17 research outputs found

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the Takács Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    An efficient algorithm for modelling and dynamic prediction of network traffic

    Get PDF
    Network node degradation is an important problem in internet of things given the ubiquitous high number of personal computers, tablets, phones and other equipments present nowadays. In order to verify the network traffic degradation as one or multiple nodes in a network fail, this paper proposes one algorithm based on product form results (PRF) for fractionally auto regressive integrated moving average (FARIMA) model, namely PFRF. In this algorithm, the prediction method is established by FARIMA model, through equations for queuing state and average queue length in steady state derived from queuing theory. Experimental simulations were conducted to investigate the relationships between average queue length and service rate. Results demonstrated that, not only it has good adaptability, but has also achieved promising magnitude of 9.87 as standard deviation which shows its high prediction accuracy, given the low-magnitude difference between original value and the algorithm

    Discrete-time queueing models with priorities

    Get PDF
    This PhD-dissertation contains analyses of several discrete-time two-class priority queueing systems. We analyze non-preemptive, preemptive resume as well as preemptive repeat priority queues. The analyses are heavily based on probability generating functions that allow us to calculate moments and tail probabilities of the system contents and packet delays of both classes. The results are applicable in heterogeneous telecommunication networks, when delay-sensitive traffic gets transmission priority over best-effort traffic. Our results predict the influence of priority scheduling on the QoS (Quality-of-Service) of the different types of traffic
    corecore