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Abstract

Over the last decade pharmacology has been developing computa-

tional methods to enhance drug development and testing. A com-

putational method called network pharmacology uses graph analysis

tools to determine protein target sets that can lead on better targeted

drugs for diseases as Cancer. One promising area of network-based

pharmacology is the detection of protein groups that can produce

better effects if they are targeted together by drugs. However, the

efficient prediction of such protein combinations is still a bottleneck

in the area of computational biology.

The computational burden of the algorithms used by such protein

prediction strategies to characterise the importance of such proteins

consists an additional challenge for the field of network pharmacol-

ogy. Such computationally expensive graph algorithms as the all pairs

shortest path (APSP) computation can affect the overall drug discov-

ery process as needed network analysis results cannot be given on

time. An ideal solution for these highly intensive computations could

be the use of super-computing. However, graph algorithms have data-

driven computation dictated by the structure of the graph and this

can lead to low compute capacity utilisation with execution times

dominated by memory latency.

Therefore, this thesis seeks optimised solutions for the real-world

graph problems of critical node detection and effectiveness character-

isation emerged from the collaboration with a pioneer company in the

field of network pharmacology as part of a Knowledge Transfer Part-

nership (KTP) / Secondment (KTS). In particular, we examine how

genetic algorithms could benefit the prediction of protein complexes

where their removal could produce a more effective ’druggable’ im-

pact. Furthermore, we investigate how the problem of all pairs short-

est path (APSP) computation can be benefited by the use of emerging



parallel hardware architectures as GPU- and FPGA- desktop-based

accelerators.

In particular, we address the problem of critical node detection with

the development of a heuristic search method. It is based on a genetic

algorithm that computes optimised node combinations where their re-

moval causes greater impact than common impact analysis strategies.

Furthermore, we design a general pattern for parallel network analysis

on multi-core architectures that considers graph’s embedded proper-

ties. It is a divide and conquer approach that decomposes a graph

into smaller subgraphs based on its strongly connected components

and computes the all pairs shortest paths concurrently on GPU. Fur-

thermore, we use linear algebra to design an APSP approach based

on the BFS algorithm. We use algebraic expressions to transform the

problem of path computation to multiple independent matrix-vector

multiplications that are executed concurrently on FPGA. Finally, we

analyse how the optimised solutions of perturbation analysis and par-

allel graph processing provided in this thesis will impact the drug

discovery process.
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Chapter 1

Introduction

1.1 Motivation

Various natural and scientific phenomena can be modelled as graphs. The rep-

resentation of complex data as graphs can provide a sophisticated way for com-

putational analysis as it reveals significant and non-obvious systemic properties.

Over the last decade, the use of graphs was expanded for the representation of

various sized complex systems ranging from the World-Wide Web [1] till brain

connectivity [2]. Network pharmacology consists an emerging field that combines

both experiments and computation for the development of new drugs by using

protein-protein interactions represented as graphs [3]. This thesis provides opti-

mised solutions to real-world graph problems emerged from the collaboration of

e-Therapeutics PLC [4], a pioneer company in the field of Network Pharmacology,

and Newcastle University in the framework of a Knowledge Transfer Partnership

(KTP) / Secondment (KTS).

Over the last century, the pharmaceutical industry developed drugs by iden-

tifying ’drugable’ proteins that can be used for the development of compounds

with desired actions against such proteins [5, 6, 7]. A great percentage of drugs

function by binding to particular proteins in order modify their biochemical and

biophysical operations, however, they cause side effects on a variety of other non-

targeted functions [8]. In contrast, network pharmacology uses a more effective,

targeted and systematic drug discovery approach. It employs network analysis to
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identify the most critical group of proteins in any disease and chemical biology

to determine molecules that can target that set of proteins [4].

Proteins are functioning as components of highly interconnected cellular net-

works known as interactome or Protein Protein Interaction (PPI) networks [9, 10].

Nowadays, the size of PPIs is not limited only to few vertices and edges. The

amount of data generated from the analysis of real-world biological phenomena as

Protein-protein interactions is getting larger [11]. Accordingly, the size and com-

plexity of graphs representing such data is also getting increased. Their overall

behaviour cannot be easily understood or predicted only by examining individ-

ual nodes or links [12]. Graph analysis, through the computation of topological

features as network centrality, plays a decisive role in the overall comprehension

of the properties governing real-world graphs.

In particular, the analysis of PPIs allows the detection of specific nodes that

could be used as effective targets for drug intervention [13]. Instead of focusing

on particular druggable targets, it was shown that is more advantageous to target

a set of proteins [14]. A promising area in network-based pharmacology is the

ability to compute combinations of protein complexes, which will produce bet-

ter synergistic effects when targeted together [15]. However, computing efficient

protein combinations is still a bottleneck in computational biology despite many

already developed computational techniques based on network centrality features

[16]. Apart from optimised graph analysis tools that can lead on better targeted

drugs, computational biology needs tools of higher performance in order to accel-

erate further the drug discovery process. However, this premises the existence of

efficient tools that are not restricted by the high computational burden of graph

algorithms as all-pairs shortest path (APSP) computation which consists a major

component for the computation of most network centrality measures.

