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Abstract

Broadband inversion pulses that rotate all magnetization components 180◦

about a given fixed axis are necessary for refocusing and mixing in high-
resolution NMR spectroscopy. The relative merits of various methodologies
for generating pulses suitable for broadband refocusing are considered. The
de novo design of 180◦ universal rotation pulses (180◦UR) using optimal con-
trol can provide improved performance compared to schemes which construct
refocusing pulses as composites of existing pulses. The advantages of broad-
band universal rotation by optimized pulses (BURBOP) are most evident for
pulse design that includes tolerance to RF inhomogeneity or miscalibration.
We present new modifications of the optimal control algorithm that incor-
porate symmetry principles and relax conservative limits on peak RF pulse
amplitude for short time periods that pose no threat to the probe. We apply
them to generate a set of 180◦BURBOP pulses suitable for widespread use in
13C spectroscopy on the majority of available probes.
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PACS:

1. Introduction

Many NMR applications require refocusing of transverse magnetization,
which is easily accomplished on resonance by any good inversion pulse sand-
wiched between delays, ie, the standard ∆–180◦–∆ block. For broadband
applications, a universal rotation (UR) pulse that rotates any orientation of
the initial magnetization 180◦ about a given fixed axis is required to refocus
all transverse magnetization components. A simple hard pulse functions as
a UR pulse only over a limited range of resonance offsets that can not be
increased significantly due to pulse power constraints.

Although a great deal of effort has been devoted to increasing the band-
width of inversion pulses, most broadband inversion pulses [1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16] execute only a point-to-point (PP) rota-
tion for one specific initial state, magnetization Mz → −Mz, and are not
UR pulses. However, two PP inversion pulses with suitable interpulse delays
can be used to construct a refocusing sequence [17, 18], which is effectively a
360◦UR pulse. Alternatively, a 180◦UR refocusing pulse can be constructed from
three adiabatic inversion pulses [19] with either pulse length or bandwidth
of the adiabatic frequency sweep in the ratio 1:2:1. More generally, we have
shown that one can construct a UR pulse of any flip angle from a PP pulse
of half the flip angle preceded by its time- and phase-reversed waveform [20].
Thus, a 180◦UR pulse can be constructed from two 90◦PP pulses.

The reliance on composites of PP pulses to construct UR pulses high-
lights the perceived difficulty of creating stand-alone UR pulses. The de
novo design of UR pulses for NMR spectroscopy has received compara-
tively little attention [9, 21], so it is an open question whether the com-
posite constructions using PP pulses achieve the best possible performance.
Yet, the demonstrated capabilities of optimal control for designing PP pulses
[22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35] are equally applicable to
the design of UR pulses [36, 37, 38]. The required modifications to the basic
optimal control algorithm are fairly straightforward [36, 39, 40] and maintain
the same flexibility for incorporating tolerance to variations in experimentally
important parameters, such as RF homogeneity or relaxation.

In this work, we design broadband refocusing pulses by optimizing the
propagator for the required UR transformation. The resulting 180◦BURBOP
pulses (broadband universal rotation by optimized pulses) are compared to
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existing composite refocusing pulse schemes to characterize the conditions
under which one design method might be preferrable to another. In addition,
we introduce new optimal control strategies tailored to take advantage of
specific opportunities available in the design of UR pulses. The culmination
of these efforts is a set of low-power, high-performance broadband refocusing
pulses that satisfy the power constraints of widely available probeheads and
complex multipulse sequences.

2. Optimal control algorithm for 180◦

UR
pulses

A general procedure for creating a desired unitary propagator in an arbi-
trary (closed) quantum system is given in [36, 39, 40, 41]. Time evolution
proceeds according to a matrix exponential of the system Hamiltonian. For
two-level systems, as in many NMR applications involving a single nonin-
teracting spin-1/2 species, this evolution is well-known to be equivalent to
a rotation of the 3D vector representing the state of the system about the
effective applied field [42]. The relatively abstract general procedure for
propagator optimization can be made considerably more transparent in this
case.

