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Abstract

In recent years, the traditional approaches for improving performance, such as in-
creasing the clock frequency, has come to a dead-end. To tackle this issue, parallel ar-
chitectures, such as multi-/many-core processors, have been envisioned to increase
the performance by providing greater processing capabilities. However, program-
ming efficiently for this architectures demands big efforts in order to transform se-
quential applications into parallel and to optimize such applications. Compared to
sequential programming, designing and implementing parallel applications for op-
erating on modern hardware poses a number of new challenges to developers such
as data races, deadlocks, load imbalance, etc.

To pave the way, parallel design patterns provide a way to encapsulate algorith-
mic aspects, allowing users to implement robust, readable and portable solutions
with such high-level abstractions. Basically, these patterns instantiate parallelism
while hiding away the complexity of concurrency mechanisms, such as thread man-
agement, synchronizations or data sharing. Nonetheless, frameworks following this
philosophy does not share the same interface and users require understanding dif-
ferent libraries, and their capabilities, not only to decide which fits best for their
purposes but also to properly leverage them. Furthermore, in order to parallelize
these applications, it is necessary to analyze the sequential code in order to detect the
regions of code that can be parallelized that is a time consuming and complex task.
Additionally, different libraries targeted to specific devices provide some algorithms
implementations that are already parallel and highly-tuned. In these situations, it is
also necessary to analyze and determine which routine implementation is the most
suitable for a given problem.

To tackle these issues, this thesis aims at simplifying and minimizing the nec-
essary efforts to transform sequential applications into parallel. This way, result-
ing codes will improve their performance by fully exploiting the available resources
while the development efforts will be considerably reduced. Basically, in this thesis,
we contribute with the following. First, we propose a technique to detect potential
parallel patterns in sequential code. Second, we provide a novel generic C++ inter-
face for parallel patterns which acts as a switch among existing frameworks. Third,
we implement a framework that is able to transform sequential code into parallel
using the proposed pattern discovery technique and pattern interface. Finally, we
propose mechanisms that are able to select the most suitable device and routine im-
plementation to solve a given problem based on previous performance information.
The evaluation demonstrates that using the proposed techniques can minimize the
refactoring and optimization time while improving the performance of the resulting
applications with respect to the original code.
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Resumen

En los últimos años, las técnicas tradicionales para mejorar el rendimiento, como es
el caso del incremento de la frecuencia de reloj, han llegado a sus límites. Con el
fin de seguir mejorando el rendimiento, se han desarrollado las arquitecturas par-
alelas, las cuales proporcionan un incremento del rendimiento al estar provistas de
mayores capacidades de procesamiento. Sin embargo, programar de forma eficiente
para estas arquitecturas requieren de grandes esfuerzos por parte de los desarrol-
ladores. Comparado con la programación secuencial, diseñar e implementar apli-
caciones paralelas enfocadas a trabajar en estas arquitecturas presentan una gran
cantidad de dificultades como son las condiciones de carrera, los deadlocks o el in-
correcto balanceo de la carga.

En este sentido, los patrones paralelos son una forma de encapsular aspectos
algorítmicos de las aplicaciones permitiendo el desarrollo de soluciones robustas,
portables y legibles gracias a las abstracciones de alto nivel. En general, estos pa-
trones son capaces de proporcionar el paralelismo a la vez que ocultan las comple-
jidades derivadas de los mecanismos de control de concurrencia necesarios como el
manejo de los hilos, las sincronizaciones o la compartición de datos. No obstante,
los diferentes frameworks que siguen esta filosofía no comparten una única interfaz
lo que conlleva que los usuarios deban conocer múltiples bibliotecas y sus capaci-
dades, con el fin de decidir cuál de ellos es mejor para una situación concreta y
como usarlos de forma eficiente. Además, con el fin de paralelizar aplicaciones exis-
tentes, es necesario analizar e identificar las regiones del código que pueden ser par-
alelizadas, lo cual es una tarea ardua y compleja. Además, algunos algoritmos ya se
encuentran implementados en paralelo y optimizados para arquitecturas concretas
en diversas bibliotecas. Esto da lugar a que sea necesario analizar y determinar que
implementación concreta es la más adecuada para solucionar un problema dado.

Para paliar estas situaciones, está tesis busca simplificar y minimizar el esfuerzo
necesario para transformar aplicaciones secuenciales en paralelas. De esta forma,
los códigos resultantes serán capaces de explotar los recursos disponibles a la vez
que se reduce considerablemente el esfuerzo de desarrollo necesario. En general,
esta tesis contribuye con lo siguiente. En primer lugar, se propone una técnica de
detección de patrones paralelos en códigos secuenciales. En segundo lugar, se pre-
senta una interfaz genérica de patrones paralelos para C++ que permite seleccionar
la implementación de dichos patrones proporcionada por frameworks ya existentes.
En tercer lugar, se introduce un framework de transformación de código secuen-
cial a paralelo que hace uso de las técnicas de detección de patrones y la interfaz
presentadas. Finalmente, se proponen mecanismos capaces de seleccionar la im-
plementación más adecuada para solucionar un problema concreto basándose en el
rendimiento obtenido en ejecuciones previas. Gracias a la evaluación realizada se ha
podido demostrar que uso de las técnicas presentadas pueden minimizar el tiempo
necesario para transformar y optimizar el código a la vez que mejora el rendimiento
de las aplicaciones transformadas.
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Chapter 1

Introduction

In recent years, the traditional approaches for improving CPU performance, such as
increasing clock speed, has come to a dead-end because of physical constraints. To
tackle this issue, the appearing of parallel architectures, such as multi-/many-core
processors, allows increasing the performance by providing greater processing capa-
bilities. Furthermore, with the emerging trend of heterogeneous platforms, compris-
ing nodes with multi-/many-core CPUs, coprocessors, and accelerators, developers
have started to leverage the advantages provided by the different computing units
as these platforms allow to improve performance and energy efficiency better than
other alternatives.

However, although most of the current computing hardware has been envisioned
for parallel computing, much of the prevailing production software is still sequen-
tial [83]. In other words, a large portion of the computing resources provided by
modern architectures is basically underused. In order to exploit these resources, it is
necessary to refactor sequential software into parallel. However, platforms compris-
ing diverse devices are notoriously more difficult to program effectively, since they
demand distinct frameworks and programming interfaces [47].

This chapter introduces the background of this thesis. Section 1.1 explains the
motivation for this work in the aforementioned context. Section 1.2 defines the goals
and expected contributions of this work. Finally, this section outlines the structure
of the rest of the document.

1.1 Motivation

As mentioned, the computational elements used in heterogeneous platforms pro-
vides performance improvements thanks to their parallel capabilities. However,
programming efficiently for these architectures demands big efforts in order to trans-
form sequential applications into parallel and to optimize such applications. Com-
pared to sequential programming, designing and implementing parallel applica-
tions for operating on modern hardware poses a number of new challenges to devel-
opers [5]. Communication overheads, load imbalance, poor data locality, improper
data layouts, contention in parallel I/O, deadlocks, starvation or the appearance of
data races in threaded environments are just examples of those challenges. Besides,
maintaining and migrating such applications to other parallel platforms demands
considerable efforts. Thus, it becomes clear that programmers require additional ex-
pertise and endeavor to implement parallel applications, apart from the knowledge
needed in the application domain.

To tackle this issue, several solutions in the area, such as parallel programming
frameworks, have been developed to efficiently exploit parallel computing archi-
tectures [77]. Indeed, multiple parallel programming frameworks from the state-
of-the-art benefit from shared memory multi-core architectures, such as OpenMP,
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Cilk or Intel TBB; distributed platforms, such as MPI or Hadoop; and some oth-
ers especially tailored for accelerators, as e.g., OpenCL and CUDA. Basically, these
frameworks provide a set of parallel algorithmic skeletons (e.g. parallel_for or paral-
lel_reduce) representing recurrent algorithmic structures that allow running pieces
of source code in parallel. Nevertheless, only a small portion of production software
is using these frameworks. Although all these skeletons aim to simplify the devel-
opment of parallel applications, there is not a unified standard [32]. Therefore, users
require understanding different frameworks, not only to decide which fits best for
their purposes but also to properly use them. Not to mention the migration efforts
of applications among frameworks, which becomes as well an arduous task. In this
sense, a good practice to implement more robust, readable and portable solutions is
the use of design patterns that provide a way to encapsulate (using a building blocks
approach) algorithmic aspects with such a high-level of abstraction. Examples of ap-
plications coming from multiple domains (e.g., financial, medical and mathematical)
and improving their performance through parallel programming design patterns,
can be widely found in the literature [17, 45, 59].

However, in order to parallelize these applications, it is necessary to analyze the
sequential code in order to detect the regions of code that can be parallelized us-
ing parallel patterns. A solution to parallelize these codes is to manually translate
into parallel code, however this task results, in most cases, cumbersome and very
complex for large applications. Another solution is to use refactoring tools, applica-
tions that advice developers or even semi-automatically transform sequential code
into parallel [12]. Although source codes transformed using these techniques do not
often get the best performance, they aid in reducing necessary refactoring time [57].

Unfortunately, refactoring tools found are still premature, not yet being fully
adopted by development centers. In fact, many of them are human-supervised, be-
ing the developer the only responsible for providing specific sections of the code to
be refactored. Although these tools relieve the burden of the source-to-source trans-
formation, this process still remains semi-automatic. Key components for turning
this process from semi- to full-automatic are parallel pattern detection tools. This
situation motivates the purpose of this thesis: design a toolchain to automatically
transform sequential codes into parallel and ease the development and optimization
of parallel applications.

1.2 Objetives

In light of the growing necessity of transforming sequential applications into paral-
lel, as well as reducing the complexity of modern parallel programming models, we
define the following goal for this Thesis:

Goal: The main goal of this Thesis is to provide a tool-chain capable of detecting
parallel patterns in sequential code and transform them into optimized parallel code
by leveraging a unified interface, designed to act as a layer between developers and
different parallel programming frameworks.

This goal can be divided in the following specific goals:

1. To develop automated techniques to detect parallel patterns. This tool will
be able to detect parallel patterns in sequential code, diminishing the efforts
required to analyze the code. The result will be an annotated source code de-
termining the potential candidates to be refactored.
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2. To define a unified interface for parallel patterns. This interface will act as a
layer between the users and different parallel programming frameworks and,
therefore, easing the development of parallel applications. Furthermore, par-
allel patterns supported by this interface will also be composable among them
in order to build more complex constructions.

3. To develop automated transformation techniques. This transformation will
take the annotated code in order to generate parallel code using the generic
and unified interface proposed in this thesis. With this tool, the refactoring
process will become automatic and, thus, reducing the efforts to transform the
code.

4. To define a mechanism to optimize parallel constructions. During the refac-
toring process from sequential to parallel source code, some constructions could
be further improved by rearranging compositions or by modifying execution
parameters such as the concurrency degree. Therefore, this goal is to introduce
a way to semi-automatically evaluate and generate better configurations and
compositions of parallel patterns.

5. To develop a mechanism to select the most suitable implementations. This
mechanism will allow selecting among different routine implementations de-
pending on the problem size in order to provide, with a single interface, the
most suitable version on each case.

1.3 Document structure

The rest of this document is structured as follows: Chapter 2 reviews the state-of-
the-art about existing technologies and techniques researched in the same line as
the work proposed in this thesis. Chapter 3 explains in detail the parallel pattern
analyzer tool that is able to automatically detect and annotate parallel patterns in se-
quential codes. Chapter 4 defines the generic and reusable parallel pattern interface.
Chapter 5 describes the automatic refactoring and optimization of parallel construc-
tions for some stream-oriented parallel patterns. Chapter 6 describes the proposed
mechanisms to select among different routine implementations. Finally, Chapter 7
enumerates some concluding remarks and future works.
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Chapter 2

State of the art

This chapter provides the background and previous works that act as the base for
the rest of the work presented in this thesis.

Firstly, Section 2.1 introduces the definition of parallel computing and presents
some of the current architectures and processors. In order to efficiently exploit the
resources provided by these platforms, Section 2.2 revisits different parallel frame-
works from the state of the art that provide a way to express parallelism while min-
imizing the efforts of the parallelization task. Afterward, Section 2.3 describes the
parallel patterns that will be supported by the proposed generic parallel pattern in-
terface, one of the key points of this thesis. These patterns encapsulate algorithmic
aspects allowing to ease the task of designing and developing parallel applications.

As mentioned in the previous chapter, transforming sequential code into parallel
is a time-consuming and error-prone task, which demands an additional expertise
and endeavor from developers. Therefore, another key point of this Thesis is the
automated parallel region detection and code transformation. In Section 2.4, we
discuss the state-of-the-art regarding code transformation techniques and tools.

Lastly, since different implementations of the same routine behave differently on
concrete architectures, it is necessary to select which version provides the best per-
formance in each case. In this sense, Section 2.5 reviews the research about multiple
implementations selection techniques.

2.1 Parallel architectures

With the end of the traditional improvements in computing architectures, such as the
increase of clock frequency, has led to the widespread adoption of parallel architec-
tures that provides a way to increase the number of operations that can be performed
at the same time. In this sense, following Flynn’s taxonomy, modern architectures
leverages two major strategies to provide these parallel capabilities: Single Instruc-
tion Multiple Data (SIMD) and Multiple Instruction Multiple Data (MIMD)[19].

• Single Instruction Multiple Data

This strategy is based on applying the same instruction or operation at the
same time on a given data set. In this case, the parallel units of a given architec-
ture share the same instructions but apply them to different data elements [71].
Usually, this kind of architectures employs a control unit that emits the same
instruction stream to multiple execution units that applies the same instruction
to different data in a synchronous manner. This way a same copy of the code
can be executed simultaneously, and thus, reducing the necessary instruction
bandwidth and space. Examples of technologies that take advantage of this
kind of architectures are the vector instructions implemented on modern pro-
cessors and the Graphic Processing Units (GPUs).
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Focusing on vector instructions we can find the Advanced Vector Extensions
(AVX), the successor of the Streaming SIMD Extensions (SSE) [38], implemented
on modern Intel and AMD processors. In general AVX are extensions to the in-
struction sets of x86 architectures that allow applying the same operation over
a multiple data elements. These instructions leverage registers of 256-bit that
may contain eight 32-bit single-precision or four 64-bit double precision float-
ing point numbers. Additionally, these registers and instruction have been
extended to 512-bit (AVX-512) in recent Intel architectures such as Intel Xeon
Phi Knight Landing and some Intel Skylake CPUs [36].

• Multiple Instruction Multiple Data On the contrary to the previous strategy,
in this case, the parallel units do not share instructions or data. This way, each
parallel unit may perform different operations over different data at the same
time. In other words, processors in these architectures work in an autonomous
way. However, the software exploiting these architectures requires to leverage
techniques to synchronize the work performed by each process, e.g. by access-
ing some shared data on shared memory architectures or by passing messages
via interconnection networks. Basically, we can distinguish two main architec-
ture designs that follow this strategy: shared memory and distributed memory.

On the one hand, shared memory architectures share the main memory, and
in some architectures even cache memory, among the different cores or CPUs
in the same platform. This way, processes working in these architectures are
able to modify information in a memory that can be seen by other processes
in the platform in order to communicate them. Depending on the distances
to the memory to the different processing units, we can distinguish two kind
of memory sharing: Uniform Memory Access (UMA) in which the distance to
the memory from each unit is the same, i.e. the latency of accessing the mem-
ory is the same; and Non-uniform Memory Access (NUMA) where the mem-
ory access time depends on the memory location relative to a given processor.
Some examples of these architectures are the multi-/many-core processors as
an example of UMA architectures and multi-socket or NUMA-multiprocessor
architectures as an example of NUMA architectures.

On the other hand, distributed systems are similar to a multi-processor ar-
chitecture in that they do not share memory among the different processors
(nodes) in the system. In contrast to shared-memory architectures, data cannot
be directly shared among processors but transmitted through an interconnec-
tion network. This interconnection network among the different nodes in the
distributed system is usually implemented by using high-speed standard com-
munication protocols, such as Gigabit Ethernet or infiniband. However, data
communication has non-negligible overheads due to network communication
latencies. Thus the topology of the network becomes really important to di-
minish these latencies. On the other hand, these architectures can be easily
grown by just adding new nodes to the system. Additionally, these systems
also use shared-memory in each of the nodes comprising the distributed sys-
tem. A representative example of these architectures are clusters, where each
node interconnected to a specific network can be equipped with one or more
shared-memory processors.

Up to this point, we have discussed the most common paradigms or strategies
(SIMD and MIMD), however current platforms are equipped with multiple devices
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that take advantage of both paradigms. These platforms are usually named hetero-
geneous platforms that are comprised of one or multiple CPUs, each of them po-
tentially with a vector unit, GPUs, accelerators and/or co-processors. This way the
parallel resources have been widely increased and multiple operations can be per-
formed at the same time by a given application. However, most of the production
software is still sequential, thus even if the resources are available to be exploited by
parallel applications they are still under-used. The main reason for this situation is
that a big portion of that software consists of legacy applications, and transforming
them into parallel is an expensive task which requires additional expertise in parallel
programming by the developers.

2.2 Parallel Programming Models

As commented, sequential legacy applications do not take advantage of current
parallel architectures and, therefore, under-exploit its parallel resources. However,
transforming sequential code into parallel present major challenges to developers,
since it requires additional expertise in parallel programming and it does not always
provide performance improvements. This is mainly due to the inherent complexities
of parallel programming such as synchronizations, data locality or load balance. To
tackle these issues, multiple parallel programming models have been developed to
alleviate the burden of parallelization.

In this section, we revisit some parallel programming models from the state-of-
the-art developed to ease the development of parallel programming. Concretely,
Section 2.2.1 classifies the different ways in which the parallelism is expressed in the
programming models. Finally, Sections 2.2.2 and 2.2.3 provide a survey of different
well-known programming models from the state of the art classified as low-level
and high-level frameworks.

2.2.1 Types of parallelism

This section provides a classification of the parallel programming models from the
state-of-the-art depending on the parallelism that can be expressed. Specifically, we
distinguish three different types of parallelism: Task-parallelism, Data-parallelism and
Stream-parallelism.

Task-parallelism This type of parallelism consists on executing distinct and inde-
pendent computations on different execution entities (e.g. threads). This computa-
tions, namely tasks, can be communicated by sending the data among them consti-
tuting a task dependency graph. Usually, programming models that provide this
kind of parallelism implement a runtime to execute the task when its dependencies
have been satisfied.

Data-parallelism is based on dividing a data set among the different parallel en-
tities and processing them independently. This kind of parallelism requires that the
computations of each data element should be stateless, i.e, the processing of a data
element cannot have any dependencies of any other element and the output value
should not depend on state values.

Stream-parallelism This type of parallelism is based on computing in parallel the
processing of elements arriving into an input stream. This parallel processing is
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based on splitting the whole computation into different tasks that can be parallel
tasks if the task can be applied in parallel to multiple elements, or sequential task
if it is stateful and only one element at a time can be processed. Note that, in this
case, as a major difference with Data-parallelism, the whole data set is not usually
available at the beginning and the data elements might become available over time,
e.g. readings from a sensor or requests received from a network connection.

2.2.2 Low-level parallel frameworks

As introduced, we classify the parallel programming into two categories: low-level
and high-level parallel frameworks. Low-level parallel frameworks cover those that do
not provide abstractions over the parallel platform. In this sense, those frameworks
demand deeper knowledge of the underlying platform and usually require to man-
ually introduce synchronization primitives, explicitly determine mutual exclusion
regions or manage the data sharing.

Next, we introduce some well-known low-level parallel programming models
from the state-of-the-art.

ISO C++ Threads The C++ thread class, incorporated in the C++11 standard [40],
represents an individual thread that executes a sequence of instructions concurrently
with any other thread in the application on multithreaded environments. This class
encapsulates the creation of a thread hiding away the actual call that depends on the
specific operating system, e.g. pthread_create() on Unix like systems. How-
ever, to communicate and/or synchronize threads using this feature requires to ex-
plicitly incorporate the concurrency mechanisms, e.g. mutexes or atomic variables.
In this sense, programming parallel applications become complex due to the po-
tential data dependencies, data races or deadlocks that should be managed by the
developer.

Compute Unified Device Architecture CUDA is a set of tools and a compiler, de-
veloped by nVidia, that allows developers to express parallel applications targeted
to Graphics Processing Units (GPUs) [63]. This framework uses an extension of the
C++ language to leverage the GPU for coprocessing algorithms in parallel with the
CPUs. Thanks to this framework is possible to take advantage of the SIMD capabili-
ties provided by these architectures. In this sense, GPGPU programming is suitable
for data-parallelism.

However, in order to properly leverage these architectures, is it necessary to ex-
plicitly determine the data communication between the “Host” (CPU) and the “De-
vice” (GPU). This communication leads to overheads related to the data transfers
since both CPU and GPU do not share the same memory address space. Therefore,
dealing with these devices requires an additional effort to determine if the commu-
nication overheads are paid off by the performance improvement provided by them.

Open Computing Language Open Computing Language (OpenCL) is a parallel
framework that allows implementing application targeted to heterogeneous plat-
forms comprised of multi-/many-core processors, GPUs, digital signal processors
(DSPs) and/or field programmable gate arrays (FPGAs) [82]. This framework, simi-
lar to CUDA, follows a host-device approach. In other words, thanks to this frame-
work the host (CPU) is able to launch compute functions, called “kernels”, on the
different computing devices available in the platform. The main advantage of this
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programming framework is that the same source code can run on multiple architec-
tures without modifying it. However, it is necessary to explicitly manage the data
transfers between host and device and it requires to tune the application in order to
better exploit the available resources. Furthermore, the original sequential code re-
quires deep refactoring in order to leverage OpenCL for improving the performance
of a given application.

Message Passing Interface Message Passing Interface (MPI) is a standard that de-
fines the syntax and semantics of the function provided by a given library imple-
menting it [26]. This interface defines a way to effectively program concurrent ap-
plications on multiprocessing environments such as “clusters”. Several implemen-
tations of this standard can be found on the state-of-the-art such as MPICH [33] or
OpenMPI [27]. These frameworks provide synchronization and communication be-
tween processes that may run in different processors, e.g. cores in the same CPU or
different CPUs on different machines. This way, using these mechanisms, multiple
processes can run concurrently on the same application. However, the communi-
cation and synchronization should be explicitly incorporated in the application by
means of sending or receiving messages to/from other processes. Therefore, it be-
comes clear that efficient use of these mechanisms requires a profound knowledge
of both the framework and the target application in order to determine when and
what should be passed between processes.

2.2.3 High-level parallel frameworks

In the previous section, we have discussed low-level parallel frameworks that allow
developers to implement parallel applications. This kind of frameworks provide
a way to express parallelism in a low-level way, and consequently, allow to fully
optimize the code to the target platform and better exploit the available resources.
However, these benefits come with a wide number of challenges, it is necessary to
know the target platform, properly use synchronization and communication primi-
tives, be concerned about data sharing, etc. For these reasons, the resulting code is
usually tied to the target platform which makes it difficult to migrate the application
between different architectures [5]. Furthermore, when dealing with heterogeneous
platforms comprised by multiple and diverse devices, it becomes even more com-
plex to develop portable and maintainable code.

To tackle these issues, high-level approaches provide abstractions that allow im-
plementing parallel applications hiding away the aforementioned complexities. There-
fore, the resulting applications have improved portability and maintainability com-
pared to those implemented using low-level frameworks. However, high-level frame-
works usually do not provide the best possible performance due to the inherent
abstraction overheads, but performs reasonably well in a wide range of parallel plat-
forms [32].

In the following, we review different high-level frameworks from the state of the
art.

Open Multi Processing Open Multi Processing (OpenMP) is an application pro-
gramming interface targeted to shared memory platforms [67]. This programming
framework is based on “pragma” annotations to determine code regions that can
be processed in parallel. Basically, OpenMP abstracts the aspects related to thread
and data management thanks to the different clauses that can be introduced along
with the “pragmas”. In this sense, OpenMP provides some higher-level abstractions
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easing the parallelization task, however, it still requires to identify data dependen-
cies, the scope of the variables in a parallel region and restrict the access of critical
sections.

Intel Cilk Intel Cilk is an extension of C and C++ languages that allows taking
advantage of multi-core architectures and vector instructions [8]. Similarly to the
OpenMP framework, this extension provides support for task and data parallelism
that is enabled via “pragma” annotations (e.g. simd) and specific keywords (e.g.
_Cilk_for and _Cilk_spawn). Thanks to these keywords and “pragmas”, the in-
herent complexities of parallel programming are alleviated. Additionally, this C++
language extension provides a collection of objects that allow protecting shared vari-
ables while maintaining the sequential semantics of the application (e.g. reducers).
However, this programming model lacks high-level abstractions and it still requires
to explicitly identify synchronization points.

Intel Threading Building Blocks Intel Threading Building Blocks (TBB) is a C++
template library targeted to multi-core processors [75]. This task-parallel library pro-
vides a set of algorithmic skeletons (e.g parallel_for and pipeline) that hides away
the complexities of thread management and synchronizations in such parallel con-
structions. Additionally, TBB incorporates a runtime scheduler that permits to exe-
cute the different task respecting the dependencies and to balance the parallel work-
load by leveraging a work-stealing approach. This way, this framework eases the
development of parallel applications while decouples the underlying architecture
from the source code.

Fastflow FastFlow is a structured data and stream parallel programming frame-
work targeted to multi-core and GPU architectures [3]. This framework provides a
set of algorithmic skeletons that models different parallel patterns such as Pipeline,
Farm or Map. Basically, these constructs, implemented as C++ classes, allows en-
capsulating algorithmic features while hiding away complex thread communica-
tion and synchronization mechanisms. Additionally, the patterns supported by the
framework can be composed among them in order to build more complex algorith-
mic constructs. In general, this framework reduces the parallel design and develop-
ment efforts while improves the performance thanks to its high-level abstractions.

SkePU SkePU is a programming framework targeted to multicore and GPU ar-
chitectures based on C++ templates [21]. This framework provides a collection of
predefined generic components that implement specific computation patterns and
data dependencies known as “skeletons”. These skeletons receive the sequential
user code encapsulating low-level and platform-specific details such as synchroniza-
tions, data management, and several optimizations. Additionally, this framework
also supports multiple backends for sequential, OpenMP, OpenCL and CUDA.

Parallel Standard Template Library The parallel STL is a novel feature of C++17 [42]
that provides parallel implementations of the algorithms present in the C++ stan-
dard library. These parallel algorithms support multiple execution policies that are
used as an extra parameter with respect to the original STL algorithms to determine
how the algorithm is computed, i.e. in sequential, parallel or vectorized. This ex-
tension is currently supported by the Intel Compiler and Microsoft Visual Studio
Compiler [13].
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High Performance ParallelX High Performance ParallelX (HPX) is a general pur-
pose C++ runtime for parallel and distributed application [44]. This library provides
a set of parallel algorithms that extend the C++ standard library algorithms to be
computed in parallel (Parallel STL) along with other utilities such as new container
types or hardware counters support. The interface for the high-level algorithms is
similar to that designed for this thesis and provides support for multiple execution
policies. However, this interface lacks high-level patterns targeted to stream pro-
cessing applications such as the farm or pipeline patterns.

Muesli The Münster Skeleton Library (Muesli) is a C++ programming framework
targeted to heterogeneous and distributed platforms [22]. In this sense, this frame-
work is able to generate different binaries aimed at multiple heterogeneous clusters
and hides away the complexities of using specific frameworks, e.g. OpenMP, MPI
or CUDA. This library provides support for multiple data parallel skeletons and for
the farm pattern. However, it lacks stream processing skeletons.