As the scale and complexity of graph problems is getting increased due to ex-

ponential generation of molecular data [17, 18], common processing units as CPUs

cannot cope with the need for high memory and computing resources. Parallel

graph processing seems to be an ideal solution that can overcome the limitations

of single-core processors. However, the parallelization of graph algorithms is more

challenging in comparison to common scientific applications [19]. Graph data are

characterised by non-uniform distribution of structural properties that can lead
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on poor performance. On the other hand, the graph algorithms developed dur-

ing the last decade by the computer science community cannot satisfy the new

additional design factors. Both the complex structure and size of graphs as well

as the computer architectures used for the solution of such graph problems can

affect their performance.

Despite the great significance of graph analysis, research on optimised per-

turbation analysis and parallel graph processing is still in early stages. We are

facing daunting challenges due to the irregular structure of the graphs and the

fact that processors are getting increasingly parallel [19, 20]. Many graph al-

gorithms are still inherently sequential. In order to fully exploit the emerging

parallel architectures we need to design new parallel graph algorithms. The most

prominent high performance architectures nowadays are the Graphic Processing

Units (GPUs) and Field programmable gateway arrays (FPGAs). While GPUs

and FPGAs are ideal HPC accelerators for many applications [21], their exploita-

tion for parallel graph processing makes it more challenging as we need to deal

with both the complexity of a parallel architecture and the abnormal nature of

graph applications that is not ideal for parallel processors.

1.2 Research goal and main contributions

This thesis targets to resolve real-life problems related with the optimisation and

acceleration of the drug discovery process. Network pharmacology uses graph

analysis tools to develop better targeted drugs. Computing efficiently combina-

tions of proteins that will create a better ’drugable’ impact is still a bottleneck

for computational biology. Additionally, graph algorithms as APSP is a major

component for the computation of most network centrality measures, however,

is highly computationally expensive. The research question of this thesis is how

evolutionary and high performance computing can optimise and accelerate graph

analysis? This can be decomposed into a number of sub-problems:

• How genetic algorithms can optimise graph analysis and eventually help to

design better targeted drugs?

• How the properties of real-world graphs can favour the development of

3



better parallel graph algorithms?

• How linear algebraic approaches for parallel graph algorithms can lead on

better performance in comparison to classical sequential graph algorithms?

In the course of responding the research questions of our thesis, in each chapter

we make contributions in the field of perturbation analysis and parallel graph pro-

cessing through novel algorithmic implementations. We develop novel approaches

for optimised and high performance graph analysis with on-desktop parallel ac-

celerators as GPU and FPGA. In particular, we focus in the design of a genetic

algorithm that provides a heuristic search capable to detect nodes of critical im-

portance within a graph. We target to accelerate the APSP computation by a

factor of more than two times. Such acceleration will affect positively the per-

formance of our genetic algorithm that uses the APSP algorithm as a basis for

its fitness operator. It will help to reduce the overall execution time from several

hours to minutes. The main contributions of this thesis are the following:

• I developed a genetic algorithm (GA) that searches for highly optimised

node removals that can achieve higher impact than random and targeted

attacks. It uses a population of boolean strings that represent different

node removal patterns. Over time the survival of the fittest candidates

favours better combinations of node removals. As this process is repeated

over hundred times, it eventually converges in a well estimated combination

of nodes where their removal produce a more efficient impact in graph’s

robustness.

• I developed a general pattern for graph analysis on multi-core GPUs by

exploiting the properties of the analysed graphs. The MLND algorithm has

a multi-functional character that is novel in the area of parallel network

processing. It uses a data structure that can be used to control the balance

between the number of the cores that a multi-core processor contains and

the number of components that are going to be analyzed in parallel. At the

same time this approach acts as a compressor while is able to decompose

a network into smaller modules without losing information regarding its
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initial state and process each component concurrently in order to compute

the all pairs shortest path.

• I developed a linear based graph algorithm that computes the APSP on

FPGA based on a sparse matrix vector (SpMV) multiplication approach

that is highly concurrent. The all pairs shortest path computation is im-

plemented through a breadth first search (BFS) algorithm based on linear

algebra. New nodes are discovered though consecutive multiplications of the

transposed adjacency matrix of the graph multiplied with a vector that its

values denote the source and the discovered nodes. This approach provides

us with an embarrassingly parallel problem where graph data dependencies

are no more existed and can be easily implemented on dataflow computing.

1.3 Thesis Outline

The thesis consists of six chapters:

Chapter 2 (Background) introduces the basic terminology, concepts and latest

research in two main areas involved in this work: perturbation analysis and par-

allel APSP implementations on GPU- and FPGA-based architectures.

Chapter 3 (Optimised perturbation analysis) presents a genetic algorithm for the

computation of optimised node combinations that their removal causes more ef-

fective impact in graph’s robustness than common strategies.

Chapter 4 (Tailoring graph algorithms over GPUs: Multi-Layer Graph Decom-

position) presents a divide and conquer approach that its design was based on

complex networks’ embedded properties and computes APSP concurrently on

GPU.

Chapter 5 (Linear algebra approach for parallel graph exploration on FPGAs:

case study of APSP), introduces a linear algebra approach based on sparse ma-

trix multiplication for concurrent APSP computation on FPGA.
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Figure 1.1: A visual description of the thesis structure.

Chapter 6 (Discussion) presents the nature of real-world graph problems in the

domain of network pharmacology and parallel graph processing, design decisions

and potential impact of our optimised algorithmic approaches.

Chapter 7 (Conclusion) summarises the contributions of this thesis and discusses

directions for future research.

