BAP1 – which act as tumor suppressors – are frequently mutated 

and associated with distinct clinical outcomes in ccRCC patients (5).  Loss of function of 

another chromatin-modifying gene – KDM5C – is also associated with unique clinical 

outcome (6).  BAP1 mutations occur at a near mutually exclusive manner from PBRM1 
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mutations, and tumors respond to standard of care molecularly-targeted drugs differently 

depending on which mutations they have (6,7).  Other common ccRCC mutations include 

a histone methyltransferase – SETD2 – and the mTOR kinase which plays key roles in 

cell growth (8).  These biomarkers are clearly relevant to understanding ccRCC biology, 

but aberrations in these genes are not always consistent between tumors and probably do 

not fully explain ccRCC tumor progression. 

Biomarker inconsistency, a prime motivation for personalized medicine, can 

partly be attributed to tumor heterogeneity which is a genotyping challenge given that 

certain regions of a tumor may contain mutations that are unique from other regions of 

the tumor.  A Braided Cancer River Model (BCRM) has defined stages of mutation 

accumulation that lead to clear cell RCC (ccRCC) (9): initiating, early, intermediate, and 

speedy mutations. A key aspect of this model is that genetic pathways can operate in 

parallel to drive tumorigenesis, suggesting that mutations in different genes at various 

stages of the model can result in convergent evolution of cancer cells (7,9).  Thus, 

targeting parallel genetic pathways with similar phenotypic outputs becomes a challenge 

in treating and preventing cancer.  Polygenic biomarker discovery may provide insight on 

these parallel pathways and suggest possible therapeutic targets.  Given that mutations in 

chromatin-modifying genes will greatly alter mRNA expression levels (4), identifying 

RCC-subtype specific gene expression patterns may pave the way for more robust drug 

targeting.   

One method to discover novel biomarkers is through gene coexpression network 

(GCN) analysis.  A GCN is a graph of nodes and edges, where nodes are gene products 



 31 

(e.g. mRNA) and edges are binary relationships between genes (e.g. Spearman 

correlation).  A network of significant edges can be extracted using random matrix theory 

(RMT) (10,11) or a via soft thresholding to identify functional modules as per WGCNA 

(12).  Gene modules of tightly connected nodes are partitioned from the GCN using 

techniques such as link communities (13).  Modules are then tested for enrichment in 

known biochemical activity, allowing inference of novel gene function (14,15).  

Knowledge Independent Network Construction (KINC) is a software package that builds 

GCNs and tracks the conditions under which significant edges exist (16).  Prior to 

performing correlation analysis for a given gene pair, KINC uses Gaussian Mixture 

Models (GMMs) to detect one or more sample clusters in the pairwise expression data.  

Each sample cluster in each pairwise gene comparison is tested for correlation.  This 

procedure reduces extrinsic noise due to sample variation, and since the samples are 

tracked it is possible to test each edge for overrepresentation of an attribute or condition 

(e.g. sex, tumor subtype, tumor stage).  For example, Dunwoodie et al. used KINC to 

identify a gene coexpression module that is specific to glioblastoma, an aggressive form 

of brain cancer (17). Thus, KINC is an appropriate method to discover condition specific 

gene relationships in a complex mixture of gene expression profiles. 

The purpose of this study was to use KINC to identify RCC subtype-specific 

GCN edges.  In addition, we searched for GCN edges specific to tumors with co-

occurring mutations in known genes relevant to ccRCC.  The GCN was constructed from 

1,009 RCC RNAseq datasets from TCGA which included the three major RCC subtypes.  

These datasets span various tumor stages as well as clinical attributes such as gender and 
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vital status.  We assigned GCN edges to ccRCC tumor subsets that have accumulated 

specific sets of known driver mutations.   

 

Materials and Methods 

Input Data and Gene Expression Matrix Construction. All available gene expression 

quantification (FPKM) files for TCGA-KIRC, TCGA-KIRP, and TCGA-KICH patients 

were downloaded in May 2018 using the CentOS7 binary distribution of the GDC Data 

Transfer Tool [https://gdc.cancer.gov/access-data/gdc-data-transfer-tool].  1,021 samples 

were downloaded – each containing measurement of 60,483 genes – and aggregated into 

a gene expression matrix (GEM). The preprocessCore R library was used to preprocess 

the input GEM (23).  Following log base 2 transformation of the data, outlier samples 

were detected using a Kolmogorov-Smirnov test (KS Dval > 0.15).  A total of 12 outlier 

samples were removed, and the matrix was quantile normalized to reduce technical noise.   

Clinical annotations were downloaded directly from the GDC website 

[https://portal.gdc.cancer.gov/].  Mutation profiles for 843 RCC patients were 

downloaded from Supplemental Table 1 of Ricketts et al. (22).  This table provides 

mutation profiles for the 16 genes listed in Table 2.2.  All disruptive mutation types were 

converted to a simple “Mutation/No Mutation” attribute prior to edge enrichment.  In the 

event that a sample in the RCC GEM was not present in this mutation table, all 16 genes 

were annotated as “No Mutation”.  For co-occurring mutation tests, patients with VHL 

mutations and mutually exclusive mutations in PBRM1 and BAP1 were assigned the 

“Mutation” attribute.   
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Sample Clustering. One thousand iterations of t-SNE were performed using the parallel 

Python implementation [https://github.com/DmitryUlyanov/Multicore-TSNE].  A 

perplexity of 30 was used.  Clustering of each embedding was performed using the 

HDBSCAN Python library [https://pypi.python.org/pypi/hdbscan/].  Consensus clusters 

were identified using the Cluster_Ensembles Python 

library[https://pypi.org/project/Cluster_Ensembles/], with a minimum cluster size of 10.   

 

Gene Co-expression Network Construction. The OSG-KINC workflow 

[https://github.com/feltus/OSG-KINC](24) was utilized to execute 50,000 KINC 

similarity jobs on the Open Science Grid with the following arguments: ‘./kinc similarity 

--method sc --clustering mixmod --criterion ICL --min_obs 30 --th 0’. Output was 

transferred to Clemson University’s Palmetto Cluster and uncompressed.  KINC 

threshold was executing using the following arguments: ‘./kinc threshold --min_csize 30 -

-clustering mixmod --method sc --th_method sc --th 0.95 --max_modes 5’.  A significance 

threshold of 0.819100 was identified and the GCN was extracted using the following 

KINC extract arguments: ’./kinc extract --min_csize 30 --clustering mixmod --method sc -

-th_method sc --th 0.819100 --max_modes 5’. A representative GCN edge can be found 

in Supplemental Figure 2.2. 

 

Edge Enrichment Analysis.  Edge enrichment for mutations and clinical attributes was 

performed using the KINC.R package [https://github.com/SystemsGenetics/KINC.R].  
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Mutations were coded as present or absent in a tumor according to annotations found in 

(22).  For co-occurring mutation enrichment, a “Mutation” tumor had to have both VHL-

PBRM1 (but no BAP1) or VHL-BAP1 (but no PBRM1) mutations. A Fisher’s exact test 

with a Hochberg p-value correction was used as the default arguments to the 

analyzeNetCat function.  Edges were considered to be significantly enriched for a given 

attribute or set of attributes if the adjusted p value was less than 0.001. Due to the low 

number of tumors with co-occurring mutation groups (106 VHL/PBRM1, 28 

VHL/BAP1), only edges with a cluster size of 250 or smaller were considered for Table 

2.3 and Table 2.4.      

 

Module Detection and Enrichment Analysis. Link Community Modules (25) were 

detected using the linkcomm R package (21).  The “single” hcmethod was used with a 

minimum module size of 3 edges.    Functional enrichment of LCM modules as 

performed using the FUNC-E package [https://github.com/SystemsGenetics/FUNC-E], 

which uses a Fisher’s exact test similar to the David method of functional enrichment 

(26).  For cross-module comparisons, enriched terms were considered significant if the 

Fisher’s P value was less than 0.001.   
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Results 

We downloaded and parsed 1,021 gene expression quantification files 

representing clear cell renal cell carcinoma (KIRC), papillary renal cell carcinoma 

(KIRP), and chromophobe renal cell 

carcinoma (KICH) into a 1,021 x 

60,483 gene expression matrix (GEM).  

The GEM contained 860 samples that 

are annotated for specific tumor stages 

and 128 samples that are annotated as 

“Solid Tissue Normal”.  In addition, 

there are 33 primary tumor samples that 

were not annotated for a specific tumor 

stage.  The matrix was log base 2 

transformed and 12 outlier samples were removed. Following quantile normalization of 

the GEM, we performed 1,000 iterations of t-distributed stochastic neighbor embedding 

(t-SNE) (18) and circumscribed clusters using HDBSCAN(19) and the Cluster Ensembles 

method (20) (Figure 2.1).  Four clusters were identified: Cluster 1 (solid tissue normal 

enriched; FDR = 4.03E-67); Cluster 2 (KIRP enriched; FDR = 4.88E-83); Cluster 3 

(KICH enriched; FDR= 6.84E-40); and Cluster 4 (KIRC enriched; FDR = 5.32E-70).  

The sample to cluster assignment is available in Supplemental Table 2.1.   

 

Figure 2.1 Overview of TCGA RCC 
Expression Data. A total of 128 “solid tissue 
normal” kidney samples and 860 “primary 
tumor” samples with were used in this study.  
Shown are four consensus clusters each with a 
unique color identified from 1000 t-SNE runs.    
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Using the preprocessed GEM as input, a condition-annotated GCN was 

constructed using KINC.  This RCC GCN contains 4,121 nodes, 10,451 edges, and 

demonstrates scale-free topology (R2=0.933; Figure 2.2).  Edges in the GCN were tested 

for enrichment of cancer type, tissue type, tumor stage, and vital status (Table 2.1).  The 

RCC GCN with enrichment p-values for every edge is available in Supplemental Table 

2.2.  Edges that were enriched (adj. p < 0.001) for “Solid Tissue Normal” were extracted 

to produce a “non-tumor” GCN (Supplemental Table 2.3).  Edges that were enriched for 

“Primary Tumor” were extracted to produce a “tumor” GCN (Supplemental Table 2.4).  

The non-tumor GCN had 1416 nodes and 3605 edges.  The tumor GCN had 623 nodes  

and 2361 edges (Supplemental Figure 2.1).  The number of condition-enriched edges in 

each of the three GCNs is shown in Table 2.1.   

 

Link community modules (LCM) were identified for each GCN ((21); 

Supplemental Table 2.5), and functional enrichment tests were performed on each 

module.  Each GCN contains LCMs that were enriched for GO, Reactome, MIM, Pfam, 

and Interpro annotations.  A full list of functionally enriched modules in the RCC GCN is 

available in Supplemental Table 2.6.  Notably, the non-tumor GCN contains LCM 

modules that are enriched (Fisher’s Pval < 0.01) for terms related to MET signaling, 

which is absent in the RCC GCN.  The RCC and non-tumor GCN both have modules 

enriched for VEGF and Notch signaling (Supplemental Tables 2.7 & 2.8).   
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To test if edges where specific to 

tumors with mutations in known 

RCC genes, we downloaded 

somatic mutation profiles for 16 

genes that are relevant to RCC 

(22) and detected edges enriched 

in known ccRCC driver 

mutations (Table 2.2).  In order 

to place mutations into a 

BRCM mutation context, we 

next identified edges in the tumor GCN that were specific to patients with co-occurring 

VHL and BAP1 mutations (Table 2.3).  In addition, we identified edges in the tumor 

GCN that are specific to patients with co-occurring VHL and PBRM1 mutations (Table 

2.4).  