2.1. Flavor I (basic vanilla)

The optimal control methodology for generating PP transformations in
two-level systems has been described in detail previously [22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35], with progressive modification to enhance
pulse performance by incorporating various experimental constraints. In each
iteration of the algorithm, one starts with a given initial magnetization M 0,
applies the RF derived for the current iteration, and compares the resulting
final state M f with a desired target state F . This comparison, quantified
in terms of a cost function, allows one to efficiently calculate a gradient for
improving pulse performance in the next iteration. A simple but effective
cost function Φ, which we employ in the present work, is the projection of
the final state onto the target state, the standard inner product 〈F |Mf 〉,
given in this case by the dot product F · M f . Desired RF limits can be
enforced by clipping without degrading the performance of the optimization
[28].

The algorithm for generating UR pulses in the single-spin case is a straight-
forward modification of the PP algorithm. A 180◦UR pulse applied, for exam-
ple, along the y-axis to magnetizationM effects the transformation (Mx,My,Mz) →
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(−Mx,My,−Mz). This is simply three separate PP transformations of the
initial states M 1 = (1, 0, 0), M 2 = (0, 1, 0), M 3 = (0, 0, 1) to their respec-
tive target states F 1 = (−1, 0, 0), F 2 = (0, 1, 0), F 3 = (0, 0,−1). The cost
function comparing the final states M kf (k = 1, 2, 3) at the end of an RF
pulse to the target states is

Φ = F 1 ·M 1f + F 2 ·M 2f + F 3 ·M 3f . (1)

The algorithm proceeds in the standard fashion using this cost function. We
will refer to this as algorithm A.

This simple intuitive modification to the cost is exactly equivalent to an
analogous procedure given in [36] for optimizing the unitary propagator,
which can be seen as follows. The rotation operator RF in 3D corresponding
to the target propagator that generates a 180◦ rotation about the y-axis is
given by

RF =




−1 0 0
0 1 0
0 0 −1


 =




...
...

...
F 1 F 2 F 3

...
...

...


 , (2)

ie, the i th column is the corresponding PP target F i.
The actual rotation operator at the end of a pulse of length Tp is

R(Tp) = R(Tp)




1 0 0
0 1 0
0 0 1




= R(Tp)




...
...

...
M 1 M 2 M 3

...
...

...




=




...
...

...
M 1f M 2f M 3f
...

...
...


 , (3)

with the rotation transforming each column to its associated final state for
the individual PP transformations.

The cost is again given by the projection of the final state onto the target
state, with the inner product

ΦR = 〈RF |R(Tp) 〉 = Tr [RT

F R(Tp)], (4)
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where superscript T denotes the transpose, and the operator Tr returns the
trace (sum of diagonal elements) of its argument. We then have

RT

F R(Tp) =




· · ·F 1 · · ·
· · ·F 2 · · ·
· · ·F 3 · · ·







...
...

...
M 1f M 2f M 3f
...

...
...


 . (5)

The sum over diagonal elements of this matrix product gives Eq. [ 1 ].

2.1.1. Flavor II (symmetry principle)

The formalism for constructing UR pulses from PP pulses [20] provides
additional insight for improving 180◦BURBOP performance. The symmetry of
the construction procedure constrains the resulting rotation axis to the plane
defined by the desired axis and the z-axis [43]. Details of the results which
follow are provided in the Appendix.

For a UR rotation about the x-axis, any nonidealities in the original PP
pulse (for example, due to resonance offset) shift the resulting rotation axis
only in the xz-plane. Given a phase deviation of magnitude δφ from the
desired target state and rotation error δθ compared to the desired rotation
angle, the angle α180UR

that the rotation axis in the xz-plane makes with the
x-axis is small and bounded according to the relation

α180UR
.

√
(δφ90PP

)2 + (δθ90PP
)2 (6)

for small deviations measured in radians.
This has the effect of reducing any phase errors in the original 90◦PP pulse

used for the construction. For example, a 180◦ rotation about any axis in
the xz-plane transforms Iy to −Iy with no phase error. There would be no
phase error in the Ix → Ix transformation, either, but the amplitude of the
final x-magnetization would decrease depending on the angle α180UR

, giving
a cos(2α180UR

) dependence. Similarly, the Iz → −Iz transformation would
have a cos(α180UR

) dependence for the magnitude of the final z-magnetization.
Phase errors are thus the result of deviations, δη, from the ideal 180◦ rotation
angle, which are bounded (see Appendix) according to

δη . 2
√
(δφ90PP

)2 + (δθ90PP
)2 (7)

Larger amplitude errors result from both the displacement of the rotation axis
from the x-axis and deviations from the ideal 180◦ rotation angle. Phase de-
viations in the 90◦PP pulse are reduced in the resulting 180◦UR pulse according

5



to the relation
δφ180UR

. (δφ90PP
)2 + (δθ90PP

)2. (8)

The reduction is quite significant, with δθ90PP
= 1◦ and δφ90PP

of 10◦, 3◦,
and 1◦, for example, giving bounds for δφ180UR

of 1.76◦, 0.17◦, and 0.03◦,
respectively.