Appendix A (Appendix ) includes information about algorithms’ execution times.
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Chapter 2

Background

2.1 Graph Analysis in Bioinformatics

Proteins are one of the basic constituents of life in our body. Since their function-

ality is very complicated and not yet completely understood, a graph approach

can help to gain insights in this phenomenon [22]. Protein Protein Interaction

(PPI) networks describe how proteins interact with each other. The vertices of

a PPI graph represent different proteins while edges the physical interactions

between them. Most real-world networks, as PPI networks, are not randomly

structured but they are governed by some universal laws [23]. For more than

40 years, scientists believed that most vertices possess approximately a similar

number of links [24]. However, in 1999 it was discovered that most nodes have

very few links while few nodes, called hubs, have many connections [25]. Graphs

governed by these properties are known as scale-free networks.

Given such networks, scientific community is interested to answer questions

that are related with the importance of proteins, or graph vertices in general,

within a network [26]. This can determine if a protein is essential for the survival

of an organism or cell [27]. The identification of critical proteins for any disease

can lead in the design of drugs that can affect positively the life of many people.

This reveals the importance and necessity for tools that can efficiently analyse

such graphs.
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Network Centrality

Questions related with the inner working properties of a graph can be answered

with graph analysis tools that analyse the structure of a network by computing

certain topological features as network centrality [28]. Network centrality can be

considered as a function CN() that assigns on each node u a numerical value re-

lated with its importance within the analysed graph. Degree centrality CNdegree,

one of the basic local-based network centrality measures, is defined as the number

of the incident edges of a node (Fig. 2.1, a). It is a local-based measure as only

the nearest neighbours are considered for the node characterisation. In case of

a directed network, there are two types of degree centrality: the in-degree and

the out-degree as there are in- and out-going edges. Nodes with higher degree

centrality are considered to be more important than others as they are better

linked with other vertices in the graph [29].

However, questions may be raised not only for the local-based graph properties

as the degree centrality but also for the global-based properties. For instance, the

detection of a node within a graph from which the transmission of a signal could

reach all the other nodes in minimal time. Or, vice versa to detect the vertices

that can be reached in the smallest amount of time from any other node within

the graph. Such questions cannot be answered with local-based measures as the

degree centrality but with global ones as closeness and betweenness centrality that

are not restricted only on the nearest neighbours. Closeness centrality CNcloseness

measures how close and quickly a node can communicate with other nodes in the

network [30]. It is the inverse of the average shortest distance from a node u [31]

(Fig. 2.1, c) and tends to be smaller for nodes that have larger average distance

to other nodes in the graph. In contrast, betweenness centrality CNbetweeness (Fig.

2.1, d) is defined as the number of shortest paths between all pairs of vertices

that pass through a vertex u [32]. Henceforth, the term ’shortest path’ d(u, v)

will refer to the minimum length between two nodes (u, v) (Fig. 2.1, b). A formal

definition of the shortest path d(u, v) will be given in Section 2.1.1.

Furthermore, scientists are interested for graph analysis tools that can mea-

sure the differentiation of graph robustness when single or multiple nodes are

removed from a graph due to failures or attacks. The resilience of a graph in

8
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Figure 2.1: Topological features formulas: (a) Degree Centrality, (b) Shortest
path, (c) Closeness centrality and (d) Betweenness Centrality.
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node attacks or failures is defined as graph robustness. A higher impact in the

overall graph robustness can be achieved if we remove node combinations that

are more significant for the structure of the network. The ability to compute

such high impact node combinations can help researchers in scientific domains

as network pharmacology to produce better targeted drugs for complex diseases

as cancer and diabetes [33]. Network pharmacology, based on graph analysis,

seeks the most critical proteins for any disease and produces multi-target drugs

of better efficiency and lower toxicity. Common graph analysis tools as Cytoscape

[34], [35] and Nexcade [16] are used to simulate targeted attacks, on individual

vertices or groups of nodes, based on graph measures as network centrality. How-

ever, tools that compute high impact combinations are absent from the research

community. Such high-impact combinations are unlikely to be found unless they

are specifically searched for [36].

In this context, we propose an optimised implementation based on a genetic

algorithm that computes high impact node combinations where their removal

is more effective comparable to the strategies of random and targeted impact

analysis. We provide further details related with this novel genetic approach in

Chapter 3. Apart from the challenging computation of high impact combinations,

the measurement of graph robustness in the context of a genetic algorithm can

be very challenging and can lead in performance deterioration due to high com-

putational workloads. Our GA uses the metric of graph robustness in order to

assess the effectiveness of its population of solutions. However, as the evaluation

of graph’s robustness is based on computationally expensive algorithms this may

affect GA’s overall performance.

Measuring Graph Robustness

The robustness of a graph is strongly related with the scale-free property [37]

as it turns out that targeted attacks on hubs can cause structural failure on

the connectivity and topology of a graph. The ’robust, yet fragile’ nature of

graphs can be used for the development of applications that can either predict

or provoke terrorist attacks or failures in the power grid [38]. The removal of

highly connected proteins in PPI networks achieves much better perturbations

10



rather than removing proteins with small number of links [39]. Graph metrics as

closeness and betweenness centrality are used for targeted attacks on nodes and

can achieve more effective results than the degree centrality [28]. The cascading

disturbances created in the global graph topology and connectivity, as a result of

the loss of a node or group of nodes, are quantitatively measured with topological

features as the average connected distance.

