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Abstract 

This thesis is based on three projects and the three scientific articles that were              

the result of each project. Each project deals with various kinds of technical             

software development in the field of magnetic resonance imaging (MRI). The           

projects are in many ways very different, encompassing several acquisition and           

reconstruction strategies. However, there are at least two common         

denominators. The first is the projects shared the same goal of producing fast             

and motion robust methods. The second common denominator is that all the            

projects were carried out with a particular focus on the radiofrequency (RF)            

pulses used.  

The first project combined the acceleration method simultaneous multi-slice         

(SMS) with the acquisition method called PROPELLER. This combination was          

utilized to acquire motion-corrected thin-sliced reformattable T2-weighted and        

T1-FLAIR image volumes, thereby producing a motion robust alternative to 3D           

sequences.  

The second project analyzed the effect of the excitation RF pulse on            

T1-weighted images acquired with 3D echo planar imaging (EPI). It turned out            

that an RF pulse that reduced magnetization transfer (MT) effects significantly           

increased the gray/white matter contrast. The 3D EPI sequence was then used            

to rapidly image tumor patients after gadolinium enhancement.  

The third project combined PROPELLER’s retrospective motion correction        

with the prospective motion correction of an intelligent marker (the WRAD).           

With this combination, sharp T1-FLAIR images were acquired during large          

continuous head movements.  
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MRI Magnetic Resonance Imaging 

B​
0 

Main magnetic field 

B​
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Radiofrequency magnetic field 
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CPMG Carr Purcell Meiboom Gill 

ETL Echo Train Length  

EPI Echo Planar Imaging  
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Enhanced Reconstruction 
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Controlled Aliasing in Parallel Imaging Results in Higher 
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PMC Prospective Motion Correction 
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M​
z 
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M​
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MT Magnetization Transfer 
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2D Two Dimensional  

3D Three Dimensional  
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SPGR Spoiled Gradient Echo 
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1 Thesis Overview 

This thesis begins with a popular science introduction, followed by a chapter on the              

background and theory, which covers MRI physics, focusing on the details that are             

relevant to the methods and algorithms used in the studies. Since one of the main               

intended learning outcomes of this PhD project was an understanding of           

radiofrequency pulses, the background and theory chapter begins with an          

introduction to fundamental radiofrequency theory. It then continues with a          

rundown SMS acceleration methods. Finally, the chapter details issues of motion           

during the process of acquiring an image. Since the author is employed at a              

neuroradiology department, the thesis has a strong focus on neurological imaging           

and its specific problems with head motion.  

Next, the aim of the thesis is stated, which explains the hypothesis and goals of the                

three sub-projects and subsequent scientific papers. The following chapter         

overviews several of the methodological choices made during the three projects,           

including additional results to support the motivations. The final chapter provides           

an overview of the results and discussion, which also includes unpublished           

research results, future developments and thoughts on the limitations of the           

projects.  
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2 Popular Science Introduction 

Anyone who has undergone an MRI examination will probably tell you that it was              

loud and fairly boring (or even claustrophobic). An MRI scan can last up to an               

hour, during which time you have to lie perfectly still. If that sounds difficult,              

imagine that you are a kid that cannot sit still for 30 seconds or that you have a                  

disease that makes it hard to remain stationary. In other words, an MRI procedure              

would be better if it was faster and not so sensitive to motion.  

MRI is a technique used to look inside the body by placing it inside the bore of a                  

large magnet where magnetic fields are bounced against it. This makes it possible             

to locate and recognize different tissues. The MRI machine typically produces cross            

sections of the body, which can be used to identify various diseases. There are three               

examples of different cross sections shown in Figure 1. There exists a wide variety              

of different types of MRI images; for example, water can be bright in one and dark                

in another type of image. By combining information from several images, a            

radiologist can identify diseases.  

 

Figure 1.​ Three cross sections through the author's brain. 

In the last 70 years since the birth of MRI, physicists, mathematicians and             

engineers have been able to greatly increase the speeds and robustness at which an              

MRI scanner operates. Nevertheless, it can take between 1 to 10 minutes to             

produce an image. One can imagine how still a person would have to remain if it                

took 10 minutes to take their photograph with a regular camera. MRI has the same               
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problem; the patient must remain as still as possible for those 10 minutes.             

Otherwise, the images become blurry and corrupted.  

This book revolves around three scientific articles, all of which are included at the              

end of the book. They each describe a particular step to further improve the              

methods used to image the head with an MRI machine and tackle both the              

slowness of the MRI and its sensitivity to motion.  

The first article is about a seemingly simple trick that has been used by other               

researchers to reduce the time it takes to produce an MRI image by up to 15 times:                 

taking several pictures at the same time. When shooting a large number of pictures              

with an old analog camera at high speed, the process is significantly slowed down              

by winding the film roll to produce a fresh frame. The process would go much               

faster if it was possible to shoot several of the images on the same frame. This                

would produce overlaid images on each frame, which might have artistic qualities            

but would not be very informative. However, if pictures are taken at the same time               

with an MRI camera, which is a very different machine than an analog one, it is                

possible to disentangle the overlaid images and construct them as separate pictures            

(see Figure 2). 

 

Figure ​2.​ Images from two locations in the body (a) are taken at the same time. 

They are overlaid on each other (b), but can be separated (c).  

This method is called ​simultaneous multi-slice or SMS for short. In this project,             

SMS was used for the first time to speed up a specific technique of producing               

images that are less sensitive to movement, called PROPELLER. The PROPELLER           

technique divides the imaging process into shorter steps and takes many           

low-resolution images, during which there is no time to move. These snapshot            

images are then combined into a high-resolution image.  
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The second project demonstrates how a rapid imaging method can be utilized if             

used correctly. Images like the ones in Figure 1 covering the whole head are              

scanned in just 24 seconds. Speeding up the MRI scans unlocks many possibilities             

both for science and medicine. Scientists trying to map and understand how the             

mind works can obtain extremely high-resolution images of the brain. At hospitals,            

faster scans can lead to increased patient comfort, since it reduces the time spent in               

the scanner. In some cases, higher image quality can be achieved, which in turn              

helps the radiologists make more accurate diagnoses.  

The third article focuses on MRI images taken when the person in the scanner              

moves too much. This is accomplished by tracking the head with a small device              

attached to the person's nose. The scanner can then adapt to the position of the               

head and produce sharp images of it even though when it moves. In the future,               

such a technique could be used to take MRI images of patient groups that find it                

difficult to lie still, such as kids.  
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3 Background and Theory 

In this chapter the theory of the three main topics of the thesis are explored; the                

topics being: RF pulses, acceleration via SMS, and motion correction. The chapter            

begins with a section on radio frequency pulses, which starts from the basic MRI              

physics and goes through several of the methods and techniques later used in the              

three projects of the thesis. The second section reviews SMS acceleration;           

including: multiband RF pulses, reconstruction methods, and applications of SMS.          

The last section discusses motion correction, with a focus on two techniques used             

in subsequent studies.  

3.1 Radio Frequency Pulses  

3.1.1 An abbreviated history of MRI 

Following Rabi’s 1937 experiments investigating the magnetic moments of atoms          

and nuclei ​(1)​, nuclear magnetic resonance in bulk matter was discovered in 1945             

by two independent research groups – Felix Bloch’s group at Harvard and by             

Edvard Purcell’s group at Stanford ​(2,3)​. Even though they were working on            

similar research, Bloch and Purcell had different backgrounds and therefore          

addressed the subject in different ways. Bloch’s interpretation was based on           

classical physics including induction and magnetic fields. Purcell, on the other           

hand, viewed the phenomenon as quantum mechanical with quantized states and           

energy transfers. More details on the history of these Nobel prize-winning           

discoveries that laid the ground for what MRI has become today can be found in               

Ref. ​(4)​. The two approaches (the classical and the quantum mechanical) have            

since been used to explain the concept of MRI, both in textbooks and lectures,              

sometimes separate and sometimes in a confusing mix. The more intuitive classical            

view of Bloch ​(5) is fully adequate to explain the vast majority of MRI phenomena               

(6) and will, therefore, be used in the following short introduction to the physics of               

MRI. 

3.1.2 Exciting spins and receiving their signal 

At the heart of MRI is the hydrogen (​1​H) proton. It is abundant in the human body                 

due to its inclusion in both water and fat. It also possesses a number of practical                
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properties making it ideal to use for MR imaging. The proton exhibits an intrinsic              

quantum mechanical property called ​nuclear ​spin and is associated with a           

magnetic dipole moment (μ). The magnetic moment of a particle is sometimes            

called a ​spin or, if there are multiple, ​spins​. The classical view of the proton is that                 

of an electrical charge experiencing constant angular momentum (i.e. a spinning           

charge) which then gives rise to the magnetic dipole moment and corresponding            

magnetic field. This magnetic moment bears many similarities with that of a            

compass needle, for example, it has a direction with a north and south pole. It               

turns out that one can gain some intuition about the MRI signal by using the               

compass as a proxy for the proton.  

If a compass needle (Figure 3A) is placed in an external magnetic field, like the               

earth’s magnetic field, it will experience torque, start to oscillate, and eventually            

align itself with the external field (Figure 3B). The needle can be made to oscillate               

again by moving a bar magnet in its vicinity, creating a time-varying magnetic field              

(Figure 3B). If the rate of change (frequency) of this magic field matches the              

natural frequency of the compass needle, its oscillations will be the largest and the              

system will be in so-called ​magnetic resonance​.  

 

Figure 3.​ ​(A)​ A compass needle;​ (B)​ an oscillating compass needle, coming to 

rest in an external magnetic field; and ​(C)​ a moving bar magnet makes the 

needle oscillate again.  

The moving bar magnet can be replaced by a coil with a time-varying current              

running through it, creating an equivalent time-varying magnetic field (Figure 4A).           

If the current is turned off, the needle will continue to oscillate for a short time                

period. While it oscillates it will create its own time-varying magnetic field which,             

in turn, will induce a measurable current in the coil (Figure 4B).  
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If a proton is placed in an external magnetic field, such as when a person enters an                 

MRI scanner, it will behave very similarly to the compass needle. It will also start               

to oscillate, but in a three-dimensional motion known as precession (Figure 5B).            

Precession is a type of motion usually illustrated with a tilting spinning top slowly              

drawing a circle with its tip. The rate, or frequency, of precession (ω) of the proton                

(i.e., how fast the spinning top would draw one circle) can be calculated using the               

Larmor equation:  

 B                                                                   [1]ω = γ 0  

where ω is in MHz and B​
0

is the strength of the external magnetic field in Tesla (T).                  

The gyromagnetic ratio (γ) is 42.58 MHz/T for the hydrogen proton.  

 

Figure 4.​ ​(A)​ A varying current running through a coil creates a varying 

magnetic field that makes the compass needle oscillate. ​(B)​ When the current is 

turned off, the oscillating needle induces a current in the coil.  

While the compass needle eventually comes to rest, the hydrogen protons in the             

body are constantly disturbed by the effects of molecular motion, randomly and            

magnetically interacting with each other and other molecules (Figure 5C). The           

magnetic moments, or spins, in a sample of tissue will be randomly distributed             

outside of B​
0​. However, when placed in B​

0
(i.e., when entered into the MRI              

scanner) their interactions will have a slight tendency to align the spins with the              

external field, slightly skewing the distribution in the direction of B​
0 ​(Figure 5D).          

 
  

This effect, when spins go from any orientation to a so-called equilibrium state, is              

called T1 relaxation. When all magnetic moment vectors are added together in the             

equilibrium state, most of them are cancelled out. However, the slight skewness            

gives the sample a net magnetization vector, M, with a maximum initial value of              

M​
0​, which is what is measured by an MRI scanner.  
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According to convention, the spins are placed in a coordinate system (x´, y´, z),              

where z is in the direction of B​
0​. To make things easier, a rotating coordinate               

system is also defined (x, y, z), where the xy-plane (also called the transverse plane)               

rotates with the spins at the Larmor frequency. In this coordinate system, M can              

have components in each direction: M​
z​, M​

x
and M​

y​. The sum of M​
x

and M​
y

is                

denoted as M​
xy​.  

 

Figure 5.​ ​(A)​ A water molecule with two hydrogen atoms and two spins of the 

hydrogen protons in orange. ​(B)​ When the water molecule is placed in an 

external magnetic field (B​
0​) the spins start to precess. ​(C)​ Due to molecular 

interactions, the spins continuously reorient themselves with a slight tendency 

towards the direction of B​
0​. ​(D)​ If all vectors of a voxel, representing the 

magnetic moments of spins, of a voxel are placed on the same origin they will 

form an almost random 3D distribution. However, the spins’ tendency to align 

toward B​
0​ creates a small net magnetization (M​

0​) in the same direction.  

In order to measure M, it requires a component perpendicular to B​
0​, in the              

xy-plane. This can be achieved with the same principle as with the compass needle.              

A time-varying magnetic field, generated by a coil, at the correct frequency will             

resonate with the spins, effectively rotating their orientations. The same way B​
0

            

exerts a torque on the spins, another magnetic field (B​
1​) applied perpendicular to             

B​
0

can exert torque and rotate the spins. The torque is only effective, however, if B​
1

                

rotates with the same frequency as the spins (i.e., the resonance condition is met).              

Consequently, this frequency can be calculated with the Larmor equation (Eq. [1]).            

