121 research outputs found

    Evaluation of Single-Chip, Real-Time Tomographic Data Processing on FPGA - SoC Devices

    Get PDF
    A novel approach to tomographic data processing has been developed and evaluated using the Jagiellonian PET (J-PET) scanner as an example. We propose a system in which there is no need for powerful, local to the scanner processing facility, capable to reconstruct images on the fly. Instead we introduce a Field Programmable Gate Array (FPGA) System-on-Chip (SoC) platform connected directly to data streams coming from the scanner, which can perform event building, filtering, coincidence search and Region-Of-Response (ROR) reconstruction by the programmable logic and visualization by the integrated processors. The platform significantly reduces data volume converting raw data to a list-mode representation, while generating visualization on the fly.Comment: IEEE Transactions on Medical Imaging, 17 May 201

    Design and validation of key components for the readout electronics of future PET scanners

    Get PDF
    This thesis work discusses the design and validation of two circuit components used in the electronic readout of positron emission tomography (PET) scanners for biomedical applications: a constant fraction discriminator (CFD) and an integrated CMOS time to digital converter (TDC). The former is used in the read out of a double-head PET scanner already developed by the group of medical physics at INFN Pisa for non-invasive dose delivery monitoring in hadrontherapy. The goal of the work has been the optimization of the front-end PCB in terms of timing performances so as to reduce the dead time and resolution at system level. A new CFD board has been implemented and experimental results have shown a significant enhancement of the timing characteristics which have enabled performing in-beam PET data acquisition which is fundamental in hadrontherapy treatment. The design of an integrated CMOS TDC to be used for the time of flight measurement in a magnetic field-compatible PET block detector is the second topic of the thesis. The required time resolutions, linear behaviour as well as the communication with other readout elements have been taken into account in the definition of the circuit topology. Cadence and Verilog simulations have shown that a bin size of 100 ps can be obtained with the combination of a submicron technology (UMC 65 nm LLLVT) and a pipeline approach where a 10 bit systolic counter coupled to a 4 stage delay locked loop (DLL) are exploited. This translates into a nominal resolution of 29 ps. In addition, the use of a short DLL leads to a high linearity which is an issue in PET measurements. Despite lower resolutions are obtained in literature with different TDC topologies, achieving good performances in terms of both time resolution and linearity is not straightforward. The converter also features a real-time validation algorithm which is capable to reject noise inputs generated by the photodetector without impairing the acquisition capability of the system. A standard-cell unit has been also designed which is in charge of data buffering and serial communication with external readout boards. A 47 bit output word is provided by the semi-custom stage at a measurement rate which is selectable between 31.25 MHz and 62.5 MHz with a double hit resolution of 170 ns. An 8 channel prototype of 1.875 x 1.875 mm2 has been submitted in March 2013 in order to validate simulated data with experimental results