The average connected distance d̄ can be computed by multiplying the fraction
2

n(n−1)
with the sum of the lengths of the shortest paths [40]:

d̄ =
2

n(n− 1)

n∑
u=1

n∑
v=u+1

d(u, v) (2.1)

where n equals with the number of nodes in the graph. If d̄ = 1, then all the nodes

are directly linked to each other. Consequently, if the average distance is getting

smaller this means that also the graph is getting robuster as paths are getting

shorter. However, a prerequisite for the calculation of d̄ is the computation of

the shortest path costs between all pairs of nodes. The cost paths are defined

as the sum of edge-weights composing a path while their calculation is based

on algorithms that belong in the category of the all pairs shortest path (APSP)

computation.

Such algorithms if computed repetitively can lead in high execution time and

performance deterioration as their computational complexity is getting higher

due to repetition. While nowadays the emerging parallel architectures provide

enhanced processing resources, the sparse nature and irregular structure of the

analysed graphs makes the parallelisation of the APSP problem very challenging.

Therefore, we design two novel parallel APSP approaches presented in Chapters

4 and 5 where we target in the acceleration of the APSP calculation over graphs

with real-world properties. Before providing any information related with our

APSP approaches, we firstly provide the needed background information for the

parallel APSP computation. Furthermore, we present the mostly used sequential

APSP algorithms as the Bellman-Ford and Breadth-first search algorithm. We

provide the definition of parallel computing, the common strategies for paral-

lel algorithm design and the landscape of how scientific community moved from

single-core processors to parallel hardware architectures. Moreover, we present
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Figure 2.2: Parallelisation of the APSP problem: Use of customised hardware
(FPGA) (a) and multi-threaded platform (GPU) (b).

the state-of-art for the parallelization of the APSP problem (Fig. 2.2) in emerging

on-desktop hardware architectures as GPU and FPGA. Also, we provide further

details about the architecture and the programming model of both GPU and

FPGA platforms (Fig. 2.2, a, b). Finally, we present the common graph repre-

sentation used in parallel architectures and conclude by providing the speedup

definition.

2.1.1 All-pairs Shortest Path (APSP) Computation

The all-pairs shortest path (APSP) computation is one of the most fundamental

problems in computer science. It is defined as the computation of all the minimum

length paths between all pairs of vertices. The APSP computation consists a

significant component of many practical applications in a variety of fields as

bioinformatics [41], data mining [42] and computer aided design [43]. As we

discussed in the previous Section, the calculation of average connected distance

is based on the APSP computation. However, the APSP problem has a cubic

complexity and consists the most expensive component of many graph measures
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[44].

In this Section, we provide the definition of the APSP problem and present

common sequential APSP algorithms. We provide further details about the

Bellman-Ford and Breadth First Search algorithm as they will be used as ba-

sic components for our parallel implementations in Chapters 4 and 5.

Notation and Definition

Let G be a graph defined as G = (V,E) where V is a set of vertices and E a set

of edges. If u and v are vertices of G then the tuple (u, v) that connects the two

nodes is called edge. Graphs can be either undirected or directed. In a directed

graph all edges can be traversed in one direction. On the contrary, an edge (u, v)

of an undirected graph can be traversed from both directions. Also, in weighted

graphs, each edge is related with a scalar value that represents the strength of

the inter-connection between two nodes.

The length or distance d(P ) of a path P =< s, . . . , u, . . . , v, . . . , t > from a

source node s ∈ V to a node t ∈ V is defined as the sum of edge-weights for

edges in P . The smallest value of d(P ) for all paths P from s to t, known as

shortest path, is denoted as d(s, t). Let u, v, z be three vertices in graph G with

non-negative edge weights where the weight function is w : E −→ R. Then the

distance function d : V × V −→ R is given by [45]:

d(s, t) =

∞, if there are no paths from s to t

min{w(W ) | W is a s-t walk }, otherwise.

where d(s, t) is the shortest path from a source node s to a targeted node t.

Sequential APSP Algorithms

The computation of shortest paths from a source node to all other nodes is known

as the Single Source Shortest Path (SSSP) problem while the computation of all

shortest paths between all pairs of nodes as All-Pairs Shortest Path (APSP)

problem. While the computation of SSSP can be efficiently done in linear time,
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the APSP problem is more computationally expensive.

In 1962, Floyd Warshal proposed an algorithm that solves the APSP problem

in O(V 3) where V is the number of nodes in the graph [46]. Also, Donald Johnson

presented an APSP algorithm in 1977 that its time complexity is O(|V |2 log |V |+
|V ||E|) [47]. However, a solution for the APSP problem can derive from the

iterative computation of the SSSP for each source vertex. Dijkstra’s algorithm

is an ideal SSSP solution for sparse graphs. An accelerated version of Dijkstra’s

algorithm, with the use of a Fibonnacci heap, can provide APSP in O(|V ||E| +
|V |2 log|V |), where E represents the number of edges in graph [48]. Furthermore,

a graph exploration algorithm as Breadth-first search (BFS) can be used for the

APSP computation in O(|V |(|E| + |V |)) [49]. Finally, an SSSP algorithm as

Bellman-Ford solves the APSP problem for graphs with negative weighted edges

in O(|V |(|V ||E|)) [49].

Further details about the sequential Bellman-Ford and Breadth-first Search

algorithm are given in the next Sections 2.1.2 and 2.1.3. We focus on these two

graph algorithms as their structure favours more parallelism to be exposed and

essentially more vertices to be processed in parallel. We give more details about

the current state-of-the-art parallel APSP algorithms in Section 2.2.5. Being

aware of the basic mechanics of these sequential APSP algorithms will help to

better understand the GPU and FPGA based parallel graph implementations in

Chapters 4 and 5.

