254,631 research outputs found

    A multi-criteria model analysis framework for assessing integrated water-energy system transformation pathways

    Get PDF
    Sustainable development objectives surrounding water and energy are interdependent, and yet the associated performance metrics are often distinct. Regional planners tasked with designing future supply systems therefore require multi-criteria analysis methods and tools to determine a suitable combination of technologies and scale of investments. Previous research focused on optimizing system development strategy with respect to a single design objective, leading to potentially negative outcomes for other important sustainability metrics. This paper addresses this limitation, and presents a flexible multi-criteria model analysis framework that is applicable to long-term energy and water supply planning at national or regional scales in an interactive setup with decision-makers. The framework incorporates a linear systems-engineering model of the coupled supply technologies and inter-provincial transmission networks. The multi-criteria analysis approach enables the specification of diverse decision-making preferences for disparate criteria, and leads to quantitative understanding of trade-offs between the resulting criteria values of the corresponding Pareto-optimal solutions. A case study of the water-stressed nation of Saudi Arabia explores preferences combining aspiration and reservation levels in terms of cost, water sustainability and electricity sector CO2 emissions. The analysis reveals a suite of trade-off solutions, in which potential integrated water-energy system configurations remain relatively ambitious from both an economic and environmental perspective. The results highlight the importance of identifying suitable tradeoffs between water and energy sustainability objectives during the formulation of coupled transformation strategies

    Design of biomass value chains that are synergistic with the food-energy-water nexus: strategies and opportunities

    Get PDF
    Humanity’s future sustainable supply of energy, fuels and materials is aiming towards renewable sources such as biomass. Several studies on biomass value chains (BVCs) have demonstrated the feasibility of biomass in replacing fossil fuels. However, many of the activities along the chain can disrupt the food–energy–water (FEW) nexus given that these resource systems have been ever more interlinked due to increased global population and urbanisation. Essentially, the design of BVCs has to integrate the systems-thinking approach of the FEW nexus; such that, existing concerns on food, water and energy security, as well as the interactions of the BVCs with the nexus, can be incorporated in future policies. To date, there has been little to no literature that captures the synergistic opportunities between BVCs and the FEW nexus. This paper presents the first survey of process systems engineering approaches for the design of BVCs, focusing on whether and how these approaches considered synergies with the FEW nexus. Among the surveyed mathematical models, the approaches include multi-stage supply chain, temporal and spatial integration, multi-objective optimisation and uncertainty-based risk management. Although the majority of current studies are more focused on the economic impacts of BVCs, the mathematical tools can be remarkably useful in addressing critical sustainability issues in BVCs. Thus, future research directions must capture the details of food–energy–water interactions with the BVCs, together with the development of more insightful multi-scale, multi-stage, multi-objective and uncertainty-based approaches

    Perspectives on "game changer" global challenges for sustainable 21st century : Plant-based diet, unavoidable food waste biorefining, and circular economy

    Get PDF
    Planet Earth is under severe stress from several inter-linked factors mainly associated with rising global population, linear resource consumption, security of resources, unsurmountable waste generation, and social inequality, which unabated will lead to an unsustainable 21st Century. The traditional way products are designed promotes a linear economy that discards recoverable resources and creates negative environmental and social impacts. Here, we suggest multi-disciplinary approaches encompassing chemistry, process engineering and sustainability science, and sustainable solutions in "game changer" challenges in three intersecting arenas of food: Sustainable diet, valorisation of unavoidable food supply chain wastes, and circularity of food value chain systems aligning with the United Nations' seventeen Sustainable Development Goals. In the arena of sustainable diet, comprehensive life cycle assessment using the global life cycle inventory datasets and recommended daily servings is conducted to rank food choices, covering all food groups from fresh fruits/vegetables, lentils/pulses and grains to livestock, with regard to health and the environment, to emphasise the essence of plant-based diet, especially plant-based sources of protein, for holistic systemic sustainability and stability of the earth system. In the arena of unavoidable food supply chain wastes, economically feasible and synergistically (energy and material) integrated innovative biorefinery systems are suggested to transform unavoidable food waste into functional and platform chemical productions alongside energy vectors: Fuel or combined heat and power generation. In the arena of circularity of food value chain systems, novel materials and methods for plant-based protein functionalisation for food/nutraceutical applications are investigated using regenerative bio-surfactants from unavoidable food waste. This circular economy or industrial symbiosis example thus combines the other two arenas, i.e., plant-based protein sourcing and unavoidable food waste valorisation. The multi-disciplinary analysis here will eventually impact on policies for dietary change, but also contribute knowledge needed by industry and policy makers and raise awareness amongst the population at large for making a better approach to the circular economy of food