    Optimized PET module for both pixelated and monolithic scintillator crystals

    Get PDF
    [eng] Time-of-Flight Positron Emission Tomography (TOF-PET) scanners demand fast and efficient photo-sensors and scintillators coupled to fast readout electronics. Nowadays, there are two main configurations regarding the scintillator crystal geometry: the segmented or pixelated and the monolithic approach. Depending on the cost, spatial resolution and time requirements of the PET module, one can choose between one or another. The pixelated crystal is the most extensive configuration on TOF-PET scanners as the coincidence time resolution is better compared to the monolithic. On the contrary, monolithic scintillator crystals for Time-of-Flight Positron Emission Tomography (ToF-PET) are increasing in popularity this last years due to their performance potential and price in front of the commonly used segmented crystals. On one hand, monolithic blocks allows to determine 3D information of the gamma-ray interaction inside the crystal, which enables the possibility to correct the parallax error (radial astigmatism) at off-center positions within a PET scanner, resulting in an improvement of the spatial resolution of the device. On the other hand, due to the simplicity during the crystal manufacturing process as well as for the detector design, the price is reduced compared to a regular pixelated detector. The thesis starts with the use of HRFlexToT, an ASIC developed in this group, as the readout electronics for measurements with single pixelated crystals coupled to different SiPMs. These measurements show an energy linearity error of 3% and an energy resolution below 10% of the 511 keV photopeak. Single Photon Time Resolution (SPTR) measurements performed using an FBK SiPM NUV-HD (4 mm x 4 mm pixel size) and a Hamamatsu SiPM S13360-3050CS gave a 141 ps and 167 ps FWHM respectively. Coincidence Time Resolution (CTR) measurements with small cross-section pixelated crystals (LFS crystal, 3 m x 3 mm x 20 mm ) coupled to a single Hamamatsu SiPM S13360-3050CS provides a CTR of 180 ps FWHM. Shorter crystals (LSO:Ce Ca 0.4%) coupled to a Hamamatsu S13360-3050CS SiPM or FBK-NUVHD yields a CTR of 117 ps and 119 ps respectively. Then, the results with different monolithic crystals and SiPM sensors using HRFlexToT ASIC will be presented. A Lutetium Fine Silicate (LFS) of 25 mm x 25 mm x 20 mm, a small LSO:Ce Ca 0.2% of 8 mm x 8 mm x 5 mm and a Lutetium-Yttrium Oxyorthosilicate (LYSO) of 25 mm x 25 mm x 10 mm has been experimentally tested. After subtracting the TDC contribution (82 ps FWHM), a coincidence time resolution of 244 ps FWHM for the small LFS crystal and 333 ps FWHM for the largest LFS one is reported. Additionally, a novel time calibration correction method for CTR improvement that involves a pico-second pulsed laser will be detailed. In the last part of the dissertation, a new developed simulation framework that will enable the cross-optimization of the whole PET system will be explained. It takes into consideration