Graph Representation

The graph data, used as input by graph algorithms, can be represented with

various ways. Suppose that u1, . . . , un are the vertices of a directed or undirected

graph G. The most common graph representation uses a |V |×|V | adjacency

matrix A = (aij) such that [50]:

aij =

1, if(uiuj) ∈ E

0, otherwise.

If G is a weighted graph then the weight w(u, v) of each edge (u, v) ∈ E is stored

as an entry in the adjacency matrix A (Fig. 2.3, b). In contrast, the non-existence
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Figure 2.3: (a) Directed graph G = (V,E) represented as (b) adjacency matrix
A and (c) adjacency list.

of an edge between two nodes is represented with 0 or ∞.

The adjacency matrix representation is ideal for dense graphs. However, the

level of sparsity in real-world graphs tends to be high [51]. Consequently, the rep-

resentation of a sparse graph with an adjacency matrix is inefficient as allocated

memory is not fully exploited. In contrast, the adjacency list presentation can

minimize graph’s memory footprint by storing only the non-zero values. Let adj[]

be an array with |V | lists corresponding on each node in V (Fig. 2.3, c). Then

each adjacency list adj[u] stores only the nodes that are connected with u in G.

While the adjacency list representation is commonly used for sequential graph

algorithms, although is not preferred for parallel graph algorithms for reasons

that will be further explained in Section 2.3.3.

2.1.2 Bellman-Ford Algorithm

The Bellman-Ford algorithm computes the SSSP problem in a directed or undi-

rected graph where edges are weighted and can be negative values. It belongs in

the algorithmic category of relaxation algorithms where relaxation is the process

of assigning a cheaper distance to a vertex v by using the shortest path s, u and

the edge (u, v) (Fig. 2.4). If the distance d(v) of node v is larger than the sum of

distance d(u) of node u plus the weight of edge u, v then this sum is assigned on

the distance d(v) of node v (Algorithm 1). Furthermore, Bellman-Ford algorithm

is able to detect negative-weight cycles. This is a very crucial feature as its ab-

sence can lead in non-meaningful shortest path results. For brevity, Bellman-ford

algorithm depicted in Algorithm 1 does not contain the function of negative cycle
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detection.

Bellman-Ford algorithm maintains, for each node u, two arrays where stores

its distance D[v] and predecessor P [v]. Initially, the distance array of the source

node D[s] is initialised with zero and the distance of the node v with infinity

(D[v] = ∞ for every v 6= s) while P [v] is undefined. The algorithm performs

a sequence of relaxation steps. In each iteration the arrays D[v] and P [v] are

updated based on the relaxation technique. After n − 1 relaxations, D[v] will

contain all the correct distances. Once this happens, each P [v] points to the

predecessor of v on a valid shortest path from s to v.

Algorithm 1 A general template of Bellman-Ford algorithm [52]

Input: An undirected or directed graph G = (V,E) that is weighted and has no
self-loops. A vertex s ∈ V from which to start the search.
Output: A list D of distances such that D[u] is the distance of a shortest path
from s to u. A list P of vertex parents such that P [u] is the parent of u.

1: D ← [∞,∞, . . . ,∞] . n copies of ∞
2: D[s]← 0
3: P ← []
4: for i← 1, 2, · · · , n− 1 do
5: for each edge uv ∈ E do
6: if D[v] > D[u] + w(uv) then
7: D[v]← D[u] + w(uv)
8: P [v]← u

9: return (D,P )

2.1.3 Breadth-first Search (BFS)

Given a graph G, breadth-first search algorithm traverses the edges of a directed

or undirected graph G in order to discover every node that is reachable from a

source node s. BFS explores all the nodes in level k before moving to nodes in
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Figure 2.5: Graph exploration with Breadth-first search (BFS).

level k+1 (Fig. 2.5). The search maintains a frontier on each level k that it stores

all the unvisited nodes. The breadth-first search template depicted in Algorithm

2 uses a queue structure Q to store the frontier. The outcome of a BFS search is

a tree T with root s that contains all vertices reachable from s.

In general, BFS is used for graph exploration and not for shortest path com-

putation. However, BFS can be used to compute the SSSP while discovering new

nodes. When nodes are discovered on a certain BFS level then this level can be

used to compute the distance of a node from a source node and store its distance

in array D[]. If this strategy is applied for all the nodes of a graph G then we can

compute the APSP. This modified version of BFS that computes APSP is called

as all-pairs breadth-first-search (AP-BFS) [53].

Algorithm 2 A general breadth-first search template [52]

Input: An undirected or directed graph G = (V,E). A vertex s from which to
start the search.
Output: A list D of distances of all vertices from s. A tree T rooted at s.

1: Q← [s] . queue of nodes to visit
2: D ← [∞,∞, . . . ,∞] . n copies of ∞
3: D[s]← 0
4: T ← []
5: while length(Q) > 0 do
6: u← dequeue(Q)
7: for each w ∈ adj[u] do
8: if D[w] =∞ then
9: D[w]← D[u] + 1

10: enqueue(Q,w)
11: append(T, uw)

12: return (D,T )

17



2.2 Parallel Graph Processing

Graph problems as APSP computation consist the most expensive part for graph

analysis tools as outlined in Section 2.1. As the scale of graph problems is growing

larger this has as result a greater demand for more computational power. Con-

ventional Central Processing Units (CPUs) cannot cope with this data deluge.