While some genes are common to the two edge lists in Tables 2.3-3.4 (CD96, 

SH2D1A SIRPG, SLA2, SLAMF6), each list contains unique genes that are members of 

the tumor GCN.  Comparing the genes in Table 2.3 to the genes in Table 2.4 reveals 

similar biological function.  Enrichment (Fisher’s Pval < 0.001) of GO terms related to T 

cell activation and immune response are shared between these lists: adaptive immune 

response (GO:0002250), T cell activation (GO:0042110), positive regulation of natural 

killer cell mediated cytotoxicity (GO:0045954), and regulation of immune response 

(GO:0050776).   

Figure 2.2 Renal cell carcinoma (RCC) gene 
coexpression network.  (A) The RCC GCN demonstrates 
scale-free topology and contains 4,121 nodes and 10,451 
edges.  (B) A gene expression intensity heatmap of the 
4,121 genes is shown. 
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Discussion 

We constructed a condition-annotated RCC GCN and detected edges that are 

specific to cancer subtype, tissue type, tumor stage, and unique mutation profile.  This 

GCN is a novel data-mining resource for polygenic biomarker assignment to clinically 

relevant RCC sub-types.  To link novel genes to known drivers of ccRCC, we identified 8 

edges that are specific to 

KIRC primary tumors that 

contain VHL and BAP1 

mutations and compared these 

to 27 edges that are specific to 

KIRC primary tumors that 

contain VHL and PBRM1 

mutations.  These expanded 

ccRCC driver mutations 

represent two possible 

selection routes through the BCRM.  We demonstrate that the tumor GCN edges 

associated with these two sets of mutations contain different genes with similar biological 

function.  Thus, two unique sets of genes can be regulated and selected for in different 

tumors yielding the same functional result.      

Several of the GCN edges associated with mutated gene sets are associated with T 

cell activation and immune response.  The genes in Table 2.3 and Table 2.4 are both 

enriched for the following GO ontology terms: adaptive immune response 

Figure 2.3 Convergent Gene Coexpression Functions 
in the Braided Cancer River Model.  The Braided 
Cancer River Model was expanded to include gene 
coexpression function.  GCN edges specific to 
patients with common ccRCC mutation profiles are 
enriched for functional annotation terms associated 
with T cell activation and immune response.   
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(GO:0002250), T cell activation (GO:0042110), positive regulation of natural killer cell 

mediated cytotoxicity (GO:0045954), and regulation of immune response (GO:0050776).  

Identifying ccRCC edges associated with these functions supports the finding of Ricketts 

et al. (22) that immune signatures related to T cell response are up-regulated in ccRCC 

compared to other RCC subtypes.   

Regardless of whether the patient has co-occurring VHL and BAP1 mutations or 

co-occurring VHL and PBRM1 mutations, T cell activation genes form coordinated co-

expression in the tumor (Figure 2.3).  It has been shown that T cell exhaustion occurs 

when T cells are chronically activated due to infection or inflammation (23).  Over time, 

the T cells lose their function due to increased expression of inhibitory receptors (24,25).  

We hypothesize that T cell exhaustion is a component in the progression of ccRCC.  As 

evidence, we present binary gene relationships in Table 2.3 that have been characterized 

for their role in T cell exhaustion in cancer.  TIGIT is an inhibitory receptor that is 

expressed on the surface of T cells and is associated with poor prognosis in melanoma 

patients (24,26).  TIGIT is often co-expressed with LAG3, an inhibitory receptor that 

migrates to the surface of T cells during chronic inflammation, contributing to T cell 

dysfunction (24,27,28). While LAG3 is not present in Table 2.3 or Table 2.4, we detected 

seven KIRC-specific edges that contain LAG3 (Supplemental Table 2.2), implicating this 

gene in ccRCC regardless of tumor mutation path.  We also found TIGIT to be 

coexpressed with SH2D1A and SLAMF6 in Table 2.3, which are coexpressed with 

UBASH3A in Table 2.4.  SH2D1A is a lymphocyte-activating protein that interacts with 

SLAMF6 to stimulate natural killer (NK) and T cell activity (29-31).  SLA2 — a 
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transcription factor that controls expression of genes that regulate T cell development 

(32) — is also present in Table 2.3 and Table 2.4.   

Further, Table 2.4 contains unique cancer biomarkers that are involved in T cell 

function.  LCK is a tyrosine kinase that functions in normal T-cell development.  When 

this gene becomes mutated and the protein becomes overexpressed, it becomes a proto-

oncogene by promoting cellular proliferation and immortality (33).  UBASH3A is a T-

cell ubiquitin ligand protein that disrupts T cell receptor signaling by promoting 

accumulation of inhibitory receptors and T cell apoptosis under certain conditions (34).  

Overexpression of UBASH3A is associated with poor prognosis in metastatic breast 

cancer (35), and the gene is also associated with autoimmune disorders such as Lupus 

Erythematosus (36).  UBASH3A is present in 14 of the 27 edges in Table 2.4, 

highlighting its importance in ccRCC patients with co-occurring VHL and PBRM1 

mutations.  It is coexpressed with CD96, an immune checkpoint receptor that plays 

inhibitory roles in NK cell activity (37).  As we found in Table 2.3, CD96 is expressed on 

the surface of T cells with TIGIT, which has also demonstrated inhibitory effects on NK 

cell function in addition to contributing to T cell exhaustion (38,39).  We also found 

UBASH3A to be coexpressed with a surface antigen expressed on the surface of T cells, 

CD2, which has been found to play key roles in NK cell stimulation (40).  Other T cell 

receptor proteins that we found to be coexpressed with UBASH3A include CD3D and 

CD3E, which play positive roles in lymphocyte production (41).  The tumorigenic role of 

UBASH3A should be further explored given its dominant presence in the edges of Table 

2.4.  Given that different sets of mutations are associated with unique edges in Tables 2.3 
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and 2.4 that are related to T cell function, we have extended the BCRM to include GCN 

edges that demonstrate convergent function (Figure 2.3).   

Interestingly, Table 2.4 contains 11 non-coding RNA genes: DARS-AS1, RP11-

789C17.5, AC116366.6, CCDC147-AS1, RP11-981G7.6, AF064858.3, AC073115.2, 

AF064858.1, AC073115.7, AC011352.3, and AC011352.1.  Non-coding RNAs are 

thought to play key roles in cancer by altering gene expression levels through recruitment 

of chromatin-modifying enzymes or by directly targeting RNA-binding proteins (42,43).  

Notably, the antisense RNA DARS-AS1 was found to be correlated with TCRGC2, a T 

cell receptor(44) gene, suggesting that this non-coding RNA might play a role in 

suppressing healthy T cell function.  We also detected four edges: RP11-981G7.6- 

LINCR-0001, AF064858.3- AF064858.1, AC011352.3- AC011352.1, and AC073115.2- 

AC073115.7 that are each comprised of two long non-coding RNAs that are correlated 

with each other. We speculate that these non-coding RNAs are targeting parallel genetic 

pathways during cancer development as per the BCRM.  Identification of similar GCN 

edges can help tackle the challenge of tumor heterogeneity by identifying novel genes 

and pathways that synchronously contribute to the hallmarks of cancer.   

The condition-annotated GCNs described in this report provide a novel data-

mining resource for discovering polygenic biomarkers of RCC.  By linking edges to 

mutations in specific genes, we provide a framework for identifying edges that are 

relevant to specific clinical subtypes of RCC.  In addition, this provides a resource for 

patients who may have genotyped tumors – but no RNA expression data — to link 

somatic mutations with therapeutic targets developed from genes in this GCN.  
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Interestingly, the non-tumor GCN is larger than the tumor GCN and has a larger number 

of condition-specific edges.  It is possible that accumulation of driver mutations in the 

tumor results in gene expression changes in adjacent normal tissue.  These gene 

expression changes may lead to metastasis, tumor growth, or recurrence.  Thus, in 

addition to edges in the tumor GCN, edges in the “non-tumor” GCN may be important 

biomarkers or potential therapeutic targets.   

While this report focused on edges associated with ccRCC driver mutations, the 

ccRCC-specific edges that were not mutation-associated are worthy of further 

exploration.  For example, one could model these edges in the context of tumor stages as 

a “time-series” to identify GCN edge patterns acquired or lost during tumor development.   

With genome-wide mutation profiles, a deeper analysis could test for edge associations 

beyond the handful of known mutation drivers examined in this report.  Finally, our GCN 

analysis focused on ccRCC but is applicable to other RCC subtypes.  We detected 103 

edges that are specific to KIRP tumors and 37 edges that are specific to KICH tumors.  

We suspect that fewer edges were detected for these RCC subtypes due to the smaller 

number of available TCGA samples relative to ccRCC patients.  Regardless, exploration 

of these additional binary biomarkers is a valuable resource for characterizing the 

differential molecular and histological presentation of RCC subtypes. 
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Tables 

 

Table 2.1.  GCN Topology & Attribute-Enriched 
Edges 
        

  
RCC-
GCN 

Tumor-
GCN 

Normal-
GCN 

Nodes 4121 623 1416 
Edges 10451 2361 3605 
<k> 5.066 7.576 5.089 
R2 0.933 0.838 0.850 
Patient KIRC 6288 1909 2362 
Paitent KIRP 275 103 50 
Patient KICH 1807 37 1651 
Primary_Tumor 2361 2361 0 
Solid_Tissue_Normal 3605 0 3605 
Tumor_stage_i 54 16 20 
Tumor_stage_ii 129 3 100 
Tumor_stage_iii 432 22 385 
Tumor_stage_iv 1770 24 1697 
VitalStatus_alive 9 1 7 
VitalStatus_dead 2620 280 1987 
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Table 2.2.  GCN Edge-RCC mutation Association     
          

Mutation Gene Description 
RCC-
GCN 

Tumor-
GCN 

Normal-
GCN 

VHL von Hippel-Lindau tumor suppressor 5282 1755 2330 
PBRM1 polybromo 1 4254 1362 2274 
SETD2 SET domain containing 2 265 67 170 

KDM5C lysine demethylase 5C 41 33 1 
BAP1 BRCA1 associated protein 1 41 29 0 
PTEN phosphatase and tensin homolog 1 0 0 
MTOR mechanistic target of rapamycin kinase 441 31 386 
TP53 tumor protein p53 154 4 121 

PIK3CA PI3-kinase catalytic subunit alpha 3 2 0 
MET MET proto-oncogene, RTK 16 1 9 
FAT1 FAT atypical cadherin 1 0 0 0 
NF2 neurofibromin 2 2 0 0 

KDM6A lysine demethylase 6A 3 0 0 
SMARCB1 SWI/SNF related 1 0 0 

NFE2L2 nuclear factor, erythroid 2 like 2 2 0 1 
STAG2 stromal antigen 2 0 0 0 
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Abstract 

Root nodulation results from a symbiotic relationship between plant host and 

rhizobium.  Synchronized gene expression patterns over the course of rhizobial infection 

result in activation of pathways that are unique from the highly conserved pathways that 

enable mycorrhizal symbiosis.  To detect nodulation-specific biomarkers, we performed 

RNA sequencing of 30 Medicago truncatula root maturation zone samples at five distinct 

time points.  These samples included plants inoculated with Sinorhizobium meliloti and 

control plants that did not receive any rhizobium.  Following gene expression 

quantification, we identified 1,758 differentially expressed genes across all time points.  