the photon physics interaction in the scintillator crystal, the sensor response (sensor size, pixel pitch, dead area, capacitance) and the readout electronics behavior (input impedance, noise, bandwidth, summation). This framework has allowed us to study a new promising approach that will help reducing the CTR parameter by segmenting a large area SiPM into "m" smaller SiPMs and then summing them to recover all the signal spread along these smaller sensors. A 15% improvement on time resolution is expected by segmenting a 4 mm x 4 mm single sensor into 9 sensors of 1.3 mm x 1.3 mm with respect to the case where no segmentation is applied.[cat] Aquesta tesi tenia com a objectiu la fabricació i avaluació d'un prototip per a detecció de fotons gamma en aplicació per imatge mèdica, més concretament en Tomografia per Emissió de Positrons amb mesura de temps de vol (TOF-PET). L'avaluació del mòdul va començar fent una caracterització completa del chip (ASIC) anomenat HRFlexToT, una versió nova i millorada de l'antic chip FlexToT, desenvolupat i fabricat pel grup de la Unitat Tecnològica del ICC de la Universitat de Barcelona. Aquesta avaluació inicial del chip compren des de la comprovació de les funcionalitats bàsiques fins a la generació d'un test automàtic per generar les gràfiques de linealitat corresponents durant el test elèctric. Un cop donat per bo, es va muntar en una placa demostrada, també ideada per l'equip d'enginyers del grup, i ja quedava llesta per realitzar les mesures pertinents. Tot seguit, es varen realitzar les mesures òptiques, que incloïa mesures de Singe Photon Time Resolution (SPTR) i de Coincidence Time Resolution (CTR). Aquest valors actuen com a figures de mèrit a l'hora de comparar les prestacions amb d'altres ASICs competidors del HRFlexToT. Es van obtenir valors de 60 ps de resposta pel que respecta al SPTR i de 115 ps de CTR en cristalls segmentats, una millora entorn del 20-30% respecte a la versió predecessora del chip. Aquests valors mostren ser el límit de l'estat de l'art actual i amb aquesta idea es van començar a fer altres mesures, en aquest cas amb cristall monolítics, blocs grans llegits per diversos fotosensors de les empreses Hamamatsu i FBK. Per altra banda, es va provar el funcionament del ASIC en configuració anomenada monolítica, on el cristall centellejador s'utilitza en blocs grans en coptes d’emprar cristalls segmentats, això abarateix el cost total del detector. Aquesta configuració degrada les propietats de CTR, un paràmetre crític a l'hora de tenir un producte bo i eficient. S’han obtingut mesures de 250 ps de CTR amb aquesta configuració, d’on es pot dir que l’HRFlexToT es trobar a l’estat de l’art de la tecnologia electrònica dedicada a TOF-PET amb cristalls segmentats i monolítics. Finalment, es va desenvolupar una nova eina simulació que consisteix en un sistema híbrid entre un simulador físic i un electrònic per tal de tenir una idea del comportament complet del mòdul detector. Una solució que ningú havia provat fins ara o que no es pot trobar en la literatura