    Education in values in engineering. Energy for human development and sustainability

    Get PDF
    nergy is central to achieving th e interrelated econo mic, social, and environmental aims of sustaina ble human development. This pa per relates some UPC efforts to introduce the sustainable energy concept in its engineering curricula. The UPC approach is based on the education in values, the critical analysis of the presen t paradigms, and an overview of the global South real ity under a human rights-basis.Peer ReviewedPostprint (published version

    A constructive technology assessment of stationary energy storage systems: prospective life cycle orientated analysis

    Get PDF
    Based on the presentation and discussion at the 3rd Winter School on Technology Assessment, December 2012, Universidade Nova de Lisboa (Portugal), Caparica Campus, PhD programme on Technology AssessmentEnvironmental concerns over the use of fossil fuels and their resource constraints have increased the interest in generating electric energy from renewable energy sources (RES) to provide a sustainable electricity supply. A main problem of those technologies (wind or solar power generation) is that they are not constant and reliable sources of power. This results inter alia in an increased demand of energy storage technologies. Related stake holders show a big interest in the technical, economic and ecologic aspects of new emerging energy storage systems. This comes especially true for electrochemical energy storage systems as different Li-Ion batteries, Sodium Sulfur or Redox Flow batteries which can be utilized in all grid voltage levels, a wide range of grid applications as well as end user groups (e.g. private households, industry). A prospective and active Constructive Technology Assessment (CTA) can help to minimize potential mismatches, wrong investments, possible social conflicts, and environmental impacts of new energy storage technologies in an early development stage. It is insufficient to exclusively look at the operation phase to assess a technology. Such an approach can lead to misleading interpretations and can furthermore disregard social or ecological impact factors over the whole life cycle. Different energy storage technologies have to be evaluated in a prospective manner with a full integrated sustainability and life cycle approach to form a base for decision making and to support technology developers in order to allow distinctions between more or less sustainable battery technology variations. Therefore CTA is used as a scientific approach using several “neighbouring” engineering orientated disciplines e.g. Life Cycle Analysis (LCA), Social Life Cycle Assessment (SLCA) or Life Cycle Costs (LCC) and their methodologies which were initially developed for other purposes. The aim of the presented PhD Thesis is to make an economic, technological and ecological comparison of Energy storage technologies based on a life cycle sustainability Analysis (LCSA), multi criteria Analysis (or evaluation) (MCA) and to develop a suitable LCSA-MCA model through a new combined highly interdisciplinary approach in frame of CTA.Dr.-Ing. Marcel Weil Prof. Dr. António Brandão Moni

    Evaluation of an Australian Solar Community : Implications for Education and Training