We constructed a gene coexpression network (GCN) from this data and identified Link 

Community Modules (LCMs) that were comprised entirely of differentially expressed 

genes at specific time points.  These LCMs included genes that were up-regulated at 24 

hours following inoculation, suggesting an activation of allergen family genes and 

carbohydrate-binding gene products in response to rhizobium.  We identified LCMs that 

were comprised entirely of genes that were down-regulated at 24 hours post-inoculation.  
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These modules suggest that down-regulating specific genes at 24 hours may result in 

decreased jasmonic acid production and an increase in cytokinin production.  We also 

discovered LCMs that were composed entirely of genes that were down-regulated at 48 

hours.  These modules suggest that coordinated down-regulation of a specific set of genes 

involved in lipid biosynthesis may play a key role in nodulation.  The modules identified 

in this manuscript provide a novel data mining resource for identifying polygenic 

biomarkers that are associated with root nodulation.   

 

Introduction 

Root nodulation is a symbiotic process in which a plant host allows rhizobium to 

colonize in meristematic root tissue called nodules.  The plant provides carbon to the 

rhizobium in exchange for ammonium that is produced by atmospheric nitrogen fixation 

[1].  Medicago truncatula is a model plant organism that produces indeterminant nodules 

that persistently produce nodules from the meristem [2].  In response to inoculation with 

rhizobium such as Sinorhizobium meliloti, metabolic pathways are activated to achieve 

nodulation.  Nod factor lipoproteins that are released by the rhizobium interact with 

receptor-like kinases in the plant, resulting in a spike in calcium oscillations in the 

nucleus of the cell that activates signaling pathways necessary to produce nodules [3].  

These signaling pathways result in the production of proteins that allow the rhizobium to 

enter and colonize the host plant (infection thread formation), and nodule organogenesis 

results from rapid cortical cell division [4, 5].  The autoregulation of nodulation (AON) is 
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activated by long-distance signaling pathways upon nodule inception.  AON prevents the 

plant from producing too many nodules which would be harmful to the plant due to 

excess carbon consumption [6].   

Root nodulation has evolved from another form of symbiosis called mycorrhiza, 

which is a conserved symbiosis with fungi across many plant species.  However, 

conserved genes involved in mycorrhization have adapted unique functions to achieve 

root nodulation.  For example, the LysM receptor-kinase gene has been duplicated in 

nodulating legumes, resulting in a copy that functions in root nodulation a copy that 

functions in mycorrhization [3].  As a result of such duplications, plants such as M. 

truncatula can achieve either mycorrhization or nodulation through activation of alternate 

signaling pathways. Temporally coordinated gene expression patterns are necessary to 

initiate and regulate root nodule formation.  Transcriptome profiling has identified genes 

that are induced upon inoculation with rhizobium or nod factor.  The NIN transcription 

factor is a master regulator of nodulation, playing roles in nodule organogenesis in 

cortical and epidermal root cells [7].  Other key genes that are induced upon rhizobial 

infection, termed nodulin genes, have been identified [8, 9].  While differential gene 

expression analysis of root transcriptomes has helped to identify such genes, analyzing 

the whole root tissue is likely diluting the signal of genes that are dynamically involved 

in nodule organogenesis.  For example, CRE1, a cytokinin receptor, is expressed only in 

the root cortex and plays a key role in nodulation [7].   The root maturation zone is a 

region of the root that contains rapidly replicating cells [10].  In M. truncatula, this region 

of the root moves upwards through development and is a site of nodule formation [11, 
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12].  Analyzing the transcriptome of this portion of the root may reveal gene expression 

dynamics that were not detectable from whole-root tissue.  Identifying packages of genes 

that are spatially and temporally regulated to induce nodulation remains a challenge.   

Gene coexpression network (GCN) analysis is a method that can be applied to 

elucidate complex gene expression patterns over the time course of root nodulation.  A 

GCN is a graph in which nodes represent genes and edges represent correlations between 

genes [13].  Typically, a Pearson or Spearman correlation is conducted across all 

available samples.  Significant edges can then be extracted using techniques such as 

Random Matrix Theory (RMT) [14, 15], or a soft-threshold can be used to identify 

functional modules in techniques such as WGCNA [16].  Clustering techniques such as 

Link Communities can be used to identify clusters of genes in the GCN (modules) that 

are highly connected to each other, suggesting that they share common function or 

regulatory mechanism [17].  Knowledge Independent Network Construction (KINC) is a 

software package that constructs GCNs that contain condition-specific edges.  Prior to 

performing correlation analysis on a given gene pair, KINC identifies sample clusters 

using Gaussian mixture models (GMMs) [18].  A correlation test is performed for each 

cluster separately, allowing significant GCN edges to be detected that are specific to only 

a subset of the input samples.  These edges can then be annotated for attributes including 

genotype, phenotype, or experimental condition.  Given that the minimum number of 

samples needed to conduct a correlation test is typically 20 to 30 samples, experiments 

with 30 samples or less typically can only identify edges that are not condition-specific.  

However, the GCN can still be used to identify sets of genes that demonstrate similar 
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expression patterns.  Thus, genes with similar temporal expression patterns can be 

identified.   

The aim of this study was to identify polygenic root nodulation biomarkers that 

demonstrate time point-specific gene expression patterns.  To achieve this aim, we 

performed RNAseq on 30 M. truncatula maturation zone samples across five distinct 

time points: 0 hours, 12 hours, 24 hours, 48 hours, and 72 hours.  We identified 

differentially expressed genes between control and inoculated samples at each time point, 

and constructed a GCN from these samples.  We identified LCM modules from this GCN 

and overlaid differentially expressed genes to identify modules that were differentially 

expressed at specific time points (Figure 3.1).  

 

 

 

 

 

 

 

 

 

Figure 3.1 Experimental Overview.  Differentially expressed genes 
between control and inoculated samples were identified at each time point.  
A GCN was constructed from all 30 samples, and LCMs were identified.  
Differentially expressed LCMs were identified by overlaying DEGs from 
each time point onto the LCMs   
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Results 

RNAseq was performed on 30 maturation zone samples at five distinct time 

points: zero hours, 12 hours, 24 hours, 48 hours, and 72 hours post inoculation.  At each 

time point, we analyzed three biological replicates of control samples that were not 

inoculated with rhizobium and three biological replicates of samples that were inoculated 

by rhizobium.  We identified genes that were differentially expressed between control 

and inoculated samples at each time point, resulting in a total of 1,758 DEGs across all 

time points.  While we detected 36 genes that were differentially expressed from twelve 

hours through seventy-two hours, the majority of the DEGs were unique to specific time 

points.  We detected five unique DEGs at zero hours, 149 unique DEGs at 12 hours, 652 

unique DEGs at 24 hours, 321 unique DEGs at 48 hours, and 317 unique DEGs at 72 

hours (Figure 3.2).  A heatmap of these DEGs demonstrates that samples can be clustered 

based on expression differences between control and inoculated samples (Figure 3.3).  A 

normalized gene expression matrix (GEM) constructed from these thirty samples was 

used to construct a GCN with KINC.  The resulting GCN contains 4,067 nodes and 7,854 

edges, demonstrating scale-free topology (R2 = 0.799).  Figure 3.4 demonstrates a 

representative GCN edge from two genes that are down-regulated in inoculated samples 

at the 24 hour timepoint.  We detected 161 LCMs that contained at least three genes, with 

the largest LCM containing 128 genes (Table S2).  Figure 4.5 demonstrates a 

representative LCM that is composed of genes with the same expression patterns.   

We detected 53 unique differentially expressed genes that were present in LCMs.  

Nine of the LCMs that we detected were comprised entirely of genes that were 
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differentially expressed at specific time points.  We detected modules that were up-

regulated at 24 hours: M0004 and M0006 (Table 3.1).  M0004 and M0006 are both 

enriched for PFAM terms PF01190 (“Pollen proteins Ole e I like”) and PF09478 

(“Carbohydrate binding domain CBM4”) (Table S3).  Conversely, we detected modules 

that were down-regulated at 24 hours: M0021, M0055, M0064, and M0072 (Table 3.2).  

M0021 is enriched for KEGG K13416 (“BAK1; brassinosteroid insensitive 1-associated 

receptor kinase 1 [EC:2.7.10.1 2.7.11.1]”).  M0055 is enriched for PFAM PF06351 

(“Allene oxide cyclase”).  M0064 is enriched for GO:0008299 (“isoprenoid biosynthetic 

process”), GO:0004452 (“isopentenyl-diphosphate delta-isomerase activity”), K01823 

(“idi, IDI; isopentenyl-diphosphate delta-isomerase [EC:5.3.3.2]”), K01597 (“MVD, 

mvaD; diphosphomevalonate decarboxylase [EC:4.1.1.33]”), K00787 (“FDPS; farnesyl 

diphosphate synthase [EC:2.5.1.1 2.5.1.10]”), PF00348 (“Polyprenyl synthetase”), and 

PF00288 (“GHMP kinases N terminal domain”) (Table S3).  We also detected modules 

that were down-regulated at 48 hours: M0032, M0118, and M0132 (Table 3.3).  M0032 

and M0132 are both enriched for K15401 (“CYP86A1; fatty acid omega-hydroxylase 

[EC:1.14.-.-]”).  M0132 is also enriched for PF04535 (“Domain of unknown function 

(DUF588)”) (Table S3.3).   
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Figure 3.2 Upset plot of differentially expressed genes.  A line connecting two 
dots indicates that a subset of genes was differentially expressed in both time 
points.   
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Figure 3.3 Overview of normalized expression levels of all 
DEGs.  Samples were clustered and visualized using the 
seaborn clustergram function   
 

Table 3.1.  Up-Regulated GCN Modules at 24 Hours Post-Inoculation

Gene ID Gene Description LCM Module LogFC Padj 
Medtr8g042900  pectinesterase/pectinesterase inhibitor M0004 3.23 4.17E-07
Medtr7g102770  pollen Ole e I family allergens M0004 2.82 1.23E-04
Medtr3g071470  pollen Ole e I family allergens M0004 2.76 7.86E-04
Medtr4g074960  endo-1,4-beta-glucanase M0004 2.62 5.99E-03
Medtr2g035120  disease-resistance response protein M0004 1.73 8.41E-03
Medtr7g102770  pollen Ole e I family allergens M0006 2.82 1.23E-04
Medtr3g071470  pollen Ole e I family allergens M0006 2.76 7.86E-04
Medtr4g074960  endo-1,4-beta-glucanase M0006 2.62 5.99E-03
Medtr4g109880  adenine nucleotide alpha hydrolase superfamily protein M0006 1.98 1.33E-02
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Table 3.2.  Down-Regulated GCN Modules at 24 Hours Post-Inoculation