    The BrightEyes-TTM: an open-source time-tagging module for fluorescence lifetime imaging microscopy applications

    Get PDF
    The aim of this Ph.D. work is to reason and show how an open-source multi-channel and standalone time-tagging device was developed, validated and used in combination with a new generation of single-photon array detectors to pursue super-resolved time-resolved fluorescence lifetime imaging measurements. Within the compound of time-resolved fluorescence laser scanning microscopy (LSM) techniques, fluorescence lifetime imaging microscopy (FLIM) plays a relevant role in the life-sciences field, thanks to its ability of detecting functional changes within the cellular micro-environment. The recent advancements in photon detection technologies, such as the introduction of asynchronous read-out single-photon avalanche diode (SPAD) array detectors, allow to image a fluorescent sample with spatial resolution below the diffraction limit, at the same time, yield the possibility of accessing the single-photon information content allowing for time-resolved FLIM measurements. Thus, super-resolved FLIM experiments can be accomplished using SPAD array detectors in combination with pulsed laser sources and special data acquisition systems (DAQs), capable of handling a multiplicity of inputs and dealing with the single-photons readouts generated by SPAD array detectors. Nowadays, the commercial market lacks a true standalone, multi-channel, single-board, time-tagging and affordable DAQ device specifically designed for super-resolved FLIM experiments. Moreover, in the scientific community, no-efforts have been placed yet in building a device that can compensate such absence. That is why, within this Ph.D. project, an open-source and low-cost device, the so-called BrightEyes-TTM (time tagging module), was developed and validated both for fluorescence lifetime and time-resolved measurements in general. The BrightEyes-TTM belongs to a niche of DAQ devices called time-to-digital converters (TDCs). The field-gate programmable array (FPGA) technology was chosen for implementing the BrightEyes-TTM thanks to its reprogrammability and low cost features. The literature reports several different FPGA-based TDC architectures. Particularly, the differential delay-line TDC architecture turned out to be the most suitable for this Ph.D. project as it offers an optimal trade-off between temporal precision, temporal range, temporal resolution, dead-time, linearity, and FPGA resources, which are all crucial characteristics for a TDC device. The goal of the project of pursuing a cost-effective and further-upgradable open-source time-tagging device was achieved as the BrigthEyes-TTM was developed and assembled using low-cost commercially available electronic development kits, thus allowing for the architecture to be easily reproduced. BrightEyes-TTM was deployed on a FPGA development board which was equipped with a USB 3.0 chip for communicating with a host-processing unit and a multi-input/output custom-built interface card for interconnecting the TTM with the outside world. Licence-free softwares were used for acquiring, reconstructing and analyzing the BrightEyes-TTM time-resolved data. In order to characterize the BrightEyes-TTM performances and, at the same time, validate the developed multi-channel TDC architecture, the TTM was firstly tested on a bench and then integrated into a fluorescent LSM system. Yielding a 30 ps single-shot precision and linearity performances that allows to be employed for actual FLIM measurements, the BrightEyes-TTM, which also proved to acquire data from many channels in parallel, was ultimately used with a SPAD array detector to perform fluorescence imaging and spectroscopy on biological systems. As output of the Ph.D. work, the BrightEyes-TTM was released on GitHub as a fully open-source project with two aims. The principal aim is to give to any microscopy and life science laboratory the possibility to implement and further develop single-photon-based time-resolved microscopy techniques. The second aim is to trigger the interest of the microscopy community, and establish the BrigthEyes-TTM as a new standard for single-photon FLSM and FLIM experiments

