1,308 research outputs found

    木を用いた構造化並列プログラミング

    Get PDF
    High-level abstractions for parallel programming are still immature. Computations on complicated data structures such as pointer structures are considered as irregular algorithms. General graph structures, which irregular algorithms generally deal with, are difficult to divide and conquer. Because the divide-and-conquer paradigm is essential for load balancing in parallel algorithms and a key to parallel programming, general graphs are reasonably difficult. However, trees lead to divide-and-conquer computations by definition and are sufficiently general and powerful as a tool of programming. We therefore deal with abstractions of tree-based computations. Our study has started from Matsuzaki’s work on tree skeletons. We have improved the usability of tree skeletons by enriching their implementation aspect. Specifically, we have dealt with two issues. We first have implemented the loose coupling between skeletons and data structures and developed a flexible tree skeleton library. We secondly have implemented a parallelizer that transforms sequential recursive functions in C into parallel programs that use tree skeletons implicitly. This parallelizer hides the complicated API of tree skeletons and makes programmers to use tree skeletons with no burden. Unfortunately, the practicality of tree skeletons, however, has not been improved. On the basis of the observations from the practice of tree skeletons, we deal with two application domains: program analysis and neighborhood computation. In the domain of program analysis, compilers treat input programs as control-flow graphs (CFGs) and perform analysis on CFGs. Program analysis is therefore difficult to divide and conquer. To resolve this problem, we have developed divide-and-conquer methods for program analysis in a syntax-directed manner on the basis of Rosen’s high-level approach. Specifically, we have dealt with data-flow analysis based on Tarjan’s formalization and value-graph construction based on a functional formalization. In the domain of neighborhood computations, a primary issue is locality. A naive parallel neighborhood computation without locality enhancement causes a lot of cache misses. The divide-and-conquer paradigm is known to be useful also for locality enhancement. We therefore have applied algebraic formalizations and a tree-segmenting technique derived from tree skeletons to the locality enhancement of neighborhood computations.電気通信大学201

    Architecture aware parallel programming in Glasgow parallel Haskell (GPH)

    Get PDF
    General purpose computing architectures are evolving quickly to become manycore and hierarchical: i.e. a core can communicate more quickly locally than globally. To be effective on such architectures, programming models must be aware of the communications hierarchy. This thesis investigates a programming model that aims to share the responsibility of task placement, load balance, thread creation, and synchronisation between the application developer and the runtime system. The main contribution of this thesis is the development of four new architectureaware constructs for Glasgow parallel Haskell that exploit information about task size and aim to reduce communication for small tasks, preserve data locality, or to distribute large units of work. We define a semantics for the constructs that specifies the sets of PEs that each construct identifies, and we check four properties of the semantics using QuickCheck. We report a preliminary investigation of architecture aware programming models that abstract over the new constructs. In particular, we propose architecture aware evaluation strategies and skeletons. We investigate three common paradigms, such as data parallelism, divide-and-conquer and nested parallelism, on hierarchical architectures with up to 224 cores. The results show that the architecture-aware programming model consistently delivers better speedup and scalability than existing constructs, together with a dramatic reduction in the execution time variability. We present a comparison of functional multicore technologies and it reports some of the first ever multicore results for the Feedback Directed Implicit Parallelism (FDIP) and the semi-explicit parallelism (GpH and Eden) languages. The comparison reflects the growing maturity of the field by systematically evaluating four parallel Haskell implementations on a common multicore architecture. The comparison contrasts the programming effort each language requires with the parallel performance delivered. We investigate the minimum thread granularity required to achieve satisfactory performance for three implementations parallel functional language on a multicore platform. The results show that GHC-GUM requires a larger thread granularity than Eden and GHC-SMP. The thread granularity rises as the number of cores rises

    Implementation and Evaluation of Algorithmic Skeletons: Parallelisation of Computer Algebra Algorithms