Gene ID Gene Description LCM Module LogFC Padj 
Medtr3g070860  leucoanthocyanidin dioxygenase-like protein M0021 -4.36 6.33E-05
Medtr2g008380  somatic embryogenesis receptor-like kinase M0021 -2.70 8.74E-05
Medtr3g013890  3-oxo-delta(4,5)-steroid 5-beta-reductase-like protein M0021 -2.28 4.85E-04
Medtr3g102730  3-oxo-delta(4,5)-steroid 5-beta-reductase-like protein M0021 -2.00 1.60E-03
Medtr8g018570  seed linoleate 9S-lipoxygenase M0055 -4.82 3.12E-08
Medtr3g070860  leucoanthocyanidin dioxygenase-like protein M0055 -4.36 6.33E-05
Medtr7g417750  allene oxide cyclase M0055 -2.63 1.97E-02
Medtr3g013890  3-oxo-delta(4,5)-steroid 5-beta-reductase-like protein M0055 -2.28 4.85E-04
Medtr3g102730  3-oxo-delta(4,5)-steroid 5-beta-reductase-like protein M0055 -2.00 1.60E-03
Medtr1g112230  mevalonate diphosphate decarboxylase M0064 -2.49 4.97E-11
Medtr2g027300  geranylgeranyl pyrophosphate synthase M0064 -1.71 2.50E-20
Medtr7g080060  isopentenyl-diphosphate delta-isomerase M0064 -1.70 9.35E-04
Medtr8g018570  seed linoleate 9S-lipoxygenase M0072 -4.82 3.12E-08
Medtr3g070860  leucoanthocyanidin dioxygenase-like protein M0072 -4.36 6.33E-05
Medtr7g085120  Nod factor-binding lectin-nucleotide phosphohydrolase M0072 -3.82 1.37E-06
Medtr7g417750  allene oxide cyclase M0072 -2.63 1.97E-02

Table 3.3.  Down-Regulated GCN Modules at 48 Hours Post-Inoculation

Gene ID Gene Description LCM Module LogFC Padj 
Medtr5g014100  anionic peroxidase swpb3 protein M0032 -3.28 3.71E-05
Medtr2g062600  Lipid transfer protein M0032 -3.24 1.54E-06
Medtr8g089300  CASP POPTRDRAFT-like protein M0032 -2.88 4.25E-03
Medtr5g070010  cytochrome P450 family-dependent fatty acid hydroxylase M0032 -2.87 1.72E-05
Medtr5g064530  leguminosin group485 secreted peptide M0118 -3.13 1.75E-06
Medtr0097s0070  CASP POPTRDRAFT-like protein M0118 -3.04 4.96E-06
Medtr4g415290  glycerol-3-phosphate acyltransferase M0118 -2.80 1.20E-05
Medtr1g071720  Lipid transfer protein M0118 -2.46 4.90E-03
Medtr2g062600  Lipid transfer protein M0132 -3.24 1.54E-06
Medtr5g064530  leguminosin group485 secreted peptide M0132 -3.13 1.75E-06
Medtr2g009450  leguminosin group485 secreted peptide M0132 -3.10 1.22E-05
Medtr0097s0070  CASP POPTRDRAFT-like protein M0132 -3.04 4.96E-06
Medtr8g079050  GDSL-like lipase/acylhydrolase M0132 -3.00 2.61E-08
Medtr8g089300  CASP POPTRDRAFT-like protein M0132 -2.88 4.25E-03
Medtr5g070010  cytochrome P450 family-dependent fatty acid hydroxylase M0132 -2.87 1.72E-05
Medtr4g415290  glycerol-3-phosphate acyltransferase M0132 -2.80 1.20E-05
Medtr3g463060  cytochrome P450 family-dependent fatty acid hydroxylase M0132 -2.68 2.61E-06



 64 

Methods 

RNAseq Data Processing 

The PBS-GEM workflow[https://github.com/wpoehlm/PBS-GEM] was utilized to 

process RNA sequencing reads on Clemson University’s Palmetto Cluster.  Poor quality 

sequences and adapters were removed using Trimmomatic-0.38 [19].  Cleaned reads 

were mapped to the Mt4.0v1 reference genome using hisat2-2.1.0 [20] with the following 

parameters: hisat2 --rna-strandedness RF --min-intronlen 20 --maxintronlen 7000 -p 4 --

downstream-transcriptome-assembly.  SAM alignment files were filtered to retain only 

unique primary alignments (MAPQ 60), sorted, and converted to BAM files using 

samtools-1.8[21].  Reference gene abundances were estimated using stringtie-1.3.4d [22, 

23] with the following options: stringtie –G –e –B –A. 

Differential Gene Expression Analysis 

Raw gene counts were calculated using the prepDE.py script that is provided with the 

StringTie Package[https://ccb.jhu.edu/software/stringtie/dl/prepDE.py].  Differential 

expression analysis was performed using the DESeq2 R package [24], which internally 

normalizes for library size.  Genes with total read counts of less than 50 were excluded 

from analysis.  Control and inoculated samples were compared separately at each 

timepoint (0H, 12H, 24H, 48H, and 72H) using the DESeqDataSetFromMatrix function 

with the following formula: design =  ~ condition. Genes with an adjusted p value of less 

than 0.05 were considered to be significant.    
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Gene Expression Matrix (GEM) Preparation 

Gene-level FPKM (fragments per kilobase of gene per million read pairs) were extracted 

from the gene abundance output files produced by StringTie and merged into a gene 

expression matrix (GEM) using a perl script.  The matrix was log2 transformed and 

preprocessed using the preprocessCore R library [25] to detect outliers and reduce 

technical noise.  Pairwise Kolmogorov-Smirnov (KS) tests were performed to test for 

outlier samples (KS Dval > 0.15).  No outlier samples were detected.  The matrix was 

quantile normalized using the normalize.quantiles function.  This normalized GEM was 

used to construct a gene coexpression network (GCN).  Heatmaps and expression plots 

were generated using the clustermap and tsplot functions from the Seaborn Python 

package[https://seaborn.pydata.org/]  

 

Coexpression Network Analysis 

The OSG-KINC[https://github.com/feltus/OSG-KINC] [26] workflow was utilized to 

execute 10,000 KINC similarity jobs on the Open Science Grid with the following 

parameters: kinc similarity--method pc --clustering mixmod --criterion ICL --min_obs 20.  

Output was transferred to Clemson University’s Palmetto Cluster and decompressed.  

KINC threshold was executed with the following parameters: kinc threshold --min_csize 

20 --clustering mixmod --method pc --th_method pc --max_modes 5.  A significance 

threshold of 0.946100 was identified, and the GCN was extracted using the following 

KINC extract parameters: kinc extract --clustering mixmod --method pc --th_method pc --
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th 0.946100 --max_modes 5.  Link Community Modules (LCM) were identified with the 

linkcomm R package [27], using the “single” hcmethod and a minimum cluster size of 3.   

 

Discussion 

We identified differentially expressed genes between control and inoculated 

samples at five distinct time points.  As shown in Figure 3.2, the majority of these genes 

were unique to one specific time point.  Thus, finding useful biological signal from 

hundreds of genes at each time point became a challenge.  We used the GCN to identify 

genes that demonstrated similar expression over the time series.  Figure 3.4 demonstrates 

how two genes with similar expression patterns over time produced a high correlation 

value.  Even though the edge was not condition specific, we detected differential gene 

expression at the 24 hour time point.  We then detected LCMs from this GCN to identify 

clusters of genes that all demonstrated similar expression patterns.  As shown in Figure 

3.5, LCM M055 is comprised entirely of genes that are down-regulated in inoculated 

samples at the 24 hour time point.  Expression of these genes drops at the 12 hour 

timepoint and then is restored at the 24 hour time point in control samples while the 

expression in the inoculated samples slowly rises.  We detected 161 LCMs that 

demonstrate coordinated expression patterns and overlaid differentially expressed genes 

at each time point to these LCMs.  We were able to detect nine LCMs that were 

composed entirely of genes that were either up or down-regulated at a specific time point.   
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The two modules (M0004 and M0006) that are composed of up-regulated genes at 

24 hours are enriched for PFAM term PF01190 (“Pollen proteins Ole e I like”).  Pollen 

allergen genes have undergone a high degree of duplication and purifying selection, 

suggesting that they maintain significant biological function [28].  Chen et al. [28] 

characterized the function of allergen gene families in Arabidopsis and rice, 

demonstrating that allergen genes in Arabidopsis often have unique functions compared 

to rice.  Some of these functions include defense response to bacterium and cell redox 

homeostasis, two processes that are involved in root nodulation.  The genes in Table 3.1 

are also enriched for PF09478 (“Carbohydrate binding domain CBM49”), a group of 

cellulases often associated with cell wall hydrolysis [29].   Notably, Table 3.2 contains a 

pectinesterase gene (Medtr8g042900) and a disease response gene (Medtr2g035120). We 

speculate that the up-regulated genes in Table 3.1 are involved in pathogen response or 

cell wall remodeling.   

Table 3.2 contains GCN modules that are down-regulated in inoculated samples at 

24 hours.  M0072 and M0055 both contain a gene related to jasmonic acid synthesis: 

Medtr7g417750 (allene oxide cyclase).   Suppression of this gene has been shown to 

reduce jasmonic acid (JA) levels in hairy roots of M. truncatula, lowering the plant’s 

ability to achieve mycorrhization [30].  While JA seems to play a positive role in 

mycorrhization, it has been demonstrated to negatively impact root nodulation by 

inhibiting nod-factor induced calcium oscillations in the nucleus of the cells [31].  

Interestingly, JA and cytokinin were found to have antagonistic roles in Arabidopsis 

xylems [32].  We speculate that down-regulation of genes in Table 3.2 results in a 
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decrease in JA production and an increase in cytokinin biosynthesis, contributing to root 

nodulation by shutting down alternate pathways that would otherwise enable mycorrhizal 

symbiosis.  We found Medtr7g085120, a Nod factor-binding lectin-nucleotide 

phosphohydrolase, to be down-regulated in inoculated samples at this time point.  This 

protein was found to be necessary for rhizobial and mycorrhizal symbiosis in Lotus 

japonicus, a determinate nodulating plant [33].  Previous studies that analyzed RNA 

expression levels of whole-root tissue found this gene to be up-regulated early in the 

course of S. meliloti transfection in M. truncatula.  We speculate that the cellular 

composition of the tissue used in our study demonstrates unique expression of this gene 

compared to the whole-root samples previously analyzed [8].    

Table 3.3 contains two modules, M0032 and M0132, that are enriched for KEGG 

ontology term K15401 (“fatty acid omega-hydroxylase”).  All three modules (M0032, 

M0132, and M0118) contain genes that are annotated as “lipid transfer protein”.  Lipids 

play diverse roles in plant physiology, such as signaling pathways involved in plant 

defense [34, 35].  Notably, Medtr4g415290 – a glycerol-3-phosphate acyltransferase 

(GPAT) gene, is down-regulated in both M0132 and M0118.  GPAT enzymes catalyze 

the first step of membrane phospholipid biosynthesis [34, 36].  Another GPAT gene in M. 

truncatula, RAM2, was found to be necessary for fungal mycorrhization through its 

involvement in cutin biosynthesis [37].  Other genes involved in lipid biosynthesis are 

present in Table 3.3: Medtr5g070010 (“cytochrome P450 family-dependent fatty acid 

hydroxylase”), Medtr8g079050 (“GDSL-like lipase/acylhydrolase”), and Medtr3g463060 

(“cytochrome P450 family-dependent fatty acid hydroxylase”).  We hypothesize that 
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down-regulation of genes in Table 3.3 helps to inhibit synthesis of specific fatty acids 

that would otherwise play a negative role in root nodulation.  M0032 also contains a 

peroxidase protein, Medtr5g014100.  Given that peroxidases are often involved in 

stimulating plant defense against pathogens, we hypothesize that down-regulation of this 

gene helps to enable rhizobial infection [38].   