For applications requiring high phase fidelity which can afford modest
loss of signal intensity, we therefore incorporate the symmetry principle of
the construction procedure into the optimal control algorithm. For RF pulse
components ux and uy digitized in N time steps, the first half of the pulse is
determined using the basic algorithm A. The second half of the pulse is then
constructed using the time-and phase-reversed components of the first half.
Phase zero for ux leaves it unaffected, while uy is inverted to give

ui+N/2x = uN/2+1−i
x

ui+N/2y = −uN/2+1−i
y (9)

for i = 1, 2, 3, . . . , N/2. We refer to this algorithm incorporating the symme-
try of the construction principle as AS.

2.1.2. Flavor III (time-dependent RF limit)

Peak RF amplitude must remain below probe limits (e.g., available for
13C spectroscopy), but larger RF amplitudes result in improved broadband
performance. For sufficiently short time periods, we note that probe RF
limits can be higher than conservative limits that protect the probe from
arcing under any conditions. Enforcing a lower probe limit for an entire pulse
duration can sacrifice performance unnecessarily. We therefore introduce a
time-dependent RF field limit to allow increased RF amplitude for short time
intervals and achieve improved performance. Empirically, we find that low
RF limits force algorithm A to request higher RF amplitude in the middle
of the pulse for improved performance. We therefore allow a higher RF limit
for a short time during the middle of the pulse. We refer to this algorithm
as AT , or, if it is also combined with the symmetry principle, as AS,T .

3. BURBOP compared to refocusing with PP pulses

Performance of the new 180◦BURBOP pulses designed using optimal control
are compared with previous methods for generating refocusing pulses, start-
ing with those that can be constructed from 90◦PP pulses. We then consider
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the refocusing performance of two 180◦PP pulses. In both these comparisons,
RF amplitudes are limited to a relatively conservative peak value of 11 kHz
(22.7 µs hard 90◦ pulse) for widespread use in 13C spectroscopy. Finally,
we present a set of 180◦BURBOP pulses that utilize the higher RF power lim-
its allowed for short time intervals to increase the maximum RF amplitude
from 11 kHz to 15 kHz (16.7 µs hard pulse) in the middle of the pulse. The
performance of these pulses is compared with the composite adiabatic pulse
scheme [19] implemented as a smoothed Chirp pulse [44, 45] in standard
Bruker software .

3.1. Algorithms A and AS

3.1.1. Two 90◦PP pulses

A previously published 90◦PP pulse with exceptional performance [30] was
used to construct a 180◦UR pulse according to the procedure in [20]. This 1 ms
constant amplitude phase-modulated excitation pulse transforms greater than
99% of initial z-magnetization to the x-axis over a resonance offset range of
50 kHz for RF amplitude anywhere in the range 10–20 kHz. For all but
the lowest RF amplitudes, the transformation is greater than 99.5%. Phase
deviations of the excited magnetization from the x-axis are less than 2◦–3◦

over almost the entire optimization window, with minor distortions in the
6◦–9◦ range at the lowest RF values.

The upper panel of Fig.1 depicts the performance of the constructed pulse
composed of two 1 ms 90◦PP pulses. As expected from the discussion in §2.1.1,
the signal intensity of the transformed magnetization is decreased slightly
compared to the original PP pulse, but the phase relative to the target axis is
improved considerably. The construction procedure rotates phase deviations
relative to the target axis out of the transverse plane, reducing spectral phase
errors that are the primary interest. Increased phase dispersion is allowed in
a plane orthogonal to the x-y plane, resulting in reduced projected transverse
magnetization.