    Application of novel technologies for the development of next generation MR compatible PET inserts

    Get PDF
    Multimodal imaging integrating Positron Emission Tomography and Magnetic Resonance Imaging (PET/MRI) has professed advantages as compared to other available combinations, allowing both functional and structural information to be acquired with very high precision and repeatability. However, it has yet to be adopted as the standard for experimental and clinical applications, due to a variety of reasons mainly related to system cost and flexibility. A hopeful existing approach of silicon photodetector-based MR compatible PET inserts comprised by very thin PET devices that can be inserted in the MRI bore, has been pioneered, without disrupting the market as expected. Technological solutions that exist and can make this type of inserts lighter, cost-effective and more adaptable to the application need to be researched further. In this context, we expand the study of sub-surface laser engraving (SSLE) for scintillators used for PET. Through acquiring, measuring and calibrating the use of a SSLE setting we study the effect of different engraving configurations on detection characteristics of the scintillation light by the photosensors. We demonstrate that apart from cost-effectiveness and ease of application, SSLE treated scintillators have similar spatial resolution and superior sensitivity and packing fraction as compared to standard pixelated arrays, allowing for shorter crystals to be used. Flexibility of design is benchmarked and adoption of honeycomb architecture due to geometrical advantages is proposed. Furthermore, a variety of depth-of-interaction (DoI) designs are engraved and studied, greatly enhancing applicability in small field-of-view tomographs, such as the intended inserts. To adapt to this need, a novel approach for multi-layer DoI characterization has been developed and is demonstrated. Apart from crystal treatment, considerations on signal transmission and processing are addressed. A double time-over-threshold (ToT) method is proposed, using the statistics of noise in order to enhance precision. This method is tested and linearity results demonstrate applicability for multiplexed readout designs. A study on analog optical wireless communication (aOWC) techniques is also performed and proof of concept results presented. Finally, a ToT readout firmware architecture, intended for low-cost FPGAs, has been developed and is described. By addressing the potential development, applicability and merits of a range of transdisciplinary solutions, we demonstrate that with these techniques it is possible to construct lighter, smaller, lower consumption, cost-effective MRI compatible PET inserts. Those designs can make PET/MRI multimodality the dominant clinical and experimental imaging approach, enhancing researcher and physician insight to the mysteries of life.La combinación multimodal de Tomografía por Emisión de Positrones con la Imagen de Resonancia Magnética (PET/MRI, de sus siglas en inglés) tiene clara ventajas en comparación con otras técnicas multimodales actualmente disponibles, dada su capacidad para registrar información funcional e información estructural con mucha precisión y repetibilidad. Sin embargo, esta técnica no acaba de penetrar en la práctica clínica debido en gran parte a alto coste. Las investigaciones que persiguen mejorar el desarrollo de insertos de PET basados en fotodetectores de silicio y compatibles con MRI, aunque han sido intensas y han generado soluciones ingeniosas, todavía no han conseguido encontrar las soluciones que necesita la industria. Sin embargo, existen opciones todavía sin explorar que podrían ayudar a evolucionar este tipo de insertos consiguiendo dispositivos más ligeros, baratos y con mejores prestaciones. Esta tesis profundiza en el estudio de grabación sub-superficie con láser (SSLE) para el diseño de los cristales centelladores usados en los sistemas PET. Para ello hemos caracterizado, medido y calibrado un procedimiento SSLE, y a continuación hemos estudiado el efecto que tienen sobre las especificaciones del detector las diferentes configuraciones del grabado. Demostramos que además de la rentabilidad y facilidad de uso de esta técnica, los centelladores SSLE tienen resolución espacial equivalente y sensibilidad y fracción de empaquetamiento superiores a las matrices de centelleo convencionales, lo que posibilita utilizar cristales más cortos para conseguir la misma sensibilidad. Estos diseños también permiten medir la profundidad de la interacción (DoI), lo que facilita el uso de estos diseños en tomógrafos de radio pequeño, como pueden ser los sistemas preclínicos, los dedicados (cabeza o mama) o los insertos para MRI. Además de trabajar en el tratamiento de cristal de centelleo, hemos considerado nuevas aproximaciones al procesamiento y transmisión de la señal. Proponemos un método innovador de doble medida de tiempo sobre el umbral (ToT) que integra una evaluación de la estadística del ruido con el propósito de mejorar la precisión. El método se ha validado y los resultados demuestran su viabilidad de uso incluso en conjuntos de señales multiplexadas. Un estudio de las técnicas de comunicación óptica analógica e inalámbrica (aOWC) ha permitido el desarrollo de una nueva propuesta para comunicar las señales del detector PET insertado en el gantry a un el procesador de señal externo, técnica que se ha validado en un demostrador. Finalmente, se ha propuesto y demostrado una nueva arquitectura de análisis de señal ToT implementada en firmware en FPGAs de bajo coste. La concepción y desarrollo de estas ideas, así como la evaluación de los méritos de las diferentes soluciones propuestas, demuestran que con estas técnicas es posible construir insertos de PET compatibles con sistemas MRI, que serán más ligeros y compactos, con un reducido consumo y menor coste. De esta forma se contribuye a que la técnica multimodal PET/MRI pueda penetrar en la clínica, mejorando la comprensión que médicos e investigadores puedan alcanzar en su estudio de los misterios de la vida.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Andrés Santos Lleó.- Secretario: Luis Hernández Corporales.- Vocal: Giancarlo Sportell