We hypothesize that many of the genes in Tables 3.1, 3.2, and 3.3 are involved in 

pathogen response.  Given that the genes in Table 3.1 are up-regulated in inoculated 

samples, these genes might play a role in normal pathogen response, while the down-

regulated genes in Tables 3.2 and 3.3 could play important roles in nodulation.  As 

evidence, we compared these tables to genes that have been found to be dysregulated in 

NAD1 mutants.  NAD1 (nodules with activated defense 1) is a gene that is necessary for 

maintaining rhizobial symbiosis in M. truncatula roots [39-41].  In NAD1 mutants, 

brown pigmentation accumulates in the nodules following the release of rhizobium from 

the infection thread, resulting in nodule necrosis.  Wang et. al. performed transcriptome 

profiling of NAD1 mutants to compare with control plants at 21 days post inoculation 

[40].  Out of the six total genes in Table 3.1, three were up-regulated in NAD1 mutants 

(Medtr3g071470, Medtr4g109880, Medtr7g102770).  Out of the 10 total genes in Table 

3.2, five were up-regulated in the NAD1 mutants (Medtr8g018570, Medtr3g070860, 

Medtr7g417750, Medtr3g102730, Medtr3g013890), while one gene was down-regulated 

in the mutants (Medtr7g085120).  Out of the 11 total genes in Table 3.3, six were up-

regulated in the mutants (Medtr0097s0070, Medtr3g463060, Medtr5g070010, 

Medtr8g079050, Medtr4g415290, Medtr5g064530), while one gene was down-regulated 
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(Medtr5g014100).  Given that NAD1 plays a key role in regulating immune response to 

rhizobium, genes that are up-regulated in NAD1 mutants may play key roles in 

nodulation [40].  Thus, we speculate that the down-regulation of genes in Table 3.2 and 

3.3 help to suppress innate immune responses that would otherwise prevent rhizobial 

colonization in nodules.   

The differentially expressed LCMs that we characterized provide novel polygenic 

biomarkers for root nodulation.  Further research is needed to determine if the expression 

patterns of these genes are causative biomarkers, or if they are simply an effect of root 

nodulation or pathogen defense pathways.  Regardless, these LCMs revealed biochemical 

differences between control and inoculated samples over the course of root infection.  

This study provides a novel list of differentially expressed genes from the maturation 

zone of M. truncatula roots.  While we focused on the LCMs that were composed only of 

genes that were differentially expressed, other LCMs in which a subset of the genes were 

differentially expressed are worthy of further investigation.  It is possible that genes that 

did not meet our significance cut off for differential expression are co-regulated with 

genes that did.  To improve our resolution of gene expression patterns relevant to root 

nodulation, we will perform laser capture micro dissection to isolate specific cell types 

for gene expression quantification.  This will amplify signals that were otherwise diluted 

by using a mixture of cell types from the maturation zone.  This report describes a 

framework for identifying polygenic biomarkers that will be applied future experiments.     
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Figure 3.4 In a representative GCN edge, two genes produce a high 
correlation value across all samples.  Expression plots reveal that both 
genes demonstrate differential expression at the 24 hour time point.   
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Figure 3.5 In a representative LCM, all genes demonstrate 
consistent expression patterns.     
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Abstract 

High throughput DNA sequencing technology has revolutionized the study of 

gene expression while introducing significant computational challenges for biologists.  

These computational challenges include access to sufficient computer hardware and 

functional data processing workflows.  Both of these challenges are addressed with our 

scalable, open source Pegasus workflow for processing high throughput DNA sequence 

datasets into a gene expression matrix (GEM) using computational resources available on 

the Open Science Grid (OSG).  We detail usage of the workflow (OSG-GEM), discuss 

workflow design, inspect performance data, and assess accuracy in mapping paired-end 

sequencing reads to a reference genome.  A target OSG-GEM user is proficient with the 

Linux command line and possesses basic bioinformatics experience.  The user may run 

this workflow directly on the OSG or adapt it to novel computing environments.   
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Software Availability 

OSG-GEM is open sourced under the GNU GPL License v2 and available at 

github.com/feltus/OSG-GEM. 

 

Introduction 

There is a molecular detection revolution underway in molecular biology.  

Biologists can now determine the dynamics of gene expression by sequencing and 

counting hundreds of millions of RNA and DNA molecules.  This method is called next-

generation sequencing (NGS) or high throughput sequencing (HTS) of DNA1, which is 

steadily becoming a cost effective way to achieve diverse tasks including comparing 

DNA sequences of individuals for genetic analysis (genotyping by sequencing2); 

sequencing and counting RNA molecules after conversion to DNA to measure steady 

state RNA expression through the construction of a gene expression matrix (GEM) 

(RNAseq3,4); identifying organisms in environmental samples (metagenomics5,6); and 

many other applications.  In essence, biologists can now “observe” molecular information 

flow from genomes that will have as much impact in understanding biological systems as 

the microscopy revolution of the 17th century. 

There are several HTS platforms, including those from Illumina7, Ion Torrent8,9, 

and Pacific Biosciences10, each with their own nuances.  Each system creates a large 

quantity (often in the millions) of short DNA sequences (<200 base pairs called reads) 

that are encoded in chromosomal intervals (i.e. genes) with specific sequences that are 

unique to the species and individual.  It would be ideal to capture the sequence of the 
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entire DNA molecule without error, but high quality sequences are often obtain from one 

end of the molecule (single-end reads) or as pairs from both ends of the molecule (paired-

end reads). It should be noted that Pacific Biosciences captures longer reads at the 

expense of a higher error rate.  Thus, a key aspect of HTS DNA analysis involves 

aligning a large number of short DNA sequences to a smaller number of large reference 

genome DNA sequences that have been painstakingly discovered for many organisms.  

The HTS DNA data lifecycle and typical computational workflow are shown in Figure 

4.1.   

HTS DNA data files can be quite large and require complex computational 

workflows that extract a quantitative biological measurement.  After sequencing is 

complete, a HTS DNA dataset is a concatenation of DNA sequence strings and metadata 

that include base pair call accuracy encoding (quality scores) as well as sample and 

instrument information.  The datasets are stored in standard formats including FASTQ11 

and SRA12.   Of note, SRA files can be manipulated and converted into FASTQ with the 

NCBI sra-toolkit13.  Raw DNA reads often contain sequence contamination and poor 

quality reads, and must be cleaned before downstream processing.  A Java application 

called Trimmomatic14 performs this pre-processing task.    

Once cleaned, reads are mapped to a reference genome15 or transcriptome 

sequence set16.  Several short-read genome aligners may be used for this, including 

bowtie217, bwa and variants18-20, SOAP21 and others, all of which create an alignment 

file, often in the SAM/BAM format22.  The SAM/BAM file can be processed to extract 

sequence variants to the reference genome as well as count molecules that were 
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sequenced at specific positions in the reference sequence.  In the case of the RNAseq 

workflow, a gene expression matrix (GEM) can be constructed where each row is a 

known gene transcript and a column is a vector of gene expression intensities (i.e. RNA 

molecule count output detected for all genes in the sample).  Molecule count information 

can be determined by the “tuxedo” suite of software that includes Tophat23, Cufflinks24, 

HISAT25, and StringTie26.  It should be noted that there is a plethora of other software 

that processes HTS reads, including GATK27, Galaxy28, and R/Bioconductor29 to name 

but a few.   

Processing HTS DNA datasets requires significant hardware resources.  While it 

is possible to crunch these datasets on lab workstations, high-performance computing, 

high-throughput computing, and even big data systems may be required as the end user 

scales up the number of samples while datasets get richer and larger.  One system that is 

highly scalable for HTS DNA workflow execution is the Open Science Grid (OSG30), a 

U.S. based consortium of over 100 universities and national laboratories set up to share 

distributed high throughput computing resources.  A major stakeholder community of the 

OSG includes Large Hadron Collider physicists.  As the OSG has matured, the benefits 

of the infrastructure have become apparent to experiments in other fields of science, 

including genomics, as well as universities to serve their local users’ computational 

needs.  

When the OSG resource contributors do not need their full capacity -- for 

example when an instrument is down for maintenance and no new data is produced -- the 

unused cycles on the compute resource can be shared back to the OSG community.  
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These opportunistic cycles add up to over 100 million core hours annually, and it is those 

cycles which are used for the OSG-GEM workflow.  To access the OSG, our project 

utilized OSG Connect, which provides a simple but feature-rich interface to the OSG.  

Services used in this work include submit hosts, used to submit and manage jobs, and 

Stash, a multi-petabyte file storage service.  Stash is a centralized storage system, but 

provides a number of access methods such as web, Globus31, or other file transfer, and 

sharing tools such as distributed data caching close to the compute resources. 

The OSG supports high throughput computing (HTC) via HTCondor32.  HTCondor is a 

high throughput batch system for managing jobs on distributed resources.  In a typical 

HTC workflow, several tasks are concurrently executed on independent machines that are 

connected through a network.  Many scientific computations are suitable for HTC, 

including molecular screening, parameter sweeps, and statistical sampling.  HTC systems 

have potential to accelerate GEM construction as a large quantity short sequences from 

HTS are processed.  The GEM workflow developed for the OSG may be modified for 

transfer to any HTC systems, including a local campus cluster, grid or cloud.  

The Pegasus Workflow Management System enables the execution of large-scale 

computational workflows on a variety of infrastructures33.  Pegasus workflows are 

described as abstract directed acyclic graphs (DAG) which describe the tasks and data 

dependencies, but not the execution environment specifics.  The reason for this abstract 

representation is that it provides portability for the workflow. The same workflow can be 

planned into an executable workflow for different resources at different times.  This 

planning step, going from an abstract DAG to an executable workflow, is where Pegasus 
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adds nodes to the graph such as data management nodes, and applies transformations to 

the graph, such as task clustering and workflow reduction based on already existing data 

products. 

The OSG Gene Expression Matrix (OSG-GEM) workflow described in this article 

is a distributed computing mechanism to process RNAseq paired-end Illumina DNA 

sequence datasets into expression matrices using the tuxedo suite of software.  We 

provide details on how the Pegasus-based workflow is organized, as well as usage and 

evaluation of OSG-GEM.  OSG-GEM is adaptable to alternative methods of processing 

of HTS DNA datasets, as well as tuning or replacing the described software applications.  

OSG-GEM is freely available on GitHub. 

 

Workflow Usage 

OSG-GEM workflow overview. The OSG-GEM workflow is capable of 

processing hundreds to thousands of paired-end Illumina HTS DNA datasets in FASTQ 

format in parallel on OSG.  Output is a two-column matrix of gene identifiers and 

normalized RNA expression intensities.  These matrices can be stitched together to create 

larger GEMs for an organism, suitable for downstream analysis including gene co-

expression matrix construction34,35 (GCN in Figure 4.1) and differential gene expression 

profiling36 (DEG in Figure 4.1).  In order to execute the workflow, the user will need an 

account on the OSG37, HTS DNA datasets in FASTQ format, and a reference genome or 

transcript assembly with associated gene annotations in GTF/GFF3 format.  These files 

are either placed in a specific OSG-GEM directory or via paths defined in the osg-
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gem.config file.  The OSG-GEM workflow can be obtained from github38 which contains 

the most up to date usage documentation.  A test dataset is cloned with the workflow, 

which utilizes human chromosome 21 from the GRCh38 build of the human reference 

genome39 along with a small dataset containing 200,000 human sequences (from 

SRR182596240).  The user can submit this reduced test dataset to become familiar with 

workflow setup and execution.   