In comparison, the basic algorithm A, which optimizes the UR propagator,
results in a pulse with performance shown in Fig. 1b that is more consistent
with the performance characteristics of the 90◦PP pulse used for the UR con-
struction in Fig. 1a. Thus, algorithm A maximizes signal amplitude, with
phase fidelity secondary, while the construction procedure maximizes phase
fidelity, with signal amplitude secondary.

When the optimization includes a range of RF inhomogeneity/miscalibration,
algorithm A can produce shorter pulses than the construction principle for a
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comparable amplitude performance, as shown in Fig.1c, at the cost of poorer
phase performance. We find empirically that the reduction in pulse length is
50%, 30%, and 15% for RF miscalibration ranges of ±33%,±10%, and ±5%,
respectively. In optimizations that do not include tolerance to RF inhomo-
geneity, there is no reduction in pulse length compared to the construction
procedure.

Finally, algorithm AS utilizes the construction procedure symmetry in
optimizing the UR propagator, producing the pulse performance shown in
Fig. 1d. Algorithm AS provides more ideal phase performance and therefore
can provide an advantage over the construction procedure when tolerance
to RF inhomogeneity is included in the optimization. The choice between
algorithms A and AS depends on the application, whether maximizing signal
amplitude is more important than ideal phase performance.

3.1.2. Two 180◦PP pulses

Two 180◦PP pulses can be used to refocus transverse magnetization [17,
18] by modifying the standard spin-echo sequence. For example, a 90◦PP
excitation pulse of length Tp that produces a linear phase dispersion ∆ωRTp
(0 ≤ R ≤ 1) as a function of offset ∆ω could be followed by τ - 180◦PP
- (τ + RTp) - 180◦PP . The first τ -delay already includes a phase evolution
equivalent to time RTp, which is included in the next delay of the standard
spin-echo. The second inversion pulse then compensates the phase errors of
the first [14], which is unnecessary if a single 180◦UR is employed. A shorter
sequence for this example is (τ − RTp) - 180◦PP - τ - 180◦PP . The resulting
modified spin-echo procedures rotate magnetization 360◦ and are not UR
inversions, but this is not an issue for refocusing.

BIP [14] and BIBOP [15, 16] pulses are optimized to provide exceptional
performance as 180◦PP pulses, which translates to similar performance when
incorporated into the above refocusing scheme. There is little room for im-
proving the refocusing performance of two 180◦PP pulses. A similar conclusion
was reached in the context of relatively high bandwidth selective pulses [46].
On the other hand, a single 180◦UR pulse can be simpler to incorporate into
complex pulse sequences with respect to adjusting the timings and synchro-
nization among various pulses. Conventional hard 180◦ pulses can be easily
replaced in an existing sequence by 180◦BURBOP pulses without further change
of the pulse sequence. By contrast, incorporating two 180◦PP pulses can re-
quire the adjustment of phases and a correspondingly detailed understanding
of the pulse sequence.
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We therefore find at most a modest advantage in using algorithms A or AS

to generate a 180◦UR pulse compared to the overlapping spin-echo sequence
using optimized 180◦PP pulses. However, incorporating a time-dependent RF
limit into the optimal control algorithm does provide a distinct advantage for
generating a single 180◦UR pulse compared to existing pulses, as illustrated in
what follows.

3.2. Algorithms AT and AS,T

Broadband refocusing bandwidths of∼ 50 kHz, sufficient for high-field 13C
spectroscopy, are readily achieved using any of the pulse schemes discussed
so far. The peak RF power required for the pulses is well-within hard-pulse
power limits for modern high resolution probes. However, in multipulse se-
quences, repeated application of what might be deemed a modest power level
for a single pulse can be a problem if the total energy delivered to the sample
(integrated power) is too high. There are also limits on the total energy
that can safely be delivered to a given probe. For these reasons, the most
general and widespread applications impose peak power levels that are more
conservative than what might be necessary for broadband refocusing using a
typical probe. We therefore incorporate a time-dependent RF limit into the
optimal control algorithms to keep peak power low for most of the pulse, but
allow short increases in this limit where it can have the most benefit. We
utilize algorithms AT and AS,T (defined in §2.1.2) to investigate the possibil-
ity of generic broadband refocusing pulses suitable for use with any standard
probehead in any pulse sequence.