CUDA Thrust CUDA thrust is a C++ template library based on the standard tem-
plate library (STL) [66]. Basically, this framework allows implementing algorithms
targeted to nVidia GPUs by using the collection of supported data parallel algo-
rithms. Thus, using this interface similar to the STL, eases the development of ap-
plications targeted to GPUs without requiring additional expertise and knowledge
about CUDA programming. However, this framework still requires to explicitly de-
termine the host-device data transfers and to annotate the kernels with macros.

SYCL SYCL is a high-level programming framework that introduces an abstrac-
tion layer between the users and the OpenCL framework using an interface similar
to the STL [46]. This library provides an implementation of the parallel STL by defin-
ing a new execution policy to support OpenCL. This way, the code developed using
this framework becomes portable and cross-platform thanks to the OpenCL envi-
ronment.

2.3 Parallel Patterns

Patterns can be loosely defined as commonly recurring strategies for dealing with
particular problems. This methodology has been widely used in multiple areas, such
as architecture, object-oriented programming, and software architecture [53]. In this
Thesis, we focus on patterns for parallel software design, as it has been recognized
to be one of the best codifying practices [29]. This is mainly because patterns pro-
vide a mechanism to encapsulate algorithmic features, making them more robust,
portable and reusable, while if tuned, they can achieve better parallel scalability
and data locality. In general, parallel patterns can be categorized in three groups:
data parallel patterns, e.g., Map, Reduce and MapReduce; task parallel patterns, e.g.
Divide&Conquer; and stream parallel patterns, e.g., Pipeline, Farm and Filter [56]. Addi-
tionally, when dealing with stream processing, different kind of constructs, denoted
as stream operators, can be found in the state-of-the-art in order to modify the stream
flow, e.g. Window, Split-Join [6]. However, in some situations, these constructs do
not match or need to be composed in a very complex way. Focusing on these situa-
tions, the advanced patterns model some domain-specific algorithms that cannot be
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represented using basic patterns or simple compositions [73]. Following this classi-
fication, in the next sections, we describe formally the parallel patterns and stream
operators leveraged in this Thesis.

2.3.1 Data parallel patterns

In this section, we describe formally the data parallel patterns Map, Reduce, Stencil,
and MapReduce.

Map This data parallel pattern computes the function f : α → β over the ele-
ments of the input data collection, where the input and output elements are α and β
types, respectively (see Figure 2.1a). The output result is the collection of elements
y1, y2, . . . , yN , where yi = f(xi) for each i = 1, 2, . . . , N and xi is the i-th element of
the input collection. The only requirement of the Map pattern is that the function f
should be pure, i.e. the function has no side effects.

Reduce This data parallel pattern aggregates the elements of the input data collec-
tion of type α using the binary function ⊕ : α×α → α, that is usually associative and
commutative. Finally, the result of the pattern is summarized in a single element y
of type α that is obtained performing the operation y = x1 ⊕ x2 ⊕ . . . xN , where xi is
the i-th data item of the input data collection (see Figure 2.1b). The main constraint
of this pattern is that the binary function should be pure.

Stencil This pattern is a generalization of the Map pattern in which an elemental
function can access, not only to a single element in an input collection but also to a
set of neighbors (see Figure 2.1c). The function f : α∗ → α used by the Stencil pattern
receives the input item and a set of neighbors (α∗) and produces an output element
of the same type. The main requirement of this pattern is that the function f should
be pure.

MapReduce This pattern computes, in a first stage a Map-like pattern, a key-value
function over all the elements of an input collection, and delivers, in a second stage a
Reduce-like pattern, a set of unique key value pairs where the value associated to the
key is the “sum” of the values output for the same key (see Figure 2.1d). To do so,
the MapReduce pattern computes in the Map function f : α → {Key, α} the elements
in the input collection; afterwards it uses the Reduce binary function ⊕ : β×β → β to
sum up the partial results with the same key. The result of this pattern is a collection
of data elements of type β, one per key. The requirements of the MapReduce pattern
is that both Map and Reduce-related functions should be pure.

2.3.2 Task parallel patterns

In this section, we describe formally the task parallel pattern Divide&Conquer.

Divide&Conquer This pattern computes a problem by means of breaking it down
into two or more subproblems of the same kind until the base case is reached and
solved directly. Afterward, the solutions of the subproblems are merged to provide
a solution to the original problem (see Figure 2.1e). In other words, this pattern ap-
plies the function f : α∗ → β∗ on a collection of elements of type α and produces a
collection of elements of type β. A divide function D is used first to split the collec-
tion into distinct partitions up to the size of the base problem, which can be solved
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directly applying f . Finally, the partial results of the base problems are combined
according to a merge function M in order to build the final output collection. The
requirements of the Divide&Conquer pattern are that the functions f , S and M should
be pure.

(A) Map. (B) Reduce.

(C) Stencil. (D) MapReduce.

(E) Divide&Conquer.

FIGURE 2.1: Data parallel patterns.

2.3.3 Stream parallel patterns

In this section, we describe formally the stream parallel patterns Pipeline, Farm, Filter,
and Reduce.

Pipeline This pattern processes the items appearing on the input stream in several
parallel stages (see Figure 2.2(a)). Each stage of this pattern processes data produced
by the previous stage in the pipe and delivers results to the next one. Provided that
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the i-th stage in a n-staged Pipeline computes the function fi : α → β, the Pipeline de-
livers the item xi to the output stream applying the function fn(fn−1(. . . f1(xi) . . .)).
The main requirement of this pattern is that the functions related to the stages should
be pure, i.e., they can be computed in parallel without side effects.

Farm This pattern computes in parallel the function f : α → β over all the items
appearing in the input stream (see Figure 2.2(b)). Thus, for each item xi on the
input stream the Farm pattern delivers an item to the output stream as f(xi). In this
pattern, the computations performed by f for the items in the input stream should
be completely independent of each other, otherwise, they cannot be processed in
parallel.

Filter This pattern computes in parallel a filter over the items appearing on the
input stream, passing only to the output stream those items satisfying the boolean
“filter” function (or predicate) P : α → {true, false} (see Figure 2.2(c)). Basically,
the pattern receives a sequence of input items . . . , xi+1, xi, xi−1, . . . and produces a
sequence of output items of the same type but with different cardinality. The evalu-
ation of the filtering function on an input item should be independent to any other,
i.e., the predicate should be a pure function.

Reduce This pattern collapses items appearing on the input stream and delivers
these results to the output stream (see Figure 2.2(d)). The function used to collapse
item values ⊕ should be a pure binary function of type ⊕ : α×α → α, being usually
associative and commutative. Basically, the pattern computes the function ⊕ over
a finite sequence of input items . . . , xi+1, xi, xi−1, . . . to produce a collapsed item
on the output stream. The number of elements to be accumulated depends on the
window size set as a parameter.

2.3.4 Stream operators

The stream operators are designed to work cooperatively with other patterns in or-
der to provide a way of expressing more complex constructions. Specifically, they
are intended to modify the stream flow in different ways. In this section, we describe
the Split-Join and the Window stream operators along with their different configura-
tions.

Split-Join This stream operator distributes, in a first Split phase, a data stream into
different substreams which can be processed in parallel applying different transfor-
mations. Afterwards, a Join phase combines the substreams into a single one (see
Fig. 2.3(a)). This operator is characterized by the different distribution and combin-
ing policies that can be applied in both Split and Join phases. The supported policies
are the following two:

Duplication This policy duplicates the data items appearing on the input stream
to each of the different substreams. In other words, when an item of type α
arrives at the input stream, this is copied into every substream. By definition,
this policy can only be applied in the Split phase of the Split-Join operator.

Round-robin This policy can be applied in both Split and Join phases. If applied
on the Split phase, the data items of type α appearing on the input stream are
delivered following a round-robin policy onto the substreams. On the other
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(A) Pipeline. (B) Farm.

(C) Filter. (D) Reduce.

FIGURE 2.2: Stream parallel patterns.

hand, if used on the Join phase, the items delivered at the end of the sub-
streams are combined together into the main data stream employing the same
policy. In this distribution policy the slice size, i.e. the number of consecutive
items that should be taken from the source stream, can be freely configured.

Window This stream operator takes the data items from the input stream and de-
livers collections of items (windows) to the output stream (see Fig. 2.3(b)). Depend-
ing on how the windows are internally managed by this operator, different window-
ing policies can be set. The following policies can be portrayed based on what and
how many items are part of the same window.

Count-based This policy is characterized by managing windows of fixed size, i.e.,
capable of holding up a maximum number of items. Note that the user should
specify the window size. The rationale of this policy is the following: when a
new item of type α arrives at the input stream, this is included in the window
and the oldest is flushed. As soon as the window is complete, it is delivered to
the output stream.

Delta-based This policy requires a δ threshold value and a monotonic increasing
(∆) attribute included in the input items. With these parameters, the delta-
based policy is able to build a window of variable size. The items conforming a
window are only those whose difference between the ∆ attribute of the latest
item and the current one is less or equal than the given δ threshold. Similar
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to the count-based policy, when a window is built it is forwarded to the output
stream.

Time-based This policy keeps an internal wall-clock and labels each input item with
a timestamp indicating their arrival time. Additionally, it requires the users
to specify a time threshold (τ ). This information allows the policy to build
windows including the items that arrived in the last time, as specified by τ .
For instance, a threshold of 60 s would conform windows including items that
arrived at the last minute.

Punctuation-based This policy needs a punctuation value/symbol that indicates the
end of a window. In other words, it delivers a new window each time a new
item matching the punctuation value is received. For instance, considering a
stream of words belonging to a text and using the “.” character as for the punc-
tuation symbol, this policy would conform windows containing the sentences
in the text.

Note that the count-, delta- and time-based windowing policies support an over-
lap factor, i.e., the number of items in the window wi that are also part of the window
wi+1.

(A) Split-Join. (B) Window.

FIGURE 2.3: Stream operators.

2.3.5 Advanced stream parallel patterns

In this section, we describe some advanced stream parallel patterns, designed for
those scenarios in which the basic patterns do not match any of these constructs or
have to be composed in a very complex way.

Stream-Pool This pattern models the evolution of a population of individuals
matching many evolutionary computing algorithms in the state-of-the-art [4]. Specif-
ically, the Stream-Pool pattern is comprised of four different functions that are ap-
plied iteratively to the individuals of type α belonging to a population P managed as
a stream (see Figure 2.4(a)). First, the selection function S: α∗ → α∗ selects a subset of
individuals belonging to P. Next, the selected individuals are processed by means
of the evolution function E: α∗ → α∗, which may produce any number of new or
modified individuals. The resulting set of individuals, computed by E, are filtered
through a filter function F: α∗ → α∗, and eventually inserted into the input stream
(population). Finally, the termination function T: α∗ → {true, false} determines in
each iteration whether the evolution process should be finished or continued. To
guarantee the correctness of the parallel version of this pattern, the functions E, F
and T should be pure, i.e., they can be computed in parallel with no side effects.
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Windowed-Farm This pattern delivers “windows” of processed items to the out-
put stream. Basically, this pattern applies the function F over consecutive contiguous
collections of x input items of type α and delivers the resulting windows of y items
of type β to the output stream (see Figure 2.4(b)). Note that this pattern simplifies the
composition of the Window and Farm patterns. Also, the windows produced by this
pattern benefit from the same windowing policies provided by the Window stream
operator. The parallelization of this pattern requires a pure function F: α∗ → β∗ for
processing windows.

Stream-Iterator This pattern is intended to recurrently compute the pure function
F: α → α on a single stream input item until a specific condition, determined by
the boolean function T: α → {true, false}, is met. Additionally, in each iteration the
result of the function F is delivered to the output stream, depending on a boolean
output guard function G: α → {true, false} (see Figure 2.4(c)). Note that this pat-
tern, due to its nature, does not provide any parallelism degree by itself and can
be classified as a pattern modifier. Therefore, the parallel version of this construct
is only achieved when it is used in cooperation with some other core stream pat-
tern, e.g., using Farm or Pipeline as for the function F. An example of Stream-Iterator
composed with a Farm pattern is shown in Figure 2.4(d).

(A) Stream-Pool. (B) Windowed-
Farm.

(C) Stream-Iterator. (D) Farm–Stream-
Iterator.

FIGURE 2.4: Advanced parallel patterns.

2.4 Parallel region detection techniques

Although parallel patterns and high-level programming frameworks alleviate the
burden of developing parallel applications, this task is still time-consuming and
error-prone. In this sense, automatically detecting regions that can be parallelized
and its corresponding transformation from sequential to parallel are key points to
reduce the complexities of parallel programming [1]. In general, in order to achieve
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this automatic parallelization, we classify the approaches from the state-of-the-art
into two different groups: i) dynamic approaches based on profiling and code in-
strumentation; and ii) static approaches that rely on analyzing the code directly.

On the one hand, the dynamic approaches usually depend on executing the ap-
plication that has been previously instrumented. These tools collect information
about different characteristics of the application, e.g. memory accesses or write op-
erations, and determines data dependencies. Next, with this information, they are
able to determine if a region can be parallelized by analyzing data dependencies oc-
curred during the execution. However, these approaches have some limitations: i)
they have non-negligible overheads due to instrumentation and the required execu-
tion to perform the postmortem analysis; ii) since the analysis relies on the execution
profile, if a data dependency is not revealed in a given run, it may lose it and give
an erroneous analysis; and iii) the instrumentation techniques usually lose semantic
information of the original code, and thus, making harder to link the profile with the
source code.

On the other hand, static approaches rely on analyzing the code without execut-
ing it. In other words, they leverage the structures generated during the compilation
to analyze data dependencies and determine if a code region can be parallelized. In
this sense, these approaches, since they do not use profiling techniques, require less
time to perform their analysis. Additionally, as they use the structures generated
at compile time, they can also leverage semantic information present in the source
code and it is easier to perform source-to-source transformations. However, these
techniques are usually based on approximations, so they have to deal with false-
positives/negatives. For instance, some data dependencies can be difficult to detect
at compile time, e.g. aliasing or access to double-indexed matrices, and it can be
determined as a dependency or not depending on which approximation is used.

In this section, we revisit some research works in the state-of-the-art that ad-
dresses the detection of potential parallel codes and refactoring processes.

2.4.1 Dynamic approaches

Focusing on dynamic approaches for detecting potential parallel regions, multiple
works can be found in the state-of-the-art. For example, the approach developed
by Sean Rul et al. [76] leverages LLVM to instrument loops in the sequential code
and performs an LLVM-IR profiling analysis to decide whether a loop is a pipeline
or not. After that, it transforms the code to produce a parallel source code. How-
ever, this tool presents some shortcomings: it needs to execute the target application
several times and profile it. Also, it is tied to the C programming language which al-
lows some simplifications that cannot be made in C++. Similarly, Intel Advisor [37]
performs profiling analysis in order to detect regions of code (loops) that can benefit
from parallelization via threading or vectorization. Using the data collected during
the profiling phase, it uses a Cache-Aware Roofline Model [51] in order to estimate
the attainable performance of a given source code. Afterward, it provides a compar-
ison for different parallel implementation alternatives.

Orthogonally, some works take advantage of functional languages. For instance,
István Bozó et al. [9] develop a tool that analyzes and detects parallel patterns in
applications written in Erlang in a semi-automated fashion. In a first stage, the tool
performs an static analysis to detect potential parallel patterns and, afterward, it
decides which pattern suits best for a given problem by using profiling techniques.
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2.4.2 Static approaches

Other contributions, such as the work by Molitorisz et al. [60], detect statically poten-
tial parallel patterns, nevertheless they do not check for dependencies, so the correct-
ness of the resulting parallel application cannot be guaranteed. Instead, they need
a subsequent execution to discover potential data races and dependencies. Like-
wise, PoCC [72], a flexible source-to-source compiler using polyhedral compilation,
is able to detect and parallelize loops, however, it does not take into account high-
level parallel patterns. On the other hand, we also find tools that detect parallel pat-
terns using only profiling techniques. For example, DiscoPoP leverages dependency
graphs in order to detect parallel patterns [50]. Nevertheless, this tool has an impor-
tant drawback: the profiling techniques have a non-negligible execution time and
memory usage. A similar approach, presented by Tournavitis et al. [87], detects and
transforms sequential code into parallel introducing parallel pipeline patterns. Al-
ternatively, FreshBreeze [49], a dataflow-based execution, and programming model,
leverages static loop detection techniques that analyze dependencies and transform
parallelizable loops using a task tree-structured memory model. It is important to
remark that, approaches based on static analysis are not very extended in the area
since analyzing data dependencies becomes much more complex at compile time.

However many of the refactoring techniques for parallel programming presented
in the literature are to some extent limited [11]. In a first inspection, we notice
that many of these approaches are focused to specific structural rearrangements of
the code (e.g. loop optimizations), which have been lately included in recent com-
piler optimizer modules using polyhedral or unimodular transformations [34, 79].
However, transformations applying parallel design patterns or algorithmic skele-
tons, have not been yet widely explored. In this line, we encounter works proposing
pattern rewriting rules [43], commercial frameworks to introduce parallelism us-
ing structural refactoring steps [10, 68] and projects that aim to develop advanced
refactoring frameworks [35]. Other works combine the refactoring and optimization
techniques. For instance Aldinucci et al. [2] propose a technique to minimize the
service time of stream parallel pattern compositions by applying systematic rewrit-
ings. Also, some of the rewriting and tuning techniques in the literature have been
embedded into skeleton-based programming frameworks [52].

2.5 Routine implementation selection techniques.

Since heterogeneous platforms have spread across the scientific community, differ-
ent implementations of the same algorithm targeted to specific processor architec-
tures have been developed. For example, several libraries comprising highly-tuned
numeric kernels (e.g. BLAS or LAPACK implementations), are available for different
processors, e.g., cuBLAS [65] for nVidia GPUs, Intel MKL [39] for multi-/many-core
processors, etc. This situation reveals as a new challenge the selection of the most
suitable device and routine implementation to solve a given problem. To tackle this
issue, two different approaches have been traditionally taken: i) runtime schedulers
that are able to map kernels from multiple libraries on processors available in a het-
erogeneous platform, and ii) static tools that select at compile time the most appro-
priate implementation according to past knowledge.

Some research works using static approaches can be found in the literature. For
instance, the work presented by Jun et al. [84] proposes an automatic system based
on source code analysis, which maps user calls to optimized kernels. Addition-
ally, Jie Shen et al. [80] propose an analytic system for determining which hybrid
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programming configuration is optimal for a given problem. Likewise, the work
by Zhong et al. [89] proposes a solution that uses functional performance models
(FPMs) of processing elements and FPM-based data partitioning algorithms to ob-
tain ideal data partitions among the processing units in a heterogeneous platform.
The approach in this thesis, however, differs from the latter by the fact that it by-
passes data partitioning techniques but selects the kernel implementation that per-
forms best on any of the processing units.

On the other hand, dynamic approaches are also greatly extended in the commu-
nity. Particularly, the OmpSs [20] programming framework leverages an extended
set of OpenMP-like pragmas to support asynchronous parallelism and exploit task-
parallelism of applications via data-dependencies. Concretely, among the available
pragmas, the target directive allows developers to select the target device in a het-
erogeneous platform. Together with this directive, the implements clause lets users
specify that the annotated code is an alternate implementation of a given function.
This feature allows its versioning runtime scheduler to freely map the same task onto
different devices. Other works in this line, like the extension for the SkePu frame-
work, presented in [21], take advantage of machine learning techniques to automat-
ically select the most appropriate implementation of a given function. These models
basically carry out a tuning phase for estimating the ranges in which different im-
plementations perform better than others. Following a similar approach, the imple-
mentation selector framework presented in this thesis gets hints from the user-code
C++ attributes in order to select among implementations and processors available in
the heterogeneous platform. Using the dynamic mode, applications compiled with
our framework are able to select the most appropriate implementation at run-time
based on a decision tree that is generated at compile time. For that purpose, the
proposed approach requires a previous training phase in order to find out which
implementation performs best for a given problem size.

2.6 Summary

In general, we have identified several difficulties when dealing with parallel pro-
gramming and transforming existing sequential application into parallel. First, in
order to transform an existing sequential application into parallel requires analyzing
the original source code in order to detect the potential candidate regions. This task
has been recognized as time-consuming and error prone task by multiple authors.
Secondly, parallel programming presents some challenges related to identify the tar-
get architecture and to select the most suitable parallel framework for such architec-
ture. Additionally, programming parallel applications efficiently require additional
expertise and a deeper knowledge of the existing frameworks. Finally, the use of
already existing parallel and optimized algorithms reveals that multiple implemen-
tations of the same routine behave differently depending on the target architecture
and problem size. In these situations, deciding which implementation alternative
becomes important in order to achieve an increased application performance.

This thesis aims to minimize the impact of these challenges by:

1. To propose automated techniques to detect parallel patterns in sequential code,
diminishing the efforts required to analyze the code. This way, the potential
candidates to be refactored via parallel patterns will be annotated in the source
code.
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2. To define a unified interface for parallel patterns that acts as a layer between
the users and the different existing parallel programming framework and, there-
fore, easing the development of parallel applications.

3. To develop automated transformation and optimization techniques in order to
generate parallel and optimized code using the generic and unified interface
proposed in this thesis. With this tool, the refactoring process will become
semi-automatic and, thus, reducing the efforts to transform the code.

4. To develop a mechanism to select the most suitable implementations among
different routine implementations depending on the problem size in order to
provide, with a single interface, the most suitable version on each case.
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Chapter 3

Static parallel pattern detection

As previously introduced, one of the main challenges when transforming sequential
code into parallel code is to analyze the code and identify the code regions that can
be potentially parallelized. Indeed, this task requires big efforts in terms of time and
it is error-prone. Although there are tools that are able to detect some of these re-
gions, they lack high-level parallel pattern detection. This chapter describes one of
the main contributions of this Thesis, a tool that is able to detect and annotate par-
allel patterns in sequential C/C++ source codes. Specifically, Section 3.1 introduces
the Clang compiler part of the LLVM infrastructure and the abstract syntax tree em-
ployed to detect parallel patterns. Afterward, Section 3.2 describes the annotation
format specification for the detected patterns. Section 3.3 describes the workflow
and techniques for detecting and annotating parallel patterns in sequential codes. Fi-
nally, Section 3.4 shows the evaluation results for PPAT using different benchmarks.

3.1 LLVM infrastructure and the Abstract Syntax Tree

This section presents the main components leveraged to implement the parallel pat-
tern detection tool: LLVM infrastructure and the Abstract Syntax Tree (AST). The Low
Level Virtual Machine (LLVM) compiler infrastructure project is a collection of com-
piler and tools used to develop different compiler front ends and back ends [48]. In
this sense, the tools provided by this infrastructure provide a way to implement a
wide range of utilities ranging from compile-time analysis tools and optimizers to
run-time instrumentation analysis.

In general, this infrastructure provides three different components: i) LLVM In-
termediate Representation, a platform independent representation, that allows ap-
plying transformations, optimizations and to instrument the code; ii) Compiler-rt,
a runtime library that provides the necessary components to instrument the code;
iii) Clang, a compiler that supports multiple languages, such as C, C++, Objective-C
and Objective-C++. In this thesis, we take advantage of the Clang compiler since
this component provides a collection of tools that allows performing static analysis
of the source code and to instrument the LLVM IR during its generation. Specifi-
cally, the Clang compiler performs multiple actions from the original source code
until generating an unoptimized IR, that will be optimized applying multiple trans-
formations by the LLVM IR module. The generation of this unoptimized IR can be
divided into three different stages: i) preprocessing, parsing and lexical analysis; ii)
semantic analysis and generation of the Abstract Syntax Tree (AST); and iii) genera-
tion of the IR from the AST, namely CodeGen. In order to develop static analyzers,
this compiler provides a collection of utilities that can be used to retrieve the result
of this process at a given point. For instance, in order to analyze the source code
and perform source-to-source transformations, Clang provides a set of classes and
functions in order to obtain the AST from the source code and traverse this tree in
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different ways. Thanks to this features, Clang can be used to develop the parallel
pattern detection tool proposed in this Thesis by traversing and analyzing the AST
generated by Clang.

In order to explain the parallel pattern detection techniques implemented in this
Thesis, it becomes necessary to detail the Abstract Syntax Tree. The AST is a syntactic
structure representation of the source code in a tree model [62]. This tree is composed
of different nodes that represent each of the different statements that are present in
the source code, e.g. variable declarations, function calls, loops, etc. This nodes
contains different semantic and syntactic information about these statements such
as the variable names, implicit castings from r-value to l-value, function names or
location in the source. Figure 3.1 shows an example of source code along with its
associated AST.

Statement

VarDecl ForStatement

VarDecl
BinaryOperator

Op: '<'
UnaryOperator

Op: '++'
Body

BinaryOperator
Op: '='

Reference
BinaryOperator

Op: '+'

Reference Reference

a 5

a

0

a i

i 10i i

 int a = 5;

 for(int i=0; i<10; i++)

 {

       a = a + i;

 }

Source code

Abstract Syntax Tree

FIGURE 3.1: Example of Abstract Syntax Tree for a given source code.

3.2 Parallel Pattern Annotation Specificaction

In order to annotate parallel patterns using custom C++11 attributes [41], we have
extended the set of attributes defined for the projects REPARA [23] and REPHRASE [24].
Table 3.1 describes the attributes used for annotating the Pipeline, Farm and Map par-
allel patterns.

TABLE 3.1: REPHRASE attributes.

REPHRASE Attribute Description

rph::pipeline It identifies a pipeline pattern.

rph::stream This attribute identifies the data streams used across stages of a
rph::pipeline.

rph::stage It identifies a code section as a pipeline stage.

rph::plid It is associated to rph::stage and includes the pipeline ID.

rph::farm This attribute specifies the farm pattern.

rph::map It determines the map pattern.

rph::in This attribute references the input variables of a pattern.

rph::out It references the pattern output variables.
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Thanks to these attributes, a refactorization tool would have enough information
to transform annotated code regions into parallel. Also, they allow to split the de-
tection and transformation processes, so different tools can be used in these stages.

3.3 Parallel Pattern Analyzer Tool

In this section, we describe the Parallel Pattern Analyzer Tool (PPAT). This tool takes
advantage of the Clang library to generate the Abstract Syntax Tree. Then, it walks
through it in order to collect relevant information about the source code and identify
parallel patterns.

FIGURE 3.2: Workflow diagram of PPAT.

Figure 3.2 depicts the general workflow diagram of PPAT. First, the tool receives
the sequential source code files that should be analyzed. Next, the following steps
are executed:

1. Loop detection. This step is in charge of traversing the AST generated by clang.
During this process, the tool gathers information of different AST nodes (e.g.
variables, function calls, conditional statements) and identifies loop-related
subtrees for the pattern analysis. Additionally, it collects information about the
functions implemented in the source code. To illustrate the detection process,
Listing 3.1 shows a code example with two loops. This code snippet multiplies
each value stored in a matrix by a value k that is incremented in each row.
In this stage, the tool gathers the information related from the different AST
nodes and generates an internal representation of the AST that only contains
the relevant information. This transformation eases the analysis performed in
the next steps and allows to maintain the AST among compile units. Addition-
ally, detected loop sub-trees are passed to the next phase in order to properly
mark the loops locations.

LISTING 3.1: Code example.

1 print_value(auto & value);
2 ...
3 for(int i=0;i<100;i++){
4 for(int j=0;j<100;j++)
5 {
6 matrix[i][j] = k * matrix[i][j];
7 }
8 print_value(k);
9 k++;

10 }

2. Feature extraction. This step leverages the structures collected in the previous
step in order to extract specific features about variable declarations, references,
function calls, inner loops, memory accesses, operations, etc. Next, for each
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statement, it stores information about the location on the original code, vari-
able and functions name, reference kind (Write or Read) and global storage
references. This step is similar to the aforementioned information collection
but only for the loop sub-trees, that are marked in order to ease the analysis
of each pattern module. For instance, on the inner loop’s body of the exam-
ple code, the tool will detect two references to matrix and one to k. For both
matrix references, the tool will also store the information about array sub-
scripts operators to determine that are accessing to the position (i, j) of the ar-
ray. Afterwards, analyzing the binary operators the first reference to matrix
will be annotated as Write since it is on the left hand of the =̈öperator. On the
other hand, both k and matrix references are marked as Read references.