Pre-workflow steps. As shown in Figure 4.2, the first end user decision is to 

decide whether the Hisat2 or Tophat2 method will be used.  We recommend Hisat2, since 

the developers are no longer supporting further development of Tophat2 (according to 

their website). We also recommend that the user become familiar with the application 

documentation for each method.  If the Hisat2 method is chosen, the user must 

accumulate the reference genome sequence file in FASTA format41 and gene location 

annotations in GTF format42.  If the Tophat2 method is selected, the user must 

accumulate the reference genome sequence file in FASTA format and gene location 

annotations in GFF format42.  Reference genome indices must be constructed using 

hisat2-build43 or bowtie2-build44.  In order to guide accurate mapping of sequencing 

reads independently from one another, annotated splice site information must be 

provided.  For Hisat2, the built in hisat2_extract_splice_sites.py script generates a tab 

delimited list of splice junctions that allows the user to disable discovery of novel splice 

junctions25.   Tophat2 can map reads directly to a reference transcriptome by generating 

index files of all sequences that are present in the reference genome annotation23.   A 
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reference genome annotation file in the GFF3 format is provided to guide RNA molecule 

counting using either StringTie26 or Cufflinks24.    

OSG-GEM workflow setup.  To setup an OSG-GEM workflow, the user must 

modify the osg-gem.config file to select software options and point to input data for 

recognition by Pegasus.  First, the user must identify a reference prefix ($REF_PREFIX) 

that will be used to name all reference genome files used by the workflow.  Next, the user 

must provide the file path to a forward FASTQ file and to a reverse FASTQ file.  FASTQ 

filenames must end with .forward_1.fastq.gz or .forward_1.fastq to signify forward 

sequencing reads, and .reverse_2.fastq.gz or .reverse_2.fastq to signify reverse 

sequencing reads.  Finally, the user must select ‘True’ or ‘False’ for each software option.  

Once the osg-gem.config file is appropriately modified, the user must place the necessary 

reference genome files in the reference directory of the workflow, with filenames 

containing the $REF_PREFIX that was specified in the osg-gem.config file.   

If the user selects Hisat2 as ‘True’, the following files must be present in the reference 

directory: 

$REF_PREFIX.fa,   

$REF_PREFIX.1.ht2 … $REF_PREFIX.N.ht2, 

$REF_PREFIX.Splice_Sites.txt,  

$REF_PREFIX.gff3 

 

If the user selects Tophat2 as ‘True’, the following files must be present in the reference 

directory: 
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$REF_PREFIX.fa, 

$REF_PREFIX.1.bt2 … $REF_PREFIX.N.bt2,  

$REF_PREFIX.rev.1.bt2 

$REF_PREFIX.rev.2.bt2,  

$REF_PREFIX.transcriptome_data.tar.gz,  

$REF_PREFIX.gff3 

 

For example, a user cloned OSG-GEM into ‘/stash2/user/username/GEM_test’, and 

placed input FASTQ files for dataset ‘TEST’ in ‘/stash2/user/username/Data’.   To 

process this dataset using Hisat2 and StringTie with the GRCh38 build of the human 

reference genome, the osg-gem.config file would be modified as follows: 

 

[reference] 

reference_prefix = GRCh38 

[inputs] 

forward = /stash2/user/username/Data/TEST_1.fastq.gz 

reverse = /stash2/user/username/Data/TEST_2.fastq.gz 

[config] 

tophat2 = False 

hisat2 = True 

cufflinks = False 
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stringtie = True 

 

OSG-GEM Workflow Execution.  Once the user submits the workflow by 

running the submit script, a list of all reference files recognized by Pegasus will print to 

the screen, as well as commands that can be used to monitor the workflow.  If no 

reference files were found or multiple software options for alignment or quantification 

were selected, Pegasus will produce an error message.   

The Pegasus workflow manager directs the execution of tasks in the workflow.  In 

order to parallelize execution of read trimming and mapping while keeping hardware 

requirements low, the workflow splits input FASTQ files into files of 20,000 sequences 

on the OSG stash filesystem.   To minimize filesystem I/O, input is read from disk and 

written only once by piping compressed input to gunzip, and piping the results to a 

python script that splits the files.   To keep the number of files within each filesystem 

directory manageable, the hierarchical structure of the workflow is established at this 

step.  Each sub-workflow manages the processing of 1,000 forward and 1,000 reverse 

FASTQ files.   

An example input dataset contains 80 million sequences split into 1,000 chunks 

(20,000 sequences each) that will be managed by four DAG subworkflows (Figure 4.3).  

For each subworkflow, Pegasus creates a set of job submission scripts whose execution is 

managed by DAGMan and implemented by the HTCondor job submission system.  A job 

consists of trimming (Trimmomatic) and mapping (Hisat2 or Tophat2) sequences to the 

reference genome.  After a job is completed, BAM-format alignment results are 
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transferred back to a temporary OSG filesystem and then submitted back to an OSG 

compute node for an initial merge.  Upon completion of all DAG subworkflows, a BAM 

file from each DAG subworkflow is transferred to an OSG compute node to generate the 

final merged.bam file.  The final BAM file is then used to generate molecule counts 

which are represented as a column in a gene expression matrix (GEM).  

 

Workflow Evaluation 

Workflow Speed. Total OSG-GEM workflow runtime was compared with total 

runtime of an equivalent workflow processed on the Clemson University Palmetto 

Cluster (Figure 4.4).   The first 5,000,000 sequences of dataset NCBI SRR1825962 were 

mapped against the GRCh38 build of the human reference genome.  The corresponding 

comprehensive gene model annotation was downloaded39 (Gencode Release 24)  as GTF 

and GFF3 files.  This dataset was processed using either a combination of Tophat2-

Cufflinks or Hisat2-StringTie.  The OSG-GEM workflows were submitted with requests 

of 6 GB of RAM and 30 GB of disk storage per job.  An IBM DX340 machine with an 

allocation of 14 GB of RAM and 111 GB of available local_scratch node storage was 

requested for each job on the Palmetto Cluster.  For OSG-GEM workflows, files were 

split into 20,000 sequence pieces as described previously, while the jobs on the Palmetto 

Cluster processed the dataset as complete FASTQ files.   Total OSG-GEM walltime was 

documented using the pegasus-statistics command, and job walltime on the Palmetto 

Cluster was documented using the qstat command.  The cumulative job walltime for each 

OSG-GEM subcomponent in an example workflow is shown in Figure 4.5. 
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Workflow Accuracy. The first 5,000,000 sequences of NCBI dataset 

SRR1825962 were processed as described above.  To confirm the accuracy of the OSG-

GEM workflow, gene expression values generated by each workflow were compared 

with results from the same tasks performed on the Palmetto Cluster without input file 

splitting (Figure 4.6). A tab delimited list of splice sites was provided to guide mapping 

of reads using Hisat2 with novel splice junction discovery disabled.  Reads were mapped 

to the reference transcriptome directly using Tophat2, with novel splice junction and 

insertion-deletion discovery disabled.  The Hisat2-StringTie OSG-GEM workflow 

produced identical results with the Palmetto Cluster, while the Tophat2-Cufflinks 

workflow resulted in a high correlation (Pearson’s R = 0.99).  These results indicate no 

loss of accuracy using the OSG-GEM workflow.   

 

Discussion 

We have described an open source OSG-GEM workflow to process HTS DNA 

datasets in the OSG distributed compute environment.   The output of OSG-GEM, the 

gene expression matrix, is a focal data structure for multiple downstream analyses that 

could also be adapted to the OSG.  Given the nature of the OSG, the workflow is highly 

scalable, adaptable, and available to a broad research community.  OSG-GEM is in an 

active state of development, and we are continually working to synchronize OSG-GEM 

with new software applications and hardware resources available for OSG job 

submission.   
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This workflow serves as a valuable resource in a variety of situations.  First, 

scientists without institutional access to high performance computing clusters may utilize 

the OSG to process RNASeq datasets without paying the cost of commercial cloud 

providers.  Second, there is a significant development period to create and tune a complex 

workflow on the OSG or local computer.  OSG-GEM is a solid baseline to use as-is or 

extend to other purposes.  Third, as input dataset size continues to swell in size and 

quantity, hardware requirements will become more challenging, especially with 

competition for resource allocation on campus computing clusters.  The ability to split 

large input datasets to process in parallel on the OSG will alleviate some of these issues 

by democratizing the resources available to analyze large datasets.   

The goal of OSG-GEM is to construct accurate GEMs as quickly as possible for 

which there is potential for optimization.  There is an impactful balance between 

resources requested, queue time, and job failure rate, all of which can potentially increase 

the performance of this workflow for a given dataset size.  Resources can be balanced by 

requesting more RAM or more disk space that should result in fewer failed jobs, but 

could result in longer queue times.  Job failure can be caused by requesting insufficient 

resources, or by problems on one or more nodes, such as exceeding local disk storage or 

hardware failure.  In addition to failed jobs, we have found two “run-away” jobs that 

complete in an exceptionally long time, greatly influencing the final wall time (Figure 4.5 

inset).  If problematic nodes were avoided, OSG-GEM should complete in a fraction of 

the time shown in Figure 4.5.  
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As shown in Figure 4.4, the total workflow walltime of OSG-GEM workflows 

was greater than that of equivalent workflows processed on the campus Palmetto Cluster.  

Basic properties of the OSG make comparison to cluster resources difficult. We used the 

OSG via the OSG Connect system and thus had opportunistic access to the currently 

unused compute resources.  A small percentage of our opportunistic jobs had to be 

restarted as a resource owner reclaims the resources for their own work. Such restarts 

might increase the overall walltime of the workflow. In addition, there is a large set of 

variables for the resource supply and demand equation on the OSG, including the number 

of available resources with varying system properties, the number of active users and 

what resources they require, and HTCondor user priorities. All of these variables change 

over time. However, it is only when doing performance tests that a user has to be 

concerned about these variables. For data processing, OSG users enjoy an automatic fair-

share based work to resource matching. 

Data access is also a factor when comparing execution on a campus resource 

versus the OSG. The campus resources usually have a local file system connected with a 

high speed, low latency network. The distributed nature of OSG means that jobs starting 

up on some remote resource will have to transfer or access data remotely over a wide area 

network. In the case of the OSG-GEM workflow, Pegasus handles these transfers 

transparently. Input data to a job is pulled in via parallel HTTP connections to the OSG 

Connect Stash filesystem, and potential output data is transferred back to Stash over SSH. 

