903 research outputs found

    Broadband 180 degree universal rotation pulses for NMR spectroscopy designed by optimal control

    Get PDF
    Broadband inversion pulses that rotate all magnetization components 180 degrees about a given fixed axis are necessary for refocusing and mixing in high-resolution NMR spectroscopy. The relative merits of various methodologies for generating pulses suitable for broadband refocusing are considered. The de novo design of 180 degree universal rotation pulses using optimal control can provide improved performance compared to schemes which construct refocusing pulses as composites of existing pulses. The advantages of broadband universal rotation by optimized pulses (BURBOP) are most evident for pulse design that includes tolerance to RF inhomogeneity or miscalibration. We present new modifications of the optimal control algorithm that incorporate symmetry principles and relax conservative limits on peak RF pulse amplitude for short time periods that pose no threat to the probe. We apply them to generate a set of pulses suitable for widespread use in Carbon-13 spectroscopy on the majority of available probes

    Imaging cerebrovascular health using 7T MRI

    Get PDF
    Magnetic resonance imaging is a valuable clinical tool for the visualization of intracranial vasculature. Without exposing patients to ionizing radiation or intravenous contrasts, it can provide multi-modal structural information about the shape, structure, and function of the various vessels involved in stroke and dementia. However, imaging methods are limited by the achieved contrasts and resolutions, as well as the required scan times. Ultra-high field 7T MRI offers increased signal-to-noise ratio and desirable changes in relaxation parameters, therefore promising substantial improvements to existing neurovascular MRI approaches such as MR angiography (MRA) and MR vessel wall imaging (VWI). However, 7T MRI also introduces increased specific absorption rates and reduced homogeneity and extent of the transmit B1 field. Because of the latter, the first research chapter in this thesis (Chapter 3) studies the possibility to increase the extent of this 7T B1+ field into the feeding arteries in the neck using parallel transmission (pTx). The second research chapter (Chapter 4) aims to improve the accelerated acquisition of high-resolution MRA using compressed sensing reconstruction. This facilitates the visualization of the small intracranial arteries which are involved in lacunar infarcts and vascular dementia, which can be achieved within clinical scan times. The final parts of this thesis (Chapters 5-7) focus on a specific intracranial VWI sequence called DANTE-SPACE. A simulation framework for the sequence is first presented in Chapter 5. This framework includes various additional processes such as (pulsatile) tissue motion and B1+ variations to accurately represent the intra- and extra-vascular contrast mechanisms. The simulations are then used for the optimization and comparison of the T2-weighted DANTE-SPACE sequence at 3T, 7T without pTx, and 7T with pTx. The optimizations aim to maximize the contrast between both the blood within and the cerebrospinal fluid surrounding intracranial vessel walls, and the comparison between different field strengths provides a first quantitative indication of the added value of ultra- high field MRI for the DANTE-SPACE sequence

    Non-selective Refocusing Pulse Design in Parallel Transmission for Magnetic Resonance Imaging of the Human Brain at Ultra High Field