    Development of a data acquisition system using silicon detectors for PET applications

    Get PDF
    Este trabajo describe el desarrollo de parte de la electr´onica elaborada para el diseño de un escáner de Tomografíıa de Emisión de Positrones (PET) denominado Petete. Dicho escáner debe identificar offline los eventos de coincidencia y utilizar la técnica de ToF (Time of Flight) para descartar el ruido de fondo, lo cual permite contribuir a la mejora de la relación señal-ruido (SNR) y por lo tanto al aumento de la calidad de las imágenes médicas. El principal uso del escáner PET será en la investigación para el estudio y prueba de diferentes detectores para la mejora de las prestaciones del escáner PET en términos de resolución espacial, tiempo de adquisición (lo cual implica la reducción del tiempo de exposición del paciente a la radiación), la sensibilidad y calidad de imagen. El escáner conste en 16 módulos de detectores, basados en fotomultiplicadores de silicio, contando con un total de 1024 canales. Para poder recoger la información de ToF, la electrónica de proximidad (Front-end) debe registrar el tiempo de llegada de los eventos válidos detectados con una precisión del orden de cientos de picosegundos. Dado el número no despreciable de canales, y el reducido espacio disponible, la electrónica Front-end debe estar basada en un circuito integrado de aplicación específica (ASIC). Cada módulo de detectores se ubica en una tarjeta denominada tarjeta híbrida, que contiene al menos un ASIC para el registro del tiempo de llegada. Para el presente trabajo se han identificado y trabajado con dos ASICs que se adecúan a las necesidades del escáner: el Vata64hdr16 y el STiC. La electrónica desarrollada consta de dos partes: Por una parte se ha desarrollado completamente el sistema de adquisición de datos que realiza la lectura de los detectores de silicio, incluyendo tanto el hardware como el firmware necesario. Esta tarjeta de adquisición es la encargada de controlar los ASICs, realizar proceso de adquisición de datos, gestionar la comunicación con el ordenador y llevar a cabo la transferencia de datos. Para cubrir el escáner completo, son necesarias en total cuatro tarjetas de adquisición de datos que deben trabajar en paralelo, cubriendo cada una un total de 256 canales. El sistema se controla por un programa software diseñado para esta aplicación e instalado en un ordenador. El sistema de adquisici´on de datos está diseñado para que sea compacto, flexible, rápido y adaptable a las ASICs mencionadas. Por otra parte, es importante destacar que una parte del presente trabajo se ha dedicado al desarrollo de parte de la electrónica digital de STiC. Este trabajo se ha desarrollado en la Universidad de Heidelberg (Alemania) y ha permitido profundizar en el desarrollo de un sistema de adquisici´on de datos en este caso desde el punto de vista de la síntesis de un ASIC. La electrónica y el software implementado en el sistema satisfacen completamente las necesidades del escáner Petete, lo que constituye un sistema multi-configurable con transmisión de datos rápida a través de Gigabit Ethernet. El diseño se ha realizado de forma que se pueden seleccionar diferentes configuraciones, tales como diferentes modos de lectura, diferentes opciones de prueba y configuraci´on separada para cada tarjeta híbrida. Las pruebas experimentales llevadas a cabo verifican el comportamiento funcional correcto de todos los sub-sistemas, tales como ADC, DAC, TDC, triggers, señales de control, comunicación y otros, como se explica en la memoria presentada. Está previsto que el sistema sea utilizado para la investigación en el laboratorio de diferentes sensores de silicio y centelladores, dado que el sistema se ha diseñado de formare configurable y fácil de adaptar con los nuevos detectores. Hasta este momento la tarjera HDRDAQ se ha testado con dos tarjetas híbridas con 64 canales cada uno. En un futuro próximo están previstas las pruebas del sistema completo con cuatro tarjetas hibridas y con cuatro módulos detectores. Otras pruebas planeadas son el uso de varias tarjetas HDRDAQ en paralelo trabajando de modo sincronizado para cubrir el número de módulos detectores del scanner completo. La estructura del presente trabajo es la siguiente: En el primer capítulo se han estudiado las características de los detectores, además de describir el escáner Petete y definir los requerimientos del sistema de adquisición de datos. En el capítulo dos se ha dado una introducción a los fotomultiplicadores de silicio y a las características de los ASICs con los que se ha trabajado: el Vata64hdr16 y el STiC. Además también se ha llevado a cabo el desarrollo de las tarjetas hibridas que forman los módulos del escáner PET. El capítulo 3 se centra en el chip STiC y en el desarrollo de la electrónica digital del diseño ASIC que se ha llevado a cabo. En el capítulo 4 se desarrolla de forma detallada la electrónica de adquisición que lleva a cabo el proceso de control de los chips y la comunicación con el ordenador. Para el diseño de tarjeta de adquisición se ha tenido en cuenta la geometría del escáner, el número de las tarjetas hibridas necesarias que hay que controlar y los requisitos específicos de los ASICs. Para controlar el escáner y la electrónica desde el ordenador se ha desarrollado un programa específico. El capítulo 5 est´a dedicado al desarrollo firmware realizado, y el cap´ıtulo 6 se describe brevemente el software. El ultimo capitulo se ha dedicado al desarrollo de las pruebas en el laboratorio para verificar la funcionalidad de sistema con sus diferentes partes como el software, electrónica y detectores. Finalmente se incluyen las conclusiones del trabajo completo