3. Check arguments reference kind. The last step checks whether the kinds of vari-
able references passed as arguments in functions can be determined or not.
In some cases, it is not possible to know statically if the kind of arguments
passed by reference is read or written. When this occurs, the tool performs the
following actions:

(a) If the function code is available or the function is implemented in the user
code, it is possible to check the set of arguments and assign the right vari-
able kind (Write or Read). If an argument is not modified, it is considered
as Read. In contrast, if there exist write accesses to the variable, Write is
assigned as the variable kind. Alternatively, if there is a read-after-write
(RAW) dependency on a variable, the kind is set to Write/Read, since the
argument can generate potential feedbacks among iterations.
Coming back to the example in Listing 3.1, in the outer loop the function
print_value receives a reference to a type as a parameter. If this func-
tion is defined in the user code, it can be analyzed to detect if the value is
modified and, if so, the parameter is annotated to let the analysis modules
know that it may produce side effects. Otherwise, if no write operation is
performed on the parameter in the function code, it will be annotated as
a read-only parameter.

(b) On the contrary, if the function cannot be accessed, it is not possible to
check the actual variable kind. Thus, the tool takes a conservative deci-
sion: it sets the arguments kinds always to Write/Read. Despite this, it
inserts the function name and parameter kinds into a dictionary file in
order to improve the detection process in future analyses. Afterwards,
the user can eventually modify this dictionary to set the right parameter
kinds for these specific functions.
In the example, if the print_value function is defined in a library and
can not be accessed the parameter will be annotated as if it were modified
and will be introduced in the dictionary. Then, the user can modify the
dictionary to set the parameter to not modified for a future analysis.

Next, marked loops are passed to the different pattern analyzer modules. Finally,
the parallel patterns found are forwarded to the annotation module responsible for
inserting the above-described REPHRASE attributes in the corresponding loops. In
the following sections, we describe the parallel pattern analyzer modules that are
currently supported by the PPAT.
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3.3.1 Pipeline Detection Module

In this section, we detail the internal workings of the Pipeline detection module. As
defined in previous section, this pattern defines a code that can be split into stages
and run in parallel by different threads, so that the output of a stage is the input of
the next one. The requirements for a Pipeline to be detected are the following:

• No global variables can be modified. In other words, there should not exist instruc-
tions that write on global variables. For instance, if we consider k as global
variable, the outer loop in Listing 3.1, cannot be treated as a parallel pattern
since k is modified in line 9.

• No feedback. This requirement controls that no feedback exists between itera-
tions of the loop. To do so, it checks if there are no variables written before
they are read, i.e., there are no RAW dependencies. Focusing on the exam-
ple, the outer loop will be discarded as potential Pipeline due to loop-carried
dependencies in variable k which is read in line 6 and 8 and modified in line 9.

• Multiple stages. The last requirement checks whether the potential pipeline can
be split in, at least, two stages. Otherwise, the loop cannot be treated as a
parallel pipeline and PPAT discards it right away.

The current strategy to split a loop into stages is to create a new stage each
time a function call or an inner loop is found in the main loop. Afterwards, for
each stage encountered, PPAT checks whether the stage is fed with, at least, a
previous stage output. If this is not the case, the complete stage is merged with
the previous one until all stages comply with the requirement. Note that this
strategy assumes that each stage has a substantial amount of work, however,
if function calls or nested loops inside a stage have negligible workloads, the
tool may identify a Pipeline with unbalanced stages. Finally, PPAT checks for
the presence of another parallel pattern in the stages codes. If so, the corre-
sponding stages are annotated as well.

In order to illustrate the stage splitting, Listing 3.2 shows a code in which each
position of a vector is computed as the averaged sum of the corresponding
position of an input vector multiplied by the values in a second vector. After-
wards, each position of vector_out and a counter are printed out by calling
the function print_value. In this example, the loop will be initially divided
into three stages: from line 2 to 5, line 6 and line 7. Afterwards, the tool will
check if the output from the first stage is used in the second one. Since the sec-
ond stage uses the vector_out[i] that is modified in the previous stage, the
first stage will be maintained. Next, stages 2 and 3 are merged together because
the second stage does not modify any variable used in the third stage. Finally,
since all the Pipeline requirements are met, the main loop will be annotated as
a Pipeline. Additionally, the tool will insert the corresponding annotations to
identify the first stage (from line 2 to 5) and the second stage (lines 6 and 7).

LISTING 3.2: Pipeline code example.

1 for(int i=0;i<100;i++){
2 for(int k=0;k<100;k++)
3 {
4 vector_out[i] += vector2[k] * vector[i]/100.0;
5 }
6 print_value(vector_out[i]);
7 print_value(counter++);
8 }
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3.3.2 Farm Detection Module

This pattern defines a loop that can be run in parallel by different threads over a
data stream. In this case, the code analyzed should be equivalent to a pure function,
i.e., there should not exist data dependencies producing potential side effects. This
requirement is controlled using the following constraints:

• No RAW dependencies. There should not exist RAW dependencies of variables
used within iterations of the loop.

• No global variables are modified. There should not exist instructions that modify
global variables in the loop.

• No break statements. There should not exist break statements (i.e., continue,
break or return) in the loop, as they cannot be parallelized. However, they
may be placed in inner scopes of the main loop.

Additionally, if a pipeline stage detected by the previous module fulfill the afore-
mentioned requirements, the stage is annotated as a farm pattern. In this cases, the
given stage has been proved to not produce side effects nor having data dependen-
cies and, therefore, it can be executed in parallel.

3.3.3 Map Detection Module

This section describes the implementation of the Map detection module within PPAT.
Basically, the Map pattern represents a parallel code executing a pure function that
is responsible for generating the output elements. Note that in this case the total
number of input elements is known in advance. To ensure these requirements, the
Map pattern adds the following two constraints over the requirements of the Farm
pattern:

• Known number of input elements: The input data must be declared and allocated
before the definition of the analyzed loop. In order to check this requirement,
the tool analyzes the scope of the variables referenced in the loop and selects
those that are declared in an outer scope. Next, these variables are classified as
input, if all its references kind are Read, or as output, if in at least one reference
modifies the value of the variable. Afterward, having this in mind, the tool
evaluates if the loop condition depends on an input variable or if it depends on
a function. If the condition depends on a variable, it cannot be modified during
the computations of the loop. On the contrary, if the condition depends on a
function, this function should return always the same value, i.e. the function
should be pure and its arguments cannot be modified.

• At least one output: According to the previous Map definition, the pure function
of the Map pattern processes an input to produce an output. So, the set of
outputs for a given loop should not be empty.

To illustrate the Map detection module process, Listing 3.3 shows a code snip-
pet that multiplies each value stored in a vector by two. First, the tool looks for the
variables referenced in the loop’s body that comes from an outer scope. In this case,
variables i and vector are classified as inputs and vector_out as output since it
is modified. Afterward, the tool checks the loop’s condition. Since the condition de-
pends on a literal, the number of iterations is known in advance and, thus, fulfilling
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the first constraint. Finally, the tool checks for the second restriction that compares
the inputs with the output dependencies. In this case, since the output (vector_-
out[i]) depends on an input value (vector[i]) the loop is annotated as a Map
pattern.

LISTING 3.3: Pipeline code example.

1 for(int i=0;i<100;i++)
2 {
3 vector_out[i] = 2 * vector[i];
4 }

3.4 Evaluation

To evaluate PPAT, we used the sequential versions of the two scientific benchmark
suites: Rodinia [81] and NAS Parallel Benchmarks (NPB) [7]. We also leverage a
processing video application taken from the FastFlow framework [16] as a real use
case. Our evaluation methodology is based on a comparison between a manual
inspection and an automatic one, using PPAT, of the loops appearing in the bench-
marks. To conduct a double-blind study, the manual inspection is performed before
the automatic one, so that the manual results are not biased by those from PPAT.
For each benchmark, we collect the number of loops and parallel patterns detected.
Then, we discuss the results collected during the manual inspection with those ob-
tained by PPAT in order to demonstrate the quality of the pattern detection process.

Moreover, we transform the sequential code of the Rodinia benchmark tests
using the PPAT annotations, and then, compare the performance of the PPAT par-
allel versions with respect to the parallel ones provided by the benchmarks suites.
Finally, we test PPAT on a real use case in order to evaluate the quality of the pattern
detection. The results obtained for this test are contrasted with the FastFlow parallel
version.

3.4.1 Reference platform

The evaluation has been carried out on a server platform comprised of 2× Intel Xeon
Ivy Bridge E5-2695 v2 with a total of 24 cores running at 2.40 GHz, 30 MB of L3
cache and 128 GB of DDR3 RAM. The OS is a Linux Ubuntu 14.04.2 LTS with the
kernel 3.13.0-57. This platform also incorporates a NVIDIA Tesla K40c with 12 GB
and GeForce GTX680 GPUs with 2 GB of DDR5 RAM. These GPUs are denoted as
GPU0 and GPU1, respectively. The OS is a Linux Ubuntu 14.04.5 LTS with kernel
3.13.0-85.

3.4.2 Results for the benchmarks suites

As mentioned, the two benchmark suites used to evaluate PPAT are Rodinia and
NAS. Note that we only employ the sequential versions of these benchmarks to detect
potential parallel patterns. Tables 3.2 and 3.3 presents the results obtained by PPAT
and manual inspection for both Rodinia and NAS benchmarks. As can be seen,
the number of patterns detected manually and through PPAT are perfectly match-
ing. Therefore, we observe that the pattern detection quality of PPAT is close to that
performed by a human expert.

[ht]
Focusing on the differences between manual and automatic detection, as shown

in Tables 3.2 and 3.3, the human expert is able to detect more Farm patterns than the
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TABLE 3.2: Results for the Rodinia benchmark suite. P, F and M
stand for the number of Pipeline, Farm and Map patterns detected,

respectively.

PPAT Manual
Test Loops P F M P F M

b+tree 80 3 7 7 2 7 7
particlefilter 44 1 8 8 1 10 10

bfs 7 0 1 1 0 2 1
nw 12 0 6 6 0 6 6
cfd 78 16 12 12 15 13 13

lavaMD 10 0 1 1 0 2 2
heartwall 54 1 4 2 0 4 3

nn 2 0 0 0 0 0 0
backprop 28 0 2 2 0 5 5

TABLE 3.3: Results for the NAS benchmark suite. P, F and M stand for
the number of Pipeline, Farm and Map patterns detected, respectively.

PPAT Manual
Test Loops P F M P F M
IS 16 1 8 8 0 9 9
LU 187 1 37 37 1 81 81
FT 41 0 7 7 3 20 20
EP 8 1 2 2 0 3 3
MG 80 1 26 26 1 44 44
UA 321 3 116 116 2 171 170
DC 30 2 5 5 1 7 7
SP 250 1 51 51 1 103 103
BT 181 1 46 46 1 78 78

tool for some of the tests. These differences mainly occur when the tool is not able
to guarantee the parallel correctness of the pattern when shared variables are used.
Listing 3.4 shows an example of this situation in a non-annotated Farm-like pattern.
In this case, PPAT detects that the variable new_dx and iterators j and k are shared
and, therefore, the tool cannot ensure that the code corresponds with a parallel pat-
tern. However, PPAT lets the user know that, if these variables had been declared as
local, the code would have corresponded with a parallel pattern. Listing 3.5 shows
a version of the code in which we have used shared variables on purpose to demon-
strate how the Farm and Map patterns would have been introduced. We observed in
the annotated loops that this situation happens in many cases for the NAS benchmark
tests, as the loop iterators are declared right before the loop sentences. Although the
PPAT is not able to discover some parallel patterns, the most time consuming regions
that matches with a parallel patterns have been detected by the tool·

In order to analyze the benefits of PPAT on the patterns detected, we have imple-
mented parallel versions of the Rodinia tests following parallelization suggestions
given by PPAT. Both Farm and Map patterns were implemented using OpenMP, while
the Pipeline pattern was introduced using the corresponding Intel TBB construction
using “serial in-order” stages. Note that we have transformed all parallel loops
suggested by PPAT, even the nested ones. Figure 3.3 shows performance results of



3.4. Evaluation 31

LISTING 3.4: Original
backprop snippet.

363
364
365 for (j = 1; j <= ndelta; j++)
366
367
368 for (k = 0; k <= nly; k++) {
369 new_dw = ((ETA * delta[j] * ly[k]) + (

MOMENTUM * oldw[k][j]));
370 w[k][j] += new_dw;
371 oldw[k][j] = new_dw;
372 }

LISTING 3.5: Annotated
backprop snippet.

[[rph::map, rph::farm,
rph::in(nly,delta,ly,oldw,w), rph::out(w,oldw)]]

for (int j = 1; j <= ndelta; j++)
[[rph::map, rph::farm,
rph::in(delta,ly,oldw,w,j), rph::out(w,oldw)]]

for (int k = 0; k <= nly; k++) {
float new_dw = ((ETA * delta[j] * ly[k]) + (

MOMENTUM * oldw[k][j]));
w[k][j] += new_dw;
oldw[k][j] = new_dw;
}

the sequential, PPAT parallel and OpenMP versions for the Rodinia benchmark
suite. In all cases, the tests were executed with the default input parameters, using
24 threads to fully populate the multi-core machine. For brevity, we only highlight
some interesting cases. For the lavaMD test, we note that PPAT is not able to an-
notate one of the main application hotspot (or loop) as a parallel pattern. This is
mainly because some of its instructions, operating on sparse datasets, rely on indi-
rect memory accesses in the form of A[B[i]]. In these cases, PPAT is not yet able
to detect, at compile time, such potential data dependencies among loop iterations.
Regarding the heartwall test, the PPAT version detects more parallel loops, or
patterns, than those parallelized originally in the OpenMP version. This situation
leads to increased overheads due to loops without a considerable workload have
been parallelized.
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FIGURE 3.3: Execution time of sequential, transformed PPAT code
and OpenMP versions of Rodinia benchmark.

After this study, we make the following observations: i) PPAT obtains close per-
formance figures with respect to the OpenMP implementations, as the PPAT anno-
tations correspond with the OpenMP original pragmas in most cases; and ii) PPAT
annotated versions may add slight overheads, as they contain initialization loops
that were annotated to run in parallel, while in the original versions were vectorized
by the compiler optimizations.

3.4.3 Analysis of the Fastflow use case

Finally, we test PPAT using a video processing use case taken from the FastFlow
framework. Basically, this application processes a stream of video frames captured
by a camera and applies, to each of them, two different image processing filters:
Gaussian blur and Sobel filters. Listing 3.6 shows the results of the analysis per-
formed by PPAT. As observed, the tool is able to detect a Pipeline comprised of 4
stages that operate in the following way. The first stage detected captures the input
video frames and forwards them to the next stage. The second and third stages are
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responsible for applying, in series, the two image processing filters Gaussian blur
and Sobel, respectively. The last stage takes care of delivering the frames processed
to the user. Another observation is that PPAT is able to determine as well that the
filtering stages can be parallelized using Farm patterns individually. Therefore, mul-
tiple threads can execute the filters over the frames concurrently without side effects,
as these operations have been determined to be pure functions.

LISTING 3.6: Example of annotated loop from the video use case.

1 [[rph::pipeline(0) , rph::stream(cap,frames,frame,frame1)]]
2 for(;;) {
3 class cv::Mat frame1, frame;
4 [[rph::stage(0), rph::plid(0), rph::in(cap), rph::out(frame1,frame,cap)]]{
5 if(cap.read(frame) == false) break;
6 }
7 [[rph::stage(1), rph::plid(0), rph::farm, rph::in(frames,filter1,frame,frame1),
8 rph::out(frames,frame1,frame)]]{
9 frames++;

10 if(filter1) {
11 cv::GaussianBlur(frame, frame1, cv::Size(0, 0), 3);
12 cv::addWeighted(frame, 1.5, frame1, -0.5, 0, frame);
13 }
14 }
15 [[rph::stage(2), rph::plid(0), rph::farm, rph::in(filter2,frame),
16 rph::out(frame)]]{
17 if(filter2) Sobel(frame,frame,-1,1,0,3);
18 }
19 [[rph::stage(3), rph::plid(0), rph::in(outvideo,frame)]]{
20 if(outvideo) { imshow("edges", frame); if(waitKey(30) >= 0) break;}
21 }
22 }

In this particular case, we note that the parallel patterns detected are exactly the
same as those used in the implementation of the original parallel version. There-
fore, we believe that PPAT will be able to minimize the development costs of par-
allel C/C++ applications by means of detecting regions that can be represented as
parallel patterns. However, since the presented techniques perform static analysis,
they have limitations when dealing with aliasing or access to double-indexed matri-
ces. In these situations, PPAT is not able to correctly detect data dependencies and,
therefore, it may lead to patterns not found by the tool.

3.5 Summary

In this chapter, we have proposed a tool that is able to discover potential parallel
patterns in sequential source codes. This way, the required efforts to analyze the
original source code can be diminished thanks to PPAT. However, up to this point,
the transformation from sequential to parallel is still manual, and its difficulties are
still present. Transforming these codes requires additional expertise and knowledge
from the developers in order to select the most suitable framework. Additionally,
since there is not a unified interface for parallel programming migrating parallel
code from one framework to another is not straightforward. To pave the way, in the
next chapter, we propose a generic and reusable parallel pattern interface that acts
as a switch between existing frameworks.
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Chapter 4

Generic Parallel Pattern Interface

As mentioned, one of the best codifying practice in order to write robust, portable
and efficient code is to use parallel patterns. In this sense, as studied in Chapter 2,
although parallel programming frameworks aim to simplify the development of ap-
plications, there is not a unified standard [32]. In order to mitigate this situation,
this Chapter presents GRPPI, a generic and reusable high-level C++ parallel pattern
interface that comprises both stream and data-parallel patterns.

In general, the goal of GRPPI is to accommodate a layer between developers
and existing parallel programming frameworks targeted to multi-core and heteroge-
neous platforms. Basically, GRPPI allows users to implement parallel applications
without having a deep understanding of existing parallel programming frameworks
or third-party interfaces and, thus, relieves the development and maintainability
efforts. In contrast to other object-oriented implementations in the literature, we
use C++ template meta-programming techniques in order to provide generic in-
terfaces of the patterns, inspired by the Parallel STL, without incurring significant
runtime overheads. Furthermore, the modularity of GRPPI permits to easily inte-
grate new patterns, while combining them to arrange more complex ones. Thanks
to this property, GRPPI can be used to implement a wide range of existing stream-
processing and data-intensive applications with relatively small efforts, having as a
result portable codes that can be executed on multiple frameworks.

Specifically, Section 4.1 and 4.2 describe in detail two of the main components
of the GRPPI library, the execution policies and the communication channels. Af-
terward, Section 4.3 describes the interface for the supported parallel patterns and
building blocks. Next, Section 4.5 demonstrates the composability feature of grppi.
Finally, Section 4.6 shows an experimental analysis of GRPPI from the usability and
performance points of view using different benchmarks.

4.1 Execution policies

This section presents the execution policies, a set of types designed to include the
pattern implementation using different frameworks. In this sense, each type con-
tains the framework-specific implementations along with the different configuration
information. Then, these policies can be used as an argument of the parallel patterns
interface in order to select the desired back-end. Thanks to these types, we are able
to provide a unified interface hiding away the complexities of the framework used
underneath. Furthermore, since this types are used to select a given framework,
changing from one back-end to other only requires modifying a single argument in
the pattern function call, thus, improving the portability of the application.

In the current version, we provide four different execution policies related to the
different supported back-ends: sequential, C++ Threads, OpenMP and Intel TBB.
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• sequential_execution: The sequential execution policy allows to improve the
maintainability and code structure by expressing an application in terms of
patterns, but without providing any parallelism. So, this mode is useful when
using a parallel implementation does not enhance performance but the use of
parallel patterns improves the readability. Additionally, this policy along with
the parallel ones allows expressing parallel and sequential algorithms in the
same way. Listing 4.1 shows the sequential_execution class definition along
with its default constructor since this execution policy has no configuration
parameters.

LISTING 4.1: Sequential execution policy.

1 class sequential_execution {
2 public:
3 constexpr sequential_execution() noexcept = default;
4 ...
5 }

• parallel_execution_native: This policy leverages C++ threads to implement
the different patterns. In this case, each thread is in charge of processing a
different subset of the input data for data parallel patterns and processing a
given stage or task for stream parallel patterns. This specific policy can receive
an integer for establishing the number of threads that will be used in a pattern
and maintains an internal thread ID table to allow users to ask for the ID of a
given thread.

Listing 4.2 shows the parallel_execution_native class definition along with its
constructors. In this case, the native execution policy can be configured with
two different arguments: tthe concurrency degree to limit the number of threads
that will be used for executing a given pattern and the ordering to determine if
the items in the output stream will be ordered.

LISTING 4.2: C++ threads execution policy.

1 class parallel_execution_native {
2 public:
3 parallel_execution_native() { ... }
4 parallel_execution_native(int concurrency_degree, bool ordering=true) { ...}
5 ...
6 }

• parallel_execution_omp: This execution policy uses the task-based parallel
framework for implementing the different patterns. Specifically, this policy
provides the parallelism by explicitly declaring OpenMP or by using the ab-
stractions provided by this frameworks. For instance, stream patterns use ex-
plicit tasks for each of the stages, while some data patterns like the Map are
implemented by using the parallel_for abstraction. Similar to the native pol-
icy, this policy may also receive the number of OpenMP threads that will be
used for executing a given pattern. However, in this case, the policy does not
maintain an ID table since these IDs are internally managed and provided by
the OpenMP framework itself.

Similar to the native execution policy (See Listing 4.3), this type has different
constructors for defaulted values as for the configuration parameters and for
user-defined values. However, the default concurrency, in this case, is defined
by the environment variable OMP_NUM_THREADS.
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LISTING 4.3: OpenMP execution policy.

1 class parallel_execution_omp {
2 public:
3 parallel_execution_omp() { ... }
4 parallel_execution_omp(int concurrency_degree, bool ordering=true) { ...}
5 ...
6 }

• parallel_execution_tbb: This policy takes advantage of the High-level parallel
framework Intel TBB. In this case, the implementation of each pattern uses the
corresponding implementation of Intel TBB. However, some patterns are not
natively provided by TBB. On these cases, similar to the aforementioned back-
ends, the implementation of such patterns is made by means of Intel TBB tasks.
Focusing on the number of threads, in this case, the control of threads only cor-
responds with the employed tasks on those patterns that are not provided by
TBB. On the contrary, as for the natively supported patterns, the thread man-
agement relies on the runtime scheduler provided by the framework. List-
ing 4.4 shows the constructors of the Intel TBB execution policy that share the
behavior of the native policy.

LISTING 4.4: Intel TBB execution policy.

1 class parallel_execution_tbb {
2 public:
3 parallel_execution_tbb() { ... }
4 parallel_execution_tbb(int concurrency_degree, bool ordering=true) { ...}
5 ...
6 }

4.2 Communication channels

Since the lower-level back-ends (OpenMP and Native) does not provide any high-
level mechanism to safely communicate data among threads, it is necessary to in-
troduce a custom communication channels. This is important for those patterns
in which data is not available at the beginning and should be transmitted among
threads during the execution, i.e. for the stream parallel patterns. On the contrary,
for data parallel patterns the distribution of the data is done by means of dividing the
data into independent subsets. Focusing on the stream communication channels, we
provide a First-In-First-Out (FIFO) queue implemented as a circular bounded buffer
that supports concurrent accesses for multiple producers and multiple consumers
inspired by the Michael and Scott’s lock-free queue [58]. This queue provides the
following set of function to access the queue:

• push: Enqueues the item into the buffer in the first empty position.

• pop: Removes and returns the first item in the buffer.

• empty: Returns true if the buffer is empty.

• full: Returns true if the buffer is full.

Figure 4.1 depicts the internal working of the circular buffer from the FIFO Multiple-
Producer/Multiple-Consumer (MPMC) queue. Initially, pread and pwrite point
to the initial position of the buffer, while some elements have been added at the ter-
minal position through push calls and others removed from the head position by
means of pop calls.
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FIGURE 4.1: Schema of the circular buffer queue.

Listing 4.5 shows the GRPPI MPMC queue class definition. This class is defined
as a template class to support any type as the item type. Additionally, this type is
stored, similarly to the C++ standard container, in the value_type. This type is used
in the pattern implementations to allow determining input and output types of the
user functions.

LISTING 4.5: MPMC queue.

1 template <typename T>
2 class mpmc_queue{
3 public:
4 using value_type = T;
5 mpmc_queue<T>(int q_size, queue_mode q_mode ) {...}
6 bool is_empty () const noexcept;
7 T pop ();
8 bool push (T item);
9 }

In order to control the access for multiple producers and multiple consumers,
we employ two different techniques to support both blocking and lock-free behaviors.
This way, depending on the pattern construction, target platform and concurrency
degree, developer can select the most suitable control mechanism. For instance,
when dealing with oversubscription, i.e. using more threads that available cores,
the blocking strategy may outperform the lock-free implementation since suspended
threads leave the CPU available for other threads that may exploit such resources.
Focusing on the blocking implementation of the queue, the synchronization among
producers and consumers is performed by means of conditional variables and mu-
texes. In this specific case, if the queue is empty or full, the consumers and producers
will wait until a new item is produced or consumed, respectively.

On the other hand, as for the lock-free implementation, we use atomics for both
pread and pwrite pointers to avoid potential data races. Concretely, the access to
the queue is controlled by Compare-And-Swap (CAS) operations. With these oper-
ations on both pointers, we can control the access of producers and consumers. In
addition to these pointer, we define two new atomic internal pointers related to both
consumers and producers. Thanks to these new pointers we can control the concur-
rent access for multiple producers and multiple consumers avoiding data races. For
instance, when a consumer requires an item from the queue, first it gets a unique
index by performing CAS operations over the internal pread pointer. Afterward,
this consumer will use the index obtained to access the queue and it will check if
the corresponding item is ready in the queue. If it is ready, it takes the element and
using again CAS operations updates the value of the pread pointer.

Finally, in order to select the implementation of the queue and the size of the cir-
cular buffer, the execution policies provide the set_queue_attributes function
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that allows selecting these parameters. This function receives two arguments, an in-
teger for establishing the size of the circular buffer and a enumerate value (queue_-
mode) that can be blocking or lock-free. Note that this configuration can not be modi-
fied during the execution of a pattern and the queues involved in such pattern will
keep using the configuration established before starting the computation of the pat-
tern.

4.3 Description of the pattern interfaces

This section describes the interface carefully designed to allow composability and to
support multiple implementation back-ends. In the current version, GRPPI offers
stream, data and task parallel patterns with a single interface. Furthermore, GRPPI
also supports some stream operators offering new semantics for stream applications
and a set of advanced patterns simplifying some domain-specific or complex con-
structions.

4.3.1 Data patterns

This section describes in detail the interfaces for the data parallel patterns Map, Re-
duce, Stencil, MapReduce and Divide&Conquer supported by GRPPI.

Map The GRPPI interface for the Map pattern, shown in Listing 4.6, receives the
following input parameters: the execution policy, references to the first and last ele-
ments of the input data collections and the kernel (map) function. After the compu-
tation, the result of the Map pattern is left in the corresponding position of the output
data set. Given that each element in the input data collection is independent to each
other, the parallel execution of the Map pattern can be performed in the following
way. First, the input collection is divided equally among the available concurrent
entities. Afterwards, these entities execute in parallel the kernel map function and
write the results in the corresponding segments of the output data collection.