These transfers do not show up in the runtime of the individual tasks, but can add up and 

affect the overall walltime. 
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In conclusion, the OSG-GEM workflow is a robust method for processing 

RNASeq datasets to generate gene expression matrices that serve as input for 

downstream applications.  In the future, we intend to develop linked workflows that build 

upon the GEM datatype.  OSG-GEM is functional and under active development.  We are 

adapting OSG-GEM to evolving OSG infrastructure and tuning it to our needs, and we 

point the reader to examine the current build and documentation at 

github.com/feltus/OSG-GEM. 
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Figures 

 

Figure 4.1 DNA Sequence File Lifecycle.  A DNA sequence starts its life as a TIFF 

image stack from a DNA sequencing instrument.  Raw images are converted to a FASTQ 

text file and preprocessed or deposited into repositories such as the National Center for 

Biotechnology Information (NCBI) as Short Read Archive (SRA) files.  Cleaned FASTQ 

files are mapped to a reference genome and converted to a BAM alignment file.  BAM 

files can be mined for gene expression vectors that can be bundled into a gene expression 

matrix (GEM).  GEMs are a stable data structure that can be mined for differentially 

expressed genes (DEGs) or used to construct Gene Co-expression Networks (GCNs) and 

processed by other workflows.   
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Figure 4.2 Preparation of Input Files for the Gene Expression Matrix Construction 

Workflow on the Open Science Grid (OSG-GEM).  Required input files for either the 

Hisat2 or Tophat2 method are shown in boxes.  The user provides paired-end DNA 

sequences in FASTQ format (forward/reverse) which can be extracted from SRA format 

files with the NCBI SRA Toolkit.  The reference genome (genome) in FASTA format 

must be indexed using either the Hisat2 or Bowtie2 application.  Built into the Hisat2 

software package, the hisat2_extract_splice_sites.py script can generate a tab delimited 

list of splice sites using a reference annotation file in GTF format.  Tophat2 can generate 

a set of gene model indices from GFF3 or GTF format files that contain splice site 

information in the form of a reference transcriptome.  FASTQ file locations are defined 

in the osg-gem.config file and all other files are placed in the reference directory of the 

OSG-GEM workflow.  
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Figure 4.3 OSG-GEM Pegasus Workflow Diagram for a Representative HTS DNA 

Sequence Dataset.  The workflow is managed by Pegasus and divided into two phases 

called levels 1 and 2.  In level 1, input FASTQ files are split into an appropriate size for 

OSG compute nodes.  In level 2, a specific quantity of split sequence files are managed 

by a finite number of DAGMan sub-workflows based on input file size.   DAGMan 

manages the submission of jobs in the workflow, which results in trimming of FASTQ 

files, mapping to a reference sequence, merging alignment files, and quantifying RNA 

expression levels.    Upon completion of all DAG subworkflows a final merged.bam file 
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is created.  The final BAM file is used to count molecules for parsing into a gene 

expression matrix (GEM).  

 

 

Figure 4.4 Walltime Comparison Between the OSG and Palmetto Cluster.  Total 

workflow walltime of OSG-GEM workflows was compared with total walltime of 

equivalent workflows processed as single jobs on Clemson University’s Palmetto Cluster.  

A representative dataset containing 5,000,000 paired-end sequencing reads was mapped 

to the human reference genome followed by RNA molecule quantification using a 

combination of Hisat2-StringTie or Tophat2-Cufflinks.   Error bars represent standard 

error of the mean (n=3).   
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Figure 4.5 OSG-GEM Component Performance.  A 5,000,000 sequence dataset was 

processed using the Hisat2-StringTie and Tophat2-Cufflinks methods of OSG-GEM.  

The cumulative walltime for each step of the workflow is shown for TopHat2-Cufflinks 

(gray bars) and Hisat2-StringTie (black bars).  The inset scatterplot presents the walltime 

of each Hisat2 job in the Hisat2-StringTie workflow.   



 98 

 

Figure 4.6 GEM Accuracy After Pre-processing.  Gene expression vectors generated by 

processing a 5,000,000 sequence dataset using either the Hisat2-StringTie or the 

Tophat2-Cufflinks method on the Open Science Grid (OSG-GEM workflow) and single 

jobs on the Palmetto Cluster were compared.  FPKM = Fragments Per Kilobase of Exon 

per Million Mapped Reads.  Pearson correlation coefficients were calculated for each 

comparison.    
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Abstract 

Gene Co-expression Network (GCN) analysis is a method to characterize the complexity 

underlying biological systems.  With an increasing availability of datasets available for 

mining complex gene expression patterns, novel algorithms and computational 

frameworks must be developed to take advantage of the wealth of information.  OSG-

KINC is a Pegasus workflow that enables highly parallel execution of KINC – 
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Knowledge Independent Network Construction – using resources available on the Open 

Science Grid (OSG).  A yeast GCN was constructed using the OSG-KINC workflow, 

providing an example GCN resource for biological hypothesis testing.  Timing 

experiments demonstrate that the number of jobs submitted by the user significantly 

affects the performance of the workflow.  An overview of workflow usage, bottlenecks, 

and efforts for improvement is provided.  OSG-KINC is freely available at 

https://github.com/feltus/OSG-KINC under GNU General Public License version 3. 

 

Introduction 

High-throughput DNA sequencing technology enables high- resolution 

quantification of gene expression by counting RNA molecules. Thus, RNA sequencing 

(RNAseq) has become a common technique for biological hypothesis testing [34], [49]. 

RNAseq datasets are text files where each byte encodes a DNA base pair (A, T, G, C) 

underlying the  source  of the RNA transcript, associated probability that  each  base  pair 

call is correct (quality score), or metadata on the experiment. Since each experiment 

produces information for hundreds of millions of base pairs for tens to thousands of 

samples, processing raw RNAseq datasets requires significant hardware resources. 

A variety of platforms and scientific workflows have been developed to enable 

researchers to process RNAseq data [22], [33], [36]. However, the fundamental output of 

RNAseq analysis, normalized gene expression values, remains a stable data source that 

may be mined for biological information. Normalized gene expression vectors for all 

samples can be merged into a Gene Expression Matrix (GEM) for downstream analysis. 
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For example, systems genetics approaches to understanding the basis of complex traits 

involve interpreting multiple data types including transcriptomes in GEMs, metabolomes, 

genomes, and various forms of phenotypic data [12]. Understanding these complex 

properties of biological systems are quite promising but the computation remains a 

challenge [8], [38]. 

One method to address the complexity of biological processes is through gene co-

expression network (GCN) analysis. A GCN is constructed from a GEM and is 

represented as a graph in which nodes are genes or RNA transcripts and edges that 

connect nodes represent gene co-expression. Correlation analysis is performed, typically 

using Pearson or Spearman statistics, on a pairwise basis across all combination of gene 

output quantified in the input GEM [17], [46]. A natural GCN exhibits scale-free 

behavior, and highly interconnected nodes in the graph — modules — can be parsed and 

characterized. Insight on the dynamics of complex gene expression patterns may be 

gained from these modules, and the function of genes may be characterized through guilt-

by-association inferences [7], [48]. A variety of tools for constructing a GCN are 

available, including WGCNA [28], RMTGeneNet [21], and petal [35]. Typically, 

correlation analysis is performed across all available samples. 

Knowledge Independent Network Construction (KINC) is a software package that 

builds GCNs from mixed-condition input GEM datasets [3]. In contrast to GCN 

construction tools that perform correlation analysis across all available samples, KINC 

uses Gaussian Mixture Models (GMMs) to identify clusters of input samples based on 

pairwise gene expression patterns [19]. Correlation analysis is then performed for each 
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cluster, allowing for edges in the resulting GCN to be annotated based on the type of 

samples that are present in the identified clusters. By identifying distinct modes in the 

input data prior to performing correlation analysis, condition-specific gene expression 

patterns may be identified. 

To build a GCN with KINC software, three steps must be executed: KINC 

similarity, KINC threshold, and KINC extract. KINC similarity performs GMM 

clustering and correlation analysis across all pairwise gene combinations. KINC 

threshold identifies a significance threshold using Random Matrix Theory (RMT) 

thresholding [30]. KINC extract uses the threshold identified by RMT to extract 

significant correlations. While KINC threshold and KINC extract have low 

computational requirements, KINC similarity using GMMs requires thousands to 

millions of CPU hours to complete. This is due to the fact that a typical eukaryotic 

reference genome will require billions of pairwise comparisons. For each comparison, 

GMM parameters are estimated by iterative execution of the Expectation-Maximization 

(EM) algorithm [16], which is a computationally challenging task [23]. Following 

identification of GMM clusters, Spearman or Pearson correlation is calculated within 

each cluster separately. The number of comparisons performed by KINC similarity is 

equal to (n(n-1))/2 where n represents the number of rows in the input matrix. 

For example, if an input GEM has measurements for 50,000 genes, KINC will 

perform 1,249,975,000 comparisons. This is the minimum number of correlation tests 

that will be performed, with multiple correlations being calculated for genes that 

demonstrate multiple GMM modes of expression. While GCN software that does not 
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perform clustering prior to correlation analysis can typically be run on a single CPU, the 

use of GMMs by KINC is a challenging task, requiring computation to be split into small 

pieces and run in parallel. The KINC software requires a parameter that specifies the 

number of computing jobs that will be performed, as well as a job index number that 

corresponds to a given subset of the input matrix. Each pairwise comparison of gene 

expression can be performed independently of one another. Thus, execution of KINC 

similarity can be easily parallelized when multiple CPUs are available. 

OSG-KINC is a Pegasus [15] workflow that is configured to run on the Open 

Science Grid (OSG) [37]. The OSG provides opportunistic access to unused compute 

cycles from data centers across the United States. Computation that can be split into 

small pieces, requiring small amounts of memory and disk space per job, is well suited 

for the OSG. Due to the large number of jobs that can be submitted, the heterogeneity of 

the compute resources available, and the ability of resource-owners to reclaim compute 

cycles, job failure is expected and must be carefully monitored. The Pegasus Workflow 

Management system addresses these challenges by monitoring workflow progress and 

job completion. Failed jobs are automatically detected and resubmitted, using DAGMan 

as the meta-scheduler to HTCondor [44]. By default, the workflow uses 1 GB of RAM 

per job. In the event of a job failure, a failed-job-callout script is invoked that modifies 

the submit script for the corresponding job to retry the job with 5 GB of RAM. 

Pegasus workflows are designed to portable between execution environments 

[14]. At the time of workflow submission, a dax-generator script generates an XML file 

that represents the necessary workflow tasks. The pegasus-plan command is then 
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executed to link computational tasks to compute and staging sites using a provided 

sites.xml catalogue. Thus, a user must modify the sites catalogue and the arguments that 

are passed into pegasus-plan, rather than the design of the workflow, to enable execution 

in a different environment. 

The OSG-KINC workflow is freely available on Github [5]. The workflow 

contains a pre-compiled KINC Linux binary that is executable on the OSG. This binary is 

transferred to the compute sites during workflow execution and dynamic library 

dependencies are pulled from CVMFS [1], [42], a read-only, heavily cached, distributed 

filesystem that hosts software modules available on the OSG. To run the workflow with a 

new input dataset, the user must place a tab-delimited GEM in the task-files directory of 

the workflow. The OSG stash filesystem is used to stage output files during workflow 

execution, and output will be transferred to the user’s /local- scratch directory upon 

completion of all KINC jobs. OSG-KINC will automatically identify the input matrix 

dimensions to pass as arguments into the KINC compute jobs. The user must specify how 

many pieces the computation will be split into at time of submission. Full instructions for 

proper input matrix format and workflow submission can be found in the README.md 

file on https://github.com/feltus/OSG-KINC. 