    Get PDF
    This thesis presents design and implementation approaches for the parallel algorithms of computer algebra. We use algorithmic skeletons and also further approaches, like data parallel arithmetic and actors. We have implemented skeletons for divide and conquer algorithms and some special parallel loops, that we call ‘repeated computation with a possibility of premature termination’. We introduce in this thesis a rational data parallel arithmetic. We focus on parallel symbolic computation algorithms, for these algorithms our arithmetic provides a generic parallelisation approach. The implementation is carried out in Eden, a parallel functional programming language based on Haskell. This choice enables us to encode both the skeletons and the programs in the same language. Moreover, it allows us to refrain from using two different languages—one for the implementation and one for the interface—for our implementation of computer algebra algorithms. Further, this thesis presents methods for evaluation and estimation of parallel execution times. We partition the parallel execution time into two components. One of them accounts for the quality of the parallelisation, we call it the ‘parallel penalty’. The other is the sequential execution time. For the estimation, we predict both components separately, using statistical methods. This enables very confident estimations, although using drastically less measurement points than other methods. We have applied both our evaluation and estimation approaches to the parallel programs presented in this thesis. We haven also used existing estimation methods. We developed divide and conquer skeletons for the implementation of fast parallel multiplication. We have implemented the Karatsuba algorithm, Strassen’s matrix multiplication algorithm and the fast Fourier transform. The latter was used to implement polynomial convolution that leads to a further fast multiplication algorithm. Specially for our implementation of Strassen algorithm we have designed and implemented a divide and conquer skeleton basing on actors. We have implemented the parallel fast Fourier transform, and not only did we use new divide and conquer skeletons, but also developed a map-and-transpose skeleton. It enables good parallelisation of the Fourier transform. The parallelisation of Karatsuba multiplication shows a very good performance. We have analysed the parallel penalty of our programs and compared it to the serial fraction—an approach, known from literature. We also performed execution time estimations of our divide and conquer programs. This thesis presents a parallel map+reduce skeleton scheme. It allows us to combine the usual parallel map skeletons, like parMap, farm, workpool, with a premature termination property. We use this to implement the so-called ‘parallel repeated computation’, a special form of a speculative parallel loop. We have implemented two probabilistic primality tests: the Rabin–Miller test and the Jacobi sum test. We parallelised both with our approach. We analysed the task distribution and stated the fitting configurations of the Jacobi sum test. We have shown formally that the Jacobi sum test can be implemented in parallel. Subsequently, we parallelised it, analysed the load balancing issues, and produced an optimisation. The latter enabled a good implementation, as verified using the parallel penalty. We have also estimated the performance of the tests for further input sizes and numbers of processing elements. Parallelisation of the Jacobi sum test and our generic parallelisation scheme for the repeated computation is our original contribution. The data parallel arithmetic was defined not only for integers, which is already known, but also for rationals. We handled the common factors of the numerator or denominator of the fraction with the modulus in a novel manner. This is required to obtain a true multiple-residue arithmetic, a novel result of our research. Using these mathematical advances, we have parallelised the determinant computation using the Gauß elimination. As always, we have performed task distribution analysis and estimation of the parallel execution time of our implementation. A similar computation in Maple emphasised the potential of our approach. Data parallel arithmetic enables parallelisation of entire classes of computer algebra algorithms. Summarising, this thesis presents and thoroughly evaluates new and existing design decisions for high-level parallelisations of computer algebra algorithms

