We consider the problem of verifying stochastic models of biochemical
networks against behavioral properties expressed in temporal logic terms. Exact
probabilistic verification approaches such as, for example, CSL/PCTL model
checking, are undermined by a huge computational demand which rule them out for
most real case studies. Less demanding approaches, such as statistical model
checking, estimate the likelihood that a property is satisfied by sampling
executions out of the stochastic model. We propose a methodology for
efficiently estimating the likelihood that a LTL property P holds of a
stochastic model of a biochemical network. As with other statistical
verification techniques, the methodology we propose uses a stochastic
simulation algorithm for generating execution samples, however there are three
key aspects that improve the efficiency: first, the sample generation is driven
by on-the-fly verification of P which results in optimal overall simulation
time. Second, the confidence interval estimation for the probability of P to
hold is based on an efficient variant of the Wilson method which ensures a
faster convergence. Third, the whole methodology is designed according to a
parallel fashion and a prototype software tool has been implemented that
performs the sampling/verification process in parallel over an HPC
architecture