B​
1

can be much weaker than B​
0

as long as it is in resonance with the spins. After                  

some time the whole spin distribution is rotated around B​
1​, and M now has a               

component perpendicular to B​
0 ​(Figure 6). The rotation of the spins away from   

 
         

their equilibrium position, into the xy-plane, is called ​excitation and the angle            

between z and M is called the ​flip angle ​(FA).  
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Figure 6.​ When B​
1​ is applied perpendicular to B​

0​, the net magnetization is tipped 

away from the longitudinal axis.  

When the B​
1

field interacts with the body, it does not only interact with the spins                

around the Larmour frequency; in fact, most of its energy results in the heating of               

the tissue. The MRI machine limits its RF energy output to avoid any dangerous              

tissue heating. The amount of heating is typically characterized by the specific            

absorption rate (SAR). SAR is an estimate of how much energy has been absorbed              

over time and it is proportional to the square of B​
1 ​and B​

0​, and the bandwidth of B​
1

          
 

      
 

(7)​.  

To summarize, the signal measured with an MRI machine comes from the            

magnetic moments (spins) of protons in the hydrogen atom. In order for it to be               

measured, a net magnetization (M) has to be created using a strong external             

magnetic field (B​
0​) and the T1 relaxation effect. This magnetization then has to be              

excited from its equilibrium state, pointing along the direction of the B​
0

field (the              

z-direction), into the transversal xy-plane. Excitation can be produced by inducing           

a weak magnetic field (B​
1​) rotating with the same frequency as the spins, or in               

other words, putting the system in magnetic resonance.  

 

3.1.3 The small tip angle approximation  

Application of B​
1

in MR is typically pulsed (i.e., the B​
1

field is turned on and off                 

many times during an image acquisition). Consequently, the relatively short period           

when the B​
1

field is turned on is called an RF pulse. During an RF pulse B​
1

can                  

change amplitude and direction (i.e., phase). The change in amplitude is           
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sometimes called the envelope of the RF pulse. A lot of the work in this thesis                

revolves around the shape of this envelope and how it affects the MR images.  

The frequency response of any RF pulse can be determined, as most MR             

phenomena, by solving the Bloch equations ​(5)​. Here, frequency response refers to            

how a range of frequencies are affected by the RF pulse, in other words, at which                

frequencies resonance occurs and what FA is achieved at these frequencies.  

To gain an intuitive understanding of what will be the result of an RF pulse the                

so-called ​small tip angle approximation can be used ​(8)​. The small tip angle             

approximation is a simplification of the Bloch equations, neglecting T1 and T2            

relaxation, based on the assumption that regardless of the FA applied, M​
z

is left              

almost unchanged. For example, if an RF pulse creates a FA of α, it rotates some of                 

M​
z

into the M​
xy

plane, leaving M​
z

= cos(α)M​
0

and producing M​
xy

= sin(α)M​
0​.              

However, with the small tip angle approximation, M​
z

is always approximately equal            

to M​
0​ and M​

xy​ is equal to αM​
0​.  

The Bloch equations are nonlinear. Linear systems are typically characterized by           

the superposition principle. For the Bloch equations to be linear, the resulting M​
xy

             

magnetization of two RF pulses with FAs a1 and a2 would be the same as the                

resulting M​
xy

magnetization of one RF pulse with the FA of a3 = a1 + a2. This is not                   

the case; for example, the response to a 180° pulse is not the same as the sum of                  

the responses to a 39° and a 141° pulse and this is reflected in the non-linearity of                 

the Bloch equations. However, the response to a 3° is almost the same as the sum                

of the responses to a 1° and a 2° pulse. Which is why the small tip angle                 

approximation works. The solution to the Bloch equations that the approximation           

provides is linear. This enables the use of linear methods to analyse the system.              

More specifically, it enables a Fourier relationship between an RF pulse’s frequency            

response and its envelope. This means that the frequency response of an RF pulse              

is approximately its Fourier transform and that all the properties of Fourier            

transforms can be applied to analyze an RF pulse. For example, it is now clear that                

a sinc (sine cardinal function) shaped RF pulse will have a rectangular frequency             

response since the Fourier transform of a sinc function is a rect (rectangle             

function). The small tip angle approximation is surprisingly accurate at predicting           

the frequency response of RF pulses of FAs up to almost 90°. However, when 90° is                

exceeded the approximation is less accurate.  

The small tip angle approximation has been developed into the concept of            

excitation k-space ​(9)​, based on the same principles as the k-space of an MR image               

(10,11)​. In k-space the encoding gradients draw a trajectory and the received signal             

is placed along this trajectory. In excitation k-space the gradients associated with            
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the RF pulse draw the trajectories and they are weighted by the RF pulse. The               

frequency response is then the Fourier transform of the excitation k-space.  

The concept of excitation k-space is demonstrated in Figure 7 with a simple slice              

selective RF pulse. In Figure 7B the excitation k-space is shown, where the             

gradients of Figure 7A move along the k​
z

plane, which has the units of 1/cm.               

Consequently, the 1D inverse Fourier transform of the excitation k-space is shown            

in Figure 7C.  

 

Figure 7.​ ​(A)​ A slice selective RF pulse and gradient combination (1), with a 

rephasing gradient (2); ​(B)​ the excitation k-space of ​(A)​; and  ​(C) ​the Fourier 

transform of ​(B)​, resulting in the slice profile of ​(A)​ as predicted by the small 

tip-angle approximation. 

This example might seem trivial; however, excitation k-space can also be used to             

analyze more complicated trajectories such as the one in Figure 8, where a spiral              

gradient trajectory weighted by a skewed RF pulse creates a gaussian shaped            

mound ​in excitation k-space, which then excites a rod shape. This type of 2D RF               

pulse can be used for inner volume imaging, where only the anatomy of interest is               

excited ​(12,13)​.  

 

Figure 8.​ An 2D selective pulse with a spiral trajectory and its excitation k-space 

analysis.  
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Thus, the small tip angle approximation, together with the excitation k-space           

concept, is a powerful tool for designing low FA pulses, but, more importantly, it              

lends a more intuitive sense of what to expect from an RF pulse and how a specific                 

frequency response could be achieved.  

 

3.1.5 Higher flip angles   

As mentioned in the previous section, the small tip angle approximation breaks            

down around an FA of 90°. However, many RF pulses are of course of higher FAs                

and must use other design methods. To predict the frequency response of an RF              

pulse using the Bloch equations is actually straight forward. It is the inverse             

problem that poses the biggest problem; to design a specific frequency response            

and then calculate the RF pulse that can produce it. The most prevalent solution to               

solve the inverse problem is the Shinnar–Le Roux (SLR) transform that was            

independently proposed by Shinnar ​(14,15) and Le Roux ​(16)​. The SLR transform            

provides an analytical inversion of the Bloch equations. This solution is then used             

to get to a space where a digital filter design algorithm, such as the finite impulse                

response (FIR), can be used to design the wanted frequency response. By using             

different types of FIR filters a range of RF pulses with different characteristics can              

be generated with the SLR transform ​(17)​.  

 

3.1.4 Spectrally selective RF pulses  

Water and fat in tissues are the largest sources of signal in MRI. Fat molecules are                

long chains of triglyceride. They have a much larger electron cloud that shields the              

hydrogen atoms from the B​
0

field. Therefore, according to the Larmor equation, the             

spins in fat molecules have a lower Larmor frequency. The difference in frequency             

between water and fat is called ​chemical shift​. In some cases, the signal from fat               

itself or together with chemical shift causes problems or artifacts that can make the              

images difficult for the radiologist to interpret. Thus, there exists many different            

ways of suppressing the fat signal. The following section provides a short account             

of a few of those methods. 

Fat saturation  

A common tactic to reduce the signal of fat is to use a so-called CHESS (Chemical                

Shift Selective) method ​(18)​, also known as fat saturation (fat-sat), where an RF             

◼  24  ◼  

https://paperpile.com/c/Ykoq10/6I2v+9HPB
https://paperpile.com/c/Ykoq10/8IP9
https://paperpile.com/c/Ykoq10/HnGv
https://paperpile.com/c/Ykoq10/8Rn9


 

pulse with a narrow frequency response and an FA of 90° is aimed at the fat peak,                 

effectively exciting only fat. This pulse is closely followed by a spoiler gradient that              

dephases all of the signal in the transverse plane. After this preparation a regular              

excitation pulse can be used to excite the untouched water peak and create an              

image where the signal from fat is suppressed.  

 

Binomial pulses 

A binomial pulse can be used to excite water or fat; however, they are most               

commonly used to excite only water to achieve fat suppression. They are composite             

pulses made up of multiple sub-pulses with different FAs ​(19)​. The specific            

sub-pulse FAs are determined by rows in Pascal’s triangle ​(20) and sum up to the               

desired FA of the pulse. A binomial pulse's frequency response is a repeated             

pattern of pass- and stopbands, and the frequency range between pass-band peaks            

is a function of the time between sub-pulses. Increasing the number of sub-pulses             

widens the stopband and narrows the pass-band. 

 

The duration between sub-pulses (τ​
bino​) is calculated with the following equation: 

                                                           [2]τ bino = 1
2|Δω|   

where Δω is the frequency offset between fat and water, where the main fat peak is                

at -3.3 ppm from the water peak ​(21)​. At 3 T |Δω| becomes approximately 422 Hz                

and the duration is consequently 1,18 ms. 

An example of a binomial pulse is displayed in Figure 9. In this case it has two                 

sub-pulses with the same area but with opposite polarities. It is therefore called a              

binomial pulse. The numbers describe the relative sub-pulse areas and the line –11             

above the second number signifies that it has an opposite polarity. How this pulse              

can excite only water is schematically described in Figure 9. The first sub-pulse             

excites both water and fat to 45°. The second 45° sub-pulse is applied when water               

and fat are exactly 180° out-of-phase. This brings the fat back to the longitudinal              

axis while the water is excited all the way down to the transverse plane, at a 90° FA.  
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Figure 9. At the top:​ a schematic binomial pulse with color coded time periods. 

Pink period:​ Before the pulse water (blue arrow) and fat (yellow arrow) 

precess around B​
0​. ​Green period:​ The first sub-pulse flips both water and fat to 

45°. ​Lilac period:​ Water and fat precedes at different rates, eventually ending 

up completely opposite of each other.​ Gray period:​ Here the second 45° 

sub-pulse flips the fat back along the longitudinal axis, while water is flipped all 

the way down to the transverse plane.  

 

A rectangular pulse 

Another way to excite only water or fat is the water exciting rectangular pulse              

(WE-rect) ​(22–24)​. It is a box-car ​(25) shaped pulse with a specific duration such              

that one of the roots of its sinc-shaped frequency response matches the difference             

in frequency between the water and fat peaks (i.e, Δω). The carrier frequency can              

then be changed to either excite either water or fat. The duration (τ​
rect​) of the pulse,                

which produces this specific sinc response, is calculated using the following           

equation:  

 

                                                     [3]τ rect = 2π Δω| |
√(2πn) −α  2 2  
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where α is the FA in radians and ​n specifies the zero-crossing that should match               

Δω.  

At the resonance frequency a constant RF pulse, such as the WE-rect, simply             

rotates the spins around the axis to which it is applied (Figure 10A). At an               

off-resonance frequency, the spins experience both B​
1

and a residual of B​
0​, which             

can be calculated using the Larmor equation. Together these fields create the B​
eff

             

field, the effective B field. The off-resonance spins therefore rotate around B​
eff

(see             

Figure 10B). The spins that complete a full circle at the end of the pulse remain                

unexcited (i.e, a zero-crossing). The number of cycles in this circle then            

corresponds to ​n​ in Eq. [3]. 

 

Figure 10.​ ​(A) ​At resonance spins are flipped in a circle perpendicular to the 

applied B​
1​ field. ​(B)​ However, at off-resonance the spins two magnetic fields B​

1
 

and a residual of B​
0​: Δω/γ, making the spins move in a circle perpendicular to the 

combination of these two fields B​
eff​.  

The WE-rect has a similar on-resonance frequency response as a binomial 1-1 pulse             

(i.e, they have comparable fat/water selectivity). However, it does not have the            

repeating pattern of the binomial pulse in the off-resonance regions, which leads to             

reduced off-resonance excitations and therefore reduced MT effects ​(26)​. The          

WE-rect also produces significantly low SAR values compared to a binomial 1-1            

pulse.  
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Phase-modulated pulses 

Two other WE pulses with similar properties compared to the WE-rect, are the             

BORR (Binomial Off-Resonant Rectangular) ​(27) and LIBRE (Lipid Insensitive         

Binomial Off-Resonant RF Excitation) ​(28) pulses. They also produce low SAR and            

reduced off-resonance excitations. Both pulses are applied at off-resonance (i.e,          

their carrier frequency is not the Larmour frequency). They are made up of two              

sub-pulses, with the same area, that are played back-to-back with a phase offset             

between them. For the BORR pulse this phase is always 180°, however, for the              

LIBRE pulse, it depends on the carrier frequency. A search or optimization has to              

be performed to find a proper combination of sub-pulse duration and carrier            

frequency. Regardless, the LIBRE pulses always produce a lower than intended FA            

at the center frequency; it therefore has to be scaled up to achieve the correct FA.                

The BORR pulse, however, can be designed in such a way that it achieves its peak                

amplitude at the center frequency. Examples of both pulses compared with the            

WE-rect and two binomial pulses are shown in Figure 11.  