    Parallel source code transformation techniques using design patterns

    Get PDF
    Mención Internacional en el título de doctorIn recent years, the traditional approaches for improving performance, such as increasing the clock frequency, has come to a dead-end. To tackle this issue, parallel architectures, such as multi-/many-core processors, have been envisioned to increase the performance by providing greater processing capabilities. However, programming efficiently for this architectures demands big efforts in order to transform sequential applications into parallel and to optimize such applications. Compared to sequential programming, designing and implementing parallel applications for operating on modern hardware poses a number of new challenges to developers such as data races, deadlocks, load imbalance, etc. To pave the way, parallel design patterns provide a way to encapsulate algorithmic aspects, allowing users to implement robust, readable and portable solutions with such high-level abstractions. Basically, these patterns instantiate parallelism while hiding away the complexity of concurrency mechanisms, such as thread management, synchronizations or data sharing. Nonetheless, frameworks following this philosophy does not share the same interface and users require understanding different libraries, and their capabilities, not only to decide which fits best for their purposes but also to properly leverage them. Furthermore, in order to parallelize these applications, it is necessary to analyze the sequential code in order to detect the regions of code that can be parallelized that is a time consuming and complex task. Additionally, different libraries targeted to specific devices provide some algorithms implementations that are already parallel and highly-tuned. In these situations, it is also necessary to analyze and determine which routine implementation is the most suitable for a given problem. To tackle these issues, this thesis aims at simplifying and minimizing the necessary efforts to transform sequential applications into parallel. This way, resulting codes will improve their performance by fully exploiting the available resources while the development efforts will be considerably reduced. Basically, in this thesis, we contribute with the following. First, we propose a technique to detect potential parallel patterns in sequential code. Second, we provide a novel generic C++ interface for parallel patterns which acts as a switch among existing frameworks. Third, we implement a framework that is able to transform sequential code into parallel using the proposed pattern discovery technique and pattern interface. Finally, we propose mechanisms that are able to select the most suitable device and routine implementation to solve a given problem based on previous performance information. The evaluation demonstrates that using the proposed techniques can minimize the refactoring and optimization time while improving the performance of the resulting applications with respect to the original code.En los últimos años, las técnicas tradicionales para mejorar el rendimiento, como es el caso del incremento de la frecuencia de reloj, han llegado a sus límites. Con el fin de seguir mejorando el rendimiento, se han desarrollado las arquitecturas paralelas, las cuales proporcionan un incremento del rendimiento al estar provistas de mayores capacidades de procesamiento. Sin embargo, programar de forma eficiente para estas arquitecturas requieren de grandes esfuerzos por parte de los desarrolladores. Comparado con la programación secuencial, diseñar e implementar aplicaciones paralelas enfocadas a trabajar en estas arquitecturas presentan una gran cantidad de dificultades como son las condiciones de carrera, los deadlocks o el incorrecto balanceo de la carga. En este sentido, los patrones paralelos son una forma de encapsular aspectos algorítmicos de las aplicaciones permitiendo el desarrollo de soluciones robustas, portables y legibles gracias a las abstracciones de alto nivel. En general, estos patrones son capaces de proporcionar el paralelismo a la vez que ocultan las complejidades derivadas de los mecanismos de control de concurrencia necesarios como el manejo de los hilos, las sincronizaciones o la compartición de datos. No obstante, los diferentes frameworks que siguen esta filosofía no comparten una única interfaz lo que conlleva que los usuarios deban conocer múltiples bibliotecas y sus capacidades, con el fin de decidir cuál de ellos es mejor para una situación concreta y como usarlos de forma eficiente. Además, con el fin de paralelizar aplicaciones existentes, es necesario analizar e identificar las regiones del código que pueden ser paralelizadas, lo cual es una tarea ardua y compleja. Además, algunos algoritmos ya se encuentran implementados en paralelo y optimizados para arquitecturas concretas en diversas bibliotecas. Esto da lugar a que sea necesario analizar y determinar que implementación concreta es la más adecuada para solucionar un problema dado. Para paliar estas situaciones, está tesis busca simplificar y minimizar el esfuerzo necesario para transformar aplicaciones secuenciales en paralelas. De esta forma, los códigos resultantes serán capaces de explotar los recursos disponibles a la vez que se reduce considerablemente el esfuerzo de desarrollo necesario. En general, esta tesis contribuye con lo siguiente. En primer lugar, se propone una técnica de detección de patrones paralelos en códigos secuenciales. En segundo lugar, se presenta una interfaz genérica de patrones paralelos para C++ que permite seleccionar la implementación de dichos patrones proporcionada por frameworks ya existentes. En tercer lugar, se introduce un framework de transformación de código secuencial a paralelo que hace uso de las técnicas de detección de patrones y la interfaz presentadas. Finalmente, se proponen mecanismos capaces de seleccionar la implementación más adecuada para solucionar un problema concreto basándose en el rendimiento obtenido en ejecuciones previas. Gracias a la evaluación realizada se ha podido demostrar que uso de las técnicas presentadas pueden minimizar el tiempo necesario para transformar y optimizar el código a la vez que mejora el rendimiento de las aplicaciones transformadas.Programa Oficial de Doctorado en Ciencia y Tecnología InformáticaPresidente: David Expósito Singh.- Secretario: Rafael Asenjo Plaza.- Vocal: Marco Aldinucc