3.2.1. Three adiabatic inversion pulses

The best broadband refocusing performance available in the standard
Bruker pulse library satisfying the required conservative pulse power limits is
obtained using the pulse designated Chirp80 [45]. This pulse is constructed
from three adiabatic inversion pulses with pulse lengths in the ratio 1:2:1
[19]. It utilizes for its shortest element a 500 ms smoothed chirp pulse [44]
with 80 kHz sweep. The first 20% of the pulse rises smoothly to a maximum
constant RF amplitude of 11.26 kHz according to a sine function before de-
creasing in the same fashion to zero during the final 20% of the pulse. The
final pulse is thus 2 ms long.

Maintaining this pulse length and mindful of the given conservative peak
RF amplitude, we designed the set of four pulses listed in Table 1. For
most of the pulse, the nominal RF amplitude is a constant 10 or 11 kHz. A
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maximum RF amplitude of 15 kHz is applied for 60 µs in the middle of the
pulse, as illustrated in Fig.2. This short increase in pulse amplitude provides
significant improvement in pulse performance compared to Chirp80.

The amplitude profile shown in Fig. 2 is reminiscent of the hyperbolic
secant pulse [6], which maintains a low amplitude for most of the pulse with a
peak in the middle. All four pulses show excellent performance over the listed
ranges in offset and RF field inhomogeneity/miscalibration. Performance is
comparable to the performance shown in Fig. 1 for higher power, constant
amplitude pulses with nominal peak RF of 15 kHz. Pulse 4 provides the
most relevant comparison, since it has a similar range of tolerance to RF
inhomogeneity. As expected from the earlier results for algorithms A and
AS, the best amplitude performance is obtained by algorithm AT and the
best phase performance by algorithm AS,T

Figure3 compares theoretical performance of pulses 1 and 4 from Table 1 to
the Chirp80 pulse. The new pulses significantly improve phase performance
over the targeted range of offsets and RF inhomgeneity/miscalibration. Ad-
ditional quantitative comparison between pulse 4 and Chirp80 are provided
in Figs.4 and 5, which also show the excellent agreement between simulations
and experimental pulse performance. Improvements in lineshape and phase
that are possible using the new pulses are shown in Fig. 6.

Pulse Algorithm RFnominal RFmax Inhomogeneity Transformation Error
(kHz) (kHz) optimization (amplitude) (phase)

1 AT 11 15 ±10% < 0.2% < 2◦

2 AS,T 11 15 ±15% < 0.9% < 0.3◦

3 AS,T 10 15 ±15% < 1.5% < 0.5◦

4 AS,T 11 15 ±25% < 2% < 0.8◦

Table 1: Four pulses optimized to execute a 180◦ universal rotation about the y-axis over
resonance offsets of 50 kHz and RF field inhomogeneity listed in column 5. All pulses are
2 ms long. For all but 60µs, pulse RF is constant at the value RFnominal, increasing to
RFmax in the middle of the pulse (see Fig. 2). Amplitude errors in the transformation
are the maximum deviation from the target magnetization over the optimized ranges of
resonance offset and RF inhomogeneity, expressed as a percent. Similarly, phase errors
represent the maximum deviation from the target phase. Performance of pulses 1 and 4
are shown in more detail in Fig. 3
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4. Experiment

All experiments were implemented on a Bruker 750 MHz Avance III spec-
trometer equipped with SGU units for RF control and linearized amplifiers,
utilizing a triple-resonance PATXI probehead and gradients along the z-axis.
Measurements are the residual HDO signal in a sample of 99.96% D2O doped
with CuSO4 to a T1 relaxation time of 100 ms at 298◦ K. Signals were obtained
at offsets between −25 kHz to 25 kHz in steps of 500 Hz. To demonstrate the
tolerance of the pulses to RF inhomogeneity/miscalibration, the experiments
were repeated with RF amplitude incremented by ±15% and ±25% relative
to the nominal maximum RF amplitude for each pulse (15 kHz for pulse 4
of Table 1, 11.26 kHz for Chirp80). To reduce the effects of RF field inho-
mogeneity within the coil itself, approximately 40 µl of the sample solution
was placed in a 5 mm Shigemi limited volume tube.