 

 

Figure 11. (a–f)​ shows a range of spectrally selective RF pulses described in this 

section and ​(g)​ shows their corresponding frequency responses at 3 T. 
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3.1.5 Spectral and spatial selectivity 

Spectral spatial (SPSP) ​(29) RF pulses have both spectral and spatial selectivity and             

can therefore be used to excite both a slice and a specific frequency band              

containing, for example, only water. An SPSP pulse consists of several slice            

selective sub-pulses with weighted amplitudes, concatenated together to form a          

longer pulse, as shown in Figure 12A. The shape of the sub-pulses determines the              

slice profile, while the overall envelope, shown in cyan in Figure 12A, controls the              

spectral selectivity, similar to binomial pulses. Figure 12B and C show the            

excitation k-space interpretation of an SPSP pulse, where the repeating pattern of            

the frequency selectivity can be appreciated. This pattern can be explained by            

looking at the excitation k-space of Figure 12B. Any vertical line in excitation             

k-space consists of three points along the cyan envelope. Each line can be thought              

of as the envelope multiplied with a series of three Dirac's delta functions, or a               

Dirac-comb. If an RF pulse envelope is multiplied with a Dirac-comb, its frequency             

response is convolved with the Fourier transform of the Dirac-comb, which is            

another Dirac-comb. This creates multiples of the original frequency response.  

 

 

Figure 12. (A) ​A SPSP pulse with three sub-pulses. The overall envelope is drawn in 

cyan; ​(B)​ The corresponding excitation k-space; and ​(C)​ the Fourier transform of 

(B) ​showing the spectrally and spatially selective features of the SPSP pulse.  

Both the overall envelope and the sub-pulse envelopes can be designed using the             

SLR transform. For example, a minimum-phase Parks-McClellan optimal        

equiripple FIR filter can be used to design both envelopes. This creates a SPSP              

pulse that can facilitate a low TE and be used in a slab selective manner, as shown                 

in Figure 13.  
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Figure 13. (A)​ An SPSP pulse with both a minimum-phase envelope and 

minimum-phase sub-pulse envelopes. The black line marks the iso-center of the 

pulse, where the echo time starts. ​(B)​ A Bloch simulation of the SPSP pulse, 

showing its slab selective nature.  

 

3.1.6 Refocusing flip angles and extended phase graphs  

To model the signal response of an arbitrary MRI sequence, the Bloch equations             

must be solved for each step. However, to accurately predict the effect of, for              

example, dephasing within a voxel, countless spins must be included in the            

calculation. To include this many spins in the calculations quickly becomes           

cumbersome. It turns out that the spins can be interpreted as a Fourier series if the                

gradients are assumed to be quantized and induce an integer number of phase             

cycles (​2πn​) across a voxel. As a result, the whole ensemble of spins can be               

represented by the coefficients in three Fourier series describing M​
x​, M​

y
and M​

z​.             

This is a much more compact way to represent many spins and the basis of the                

extended phase graphs (EPG) concept ​(30)​. EPG simulations are a powerful tool            

that can be used to predict the behaviour of many sequences, perhaps most notably              

bSSFP (Balanced Steady-State Free Precession) ​(30–32) and RARE (Rapid         
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Acquisition with Relaxation Enhancement) ​(33)​. In RARE sequences, the CPMG          

(Carr-Purcell-Meiboom-Gill) ​(34,35) condition makes it possible to use much         

lower refocusing FAs than 180°. Moreover, the EPG concept is useful for modeling             

the signal response of such a refocusing FA scheme.  

Generally, refocusing pulses do three things: excite, refocus and restore/recall –           

how much of each depends mostly on the FA ​(36)​. ​Restore refers to the effect               

where transverse magnetization is flipped back to the longitudinal axis to be            

stored, and ​recall refers to the stored magnetization being flipped back down to the              

transverse plane. Tracking the spins’ paths to form a signal creates so-called echo             

pathways in an EPG simulation. For example, spins restored by a refocusing pulse             

can be mixed in again at a later stage creating a ​stimulated echo ​(37)​. The related                

signal evolution then comprises both spin echoes and stimulated echoes. 

The stored magnetization of a soon-to-be stimulated echo decays only according to            

T1 relaxation contrary to the magnetization in the transverse plane, which is also             

subject also to T2 decay. A fraction of the magnetization contributing to the signal              

will, therefore, have a reduced T2 effect, thereby slowing down, or in some cases              

counteracting, the otherwise exponential T2 decay of the signal. This way one can,             

to some degree, control the signal evolution by combining high and low FAs . 

Variable refocusing FA (VRFA) schemes have been used for a number of different             

applications. For example, the TRAPS (Smooth Transitions between Pseudo Steady          

States) method has been used to reduce the SAR of several different RARE             

sequences and contrasts ​(38–43)​. VRFA has also been used to extend the life of the               

signal during the very long echo trains of T2-weighted 3D RARE ​(44)​. Another             

notable use of VRFA is the reduction of blurring and contrast enchantment of             

T1-weighted 3D RARE ​(45)​, where the signal is kept constant near the center of              

k-space to reduce blurring from the T2 decay.  

 

3.1.7 The transfer of magnetization  

Hydrogen in the non-fatty tissues of the body reside in three so-called pools; the              

macromolecular, the bound, and the free water pool ​(46)​. The macromolecular           

pool are hydrogen atoms that are part of large molecules like proteins. The bound              

pool are water molecules that are closely associated with the macromolecules.           

Usually the expression ​bound pool also includes the macromolecular pool. The free            

pool consists of unrestricted rapidly tumbling water molecules. The free pool can            
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be used for imaging since its high tumbling rate causes long T2 relaxation. An              

excited bound pool, on the other hand, decays very quickly.  

If the free pool is excited by an RF pulse it can transfer some of its magnetization to                  

the bound pool, via dipole-dipole and chemical exchange interactions. This process           

is called MT. However, if the bound pool is excited, it can transfer magentzation to               

the free pool to cause signal attenuation as the free pool becomes saturated. This              

can be exploited for background suppression ​(47) and detection of myelin diseases            

(48)​.  

The bound pool has a wide frequency range, due to its short T2, and can therefore                

be excited by off-resonance RF pulses. In regular imaging, most RF pulses excite             

the bound pool to some degree, leading to signal attenuation ​(49)​. ​The MT effects              

are also presumed to saturate the signal of white matter more than gray and therefore               

effectively reduce the GM/WM contrast in T1-weighted imaging ​(50)​. 
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3.2 Acceleration using Simultaneous Multi-Slice 

One of the remaining drawbacks of MRI is that it is inherently slow, since              

physiological properties, such as relaxation times, tissue heating, and nerve          

stimulation, all limit the speed at which images can be acquired. Therefore, a             

significant amount of research is being undertaken to try and find new ways to get               

around these issues and thereby accelerate the image acquisition. One recent           

breakthrough is the SMS technique ​(51)​. With SMS, increased speed is           

accomplished by exciting and collecting information from several slices at the same            

time, unlike conventional 2D imaging where only one slice is imaged at a time.  

The time gained when accelerating an acquisition with SMS comes from the ability             

to fit more slices into one TR or the consequent shortening of the TR (Figure 14b).                

An alternative use of SMS is to increase the number of slices to obtain the original                

TR (Figure 14c). These two options, can of course, be combined to acquire an              

increased number of slices in a slightly shorter amount of time.  

 

Figure 14. (a)​ A regular 2D acquisition showing which slice positions are being 

acquired at time point. The positions are interleaved.​ (b)​ With an SMS 

acceleration factor of two, the acquisition time can be halved. ​(c)​ Alternatively 

the number of slices can be doubled.  

SMS accelerated imaging also has a significant SNR benefit over in-plane           

acceleration. In-plane acceleration effectively reduces the time spent receiving the          

signal, which incurs an intrinsic √R SNR penalty. In contrast, SMS acceleration            
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records signal from protons of multiple slice positions without having to shorten            

the time spent listening to the signal.  

Most of the papers being published on using SMS techniques are focusing on EPI              

based acquisitions, such as fMRI and diffusion ​(52–57)​, but also: perfusion           

(58,59)​, angiography ​(60) and fingerprinting ​(61)​. Using SMS with RARE          

sequences to acquire regular contrasts for structural imaging, which is of special            

interest for this thesis, have not been adopted as rapidly. However, there are a few               

examples. Norris et al. (68) acquired a whole brain with 1 mm in-plane resolution              

and 2-mm-thick slices in 2 min. Following this development, Gagoski et al. (69)             

have achieved 1 mm isotropic, so-called pseudo 3D (p3D), resolution RARE in 1             

minute. 

 

3.2.1 Multiband excitation 

At the base of SMS is the ability to excite more than one slice using a single RF                  

pulse, a multiband pulse. As the name implies it is a pulse that contains multiple               

excitation frequency bands. This section will overview several of the techniques           

making this possible.  

The simplest and most common way of producing a multiband pulse is by             

combining two or more regular RF pulses, so-called sub-pulses. For example,           

taking two regular sinc-shaped RF pulses, applying a phase ramp to one of them,              

and then adding them together will excite one slice at the center frequency and one               

at an offset position corresponding to the applied phase ramp ​(62)​. This method is              

described in ​Figure ​15. 

One of the constraints when designing an RF pulse is the maximum peak power              

that the MR-system can put out; it is generally around 0.25 Gauss. Considering the              

typical shape of an RF pulse, with a peak lobe in the middle, a multiband pulse                

generated by addition will quickly reach the maximum allowed amplitude. There           

are a number of strategies to avoid this problem, several of which are outlined              

below.  

The first strategy shifts the underlying pulses with respect to each other in time,              

so-called time-shifting ​(63)​. This puts additional limits on the slice selective           

gradients as they need to account for the difference in phase accumulation of the              

shifted underlying pulses.  
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Variable rate selective excitation (VERSE) ​(64) can also be used to reduce the peak              

amplitude of the multiband pulses. With VERSE, the bandwidth of the RF pulse is              

changed during the pulse. The amplitude of the peak can therefore be lowered if              

the gradient is lowered as well, to keep the slice profile intact. This is one of the                 

more prevalent approaches; however, off-resonance spins can skew the slice          

profile.  

 

Figure ​15. (a)​ A regular RF pulse that, together with a constant gradient, excites 

a slice at isocenter. ​(b)​ Two differently phase-modulated RF pulses, which excite 

two different offset slice locations. ​(c)​ When the pulses are summed together they 

form one single (multiband) pulse that excites both slice positions at the same 

time. The multiband pulse has double the amplitude compared to the single-band 

pulses.  

An extreme version of the VERSE approach can be achieved by using ​optimal             

control optimization ​(65)​, where the RF envelope, phase, and gradient is jointly            

optimized to produce a multiband pulse that lives up to certain quality criteria.  

Optimized phases ​(66–68) use a look-up table with pre-calculated constant phase           

offsets for the individual sub-pulses, optimizing the destructive interference when          

the sub-pulses are added together.  

Root-flipping ​(69) is a method where the shapes of the underlying pulses are             

optimized to destructively interfere with each other, similar to the optimized           

phases. The excitation pulse and the refocusing pulse needs to be jointly optimized             

to produce a usable phase across the slice.  

A recent development in multiphoton MRI ​(70) has shown that a multiband            

adiabatic inversion pulse could be generated by simply oscillating the z-gradient           
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during the pulse. This is potentially very useful since it does not increase SAR for               

an otherwise high powered RF pulse.  

One interesting way of exciting multiple slices without a large SAR increase is             

called PINS (power independent of number of slices) ​(71)​. PINS pulses are            

composite pulses, consisting of several hard pulses and are closely related to            

binomial pulses (used for spectral selection). One way of creating a PINS pulse is to               

simply multiply a regular RF pulse with a Dirac-comb. As described earlier, the             

multiplication will correspond to a convolution of the original RF pulse’s slice            

profile with a Dirac-comb. The creation of a PINS pulse is depicted in ​Figure ​16. A                

PINS pulse creates (in theory) endless multiples of the slice; this limits its use              

somewhat because the slice direction cannot be used as a cutoff for the FOV.              

Another downside is that PINS pulses have rather low bandwidths when compared            

to conventional multiband pulses, which make them more susceptible to slice           

profile distortions in the presence of B​
0​ inhomogeneities.  

 

Figure ​16.​ The creation of a PINS pulse ​(c)​. When a regular RF pulse ​(a) ​is 

multiplied with a Dirac-comb ​(b)​ in the time domain, it corresponds to a 

convulsion in the frequency domain and the result is an “infinite” repetition of the 

original frequency response. ​(d)​ When gradients are placed between the 

sub-pulses, the k​
z​ direction of excitation k-space is traversed. ​(e) ​This generates 

repetitions in the z-direction and multiple slices are simultaneously excited.  
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An adiabatic inversion pulse can also be turned into a PINS pulse using the same 

principle ​(72)​. It is then called a PINS-DANTE pulse, since Delays Alternating with 

Nutation for Tailored Excitation (DANTE) ​(73)​ pulses, previously used for tagging, 

also use the same principle.  

A second further development of the PINS pulse is the multi-PINS pulse ​(74)​. Here 

the PINS pulse is combined with a regular multiband pulse of the same duration by 

using VERSE to fit the multiband pulse to the gradient blips of the PINS pulse. The 

RF area can then be spread out and the peak power be reduced.  

3.2.2 Reconstruction methods 

When multiple slices are excited at the same time, signal from all slices end up               

overlayed in the same k-space. There are a number of different reconstruction            

methods to separate the slices. Most of them build on already existing theories             

coming from reconstruction techniques for undersampling in 1D and 2D, for           

example, SENSE (Sensitivity Encoding) ​(75) and GRAPPA (Generalized        

Autocalibrating Partial Parallel Acquisition) ​(76)​.  