    High performance graph analysis on parallel architectures

    Get PDF
    PhD ThesisOver the last decade pharmacology has been developing computational methods to enhance drug development and testing. A computational method called network pharmacology uses graph analysis tools to determine protein target sets that can lead on better targeted drugs for diseases as Cancer. One promising area of network-based pharmacology is the detection of protein groups that can produce better e ects if they are targeted together by drugs. However, the e cient prediction of such protein combinations is still a bottleneck in the area of computational biology. The computational burden of the algorithms used by such protein prediction strategies to characterise the importance of such proteins consists an additional challenge for the eld of network pharmacology. Such computationally expensive graph algorithms as the all pairs shortest path (APSP) computation can a ect the overall drug discovery process as needed network analysis results cannot be given on time. An ideal solution for these highly intensive computations could be the use of super-computing. However, graph algorithms have datadriven computation dictated by the structure of the graph and this can lead to low compute capacity utilisation with execution times dominated by memory latency. Therefore, this thesis seeks optimised solutions for the real-world graph problems of critical node detection and e ectiveness characterisation emerged from the collaboration with a pioneer company in the eld of network pharmacology as part of a Knowledge Transfer Partnership (KTP) / Secondment (KTS). In particular, we examine how genetic algorithms could bene t the prediction of protein complexes where their removal could produce a more e ective 'druggable' impact. Furthermore, we investigate how the problem of all pairs shortest path (APSP) computation can be bene ted by the use of emerging parallel hardware architectures as GPU- and FPGA- desktop-based accelerators. In particular, we address the problem of critical node detection with the development of a heuristic search method. It is based on a genetic algorithm that computes optimised node combinations where their removal causes greater impact than common impact analysis strategies. Furthermore, we design a general pattern for parallel network analysis on multi-core architectures that considers graph's embedded properties. It is a divide and conquer approach that decomposes a graph into smaller subgraphs based on its strongly connected components and computes the all pairs shortest paths concurrently on GPU. Furthermore, we use linear algebra to design an APSP approach based on the BFS algorithm. We use algebraic expressions to transform the problem of path computation to multiple independent matrix-vector multiplications that are executed concurrently on FPGA. Finally, we analyse how the optimised solutions of perturbation analysis and parallel graph processing provided in this thesis will impact the drug discovery process.This research was part of a Knowledge Transfer Partnership (KTP) and Knowledge Transfer Secondment (KTS) between e-therapeutics PLC and Newcastle University. It was supported as a collaborative project by e-therapeutics PLC and Technology Strategy boar

    Custom Integrated Circuits

    Get PDF
    Contains reports on four research projects.U.S. Air Force - Office of Scientific Research (Contract F49620-81-C-0054)U.S. Air Force - Office of Scientific Research (Contract F49620-84-C-0004)National Science Foundation (Grant ECS81-18160)National Science Foundation (Grant ECS83-10941
    corecore