Input into the OSG-KINC workflow may be generated using the OSG-GEM 

workflow [4]. This workflow processes raw Illumina RNAseq datsets into a GEM 

containing gene expression intensities across all samples and all annotated RNA 

transcripts in the genome [36]. Once the OSG-KINC workflow has run, the user must 

transfer output files to another system to perform KINC threshold and KINC extract 
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(Figure 5.1). This is due to the nature of the KINC threshold jobs: a large number of files 

must be iterated over using a single CPU, and it may take days to weeks to identify the 

threshold. In addition, the OSG-KINC workflow will generate terabytes of output data for 

a typical experiment. Transferring a large amount of data to a compute node or having a 

long-running local job is not well-suited for the OSG. Thus, OSG-KINC is designed   to 

only perform the computation that performs well with a high degree of parallelism on 

distributed compute resources. An overview of a possible workflow to generate a GCN 

using raw data hosted by the National Center for Biotechnological Information (NCBI) is 

provided in Figure 5.1. Globus [20] may be used to transfer the large volume of output 

files from KINC similarity to a cloud or HPC resource. 

 

Results 

Use Case: Yeast GCN. Saccharomyces cervisiae is a species of yeast that serves 

as a model organism for genetic studies, and plays important roles in industrial processes 

including carbohydrate fermentation [11], [40], [43]. While  the  mechanisms  underlying  

control of gene expression have been thoroughly studied in yeast, environmental stress 

has been shown to play a large role in  the dynamics of gene expression [13], [32], [47]. 

Thus, KINC has the potential to identify novel gene co-expression patterns from a variety 

of input gene expression datasets. 
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Figure 5.1 GCN construction workflow using the OSG and local HPC resources. Raw 

FastQ files are downloaded onto the OSG Stash filesystem from the NCBI database. The 

OSG-GEM workflow can be utilized to process the raw data using OSG resources. The 

output from OSG-GEM is used as input into the OSG-KINC workflow. The output from 

OSG-KINC is transferred to a cloud or HPC resource for RMT thresholding and GCN 

extraction. 

A yeast GEM was constructed using 439 S. cervisiae paired- end Illumina 

RNAseq datasets downloaded from the NCBI Sequence Read Archive database [29]. 

Raw reads were cleaned using Trimmomatic-0.33 [10], mapped to the R64 build of the 

reference genome [18] using hisat2-2.0.1-beta [27], and RNA transcript abundances were 

quantified using cufflinks-2.2.1 [45]. A Kolmogorov-Smirnov test was performed to 



 112 

identify outlier samples based on the global distribution of FPKM (fragments per 

kilobase per exon of million mapped reads) values. 251 outlier samples were removed, 

and the remaining matrix was log2 transformed and quantile normalized using the 

preprocessCore [9] R library to reduce technical noise between samples. The 

preprocessed yeast GEM was input into the OSG-KINC workflow. This native yeast 

GEM is included in the Github repository as a unit test file. To demonstrate the 

portability of OSG-KINC between environments, the Chameleon Cloud [31] was used to 

build a GCN from this dataset. Upon completion of OSG-KINC, RMT identified a 

significance threshold of 0.8501 which was used to extract the GCN. 

The resulting GCN contains 2966 nodes that are connected by 6766 edges, and 

demonstrates scale-free topology with an average connectivity of 4.270 (Figure 5.2). To 

identify groups of highly connected nodes in the graph, Link Community Modules 

(LCM) were identified using the linkcomm R package [26]. LCM uses hierarchical 

clustering to identify clusters of nodes, allowing for a given node to be a member of 

multiple clusters [6]. 318 unique LCM modules were identified. These modules may be 

further investigated to identify novel gene expression patterns driving biological 

processes such as fermentation under varying biological conditions. 
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Figure 5.2 A Yeast GCN was constructed using the input data provided in the OSG-

KINC Github repository. After OSG-KINC execution, RMT thresholding, and network 

extraction, the resulting graph was visualized using Cytoscape [41]. 

 

Workflow Performance. Total workflow walltime was recorded after executing 

OSG- KINC on the OSG using 1000 jobs compared to 8000 jobs. Each test was 

submitted three times, making sure that multiple workflows were not running at the same 

time. As shown in Figure 5.3, the workflow took longer to run when submitting with a 

larger number of jobs. While the average job walltime was significantly lower when 

submitting more jobs, the over- head of queue time, time required by Pegasus and 

HTCondor to submit and monitor each job, and a larger number  of retried jobs may have 

lowered the efficiency of the workflow (Table 5.1). Workflow walltime will show 
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significant variation between experiments, due to differences in the availability of 

opportunistic resources over time as well as the reliability of hardware that is received by 

each job. On average, the peak number of running jobs was higher when submitted with 

1000 jobs (as noted from the OSG user dashboard). However, even in the event where the 

workflow submitted with 8000 jobs had a higher peak number of running jobs, the 

workflow took longer to run. Thus, the number of jobs that are submitted plays a large 

role in the overall runtime of the workflow. 

 

Conclusion 

OSG-KINC was developed to enable high-throughput GCN construction using 

resources available on the OSG.  While the workflow has been optimized for usability, 

there remain bottlenecks in the GCN construction process. Failed jobs and overhead 

associated with job scheduling and execution play a detrimental role in workflow 

performance. Furthermore, the user must select an appropriate number of jobs to submit 

for   a given input dataset. The optimal number of jobs depends on both the number of 

rows and columns in the input matrix, as well as the density of non-missing gene 

expression values. Thus, the user may need to submit test runs to determine an efficient 

number of jobs to submit. In addition, output from the OSG-KINC workflow must be 

transferred to a different computing environment to complete the GCN construction 

process. 
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Figure 5.3 The total workflow walltime (n=3) was compared for 1000 and 8000 OSG-

KINC job submissions. The mean of three replicates was plotted using the pyplot [24] 

library. Error bars represent with standard error of the mean calculated using the scipy 

[25] stats library with default function arguments. 

 

Table 5.1 Workflow execution stats were gathered using the pegasus- statistics -s all 

command.  The  total  workflow  walltime,  number  of retried jobs, average job walltime, 

maximum job walltime, and minimum job walltime were recorded for three workflows 

submitted with 1000 jobs and three workflows submitted with 8000 jobs. 
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OSG-KINC is a core workflow utilized by the SciDAS project (National Science 

Foundation Award #1659300), which aims to enable petascale data processing by 

alleviating the problems discussed above.  Efforts to further develop the OSG-KINC 

workflow will reduce bottlenecks in GCN construction. First, efforts are underway to 

GPU-optimize the KINC source code. Recently, support for iRODS [2], [39] has been 

added to the OSG-KINC workflow.  This allows the user to stage input, intermediate, and 

output files on a remote iRODs server, which prevents excessive data movement between 

resources. The ability to access distributed computing resources such as the Open Science 

Grid in combination with stable HPC and cloud resources will enable OSG-KINC to 

execute all three stages of the GCN construction process - KINC similarity, KINC 

threshold, and KINC extract - without the need to transfer output of the workflow to local 

HPC resources for downstream processing. Efforts to optimize data movement between 

resources, task to resource matching, and user input will reduce bottlenecks in GCN 

construction and other workflows. In its current state, OSG-KINC provides a stable 

resource highly parallel gene correlation analysis using distributed computing resources 

provided by the OSG. 
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CHAPTER SIX 

CONCLUSION 

The results presented in this dissertation demonstrate the utility of condition-

specific gene coexpression network (GCN) analysis as a biomarker discovery tool.  

Utilization of a novel GCN construction algorithm, Knowledge Independent Network 

Construction (KINC), was essential to the work presented in this dissertation.  KINC is 

capable of identifying condition-specific GCN edges by performing sample clustering 

before correlation analysis for every gene pair comparison [1].  The chapters discussed in 

this dissertation are early use-cases of the KINC software, demonstrating its application 

in biomarker discovery using two unique datasets.   

In Chapter 2, I discuss the construction of a GCN using 1,009 kidney cancer 

datasets.  These datasets spanned conditions such as cancer subtype, tumor stage, and 

patient gender.  In addition, I curated mutation profiles for the corresponding patients, 

which allowed me to identify GCN edges that were specific to patients with specific 

mutations.  By comparing the GCN edges that were specific to two common kidney 

cancer mutation profiles, I discovered two lists of biomarkers that contained unique 

genes.  However, these gene lists were both enriched for biological function related to T 

cell activation and immune response, revealing convergent function of alternate genetic 

lesions.  While the data analyzed in Chapter 2 spanned over 1,000 samples, the data 

analyzed in Chapter 3 was generated from a much smaller de novo RNA sequencing 

experiment.   
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Chapter 3 presents the construction of a root GCN using 30 root maturation zone 

samples spanning control and inoculated samples at five time points.  Differential gene 

expression analysis revealed hundreds of up and down-regulated genes at specific time 

points, which were difficult to translate into meaningful biomarkers.  While the small 

sample size in this experiment made it impossible to detect specific GCN edges that were 

unique to time point or inoculated samples, the GCN was utilized to identify nodulation 

biomarkers.  By performing clustering of nodes in the GCN, functional modules were 

identified that demonstrated consistent expression patterns across samples over time.  

Three of these modules were comprised entirely of genes that were differentially 

expressed at one specific time point.  These results demonstrate that combining GCN 

analysis with other common biomarker discovery techniques can reduce a list of 

biomarkers from thousands of genes down to small lists containing less than 20 genes.   

Performing the experiments described above required significant computational 

resources and stable data processing pipelines.  During my PhD studies, I encountered 

significant roadblocks in my ability to generate insights from large RNA sequencing 

datasets in a reasonable timeframe.  As a result, I ported my core workflows into the 

Pegasus workflow management system [2] which allowed me to utilize the grid 

computing resources of the Open Science Grid (OSG) [3].  Chapter 4 discusses the 

development of an RNA sequencing data processing workflow, OSG-GEM, which is 

executable on the OSG infrastructure [4].  The results demonstrate that sequence FastQ 

files can be split into small pieces to process in parallel, and still generate the same result 

as the un-split files.  The results also highlight bottlenecks in this process, as 
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demonstrated by longer computational run time of a single dataset processed on the OSG 

compared to the same dataset processed on the Palmetto Cluster at Clemson University.  

Regardless, this workflow enables users to scale up their experiments to hundreds or 

thousands of samples without overloading their local computing cluster or paying for 

cloud credits.  Chapter 5 discusses the development of the OSG-KINC workflow, which 

enables users to perform genome-wide correlation analysis on the OSG [5].  This 

workflow was critical to generating results with KINC, as thousands of computers are 

necessary to perform this analysis.  Still, this chapter discusses bottlenecks in the GCN 

construction process, such as the need to transfer output from the OSG-KINC workflow 

to a large-memory node that the OSG does not provide.   

In conclusion, this dissertation contributes to science by demonstrating that a 

common systems genetics approach, GCN analysis, can be applied in unique ways as a 

method for biomarker discovery from RNA sequencing data.  The computational 

challenges that I encountered during this work resulted in the need to develop workflows 

that enabled execution of genomics workflows on geographically distributed grid 

computing resources.  By applying these workflows to an animal and a plant case study, I 

identified specific biomarkers that can be used as candidates for functional validation.  

These results demonstrate that a holistic approach of dissecting the basis of complex 

traits can be used to identify a specific set of candidate biomarkers.   
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