Any GRAPPA based algorithm synthesizes k-space points from a weighted          

combination of neighboring points. The combining of points assumes that the           

points in k-space are somehow related, which they are due to the use of multiple               

receiver coils, where each coil picks up signal from one small part of the object.               

k-Space is thereby convolved with the Fourier transform of the coil sensitivity,            

which introduces a relationship between neighboring points. This effect of the coil            

sensitivities make them important for the quality of the reconstruction. If the coil             

sensitivities are distinctly different from each other the weights corresponding to           

each coil will then also become more distinct, and signal from different positions             

can be teased apart. With SMS acceleration, the reconstruction quality will to a             

large degree depend on how different the coil sensitivities are between the slices.  

Most SMS data reconstructions require some sort of calibration or reference data            

that is fully sampled in the slice direction (i.e. all the slices are imaged separately).               

The calibration data is then used as prior information about how the points in              

k-space are related at each slice position and its specific coil sensitivities.  

The main artifact of SMS acceleration is residual signal from the other            

simultaneously excited slices, which is usually called slice-leakage. It is analogous           

to the residual ghosting that can appear with in-plane undersampling. The quality            

of a parallel imaging reconstruction can be measured using the g-factor (short for             
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geometry factor) ​(75)​. Each pixel has a g-factor that describes the reconstruction            

methods ability, with the used coil configuration, to separate aliased pixels.  

The first GRAPPA based algorithm that could reconstruct SMS data is the so-called             

SENSE/GRAPPA hybrid ​(77)​, originally developed for accelerated 3D datasets. It          

artificially generates reference data in an extended FOV that contains all the slices.             

Using this reference, regular 1D GRAPPA weights can be estimated and used to             

reconstruct SMS data (as depicted in Figure 17). The SENSE/GRAPPA method is            

fairly simple to implement and can be used to reconstruct both in-plane            

undersampling and slice accelerated data in a single step ​(78,79)​.  

 

Figure 17.​ SENSE/GRAPPA hybrid reconstruction. In the calibration step, the 

calibration data is placed in a large FOV that is used as the wanted outcome (ŷ) 

in the first equation. Then every other line is removed, which effectively mimics 

an SMS acquisition; this is used in the model matrix (A​
1​). From this, the GRAPPA 

weights can be calculated. In the data synthesization step, the acquired SMS 

accelerated data is split up to create gaps in k-space, which can be synthesized 

using the previously calculated weights. Then the resulting large FOV can be cut 

into the resulting separated slices.  
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Another method to reconstruct SMS data is called slice-GRAPPA ​(80)​. It uses            

slice-specific GRAPPA weights that extracts one slice at a time from the accelerated             

data (shown in Figure 18). Any additional in-plane undersampling has to be            

reconstructed in a separate step afterward. The use of two steps adds some             

flexibility and each of the steps can be tailored individually to the specific needs of               

the application. In addition, the slice-GRAPPA has been further developed with an            

added constraint that aims to “block” slice-leakage, known as split-slice-GRAPPA          

(81)​. 

 

Figure 18.​ The slice-GRAPPA reconstruction starts with the calibration of two 

sets of weights (w​
1​ and w​

2​). Using the separately acquired calibration slices, with 

one slice for each set of weights, as the goal (ŷ) and the sum of the slices as the 

model matrix (A​
1​). In the data synthesization step, the weights are applied to the 

accelerated SMS data to create entirely new synthesized k-spaces.  
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3.2.3 CAIPIRINHA 

The CAIPIRINHA ​(82) method was proposed to prevent artifacts and increase           

reconstruction quality. With this method, the simultaneously excited slices are          

deliberately shifted relative to each other in the phase-encoding direction. This           

effectively makes the apparent coil sensitivity profiles more unique between the           

superimposed slices. 

According to the Fourier shift theorem ​(83)​, an object can be shifted in the FOV               

along the phase-encoding direction through the application of a phase ramp in            

k-space. For example, to shift the object half of the FOV, each line in k-space has to                 

have a π phase difference between them. This can be achieved by creating RF              

pulses that result in corresponding phases and cycling through them as the            

phase-encoding direction of k-space is traversed ​(84)​. For multiband excitations,          

the individual phase cycling patterns of each slice can be achieved by modifying the              

underlying base RF pulses. This means that the pulse sequence designer must            

generate a number of different RF pulses and switch between them in real-time.             

The total number of multiband RF pulses necessary will depend on the number of              

simultaneously excited slices and the shifts between them.  

Another way to realize the phase ramps needed is to insert small gradient blips in               

the z-direction before each readout (​Figure ​19). This is called          

blipped-CAIPIRINHA ​(80) and was originally invented for EPI, where it is not            

possible to use the original RF phase implementation. However,         

blipped-CAIPIRINHA is more simple to implement for most sequences; making it           

the most prevalent method.  

One further development of the CAIPIRINHA technique is the wave-CAIPIRINHA          

(85)​, where, in addition to shifting the slices, all voxels are spread out in all three                

dimensions. Oscillating y and z gradients are played out during the readout,            

creating a corkscrew trajectory. This results in significant reconstruction quality          

improvements compared to conventional CAIPIRINHA at high acceleration        

factors, at the cost of complicated reconstruction and acquisition.  
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Figure ​19.​ The figure shows how gradient blips can create phase ramps in 

k-space in order to achieve different shifts in the FOV. Φ denotes the relative 

phase between two k-space lines. ​(a)​ A standard SMS acquisition where the slices 

end up on top of each other. ​(b)​ A FOV/3 CAIPI-shifted acquisition, where the 

blips, displayed on the right, induce a 2π/3 phase difference between k-space 

lines. ​(c)​ A FOV/3 CAIPI-shifted acquisition. Note that the square and the 

triangle end up in the same position in the FOV. ​(d)​ Graph showing the 

relationship between the gradient blips applied and relative phases. The same 

FOV shifts can be accomplished by using RF pulses that excite slices with different 

phases.  
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3.3 Motion Correction  

3.3.1 Motion artifacts 

As previously discussed, MRI is inherently slow and therefore sensitive to motion            

because the data is gathered over time under the assumption that the imaged             

object is perfectly still. When this assumption is violated, it causes inconsistencies            

in the data that, in turn, causes artifacts in the image. These artifacts make it more                

difficult for the radiologist to interpret the images. When an image is sufficiently             

corrupted, it needs to be re-acquired and the patient has to spend more time in the                

scanner, which can cause stress for both the patient and the operator of the              

scanner. In the worst case scenario the patient has to leave the hospital without a               

complete exam.  

Motion can cause a range of artifacts that have very different impacts and effects              

depending on the sequence used. The following outlines examples of the most            

common issues.  

In the frequency-encoding direction, data acquisition is extremely rapid, thus          

motion is essentially ​frozen for this time. Consequently, inconsistencies that arise           

in k-space due to motion occur only in the phase-encoding direction, between lines.             

These inconsistencies may cause ghosting or blurring. These image artifacts occur           

in the direction that correspond to the phase-encoding direction.  

Since a rotation in image space is a rotation in k-space, rotations of the body can                

produce gaps in k-space that cause streaks in the image.  

Another source of error, specific to 2D imaging, is a mismatch between excited,             

refocused, or inverted slices, the so-called spin history effects. This disrupts the            

contrast mechanisms and can cause inaccurate contrast and signal loss. For           

example, overlapping slices can result in an erroneous TR.  

When a body part is moved the effect it has on the B​
0

field changes and when the                  

body's position relative to the receive and transmit coils change, the coil            

sensitivities and the B​
1 ​field is affected. Depending on the sequence used, these   
 

         

changes can have a significant impact on the image quality. For example,            

susceptibility or T2* weighted imaging is particularly sensitive to changes in the B​
0

            
 

field ​(86)​.  
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3.3.2 Retrospective and prospective motion correction 

Motion artifacts can be avoided or corrected through a variety of different            

methods. They can be categorized into two groups: retrospective and prospective. 

Retrospective motion correction (RMC) methods attempt to reorganize the data in           

the postprocessing step to increase consistency and minimize artifacts (see Figure           

20). They are typically iterative, minimizing a measure of artifacts, such as entropy,             

or maximizing data consistency ​(87–89)​. Self-navigation is possible for some          

encoding trajectories, for example the PROPELLER (Periodically Rotated        

Overlapping Parallel Lines with Enhanced Reconstruction) ​(90) that will be          

discussed in detail in the next section.  

  

Figure 20. Top row:​ Three images acquired at different time points and 

different head positions. ​Bottom row:​ The retrospectively corrected versions 

where the images have been rotated to accommodate the movements that 

occurred during the acquisition.  

Prospective motion correction (PMC) methods, on the other hand, try to           

compensate for motion in real-time by updating the FOV, as in Figure 21. This              

requires that the encoding gradients, RF transmit, and receive-frequency and          

-phase, are changed during the acquisition to follow any rigid body movement ​(91)​.             

The motion has to be traced in order to update the sequence. There are mainly two                

categories of correction methods: navigators and external devices.  
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Figure 21. Top row:​ Three images acquired at different time points and 

different head positions. The FOV is prospectively updated (in green) to keep the 

head in the same orientation as the first image. ​Bottom row:​ The final images 

appear as if no motion occurred.  

A navigator uses the MR-signal to obtain information about the position of th             

imaged object. For example, the PROMO (Prospective Motion Correction) method          

uses multiple orthogonal spiral read-outs to acquire a snapshot of the head in three              

planes ​(92)​.  

The second category of PMC methods, external devices, refers to additional           

hardware used to track motion. Examples include; cameras tracking markers          

fastened to subject ​(93)​, miniature RF probes tracking field changes ​(94)​, and            

infrared cameras tracking facial features ​(95)​.  

 

3.3.3 PROPELLER 

One of the most widely used retrospectively motion-corrected sequences is          

probably the PROPELLER, first proposed by Pipe ​(90) and made popular by its             

ability to reduce motion and flow artifacts. It is a hybrid between a cartesian and a                

radial trajectory, whereby k-space is segmented into cartesian strips, or blades,           

that are rotated to fill the entire k-space, as depicted in Figure 22a. The blades then                
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contain images that have a full resolution in their frequency-encoding direction           

and a low resolution in their phase-encoding direction. By regridding all the            

k-space pixels, from all blades, on the same cartesian grid a full resolution image              

can be formed.  

 

 

Figure 22. (A)​ A PROPELLER blade in k-space. ​(B)​ A complete PROPELLER 

trajectory, consisting of 12 blades. ​(C)​ Example of blades in image space, which 

are of low resolution in their phase-encoding direction and of high resolution  in 

their frequency-encoding direction.  

Since each blade contains the center of k-space, they can be registered to each              

other before the final regridding to correct for rigid body motion. In the original              

PROPELLER implementation, the motion between blades was found by         

maximizing the correlation of the central k-space region of each blade with the             

mean of all blades. Translations and rotations are found separately. The k-space            

needs to be inversely scaled so that the central region and edges of k-space have a                

similar amplitude. Otherwise, the k-space peak dominates the correlation measure          

and rotations, in particular, become harder to find.  

Before the blades can be subjected to motion correction and gridding, they are             

phase corrected. This centers each blade exactly on the k-space origin by removing             

slowly varying phase ramps from image space. This is accomplished by windowing            

each blade, in k-space, with a pyramid-shaped filter and removing the phase of this              

windowed data from the blade in image space. 
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The main drawback of the PROPELLER is the increased scan time, compared to a              

cartesian acquisition, due to the repeated acquisition of the central k-space. The            

PROPELLER trajectory takes π/2 times longer than a conventional scan. The large            

difference in SNR between the central k-space and the edges of k-space represents             

another disadvantage. It leads to colored noise as the image noise distribution is             

skewed away from white ​(96,97)​. A third downside is the effect of chemical shift              

between fat and water. Each blade experiences a shift of the fat signal in its unique                

frequency-encoding direction. When the blades are combined to form the final           

image, the fat ends up being dispersed and blurred. This limits the PROPELLER to              

higher receiver bandwidths in order to mitigate this effect. If the PROPELLER is             

combined with a fat-water separation technique (i.e. Dixon imaging ​(98)​), where           

the fat and water signals are separated for each blade, the chemical shift can be               

corrected ​(99,100)​. The motion correction is also affected by the fact that the             

blades have a uniquely shifted fat signal ​(100)​.  

PROPELLER scans can be accelerated by in-plane parallel imaging methods such           

as GRAPPA ​(101)​. Using extra auto-calibrating signal lines (ACS lines) in the center             

of the undersampled blade allows each blade to be auto-calibrated. The GRAPPA            

weights are then determined from the center lines and can be applied to synthesize              

the missing lines at the edges of each blade. Given the relatively low number of               

k-space lines per blade, the ACS lines reduce the effective net acceleration            

significantly unlike regular Cartesian scans. ACS lines can, however, be avoided by            

using a mutual blade calibration GRAPPA technique, where pairs of orthogonal           

undersampled PROPELLER blades are calibrated jointly ​(102)​. The blade angles          

are then set up in a way that two orthogonal, or perpendicular, blades are rotated               

to several positions, spanning the k-space. This makes it possible for a pair of              

orthogonal blades to act as each other's calibration data, since they are fully             

sampled in each other’s undersampled directions. Alternatively, an angularly         

continuous GRAPPA kernel could be used ​(103)​. Another option to avoid ACS lines             

in PROPELLER is to use an external calibration scan. This can be one fully              

sampled PROPELLER blade as proposed by Holmes et al. ​(104)​. Holmes et al. used              

such a blade as calibration for all accelerated blades with the APPEAR            

(Anti-aliasing Partially Parallel Encoded Acquisition Reconstruction) method       

(105)​, which utilizes interpolation in k-space. 
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3.3.4 The WRAD 

An example of an external device used for prospective head motion tracking is the              

wireless radio frequency triggered acquisition device (WRAD) ​(106,107)​. It is a           

small apparatus that can be attached to the subject, from where it wirelessly             

transmits its position and orientation to the scanner.  