5. Conclusion

We have presented three optimal control algorithms for the de novo de-
sign of universal rotation pulses, applied specifically to inversion. The most
noteworthy innovations for NMR spectroscopy are inclusion of the construc-
tion principle discovered in [20] and a time-dependent or “floating” limit
on the peak RF allowed during the pulse. The new algorithms result in
improved performance compared to existing UR pulses constructed as com-
posites of point-to-point pulses. The methodology is very general, and fur-
ther improvements in the design of robust universal rotation pulses can
be anticipated. The new pulses are implemented in the Bruker pulse li-
brary and will also be made available for downloading from the website
http://www.org.chemie.tu-muenchen.de/glaser/Downloads.html.
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6. Appendix

The results of section 2.1.1 were derived as follows.

6.1. Euler angles

The rotation of a vector can be represented as the composition of three el-
ementary (Euler) rotations about the fixed axes used to represent the vector:
rotation by angle ψ about the z-axis followed by rotation θ about the x-axis
and rotation ϕ about the z-axis. Using the notation cβ = cos β, sβ = sin β,
and Rk(β) for a rotation by angle β about axis k, we have

Rz(ψ) =




cϕ −sϕ 0
sϕ cϕ 0
0 0 1




Rx(θ) =




1 0 0
0 cθ −sθ
0 sθ cθ




Rz(ϕ) =




1 0 0
0 cθ −sθ
0 sθ cθ


 (10)

giving

R = Rz(ϕ)Rx(θ)Rz(ψ)

=




cψcϕ − cθsψsϕ −cϕsψ − cψcθsϕ sθsϕ
cθcϕsψ + cψsϕ cψcθcϕ − sψsϕ −cϕsθ

sψsθ cψsθ cθ




=




R11 R12 R13

R21 R22 R23

R31 R32 R33


 (11)

The Euler angles describing the rotation are thus

θ = cos−1[R33 ]

ϕ = tan−1[R13/(−R23) ]

ψ = tan−1[R31/R32 ] (12)

Consider the rotation matrix W that produces the 90◦PP transformation
Iz → −Iy. For initial Iz, the first z-rotation has no effect. Angle θ therefore
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gives a direct comparison with the desired rotation angle of 90◦, while ϕ gives
the phase deviation from the target state −Iy. W also rotates initial states
Ix and Iy to final states that can be arbitrary in the design of the original
PP transformation. This provides a great deal of flexibility in designing PP
transformations compared to UR transformations, which must rotate each
initial state to a specific final state. For an ideal 90◦UR rotation about the
x-axis, ψ would be zero. It thus provides the orientations of the rotated
vectors WIx and WIy in the plane orthogonal to the final state WIz.

The pulse that generates a 180◦UR transformation from this particular 90◦PP
pulse is constructed from the phase-inverted pulse, denoted by 90PP , followed
by the time-reversed (tr) pulse 90trPP [20]. At a resonance offset −ν, we have
the corresponding rotation operators

W tr(−ν) = Rz(180)W
−1(ν)Rz(180)

=




W11 W21 −W31

W12 W22 −W32

−W13 −W23 W33


 (13)

and

W (−ν) = Rx(180)W (ν)Rx(180)

=




W11 −W12 −W13

−W21 W22 W23

−W31 W32 W33


 , (14)

where Rz(180) is zero except for (−1,−1, 1) along the diagonal, Rx(180) is
similar, but with (1,−1,−1) along the diagonal, and W−1 is the transpose
of W .

The 180◦UR rotation matrix W̃ (−ν) = W tr(−ν)W (−ν) therefore differs
from the identity matrix to the extent terms in the product for each matrix
element have different signs. For example, W̃11 is equal to W 2

11 −W 2
21 +W 2

31

rather than W 2
11 + W 2

21 + W 2
31 = 1. Adding and subtracting W 2

21 in the

expression for W̃11 gives 1−2W 2
21. Proceding similarly, all the matrix elements

can be written in terms of their difference from zero (off-diagonal) or ±1
(diagonal) to obtain

W̃ =




1− 2W 2
21 2W21W22 2W21W23

−2W21W22 −1 + 2W 2
22 2W23W22

2W21W23 −2W22W23 −1 + 2(W 2
13 +W 2

33)


 (15)
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for the 180◦UR rotation operator W̃ at resonance offset −ν in terms of elements
Wij of the 90◦PP rotation operator at offset ν. Differences in performance
at offsets ±ν are small to the extent the PP optimization is successful in
generating uniform performance over a symmetric range of resonance offsets.