    Get PDF
    In Magnetic Resonance Imaging (MRI), the increase of the static magnetic field strength is used to provide in theory a higher signal-to-noise ratio, thereby improving the overall image quality. The purpose of ultra-high-field MRI is to achieve a spatial image resolution sufficiently high to be able to distinguish structures so fine that they are currently impossible to view in a non-invasive manner. However, at such static magnetic fields strengths, the wavelength of the electromagnetic waves sent to flip the water proton spins is of the same order of magnitude than the scanned object. Interference wave phenomena are then observed, which are caused by the radiofrequency (RF) field inhomogeneity within the object. These generate signal and/or contrast artifacts in MR images, making their exploitation difficult, if not impossible, in certain areas of the body. It is therefore crucial to provide solutions to mitigate the non-uniformity of the spins excitation. Failing this, these imaging systems with very high fields will not reach their full potential.For relevant high field clinical diagnosis, it is therefore necessary to create RF pulses homogenizing the excitation of all spins (here of the human brain), and optimized for each individual to be imaged. For this, an 8-channel parallel transmission system (pTX) was installed in our 7 Tesla scanner. While most clinical MRI systems only use a single transmission channel, the pTX extension allows to simultaneously playing various forms of RF pulses on all channels. The resulting sum of the interference must be optimized in order to reduce the non-uniformity typically seen.The objective of this thesis is to synthesize this type of tailored RF pulses, using parallel transmission. These pulses will have as an additional constraint the compliance with the international exposure limits for radiofrequency exposure, which induces a temperature rise in the tissue. In this sense, many electromagnetic and temperature simulations were carried out as an introduction of this thesis, in order to assess the relationship between the recommended RF exposure limits and the temperature rise actually predicted in tissues.This thesis focuses specifically on the design of all RF refocusing pulses used in non-selective MRI sequences based on the spin-echo. Initially, only one RF pulse was generated for a simple application: the reversal of spin dephasing in the transverse plane, as part of a classic spin echo sequence. In a second time, sequences with very long refocusing echo train applied to in vivo imaging are considered. In all cases, the mathematical operator acting on the magnetization, and not its final state as is done conventionally, is optimized. The gain in high field imaging is clearly visible, as the necessary mathematical operations (that is to say, the rotation of the spins) are performed with a much greater fidelity than with the methods of the state of the art. For this, the generation of RF pulses is combining a k-space-based spin excitation method, the kT-points, and an optimization algorithm, called Gradient Ascent Pulse Engineering (GRAPE), using optimal control.This design is relatively fast thanks to analytical calculations rather than finite difference methods. The inclusion of a large number of parameters requires the use of GPUs (Graphics Processing Units) to achieve computation times compatible with clinical examinations. This method of designing RF pulses has been experimentally validated successfully on the NeuroSpin 7 Tesla scanner, with a cohort of healthy volunteers. An imaging protocol was developed to assess the image quality improvement using these RF pulses compared to typically used non-optimized RF pulses. All methodological developments made during this thesis have contributed to improve the performance of ultra-high-field MRI in NeuroSpin, while increasing the number of MRI sequences compatible with parallel transmission.En Imagerie par Résonance Magnétique (IRM), l’augmentation du champ magnétique statique permet en théorie de fournir un rapport signal sur bruit accru, améliorant la qualité des images. L’objectif de l’IRM à ultra haut champ est d’atteindre une résolution spatiale suffisamment haute pour pouvoir distinguer des structures si fines qu’elles sont actuellement impossibles à visualiser de façon non-invasive. Cependant, à de telles valeurs de champs magnétiques, la longueur d’onde du rayonnement électromagnétique envoyé pour basculer les spins des protons de l’eau est du même ordre de grandeur que l’objet dont on souhaite faire l’image. Des phénomènes d’interférences sont observés, ce qui se traduit par l’inhomogénéité de ce champ radiofréquence (RF) au sein de l’objet. Ces interférences engendrent des artefacts de signal et/ou de contraste dans les images IRM, et rendent ainsi leur exploitation délicate. Il est donc crucial de fournir des solutions pour atténuer la non-uniformité de l’excitation des spins, à défaut de quoi de tels systèmes ne pourront atteindre leurs pleins potentiels. Pour obtenir des diagnostics pertinents à très haut champ, il est donc nécessaire de créer des impulsions RF homogénéisant l'excitation de l'ensemble des spins (ici du cerveau humain), optimisées pour chaque individu. Pour cela, un système de transmission parallèle (pTX) à 8 canaux a été installé au sein de notre imageur à 7 Tesla. Alors que la plupart des systèmes IRM cliniques n’utilisent qu’un seul canal d’émission, l’extension pTX permet de jouer différentes formes d’impulsions RF de concert. La somme résultante de ces interférences doit alors être optimisée pour atténuer la non-uniformité observée classiquement. L’objectif de cette thèse est donc de synthétiser ce type d’impulsions, en utilisant la pTX. Ces impulsions auront pour contrainte supplémentaire le respect des limitations internationales concernant l'exposition à des champs radiofréquence, qui induit une hausse de température dans les tissus. En ce sens, de nombreuses simulations électromagnétiques et de températures ont été réalisées en introduction de cette thèse, afin d’évaluer la relation entre les seuils recommandés d’exposition RF et l’élévation de température prédite dans les tissus. Cette thèse porte plus spécifiquement sur la conception de l’ensemble des impulsions RF refocalisantes utilisées dans des séquences IRM non-sélectives, basées sur l’écho de spin. Dans un premier temps, seule une impulsion RF a été générée, pour une application simple : l’inversion du déphasage des spins dans le plan transverse. Dans un deuxième temps, sont considérées les séquences à long train d’échos de refocalisation appliquées à l’in vivo. Ici, l’opérateur mathématique agissant sur la magnétisation, et non pas son état final comme il est fait classiquement, est optimisé. Le gain en imagerie à très haut champ est clairement visible puisque les opérations mathématiques (la rotation des spins) voulues sont réalisées avec plus de fidélité que dans le cadre des méthodes de l’état de l’art. Pour cela, la génération de ces impulsions RF combine une méthode d’excitation des spins avec navigation dans l’espace de Fourier, les kT-points, et un algorithme d’optimisation, appelé Gradient Ascent Pulse Engineering (GRAPE), utilisant le contrôle optimal. Cette conception est rapide grâce à des calculs analytiques plus directs que des méthodes de différences finies. La prise en compte d’un grand nombre de paramètres nécessite l’usage de GPUs (Graphics Processing Units) pour atteindre des temps de calcul compatibles avec un examen clinique. Cette méthode de conception d’impulsions RF a été validée expérimentalement sur l’imageur 7 Tesla de NeuroSpin, sur une cohorte de volontaires sains