The WRAD combines three orthogonal pickup coils that determine the rate of            

change of the magnetic fields in the scanner. A key feature of the WRAD is that it                 

measures these fields as vectors and can therefore make use of an additional             

dimension of spatial encoding (from gradient magnetic field components         

perpendicular to the static magnetic field). These fields are typically not accessible            

to MR based methods. The interpretation of these vectors is, however, challenging            

because the orientation of the pickup coils with respect to the gradient coils is              

unknown. The WRAD solves this problem by introducing an additional sensor: a            

3D hall-effect magnetometer. This magnetometer measures the direction of the          

static magnetic field, which has a direction that is known in the gradient frame, and               

can therefore be used to interpret the pickup coil voltages. By playing a navigator              

consisting of at least two unique sinusoidal gradients, preferably on the principal            

axes, the WARD can calculate both its position and orientation.  

There are advantages and disadvantages for each of the PMC technologies. In a             

review article on prospective motion correction Maclaren et al. suggests three main            

criteria for an ideal PMC method ​(108)​:  

❏ High accuracy and precision 

❏ No patient interaction  

❏ Sequence independence  

Evaluating the WARD on Maclaren’s terms for an ideal PMC method, the WRAD             

has very high accuracy and precision. It does, however, require patient interaction            

since it has to be attached to the head. When it comes to sequence independence,               

the WRAD requires the incorporation of navigators into the sequence. However,           

these navigators are short enough, below 5 ms, to be inserted into most sequences              

without significant disturbance.  

A significant advantage of the WARD is that it requires no cross-calibration ​(109)             

procedure. Cross-calibration is a term used for finding the relationship between the            

device's coordinate system and the scanner’s coordinate system. It is a significant            
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source of error for most external devices. The WRAD does not require one because              

it senses the same gradients fields used for image encoding to encode its pose.  
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4 Methodological Considerations  

This chapter introduces the three projects that are the basis for this thesis and              

provides the motivation for several of the methodological choices made, adding           

extra information not included in the constituent papers, and referring back to the             

previous chapter. For a complete review of the methods and techniques used in             

these works please see the papers, which the author recommends should be read             

first.  

4.1 Project I: SMS Accelerated PROPELLER  

4.1.1 The aim of Project I 

The first project’s aim was to combine SMS acceleration with the PROPELLER            

trajectory. The hypothesis was that this novel acceleration method would unlock           

new degrees of freedom for the PROPELLER sequence.  

4.1.2 Short summary of the work 

A PROPELLER sequence with support for SMS acceleration, including multi-band          

RF pulses and CAIPIRINHA, was developed. Efficient acquisition of the calibration           

data was enabled by calibrating the PI on a single fully sampled PROPELLER             

blade. Consequently, the acquisition involved one fully sampled blade, and the           

remainder of the blades accelerated without additional lines. The SMS accelerated           

PROPELLER sequence was used to acquire T1-weighted, T2-weighted, and         

T1-FLAIR images. The SMS acceleration was also used to acquire many thin slices,             

creating motion-corrected reformattable image volumes.  

4.1.3 Choosing the RF pulse 

The multi-band RF pulses described in the background and theory chapter were            

evaluated to determine which method would work best for the SMS and            

PROPELLER combination. A method that could produce short RF pulses along           

with significant peak power reductions was sought after because it facilitates a low             
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echo spacing. This, in turn, speeds up the acquisition and reduces blurring from             

T2-decay and low peak amplitude to stay within the hardware limitations.  

The following methods were evaluated as possible candidates:  

❏ VERSE 

❏ Optimal Control 

❏ Time-Shifting  

❏ Root-Flipping  

❏ PINS 

❏ multiPINS 

❏ Optimized Phases 

The VERSE approach could be a good choice. However, it creates pulses that are              

sensitive to imperfections and the performance of the gradient system, especially at            

off-center positions.  

The optimal control approach can produce impressively compressed RF pulses and           

was the winner of the 2015 ISMRM RF Pulse Design Challenge. However, as it is               

based on VERSE it shares its sensitivities. Another drawback of the optimal control             

approach is that it cannot be generated in the pulse sequence since each SMS              

factor, slice gap, and slice thickness combination poses a new optimization           

problem that cannot be solved fast enough. Therefore, the optimal control method            

was deemed too unreliable and impractical for the task at hand.  

Time-shifting and root-flipping share the same problem. Neither can be used with            

RARE without breaking the CPMG conditions. Either because signals of different           

slices will refocus either at different time points or incompatible requirements on            

gradient amplitudes. Both methods were developed to be used for diffusion           

applications, where these problems are not as detrimental. The root-flipping          

method also requires significant computation time.  

PINS and multiPINS pulses work best if the acceleration factor is high or slices are               

thick relative to the gap in between the slices; otherwise, they become too long to               

be useful in a RARE sequence. The SMS acceleration factors (2-5) used in this work               

were in general too low for PINS pulses to be effectively used as excitation or               

refocusing pulses. However, for the inversion pulses, the PINS pulse was used or,             

more specifically the adiabatic DANTE pulse. This multiband inversion pulse was           

based on a hyperbolic-secant ​(110) pulse and is shown in Figure 23. The slice              

thickness of the inversion is typically wider than the imaged slice ​(111)​, creating a              

more beneficial situation for the PINS pulse.  
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Figure 23.​ A PINS-DANTE inversion pulse based on a hyperbolic-secant pulse.   

The multiphoton multiband adiabatic RF described in Ref. ​(70) could have been an             

interesting alternative to the DANTE pulse, however, the paper had not yet been             

published when this work was performed.  

Finally, the optimized phases method was deemed the most suitable for the            

purposes of this project. Of all the methods, it provides the smallest reductions in              

peak amplitude. However, it is simple and practical, and it facilitates the online             

generation of multiband pulses in the pulse sequence. It also produces pulses that             

work with the CPMG conditions. Since this method cannot provide as large of             

reductions of peak amplitude, gaussian shaped pulses were used to help minimize            

the amplitudes.  

 

4.1.4 CAIPIRINHA  

The CAIPIRINHA scheme was used to increase the slice separation performance in            

the parallel imaging reconstruction. The phase ramps of CAIPIRINHA can either           

be realized with gradient blips before and after each readout or by changing the              

underlying phases of the RF pulses used to create the multiband pulses. Since a              
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RARE and not an EPI sequence was used, it was possible to use the RF version.                

However, the gradient blips were easier to implement and therefore more flexible            

to use. The slight dephasing at the edges of the slice profile was considered              

insignificant. The blipped-CAIPIRINHA is also the method that has found the most            

widespread use.  

In order to avoid an increase of the echo spacing when adding CAIPIRINHA blips,              

a novel solution was developed. This was achieved by an implementation detail,            

where the necessary phase ramps were produced by altering the area of the crusher              

gradients (see Figure 24b) instead of adding gradient blips (Figure 24c).  

 

Figure 24.​ Pulse sequence diagram showing a case of SMS acceleration 3 and 

CAIPIRINHA FOV/3. Panel ​(a)​ shows how the CAIPIRINHA shift was 

accomplished using the crusher gradients;​ (c)​ shows how the same CAIPIRINHA 

shift can be accomplished using the gradient blips; and ​(d)​ shows the RF 

magnitude. In ​(b)​ a schematic view of how the crusher gradients are scaled to 

create the desired CAIPIRINHA-pattern is shown.  

 

Further developments of the CAIPIRINHA concept, such as wave-CAIPIRINHA,         

do not improve the reconstruction quality at the rather low acceleration factors            

used in this work. They also increase the complexity of the reconstruction.  
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4.1.5 Parallel imaging  

The slice-GRAPPA method was used to reconstruct the SMS accelerated          

PROPELLER data, because, at the time it was considered the best and most             

developed method (with the split-slice-GRAPPA extension). GRAPPA was        

therefore chosen as the method to reconstruct the accompanied in-plane          

acceleration. 

When accelerating an acquisition with SMS, embedded ACS lines cannot be used as             

slice-GRAPPA calibration since this calibration requires separate information        

about the otherwise simultaneously excited slices. A separate set of calibration data            

is needed, where the slices are acquired independently. To avoid acquiring           

calibration data for each blade angle, a single data set was used for all blade angles,                

as illustrated in Figure 25.  

 

Figure 25. Top:​ Showing that each SMS accelerated PROPELLER blade needs 

its own calibration data at the correct angle. ​Bottom:​ With rotated and 

interpolated GRAPPA kernels the same calibration data can be used for all 

blades, and, consequently, significantly less calibration data has to be acquired.  

It was possible to use calibration data acquired at a different angle than the              

accelerated data through the development of rotating GRAPPA kernels. The          

method is based on the fact that when the image of a PROPELLER blade is rotated                

to a specific angle the coil sensitivities are also rotated. Consequently, the influence             

of the coil sensitivities on how k-space pixels are related is also rotated. Therefore,              

the GRAPPA weights of an arbitrarily rotated k-space acquired with the same set of              

coils (i.e., the same slice position) could be found by counter-rotating the kernels             

and interpolating their source points. This process is described in Figure 26. The             
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rotation of GRAPPA kernels was inspired by the work done with APPEAR by             

Holmes et al. ​(104)​. 

A fully sampled first blade was used as calibration data for the PROPELLER             

implementation. The calibration data could have come from a separate gradient           

echo or FLEET (fast low-angle excitation echo-planar technique) sequence ​(112)​.          

However, a fully sampled PROPELLER blade presented a simpler way to create a             

standalone sequence. All raw data came in one package and only one scan has to be                

prescribed, making it easier to implement in the clinical workflow.  

 

Figure 26.​ To unfold the accelerated PROPELLER data (k), GRAPPA and 

split-slice-GRAPPA were used. The kernels (b,c,g,h) were rotated and interpolated 

in the calibration blade volume’s (a) k-space to calculate weights for the other 

blade volumes. For CAIPIRINHA, a rotated phase ramp (d) was applied to the 

calibration data after interpolation. Since the split-slice-GRAPPA kernels (b,c) 

were trained on fully sampled data and applied to in-plane undersampled data 

(l), the kernels have the same phase-encoding undersampling pattern. Unfolded 

data (m) were passed along to an in-house developed PROPELLER 

reconstruction (n). Reproduced with permission from Paper I. 
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Since the SMS accelerated data is acquired with CAIPIRINHA FOV-shifts,          

corresponding phase ramps were added to the calibration data in the           

reconstruction. The CAIPIRINHA phase ramp direction follows the unique         

phase-encoding direction of each blade angle; therefore, the CAIPIRINHA phase          

ramp added to the calibration had to match the angle of each accelerated target              

blade, thereby creating an angled FOV shift in the calibration image. However, the             

interpolation of the kernels in k-space does not represent the sharp transitions of             

the phase ramps, which caused blurred final images of shifted slices. Therefore, the             

phase ramps were applied in the kernel after the interpolation., ensuring that            

phase difference between k-space lines became correct and produced sharp images.           

An example of this is shown in Figure 27, where SMS accelerated PROPELLER             

data was artificially generated and reconstructed with phase ramps applied in the            

calibration data (Figure 27a) and with phase ramps applied in the kernels (Figure             

27b).  

 

 

Figure 27.​ ​Top row:​ A slice position not affected by any CAIPIRINHA 

FOV-shift. Bottom row: A slice position where a CAIPIRINHA FOV-shift was 

created. ​(a)​ The CAIPIRINHA phase ramps were applied at the correct angle, to 

the calibration data. Arrows point to the resulting blurring.​ (b)​ Here the 

CAIPIRINHA phase ramps were directly applied in the slice-GRAPPA kernel.​ (c) 

The difference between ​(a)​ and ​(b)​ clearly shows that only the shifted slices are 

affected by the blurring.  

 

A similar issue arises when SMS and in-plane acceleration are used at the same              

time. Since the slice-GRAPPA was applied before the in-plane GRAPPA the           
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slice-GRAPPA was trained to tease apart in-plane undersampled data. This can be            

done, similar to the previous example with the phase ramps, simply by removing             

lines from the calibration data. However, lines would have to be removed at the              

correct angle to match the target blade, which would obstruct the interpolation. It             

made more sense, therefore, to also incorporate the undersampling into the kernel.            

This is why the slice-GRAPPA kernels in Figure 28 are rectangles with gaps             

between the source points.  

 

4.1.6 3D motion correction with PROPELLER 

As described in the background and theory chapter, the original and conventional            

implementations of PROPELLER motion correction is performed within each slice          

with 2D motion estimation between blade angles in k-space. A remaining issue for             

PROPELLER motion correction is how to handle out-of-plane motion. The original           

method used weights to suppress the contribution of blades that are deemed            

corrupted by out-of-plane motion. However, this is not effective if there were            

multiple out-of-plane head-poses during the acquisition. Therefore, each        

slice-stack (for one blade angle) was treated as a “brick” and 3D rigid body motion               

correction was performed between the bricks and a reference brick (see Figure 28).             

Treating the bricks as one time-point requires that all slices are acquired within the              

same TR. It is not possible to do 3D motion correction in a set of 2D k-spaces;                 

therefore, the correction was performed in the image domain.  

 

Figure 28.​ A PROPELLER data set in k-space and image space. 3D motion 

correction is performed by aligning each brick in image space to a reference 

(dark gray).  
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A bootstrapping approach was used to find the reference brick. First, all bricks             

were scored according to their deviation from the mean of all bricks. Then the brick               

with the most deviation was disposed of and the remaining bricks were scored             

again, relative to their mean. This process was repeated until only one brick             

remained, which, consequently, was chosen as the reference.  