LISTING 4.6: Map interface.

1 template <typename EM, typename InIt, typename OutIt,
2 typename TaskFunc, typename ... MoreIn>
3 void map(EM m, InIt first, InIt last, OutIt firstOut,
4 TaskFunc &&map, MoreIn ... inputs );

Reduce The interface for the Reduce pattern, as described in Listing 4.7, takes the
execution policy, a reference to the first and last elements of the input data collec-
tion and the reduce operator. The result of the reduction is written in the output
parameter passed by reference. According to the properties of the reduce operator,
the reduce computation can be performed in parallel. Thus, the input data collec-
tion is partitioned in N chunks and computed in parallel by N different concurrent
entities that produce a set of partial results. Note that, the reduce operation should
be commutative and associative, therefor, the initial value for each partial reduction
will be the first element of the corresponding chunk. Finally, the result of the Reduce
pattern is calculated in series by one of these entities.

LISTING 4.7: Reduce interface.

1 template <typename EM, typename InIt, typename Output, typename ReduceOperator>
2 void reduce(EM m, InIt first, InIt last, Output &out, ReduceOperator && redop);
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Stencil The GRPPI interface for the Stencil pattern, presented in Listing 4.8, is quite
similar to that for the Map pattern, with the exception that it additionally receives the
neighborhood (nh) function. This function is responsible for accessing the neighbors
in a given coordinate of the input data set. The parallel implementation of the Stencil
pattern is analogous to that for the Map pattern. However, accessing the neighbors
in the boundaries of a partitioned data set might require additional comparisons
between the positions of the elements.

LISTING 4.8: Stencil interface.

1 template <typename EM, typename InIt, typename OutIt, typename TaskFunc,
2 typename NFunc, typename ... MoreIn>
3 void stencil(EM m, InputIt first, InIt first, InIt last, OutIt firstOut,
4 TaskFunc && stencil, NFunc && nh, MoreIn ... inputs);

MapReduce The interface for the MapReduce pattern combines internally calls to
the Map and Reduce GRPPI pattern interfaces. As for input parameters, it receives
the execution policy, references to the first and last elements of the input data collec-
tions, the kernel (map) function and the reduction operator for the Reduce pattern.
The result is finally left in a reference to the first element of the output collection. The
parallel implementation of this pattern in GRPPI exploits the parallelism offered in-
ternally by the Map and Reduce parallel patterns. The result of the Map operation is
then shuffled and reduced in parallelAfterward, the global result is finally reduced
in series by one of the concurrent entities.

LISTING 4.9: MapReduce interface.

1 template <typename EM, typename InIt, typename Output, typename MapFunc,
2 typename ReduceOperator, typename ... MoreIn>
3 void map_reduce(EM m, InIt first, InIt last, Output &out, MapFunc &&map,
4 ReduceOperator &&redop, MoreIn ... inputs);

Divide&Conquer The interface designed for the Divide&Conquer pattern consists of
the following elements: the execution policy, a reference of the input data collection
and the divide, base_case and merge functions. The result of this pattern is writ-
ten to the output data collection passed by reference. The parallel implementation
of this pattern in the GRPPI interface leverages first the divide kernel to steadily
split the problem into smaller ones. This operation is performed by the available
concurrent entities until the minimal problem dimension is reached and where the
base-case solution kernel is applied. Taking the partial solutions generated, the con-
current entities merge the results in a tree-based structure until the global solution
is obtained. Note that since the tree width can grow above the maximum number of
concurrent entities specified, a pool of tasks is used instead in order to implement a
dynamic scheduling approach.

LISTING 4.10: Divide&Conquer interface.

1 template <typename EM, typename Input, typename Output, typename DivFunc,
2 typename TaskFunc, typename MergeFunc>
3 void divide_conquer(EM m, Input &problem, Output &out, DivFunc && divide,
4 TaskFunc && base_case, MergeFunc && merge);

4.3.2 Stream patterns

The GRPPI stream parallel patterns include the Pipeline, Farm, Filter, and Reduce
patterns. In this case, stream patterns have been designed to be easily composed
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among them. Since all these patterns require a stream generator at the beginning
and a stream consumer at the end, when they are composed, both stream generator
and consumer are provided by the outer pattern. For this reason, we provide 2
different interfaces for the same pattern, one of them for composing them with other
stream patterns and another to work as the outermost pattern.

Pipeline The GRPPI standalone interface designed for the Pipeline pattern receives
the execution policy and the functions (in and stages) related to its stages. As
shown in Listing 4.11, its C++ interface uses templates, making it more flexible and
reusable for any data type. Note as well the use of variadic templates, allowing a
Pipeline to have an arbitrary number of stages by receiving a collection of callable
objects passed as arguments.

LISTING 4.11: Pipeline interface.

1 template <typename EM, typename InFunc, typename ... Transformers>
2 void pipeline( EM m, InFunc && in, Transformers ... stages );

In order to compose the Pipeline pattern inside any other pattern (See Listing 4.12,
the interface only receives the function related to the stages without receiving the
execution policy. Note that in the composed Pipeline is not necessary to provide a
function to generate the stream elements since the stream is produced in the outer-
most pattern.

LISTING 4.12: Pipeline interface.

1 template <typename ... Transformers>
2 auto pipeline( Transformers ... stages );

Farm The Farm pattern interface, shown in Listing 4.13, receives the concurrency
degree, i.e. the number of replicas used in the farm construction, and the farm
function. Basically, this pattern is intended to be used along with an outer Pipeline
pattern and it performs the following steps: i) consumes the items from the input
stream coming from the previous stage, ii) processes them individually, and iii) de-
livers the results to the output stream. Note that the farm function will be executed
in parallel by the different concurrent entities. In this case, the execution policy used
depends on that used for the outer Pipeline.

LISTING 4.13: Farm interface.

1 template < typename TaskFunc >
2 auto farm( int concurrency_degree, TaskFunc &&farm );

Filter The interface for the Filter pattern, described in Listing 4.14, only receives the
predicate_op function. Basically, this pattern reads items from the input stream
and forwards them to the predicate_op function, which is responsible to deter-
mine whether an item should be accepted or not. Afterward, those items that satisfy
the filtering routine are delivered to the output stream.Note that it is mandatory the
predicate_op function to return a boolean expression. However, this pattern is
by nature sequential and, in order to be parallel, this pattern should be included in
a Farm pattern.

In this case, we provide two interface alternatives keep and discard depending on
which items are filtered out. If the keep function is used only those item that the
filter evaluates as true are delivered to the output stream. On the contrary, discard
removes those items evaluated as true.
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LISTING 4.14: Filter interface.

1 template <typename Predicate>
2 auto keep(Predicate && predicate_op);
3
4 template <typename Predicate>
5 auto discard(Predicate && predicate_op);

Reduce The stream-based Reduce pattern aims at reducing, using a specific reduc-
tion (combine_op) function, the sets of items appearing on the input stream. The
Reduce interface, as shown in Listing 4.15 receives the window size, i.e., the number
of items that will be part of each reduction operation; the offset, determining the
number of overlapping items among windows; the initial value of the reductions;
and the reduction operator (combine_op) function. In this case, the concurrent en-
tities in the parallel implementation are responsible for processing individually the
accumulation of the input stream windows.

LISTING 4.15: Reduce interface.

1 template <typename InitVal, typename Combiner>
2 auto reduce(int window_size, int offset,
3 InitVal initial_value,
4 Combiner && combine_op);

4.3.3 Stream operators

As stated in Section 2, the stream operator are not intended to work as stand-alone
patterns since they transform or modify the stream data flow in different ways.
Specifically, in GRPPI, these flow modifications are implemented by adding a logic
layer in the communication channels to provide the semantics of such operators.
This section describes in detail the proposed interfaces for the Split-Join and Win-
dow stream operators.

Split-Join The interface designed for the Split-Join pattern, shown in Listing 4.16,
receives the split policy (split_policy) and the list of transformations (trans-
formers) that should be applied to the different output streams. Note that, these
transformations may be a single function or a composition of patterns and the num-
ber of output streams is given by the number of transformations. This pattern takes
the elements from the input stream and splits them into the output streams follow-
ing the policy received as an argument. Afterward, a different processing entity
computes the transformation related to its stream. Finally, the results of each stream
are joined into a single one following a round-robin policy. 1

LISTING 4.16: Split-Join interface.

1 template <typename SP, typename ... T>
2 auto split_join(SP & split_policy, T ... transformers);

In the current implementation, we provide support for both duplicate and round-
robin policies (See Listing 4.17). However, the set of policies can be easily extended
by declaring a new object that implements two specific functions: set_num_streams
and get_next_stream. The first function is intended to receive as argument the
number of output streams, while the second one should return a vector containing
the id of the streams that should receive the item. These ids are determined by the
transformers order in the Split-Join interface.

1Note that while the current Split-Join pattern only supports round-robin as for the join policy, in
the future, we plan to extend its interface to cover other policies.
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LISTING 4.17: Split-Join policy interfaces.

1 auto duplicate();
2 auto round_robin(int number);

As commented, the stream operators in GRPPI introduce a new layer between
the worker threads and the communication channels to implement the business logic
of the stream operators. For the Split-Join, this layer is in charge of distributing the
input items to the different workers depending on the policy stated by the user and
joining the results into a single stream. Specifically, as for the split phase instead of
having a single queue, this layer generates the same number of queues as the num-
ber of flows received in the function call. Afterward, when the input item arrives
into the split phase, this is introduced in the queue associated with the correspond-
ing queue. Focusing on the join phase, the logic layer is in charge of getting the
elements from the corresponding results queue following a round-robin policy a de-
livering them to the worker/s of the next stage. Figure 4.2 shows a schema of the
layers introduced in the communication channels in a Split-Join pattern. As can be
seen, these layers are seen as a regular MPMC queues by the worker threads but
modify how the actual queues are accessed. Furthermore, since the policy is sep-
arated from this layer, extending the set of policies does not require to modify the
layer implementation.

FIGURE 4.2: Schema of the Split-Join communication channels.

Window The interface for the Window pattern, described in Listing 4.18, receives
a single argument that is the window policy. This building block takes the items
arriving in the input stream and stores them into a buffer. Afterward, depending on
the policy, when a window is ready the buffer is delivered to the output stream.

LISTING 4.18: Window interface.

1 template <typename WP>
2 auto window(WP & window_policy);

In the current implementation, we support four different window policies: count-
based, time-based, delta-based and punctuation-based (See Listing 4.19). These poli-
cies require as a template argument the type of the incoming items to be grouped into
the different windows. Additionally, as function arguments, this interface also re-
ceives the arguments that allow determining the behavior of the policy, e.g. window
size, punctuation-value, sliding, etc. In order to extend the set of window policies,
we have defined two functions that should be implemented by the new policies:
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add_item and get_window. The first function should receive the input item and
return a boolean to determine if the window is complete or not. On the other hand,
the get_window function does not receive any argument and should return the
window.

LISTING 4.19: Window policy interfaces.

1 template <typename ItemType>
2 auto count_based(int w_size, int slide);
3
4 template <typename ItemType>
5 auto time_based(int time_size, int slide);
6
7 template <typename ItemType>
8 auto delta_based(int delta_value, int slide);
9

10 template <typename ItemType>
11 auto punctuation(ItemType punctuation_value);

Similarly to the Split-Join pattern, this operator introduces a layer between the
producers and the consumers to provide the business logic of the Window pattern.
Specifically, this layer, seen as an actual queue by producers and consumers, has an
internal buffer in order to manage the different queues. Thus, when an input item
arrives, it is introduced in the buffer and checks if the window is ready. If so, the
whole window is forwarded to the worker/s of the next function and the buffer is
updated according to the window policy received as argument.

4.4 Advanced patterns

In this section, we describe the advance stream parallel patterns that provide simpler
interfaces for complex pattern compositions to improve the readability and main-
tainability of the source code. Specifically, we provide support for the Stream-Pool,
Windowed-Farm and Stream-Iterator parallel patterns.

Stream-Pool The GRPPI interface designed for the Stream-Pool pattern, shown
in Listing 4.20, receives the execution policy, the population (popul), the selection
(select), evolving (evolve), filtering (filter) and termination (term) functions.
Initially, the selection takes individuals from the original population and introduces
them into the input stream of the pattern. Afterward, the different processing entities
take the individuals from the input stream and apply the evolve, termination and
filter functions. If the termination condition is met, the pattern finalizes its execution
and returns the population with the resulting individuals. Otherwise, depending on
the filter function, an evolved or an original individual is introduced again into the
input stream.

LISTING 4.20: Stream-Pool interface.

1 template <typename EM, typename P, typename S, typename E, typename F, typename T>
2 void stream_pool(EM exec_mod, P &popul, S &&select, E &&evolve, F &&filt, T &&term);

Windowed-Farm The interface for the Windowed-Farm pattern, described in List-
ing 4.21, receives the execution policy, the stream consumer (in), the Farm (trans-
former) and the producer (out) functions. This pattern also receives the window-
ing policy. In this sense, this pattern is a simplified interface for a GRPPI composi-
tion of a Pipeline containing a Window operator and a Farm pattern. Specifically, the
in function reads from the input stream as many items as required to fill the win-
dow buffer. Next, this buffer is forwarded to one of the concurrent entities, which
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will compute the function task in a Farm-like fashion. Therefore, the parallel imple-
mentation of this pattern is offered by the Farm construction. Finally, the items col-
lections resulting from the task function are delivered to the output stream. Note
that, depending on the user requirements, this pattern can deliver processed win-
dows in an ordered way by properly configuring the execution policy.

LISTING 4.21: Windowed-Farm interface.

1 template <typename EM, typename I, typename F, typename O, typename WP>
2 void windowed_farm(EM exec_mod, I &&in, F &&transformer, O &&out, WP &window_policy);

Stream-Iterator The GRPPI interface for the Stream-Iterator pattern, detailed in
Listing 4.22, takes the execution policy, the stream consumer (in), the kernel (trans-
former) and the producer (out) functions. This pattern also receives two boolean
functions: the termination (term) and output guard (guard) functions. In the first
step, the in function reads items from the input stream and a worker thread exe-
cutes the kernel transformer function for each item. Next, the termination func-
tion term is evaluated with the resulting item to determine if the kernel should be
re-executed on the same input item. Additionally, the output guard function de-
cides whether an item should be delivered to the output stream or not.

LISTING 4.22: Stream-Iterator interface.

1 template <typename EM, typename I, typename F, typename O,
2 typename T, typename G>
3 void stream_iteration(EM exec_mod, I &&in, F &&transformer, O &&out,
4 T &&term, G &&guard);

Note that interfaces presented for these patterns are intended to work as stan-
dalone functions, however, the GRPPI interface also offers composable interfaces
that allow them to be used as part of other patterns, e.g. Pipeline or Farm. In those
cases, the parameters related to the execution model, consumer and producer func-
tions are inherited from the outer pattern.

4.5 Pattern composability

As mentioned in the introduction, the patterns offered by GRPPI can be composed
among them to produce more complex structures and to match specific construc-
tions present in both stream and data parallel applications. To demonstrate this
feature we describe three examples of pattern composability tackling each of the
feasible combinations of computational paradigms (stream and data) supported by
GRPPI interface: stream-stream, data-data and stream-data compositions.

For the stream-stream pattern composability, the code in Listing 4.23 implements
a Pipeline in which the second stage is a Farm pattern. The Pipeline stages, passed
as lambda functions, perform the following tasks: i) read the lines of an input file
with blank-separated values and pack them into a vector structure, ii) compute the
maximum value from incoming vectors using the Farm pattern, and iii) print the
maximum values of the vectors onto an output stream. Given that the Pipeline re-
ceives the OpenMP parallel execution policy (line 1), the stages are computed in
parallel by the 3 worker threads. Similarly, the nested Farm pattern is executed by
6 OpenMP threads, being one of them the OpenMP thread related to the outer par-
allel pattern. Therefore, the total number of OpenMP threads for computing this
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LISTING 4.23: Example of the Pipeline-Farm composition.

1 pipeline( parallel_execution_omp,
2 // Stage 0: read values from a file
3 [&]() -> optional<vector<int>> {
4 auto r = read_list(is);
5 return ( r.size() == 0 ) ? {} : r;
6 },
7 // Stage 1: takes the maximum value of the vector
8 farm(6,
9 []( vector<int> v ) {

10 return ( v.size() > 0 ) ?
11 max_element(v.begin(), v.end()) :
12 numeric_limits<int>::min();
13 }),
14 //Stage 2: prints out the result
15 [&os]( int x ) {
16 os << x << endl;
17 }
18 );

pattern composition will be 8. Note as well that std::optional variables, from
the C++ Library Fundamentals Extensions (ISO/IEC 19568:2015), are used to mark
the end of the streams with an empty value. We denote this Pipeline-Farm composi-
tion as (p |f |p), being p and f, respectively, sequential and Farm-based stages. As
shown, thanks to the use of metaprogramming techniques, templates, and lambda
expressions, it is possible to easily compose GRPPI parallel patterns in order to build
more complex ones.

(A) Composition schema.

1 using namespace grppi;
2 ...
3 pipeline(parallel_execution_thr{}
4 // Consumer function
5 [&]() -> optional<int> {
6 auto value = read_value(is);
7 return (value > 0) ? value : {};
8 },
9 stream_iteration(

10 pipeline( // Kernel function
11 [](int e){ return 3*e; },
12 [](int e){ return e-1; }
13 ),
14 // Termination function
15 [](int e){ return e<100; },
16 // Output guard function
17 [](int e){ return e%2==0;}
18 ),
19 // Producer function
20 [&](int e){ os << e << endl; }
21 );

(B) Implementation.

FIGURE 4.3: Example of Pipeline-Stream-Iterator-Pipeline composi-
tion in GRPPI.

Additionally, to demonstrate the composabilty of the stream operators with basic
and advanced patterns, we introduce two simple application examples coming from
the data stream processing (DaSP) domain. The first application example reads the
integers stored in a file, processes them until a threshold is reached and outputs the
results according to a guard condition (see Figure 4.3(a)). To express this application
in GRPPI terms, we make use of Pipeline-Stream-Iterator-Pipeline composition. As
shown in Listing 4.3(b), the consumer and producer functions are part of the outer
Pipeline ends, while the computation itself is performed by means of the Stream-
Iterator pattern. As stated in the previous section, the parallelism of the Stream-
Iterator pattern is only obtained when it is composed with a parallel construct, e.g.,
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Farm or Pipeline. In this case, we have leveraged a Pipeline as for the kernel com-
putation, where two different threads simultaneously execute both stages. Recall
that the termination function controls the number of times that an item is processed
through the inner Pipeline, while the guard function determines which results should
be forwarded to the producer function.

(A) Composition schema.

1 using namespace grppi;
2 ...
3 // FM Radio
4 pipeline(e,
5 // Input antenna
6 [&]() -> optional<float> {...},
7 window(count_window<float>(64,4)),
8 // Low-pass filter
9 [&coeff](auto win) {...},

10 window(count_window<float>(2,1)),
11 // FM demodulator
12 [&mGain](auto win) {...},
13 window(count_window<float>(64,1)),
14 // Equalizer (4 bands)
15 split_join(duplicate{},
16 pipeline( // Band equalizer 1
17 // Band-pass filter
18 split_join(duplicate{},
19 // Low-pass filter 1
20 [&coeffs](auto win) {...},
21 // Low-pass filter 2
22 [&coeffs](auto win) {...}
23 ),
24 window(count_window<float>(2,2)

),
25 // Subtracter
26 [](auto w) {...},
27 // Amplifier
28 [&eqGain](float win) {...}
29 ),
30 ... // remaining band equalizers
31 ),
32 window(count_window<float>(4,4)),
33 // Bands collapser
34 [](auto win) {...},
35 // To output speaker
36 [&](float f) {...}
37 );

(B) Implementation.

FIGURE 4.4: Pattern composition and implementation of the FM-
Radio in GRPPI.

To extend the GRPPI pattern composability demonstration, we leverage the FM-
Radio as a real study case of streaming application inspired by an example part of
the StreamIt programming model [86] (see Figure 4.4(a)). Concretely, we implement
the FM-Radio software taking advantage of the stream operators and basic GRPPI
patterns. Basically, this application receives, as for the input stream, the signal from
an external antenna and produces a new processed signal that is connected to a
speaker. As shown in Listing 4.4(b), the program is structured as a main Pipeline
whose first two stages are: a band-pass filter to tune in the desired frequency and a
demodulator. Note that these sequential stages are followed by Window operators
in charge of conforming count-based windows. Next, the main Pipeline is continued
with an equalizer expressed with a Split-Join operator, where each branch fine-tunes
the gain of a specific frequency range. The last Pipeline stages collapse all bands and
emit the processed signal to an external speaker.

In a nutshell, thanks to the presented stream operators and advanced patterns
we are able to implement complex data-flow graphs with relatively small efforts.
Simultaneously, the GRPPI interface enhances expressiveness and simplicity due to
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the hierarchical block-level abstraction offered by the parallel patterns. All in all,
our goal for designing these constructs in a composable way is to improve both
programmability and readability of complex streaming applications.

Regarding the data-data pattern composability, Listing 4.24 shows a construct
where a Map pattern is composed of a Reduce operation. In this case, the input
matrix in the Map pattern is divided into equal partitions among the worker threads.
Next, for each row in a partition, the nested Reduce pattern sums up its values and
stores the result in the corresponding position of the output vector, passed as an
argument in the Map function call. Note that the parallel execution policy for the
Map pattern is OpenMP while the nested Reduce pattern uses C++ threads, each of
them using 6 worker threads. We denote this composition as m(r), being m and r
the Map and Reduce patterns, respectively.

LISTING 4.24: Example of the Map-Reduce composition.

1 map( parallel_execution_omp{6},
2 // Input matrix
3 mat_in.begin(), mat_in.end(),
4 // Vector of accumulated values from matrix rows
5 vec_out.begin(),
6 // Map kernel: divide matrix into rows
7 [&]( auto row_in, auto sum ) {
8 // Reduce kernel: Sum up the values in a matrix row
9 reduce( parallel_execution_thr{6},

10 row_in.begin(), row_in.end(),
11 &sum,
12 std::plus<double> );
13 );
14 }
15 );

As mentioned, we can also compose stream with data patterns. This is a feasible
composition, given that the items coming from a stream can be processed them-
selves using a data parallel pattern. The opposite is however not feasible since the
results generated in a data pattern cannot be transformed into streams and, there-
fore, processed using a stream processing approach. To illustrate a stream-data pat-
tern composition, Listing 4.25 shows an example where a Farm stream parallel pat-
tern is composed of a Divide&Conquer data one. In this particular case, the Farm
pattern steadily reads values stored in a file and computes, for each of them, their
corresponding i-th Fibonacci number using the Divide&Conquer pattern. Finally, the
Fibonacci numbers are printed to the end user. As shown, the parallelization of the
Farm is performed using 6 OpenMP threads, while the nested Divide&Conquer pattern
uses 6 C++ threads. Since each of the Farm-related threads creates 6 C++ nested ones,
the total number of threads computing this composition is 36. This composition is
denoted as f(d), being f and d, Farm and Divide&Conquer patterns, respectively.

In general, Table 4.1 summarizes pattern compositions grouped by the three
possible combinations of computational paradigms supported by GRPPI interface:
stream-stream, data-data and stream-data compositions. Note that rows and columns
in the tables represent the outer and inner patterns involved in a given composition,
respectively. We classify each specific pattern composition with one of the following
four categories, from less to more restrictive:

Infeasible This category represents a composition that is not supported by GRPPI.

Feasible This category denotes a composition that can be implemented in GRPPI.

Irreducible This category is a feasible composition providing a useful parallel pat-
tern that cannot be simplified any further. Note that pattern compositions
falling in this category are natively supported by GRPPI.
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LISTING 4.25: Example of the Farm-Divide&Conquer composition.

1 pipeline(parallel_execution_omp,
2 [&]() -> optional<int> { // Read values from an input file
3 auto value = read_value(is);
4 return ( value > 0 ) ? value : {};
5 },
6 farm( 6, [&]( int value ) { // Compute the fibonacci number using a D&C pattern
7 int fibonacci = 0;
8 divide_conquer(parallel_execution_thr(6), value, &fibonacci,
9 [&](auto &value){

10 std::vector< int > subproblem;
11 if( v < 2 ) subproblem.push_back(value);
12 else subproblem.insert(subproblem.end(), { value-1, value-2 });
13 return subproblem;
14 },
15 [&](auto &problem, auto &partial){
16 partial = ( problem == 0 ) ? 0 : 1;
17 },
18 [&](auto & partial, auto & out){
19 out += partial;
20 }
21 );
22 return fibonacci;
23 }),
24 [&]( int fibonacci ) { // Print the fibonacci values
25 cout << fibonacci << endl;
26 }
27 );

Useful-Reducible This category is a feasible composition implementing a pattern
composition that can be simplified further but that, in some cases, provides a
clearer and a more readable code than its simpler equivalent.

As shown in Table 4.1a, the stream-stream pattern compositions involving a
Pipeline and other pattern are classified as Irreducible (except those with an outer Re-
duce pattern), given that it is not possible to obtain the same parallel construction
using any simpler pattern. These types of compositions are natively supported in
GRPPI, as shown in Listing 4.23. Any other composition is considered as Feasible
since they can be simplified using the outer or inner pattern with an increased par-
allelism degree. However, these compositions do not provide any major advantage
compared to the simpler construction. On the other hand, compositions contain-
ing an outer Reduce pattern are Infeasible, as this pattern does not receive any user
function to be executed in parallel. Focusing on the stream operators, since they
are intended to work as part of a bigger composition with more than one pattern or
function it can only be used as a stage of a Pipeline pattern. However, both operators
can be used before any other pattern inside the Pipeline. With respect to the advanced
patterns, the Windowed-Farm can be composed in its Farm phase in the same way as
for the Farm pattern, since the internal implementation of this advanced pattern is
a Pipeline composed with a Window operator and a Farm. As for the Stream-Iterator
can be only composed with a Pipeline and a Farm. For instance, a Stream-Iterator
composed with a Filter pattern will result on applying multiple times the same filter
over the same item. Similarly, the reduction will result in reducing the same set of el-
ements multiple times. Finally, the Stream-Pool cannot be composed with any other
pattern since this pattern models a particular parallel algorithm that cannot further
compose nor represented by other pattern composition.

Focusing on data-data compositions, as shown in Table 4.1b, constructions whose
outer pattern is Map-like (Map and Stencil) are categorized as Useful-Reducible. This
is because there exists a simpler equivalent using only the outer Map-like pattern.
Regarding the Reduce pattern, it cannot be combined with any other inner one. The
reasons are the same as those for the Reduce pattern in stream-stream compositions.
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TABLE 4.1: Parallel patterns compositions in GRPPI.