Therefore, efficient parallel graph processing is becoming important as computa-

tional and memory requirements are getting increased. Parallel computing has

proven to be an ideal solution when requiring more processing power. The evolu-

tion of hardware architectures towards a larger amount of processing units made

feasible the concept of ’parallelism’ which is the main component for the synthesis

of parallel algorithms.

The term ’Parallel graph processing’ implies the use of high performance com-

puting and parallel algorithmic techniques in order to accelerate computationally

expensive graph problems as APSP. Graph problems have some inherent prop-

erties that pose many challenges in their efficient parallel processing. In this

Section, we provide a brief description on how hardware evolved from single-core

processors to multi-core and parallel architectures. Furthermore, we provide the

definition of parallel computation and present common strategies for parallel algo-

rithm design. We analyse the challenges of parallel graph processing and examine

techniques used in literature that attempted to accelerate APSP computation in

GPU and FPGA platforms.

2.2.1 High Performance Computing Landscape

From Single to Multi-core Architectures

In 1945, mathematician John von Neuman, suggested the stored-program model

of computation [54]. A von Neumann machine executes a single instruction at a

time and each instruction operates on few pieces of data [55]. Its performance is

related with the time spent to execute a given task and expressed as the multipli-

cation of Instructions executed Per clock (IPC) with processor’s frequency [56].

In an effort to enhance CPU’s performance, computer architects increased the

amount of instructions executed on a single clock cycle through instruction-level
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parallelization (ILP) techniques. However, as software evolved, applications be-

come more capable to run multiple tasks simultaneously with the use of threading.

A thread is a sequence of instructions that is executed independently from other

sequences. The need for parallel execution and the limited physical resources

on a single core processor led in the use of simultaneous multi-threading (SMT).

A physical processor appears as multiple logical processors and applications can

schedule multiple threads on them. However, single-core processors are not able

to achieve simultaneous execution of instructions streams but only to interleave

them.

In 1965, Gordon Moore stated that chip’s number of transistors will dou-

ble roughly every two years [57]. For the last decades, designers were based on

Moore’s Law and enhanced microprocessor’s performance by creating complex

architectures that can operate on higher frequencies. However, this led on power

hungry designs that were totally unsustainable and even higher performance was

needed [58]. This performance restriction was removed with the development of

multi-core architectures that fitted more execution cores on a single die. Threads

are not restricted by physical resources as they can independently run on sepa-

rate cores. While slower frequencies are used in multi-core architectures, better

performance and slower growth in power consumption is achieved [59].

Many-core Architectures

A different architectural design path was the use of many-core architectures where

their cores exceed the number of multi-core architectures. A current example

is the Graphical Processing Units or GPUs that have been used in computer

graphics [60]. GPUs have almost a double number of cores in comparison to many-

core CPUs. The performance gap between GPUs and CPUs is related with the

different design strategies that are build on. CPU is a latency-oriented processor

where it uses complex control logic that allows parallel instruction execution of

a single thread while maintaining the appearance of sequential execution. In

contrast, GPUs are based on a throughput-oriented architecture. Their hardware

takes advantage of the large number of threads, to find work to do when some

of them are waiting for long-latency memory accesses or arithmetic operations
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[61]. This throughput-oriented design saves chip area and allows designers to have

more arithmetic units on chip and thus increase the total execution throughput

in GPUs (Fig. 2.6). In this thesis, as we utilised NVIDIA’s GPU platform [62],

we provide further details about its specific architecture and programming model

in Section 2.3.1.

Dataflow Architectures

Conventional processors as CPUs and GPUs, require large number of data trans-

fers between processor and memory in order execute a single instruction. This

performance bottleneck can be resolved with the transformation of a complex

kernel to a dataflow graph where each node is mapped on a separate functional

unit. The concept of dataflow computing was introduced in the 1970s, never-

theless the absence of an architecture with unlimited number of functional units

without any memory constraints made it technically infeasible. However, modern

Field-programmable gate arrays (FPGAs) helped to overcome this overhead. Pro-

cessing is being done by forwarding intermediate results from node to node [63].

Consequently, the cyclic memory access phenomenon is eliminated as dataflow

computation is inherently local [64]. In order to express the dataflow programma-

bility in FPGAs we used a framework provided by Maxeler [65] and we present

further details in Section 2.3.2.

Parallel Computing Classification

While CPUs cannot keep following Moore’s law, FPGAs are able to continue

on this track as each new FPGA generation provides more logic and memory

resources. Their real strength lies in their capability to deliver application specific

designs. In contrast, GPU is not a customised accelerator but an architecture that

provides high floating point performance [66].

In general, all parallel architectures can be classified based on Flyn’s taxonomy

[67]. It categorises them based on their ability to process streams of data and

instructions. On the one hand, processors as GPU belong in the single-program-

multiple-data (SPMD) category while Multi/Many-core CPUs in both SPMD and

multiple-instruction-multiple-data (MIMD) category (Fig. 2.6). On the other
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Figure 2.6: Spectrum of current parallel computing architectures.

hand, reconfigurable architectures as FPGAs are flexible to implement anything

from a complex circuit to a CPU core. Consequently, this versatility doesn’t

allow them to be categorised though Flyns’s taxonomy as they can implement all

possible levels of parallelism.