The Euler angles for W̃ obtained using Eq. [ 12 ] give ϕ̃ = ψ̃. This result

provides geometric insight into the performance of W̃ . Rotation about the
z-axis followed by 180◦ rotation about x then rotation by the original amount
about z will return x to x and send y and z to −y and −z, respectively. The
deviation from the ideal goal of a 180◦ rotation determines the errors in the
180◦UR transformation. For initial Ix, the phase angle φ for the rotated state

W̃Ix relative to the target state Ix is tanφ = W̃21/W̃11. Using Eq. [ 11 ] and
adapting our earlier notation to c̃β = cos β̃, etc., gives

tanφ =
c̃ψs̃ψ (1 + c̃θ)

c̃2ψ (1− c̃θ tan
2 ψ̃)

= tan ψ̃
1 + c̃θ

1− c̃θ tan
2 ψ̃

(16)

The extrema for tanφ as a function of ψ̃ occur for d(tanφ)/dψ̃ = 0. There
are two solutions, one of which is an inflection point and the other producing
a maximum for tan ψ̃ = −c̃−1/2

θ , so that

tanφmax =
1 + c̃θ

2
√
−c̃θ

(17)

According to Eq. [ 12 ] and Eq. [ 15 ],

cos θ̃ = W̃33

= −1 + 2(W 2
13 +W 2

33)

= −1 + 2(s2θ s
2
ϕ + c2θ)

= −1 + 2(c2δθ s
2
ϕ + s2δθ), (18)

where we have substituted θ = π/2 + δθ.
Both δθ and ϕ are small for a good 90◦PP pulse. Expanding cδθ ≈ 1 −

(δθ)2/2, sϕ ≈ ϕ, sδθ ≈ δθ, performing the multiplications in Eq. [ 18 ], and
keeping terms to second order gives, with θ̃ = π + δθ̃,

cos θ̃ ≈ −1 + 2 (δθ2 + ϕ2)

14



cos δθ̃ ≈ 1− 2 (δθ2 + ϕ2)

1− δθ̃2/2 ≈ 1− 2 (δθ2 + ϕ2)

δθ̃ ≈ 2
√
δθ2 + ϕ2. (19)

Thus, the deviation δθ̃ from the ideal 180◦UR rotation angle is slightly more
than twice the deviation δθ from the ideal 90◦PP rotation angle.

Using Eq. [ 19 ] for cos θ̃, the small-angle approximation for tanφ, and
applying (1− x)1/2 ≈ 1− x/2 for small x to tan ψ̃ = 1/(− cos θ̃ )1/2 gives

tanφmax ≈ φmax .
δθ2 + ϕ2

1− (δθ2 + ϕ2)

≈ δθ2 + ϕ2 (20)

Similarly, for initial Iy, the phase relative to the target −y-axis is tanφ =

W̃12/W̃22, which results in tan ψ̃ being replaced by cot ψ̃ in Eq. [ 16 ]. The
solution for tanφmax then occurs for cot ψ̃ = (− cos θ̃)−1/2, giving the same
bound for φmax as in Eq. [ 20 ].

6.2. Angle/axis parameterization

Alternatively, we can describe a rotation in terms of rotation angle η about
an axis defined by unit vector n̂ to obtain

η = cos−1 TrR− 1

2

nx =
R32 −R23

2 sin η

ny =
R13 −R31

2 sin η

nz =
R21 −R12

2 sin η.
(21)

Applying this to W̃ in Eq. [ 15 ] shows ny = 0, as expected from symmetry
arguments noted in section 2.1.1. The rotation axis n̂ makes an angle α with
respect to the x-axis given by tanα = nz/nx = (W̃21 − W̃12)/(W̃32 − W̃23).
Following arguments similar to those leading to Eq. [ 16 ] gives, for small α,

α ≈ tanα =
2c̃ψ s̃ψ (1 + c̃θ)

2c̃ψ s̃θ
≤ (1 + c̃θ)/s̃θ

≈
√
δθ2 + φ2. (22)
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Here, we have written s̃θ = (1 − c̃2θ)
1/2, substituted from Eq. [ 19 ] keeping

terms to second order, and used the maximum value of one for s̃ψ.