(A) Stream-stream compositions.
Inner pattern

Pipeline Farm Filter Reduce

O
ut

er
pa

tt
er

n

Pipeline ✓ (Feasible) ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible)

Farm ✓ (Irreducible) ✓ (Feasible) ✓ (Feasible) ✓ (Feasible)

Filter ✓ (Irreducible) ✓ (Feasible) ✓ (Feasible) ✓ (Feasible)

Reduce ✗ (Infeasible) ✗ (Infeasible) ✗ (Infeasible) ✗ (Infeasible)

Stream-Iterator ✓ (Irreducible) ✓ (Irreducible) ✗ (Infeasible) ✗ (Infeasible)

Windowed-Farm ✓ (Irreducible) ✓ (Feasible) ✓ (Feasible) ✓ (Feasible)

Split-Join ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible)

Inner pattern

Split-Join Window Stream-Iterator Windowed-Farm

O
ut

er
pa

tt
er

n

Pipeline ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible)

Farm ✗ (Infeasible) ✗ (Infeasible) ✓ (Irreducible) ✓ (Feasible)

Filter ✗ (Infeasible) ✗ (Infeasible) ✗ (Infeasible) ✓ (Feasible)

Reduce ✗ (Infeasible) ✗ (Infeasible) ✗ (Infeasible) ✗ (Infeasible)

Stream-Iterator ✗ (Infeasible) ✗ (Infeasible) ✓ (Feasible) ✓ (Irreducible)

Windowed-Farm ✗ (Infeasible) ✗ (Infeasible) ✓ (Feasible) ✓ (Feasible)

Split-Join ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible)

(B) Data-data compositions.
Inner pattern

Map Reduce Stencil MapReduce Divide&Conquer

O
ut

er
pa

tt
er

n Map ✓ (Useful-Reducible) ✓ (Useful-Reducible) ✓ (Useful-Reducible) ✓ (Useful-Reducible) ✓ (Useful-Reducible)

Reduce ✗ (Infeasible) ✗ (Infeasible) ✗ (Infeasible) ✗ (Infeasible) ✗ (Infeasible)

Stencil ✓ (Useful-Reducible) ✓ (Useful-Reducible) ✓ (Useful-Reducible) ✓ (Useful-Reducible) ✓ (Useful-Reducible)

MapReduce ✓ (Feasible) ✓ (Feasible) ✓ (Feasible) ✓ (Feasible) ✓ (Feasible)

Divide&Conquer ✓ (Feasible) ✓ (Feasible) ✓ (Feasible) ✓ (Feasible) ✓ (Feasible)

(C) Stream-data compositions.
Inner pattern

Map Reduce Stencil MapReduce Divide&Conquer

O
ut

er
pa

tt
er

n

Pipeline ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible)

Farm ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible)

Filter ✓ (Feasible) ✓ (Feasible)* ✓ (Feasible) ✓ (Feasible) ✓ (Feasible)*

Reduce ✗ (Infeasible) ✗ (Infeasible) ✗ (Infeasible) ✗ (Infeasible) ✗ (Infeasible)

Stream-Iterator ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible)

Windowed-Farm ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible)

Split-Join ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible) ✓ (Irreducible)



4.6. Evaluation 49

Other compositions whose outer pattern is MapReduce or Divide&Conquer are classi-
fied as Feasible, as they can be implemented in GRPPI although do not bring any
major advantage.

Finally, stream-data compositions are summarized in Table 4.1c. Compositions
whose outer pattern is Pipeline or Farm are denoted as Irreducible. The combination of
two distinct parallel paradigms (stream-data) makes these compositions unique and
precludes them to be simplified any further. As for compositions with an outer Filter
pattern, the output cardinality of its inner pattern dictates whether the composition
is Feasible or Useful-Reducible. This is because the output of the Filter function is a
boolean. For instance, in a Filter-Map composition, the output cardinality of the Map
pattern is equal to the input cardinality. So that, although the predicate of the Fil-
ter pattern can be implemented by transforming the output data set into a boolean,
this case does not reflect a common practice. Therefore, we classify these compo-
sitions only as Feasible. On the other hand, the output cardinality of the Reduce
pattern in a Filter-Reduce composition is a sole element. Thus, the Filter predicate
can be easily implemented by transforming such element into a boolean. For this
reason, we categorize this construct as a special case of Feasible composition. The Fil-
ter-Divide&Conquer combination is also a special case of Feasible composition because
the output cardinality of the Divide&Conquer pattern depends on the algorithm. Fi-
nally, the Reduce pattern is not composable and, hence, classified as Infeasible. With
respect to the stream operators, as stated before, they cannot be composed since they
are not a pattern itself and can be only part of a Pipeline pattern. Focusing on the
advanced patterns, the Stream-Iterator pattern can be composed with data parallel
pattern if its transforming operation matches with such patterns. In these case, the
computation of the inner pattern will be executed until reaching the condition stated
as for the Stream-Iterator predicate. As for the Windowed-Farm, the composition of
this pattern is given by the Farm pattern, so the same possibilities stated for the Farm
also applies to this advanced pattern.

4.6 Evaluation

In this section, we evaluate the proposed parallel pattern interface. First, to evaluate
the basic parallel patterns, we used a video stream-processing application composed
of two filters, the Gaussian Blur and Sobel operators [64, 70]. These filters are applied
to an input video in order to detect edges appearing in the frames2. Specifically,
this application matches the parallel Pipeline pattern, in which the first stage reads
the frames from a video file passed as input; the second and third stages apply the
Gaussian Blur and Sobel filters, respectively; and the last stage dumps the processed
frames to an output video file. Note that both filters use a kernel size of 3×3. Note
as well that, while the Gaussian Blur filter only performs arithmetic operations, the
Sobel operator also performs a square root operation for each frame pixel processed.

To carry out the experimental evaluation of this set of patterns, we first paral-
lelize this video application using GRPPI with the different supported execution
frameworks, i.e. C++ Threads, OpenMP and IntelTBB. Afterwards, we compare
both performance and the number of lines of code required to implement such par-
allel versions with respect to the sequential one. To further experiment with our in-
terface, we implemented different versions of the video application using the execu-
tion frameworks for CPUs and distinct compositions of patterns in its main pipeline.

2This benchmark has been inspired by an OpenCV edge detection example from http://docs.
opencv.org/3.1.0/d3/d63/edge_8cpp-example.html.

http://docs.opencv.org/3.1.0/d3/d63/edge_8cpp-example.html
http://docs.opencv.org/3.1.0/d3/d63/edge_8cpp-example.html
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Specifically, we use the following Pipeline compositions: i) a non-composed Pipeline
(p |p |p |p); ii) a Pipeline composed of a Farm in its second stage (p |f |p |p); iii)
a Pipeline composed of a Farm in its third stage (p |p |f |p); and iv) a Pipeline com-
posed of two Farm patterns in the second and third stages (p |f |f |p).

Next, we also evaluate and compare the performance when using different stream-
stream and stream-data Pipeline compositions and heterogeneous configurations
(CPU+GPU). Since, both Gaussian Blur and Sobel filters applied in a given pixel de-
pends on its neightbours, we use the Stencil as for the data pattern in stream-data
Pipeline compositons. Specifically, we leverage different Pipeline constructions com-
posed of: i) two Farm patterns (p |f |f |p); ii) a Farm and a Stencil in its second
and third stages (p |f |s |p); iii) a Stencil and a Farm in its second and third stages
(p |s |f |p); and iv) two Stencil patterns (p |s |s |p). Note that when using a
Pipeline-Farm composition, each worker thread from the Farm pattern processes indi-
vidual video frames. However, when leveraging a Pipeline-Stencil construction, each
thread in the Stencil pattern is in charge of computing a distinct partition of a single
video frame. Figure 4.5 illustrates some of the compositions used in these studies.

(A) (p |p |p |p). (B) (p |f |f |p).

(C) (p |f |s |p). (D) (p |s |s |p).

FIGURE 4.5: Pipeline compositions of the video application.

Finally, to evaluate both stream operators and advanced parallel patterns from
the usability and performance points of view, we use the following benchmark ap-
plications:

FM-Radio This study case is a signal processing application emulating the soft-
ware of an FM radio and it is employed to evaluate the basic patterns and the
stream operators. To better analyze the behavior of these patterns, we have
implemented five different versions of the FM-Radio application with varying
number of equalizer bands, from 1 to 5.

TSP This benchmark solves the traveling salesman problem (TSP) using a regular evo-
lutionary algorithm and it is intended to analyze the behavior of the Stream-
Pool pattern. Specifically, this NP-problem computes the shortest possible
route among different cities, visiting them only once and returning to the ori-
gin city.
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Sensor This streaming application computes average window values of the read-
ings from an emulated sensor and it is used to evaluate the performance of the
Windowed-Farm pattern.

Image This stream-oriented benchmark reduces the resolution of images appearing
in the input stream and delivers images with concrete resolutions to the output
stream. Basically, this benchmark is used to evaluate the performance of the
Stream-Iterator pattern.

4.6.1 Reference platform

The evaluation has been carried out on a server platform comprised of 2× Intel Xeon
Ivy Bridge E5-2695 v2 with a total of 24 cores running at 2.40 GHz, 30 MB of L3
cache and 128 GB of DDR3 RAM. The OS is a Linux Ubuntu 14.04.2 LTS with the
kernel 3.13.0-57. This platform also incorporates a NVIDIA Tesla K40c with 12 GB
and GeForce GTX680 GPUs with 2 GB of DDR5 RAM. These GPUs are denoted as
GPU0 and GPU1, respectively. The OS is a Linux Ubuntu 14.04.5 LTS with kernel
3.13.0-85.

4.6.2 Analysis of the usability

In this section, we analyze the usability and flexibility of the developed interface.
To analyze these aspects, we first compare the number of lines required to imple-
ment the parallel version of the video application leveraging the interface, with re-
spect to using directly the parallel execution frameworks. Table 4.2 summarizes the
percentage of additional lines introduced into the sequential source code in order
to implement such parallel versions for the above-mentioned pattern compositions.
As shown, implementing more complex compositions via C++ threads or OpenMP
leads to larger source codes, while for Intel TBB the number of required additional
lines remains constant. Focusing on GRPPI, we observe that the effort of paralleliz-
ing an application is almost negligible: even the most complex composition increases
nearly 4.4 % the number of lines of code. This behavior is in contrast to C++ threads
or OpenMP frameworks, which require roughly twice of lines of code. Addition-
ally, switching GRPPI to use a particular execution framework just needs changing
a single argument in the pattern function calls.

TABLE 4.2: Percentage of increase of lines of code w.r.t. the sequential
version for the video application.

Pipeline % of increase of lines of code
composition C++ Threads OpenMP Intel TBB GrPPI

(p |p |p |p) +8.8 % +13.0 % +25.9 % +1.8 %
(p |f |p |p) +59.4 % +62.6 % +25.9 % +3.1 %
(p |p |f |p) +60.0 % +63.9 % +25.9 % +3.1 %
(p |f |f |p) +106.9 % +109.4 % +25.9 % +4.4 %

To gain insights in the usability and flexibility of the stream operators and ad-
vanced patterns, we make use of the Lizard analyzer tool [85] to perform an ad-
ditional analysis based on two well-known metrics: Lines of Code (LOCs) and the
McCabe’s Cyclomatic Complexity Number (CCN) [55]. Basically, we leverage these
metrics to analyze the different stream operator and advanced pattern use case ver-
sions, i.e., with and without using our GRPPI interface. Figure 4.6(a) shows the
LOCs required to implement the parallel versions of the use case algorithms directly
using the execution frameworks and the GRPPI interface. As observed, the TSP,
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Sensor and Image are simple use cases whose sequential versions require about 100
LOCs, while the FM-Radio is a more complex application with roughly 500 LOCs.
Focusing on the simple use cases, we detect that the codes directly parallelized with
the supported frameworks require almost twice the LOCs of the sequential versions,
as none of them intrinsically implement the proposed high-level advanced patterns.
On the contrary, the LOCs using GRPPI are significantly reduced with respect to
the sequential code. Looking at the FM-Radio benchmark, we find out that for C++
threads and OpenMP, the LOCs increase by almost 50 % compared with the sequen-
tial version. This is given by the fact that the synchronization and management
control mechanisms are not natively provided by these frameworks and have to be
implemented by the user. Also, using a higher number of equalizer bands entails an
increase of the LOCs, since each of the bands differs among them and the concur-
rency mechanisms should be explicitly implemented for each of them. Differently,
the high-level Intel TBB and GRPPI abstractions inherently incorporate these mech-
anisms and lead to smaller and more maintainable codes.

Looking at the cyclomatic complexity, detailed in Figure 4.6(b), the CCNs related
to TSP and Image use cases are roughly proportional to their LOCs. Nevertheless,
the Image case does not follow this behavior as the Intel TBB framework requires the
user to explicitly implement the windowing management mechanisms, entailing an
increase in its complexity. Focusing on the FM-Radio with both 2 and 4 equalizer
bands, we also detect that LOCs and CCNs keep approximately the same propor-
tions. Another observation is that both Intel TBB and GRPPI frameworks present
the same CCNs, while other frameworks outperform their CCNs by a factor of four-
fold.
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FIGURE 4.6: Lines of code and cyclomatic complexity of the use cases
w.r.t different programming models.

Finally, we perform a side-by-side comparison between the GRPPI and Intel TBB
interfaces implementing the FM-Radio use case. As shown in Listing 4.7(a), the
GRPPI code follows a comprehensible and readable structure, which clearly shows
the compositions among basic patterns and stream operators. On the contrary, the
Intel TBB code, shown in Listing 4.7(b), is not as structured and easy to read as the
GRPPI implementation. Thus, in order to properly understand the application be-
havior, users need to carefully analyze the data flow graph implicitly declared in the
Intel TBB code. In a nutshell, although both interfaces provide high-level parallel in-
terfaces, we conclude that GRPPI leads to more structured and readable codes, and
thus, improves both usability and maintainability.
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1 using namespace grppi;
2 ...
3 // FM Radio
4 pipeline(e,
5 // Input antenna
6 [&]() -> optional<float> {...},
7 window(count_window<float>(64,4)),
8 // Low-pass filter
9 [&coeff](auto win) {...},

10 window(count_window<float>(2,1)),
11 // FM demodulator
12 [&mGain](auto win) {...},
13 window(count_window<float>(64,1)),
14 // Equalizer (4 bands)
15 split_join(duplicate{},
16 pipeline( // Band equalizer 1
17 // Band-pass filter
18 split_join(duplicate{},
19 // Low-pass filter 1
20 [&coeffs](auto win) {...},
21 // Low-pass filter 2
22 [&coeffs](auto win) {...}
23 ),
24 window(count_window<float>(2,2)),
25 // Subtracter
26 [](auto w) {...},
27 // Amplifier
28 [&eqGain](float win) {...}
29 ),
30 ... // remaining band equalizers
31 ),
32 window(count_window<float>(4,4)),
33 // Bands collapser
34 [](auto win) {...},
35 // To output speaker
36 [&](float f) {...}
37 );

(A) GRPPI implementation.

// FM Radio
struct split1 {void operator()(const buf_t &i,
multi_node::output_ports_type &op) {...}};

struct window1{void operator()(const float &v,
window_node::output_ports_type &op) {...}};

...
// Input antenna node
source_node<float> antenna(g,[&](float &v)
-> bool {...} );

// Window node
window_node wind1(g,serial,window1());
// Window queue node
queue_node<buf_t> win_q(g);
// Split node
multi_node spl1(g,unlimited,split1());
// Split queue node
queue_node<buf_t> queue_band(g);
...
make_edge(antenna,win1); // Window edge
// Window-Queue edge
make_edge(output_port<0>(win1),win_q1);
// Low-pass filter edge
make_edge(win_q1,lowp1);
...
make_edge(output_port<0>(win3), win_q3);
// Band equalizer splitter edge
make_edge(win_q3,spl1);
make_edge(output_port<0>(spl1), band_q);
...
make_edge(sub1,amp1); // Amplifier edge
// Joiner edge
make_edge(amp1,input_port<0>(j1));
...
// Band collapser edge
make_edge(j1,adder);
// Output speaker edge
make_edge(adder,speaker);

(B) Intel TBB implementation.

FIGURE 4.7: GRPPI and Intel TBB implementations of the FM-Radio.

4.6.3 Performance analysis of pattern compositions

Next, we analyze the performance with and without GRPPI using the different exe-
cution frameworks and Pipeline compositions for the video application. Concretely,
we employ the frames per second (FPS) metric to analyze the behavior of the par-
ticular versions using the same input video with diverse resolutions. Also, we set
the Farm stage(s) in all Pipeline compositions to be executed in parallel by 6 threads
for all the execution policies. Figure 4.8 depicts the FPS obtained for the different
compositions in this experiment. A first observation is that the Pipeline combined
with two Farm patterns for the filtering stages, in comparison to the non-composed
Pipeline and compositions with only one Farm, improves substantially the FPS for all
parallel frameworks. It is also remarkable that compositions using only one Farm
do not bring significant improvements since they lead to imbalanced Pipeline stages.
Note that the stage running sequentially dictates the Pipeline performance, as it is
the slowest one. An additional inspection into the plots reveals that the best case
of Pipeline composition, which uses two Farm patterns, both C++11 and OpenMP
deliver similar performance figures, while TBB obtains better FPS for all video res-
olutions. This is due to the ordering algorithm of the output stream is better opti-
mized than those used by the other frameworks and the load balance performed by
the Intel TBB runtime scheduler. Finally, we observe that the usage of GRPPI does
not lead to significant overheads: it is less than 2 %, on average, for all the execution
frameworks and compositions.

4.6.4 Performance analysis of stream vs data patterns

Our next analysis compares the performance of different Pipeline compositions that
combine stream and data parallel patterns. Figure 4.9 shows the FPS obtained for
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FIGURE 4.8: FPS w/ and w/o using GRPPI along with the different
frameworks and Pipeline compositions.

different video resolutions and parallel frameworks using GRPPI in different Pipeline
compositions containing both stream and data patterns, Farm and Stencil, respec-
tively. In this case, both C++ Threads and Intel TBB frameworks deliver similar
performance results for all compositions. A more detailed inspection of these plots
unveils an inflection point where the data-stream compositions start attaining bet-
ter performance. This occurs from 1080p on for C++ Threads and from 1440p on
for TBB. Note as well, the slight difference using only the Stencil for computing the
first or second filter. The reason behind this behavior is the higher computational
load of the Sobel with respect to the Gaussian Blur filter. Regarding the OpenMP
framework, it can be clearly seen that the stream-stream (p |f |f |p) composition
delivers better results than using stream-data constructs. This is mainly because
of the worker threads in the GRPPI-Farm pattern leverage OpenMP tasks that are
active during the whole video processing, while the Stencil implementation creates
and destroys a task each time a video frame is processed. We figured out that the
GCC-OpenMP implementation does not make use of a thread pool and, therefore,
the threads in each Stencil computation are recurrently created and destroyed. Con-
sequently, stream-data compositions in OpenMP suffer from considerable perfor-
mance degradations.
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4.6.5 Performance analysis on heterogeneous configurations

Our last experiment using the video application analyzes the performance of a stream-
data Pipeline composition with different heterogeneous configurations (CPU + GPU).
To do so, we have implemented a prototype execution policy that leverages Cuda
Thrust for implementing some data patterns using the transform and reduce al-
gorithms. Figure 4.10 illustrates the FPS delivered by the Pipeline composed of two
Stencil stages that are mapped in different ways to the devices available on the plat-
form. As a first observation, the mapping configuration that attains the best per-
formance is when using indistinguishably both GPUs for the Stencil stages of the
Pipeline. This performance difference is due to the higher computational capacity of
the GPUs, overtaking the CPUs in terms of the number of cores and SIMD capabil-
ities. Note that, in this specific use case, both arrangements of the GPU0 and GPU1
executing the Gaussian Blur and Sobel filters attain comparable FPS. Our next obser-
vation focuses on the configurations in which, at least, one Stencil stage is mapped to
the CPU cores. In these cases, when the slowest Pipeline stage (i.e. the Sobel opera-
tor) runs on a GPU, the total Pipeline throughput improves, as it contributes to having
more balanced stages. Nevertheless, this advantage only applies to large frame res-
olutions starting from 1080p, where the data transfers overheads (host-device) pays
off the amount of computation performed by the GPUs. On the other hand, if the
Gaussian Blur is mapped to one of the GPUs, the throughput is limited by the Sobel
operator that, executed on the CPU cores, acts as a bottleneck. Also, in this specific
case, host-device data transfers do not pay off the performance improvements with
respect to mapping the Gaussian Blur filter on the CPU cores.
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4.6.6 Performance analysis of the FM-Radio

In this section, we evaluate the presented stream GRPPI operators using the FM-
Radio use case. Figure 4.11 depicts the speedup of the versions of the application
with varying number of equalizer bands and using the available backends. In this
experiment, it is important to consider that the performance attained by the FM-
Radio versions cannot be compared among them, as the applications are intrinsically
different and produce distinct results. With this in mind, we observe that both C++
threads and OpenMP approximately attained the same speedups. However, the
performance obtained by Intel TBB is much lower and, given that the windowing
management techniques are not natively supported by the framework, it is required
to use additional graph nodes to accomplish the same business logic. A final inspec-
tion on the results using Intel TBB reveals that the versions using a higher number
of equalizer bands attain better performance, as the proportion between the number
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of Window operators and the basic patterns is lower. Therefore, overheads related to
the Window operators are counteracted with effective computations performed by
the parallel patterns.

From this experiment, we can conclude that the stream operators composed with
regular patterns greatly aid in developing complex constructs, always at the expense
of evaluating the best execution environment. The best choice for the backend basi-
cally depends on the application nature and the target platform.
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FIGURE 4.11: Speedup of the FM-Radio with varying number of
bands.

4.6.7 Performance analysis of the Stream-Pool pattern

Next, we evaluate the Stream-Pool pattern on a benchmark that solves the TSP prob-
lem using an initial population of 50 individuals representing feasible routes. We
also set the benchmark to perform a total of 200 iterations, each of them making 200
selections. Figure 4.12(a) shows the performance gains when varying the number of
threads, from 2 to 24, and using the three available GRPPI backends, C++ threads,
OpenMP and Intel TBB, with respect to the sequential version. As observed, the
speedup roughly increases at a linear rate when using a higher number of threads
for all frameworks. Concretely, we observe that between 2 and 12 threads, the effi-
ciency is sustained in the range of 75 %–80 %. On the other hand, Intel TBB with 24
threads delivers an efficiency of 80 %, while the same in C++ threads and OpenMP
lead to a slightly decreased efficiency of 70 %. This is mainly due to the better re-
source usage made by the Intel TBB runtime scheduler.

As a complimentary evaluation, we set the number of threads to 24 and vary the
number of cities from 10 and 200. According to the results shown in Figure 4.12(b),
the parallelization overheads using 24 threads does not pay off for small workloads,
i.e., setting only 10 cities as for the problem size. However, when the problem size
grows, the threads perform more effective computations and lead to a better ap-
plication scalability. Also, we observe that above 50 cities the application becomes
memory-bound due to the impact on handling the data structures representing fea-
sible routes. Finally, it is also important to remark that those runtime-based frame-
works (OpenMP and Intel TBB) provide better efficiency compared with the C++
threads execution environment.

4.6.8 Performance analysis of the Windowed-Farm pattern

In this section, we evaluate the performance of the Windowed-Farm pattern using
a synthetic benchmark that computes average window values from a sensor read-
ing samples at 1 kHz. To carry out this evaluation, the following four subsections
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FIGURE 4.12: Stream-Pool speedup varying with varying number of
threads and problem size.

present different scenarios of the Windowed-Farm pattern using the proposed win-
dowing management policies for the Window operator: count-based, delta-based, time-
based and punctuation-based.

Analysis of the count-based windowing policy

As for the Windowed-Farm using the count-based policy, we set the window size to
100 elements with an overlap factor among windows of 90 %. Figure 4.13(a) shows
the speedup when the number of threads increases from 2 to 24. The main obser-
vation is that both C++ threads and OpenMP frameworks scale with the increasing
number of threads and behave similarly, given that the OpenMP runtime sched-
uler does not provide any major advantage over the C++ threads implementation in
this concrete use case. This is because the internal Farm pattern leads, by nature, to
well-balanced workloads among threads. Note that a Farm is comprised of a pool
of threads that constantly poll for items from the input stream and apply the same
operation to them. On the other hand, we also observe an almost linear speedup
scaling for increasing number of threads. This is mainly caused because the Farm

pattern can theoretically scale up to Tf

Ta
, being Tf the computation time of the win-

dow average value and Ta the interarrival time of windows in the input stream. To
demonstrate this strong scaling, we experimentally measured the computation time
of the average function, which was, on average, 220 ms and the interarrival window
time that was 10 ms. Therefore, applying the aforementioned formula, we get 22 as
for the maximum theoretical speedup. In contrast, focusing on the Intel TBB back-
end, we observe that the application stops scaling from 12 threads on. The reason
for this behavior is the same as discussed in Section 4.6.6, i.e., high-level pattern
interfaces provided by Intel TBB do not intrinsically support any kind of window-
ing management policies. Therefore, performance overheads caused by the imple-
mentation of these policies in such an interface are non-negligible compared with
those induced by using low-level frameworks, e.g., C++ threads and OpenMP. Con-
cretely, the time required by the Window operator to generate a window is defined
by (Ti + To) × window_size, where Ti and To are the item interarrival time and the
window management overheads per item, respectively. With this respect, the win-
dowing overheads for Intel TBB are higher than for other frameworks and cause a
general throughput decrease due to the use of such Window operator.

As an additional experiment using count-based policy, we evaluate the behavior
of the same benchmark with varying window sizes and using 24 threads. As can be
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observed in Figure 4.13(b), the speedup decreases for increasing window sizes, as
the number of non-overlapping items among windows also increases. This basically
occurs because the window interarrival time Ta increases, restricting proportionally
the maximum parallelism degree.
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FIGURE 4.13: Windowed-Farm speedup with varying number of
threads and window size using count-based windows.

Analysis of the delta-based windowing policy

Regarding the evaluation of the Windowed-Farm pattern leveraging the delta-based
windowing policy, we set the δ threshold to 1000 and the δ sliding to 150. Con-
sidering that the sensor of this synthetic application does not produce, by nature,
monotonically increasing values, we have slightly modified the input stream to in-
ject tuples containing the sensor reading and the ∆ attribute to the Windowed-Farm
pattern. Specifically, the ∆ attribute equals to the sum of the previous samples. Fig-
ure 4.14(a) depicts the speedup of the different GRPPI backends using a different
number of threads. As observed, the behavior of the delta-based policy is similar to
that observed for count-based. In this sense, the speedups delivered by the respec-
tive C++ threads and OpenMP backends go hand in hand and reach values of 18
and 20, respectively. This is mainly due to the similarities of both count-based and
delta-based policies, where the windowing management overheads are mostly the
same. Again, the lack of the Window operator in Intel TBB, produces notorious per-
formance degradations from 8 threads on.

To extend this analysis, we perform additional experiment fixing the number of
threads to 24 and varying the δ threshold value from 200 to 2000. Furthermore, we
equal the δ sliding to the δ threshold value. Again, both C++ threads and OpenMP
deliver similar speedups, with a decrease for higher δ threshold values. This behav-
ior is produced by the fact that a higher δ value tends to generate a lower number of
windows with more items in each. Having in mind that processing entities compute
at window-level, the concurrency degree at some point might not be fully exploited
if the number of windows available to be processed is lower than the number of
threads. The Intel TBB backend, however, suffers from considerable performance
degradations, as the windows have to be internally handled by our Windowed-Farm
pattern.

Analysis of the time-based windowing policy

For the evaluation of the Windowed-Farm using the time-based policy, we set the win-
dow time to 0.1 s with a sliding value of 0.01 s. In this concrete case, we measure
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FIGURE 4.14: Windowed-Farm speedup with varying number of
threads and window size using delta-based windows.

the number of windows that the application generates with respect to the expected
ones, instead of the regular speedup metric. This is because the performance of
the time-based windowing policy is directly related to the window time and sliding
parameters, which for the same input stream determine the theoretical number of
resulting windows. Any overhead related to the kernel function or to the window
management would make the application to deliver a higher number of windows
(with fewer items per window) and to a general worse behavior. Considering our
use case with a sensor producing 1000 samples/s, a window time of 0.1 s and a win-
dow sliding of 0.01 s, we would expect 100 windows/s with 100 elements per win-
dow. Figure 4.15(a) shows the percentage of the number of windows with respect
to the expected for varying number of threads. As observed, the sequential backend
produces the worst results, as the percentages drawn are close to 1%. Regarding the
C++ threads, OpenMP and Intel TBB we detect as well that the behavior between 2
and 12 threads is far from the expected and ranges from 5% to 17%. This is due to the
inherent congestions caused by the internal communication queues, as the worker
threads are not able to process windows at the same pace that they arrive. Finally,
focusing on the results for these backends using 24 threads, we observe an in im-
proved behavior for the C++ threads, OpenMP and Intel TBB, reaching an efficiency
percentage of about 92%, 52%, and 28%, respectively.