 

4.1.7 Finding applications  

The first image contrast acquired with the SMS PROPELLER sequence was a            

T1-weighted SE. The T1-weighted SE sequence is, in the brain, limited to a TR of               

400-600 ms; therefore, SMS cannot be used to directly shorten the TR. It was,              

however, possible to drastically shorten the scan time by reducing the number of             

acquisitions if many slices were to be acquired (see Figure 29).  

 

Figure 29. Left:​ Two slices of a T1-weighted PROPELLER scan divided into two 

acquisitions to keep the TR around 500 ms. ​Right:​ Two simultaneously excited 

slices of a SMS accelerated T1-weighted PROPELLER scan that now could be 

acquired in one acquisition.  

Unfortunately, the increased MT effects of the multiband pulses and loss of the             

slice gap when acquired in a single acquisition were detrimental to the GM/WM             

contrast, as previously discussed in the background and theory chapter. An attempt            

to use a short RARE train (i.e., low echo train length (ETL)) together with the               

driven equilibrium method ​(113) was also explored (see Figure 30). However, the            

same conclusion was drawn here, and both paths of the project were abandoned.  
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Figure 30. (a)​ A T1-weighted PROPELLER scan acquired with ETL = 1.​ (b)​ A 

T1-weighted PROPELLER scan acquired with ETL = 5, significantly increasing 

the efficiency of the acquisition.​ (c)​ A T1-weighted PROPELLER scan acquired 

with ETL = 5 and accelerated with a SMS factor of two. In this case the GM/WM 

contrast is almost none, due to MT effects. 

In order to overcome the rigid TR and MT effects, but still produce T1-weighted              

images, T1-FLAIR images were acquired. For T1-FLAIR, the TR can be 1500-3000            

ms, and since the inversion boosts the GM/WM contrast, it is possible to obtain a               

sufficient T1-weighting.  

Next, the SMS accelerated propeller sequence was used to acquire T2-weighted           

images. T2-weighted RARE acquisitions are more flexible when it comes to the            

choice of TR and since the GM/WM contrast is reversed, compared to T1-weighted             

images, any increase in MT effects would not be as damaging. The images are              

presented in the results and discussion chapter.  
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4.2 Project II: T1-weighted 3D EPI  

4.2.1 The aim of Project II 

The aim of Project II was to develop excitation pulses for T1-weighted 3D EPI              

sequence. The RF pulses, therefore, needed to produce adequate fat suppression           

while keeping the TE short in order to avoid chemical shift artifacts and generate a               

good T1-weighting.  

 

4.2.2 Short Summary of the Work 

A 3D EPI sequence was used to rapidly acquire T1-weighted isotropic volumes with             

low geometric distortions. The TE was kept low by using brief excitation RF pulses,              

with a short EPI train, and partial-Fourier. The choice of the RF pulse was based               

on the quality of fat suppression and measured GM/WM contrast. Binomial RF            

pulses were compared to water exciting rectangular RF pulses and an SLR pulse.  

 

4.2.3 Choosing the RF pulses 

The excitation RF pulse used in the T1-weighted 3D EPI sequence needed to             

provide sufficient fat suppression and a short TE. A short TE can either be              

accomplished by an overall short duration or a minimum-phase pulse, where the            

magnetic moment starts late in the pulse. Furthermore, acquiring the 3D EPI with             

the frequency-encoding in the S/I direction avoids the need for spatial selectivity.  

Of the pulses covered in the section on water exciting pulses, the most interesting              

was the WE-rect since it could provide a reduction of MT effects as well as fat                

suppression in a relatively short duration. A weakness of the WE-rect is its narrow              

stopband. Therefore, a new pulse was conceived, which can be seen as an extension              

of the WE-rect. Binomial pulses can achieve wider stopbands; however, they have            

repeating off-resonance passbands that cause MT-effect. In fact, they have been           

suggested as MT pulses for MT imaging sequences (116,117). These off-resonance           

passbands were, in this work, suppressed by convolving a binomial pulse with the             

WE-rect, which, under the small FA approximation is equivalent to a           

multiplication of the two pulses’ frequency responses.  

The convolution of a Binomial 1-1 pulse with the WE-rect results in a 1-2-1 shaped               

pulse, here termed a WE-rect 1-2-1. Consequently, the convolution of a Binomial            

1-2-1 pulse leads to a WE-rect 1-3-3-1, and so on. Examples of these pulses can be                
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found in Figure 31. The on- and off-resonance trajectories of the WE-rect 1-3-3-1             

compared to the WE-rect are shown in Figure 31f. The extended WE-rect pulses             

produced wider stopbands and reduced off-center excitations, at the cost of longer            

durations. However, the gain in stopband width quickly diminished, with respect to            

the increase of duration.  

 

Figure 31. (a–d)​ WE-rect pulses with increasing number of sub-pulses. ​(e) 

Bloch simulated frequency responses of pulses in (a–d).​ (f) ​The trajectories at 

on-resonance and at the off-resonance position of fat at 3 T for the WE-rect and 

the WE-rect 1-3-3-1.  

Since the extended WE-rect pulses are based on the small FA approximation, their             

performance is dependent on the flip angle. Figure 32c shows that at FAs above              
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40° the FA at the frequency of fat starts to increase. However, this can be remedied                

by heuristically adjusting the amplitude of the central plateau in the WE-rect 1-2-1             

pulse. By increasing its amplitude by only 2% the pulse can be used for FAs up to                 

90°, as demonstrated in Figures 32b and d.  

 

Figure 32.​ Demonstrating  that the WE-rect 1-2-1  FA dependence can be 

mitigated by simply increasing the amplitude of the center sub-pulse by 2%. ​(a) 

The WE-rect 1-2-1. ​(b)​ The frequency response of both the modified and the 

original pulse at 90° flip angle. A slight “bump” can be seen at the frequency of fat 

(422 Hz). ​(c)​ The FA dependence of the WE-rect 1-2-1, showing Bloch simulations 

of FAs  ranging from 1 ° to 90 °. The horizontal axis shows a frequency band 

centered around the principal fat frequency. The color map corresponds to the 

relative FA of each computed pulse, at on-resonance, scaled to the flip angle.​ (d) 

The FA dependence of the modified WE-rect 1-2-1. The “bump” around 422 Hz is 

eliminated.  

The LIBRE pulse was excluded because it excites a slope of FAs across the water               

peak. Which is not suitable for T1-weighting when the GM/WM contrast is            

dependent on the flip angle. The BORR pulse, on the other hand, could have been               
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included. However, the author was not aware that the BORR pulse could avoid the              

FA slope of the LIBRE pulse.  

A water exciting SLR (WE-SLR) pulse was also created in order to demonstrate             

that the rectangular pulses can achieve water excitation with shorter pulse           

durations. It should also have minimum MT effects as it excites only the water              

peak. Figure 33 shows the 3 T WE-SLR pulse used in Paper II and a 1.5 T example.                  

The 1.5 T pulse required more than double the duration in order to produce a               

similar frequency response.  

 

Figure 33. (a-b)​ WE-SLR pulses designed for 3 T and 1.5 T respectively. ​ (c) 

Bloch simulated frequency responses of the pulses.  

 

  

◼  62  ◼  



 

4.3 Project III: T1-FLAIR PROPELLER & PMC 

4.3.1 The aim of Project III 

T1-FLAIR is one of the key contrasts in any neurological protocol. Therefore, as             

part of a bigger project to create a fully motion-corrected neurological exam            

protocol, here aimed at creating a T1-FLAIR sequence that could handle very large             

head movements occurring continuously throughout the scan.  

 

4.3.2 Short Summary of the Work 

The PROPELLER trajectory's robustness to movement artefacts and retrospective         

motion correction features was paired with prospective motion correction using the           

WRAD. Three approaches were tested to integrate the marker-navigator into the           

PROPELLER sequence. The SAR of the T1-weighted FLAIR PROPELLER         

sequence, and resultant scan time, were lessened using a VRFA scheme. Motion            

correction performance assessments were conducted for four participants and         

three forms of head motion. 

 

4.3.3 SAR and TRAPS 

The T1-FLAIR PROPELLER sequence is an interleaved inversion recovery         

sequence ​(114) with adiabatic inversion pulses and acquired with a RARE train.            

This causes a high SAR because many high power RF pulses are generated back to               

back. To limit the heating of the patient, dead-times are inserted, which            

significantly increases the total scan time.  

To avoid this scan time penalty, lower refocusing FAs can be used. The TRAPS              

method was chosen since it preserves SNR while providing large SAR reductions.            

Specifically, the sineTRAPS ​(42) was used because it enables even lower FAs than             

the original TRAPS (see Figure 34). Another benefit of the sineTRAPS scheme is             

that it produces a smoother signal evolution, which should cause narrower           

point-spread function PSF ( i.e., less blurring).  
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Figure 34. (a) ​Three VRFA schemes; 150 ° constant FAs  in pink, TRAPS FAs  in 

blue; and black sineTRAPS scheme. The relative SAR values are 0.71, 0.38 and 

0.34, respectively.​ (b) ​ The resulting EPG simulation of the three schemes for gray 

(--) and white (–) matter.  

The VRFA schemes used for 3D sequences where a portion of the signal amplitude 

is kept constant for a portion of the echo train was excluded because it requires a 

long echo train.  

The sineTRAPS scheme was compared to a constant FA train with the same SAR              

and one with higher FAs, 82°, and 120° respectively. The three schemes are             

presented in Figure 42. Using these three refocusing FA schemes, three T1-FLAIR            

PROPELLER data sets were acquired, using the same TI, TR, and TE. The constant              

120° scheme required dead-time to be added after each readout to keep within SAR              

limitations. The same dead-time was subsequently added to the two acquisitions           

using the constant 82° and TRAPS schemes in order to produce comparable image             

quality. To evaluate the effect of the TRAPS scheme, the following method was             

used to measure GM/WM contrast, CNR, and SNR.  

Noise maps were estimated using method number three described in Ref. ​(115)​,            

where the readout bandwidth is doubled, effectively doubling the image FOV in the             

readout direction. In the reconstruction, two k-spaces with the correct FOV were            

then formed by picking out every other sample, creating one k-space containing all             

odd samples and one k-space containing all even samples. A third k-space was             

produced by gridding all samples down to the originally prescribed matrix and            

FOV using a sinc-kernel ​(116)​. All three k-spaces were subsequently run through            

the PROPELLER recon, except for the motion correction part. After          

coil-combination and before gridding the blades, a noise k-space was calculated by            

subtracting the odd sample k-space from the even sample k-space and dividing by             
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the square root of 2. The gridding procedure, therefore, yielded one signal and one              

noise map. 

To measure GM/WM-CNR, GM and WM were segmented using SPM12 ​(117)​. The            

resulting probability maps for GM and WM were used to create binary masks             

containing only pixels with a probability score higher than 98%. To avoid coil             

sensitivity effects, the image volumes were divided into 48x48 pixel (34x34 mm)            

sized region of interest (ROI) segments. Only ROIs containing more than           

(48x48)/5 pixels of both binary masks were included in order to ensure reliable             

measurements, resulting in 34 ROIs throughout the image volume. The contrast           

was calculated as the difference between the mean GM compartment and the mean             

WM compartment within each ROI. The noise in each ROI was estimated by taking              

the standard deviation of the noise in both compartments. Finally, the CNR was             

calculated by dividing the contrast measurements by the corresponding noise          

measurement. The SNR was measured by dividing the mean signal of both            

compartments by the corresponding noise estimate. The measurement results are          

presented in Figure 43.  

The contrast-equivalent TE for the center echo of each scheme was calculated using             

the method described in Ref. ​(118)​.  

 

4.3.4 2D motion correction for PROPELLER  

A T2-weighted PROPELLER can be acquired in a way that all the slices are              

acquired within the same TR. However, FLAIR PROPELLER works best if each            

blade is acquired during several different TRs because the inversion slice thickness            

can be increased with respect to the imaged slice. This way, uninverted            

cerebrospinal fluid is less likely to flow into the imaged slice. Therefore, the 3D              

motion correction described in Project I cannot be used since slices within one             

brick were acquired at least half of the total scan time from each other and cannot                

be treated as one time point. Thus, the motion algorithm was limited to 2D and               

applied for each slice separately.  

One benefit of a 2D correction is that as long as the slices within a blade angle,                 

which are acquired in about 100-200 ms, can be aligned as long as they are not                

corrupted by motion. In contrast, the 3D correction requires the whole brick, which             

is acquired in 2–3 s, to be somewhat consistent. This makes the 2D more suitable               

for the rapid head movements that this project is aimed to correct. However,             

out-of-plane movements cannot be corrected. Therefore, they are expected to be           

corrected by the PMC.  

◼  65  ◼  

https://paperpile.com/c/Ykoq10/DfnFa
https://paperpile.com/c/Ykoq10/xZ7a9


 

4.4 Ethical Considerations  

During the development of any new MRI technique, it is tested many times and              

refined on healthy volunteers. The healthy volunteers are usually the physicists           

themselves because it is more convenient. Later, when and if the technique is             

deemed ready, it sometimes needs to be tested on patients. In this process, two              

main ethical issues arise: incidental findings in volunteers and implications for           

patients.  

 

4.4.1 Incidental findings in volunteers 

A meta-analysis from 2009 by Morris et al. ​(119) states that: “The crude prevalence              

of incidental findings on brain MRI is 2.7%, or one for every 37 neurologically              

asymptomatic people scanned”. There is therefore a considerable risk that          

something wrong is accidentally found whenever a new volunteer is imaged.  