We obtain similarly from Eq. [ 21 ] cos η = −1 + 2W 2
22 = W̃22 after rear-

ranging terms as in the discussion preceding Eq. [ 15 ]. Substituting as above

gives W̃22 = c̃2ψ c̃θ − s̃2ψ. Writing s̃2ψ = 1 − c̃2ψ and employing the maximum
value of one for c̃ψ gives

cos η ≤ cos θ̃ (23)

and the deviation of each angle from the ideal rotation of 180◦ can be rela-
tively quantified as

δη ≤ δθ̃, (24)

with δθ̃ given in terms of the 90◦PP angles in Eq. [ 19 ].
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Figure 1: Theoretical performance of four 180◦UR pulses for inversion of magnetization
about the y-axis, designed using different algorithms. The first two columns show the
transfer efficiency for the labeled transformations relative to ideal or complete transfer.
The last column displays phase deviation in degrees relative to the labeled target state.
The nominal peak RF amplitude for all the pulses is B0

1
= 15 kHz, optimized to perform

over a resonance offset range of 50 kHz and variation in RF homogeneity/calibration of
±33%. All pulses are constant amplitude with the exception of pulse b), which deviates
from the maximum for less than 10% of the pulse. a) constructed from the 1 ms 90◦PP

pulse of Ref. [30] preceded by its time- and phase-reversed waveform [20], pulse length
Tp = 2 ms. b) algorithm A, Tp = 2 ms. c) algorithm A, Tp = 1 ms. d) algorithm AS ,
which incorporates the symmetry principle used in a), Tp = 2 ms.
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Figure 2: The amplitude and phase of 180◦UR pulse 4 from Table 1 obtained using algorithm
AS,T . A conservative limit of 11 kHz for the peak RF applied for 2 ms is relaxed to allow a
safe peak of 15 kHz for 60µs. The pulse is amplitude-symmetric and phase-antisymmetric
in time, incorporating the symmetry of the construction procedure from Ref. [20].
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Figure 3: Similar to Fig. 1, but the maximum RF amplitude is allowed to float for a
sufficiently short time period, giving the reduced-power pulse in Fig. 2. All three pulses
are designed to operate over a resonance offset of 50 kHz and a range of variation in RF
homogeneity/calibration relative to the ideal B0

1
, as given in Table 1. a) pulse 1 of Table

1, RF tolerance ±10%. b) pulse 4 of Table 1, RF tolerance ±25%. c) composite adiabatic
refocusing [19] using pulse Chirp80 from the Bruker pulse library [45].
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Figure 4: Further quantitative detail for the Mx → −Mx transformation from Fig. 3b for
pulse 4 of Table 1 (black) and Fig. 3c for Chirp80 (red), plotted for RF scalings of ±15%
and ±25% relative to the nominal maximum RF amplitude at 0% (15 kHz, pulse 4 and
11.26 kHz, Chirp80). Theoretical values for the inversion profile are plotted on the left as
a function of resonance offset, with phase deviation ϕ relative to the target −Mx plotted
on the right. Adiabatic Chirp80 produces significant phase errors within the bandwidth
for all RF scalings, in contrast to the almost ideal performance of the optimal control
180◦BURBOP pulse.
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Figure 5: Experimental measurements of the inversion profile (left) and phase deviation
(right) corresponding to the simulations in Fig. 4, showing excellent agreement between
the experimental and theoretical performance of the pulses.
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Figure 6: Experimental lineshapes comparing optimal control 180◦UR pulse 4 of Table 1
and adiabatic Chirp80 at a resonance offset of −25 kHz for RF scalings of ±15% and
±25% relative to the nominal maximum RF amplitude of 15 kHz at 0%. Simulations (not
shown) are in excellent agreement with the experiments, as already shown in Figures 4
and 5. Chirp80 produces significant experimental phase errors of 20◦, 15◦, 9◦, 11◦, and
5◦(reading left-to-right across the RF scalings in the figure) in contrast to the experimental
performance of 0.7◦, 0.7◦, 0.9◦, 2.6◦, 2.5◦ for the optimal control 180◦BURBOP pulse.
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