To gain more insights into the behavior of the time-based policy, we perform an
additional experiment in which we fix the number of threads to 24 and vary the win-
dow sliding parameter from 0.02 to 0.2 seconds. As shown, when the sliding time
increases, the behavior of the sequential version improves, as fewer windows per
second have to be delivered. However, the Intel TBB version does not improve much
and stays between 17% and 26%. In contrast, the C++ threads and OpenMP back-
ends deliver much better accuracy figures, around 92%, when the window sliding
time increases. The reason for that is the overheads related to window management
are almost negligible and affect, to a lesser extent, the production of windows in due
time.

Analysis of the punctuation-based windowing policy

Finally, we evaluate the Windowed-Farm using the punctuation-based policy setting
the delimiter value to 0. Specifically, we modified the sensor to randomly generate
the value 0 with a probability of 0.01. Figure 4.16 shows the speedup attained by the
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FIGURE 4.15: Windowed-Farm speedup with varying number of
threads and window size using time-based windows.

benchmark when varying the number of threads from 2 to 24. Similar to the count-
based and delta-based analyses, the speedups of both C++ threads and OpenMP using
the punctuation-based windowing policy proportionally scales with the number of
threads. This occurs because the delimiter value is generated enough for producing
sufficient windows and feeding the worker entities. Conversely, Intel TBB has to
deal with the same drawbacks detected during the evaluation of the previous poli-
cies, thus limiting the global speedup scaling beyond 8 threads.
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FIGURE 4.16: Windowed-Farm speedup with varying number of
threads using punctuation-based windows

In a nutshell, the different windowing policies presented for the Windowed-
Farm, allows users to model a wide range of scenarios that can appear in Data
Stream Processing applications. However, the user needs to be aware of the ad-
vantages and drawbacks inherent to each policy and GRPPI backend.

4.6.9 Performance analysis of the Stream-Iterator pattern

Finally, we analyze the performance of the GRPPI Stream-Iterator pattern using the
above-mentioned benchmark, in charge of processing square images and halving
their sizes on each iteration until reaching concrete resolutions. Specifically, the size
of the input images is fixed to 8,192 pixels, and the output images, for each input,
have sizes of 128, 512 and 1,024. Figure 4.17(a) illustrates the benchmark speedup
when varying the number of threads from 2 to 24 for the different GRPPI backends.
In this case, when the number of threads ranges between 2 and 12, the efficiency
attained is roughly 75 %, while for 24 this is degraded to 48 % for all programming
frameworks. This effect is mainly caused by the fact that each of the threads involved
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in the Farm pattern, used in the Stream-Iterator, are simultaneously accessing to dif-
ferent input images. Therefore, these memory accesses become a bottleneck due to
constant cache misses when the threads perform the computation of the task func-
tion of the pattern. In general, these results suggest a memory bandwidth limitation
in this particular benchmark.
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FIGURE 4.17: Stream-Iterator speedup with varying number of
threads and image size.

To gain insights into the performance degradation detected in the previous anal-
ysis, we perform an additional experiment in which we set the number of threads
to 24 and vary the input image sizes from 2,048 to 16,384. Figure 4.17(b) depicts the
performance gains for the different execution frameworks when varying the image
size in the preceding range. Again, we observe a slight speedup decrease for increas-
ing image sizes, which confirms our prior impressions. As an example, if we assume
22 worker threads in the internal Farm pattern, individually processing images with
a resolution of 2,048×2,048 pixels (represented with matrices of integers), these re-
quire about 352 MiB of memory. Therefore, not fitting in any of the available cache
levels and leading to an increased L2/L3 cache miss rate when they are simultane-
ously accessed. All in all, this issue is mainly due to the inherent memory-bound
nature of this specific use case.

In a nutshell, in the light of the evaluation performed in these sections, we can
conclude that GRPPI greatly aid developers to design and implement parallel appli-
cations. Thanks to its unified and generic interface, GRPPI reduces the efforts and
the required knowledge and expertise on parallel programming without incurring
significant overheads. Additionally, its capability of composing parallel patterns al-
lows arranging complex constructions able to represent a wider range of algorithms
in parallel applications.

4.7 Summary

In this chapter, we have proposed a generic and reusable parallel pattern interface
that acts as a switch between existing frameworks. This way, developers can ben-
efit from this interface to diminish the required efforts to select the most suitable
framework and to migrate parallel code from one framework to another. Thanks
to this interface in conjunction with the parallel pattern analyzer tool ease trans-
forming sequential code into parallel code. However, the transformation is still a
time-consuming task that should be made manually by the developers. Addition-
ally, optimize and tune the resulting parallel applications for the target platform
requires additional efforts. In the following chapter, we propose a framework that
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is able to transform the annotated parallel patterns by the PPAT tool into optimized
GRPPI parallel pattern calls.
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Chapter 5

Automated Patern-based
Refactoring

As shown in previous chapters, we provide a generic parallel pattern interface and
a tool, able to find parallel candidates in sequential source codes. However, at this
point, transforming the annotated code into parallel is manually performed by the
developers. Furthermore, the detection may lead to unbalanced patterns that require
being optimized to better exploit the available resources. In this Chapter, we de-
scribe the Parallel Pattern Refactoring Framework, namely PPRF, that, using PPAT
and GRPPI, is able to generate optimized parallel codes. Basically, this framework
detects Pipeline and Farm candidates in sequential C++ codes using PPAT, balances
and optimizes the pipelines found and generates parallel code using the GRPPI pat-
tern interface.

5.1 Parallel Pattern Refactoring Tool

As mentioned, this tool leverages PPAT to identify parallel patterns and GRPPI as
a target interface for the transformed code. Figure 5.1 shows the general workflow
of this framework. In general, this framework takes the sequential code and uses
PPAT in order to detect parallel pipelines and farms and the resulting annotated
code feds the refactoring module. This module extracts the sequential code from
the annotated regions and generates GRPPI code with some instrumentation. After-
ward, the information collected during the execution is used to evaluate the current
parallelization on the target platform and iteratively improve Pipeline load-balance.
Finally, after the whole optimization process is finished, the framework generates
the GRPPI code using the obtained pattern configuration. Specifically, this frame-
work performs the following steps:

FIGURE 5.1: Workflow of the Parallel Pattern Refactoring Frame-
work.
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Pattern detection and instrumentation. During the first stage, the Parallel Pattern
Analyzer Tool (PPAT) receives the sequential C++ code to be analyzed. Inter-
nally, PPAT detects code constructions that match with any of the supported
patterns (Pipeline and Farm). Afterward, the new refactoring module intro-
duces the GRPPI pattern interfaces accordingly on those constructions. Addi-
tionally, it instruments the Pipeline stages for measuring their execution time.

Pipeline balancing and optimization. In this phase, the application is run to col-
lect average execution times of the Pipeline stages. Using this execution time
data, we feed our Pipeline Balancing Algorithm (PIBA) for generating its op-
timal configuration. This algorithm merges and replicates the Pipeline stages
according to the available CPU cores. Additionally, PIBA is able to determine
the optimal concurrency degree by refining the Pipeline arrangement iteratively
until finding the configuration that delivers an optimal performance. Note that
this framework uses profiling techniques to measure Pipeline stage execution
time; therefore, the input data used during the profiling phase should be rep-
resentative enough to perform the optimizations.

Parallel code generation. Finally, the refactoring module receives the Pipeline con-
figuration and generates the parallel code version using the GRPPI interface.
Specifically, the refactoring module is rerun to generate the final Pipeline ar-
rangement according to the configuration determined by PIBA in the previous
step.

Listings 5.1-5.3 depicts a worked example of the aforementioned PPRF steps.
Listing 5.1 shows an excerpt of sequential code containing potential parallel pat-
terns. Once PPAT has been executed and parallel patterns have been found, the
original code is transformed using the GRPPI interface and instrumented for mea-
suring the execution time of the detected Pipeline stages (see Listing 5.2). Note that
this instrumentation is provided internally by the GRPPI execution policy. With the
Pipeline profile data, PIBA is able to determine the best configuration, merging the
first and second Pipeline stages and using 2 threads for executing the third stage us-
ing a Farm construction. Finally, Listing 5.3 illustrates the transformed code taking
into account the Pipeline arrangement stated by PIBA in the previous step. Thanks to
this framework, a sequential code matching with a Pipeline pattern can be automati-
cally transformed into parallel and optimized for the target platform.

5.2 Pipeline Stage Balancing Algorithm

In this section, we describe in detail the Pipeline Balancing Algorithm, namely PIBA,
as part of the PPRF framework. Particularly, this algorithm tries to compute the
optimal, or near optimal, arrangement of the Pipeline stages to optimize the use of
all the available resources, i.e., CPU cores, for the target application.

We make first the following assumptions about the Pipeline construction. Con-
sider a Pipeline P as the following list of stages

P = (λ1, λ2, . . . , λn),

where the i-th stage λi is the tuple (γi, ti, ri), being γi the function kind (pure or
impure), ti the execution time, and ri the number of replicas or worker entities that
execute the stage. Note that if the function related to a stage λi is pure, it can be
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LISTING 5.1:
Sequential code.

while( (i+=1) < MAX ){

auto it = doStuff(i);

it = doStuff(it);

it = pureFunction(it);

cout << it << endl;

}

LISTING 5.2:
Instrumented code.

sequential_execution seq_exec{};
seq_exec.enable_instrumentation();
grppi::pipeline(seq_exec,
[&]() -> optional<int> {
return ( (i+=1) < MAX ) ? i : {};

},
[](int it){ return doStuff(it); },
[](int it){ return doStuff(it); },
grppi::farm(1,
[](int it){ return pureFunction(it); }
),
[&](int it){ cout << it << endl; }

);

LISTING 5.3: Optimized parallel code.

// GrPPI parallel pipeline + farm
// pipeline with 1 thread per stage
grppi::pipeline(parallel_execution_native{},
[&]() -> optional<int> {
return ( (i+=1) < MAX ) ? i : {};

}, // Fusioned stages 1+2
[](int it){ it = doStuff(it);

return doStuff(it); },
grppi::farm(2,
[](int it){ return pureFunction(it); }
),
[&](int it){ cout << it << endl; }

);

executed in parallel by multiple replicas using a Farm pattern. Otherwise, if the
function is impure, it can only be executed in series by one replica.

We next define the stage service time as the division of its execution time between
the number of its assigned replicas (see Equation 5.1). We also define the pipeline
service time as the maximum service time of its stages (see Equation 5.2). Note that
the service time is the inverse of the throughput, i.e., units of time per processed item.

STλi
=

ti
ri

(5.1)

STP = max(STλ1 , STλ2 , . . . , STλn) (5.2)

Therefore, the goal of the PIBA algorithm is to find the Pipeline equivalent to the
original one with the minimum service time using all the available CPU cores for the
target application. For that, PIBA receives two input parameters: the Pipeline profile
containing the execution time related to its stages, and the number of available CPU
cores. Next, it leverages the following two techniques to find the optimal, or near
optimal, Pipeline stage arrangement:

• Stage replication : this technique increases the parallelism degree of those stages
that follow the Farm pattern. Basically, given the definition of the Farm pattern,
the parallelism degree of a Farm stage can be increased by introducing a new
concurrent entity, i.e., ri = ri + 1. With this, the stage throughput is improved.

• Stage merging : this technique merges two consecutive stages in order to re-
duce the total number of stages. However, this leads to an increased execu-
tion time of the resulting merged stage that is the sum of both stage execution
time.It is important to remark that if the stages are pure functions, the new
merged stage is also pure and can be executed in parallel. Since this strategy
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is intended to free resources to be used in the slowest stage or to use as many
threads as cores, the number of replicas if both merged stages are pure will be
the sum of both stages replicas minus one. This way, at least, the number of
cores used in the pipeline will be one less than the previous pipeline arrange-
ment. In any other case, i.e. if one of the merged stages is impure, the resulting
stage is also impure and the number of replicas will be only one since it cannot
be replicated. This technique is detailed in Algorithm 1.

Algorithm 1: Stage merging technique.

Function mergeStages(stageA, stageB, mergedStage)
if stageA.kind = Pure & stageB.kind = Pure then

mergedStage.kind← Pure
mergedStage.time← stageA.time+ stageB.time
mergedStage.replicas←

stageA.replicas+ stageB.replicas− 1

else
mergedStage.kind← Impure
mergedStage.time← stageA.time+ stageB.time
mergedStage.replicas← 1

end

Using these techniques, in the following sections we present the three different
alternatives implementing the PIBA algorithm using i) brute-force search; ii) heuris-
tic search; and iii) an hybrid solution combining i and ii.

5.2.1 The brute-force search

Regarding the first alternative, we present the naive version of the PIBA algorithm
based on brute-force search. As can be seen in Algorithm 2, this procedure uses the
aforementioned stage merging technique (genMerges function) in order to com-
pute all possible merging combinations for different number of stages, i.e., from 2
to the minimum between the number of cores and the number of stages. Then, for
each of these combinations, the function genReplicas leverages the stage replica-
tion technique to calculate all feasible replications of the Farm stages. It is important
to remark that these replications are made until the number of replicas equals the
cores. Finally, the algorithm returns the Pipeline configuration with the minimum
service time.

However, generating all possible merging combinations of stages and replicas
has a non-negligible computational cost of Ω(n3) and O(cn) for the best and worst
cases, respectively. In this case, n stands for the combination of the number of stages
and threads, while c represents a constant. Precisely, the best case corresponds with
a full sequential Pipeline, as the function generateReplicas is not used. On the
contrary, the worst case is related to a Pipeline whose stages are all Farm construc-
tions.

5.2.2 The heuristic approach

As noted in the previous section, the computational cost of the brute-force search
is prohibitive, therefore it is necessary to design an heuristic so as to provide a so-
lution within a reasonable time frame. Algorithm 3 presents the heuristic search
of PIBA. This is implemented as an iterative procedure, where the pipeline ser-
vice time is improved in each step. First, the heuristic calculates: i) the slowest
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Algorithm 2: PiBa brute-force

Function PiBaBruteForce(
pipeline[], // Stages of the pipeline
numCores) // Number of cores

for i← 2 to min(numCores, pipeline[].numStages) do
// Generate all the possible combinations with i stages
pipeMerged[]← genMerges(pipeline[], i)
for j← 0 to numCores− i do

// Generate all the possible pipelines with j replicas
pipeCombs[]← genReplicas(pipeMerged[], j)

end
end
pipeline[]← minServiceTimePipeline(pipeCombs[])

sequential and Farm stages (getMaxSeqStage and getMaxFarmStage, respec-
tively); and ii) the merged stage of two consecutive stages with the minimum service
time (mergeConsecutiveStages and getMinStage), using the stage merging
technique. Note that the function mergeConsecutiveStages considers all pos-
sible mergings among consecutive Pipeline stages on a given iteration. Afterwards,
depending on the current Pipeline state, the heuristic performs iteratively one of the
subsequent actions in the following order:

A1 If there are Farm stages and the total number of current replicas is less than
the number of cores, the Farm stage with the maximum service time is granted
with an additional replica.. Note that the purpose of this action is to use all
available CPU cores for the target application, though in extreme cases the
Pipeline throughput improvement might be marginal.

A2 If the total number of replicas is greater than the number of cores, the merge
of two consecutive stages with the minimum service time is incorporated in the
resulting Pipeline.

A3 If the slowest stage is a Farm and it is slower than the merge of two consecu-
tive stages with the minimum service time, the algorithm adds a replica to the
slowest Farm stage and incorporates the merged stage in the resulting Pipeline.

A4 If none of the previous conditions are met, the procedure finishes, as it cannot
reduce the Pipeline service time anymore.

To illustrate the workings of the PIBA heuristic, Table 5.1 shows an example of
Pipeline that is steadily improved using this procedure. We start from a Pipeline com-
prised of three sequential and three Farm stages which are intended to run on four
cores. Note that si(ti, ri) stands for sequential stages and fi(ti, ri) for Farm stages, ex-
ecuted by ri replicas. In the first iteration, the PIBA heuristic performs the action A2,
since the total number of replicas is greater than the number of cores. Hence, f5 and
s6 are merged into the single stage s5,6. In the second iteration, action A2 is taken
again so as to merge s4 and s5,6 in s4,5,6. In the third iteration, actions A1 and A2
are discarded, given that the number of replicas is equal to the number of cores.
Therefore, since the slowest stage corresponds to a Farm and its service time is greater
(t3 = 7) than the fastest merged stage (t2,3 = 12/2 = 6), action A3 merges f2 and
f3. Finally, as the Pipeline service time cannot be reduced anymore and the Pipeline
replicas equal to the number of cores, the procedure finishes its execution.
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Algorithm 3: PIBA heuristic

Function pibaHeuristic(
pipeline[], // Stages of the pipeline
numThreads) // Number of threads

Function getServiceTime(stage)
return getTime(stage)/getReplicas(stage)

while true do
maxFarm← getMaxFarmStage(pipeline[])
maxSeq← getMaxSeqStage(pipeline[])
sumPipe[]← mergeConsecutiveStages(pipeline[])
minMerge← getMinStage(sumPipe[])
if countFarms(pipeline[]) > 0 & countReplicas(pipeline[]) < numThreads

then
maxFarm.replicas← maxFarm.replicas+ 1

else if countReplicas(pipeline[]) > numThreads then
applyMerging(pipeline[],minMerge)

else if countFarms(pipeline[]) > 0
& getServiceTime(maxFarm) > getServiceTime(maxSeq)
& getServiceTime(maxFarm) >

getServiceTime(minMerge) then
maxFarm.replicas← maxFarm.replicas+ 1
applyMerging(pipeline[],minMerge)

else
break

end
end

Analyzing the computational cost of the PIBA heuristic shown in Algorithm 3,
we determine its complexity as Θ(n2) for all cases.

TABLE 5.1: PIBA working example.

It. Pipeline Max. Stage Replicas Min. Merge Action

1 (s1(3, 1), f2(5, 1), f3(7, 1), s4(2, 1), f5(1, 1), s6(1, 1)) f3(7, 1) 6 (f5 + s6) → s5,6(2, 1) A2
2 (s1(3, 1), f2(5, 1), f3(7, 1), s4(2, 1), s5,6(2, 1)) f3(7, 1) 5 (s4 + s5,6) → s4,5,6(4, 1) A2
3 (s1(3, 1), f2(5, 1), f3(7, 1), s4,5,6(4, 1)) f3(7, 1) 4 (f2 + f3) → f2,3(12, 2) A3
4 (s1(3, 1), f2,3(12, 2), s4,5,6(4, 1)) f2,3(12, 2) 4 (s1 + f2,3)(15, 1) A4

5.2.3 The hybrid approach

The hybrid approach combines the benefits from both brute-force and heuristic search
approaches. This variant leverages the heuristic search presented in Algorithm 3, re-
ducing the number of replicas until reaching the total number of available cores.
From that point on, it continues improving the Pipeline service time using the brute-
force search, as presented in Algorithm 2. Thereby, it reduces the computational
best-case cost of the brute-force algorithm to Ω(n2), providing more accurate service
time optimizations than the single heuristic search approach. However, the worst-
case cost is still O(cn), as the brute-force search.

5.2.4 Finding the optimal concurrency degree

According to the previous section, the PIBA algorithm transforms the Pipeline stages
arrangement to have the same number of replicas as CPU cores used by the target
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application. This algorithm also balances, as much as possible, the stages work-
load. However, in real scenarios, the resulting Pipelines cannot be perfectly balanced
in most of the cases. These situations cause bottlenecks due to imbalanced stages,
which leads to underused resources (cores). A way to improve the resource usage,
and thus the Pipeline performance, is to increase the number of replicas (threads)
above the total number of cores. Hence, the additional threads can leverage the par-
tially idle resources, overlapping threads contention with useful computation. In
this context, we refer to oversubscription when an application uses more threads
than available CPU cores and relies on the OS scheduler to keep them all busy.

To motivate this issue, we have implemented a synthetic benchmark consisting
of two Pipeline collections, using CPU- and memory-intensive stages, respectively.
These collections were comprised of 1,500 randomly-generated Pipelines constituted
by a number of stages ranging from 4 to 12 and the percentage of Farm stages varying
between 30 % and 90 %. Afterward, these Pipelines were processed using the PIBA

algorithm to adjust the number of stages/replicas in the range of 4 to 24 threads.
Next, we executed these Pipelines on an 8-core platform to find out their optimal
concurrency degree. Figure 5.2 shows the performance attained by six representa-
tive CPU-/memory-intensive Pipelines for different number of threads.1 Note that
the lines extending vertically from the points represent the confidence intervals as
a variability metric over 10 Pipeline runs. As can be observed, all Pipelines (P1–P6)
improve their speedup up to the number of cores. Nevertheless, while some of them
stop improving after this point, others continue boosting their performance beyond
that. These results confirm our previous impressions where a concurrency degree
higher than the total number of cores may improve the Pipeline performance in some
cases.
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FIGURE 5.2: Analysis of the maximum concurrency degree using rep-
resentative pipelines.

Iterative search

A naive search approach to obtain the optimal concurrency degree is to execute mul-
tiple times the PIBA algorithm for a different number of final replicas (instead of
using the number of cores) and check which Pipeline arrangement delivers the best
performance. However, this method is very time-consuming as the framework has
to execute each time all feasible Pipeline combinations.

1Note that the CPU-intensive stages were mimicked by means of performing an arbitrary number of
floating-point operations, while the memory-intensive compute was emulated accessing consecutively
to 2 million elements in a floating-point array.
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To optimize this naive search approach, we rely on the benchmark results that
show, in many cases, strictly increasing speedup curves followed by monotonic de-
creasing ones. Note that this occurs in more than 90 % of the synthetic Pipelines.
With this assertion, we can refine the previous approach with an iterative variant
that applies PIBA to optimize the Pipeline configurations using a different number of
threads, starting from the number of cores until the performance stops improving.
Note that, to deal with the inherent variability of oversubscribed scenarios, we ex-
ecute each configuration multiple times to calculate averaged reliable values. With
the averaged speedups in hand, this iterative search algorithm checks, in each itera-
tion, if the speedup of a configuration B using n + 1 threads is higher than A using
only n threads. If this is true, it checks for the next configuration using one more
thread. This search stops when the configuration B using n + 1 threads delivers
worse or equal performance than A using n threads.

To illustrate the workings of this iterative search, Figure 5.3(a) depicts the case
of the Pipeline P2 using CPU-intensive stages from Figure 5.2. In this scenario, the
approach starts iterating from 8 cores on until the 4th iteration, given that in each
step the configuration using n + 1 threads delivers higher speedups than using n
threads. On the 5th iteration, i.e., with 12 threads, the performance stops improving.
Then, the algorithm determines 11 threads as for the optimal concurrency degree.
As a result, the Pipeline is oversubscribed with 3 threads, which overlap contention
of the first 8 with useful computations.
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FIGURE 5.3: Automatic approaches for finding the optimal concur-
rency degree of PIBA balanced Pipelines.

Greedy iterative search

The iterative search approach reduces the Pipeline configurations that have to be
tested using a trial and error method. However, this variant can be very slow when
the optimal concurrency degree is far ahead of the number of cores. To improve this
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algorithm, we propose a technique to obtain an estimation of the ideal degree. We
start from the fact that the Pipelines are not perfectly balanced, and therefore, avail-
able resources are underused due to their inherent congestion. With this assertion,
we estimate the Pipeline resource usage rate with

usage_rate =
eff_usage
real_usage

=
n_items ·

∑n_stages
i=0 ti

n_cores · exec_time
, (5.3)

where eff_usage and real_usage are estimations of the effective and real usage of
the platform resources, respectively. In the equation, the effective usage is computed
as the sequential execution time of the Pipeline stages multiplied by the number of
items processed in a given test. Alternatively, the real usage is calculated as the
execution time of the previous test multiplied by the total computational resources
(cores). Using this technique, we propose a heuristic that pursues a greedy iterative
approach and estimates in advance the ideal concurrency degree, instead of testing
all configurations. This procedure, shown in Algorithm 4, iteratively applies the
PIBA heuristic of Algorithm 3 with a number of threads that depends on the usage
rate. This number is calculated on-the-fly dividing the current threads by the usage
rate obtained with Equation 5.3 and rounding the result up. The procedure stops
iterating when the usage rate using additional threads does not improve any more.

Algorithm 4: PIBA heuristic with oversubscription.

Function pibaOversubs(
pipeline[], // Stages of the pipeline
numCores, // Number of cores
numItems) // Number of items

pibaPipeline[]← pipeline[]
pibaHeuristic(pibaPipeline[], numCores)
execTimeCur[]← exec(pipeline[], numItems)
numThreads← numCores
repeat

usageRate← usageRate(pipeline[], numItems, numCores, execTimeCur[])
execTimeOld[]← execTimeCur[]
numThreads← ceil(numThreads / usageRate)
pibaHeuristic(pibaPipeline[], numThreads)
execTimeCur[]← exec(pipeline[], numItems)

until stopCondition(execTimeOld[], execTimeCur[])

To demonstrate the benefits of this algorithm over the iterative version, Fig-
ure 5.3(b) shows the steps taken for the same Pipeline P2. As can be seen, three
steps are required to find an optimal concurrency degree. In the first iteration (using
8 threads), the resource usage rate is roughly 69 %; thus the algorithm determines
that 3 additional threads are required. With it, during the second iteration (using 11
threads), the usage rate increases to 82.5 %. Hence, the algorithm determines that
13 threads are needed to exploit idle resources. After the execution with 13 threads,
the procedure stops, as it detects that the usage rate does not improve. In this case,
the optimal concurrency degree determined by the greedy iterative search is 11, i.e.,
coming to the same conclusion as the iterative algorithm but with fewer iterations.
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5.3 Evaluation

In this section, we evaluate the pattern-based refactoring tool and the proposed bal-
ancing PIBA algorithms. To do so, we used the following benchmarks:

PIPE-BENCH: A benchmark collection of 1,500 randomly-generated Pipelines, as
described in Section 5.2.4, with a number of stages ranging between 4 and
12. These Pipelines were combined with both sequential and parallel stages,
where the degree of the parallel (Farm) stages varied between 30 % and 90 %.
To generate the Pipelines source codes we used a Python script to emit the
Pipeline and Farm GRPPI patterns leveraging the C++ back end. It is important
to remark that the workload type for the stages were CPU-bound computa-
tions by means of performing double-precision operations.

VIDEO-BENCH: A sequential video stream-processing synthetic benchmark com-
posed of two types of filters (Gaussian Blur and Sobel operators) in order to
detect edges appearing in the video frames.2 Specifically, the application core
works in a Pipeline fashion, in which the first and last stages read and write
the video frames, respectively. Consequently, the intermediate stages apply
the aforementioned filters in different ways. Regarding the workload type, the
Gaussian Blur filter only performs arithmetic operations, while the Sobel op-
erator also executes square root operations, both using double-precision num-
bers.

LANE-DETECTION: A real-world computer vision application for detecting road
lane lines in autonomous driving systems. This application is composed of a
Pipeline in charge of processing individual video frames using a series of filter
algorithms, such as the Canny edge detector and the Hough transform [88].
This application is vital to steer vehicles, as lanes represent a constant refer-
ence to the road. Indeed, identifying lane lines on the road is one of the most
fundamental vision tasks required by autonomous cruise controls, lane change
assist, lane centering, etc.