    RF Pulse Design for Parallel Transmission in Ultra High Field Magnetic Resonance Imaging

    Get PDF
    Magnetic Resonance Imaging (MRI) plays an important role in visualizing the structure and function of the human body. In recent years, ultra high magnetic field (UHF) MRI has emerged as an attractive means to achieve significant improvements in both signal-to-noise ratio (SNR) and contrast. However, in vivo imaging at UHF is hampered by the presence of severe B1 and B0 inhomogeneities. B1 inhomogeneity leads to spatial non-uniformity excitation in MR images. B0 inhomogeneity, on the other hand, produces blurring, distortions and signal loss at tissue/air interfaces. Both of them greatly limit the applications of UHF MRI. Thus mitigating B1 and B0 inhomogeneities is central in making UHF MRI practical for clinical use. Tailored RF pulse design has been demonstrated as a feasible means to mitigate the effects of B1 and B0 inhomogeneities. However, the primary limitation of such tailored pulses is that the pulse duration is too long for practical clinical applications. With the introduction of parallel transmission technology, one can shorten the pulse duration without sacrificing excitation performance. Prior reports in parallel transmission were formulated using linear, small-tip-angle approximation algorithms, which are violated in the regime of nonlinear large-tip-angle excitation. The overall goal of this dissertation is to develop effective and fast algorithms for parallel transmission UHF RF pulses design. The key contributions of this work include 1) a novel large-tip-angle RF pulse design method to achieve significant improvements compared with previous algorithms; 2) implementing a model-based eddy current correction method to compensate eddy current field induced on RF shield for parallel transmission and leading to improved excitation and time efficiency; 3) developing new RF pulse design strategy to restore the lost signal over the whole brain and increase BOLD contrast to brain activation in T2*-weighted fMRI at UHF. For testing and validation, these algorithms were implement on a Siemens 7T MRI scanner equipped with a parallel transmission system and their capabilities for ultra high field MRI demonstrated, first by phantom experiments and later by in vivo human imaging studies. The contributions presented here will be of importance to bring parallel transmission technology to clinical applications in UHF MRI

    Development of radiofrequency pulses for fast and motion-robust brain MRI

    Get PDF
    This thesis is based on three projects and the three scientific articles that were the result of each project. Each project deals with various kinds of technical software development in the field of magnetic resonance imaging (MRI). The projects are in many ways very different, encompassing several acquisition and reconstruction strategies. However, there are at least two common denominators. The first is the projects shared the same goal of producing fast and motion robust methods. The second common denominator is that all the projects were carried out with a particular focus on the radiofrequency (RF) pulses used. The first project combined the acceleration method simultaneous multi-slice (SMS) with the acquisition method called PROPELLER. This combination was utilized to acquire motion-corrected thin-sliced reformattable T2-weighted and T1-FLAIR image volumes, thereby producing a motion robust alternative to 3D sequences. The second project analyzed the effect of the excitation RF pulse on T1-weighted images acquired with 3D echo planar imaging (EPI). It turned out that an RF pulse that reduced magnetization transfer (MT) effects significantly increased the gray/white matter contrast. The 3D EPI sequence was then used to rapidly image tumor patients after gadolinium enhancement. The third project combined PROPELLER’s retrospective motion correction with the prospective motion correction of an intelligent marker (the WRAD). With this combination, sharp T1-FLAIR images were acquired during large continuous head movements