Both Many- and Multi-core architectures belong in the category of control flow

processors. Such processors are equipped with multiple general processing cores

that work for everything and we can say that operate in a similar way as workers

in a factory. The difference between Multi- and Many-core architectures lies in

the fact that the first architecture uses a small number of highly sophisticated

cores while the later uses a greater number of less complicated cores that work

on slower frequencies. In contrast, a dataflow architecture as FPGA processes

data on a dataflow mode that resembles to factory workers that are arranged in

an assembly line and each of them is responsible for only one operation on each

product.
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2.2.2 Parallel Computing

Parallel hardware architectures as GPU and FPGA provide the needed technology

for parallel computation. However, in order to harness such architectures we need

a strategy that maps a problem on these parallel execution resources. Parallel

computing is the action of decomposing the domain of a problem with size n in

smaller parts that are simultaneously solved in p processing units. Let NZ be a

problem with domain Z. If NZ can be parallelized, then Z can be partitioned

into m sub-problems with m ≥ 2,m ∈ N [68]:

Z = z1 + z2 + . . . zm =
m∑
i=1

zi (2.2)

Parallelism is achieved by either decomposing data or tasks in smaller modules

and assigning them on different processing units. If NZ is a data-parallel problem

then Z is composed of data elements. The problem is solved by applying on the

whole domain Z the same kernel function K(. . .):

K(Z) = K(z1) +K(z2) + . . . K(zm) =
m∑
i=1

K(zi) (2.3)

On the contrary, if NZ is a task-parallel problem then each task zi is applied on

a common data stream D:

Z(D) = z1(D) + z2(D) + . . . zm(D) =
m∑
i=1

zi(D) (2.4)

Parallel computation is expressed through the design of parallel algorithms that

regulate how a problem will be efficiently partitioned and executed on a parallel

architecture. In general, parallel algorithm design is not a simple process but it

can be considered as an art where the designer needs to be equipped with creativ-

ity, discipline and abilities that cannot be easily classified [69]. The introduction

of parallelism, as a concept, creates new degrees of freedom that are not existed
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in sequential algorithmic design and increases the complexity of developing new

parallel algorithms. While designing a new parallel algorithm we need to con-

sider both algorithmic requirements and parallel machine capabilities in order to

achieve maximum performance.

2.2.3 Designing Parallel Algorithms

None golden rule can lead in the development of the ideal parallel algorithm [68].

In 1989, Cole proposed some high level strategies known as parallel algorithmic

patterns that provide an abstraction for the development of parallel algorithmic

designs [70]. The parallelism patterns allow the designer to target on the algorith-

mic strategy that will help him to implement a parallel algorithm without having

to think details related with the used parallel programming model. However, it is

very critical to identify and use the right pattern on a different problem domain.

Some of the most significant algorithmic skeletons in parallel computing are the

following [71], [72]:

• Task-level Parallelism Pattern: A problem is broken down to a group

of tasks (Eq. 2.4) that are executed independently. These category of

problems are known as embarrassingly parallel problems as there no depen-

dencies between them.

• Data parallelism Pattern: Data are decomposed on smaller chunks and

processed in parallel by the same algorithmic function as outlined in Equa-

tion 2.3.

• Divide and Conquer pattern: A problem is divided on subproblems that

are solved concurrently. Their solutions are combined together to provide

the final solution (Fig. 2.7).

• Pipeline Pattern: The computation is divided in a sequence of stages

where data flow within these stages like an assembly line. Each thread is

responsible to process each stage on the same time.
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2.2.4 Parallel Graph Processing Challenges

Parallel computing has commonly used to accelerate both compute and data

intensive applications [73]. It is highly optimised for the acceleration of reg-

ular numerical calculations in fields spanning from computational physics [74]

till biomedical applications [75]. However, mapping combinatorial problems as

graph algorithms on parallel architectures poses many challenges [76]. Graphs

are ruled by some inherent properties that don’t allow them to adapt current

computational problem-solving strategies. Above all, the following characteris-

tics of graph problems pose the most considerable challenges in parallel graph

processing [20]:

• Data-driven computations: In general, graph computations are driven

from the structure of the graph that is related on how edges and nodes are

connected. Therefore, parallelism cannot be easily expressed by partitioning

computation, as the structure of the computations is not known a priori.

• Unstructured problems: Data used in graph problems is unstructured

and highly irregular. Their irregular nature makes it difficult to partition

them and extract the needed parallelism. This can guide on low scala-

bility due to unbalanced computational loads caused from the not so well

partitioned data.

• Poor locality: Both the irregular and unstructured nature of graph data

lead in low memory access locality. Consequently, graph algorithms cannot
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achieve high performance on conventional cache-based processors that rely

on spatial and temporal memory access locality.

• High data access to computation ratio: Graph algorithms tend to ex-

plore the structure of the graph without performing large amount of com-

putations. Hence, there is a higher ratio of data access comparatively to

other scientific applications. Moreover, these memory accesses characterised

by poor locality guide on execution times that are dominated by memory

latency.

2.2.5 Parallel APSP Algorithms

A parallel graph algorithm can derive either by transforming a sequential algo-

rithm to a parallel version or developing an entirely new algorithm that fits on

the targeted parallel architecture [77]. It can also derive from an existing parallel

algorithm. In this thesis, we examine the graph problem of all pairs shortest

path (APSP) computation, in particular the problem of costs path computation

between all pairs of nodes. We seek efficient parallel graph algorithmic techniques

implemented on emerging hardware architectures as GPU and FPGA that can

accelerate the APSP computation.