The evaluation methodology of this section consists of the following parts. First,
we analyze the presented Pipeline balancing algorithms and compare their time-to-
solution and the execution time of the Pipelines in PIPE-BENCH using the PPRF
framework. Next, we evaluate the different strategies to find the optimal concur-
rency degree in terms of speedup gains, number of steps taken and accuracy. After-
ward, we test PPRF with VIDEO-BENCH, in order to transform the sequential code
into parallel and evaluate different configurations of the PIBA algorithm and GRPPI
back ends. Additionally, we complement the study using VIDEO-BENCH with a fine-
grained analysis of different Pipeline configurations via execution traces. Finally, we
employ LANE-DETECTION to demonstrate the benefits of PPRF in a real-world ap-
plication.

5.3.1 Reference platform

The evaluation has been carried out on a server platform equipped with 2× Intel
Xeon Ivy Bridge E5-2630 v3 with a total of 16 cores running at 2.40 GHz, 20 MB of L3
cache and 256 GB of DDR3 RAM. The OS is a Linux Ubuntu 14.04.5 LTS with kernel
3.13.0-85.

2This benchmark has been inspired by an OpenCV edge detection example from http://docs.
opencv.org/3.1.0/d3/d63/edge_8cpp-example.html.

http://docs.opencv.org/3.1.0/d3/d63/edge_8cpp-example.html
http://docs.opencv.org/3.1.0/d3/d63/edge_8cpp-example.html
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5.3.2 Analysis of the Pipeline stage balancing algorithm

To evaluate the different versions of the PIBA algorithm, we leverage the collection
of 1,500 synthetic Pipelines of PIPE-BENCH. Afterward, we balanced its Pipelines
using the three variants of PIBA, i.e. brute-force, heuristic and hybrid searches and
configured them to run on platforms having from 2 to 16 cores. Figure 5.4 depicts
the averaged time-to-solution of the three PIBA variants for the different number of
Pipeline stages and cores. As observed, the execution time of PIBA algorithms in-
creases in general with the number of stages and cores. However, the growth rate of
the brute-force is extremely large than that for the heuristic version, which confirms
the exponential algorithm complexity stated in Section 5.2.1. A final observation is
that the time-to-solution of the hybrid version is equal to the brute-force search for a
number of stages lower or equal than the number of cores. Therefore, in those cases,
the brute-force alternative is preferred one.
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FIGURE 5.4: Time-to-solution of the basic PIBA algorithms.

Our next study analyzes the execution times of the same collection of Pipelines
after balancing them using the three different PIBA versions. To emulate platforms
with a different number of cores, we leveraged the Linux utility taskset for re-
stricting the cores that can be used by the Pipeline threads.3 As can be observed
in Figure 5.5, the Pipelines processed using the heuristic and hybrid PIBA variants
attain a similar performance in all cases. On the contrary, the brute-force search pro-
vides better speedup only when the number of cores is much lower than the stage
count. Note that the observed speedup slowdown of the Pipelines balanced with
PIBA is caused by the fact that the presented algorithms use as many threads as
available cores. In contrast, the unbalanced Pipelines, always use at least as many
threads as stages, leading to oversubscribed scenarios and, in some cases, to higher
speedups with respect to the balanced Pipelines.

All in all, it can be concluded that the PIBA heuristic variant can provide accept-
able well-balanced Pipelines in reasonable time frames, while the brute-force and
hybrid searches are able to provide slightly better stage arrangements at the expense
of prolonged time-to-solutions in the worst cases. Therefore, in the subsequent ex-
periments of this paper, we select the heuristic variant as the default balancing PIBA

algorithm.

5.3.3 Analysis of the optimal concurrency degree search algorithms

In this section, we analyze the extended PIBA algorithms proposed for finding the
optimal concurrency degree with the basic PIBA variant. First, we compare the basic
procedure with the two new strategies, the iterative and greedy iterative searches,
able to obtain the ideal number of threads above the total number of cores. Next, we

3The taskset utility is used to set or retrieve the CPU affinity of a running process in Linux.
http://linuxcommand.org/man_pages/taskset1.html

http://linuxcommand.org/man_pages/taskset1.html
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FIGURE 5.5: Speedup of the of Pipelines in PIPE-BENCH balanced
with the basic PIBA algorithm variants.

examine the performance of the Pipelines in PIPE-BENCH on oversubscribed scenar-
ios.

Figure 5.6 compares these algorithms regarding i) speedup, with respect to the
sequential execution of the Pipeline; ii) the number of iterations needed until find-
ing the optimal concurrency degree; and iii) the accuracy rate with regard to the
best solution obtained with the brute-force approach. Note that these metrics were
averaged over the 1,500 Pipelines comprised by the tested benchmark and using
only eight cores. Focusing on the speedup results, it can be clearly seen that the ex-
tended PIBA algorithms for oversubscription are able to deliver better performance
figures than using only the basic PIBA variant. This is mainly because the inherent
threads contention is overlapped with useful computations of the exceeding threads.
A detailed inspection of the executions revealed that this contention was caused
by the threads suspended on an internal blocking queue when no items could be
(de)queued.
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FIGURE 5.6: Comparative of the speedup, number of iterations and
accuracy of the basic PIBA w.r.t the extended versions for finding the

optimal concurrency degree.

Looking at the number of iterations taken by both PIBA algorithms including
the oversubscription strategies, we observe that the iterative search requires more
iterations with respect to the greedy approach. It is remarkable that this difference
increases with the number of Pipeline stages since these Pipelines usually deliver bet-
ter performance when employing oversubscribed threads. Finally, focusing on the
accuracy, we notice that Pipelines comprising several stages attain lower accuracy
than using only the basic PIBA algorithm. This is given by the fact the PIBA heuris-
tic working alone does not always lead to optimal Pipeline arrangements when they
contain many stages. For instance, from 10 stages on, the known error might be
higher than 5 %. In contrast, with the extended PIBA algorithms, the accuracy is
sustained regardless of the number of Pipeline stages. This demonstrates that the
inherent flaws of the PIBA heuristic algorithm can be bypassed by increasing the
concurrency degree using the extended PIBA algorithms.
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In the light of the results, while both extended PIBA versions deliver similar
performance figures, the iterative search requires more iterations than the greedy
approach. Therefore, the experiments carried out hereafter are only performed using
the greedy iterative search for finding the optimal concurrency degree.
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FIGURE 5.7: Speedup of the of Pipelines in PIPE-BENCH balanced
with the extended PIBA algorithms for oversubscribed scenarios.

As a complementary study, Figure 5.7 analyzes the speedups attained by the
Pipelines in PIPE-BENCH with a different number of cores when i) PIBA is not ap-
plied; ii) the basic PIBA algorithm is used; and iii) the extended PIBA algorithm
along with the iterative greedy search are leveraged. As observed, when the num-
ber of stages is higher than the total cores, the fact of not balancing the Pipelines
leads to oversubscribed scenarios, providing better performance than if the basic
PIBA algorithm shortens the Pipelines. On the other hand, if the available cores are
greater than the number of Pipeline stages, the balanced versions exploit better the
resources. Looking at the results of the extended PIBA algorithm, the speedups are
always higher or equal to the best case. The reason is that the oversubscribed threads
in these Pipelines can effectively overlap the potential bottlenecks generated by the
basic PIBA algorithm.

5.3.4 Evaluation with VIDEO-BENCH, a video streaming application

To evaluate the PPRF framework along with the Pipeline balancing algorithms in a
real-world scenario, we leverage VIDEO-BENCH, a video stream-processing applica-
tion able to detect edges appearing on the incoming frames. First, we feed the PPAT
module with the sequential code in order to obtain an annotated version of the code
with the potential parallel patterns detected. It is important to remark that, in this
case, the main parallel pattern detected is a Pipeline where some of its stages, cor-
responding with the image filtering operations, are potential Farms. Next, we use
the PPRF refactoring module to generate the parallel version of the code using the
C++ threads and the Intel TBB GRPPI backends. Finally, we leverage the basic and
extended PIBA algorithms to improve the performance of VIDEO-BENCH.

Given that both filters Gaussian Blur and Sobel are pure functions by nature,
we have slightly modified VIDEO-BENCH in order to include impure versions of
these filters. This way, the Pipeline stages can be detected as sequential or potential
Farms, depending on the filter version encountered. Thus, for the subsequent ex-
periments, we have developed three different versions of the VIDEO-BENCHPipeline,
composed by 10 intermediate filtering operations, using both pure and impure ver-
sions. The Pipeline stages of these three VIDEO-BENCH variants have been arranged
in the following way: i) fully sequential (s|s|s|s|s|s|s|s|s|s|s|s); ii) com-
bined (s|f|f|s|f|f|f|s|f|f|s|s); and iii) fully parallel (s|f|f|f|f|f|f|f|f|f|f|s).
As a mere example of the steps taken by PPRF, Listing 5.4 shows the combined
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Pipeline variant of the VIDEO-BENCH original code. Next, Listing 5.5 shows the re-
sult after executing PPAT and generating the instrumented code. Finally, Listing 5.6
shows an optimized version of the VIDEO-BENCH parallel code according to the ar-
rangement proposed by PIBA using the profile execution data.

• fully sequential (s|s|s|s|s|s|s|s|s|s|s|s).
• combined (s|f|f|s|f|f|f|s|f|f|s|s).
• fully parallel (s|f|f|f|f|f|f|f|f|f|f|s).

As a mere example of the steps taken by PPRF, Listing 5.4 shows the combined
Pipeline variant of the VIDEO-BENCH original code. Next, Listing 5.5 shows the result
after executing PPAT and generating the instrumented code. Finally, Listing 5.6
shows an optimized version of the VIDEO-BENCH parallel code according to the
arrangement proposed by PIBA using the profile execution data obtained with the
previously instrumented code.

LISTING 5.4:
Sequential code.

for (;;) {
Mat fr;

if (!cap.read(fr)) break;

Gaussian_pure(fr, ... );

Sobel_pure(fr, ... );

Gaussian_impure(fr, ... );
...
Sobel_pure(fr, ... );

Gaussian_pure(fr, ... );

Sobel_impure(fr, ... );

imshow("edges",fr);
}

LISTING 5.5:
Instrumented parallel code.

sequential_execution seq_exeq;
seq_exec.enable_instrumentation();
grppi::pipeline(seq_exec,
[]() -> optional<Mat> {
Mat fr;
if (!cap.read(fr)) return {};
else return fr;

},
grppi::farm(seq_exec,
[](Mat fr) {
Gaussian_pure(fr, ... );
return fr;

}
),
...
[](Mat fr) {
Sobel_impure(fr, ... );
return fr;

},
[](Mat fr) { imshow("edges",fr); }

}

LISTING 5.6: Optimized
parallel code.

grppi::pipeline(parallel_execution_thr{},
[]() -> optional<Mat> {
Mat fr;
if (!cap.read(fr)) return {};
else { Gaussian_pure(fr, ... );

return fr; }
},
grppi::farm(parallel_execution_thr{2},
[](Mat fr) {
Sobel_pure(fr, ... );
return fr;

}
),
...
[](Mat fr) {
Gaussian_pure(fr, ... );
Sobel_impure(fr, ... );
return fr;

},
[](Mat fr) { imshow("edges",fr); }

}

Performance evaluation

Given the foregoing, in this section, we assess the proposed basic and extended PIBA

algorithms using the three variants of the VIDEO-BENCH Pipeline. These experiments
have been run on 6, 12 and 24 cores using the C++ threads and Intel TBB GRPPI
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back ends. Figure 5.8 depicts the frames per second delivered by each of the VIDEO-
BENCH versions. Focusing on the fully sequential Pipeline (left-hand side plot), we
observe that the fact that all stages are sequential prevents PIBA from replicating
stages, and thus, the impact of the potential bottlenecks cannot be reduced. There-
fore, the performance either using any of the PIBA algorithms or not is limited by
the slowest stage.

Looking at the Pipeline comprised of sequential and parallel Farm stages (cen-
ter and right-hand side plots), we notice a completely different behavior. Our first
observation is that using the basic PIBA algorithm and C++ threads back end, the
application can benefit from the stage merging and replication techniques. Basically,
when two stages executed by individual threads are merged, a resource (core) be-
comes available and can be exploited by an additional replica (thread) in the slowest
Farm stage. The PIBA benefits are more pronounced when increasing the number of
cores compared with the non-balanced Pipelines. On the other hand, the results with
the extended PIBA algorithm even outperform the throughput delivered by those
processed with the basic PIBA version. Note that the percentages above the bars in-
dicate the oversubscription degrees calculated by the greedy search approach. These
improvements are achieved by using more threads than available cores. Therefore
additional replicas can accelerate Pipeline bottlenecks by overlapping contention of
the fastest stages with useful computations.

On the contrary, setting TBB as the GRPPI back end, the use of the basic PIBA

algorithm negatively affects the performance, as TBB does not allow to establish the
number of replicas in Pipeline stages. Indeed, TBB uses an entirely different approach
for executing stages: it leverages task-parallelism with a pool of worker threads that
continuously poll for work from a ready task queue [61]. Therefore, for each item in
the Pipeline, a new task is created and picked by a worker thread as soon as its de-
pendencies have been resolved. In this sense, the fact that PIBA uses stage merging
leads to longer but fewer Pipeline stages and results in larger congestion. In some
cases, we observe that using 24 cores, extended PIBA with the C++ threads GRPPI
back end attains better performance results than using TBB. All in all, we can con-
clude that the extended PIBA algorithm is the recommended option when using the
C++ threads GRPPI back end, while for TBB the recommended solution is not to
balance the Pipelines.
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backends and the basic and extended PIBA algorithms.
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Fine-grain analysis

In this section, we complement the study with a fine-grained inspection of differ-
ent Pipeline configurations to analyze their internal behavior. This study has been
carried out using the C++ threads GRPPI back end instrumented with the Extrae
library [25] to obtain execution traces. Afterward, the traces are visualized using
the Paraver tool [69]. We only focus on the combined Pipeline comprising both se-
quential and parallel stages and using 12 cores. Figure 5.9 depicts a task trace and
the number of simultaneously active threads during the execution of VIDEO-BENCH

without having used any of the PIBA algorithms. Similarly, the left-hand side plot
in Figure 5.11 represents the time percentage spent by the threads for the different
states. Note that the colors in the trace and plot represent three different states: i)
in-stage stands for the effective computation of the stages; and ii) enqueue and dequeue
represent blocking states due to communications between stages via queues. As can
be seen, the stages 1, 5 and 8 correspond to the slowest stages (bottlenecks), which
dictate the total execution time. Also, the number of simultaneously active threads is
always lower than 6, i.e., half of the available cores. Correspondingly, only half of the
threads are simultaneously performing useful computations during the execution.
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FIGURE 5.9: Task trace and number of active threads during the exe-
cution of the application without PIBA.

With the previous results, it can be observed that if the Pipeline were balanced,
the resources could be better exploited, and thus, the execution time could also be
improved. Given that, we make use of the basic PIBA algorithm to provide a better-
balanced stage arrangement. As shown in Figure 5.10, the VIDEO-BENCHPipeline
processed by the basic PIBA algorithm generates a trace where the stages (threads)
show much lower contention times. This is by the fact that the workload among
stages is better balanced than if PIBA is not applied. Focusing on the right-hand
side plot in Figure 5.11, we observe that PIBA has assigned additional replicas to
those bottlenecks detected in the previous experiment (stages 1, 5 and 8). We also
observe that the simultaneous active threads are, in the beginning, close to 12. As
the execution progresses, and as soon as the stages complete processing the items,
the number of active threads slightly decays until the end. In this case, thanks to the
basic PIBA algorithm the execution time has been reduced by a factor of 30 %.

Focusing again on the trace in Figure 5.10, it can be seen that some of the re-
sources are underused. This reveals an opportunity to further improve the VIDEO-
BENCH execution time. In consequence, we leverage the extended PIBA algorithm
to exploit better available resources. Figure 5.12 depicts the execution task trace
where the ideal concurrency degree was 253 %, i.e., 31 threads running on 12 cores,
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FIGURE 5.10: Task trace and number of active threads during the ex-
ecution of the application with the basic PIBA algorithm.
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FIGURE 5.11: State time percentage per thread/stage of the VIDEO-
BENCHPipeline w/o and w/ the basic PIBA algorithm.

according to the results in Figure 5.8. A first inspection of the resulting trace reveals
a higher contention ratio due to queue communications. However, as the contention
is shared among the fastest stages, it allows exceeding threads to exploit resources
freed by such contentions (see Figure 5.13). On the other hand, the active threads are
mostly sustained above 12 during the entire execution. Note that having more active
threads than available cores results in suspended threads waiting for CPU time. In
the end, the extended PIBA algorithm leads to better performance than using only
the basic variant. In this concrete case, the execution time has been reduced by a
factor of 60 % with respect to the non-balanced Pipeline.
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ecution of the application with the extended PIBA algorithm.
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FIGURE 5.13: State time percentage per thread/stage of the VIDEO-
BENCHPipeline using the extended PIBA algorithm.

5.3.5 Evaluation of LANE-DETECTION

In this section, we evaluate the proposed PPRF framework using a sequential real-
world computer vision application able to detect road lane lines in autonomous driv-
ing systems. This stream-processing application processes individual video frames
using a series of filter algorithms, such as the Canny edge detector and the Hough
transform [88]. Figure 5.14 depicts the application workflow through an 11-staged
Pipeline, where the first and last stages are processed in series, and the intermediate
ones can be executed in parallel using the Farm pattern.

FIGURE 5.14: LANE-DETECTION application workflow.

In a first step, we use PPRF to introduce parallel patterns in the application
source code. In this case, the PPAT module detects a Pipeline with the following
structure (s|f|f|f|f|f|f|f|f|f|s), i.e., where all intermediate stages can pro-
cess individual video frames in parallel. Afterward, we employ the refactoring mod-
ule along with both basic and extended PIBA algorithms to evaluate the applica-
tion performance using the C++ threads, and the Intel TBB GRPPI back ends. Fig-
ure 5.15 shows the speedup obtained by LANE-DETECTION when using both back
ends and PIBA versions running on 6, 12 and 24 cores. As can be seen for the C++
back end, the efficiency obtained when no PIBA algorithm is on average is 22 %,
while for TBB is roughly 80 %. These contrasting results are given due to the dif-
ferent nature of both GRPPI back ends: C++ threads back end maps Pipeline stages
onto threads, while TBB handles the processing of a stage on a given item as a task
which is executed by one of the worker threads in its internal scheduler pool. On
the other hand, when the basic PIBA algorithm is leveraged to balance the appli-
cation Pipeline, the speedup obtained by the C++ threads back end is much closer
to that delivered by TBB. Although the PIBA helped in balancing the Pipeline, there
remain bottleneck stages which cause congestions in the faster ones. This fact leads
the C++ threads back end to slightly reduced speedups compared to TBB. Finally, al-
though the extended PIBA algorithm does not avoid these bottlenecks, the exceeding
threads help in overlapping the contention with useful computations. Specifically,
the C++ threads back end achieves comparable performance figures with respect to
the TBB back end. Further, in some cases (e.g., 24 cores), the oversubscription used
by the extended PIBA algorithm can even outperform the TBB performance.
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FIGURE 5.15: Speedup obtained by LANE-DETECTION using C++
threads and Intel TBB GRPPI back ends and the basic and extended

PIBA algorithms.

In general, throughout this study, we conclude that the extended PIBA algorithm
is a more suitable option for balancing Pipelines, as it takes advantage of the inherent
contention that this pattern may cause. The benefits of this algorithm can be sum-
marized as follows. Firstly, the extended PIBA includes by design the basic variant,
and thus, when the optimal Pipeline arrangement requires less or equal replicas than
the number of cores, both approaches arrive at the same solution. Secondly, in some
cases, a concurrency degree higher than the total cores might be the preferred option.
However, this framework is based on profiling for tuning the parallel source code
and, therefore, the input data used for the profiling should be representative enough
to correctly tune the application. Otherwise, running the application with real input
data might not provide the best performance. Additionally, if the application has an
irregular workload, depending on the profiling input data, the algorithm may not
find the optimal pipeline arrangement.

5.4 Summary

In this chapter, we have proposed a framework that is able to transform the sequen-
tial source code into parallel by leveraging the proposed parallel pattern detection
tool and the pattern interface. Additionally, this framework is able to rearrange and
tune the pattern constructions in order to better exploit the available resources in
the target platform. However, as stated in Chapter 2, some algorithms available
in several libraries are already parallelized and optimized. Nonetheless, this situa-
tion arises a new challenge to select the most suitable alternative depending on the
target architecture and problem size. In the following chapter, we propose a novel
mechanism to select the most suitable implementation for a given problem based on
previous performance information.
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Chapter 6

Automatic implementation
selection techniques

So far, we have discussed that programming for parallel and heterogeneous plat-
forms are notoriously difficult since there are many different frameworks and pro-
gramming interfaces. This situation has led to different implementations of the same
algorithm targeted and optimized to different devices, and thus, delivering different
performance depending on the platform used. When dealing with these algorithms,
the use of highly tuned implementations available in specific libraries is a better
option than implementing and parallelizing the code from scratch. In these cases,
those implementations usually outperform ad-hoc implementations since they are
fully optimized for concrete platforms. This situation reveals a new challenge: to
select the most suitable device and routine implementation to solve a given prob-
lem. Usually, in order to improve performance, developers need to analyze a priori
the target platform and the application, along with its implementation alternatives
and available libraries. To achieve this goal, some aspects need to be considered.
For instance, some libraries exhibit better behavior than others for a given problem
size [78]. Also, devices can have different features (such as the number of cores, pro-
cessor frequency or memory size), and thus, they may influence, or even restrict, the
use of a specific library routine.

An approach to cope with this problem is to manually select the algorithm im-
plementation and map the execution onto the underlying parallel device based on
past knowledge. Nevertheless, this procedure becomes complex when dealing with
multiple architectures and libraries. A common technique is to define a set of con-
straints in order to guide a runtime scheduler to select the most suitable implemen-
tation. This technique, however, has non-negligible performance overheads, since it
is necessary to check such constraints each time a routine is called. An alternative
to the aforementioned technique is to shift the decision-making task directly at com-
pile time. Several proposals leveraging this approach and based on analytic models,
machine learning and adaptive optimization methods can be found in the litera-
ture [18]. However, these works present two major drawbacks: i) they are strongly
tied to the target platform, and ii) they are limited to a concrete set of devices. Given
the foregoing, we present a way to express semantic constraints pursuing a more
generic approach and targeting heterogeneous platforms.

Specifically, in this chapter, we present an adaptive and offline implementation
selector that leverages a profile-guided approach and is able to decide the tuple
device-implementation that delivers the best performance. To do so, we have devel-
oped two novel features part of the standard C++ language, concepts and attributes,
as for the end-user interfaces of the implementation selector. Additionally, we have
also implemented two different selection techniques: a full compile-time selection
and a hybrid static-dynamic selection.
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6.1 Compiletime Implementation Selection

This section describes the proposed hybrid static-dynamic implementation selection
framework. This framework provides an interface based on C++ attributes with the
objective of generating source-code decision trees with the most suitable combina-
tions of processor-implementation. Particularly, this framework has been designed
as a feedback system, i.e., data collected during an execution influences the next
ones. The main goal of the framework is to improve the selection task in each com-
pilation. Depending on the constraints used in the attribute-annotated user codes,
the selector can work using a full-static or a hybrid static-dynamic approach. On the
one hand, the full-static mode replaces the annotated interfaces by a single imple-
mentation at compile time. This mode is useful when the user already knows the
problem size. On the other hand, the hybrid static-dynamic mode of the selector
generates if-else decision trees at compile time, which are processed by the user
application at run-time. In the following sections, we introduce the mathematical
foundations of the selection algorithm and describe in more detail the modules of
the selection framework.

6.1.1 Formal definition of the selection algorithm

In order to proceed further with our rationale for selecting the implementation deliv-
ering the best performance, we formally describe the theoretical basis of the selection
algorithm used in our framework. Consider V a set of available versions of a same
routine, s the problem size, and ti(s) the execution time of the version i using the
problem size s. With this, the equation

Bestpoint(V, s) = A ⇔ A ∈ V ∧ ∀i ∈ V : tA(s) ≤ ti(s) (6.1)

determines that the implementation A has an execution time lower than any other
version in V for a certain problem size s. Similarly, the equation

Bestrange(V, [sb, se]) = A ⇔ ∀i ∈ V :

∫ se

sb

tA(x) dx ≤
∫ se

sb

ti(x) dx (6.2)

states that the version A has the smallest area under its function tA(x) in the range
of sizes [sb, se]. Therefore, A is the implementation providing the lowest run time
when it is executed multiple times on different problem sizes within the range.

With the equations 6.1 and 6.2, it is possible to obtain the best implementation in
V for a fixed size and a range of sizes only if the execution times for any problem size
are known in advance. In other words, if the functions ti(x) are defined accurately
in all its domain. However, in a real scenario, this is not the case. To deal with this
issue, we approximate the domain of ti(x) as the union of problem sizes intervals in
the set E, i.e.,

E =
{
[s0, s1), [s1, s2), ..., [sn−1, sn)

}
⇔ Domain(ti(x)) =

⋃
I∈E

I.

Note that the intervals in E are defined by the problem sizes whose execution time
is known in a given point in time, e.g., if the values of ti(sa) and ti(sb) are known,
the interval [sa, sb) would be part of E. Furthermore, we approximate the function
ti(x) with the set of functions

{τ Ii (x) = mx+ c : ∀I ∈ E} (6.3)
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being τ Ii (x) a linear function between the endpoints of the interval I in E. With these
definitions, we reformulate the function Bestpoint in Eq. 6.1 as

Best′point(V, s) = A ⇔ ∀i ∈ V, ∃I ∈ E : s ∈ I ∧ τ IA(s) ≤ τ Ii (s) (6.4)

for determining approximately which version provides the best performance with
the current knowledge. In this case, A is the version whose function τ IA(s), defined
in the interval I where s belongs, has the lowest value than any other version in V .
Likewise, we also define an estimation of Bestrange in Eq. 6.2 as

Best′range(V, [sb, se]) = A ⇔ ∀i ∈ V : area(A, [sb, se]) ≤ area(i, [sb, se]) (6.5)

where the area under its function tA(x) is approximated with

area(A, [sb, se]) =

∫ IBe

sb

τ I
B

A (x) dx+
∑
r∈R

∫ re

rb

τ rA(x) dx+

∫ se

IEb

τ I
E

A (x) dx

: ∃sb ∈ IB ∈ E ∧ ∃se ∈ IE ∈ E ∧ ∃R ∈ E ⇔ ∀r ∈ R, r ∈ (sb, se).

Basically, this formula estimates the area of the version A in the interval [sb, se] by
adding the areas under their τ IA(x) defined for each interval I contained in the range.
Note that the areas of the intervals containing the endpoints of [sb, se] are only par-
tially included.

6.1.2 Description of the framework

In this section we describe in detail the proposed selection framework (see Fig. 6.1)
that using problem size information is able to select the most adequate routine im-
plementation. Basically, this framework performs the following steps in order to
determine which is the implementation providing the slowest execution time.

First, the hardware information module extracts the platform information and
stores it into a file (HPP.json). In the next step, the users should provide the an-
notated header files with the different implementations available for each interface.
In the same way, the user annotates application function calls, candidates to be ana-
lyzed and replaced by our framework. With this information, the selector analyzes
the function calls annotated in the user source code and replaces them by the most
suitable implementation in the header files. Furthermore, the framework instru-
ments these function calls to measure their execution time. Finally, after the appli-
cation run, the framework stores the performance profiles of the instrumented func-
tions into a file (PERF.json). Basically, this file contains, for each implementation
and problem size, the average run time and the total number of samples collected.
This allows recalculation the averages run times in an incremental way, i.e., each
time a new sample arrives. This file is later used to make selections using a profile-
guided optimization approach.

Next, we describe the attributes of the framework used for annotating function
calls and declarations.