    Time resolved single photon imaging in Nanometer Scale CMOS technology

    Get PDF
    Time resolved imaging is concerned with the measurement of photon arrival time. It has a wealth of emerging applications including biomedical uses such as fluorescence lifetime microscopy and positron emission tomography, as well as laser ranging and imaging in three dimensions. The impact of time resolved imaging on human life is significant: it can be used to identify cancerous cells in-vivo, how well new drugs may perform, or to guide a robot around a factory or hospital. Two essential building blocks of a time resolved imaging system are a photon detector capable of sensing single photons, and fast time resolvers that can measure the time of flight of light to picosecond resolution. In order to address these emerging applications, miniaturised, single-chip, integrated arrays of photon detectors and time resolvers must be developed with state of the art performance and low cost. The goal of this research is therefore the design, layout and verification of arrays of low noise Single Photon Avalanche Diodes (SPADs) together with high resolution Time-Digital Converters (TDCs) using an advanced silicon fabrication process. The research reported in this Thesis was carried out as part of the E.U. funded Megaframe FP6 Project. A 32x32 pixel, one million frames per second, time correlated imaging device has been designed, simulated and fabricated using a 130nm CMOS Imaging process from ST Microelectronics. The imager array has been implemented together with required support cells in order to transmit data off chip at high speed as well as providing a means of device control, test and calibration. The fabricated imaging device successfully demonstrates the research objectives. The Thesis presents details of design, simulation and characterisation results of the elements of the Megaframe device which were the author’s own work. Highlights of the results include the smallest and lowest noise SPAD devices yet published for this class of fabrication process and an imaging array capable of recording single photon arrivals every microsecond, with a minimum time resolution of fifty picoseconds and single bit linearity

    Électronique d’un convertisseur photon-numérique 3D pour une résolution temporelle de 10 ps FWHM

    Get PDF
    Les technologies utilisant la détection monophotonique sont de plus en plus présentes dans nos vies. De nombreuses applications nécessitent un photodétecteur possédant une haute efficacité de détection ainsi que d’excellentes performances temporelles, de l’ordre de 10 ps LMH. L’un des exemples qui aura un impact dans nos vies à court terme est l’intégration de système de télémétrie laser sur les véhicules afin de les rendre autonomes. Le domaine de l’imagerie médicale peut également profiter du développement de nouveaux photodétecteurs possédant une très haute précision temporelle. Par exemple, la tomographie d’émission par positrons permet d’imager le métabolisme des cellules, une technique très utilisée dans la détection de tumeurs cancéreuses. Une résolution temporelle en coïncidence de 10 ps LMH permet d’augmenter drastiquement le contraste des images des scanners TEP en localisant l’endroit sur la ligne de réponse où s’est produite l’annihilation du positron et de l’électron. L’atteinte d’une résolution de 10 ps LMH représenterait un changement de paradigme puisqu’il serait possible de produire directement une image sans utiliser un processus de reconstruction. Présentement, les cristaux scintillateurs et les photodétecteurs sont les deux facteurs limitant l’atteinte d’une résolution de 10 ps LMH. Au niveau du photodétecteur, une gigue temporelle de détection de photon unique de 10 ps LMH est requise pour atteindre une résolution en coïncidence de 10 ps LMH. Le Groupe de recherche en appareillage médicale travaille à atteindre cette performance depuis de nombreuses années. Le projet phare du groupe au niveau du développement de photodétecteur est le convertisseur photon-numérique 3D. Pour ce détecteur, une intégration verticale 3D de deux puces de silicium est requise. Sur la première couche, une matrice de photodiode à avalanche monophotonique est conçue dans une technologie sur mesure de Teledyne Dalsa Semiconductor Inc est intégrée en 3D sur une seconde couche de technologie standard CMOS 65 nm de Taiwan Semiconductor Manufacturing Company ltd. Ce projet de doctorat vise à concevoir un circuit en technologie CMOS qui attribue à chaque photodiode à avalanche monophotonique un circuit d’étouffement et un convertisseur temps-numérique possédant une gigue sous les 10 ps LMH. Cette thèse présente le développement d’une matrice de 256 circuits de lecture de photodiodes à avalanche monophotonique optimisés pour obtenir la meilleure résolution temporelle tout en intégrant un circuit de traitement numérique. Pour atteindre une résolution de 10 ps LMH, un système de correction des non-uniformités et des variations de délai de propagation de chaque pixel a été implémenté. Pour finir, cette recherche conclut sur l’implémentation d’un circuit d’asservissement pour stabiliser les performances du convertisseur temps-numérique pour les variations de tension d’alimentations et de température
    • …
    corecore