    Gradient echo-based quantitative MRI of human brain at 7T : Mapping of T1, MT saturation and local flip angle

    Get PDF
    Quantitative MRI (qMRI) refers to the process of deriving maps of MR contrast parameters, such as relaxation times, from conventional images. If the qMRI maps have a high degree of precision and a low degree of bias, they can be compared longitudinally, across subjects, and (ideally) between measurement protocols and research sites. They also provide a more direct biophysical interpretation of the pixel intensities. The increased magnetization of spins at ultra-high field (UHF) strengths of 7T and above could potentially be translated into higher spatial resolution and/or reduced scan time. This thesis tackles UHF-related challenges in qMRI, namely the increased inhomogeneity of the radio frequency (RF) field (B1) and increased specific absorption rate (SAR). The changing relaxation times (i.e. prolonged T1 and shortened T2) also needs to be accounted for.Here, spoiled gradient-recalled echo (GRE) techniques are employed to map (primarily) two structural MR parameters, i.e. the longitudinal relaxation time (T1) and the magnetization transfer (MT) saturation (MTsat). Because of its influence at UHF, emphasis is also put on mapping of the local flip angle. Primarily, qMRI is performed by the inversion of analytical signal equations, as opposed to numerical approaches.The process of implementing and modifying the dual flip angle (DFA) technique in conjunction with an MT-weighted GRE for 7T is described. Implementation is performed within the well-established multi-parameter mapping (MPM) framework and special attention is afforded to the reduction of biases as well as overcoming saftey restrictions imposed by SAR. An approach to obtain high-SNR low-bias flip angle maps at 7T, using the dual refocusing echo acquisition mode (DREAM) technique is also presented. This is important since high fidelity flip angle maps are a prerequisite in DFA-based T1-mapping and recommended for correcting MTsat at UHF. Furthermore, MPRAGE-based techniques are discussed. Firstly, it is demonstrated how to most effectively obtain B1-corrected MPRAGE images of “pure” T1 contrast using a sequential protocol This is followed by a description of T1-mapping using MP2RAGE. Finally, an innovative technique for simultaneous mapping of T1 and the local flip angle is introduced, dubbed “MP3RAGE”

    Field Inhomogeneity Compensation in High Field Magnetic Resonance Imaging (MRI)

    Get PDF
    This thesis concentrates on the reduction of field (both main field B0 and RF field B1) inhomogeneity in MRI, especially at high B0 field. B0 and B1 field inhomogeneity are major hindrances in high B0 field MRI applications. B1 inhomogeneity will lead to spatially varying signal intensity in the MR images. B0 inhomogeneity produces blurring, distortion and signal loss at tissue interfaces. B0 artifacts are usually termed off-resonance or susceptibility artifacts. None of the existing methods can perfectly correct these inhomogeneity artifacts.This thesis aims at developing three-dimensional (3D) tailored RF (TRF) pulses to mitigate these artifacts. A current limitation in the use of 3D TRF techniques, however, is that pulses are often too long for practical clinical applications. Multiple transmission techniques are proposed to decrease pulse lengths and provide an inherent correction for B1 inhomogeneity. Shorter pulses are also more robust to profile distortions from susceptibility effects.Specifically, slice-selective 3D TRF pulses for multiple (or ¡°parallel¡±) transmitters were designed and validated in uniform phantom and human brain experiments at 3 Tesla. A pseudo-transmit sensitivity encoding (¡°transmit SENSE¡±) method was introduced using a body coil transmitter and multiple receivers to mimic the real parallel transmitter experiment. The kz-direction was controlled by fast switching of gradients in a fashion similar to Echo planar imaging (EPI). The transverse plane (kx-ky) was sampled sparsely with hexagonal trajectories, and accelerated with the transmit SENSE method. The transmit SENSE 3D TRF pulses reduced the B1 inhomogeneity compared to standard SINC pulses in human brain scans. The undersampled transmit SENSE pulses were only 4.3ms long and could excite a 5mm thick slice, which is very promising for clinical applications. Furthermore, these pulses are shown by numerical simulation to have promise in correcting through-plane susceptibility artifacts
    • …
    corecore