    Get PDF
    1.1 Background What is renewable energy education and training? A cursory exploration of the International Solar Energy Society website (www.ises.org) reveals numerous references to education and training, referring collectively to concepts of the transfer and exchange of information and good practices, awareness raising and skills development. The purposes of such education and training relate to changing policy, stimulating industry, improving quality control and promoting the wider use of renewable energy sources. The primary objective appears to be to accelerate a transition to a better world for everyone (ISEE), as the greater use of renewable energy is seen as key to climate recovery; world poverty alleviation; advances in energy security, access and equality; improved human and environmental health; and a stabilized society. The Solar Cities project – Habitats of Tomorrow – aims at promoting the greater use of renewable energy within the context of long term planning for sustainable urban development. The focus is on cities or communities as complete systems; each one a unique laboratory allowing for the study of urban sustainability within the context of a low carbon lifestyle. The purpose of this paper is to report on an evaluation of a Solar Community in Australia, focusing specifically on the implications (i) for our understandings and practices in renewable energy education and training and (ii) for sustainability outcomes. 1.2 Methodology The physical context is a residential Ecovillage (a Solar Community) in sub-tropical Queensland, Australia (latitude 28o south). An extensive Architectural and Landscape Code (A&LC) ‘premised on the interconnectedness of all things’ and embracing ‘both local and global concerns’ governs the design and construction of housing in the estate: all houses are constructed off-ground (i.e. on stumps or stilts) and incorporate a hybrid approach to the building envelope (mixed use of thermal mass and light-weight materials). Passive solar design, gas boosted solar water heaters and a minimum 1kWp photovoltaic system (grid connected) are all mandatory, whilst high energy use appliances such as air conditioners and clothes driers are not permitted. Eight families participated in an extended case study that encompassed both quantitative and qualitative approaches to better understand sustainable housing (perceived as a single complex technology) through its phases of design, construction and occupation. 1.3 Results The results revealed that the level of sustainability (i.e. the performance outcomes in terms of a low-carbon lifestyle) was impacted on by numerous ‘players’ in the supply chain, such as architects, engineers and subcontractors, the housing market, the developer, product manufacturers / suppliers / installers and regulators. Three key factors were complicit in the level of success: (i) systems thinking; (ii) informed decision making; and (iii) environmental ethics and business practices. 1.4 Discussion The experiences of these families bring into question our understandings and practices with regard to education and training. Whilst increasing and transferring knowledge and skills is essential, the results appear to indicate that there is a strong need for expanding our education efforts to incorporate foundational skills in complex systems and decision making processes, combined with an understanding of how our individual and collective values and beliefs impact on these systems and processes

    Performance of a demand controlled mechanical extract ventilation system for dwellings

    Get PDF
    The main aim of ventilation is to guarantee a good indoor air quality, related to the energy consumed for heating and fan(s). Active or passive heat recovery systems seem to focus on the reduction of heating consumption at the expense of fan electricity consumption and maintenance. In this study, demandcontrolled mechanical extract ventilation systems of Renson (DCV1 and DCV2), based on natural supply in the habitable rooms and mechanical extraction in the wet rooms (or even the bedrooms), was analysed for one year by means of multi-zone Contam simulations on a reference detached house and compared with standard MEV and mechanical extract ventilation systems with heat recovery (MVHR). To this end, IAQ, total energy consumption, CO2 emissions and total cost of the systems are determined. The results show that DCV systems with increased supply air flow rates or direct mechanical extract from bedrooms can significantly improve IAQ, while reducing total energy consumption compared to MEV. Applying DCV reduces primary heating energy consumption and yearly fan electricity consumption at most by 65% to 50% compared to MEV. Total operational energy costs and CO2 emissions of DCV are similar when compared to MVHR. Total costs of DCV systems over 15 years are smaller when compared to MVHR due to lower investment and maintenance costs

    Examining green production and its role within the competitive strategy of manufacturers

    Get PDF
    Purpose: This paper reviews current literature and contributes a set of findings that capture the current state-of-the-art of the topic of green production. Design/methodology/approach: A literature review to capture, classify and summarize the main body of knowledge on green production and, translate this into a form that is readily accessible to researchers and practitioners in the more mainstream operations management community. Findings: The existing knowledge base is somewhat fragmented. This is a relatively unexplored topic within mainstream operations management research and one which could provide rich opportunities for further exploration. Originality/value: This paper sets out to review current literature, from a more conventional production operations perspective, and contributes a set of findings that capture the current state-of-the-art of this topic

    Eco‐Holonic 4.0 Circular Business Model to  Conceptualize Sustainable Value Chain Towards  Digital Transition 

    Get PDF
    The purpose of this paper is to conceptualize a circular business model based on an Eco-Holonic Architecture, through the integration of circular economy and holonic principles. A conceptual model is developed to manage the complexity of integrating circular economy principles, digital transformation, and tools and frameworks for sustainability into business models. The proposed architecture is multilevel and multiscale in order to achieve the instantiation of the sustainable value chain in any territory. The architecture promotes the incorporation of circular economy and holonic principles into new circular business models. This integrated perspective of business model can support the design and upgrade of the manufacturing companies in their respective industrial sectors. The conceptual model proposed is based on activity theory that considers the interactions between technical and social systems and allows the mitigation of the metabolic rift that exists between natural and social metabolism. This study contributes to the existing literature on circular economy, circular business models and activity theory by considering holonic paradigm concerns, which have not been explored yet. This research also offers a unique holonic architecture of circular business model by considering different levels, relationships, dynamism and contextualization (territory) aspects
    • 

    corecore