At the neuroradiology department, it is policy to always have a radiologist review             

the images acquired for research purposes and inform the volunteers if there is a              

clinically relevant finding. It is one of the recommended approaches, according to            

Illes et al. ​(120)​, for research that is performed in connection to a hospital where               

specific expertise (radiologists in this case) is available. 

It is impossible, however, to have a radiologist check all the images that the              

physicists take themselves on a weekly basis. Furthermore, the images that are            

produced are not always of clinical quality and are typically of one specific image              

contrast. This makes it more unlikely to find something. Therefore, should there be             

a different approach when the physicists are the volunteers? One possible solution            

would be to have a radiologist check an optional clinically viable examination that             

is performed every once in a while. If an incidental finding is made, the following               

discussion is easier to have in private and under controlled circumstances.  

 

4.4.2 Informed consent  

With the current procedure, the patient learns about the study after they have been              

called in from the waiting room, after which they give their consent to the nurse               

performing the examination. When the patient is called their condition is known            

and it is possible to exclude, for example, patients with dementia, in order to              
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protect their autonomy. Furthermore, nurses can also evaluate whether the patient           

is fit for inclusion upon meeting the patient.  

It is difficult to convey adequate and understandable information about the physics            

and technical details involved in the research to the volunteers. However, the            

patient only needs to consent to add the additional time (usually under 10 minutes)              

to their examination and to the use of the resulting images in publications. 

When it comes to ethical considerations the research performed here the           

considerations are rather simple. MRI is quite safe when operated correctly, and as             

long as the extra time spent in the scanner does not bother the patient, there are no                 

real drawbacks to consenting to the study. 
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5 Results and Discussion 

This chapter will discuss material not covered in the papers and some new results              

that have been produced in the wake of the papers. The author will also expand on                

future developments, and the limitations of the projects and papers.  

5.1 Project I: SMS Accelerated PROPELLER  

The major findings of Project I: 

1. A PROPELLER acquisition could be efficiently accelerated using SMS, with 

one fully sampled blade as calibration data for a slice-GRAPPA algorithm 

employing rotated and interpolated kernels.  

 

2. This SMS accelerated PROPELLER sequence could be used to acquire p3D 

volumes that could provide motion robust reformattable volumes.  

 

5.1.1 SMS acceleration  

This project has shown that T2-weighted and T1-FLAIR images can be successfully            

acquired with an SMS accelerated PROPELLER sequence. Example images are          

shown in Figure 35 and Figure 36. The combination has the following synergistic             

advantages: (1) it improves the 3D RMC due to shorter TR, and (2) it enabled the                

acquisition of motion corrected p3D PROPELLER volumes, and (3) it spreads out            

slice-leakage artifacts across the FOV because of the unique phase-encoding          

direction of each blade and CAIPIRINHA.  

Following Paper I, the SMS accelerated PROPELLER sequence was used to acquire            

p3D T1-FLAIR volumes ​(121)​. The resulting images and reformats are shown in            

Figure 35. The SMS accelerated PROPELLER sequence was also used to rapidly            

acquire regular T2-weighted images, as shown in Ref. ​(122)​. Here, 34 4 mm slices              

were acquired in 32 s using an in-plane acceleration factor of 2 and an SMS               

acceleration factor of 2. Two of the 34 slices are shown in Figure 36. This rapid                

acquisition is potentially useful for imaging uncooperative patients since it is both            

quick and motion-corrected.  
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Figure 35.​ T1-FLAIR SMS accelerated PROPELLER. Axial slices and 

reformatted sagittal and coronal views. Scan parameters were as follows: R = 2, 

SMS = 2, FOV = 240×240 mm​2​, matrix = 240×40, slice thickness = 1.5 mm, 100 

slices, exc./ref. FA = 90°/111°, RBW = ±50 kHz/FOV, TE/TR = 13/1993 ms, ETL = 

10, two acquisitions and a scan time of 3 min. 

PROPELLER is an important technique in the clinical setting, due to its robustness             

against motion and flow artifacts ​(123–129)​. Therefore, it is of value to keep             

developing the technique in order to take advantage of the latest advancements in             

the MRI field. In the field of acceleration, the SMS technique has had a significant               

impact on how diffusion and fMRI images are acquired. It is, therefore, potentially             

valuable to add this feature to the PROPELLER sequence.  

  

Figure 36.​ Two slices of an SMS and in-plane accelerated T2-weighted 

PROPELLER, with an acquisition time of 32 seconds.  
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5.1.2 Pseudo 3D 

As mentioned in the background and theory chapter, the SMS acceleration is less             

adopted in RARE imaging than with diffusion and fMRI. The main problem with             

combining SMS and RARE is the relatively high energy requirement of the MB RF              

pulses, thereby leading to increased SAR when, as in RARE, many high FA RF              

pulses are generated back to back. Another contributing factor could be that the             

field of MRI has been pushing for 3D acquisitions of regular contrasts, such as T1-               

and T2-weighted images. However, a p3D volume can be acquired with many thin             

2D slices ​(130,131)​.  

Comparing a p3D volume with 1 mm thick slices to a regular 2D image with 3-4                

mm thick slices, the thinner slices come with the benefits of reformability and             

higher resolution; however, a drawback is reduced SNR. A more interesting           

comparison is to compare the p3D to a real 3D acquisition.  

In order for a T2-weighted 3D RARE to be efficiently acquired, it needs a very long                

echo-train, with ETLs of around 80. This is because it excites the whole volume              

with each excitation, while the TR is limited to be at least 3 s. To make the best use                   

of those 3 seconds, as much of k-space as possible must be acquired. This long               

echo-train causes image blurring, since the signal amplitude changes throughout          

the train. While VRFAs are used to mitigate this effect ​(118)​, the blurring is still               

significant. This blurring is avoided in a p3D PROPELLER acquisition, since the            

ETL is much lower, around 25. Even though PROPELLER acquisition is inherently            

blurred by the oversampling of the k-space center the p3D PROPELLER images            

appear significantly less blurry than a 3D RARE acquired at with the same voxel              

size, as can be seen in Figure 37, which shows results from Ref. ​(132)​.  
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Figure 37.​ Volunteer imaged with T2-w SMS PROPELLER ​(a)​ and with a T2-w 

3D RARE ​(b)​, both with a voxel size of 1.0×1.0×1.0 mm3. The scan time was 2:30 

min for the PROPELLER acquisition, and 3:15 min for the 3D RARE acquisition. 

The PROPELLER data was acquired with axial slice orientation, the sagittal and 

coronal views being reformats from the axial data. The 3D RARE data was 

acquired in the sagittal plane, the axial and coronal views being reformats from 

the sagittal volume. The reformats of the PROPELLER data have clear 

anatomical structures and no slice cross-talk, as well as higher effective 

resolution compared to the 3D RARE images.  

Reproduced with permission from Paper I.  

Going to higher resolutions than 1 mm​3 voxels is straightforward with the 3D             

RARE, however, the p3D RARE starts to run into problems with the size of the slice                

selection gradients. Larger gradients need more time to ramp up and down,            

adversely affecting the echo-spacing. However, a large slice selection gradient will           

reduce the needed crusher area, which could remove some of the added echo             

spacing. This was not done in the current study but will be explored in the future.                

The large gradients can also cause significant eddy-currents, which would change           

the k-space trajectory at the edges of k-space. Furthermore, in the context of SMS,              

the CAIPIRINHA blips are potentially adversely affected by such eddy-currents.          

This has not yet been investigated and needs to be looked at in the future.  
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When it comes to sensitivity to head motion, the 3D is significantly more sensitive              

since it has longer echo trains and a reduced ability to retrospectively correct the              

data. As mentioned in the background and theory chapter, there are methods that             

try to replace lines or segments of k-space data using parallel imaging. However,             

they were deemed out-of-scope for the evaluations performed in this work.  

The T2-weighted p3D PROPELLER was pitted against the 3D RARE with PMC            

using the PROMO technique. The results are shown in Figure 38. Here the reduced              

sensitivity to the motion of the PROPELLER is clearly seen. However, the success             

of PROMO and the 3D PROPELLER RMC largely depends on when the motion             

occurs.  

 

Figure 38.​ Acquisitions with SMS PROPELLER and 3D RARE with and without 

motion. The PROPELLER images (left column) show axial slices with sagittal and 

coronal reformats. The 3D RARE images (right column) show a sagittal segment 

with axial and coronal reformats. ​(a)​ SMS PROPELLER acquisition without 

motion, with motion correction. ​(b)​ 3D RARE without motion, with PROMO 

motion updates on.​ (c)​ SMS PROPELLER acquisition with motion, without 

motion correction. ​(d)​ 3D RARE with motion, with PROMO motion updates off. 

(e)​ PROPELLER acquisition with motion and motion correction. ​( f)​ 3D RARE 

with motion and PROMO motion updates on. 

For PROMO, if a sudden motion occurs in the pause, before the navigators, it is               

able to address it. On the other hand, if it occurs anytime between from after the                

end of the navigator and the end of the echo train, the PMC is rendered relatively                

useless. The same goes for continuous motion, since PROMO can only correct for a              

small portion of the motion. The PROPELLER has similar limitations since it has a              
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temporal footprint of a few seconds (the TR) and can only correct for inter-brick              

movements, whereas intra-brick movements cannot be corrected and hamper the          

inter-brick correction.  

The stepwise motion pattern performed in the PROPELLER versus PROMO          

experiment had a pacing that was asynchronous with the TR of both the PROMO              

and the PROPELLER acquisition. This was done in an attempt to create a motion              

pattern that was equally challenging for both sequences. The resulting patterns are            

shown in Figure 39. 

 

Figure 39.​ Motion estimates from the acquisitions in Figure 38. 

One advantage of PROMO, in this case, is that it is possible to detect and reacquire                

data collected during a large movement, which cannot be done with the current             

PROPELLER implementation.  
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An advantage of 3D acquisitions over 2D acquisitions, in the context of motion, is              

that 3D imaging is less sensitive to spin-history effects and miss-match of slices             

since the whole volume is excited and refocused every time.  

Even though the noise amplification of SMS acceleration is low, the SNR of very              

thin slices is low to begin with. This limits the usefulness of higher acceleration              

factors. In the PROPELLER case, the TR can be reduced with SMS, which improves              

the motion correction and the lost SNR could be regained to some degree by              

increasing the number of blades. By adding more blades the motion correction also             

improves, since a potentially corrupt blade is averaged out. However, this could            

increase the colored noise that comes from the oversampling of the k-space center.  

 

5.1.3 Limitations of Project I 

Limitations of the current implementation of the SMS accelerated PROPELLER          

include an increase in RF power. This caused an increase in echo spacing by about               

30%, which, in turn, increased the TR. This is the opposite of the goal of SMS and                 

is therefore the most important issue to address in future work. The most obvious              

approach would be to use the VRFA scheme from Project III. 

The evaluations of image quality in Paper I would have benefited from a             

quantitative measurement, for example, SNR, g-factor maps, or the linear system           

leakage approach ​(81)​. Such a measurement was not included because the images            

showed the effects of acceleration.  

A more rigorous investigation into the effect of the interpolation of the GRAPPA             

kernels on the data synteziations would have been useful. For example, when the             

original MATLAB code was reimplemented in C++, it was discovered that whether            

the coordinates of the kernel hit the center of each pixel or somewhere between              

pixels significantly impacted the image quality. The reconstruction produced less          

slice leakage artifacts when the interpolation points were between original grid           

points.  

Many GRAPPA variations have examined the effect of the contributions of the            

center of k-space on the reconstruction quality ​(133)​. This would have been            

interesting to explore in the context of slice-GRAPPA and this case where the             

interpolation makes the choice of interpolation points more flexible.  

 

◼  75  ◼  

https://paperpile.com/c/Ykoq10/XP5ka
https://paperpile.com/c/Ykoq10/3uzN


 

5.2 Project II: T1-Weighted 3D EPI  

The major findings of Project II: 

1. The reduced MT effects of the WE-rect pulses leads to a significant increase 

in GM/WM contrast.  

2. A T1-weighted 3D EPI volume with isotropic voxels and low distortions 

could be acquired rapidly.  

 

5.2.1 RF-pulses  

All experiments in Project II were performed at 3 T. If the sequence were to be                

used at 1.5 T, then all RF pulses need to be about twice as long in order to suppress                   

the fat signal and even longer for the SLR pulse shown in Figure 33. In terms of                 

acquisition efficiency, this only leaves the shortest original WE-rect as a viable            

option. On the other hand, at 7 T the pulse durations become less than half as long                 

than at 3 T. Their short duration and very low SAR make them well suited for use                 

at high field strengths. On the one hand, high field strengths have increasing issues              

with B​
1

homogeneity, which could have adverse effects, as mentioned in Paper II.             

The FA of the WE-rect pulses impacts the nulling frequency (i.e., the quality of the               

fat suppression), making the pulses somewhat sensitive to B​
1

inhomogeneity.          

However, the effect is negligible at the FAs used in Paper II (9–18°). In Ref. ​(26)​,                

they show that the nulling frequency of a WE-rect generated for an FA of 20° is                

unaffected even if the achieved FA is off by more than 20°.  