Header attributes. As mentioned, our selection framework requires the user inter-
vention to declare a set of constraints for each interface and routine implementation.
These restrictions specify which implementations are associated with each different
function interface and the target device. These requirements, in form of attributes
under the rph namespace, are the following:
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FIGURE 6.1: The hybrid static-dynamic implementation workflow.

• rph::implements: This attribute specifies that the code under the attribute
is an alternate implementation of a given interface. Basically, it receives, as
the sole parameter, the function name to let the selector know which imple-
mentations are available for that interface. Consider, for instance, the gen-
eral matrix-matrix multiplication (dgemm). In this case, the attribute contains
the generic function name of the dgemm, although the routines actually imple-
menting this algorithm might have different names. Note, as well, that all the
implementation alternatives for an interface should specify the same name in
rph::implements.

• rph::device: This attribute bounds a given implementation to a specific tar-
get device. Supported parameter values for this attribute are: CPU, GPU, PHI
(for the Intel Xeon Phi co-processor), etc. [74].

Function call attributes. In this stage, the user is responsible for annotating func-
tion calls that are candidates to be analyzed by the selector in the user application
code. This set of C++ attributes is the following:

• rph::interface: This attribute indicates that the annotated function call is
an interface, and should be replaced by the framework with an actual imple-
mentation during the selection process.

• rph::target: It determines the preferred target device to execute the an-
notated function call(e.g., rph::target(CPU)). Valid arguments for this at-
tribute are those that are accepted by the rph::device attribute.

In order to specify static problem constraints and to enable the hybrid static-
dynamic mode in an annotated function call, the user should employ one of these
options:

• rph::size: This attribute is used when the user already knows the prob-
lem size during the function call. This attribute receives the problem size as a
single parameter. This attribute makes the selector work using the full-static
approach, as stated before.

• rph::minsize and rph::maxsize: Alternatively, when the user is not able
to specify the problem size, rph::minsize and rph::maxsize can be used
to establish both lower and upper bounds of the problem size. Similar to the
rph::size attribute, these attributes enable the full-static selection approach.
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• rph::dynamic: If this attribute is set, the selector replaces the function inter-
face by a decision tree in the source code, implemented using if-else state-
ments. Therefore, the application will be able to select, at run-time, the most
suitable implementation. The conditions in the if-else statements are evalu-
ated using the problem size, obtained at run-time, and the intersection values
where an implementation delivers better performance than other. Addition-
ally, this attribute receives an expression producing an integer which obtains
the problem size in the application context.

It is important to remark that function calls annotated by the user should match
those provided in the corresponding header files.

6.1.3 The profile-guided selection algorithm

This section describes the internal workings of the selector, as the core module of
the framework. Basically, this module analyzes function calls annotated with the
rph::interface attribute. Then, it starts a selection process that replaces inter-
faces by actual implementations (using the full-static mode) or by decision trees (us-
ing the hybrid mode) complying with the restrictions stated by the user according to
available implementations and processors. For that, the selector leverages a profile-
guided optimization approach that takes advantage of the information gathered in
the performance profile information (introduced in Section 6.1.2). Note that the en-
tire selector has been implemented using the Clang 3.8.0 compiler API that is used to
analyze C++ attributes [54]. Specifically, the selector module performs the following
steps:

1. The selector analyzes the annotated header files and the implementations pro-
vided by each function interface used in the application code.

2. It checks for annotated functions in the application user code using the at-
tribute rph::interface. Simultaneously, it examines whether the user has
marked the interfaces with the attribute rph::target or not, i.e., to use a
preferred target processor. In this case, the selector considers only the imple-
mentations for such interface that can be executed on the processor specified
by the user. Other implementations are automatically discarded. If there are no
implementations that can run on the preferred processor, regarding the knowl-
edge about the platform, as specified in the platform description specification,
the implementation delivering the best performance on any available proces-
sor is taken instead.

3. If the function interface has been annotated either with the rph::size or
rph::minsize and rph::maxsize, the selector performs a static decision
to determine which implementation, among the candidate ones, offers the best
performance. Otherwise, if the rph::dynamic attribute has been used, the
module will calculate the intersection values where an implementation deliv-
ers better performance than other. Next, it will generate an if-else decision
tree, which is processed by the user application at run-time in order to decide
which implementation should be executed. All decisions are made according
to the performance profile information.

The full-static selection mode. The full-static selection mode implemented is en-
tirely based on the problem size and boundaries specified by the user. Depending
on the attributes used, the algorithm proceeds as follows.
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• If the attribute size is set, the selector takes the implementation offering the
minimum execution time according to the function Best′point in Eq. 6.4. For this
purpose, the selector performs a linear interpolation for the requested problem
size for all implementations available in such a function interface, in case it is
not present in the performance file. (Note that to smooth extreme performance
values stored in PERF.json, the selector only considers average execution
times entries that have been computed with, at least, three samples.) Other-
wise, if multiple implementations deliver the same minimum performance,
the selector randomly picks one of them. However, this random policy can
be eventually replaced by another that takes into account the lower maximum
performance in order to avoid extreme behaviors. Consider the scenario in
Fig. 6.2(a) that shows the behavior of a given function interface offering three
different implementations. For instance, if the user sets the size attribute to
35, the selector will consider func2, while if the problem size is fixed to 80, the
framework will randomly select func1 or func2.

• Otherwise, if the developer has used both minsize and maxsize attributes
to determine a range of possible problem sizes, the selector computes the area
under the performance curve (or integral) for the available implementations
using the function Best′range in Eq. 6.5. With it, the framework selects the im-
plementation that has the smallest area in the range. As shown in Fig. 6.2(b), if
the user selects a range between 25 and 50 as minimum and maximum problem
sizes, the selector module will compute the integrals for the three implementa-
tions available. Afterward, it will compare the areas below the curves and take
that having the smallest one, i.e., func2. Note that if there are no performance
values in the boundaries of the range, the values that intersect the boundaries
are computed via linear interpolation. As in the previous option using the
size attribute, if there are two or more implementations whose area value is
equal, the selector will pick one randomly. Also, only average execution times
entries with, at least, three samples are considered.

The hybrid selection mode. This mode generates, at compile time, a decision tree
that is based on the performance data collected from previous executions. This tree
is generated when the dynamic attribute is set with the following algorithm.

First, the selector calculates the intersection points among all the functions esti-
mating the execution time, as defined in Eq. 6.3, for the available implementations.
Following the aforementioned scenario, Fig. 6.2(c) shows the problem size intervals
and the intersection points highlighted with circles. Next, for every two consec-
utive intersections, the best version for the interval is obtained using the function
Best′range in Eq. 6.5. Fig. 6.2(d) shows the different intersection intervals with their
minimum areas denoting the fastest implementation in the range. (Note that the in-
tervals 2 and 3 are merged together in the end, as the best implementation for both
is the same.) With this, the selector is able to generate a tree whose decision nodes
correspond to the boundaries of all the obtained intervals and the leafs represent the
implementations. Therefore, the function responsible for computing the problem
size in the application context allows to walk the tree until reaching a leaf node.

It is important to highlight that, at present, the current version of the selector
only considers the problem size to select the fastest implementation. In the future,
we plan to extend the set of user C++ attributes to allow users to specify other kinds
of constraints, such as memory usage or energy consumption.
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FIGURE 6.2: Example of the behavior of an hypothetical function in-
terface func offering three different implementations (func1, func2
and func3). Note the cutoffs for problem sizes 30 and 80 between the

implementations 1–2 and 2–3, respectively.

6.1.4 Working example

In this section, we illustrate the workings of the framework. Listing 6.1 shows a
header file with the attributes set by the users for the function interface func.

LISTING 6.1: Annotated header file.

namespace ns1 { //Implementation 1
[[rph::implements("func"), rph::device(CPU)]]
void func1(...);

}
namespace ns2 { //Implementation 2
[[rph::implements("func"), rph::device(CPU)]]
void func2(...);

}
//Implementation 3
[[rph::implements("func"), rph::device(GPU)]]
void func3(...);

In the same way, Listing 6.2 contains an example of user code with different
attribute-annotated functions matching the interface func defined in the previous
header file. As shown in the header file, three different implementations are interfac-
ing function func. In their attributes, the user has defined some restrictions. For ex-
ample, implementation 3 requires a GPU. Looking at the application code, the user
has invoked four times this function using different attribute parameters. Finally,
the selector processes and replaces these function calls with the implementations
selected for each case. Listing 6.3 shows the code generated by the framework.
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LISTING 6.2: Annotated user code.

#include <header.hpp>
int main(){
//function call 1
[[rph::interface,rph::minsize(25),rph::maxsize(50)]]
func(...);
//function call 2
[[rph::interface,rph::size(20)]]
func(...);
//function call 3
[[rph::interface,rph::size(50),rph::target(GPU)]]
func(...);
//function call 4
[[rph::interface,rph::dynamic(density_func(...))]]
func(...);
return 0;

}

As observed, the first call has been replaced by ns2::func2 as it is the most suit-
able implementation for the attribute parameters given by the user. To make this de-
cision, the selector computes the area for the range given and selects the implemen-
tation having the smallest value. Next, the second call is replaced by ns1::func1
because it has the smallest minimum size for problem size 20. The third call has been
substituted by func3, as the user specified, via target, the GPU as the preferred
device, and any other implementation targeted to CPUs has been discarded. Finally,
the fourth call has been replaced by the corresponding decision tree, as it was anno-
tated with the dynamic attribute. Thus, depending on the expression density_-
func(...) provided by the user through the dynamic attribute and evaluated at
runtime, different implementations are executed.

LISTING 6.3: Processed user code.

#include <header.h>
int main(){
//function call 1
ns2::func2(...);
//function call 2
ns1::func1(...);
//function call 3
func3(...);
//function call 4
auto rph_dens = density_func(...);
if ( rph_dens < 30 ) func3(...);
else if ( rph_dens >= 30 && rph_dens < 80 )

ns2::func2(...);
else ns1::func1(...);
return 0;

}

6.2 Evaluation

In this section, we evaluate the presented implementation selector framework along
using two use cases: the general matrix-matrix multiplication (GEMM) and a real
medical application that computes a spherical deconvolution algorithm of diffusion
MRI data (HARDI) of human brains [31, 30]. First, we perform an evaluation of
the accuracy and convergence of the selector algorithm of the framework using the
GEMM case. Next, we demonstrate how a real use case (HARDI) can benefit from our
framework. Finally, we compare our framework with the runtime-based versioning
scheduler from the OmpSs programming model.
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6.2.1 Reference platform

We evaluate the GEMM and HARDI use cases using the reference machine, namely
ARCH1, and another machine, namely ARCH2, respectively. The ARCH1 machine
is comprised of of 2× Intel Xeon Ivy Bridge E5-2695 v2 with a total of 24 cores run-
ning at 2.40 GHz, 30 MB of L3 cache and 128 GB of DDR3 RAM. Additionally, this
platform also incorporates with two AMD Radeon GPUs, R9 290X (AMD1) and R9
285 series (AMD2), and an Intel Xeon Phi 3120 co-processor (MIC). The ARCH2 ma-
chine is comprised of two multi-core Intel Xeon E5-2630 v3 processor with a total of
8 physical cores running at 2.40 GHz, equipped with 128 GB of RAM. This machine
also has with an NVidia Tesla K40 and a GTX 680 under CUDA version 7.5.

In both platforms, the OS used is Linux Ubuntu 14.04 x64 and the compiler em-
ployed is GCC 5.1 with the flag -O3 set.

6.2.2 Analysis with the GEMM use case

In this section, we analyze the dgemm kernel performance and the selector accu-
racy using the implementations from the clBLAS [15] and GSL [28] libraries on the
ARCH1 machine. Fig. 6.3 plots the execution times using square matrix sizes rang-
ing from 4 to 4,096 and double-precision numbers. As observed, depending on the
problem size, a kernel implementation delivers better performance than others. For
instance, using the size range 4–504, the GSL version is the preferred option, while
for the ranges 504–1,990 and 1,990–4,096, the clBLAS implementation running re-
spectively on XEON and AMD1 are the optimal alternatives. Thus, it becomes essen-
tial to select the best implementation depending on the matrix input size, in our case
using the automatic approach presented in this thesis.
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FIGURE 6.3: Execution time of the dgemm kernel for different square
matrix sizes and implementations.

Additionally, we evaluate the selector accuracy and the dgemm kernel perfor-
mance rates by increasing the number of training iterations, using the attribute size,
minsize-maxsize, and dynamic, indistinguishably. Note that the performance
rates were obtained dividing the execution time of the fastest between the selected
implementation. For each of these iterations, we train the system running an in-
stance of the dgemm kernel using matrices of random size. Afterward, we evaluate
the knowledge gained by the selector performing 100 runs of the same kernel also
with random sizes. In Fig. 6.4(a), we show the accuracy progress when using the
static, i.e. using fixed and range of sizes attributes, and the dynamic modes. As can
be seen, these percentages increase in a smooth curve until reaching, after 300 train-
ing iterations, roughly 97 % of the total accuracy. This behavior is mainly because
the selector has already gained enough knowledge about the performance delivered
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by the different implementations. Looking at the performance in Fig 6.4(b), using
both static and dynamic-related attributes, the performance rates after 300 iterations
reach almost 100 %. Therefore, all selections made from that point on will provide a
good performance. An interesting remark is that the drops on the accuracy appear-
ing during the first training iterations are not proportionally reflected in the perfor-
mance progress. This is because a wrong selection has different consequences on
the performance, and thus, depending on the implementation chosen and problem
size, it might cause a lower or a higher decrease in the performance rate. In gen-
eral, we find out that both static and dynamic modes provide a similar performance
gain. Nevertheless, there are differences between these modes: using the static ap-
proach the applications have to be recompiled whenever the problem size changes,
while in the dynamic mode the applications are able to adapt themselves without
recompiling them.
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FIGURE 6.4: Progress of the accuracy of the selector and dgemm per-
formance through training iterations.

6.2.3 Analysis with the HARDI use case

We leverage the HARDI use case, responsible for executing the Robust and Unbi-
ased Model-Based Spherical Deconvolution (RUMBA-SD) method, to demonstrate
the benefits of our framework. This algorithm is, up to date, one of the most ad-
vanced algorithms for detecting crossing fibers in white matter [14]. For our ex-
periments, we use the parallel RUMBA-SD method part of HARDI. We execute this
parallel algorithm using different linear algebra implementations on the multi-core
CPU (via Intel MKL) and the GPUs (via ArrayFire) of ARCH2 with single-precision
floating-point numbers.

Regarding the HARDI input data, we use a real diffusion MRI dataset acquired
from the healthy subject. Specifically, the whole-brain HARDI data was acquired in a
3T Philips Achieva scanner with an 8-channel head coil along 100 different gradient
directions on the sphere in q-space with constant b = 2000 s/mm2. Additionally,
1b = 0 volume was acquired with in-plane resolution of 2.0 × 2.0mm2 and slice
thickness of 2mm. The acquisition was carried out without undersampling in the
k-space (i.e., R = 1). The final dimension of this dataset is 128 × 128 × 60 × 100
voxels, being 60 the number of slices of 128 × 128 voxels, each of them comprising
100 directions.
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Fig. 6.5 depicts the execution time and the number of useful voxels for each slice
of the dataset, using lines and bars, respectively. As observed, using the MKL li-
brary, the execution times are fairly correlated with the number of useful voxels. On
the contrary, the ArrayFire versions, using the GPUs (K40 and GTX 780) obtain a
flatter curve. In this case, the use of ArrayFire for GPUs is only compensated for
slices containing a high number of useful voxels, as the data transfers pay off the
computational load. Focusing on our hybrid implementation selector (HIS), the se-
lector takes the MKL and the ArrayFire implementations for slices comprising low
and high number of useful voxels, respectively. Specifically, we configured the se-
lector using the dynamic mode, so that, the decisions are made at run-time. We
observe some negligible overheads (2 %) using our approach mainly caused by the
density function run time. Note that this density function, responsible for calculat-
ing the number of useful voxels in each slice, is used each time by the decision tree
in order to select the most suitable implementation. Finally, to evaluate the benefits
of our approach, we computed the total execution time of HARDI using the afore-
mentioned implementations (including HIS) in order to obtain speedup figures. We
find out that using our approach with respect to MKL reduces the execution time by
24 %, while compared with ArrayFire, HIS decreases the execution time about 10 %.
Therefore, our approach, in this case, helps improving the overall performance of
applications.

6.2.4 Comparison with alternative approaches

In this section, we validate the performance benefits of our hybrid static-dynamic
implementation selector (HIS) and compare it with an existing runtime scheduler.
Concretely, we compare our approach with the versioning runtime scheduler coun-
terpart from the OmpSs programming model [20], as it offers a similar implementa-
tion selector to our static solution.

To compare our solution with OmpSs, we developed a microbenchmark com-
posed of two consecutive 30-iteration loops computing the matrix-matrix product
(dgemm kernel) using square matrices of size 256 × 256 and random sizes, respec-
tively, in each iteration of the loops. For HIS, we annotate the dgemm kernel calls
using the attribute size for the first loop and with dynamic for the second one.
In contrast, for OmpSs we define different tasks for the available implementations
that are annotated with the implements and target directives. Take into account
that the multiplication is performed using the same dgemm implementations as in
the previous experiments.

Fig. 6.6 depicts the execution progress of this microbenchmark. As can be seen,
HIS starts from the first loop iteration selecting the implementations that perform
best for the different matrix sizes. It is important to note that HIS was previously
trained performing 100 executions of the dgemm kernel with random matrix sizes
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FIGURE 6.6: Execution progress of two 30-iteration loops computing
the dgemm kernel using HIS and OmpSs.

and the measured profiling overhead was not higher than 1 %. On the contrary,
OmpSs cannot be trained offline, so it makes a few trial runs of the different im-
plementations until it finds, at runtime, the fastest one. In these cases, the training
phase of HIS pays off the OmpSs trial runs and the runtime scheduler overhead.
Specifically, the OmpSs measured overhead ranges between 2 % and 40 % for the
large and small matrix sizes, respectively. However, when the matrix size varies
among iterations, OmpSs is not able to self-adapt and continues selecting an imple-
mentation that is not optimal. In contrast, HIS relies on the problem size to select
in each iteration the most suitable implementation, and thus, improving the overall
performance. On the other hand, we have calculated the number of application exe-
cutions that our approach requires (assuming that there is no previous performance
data in the PERF.json file) in order to improve the execution time of OmpSs. We
found out that, using our approach, 40 executions of the user application are neces-
sary to compensate the training phase overheads and overtake the performance of
the OmpSs versioning scheduler. In general, HIS offers a hybrid implementation
selector that is adaptive and learns among executions, while OmpSs is a runtime
alternative that has non-negligible overheads but does not require a training phase.

6.3 Summary

In this chapter, we propose a mechanism to select the most suitable implementa-
tion for a given problem based on previous performance information. This mecha-
nism can work by performing a unique selection independently on the actual current
problem size or to decide the most suitable implementation for a specific problem
size at runtime. This way, working this mechanism in conjunction with the refactor-
ing framework, the resulting source code can be improved and attain better perfor-
mance.
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Chapter 7

Conclusions and future work

In this Thesis, we have proposed and developed a series of independent tools that
can be used together in order to automatically transform sequential codes into op-
timized parallel codes. Following the original goal thesis the state of the goal is the
following:

• To automatically detect parallel patterns in sequential codes. In Chapter 3
we have proposed and implemented a technique to analyze the Abstract Syn-
tax Tree of a given source code in order to detect parallel patterns that can be
eventually incorporated.

• To define an unified parallel pattern interface. In Chapter 4 we have defined
a common interface for parallel patterns in order to act as a switch layer that
allows to hide specific implementation details of the different programming
frameworks and to easily select the adequate backend for a given application.

• To define a set of transformations to optimize parallel source codes. In Chap-
ter 5 and 6 we have proposed different refactoring techniques to provide more
optimized parallel applications. On the one hand, we have proposed a mecha-
nism that is able to rearrange pipeline constructions composed of farm patterns
in order to determine an optimal concurrency degree and arrangement. On the
other hand, we have proposed a technique to select among different versions
of the same algorithm coming from different fully-optimized libraries.

7.1 Contributions

During the development of this thesis, the following contributions have been reached:

• A parallel pattern detection tool that, leveraging Clang libtooling, is able to
analyze sequential source code, detect parallel pattern candidates and generate
annotated codes. These annotations may be used by refactoring tools in order
to automatically generate parallel source codes.

• A generic parallel pattern interface that provide a unified interface for parallel
patterns by acting as a switch between different parallel frameworks acting
as back-ends. This way, a single application can be easily migrated from one
programming framework to another by modifying a single function argument.
Furthermore, its composability allows constructing more complex patterns in
terms of basic ones.

• An automatic refactoring module. This module takes an annotated source
code and generates parallel code using GRPPI.
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• A pipeline balancing algorithm able to generate optimized configurations for
pipeline patterns only using the original construction schema and the execu-
tion time of the pipeline stages.

• Mechanisms to select among routine implementations. These mechanisms
allows to define a set of implementation alternatives and select, at compile
time or at runtime, the most suitable version for a given algorithm depending
on the problem size.

7.2 Disemination

The contributions of this thesis can be found in the following publications:

• Journals

– Assessing and discovering parallelism in C++ code for heterogeneous
platforms, David del Rio Astorga, Rafael Sotomayor, Luis Miguel Sanchez,
Javier Garcia Blas, Alejandro Calderon, Javier Fernandez. The Journal of
Supercomputing. 2016.

– Finding parallel patterns through static analysis in C++ applications. David
del Rio Astorga, Manuel F. Dolz, Luis Miguel Sanchez, J. Daniel Garcia,
Marco Danelutto, Massimo Torquati. International Journal of High Per-
formance Computing Applications. 2017.

– An adaptive offline implementation selector for heterogeneous parallel
platforms. David del Rio Astorga, Manuel F. Dolz, Luis Miguel Sanchez,
Javier Fernandez, J. Daniel Garcia. International Journal of High Perfor-
mance Computing Applications. 2017.

– Enabling Semantics to Improve Detection of Data Races and Misuses of
Lock-Free Data Structures, Manuel F. Dolz, David del Rio Astorga, Javier
Fernandez, Massimo Torquati, J. Daniel Garcıa, Felix Garcıa-Carballeira,
Marco Danelutto. Concurrency and Computation Practice and Experi-
ence. 2017.

– A generic parallel pattern interface for stream and data processing. David
del Rio Astorga, Manuel F. Dolz, Javier Fernandez, J. Daniel Garcıa. Con-
currency and Computation: Practice and Experience. 2017.

– Hybrid static-dynamic selection of implementation alternatives in het-
erorgeneous environments, David del Rio Astorga, Manuel F. Dolz, Javier
Fernandez, Javier Garcia Blas. The Journal of Supercomputing. 2017.

– Paving the way towards high-level parallel pattern interfaces for data
stream processing. David del Rio Astorga, Manuel F. Dolz, Javier Fer-
nandez, J. Daniel Garcıa. Future Generation Computer Systems. 2018.

– Towards Automatic Parallelization of Stream Processing Applications. Manuel
F. Dolz, David del Rio Astorga, Javier Fernandez, J. Daniel Garcıa, Jesus
Carretero. IEEE Access. 2018.

• Conferences

– ACTIS: Automatic Compile-Time Implementation Selector for Heteroge-
neous Platforms. David del Rio Astorga, Manuel F. Dolz, Luis Miguel
Sanchez, J. Daniel Garcıa. Proceedings of the High-Level Programming
for Heterogeneous and Hierarchical Parallel Systems Workshop. 2016.
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– Discovering Pipeline Parallel Patterns in Sequential Legacy C++ Codes.
David del Rio Astorga, Manuel F. Dolz, Luis Miguel Sanchez, J. Daniel
Garcıa. Proceedings of the 7th International Workshop on Programming
Models and Applications for Multicores and Manycores. 2016.

– Embedding Semantics of the Single-Producer/Single-Consumer Lock-Free
Queue into a Race Detection Tool. Manuel F. Dolz, David del Rio Astorga,
Javier Fernandez, J. Daniel Garcıa, Felix Garcıa-Carballeira, Marco Dane-
lutto, Massimo Torquati. Proceedings of the 7th International Workshop
on Programming Models and Applications for Multicores and Manycores.
2016.

– CID: A Compile-time Implementation Decider for Heterogeneous Plat-
forms based on C++ Attributes. Luis Miguel Sanchez, David del Rio
Astorga, Manuel F. Dolz and Javier Fernandez. The 2nd International
Workshop on Reengineering for Parallelism in Heterogeneous Parallel
Platforms. 2016.

– A C++ Generic Parallel Pattern Interface for Stream Processing. David del
Rio Astorga , Manuel F. Dolz, Luis Miguel Sanchez, Javier Garcıa Blas,
and J. Daniel Garcıa. 16th International Conference on Algorithms and
Architectures for Parallel Processing. 2016.

– Probabilistic-based selection of alternate implementations for heteroge-
neous platforms. Javier Fernandez, Andres Sanchez Cuadrado, David del
Rio Astorga, Manuel F. Dolz, J. Daniel Garcia. 2nd International Work-
shop on Ultrascale Computing for Early Researchers. 2017.

– Supporting Advanced Patterns in GrPPI: a Generic Parallel Pattern Inter-
face. David del Rio Astorga, Manuel F. Dolz, Javier Fernandez, J. Daniel
Garcia. International Workshop on Autonomic Solutions for Parallel and
Distributed Data Stream Processing. 2017.

– Parallelizing and Optimizing LHCb-Kalman for Intel Xeon Phi KNL Pro-
cessors. Placido Fernandez, David del Rio Astorga, Manuel F. Dolz, Javier
Fernandez, Omar Awile, J. Daniel Garcia. Euromicro International Con-
ference on Parallel, Distributed and Network-based Processing. 2018.

• Registered products

– AKI: Automatic Kernel Identification. Registration of the intellectual prop-
erty. Code 09-RTPI-02819.5/2016.

• Technical reports

– REPARA D2.5: Semantic specification for libraries.

– REPARA D3.4: Automatic kernel identification and assessment.

– RePhrase D2.3: Report on shaping and pattern discovery for initial pat-
terns.

– RePhrase D2.4: Software for implementations of initial patterns.

– RePhrase D3.2: Combined report describing testing, verification, catas-
trophic failures detection and properties violation detection for the initial
set of patterns.
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7.3 Future work

This section presents some extensions of the work presented in this thesis based on
the contributions listed in Section 7.1.

First, the parallel pattern detection tool can be extended with new detection mod-
ules to increase the set of parallel patterns that can be discovered at compile-time,
such as the MapReduce and the Split-Join. Furthermore, since the static analysis is
limited in detecting some potential loop-carried dependencies due to, for example,
double indexed arrays, the detection can be improved by leveraging dynamic anal-
ysis techniques (e.g. symbolic execution).

On the other hand, the generic parallel pattern interface introduced in this thesis
can be extended by means of supporting new parallel patterns or stream operators
(e.g. Keyed farm, Feedback operator) and by implementing new execution policies
for distributed systems implemented with Message Passing communications (e.g.
MPI) or internet protocols (e.g. Message Queue Telemetry Transport).

Regarding the refactoring module, this tools can be extended by supporting
sequential-to-parallel source code transformations for other parallel patterns such
as the Map and Reduce using the GRPPI interface or introducing new modules for
refactoring the code with a different framework.

Focusing on the pipeline balancing, the presented algorithm can be extended for
distributed systems in which different stages can be offloaded to different computing
nodes. To do so, the algorithm should be extended to inform the algorithm about
the topology of the network, latencies, etc., in order to rearrange the pipeline and
distribute the stages adequately in the available resources.

Finally, the presented mechanism to select among routine implementations can
be extended to introduce different restrictions in order to select the most suitable
one. In this sense, these restrictions could be energy consumption or both energy
and execution time using a muti-objective approach.
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