A drawback of using spectrally selective water exciting pulses is that they tend to be               

sensitive to B​
0 ​inhomogeneity, which effectively shifts the fat and water peaks. The  

 
          

impact of this on the fat suppression is discussed in Paper II; however, the FA at                

the water peak changes as well. With the pulses used in this study, any shift of the                 

water peak will lower the achieved flip angle. For the T1-weighted 3D EPI, this              

means that the SNR will become higher, as long as the FAs stay above the Ernst                

angle ​(134)​. However, the GM/WM contrast will decrease. Fortunately, for brain           

imaging the B​
0 ​variations, even at 3T, are generally low. However, signal drop-out  

 
          

can be observed in areas close to air-to-tissue boundaries. These are also the             

regions where the EPI distortions are most prominent, making it less of a problem              

since the signal would have been corrupted anyway.  

One possibility to further improve the pulses used for the T1-weighted 3D EPI is to               

treat it as an optimization problem and use, for example, ​optimal control that has              

been successfully applied to create multi-band RF pulses, as discussed in previous            
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sections. This could, for example, utilize the fact that, since the main fat peak              

resides on only one side of the water peak, the frequency response could be              

asymmetrical.  

 

5.2.2 Potential uses for the MT-reducing RF pulses  

In addition to the increased GM/WM contrast shown in this work, the WE-rect             

pulse has been shown to increase the tSNR of fMRI ​(26)​. A similar approach has               

been proposed to decrease the MT effects in bSSFP ​(135) by increasing the             

duration of the hard RF pulses and thereby narrowing the spectral selectivity. This             

result implies that there is a possibility to increase the GM/WM contrast and SNR              

of T1-weighted 3D RARE acquisitions by stretching the hard refocusing pulses.           

Consequently, this would come at the cost of increased echo spacing. However, it             

would be interesting to explore how long the RF pulses need to be in order to have                 

an effect on the MT. A similar argument could be made for the MP-RAGE              

(magnetization prepared – rapid gradient echo) ​(136) sequence; however, since the           

GM/WM contrast is already boosted by the inversion preparation, the MT           

reduction might have a negligible effect.  

Finally, the WE-rect pulse could be used with a regular SPGR sequence, thereby             

increasing the time penalty since it requires one excitation per readout. In the             

example shown in Figure 40, the scan time was almost doubled. However, it comes              

with several benefits in addition to the GM/WM contrast increase and low SAR.             

The fat suppression makes the image easier to interpret, especially if the images are              

acquired post gadolinium enhancement, since the fat can obscure contrast uptake.           

Without signal from fat, the choice of TE becomes more flexible, since phase             

cancellations in voxels containing both fat and water are no longer an issue.             

Another benefit of suppressing the fat signal is that it can avoid Gibbs-ringing from              

the fat surrounding the head; this can be seen in the frontal most part of the brain                 

in Figure 40. Furthermore, the SNR increase due to both the MT reduction and the               

longer TR could be used to accelerate even more and potentially regain some of the               

lost scan time.  
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Figure 40. ​Two T1-weighted SPGR acquisitions where the left uses a short hard 

pulse and the right uses a WE-rect.  

5.2.3 The T1-weighted 3D EPI sequence 

The 3D EPI images were acquired with the frequency-encoding direction in the            

superior-inferior direction to suppress signal from blood flowing into the brain.           

Since EPI is generally acquired at high bandwidths, the FOV can be increased in              

the frequency-encoding direction without a significant scan time increase. For the           

3D EPI, this enables simultaneous imaging of both the brain and spine. Examples             

of such images are shown in Figure 41. To avoid fold-in artifacts from the              

shoulders, the SPSP pulses described in the background and theory chapter can be             

used (Figure 41c). The sensitivity of the frequency selective pulses to B0            

fluctuations is clearly demonstrated, as the fat suppression fails at the upper back             

in Figure 41b and c. Furthermore, breathing causes shot-to-shot phase variations           

that produce incoherent ghosting in the neck, as can be seen in Figure 41a, b, and c.                 

The possibility of larger FOVs and quick acquisition times makes the 3D viable for              

use as a scout, or localizer.  

◼  78  ◼  



 

 

Figure 41.​ ​(a–c) ​Three 3D EPI acquisitions with a large FOV, employing 

different excitation pulses: ​(a)​ a short hard pulse, ​(b)​ the WE-rect, and ​(c)​ a 

minimum-phase SPSP. ​(d)​ An SPGR acquisition that can be viewed as a 

reference. ​Top row:​ Sagittal images.​ Bottom row:​ Coronal reformats.  

  

The 3D EPI sequence could also be used to acquire quantitative T1 maps using a               

variable FA method ​(137)​. The low MT effects could be useful in this case since it                

can affect the T1 values, as demonstrated in Ref. ​(138)​.  

 

5.2.4 Limitations of Project II 

The GM/WM contrast was measured as the ratio between the mean of the whole              

GM and WM compartments divided by the sum of both compartments. However,            

this might not have been the best choice of contrast definition since it weights the               

contrast with the overall signal strength. The WE-rect pulses are expected to            
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increase the signal strength, and therefore this contrast definition might have           

deemphasized the effect they have on the GM/WM contrast. Defining contrast           

simply as the ratio between the mean of the whole GM and WM compartments              

could have been a better choice.  

It would have also been possible to perform an SNR measurement and calculate             

the CNR. However, for this study the GM/WM contrast was the most important             

feature to measure since that is what the sequence needs inorder for it to compete               

with an 3D IR-SPGR ​(136)​.  

Since the GM/WM contrast depends on the FA, a map of the actually achieved FAs               

would have been useful to fully characterize the RF pulses.  
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5.3 Project III: T1-FLAIR PROPELLER and PMC 

The major findings of Project III: 

1. The WRAD and PROPELLER combinations enable imaging during 

continuous very large and rapid head moments. 

2. The TRAPS VRFA scheme could significantly decrease the SAR of the 

T1-FLAIR PROPELLER sequence without any SNR or image quality loss.  

 

5.3.1 TRAPS 

While acquiring the three data sets with the three refocusing FA schemes shown in              

Figure 42a, the 120° scheme led to a scan time of 03:50 min, a 59% increase due to                  

SAR penalties, compared to the 82° and the TRAPS that avoided SAR penalties. In              

the EPG simulation, the TRAPS scheme produced higher signal amplitudes around           

the central echoes than both constant schemes (Figure 42b). This resulted in a             

mean SNR increase of 2% compared to the 120° scheme and a 12% increase              

compared to the 82° scheme. Furthermore, the signal modulation produced no           

visible blurring in the images displayed in Figure 43.  

 

Figure 42. (A)​ Three refocusing FA schemes: constant FAs  of 120° in green, 

constant FAs  of 82° in red, and the TRAPS scheme in blue. The constant FA 

scheme of 82° and the TRAPS scheme have the same estimated SAR.​ (B) 

Resulting EPG simulation of the three schemes for gray and white matter. 

Reproduced from Paper III. 

With an echo spacing of 7.4 ms, the TE at the center echo was 51.8 ms. However,                 

the contrast-equivalent TE was 46.5 ms for the 120° scheme, 38.5 ms for the 82°               
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scheme, and 35.3 ms for the TRAPS scheme. Nonetheless, there was no significant             

difference in either contrast or CNR between the images.  

 

Figure 43. ​ Results from the evaluation of the refocusing FA schemes.​ (A), (B) 

and ​(C)​ show images acquired with the constant 120°, constant 82°, and TRAPS 

scheme. Included are the mean of the contrast, CNR, and SNR measurements. ​ (D) 

shows one of the GM and WM segmentations (only including pixels with a 

probability score higher than 98%), and corresponding noise map. The pink 

square represents an example of one of the ROIs used for the SNR and CNR 

calculations.  

The TRAPS scheme effectively modulates the signal amplitude across the          

phase-encoding direction of each blade, which could negatively affect the          

point-spread function and cause blurring. However, no additional blurring was          

observed here, which is in agreement with previous studies ​(139)​. The author            

hypothesize that since the signal modulation is moderate, the main contributor to a             

widening of the point-spread function could be the oversampling of the k-space            

center due to the overlapping PROPELLER blades.  

An added benefit of using low FAs is the shortened contrast-equivalent TE, which             

could generate a greater T1-w. However, in a PROPELLER trajectory, a majority of             

the phase-encoding lines contribute to the image contrast since all blades span the             

center of k-space. This could explain why no significant increase of GM/WM            

contrast was established. The T1-w could also be improved by using low FAs since              

it causes less MT effects ​(43,140)​, as previously discussed. It was found, however,             
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that this effect was not large enough to influence the image contrast in this case,               

likely due to the significant impact of the high power adiabatic IR pulse on the MT                

effects.  

An alternative way of reducing the RF power of the T1-FLAIR sequence could be to               

modify the adiabatic inversion RF pulse used by the sequence. A less sharp             

inversion slice profile can reduce the peak power of a hyperbolic secant pulse and              

thereby the produced SAR. The SAR produced by the inversion pulse could then             

possibly be balanced with the SAR produced by the refocusing pulses to achieve a              

slightly higher SNR.  

 

5.3.2 SNR loss 

In the results of Paper III, the fastest motion pattern resulted in PI artifacts. These               

can be seen in Figure 44A as low-intensity streaks around the head. Furthermore,             

PI fold-in artifacts are typically accompanied by noise amplification. To mitigate           

this effect, the author proposed a simple solution based on the assumption that if              

the coil sensitivities have moved away from the slice position that is being             

reconstructed, a neighboring slice position might have a more similar arrangement           

of coil sensitivities. To find this better-suited slice, the GRAPPA weights were            

calibrated on a range of neighboring slices in the orthogonal blade and were, one              

by one, used to synthesize the missing data. The one that produced the image with               

the lowest entropy was then picked. Entropy was suggested as a quality metric for              

motion correction by Atkinson et al. ​(87,88)​. It can be used to find the image where                

the information is contained in the least amount of pixels (i.e., the image least              

affected by blurring or ghosting due to motion). The results presented in Figure 45              

show that, in this case, these PI artifacts could be somewhat mitigated with this              

method.  
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Figure 44.​ Results from the circular motion scans. ​(A)​ Images acquired with 

PMC updates (with and without RMC) and the motion estimates. ​(B)​ Reference 

image acquired when the subject remained still. ​(C)​ Images acquired without 

PMC updates (with and without RMC) and the corresponding motion estimates. 

(D)​ Enlarged images, showing the external capsule. The pink arrows point to a 

loss of gray-white matter contrast in the RMC-only image. Note that the sudden 

drop in z translation in​ (A)​ at 20 s is due to the subject swallowing. Reproduced 

from Paper III. 

This modification of the reconstruction works because GRAPPA utilizes the effect           

of the coil sensitivities on k-space to fill in the missing lines, and these are not                

dependent on the anatomy depicted in the image.  

 

Figure 45.​ The same PMC corrected T1-FLAIR PROPELLER data was 

reconstructed using both the standard orthogonal blade GRAPPA ​(A)​ method 

and the proposed PMC adapted version ​(B)​. The reduction of PI artifacts can be 

seen on both sides of the head in the up-scaled square and as pointed out by the 

green arrows. 
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This approach could also be combined with the rotated and interpolated GRAPPA            

kernels of Project I to increase the search space and the chance of finding matching               

coil sensitivities. The motion estimates from the WRAD could also be used to find              

when matching coil sensitivities could appear. This shows that the oversampled           

nature of a PROPELLER dataset can be utilized in yet another way in order to               

mitigate the artifacts seen in Figure 44.  

P3D volumes could also be acquired with the PMC corrected PROPELLER           

sequence. However, for the very fast movements performed here, the signal loss,            

most clearly visible in the last experiment of Paper III, is expected to be greater               

with thin slices. 

 

5.3.3 Data rejection  

Rejection of blade-slices was performed in Paper III in an attempt to mitigate             

non-correctable out-of-plane motions as well as corruption from spin-history         

effects. A variation of this is described in the original PROPELLER paper ​(90)​,             

where the blades making up a slice are weighted depending on their data quality.              

However, no reference could be found where the efficiency of the data weighting or              

rejection was shown. While it might seem like a reasonable approach when, for             

example, all but one blade are uncorrupted, a single blade is already such a small               

contribution to the final image that rejecting it or weighing it down makes only a               

small difference. With the large and continuous movement patterns performed in           

Paper III it becomes exceedingly difficult to separate the corrupted blades from the             

uncorrupted ones, since all blades are more or less affected by the head motions.  

 

5.3.4 Limitations of Project III 

The hypothesis that the PROPELLER RMC would correct any residual motion           

missed by the PMC was not clearly demonstrated. There are two reasons for this.              

First, the PMC updates provided by the WRAD had such a high precision that there               

was little left for the RMC to correct. Second, the PROPELLER trajectory by itself is               

quite forgiving to motion artifacts, similar to a radial trajectory, thereby making            

the additional improvements of the RMC hard to distinguish in the images, such             

as, for example, the comparison of PMC with PMC+RMC in Figure 46A. This could              

have been shown by including cartesian acquisitions to compare against.  

◼  85  ◼  

https://paperpile.com/c/Ykoq10/VnkaP


 

 

Figure 46.​ Results from the stepwise motion scans.​ (A)​ Images acquired with 

PMC updates (with and without RMC) and the motion estimates to the left. ​(B) 

Reference image acquired when the subject remained still. ​(C)​ Images acquired 

without PMC updates (with and without RMC) and the corresponding motion 

estimates. ​(D)​ Enlarged images, showing the external capsule. The pink arrows 

point to anatomical differences between the RMC-only image and the rest. 

Reproduced from Paper III. 

The motion patterns were designed to challenge the proposed method; however,           

they are not based on realistic patient motions. Therefore, one could argue that             

clinical applicability is still to be proven. However, the motion patterns were            

extreme enough to hopefully encapsulate a majority of the possible patient           

motions. 
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