Most of the real-word graphs as PPIs tend to be sparse and may have negative

weights that indicate antagonism between proteins [78]. Consequently, an efficient

parallel APSP algorithm needs to take into consideration all these embedded

properties. As we discussed earlier in Section 2.1.1, the APSP computation can

derive from two main families of sequential algorithms. One of them targets in

SSSP computation as Dijkstra (O(|E|+|V | log |V |)) and Bellman-Ford (O(|V ||E|)
approach where if they repeated for all nodes of G then they can provide the

APSP. In contrast, the other family derives from the Floyd-Warshall approach

where its computational complexity is O(|V |3) [79] regardless the density of the

input graph (Table 2.1). The Floyd-Warshall algorithm can process negative

edge weights, however, is inefficient for graphs of greater size due to its cubic

complexity. In contrast, the APSP can be computed by Dijkstra’s algorithm

in O(|V | × |E| + |V |2 log |V |) and become O(|V |3) if the graph is complete. If

|E| = O(|V |) then the complexity goes down to O(|V |2 log |V |), so Dijkstra’s
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algorithm is faster from Floyd-Warshall for sparse graphs.

Although, Dijkstra’s algorithm is efficient for sparse graphs, however, is in-

efficient for parallelization due to its inherent sequential properties. Parallel ar-

chitectures as GPUs and FPGAs need parallel graph algorithms that can ex-

ploit their massive parallel processing resources. In order to expose more par-

allelism, we consider algorithms that can process more vertices simultaneously.

The Bellman-Ford algorithm is such a method as it repeatedly processes graph’s

all interconnections and updates its vertices continuously. Even if Bellman-Ford

algorithm is a classically sequential algorithm, is better suited for parallel exe-

cution than Dijkstra’s algorithm. Additionally, Bellman-Ford algorithm may be

slower (O(|V ||E|)) than Dijkstra’s algorithm however is more versatile as it can

handle graphs with negative weights (Table 2.1).

While designing parallel graph algorithms, we need to maintain a balance be-

tween parallelism and efficiency. While Dijkstra’s algorithm doesn’t expose any

parallelism, in contrast, Bellman-Ford’s algorithm that expresses more parallelism

is more expensive. This example reveals the need of delivering good parallel ef-

ficiency while adding the smallest amount of additional work. Many researchers

tried to accelerate the APSP problem with various accelerators as GPUs [80],

FPGAs [81] and clusters of processors [82]. In the next subsections, we exam-

ine the parallel APSP computation on parallel systems as multi-threaded GPU

platforms and customised FPGA accelerators.

APSP computation in GPUs

In 2004, Micikevicius et al. introduced one of the earliest implementations of

APSP computation in NVIDIA’s GPUs [83]. They proposed a parallel imple-

mentation of Floyd-Warshall algorithm, tested on graph with 2048 vertices and

achieved a 3x acceleration comparable to a CPU implementation (Table 2.2). In

2007, Harish and Narayan proposed a parallel APSP approach based on Dikjs-

tra’s algorithm, implemented on a single GPU and tested with graphs ranging till

5k vertices [84]. Also, they proposed a Floyd-Warshall implementation based on

the CREW PRAM parallelization model [85] and their tests were restricted on
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Table 2.1: Sequential APSP algorithms: Comparison of their characteristics and
computational complexities.

Algorithm Complexity Characteristics

O(|V | × |E|+ |V |2 log |V |) Efficient for sparse graphs

Dijkstra O(|V |3), if graph complete Inefficient for parallelisation

O(|V |2 log |V |), if |E| = O(|V |)
Supports negative edges

Bell-Man O(|V ||E|) Efficient for sparse graphs

Ford Efficient for parallelisation

Floyd- O(|V |3) Supports negative Edges

Warshall Inefficient for sparse graphs

AP-BFS O(|V |(|E|+ |V |)) Efficient for sparse graphs

O(|V |2), if E = O(|V |) Supports unweighted graphs

graphs with only 5k vertices due to the use of adjacency matrix representation.

Buluc et al. proposed an APSP approach based on the blocked-recursive Floyd-

Warshall algorithm implemented on a single GPU [86]. Their implementation

required the whole graph to be stored on GPU’s memory and for that reason

they reported execution times for graphs with only 8k vertices. Okuyama et al.

proposed an improvement in Harish’s and Narayan’s APSP approach by using

a task parallel scheme and reducing data transfers through on-chip memory ex-

ploitation [87]. Matsumoto et al. proposed a blocked Floyd-Warshall approach

on a hybrid CPU-GPU system that handled graphs with 8k vertices [88].

However, the APSP calculation can also derive from the repetitive compu-

tation of the SSSP problem. Davidson et al. proposed a series of work-saving

methods that let them achieve better speedups on Bellman-ford and Dijkstra’s

algorithm [89]. Also, a specialised library for irregular applications as graphs

called LonestarGPU [90], consists the state-of-art for parallel graph processing

and acceleration of algorithms as Bellman-Ford. It provides vertex parallelisa-
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tion where each thread is responsible for one vertex and updates the distances of

adjacent vertices. Race conditions are avoided with the use of atomics. Further-

nore, Djidjev et al. proposed in 2014 a divide and conquer approach for APSP

computation by using multi-node GPU clusters [91] and divided their graph via

the Parmetis [92] platform on smaller components. They firstly computed short-

est paths inside the partitioned subgraphs and then calculated paths between

components. However, they divided their graph on several components without

taking into consideration the embedded properties of complex networks.

Taking parallel algorithm design decisions based on the nature of the graph is

an emerging area of research. Only Banerjee et al. proposed in 2015 a GPU im-

plementation based on a graph pruning technique and used bi-connected compo-

nents (BCC) in order to compute APSP [93] (Table 2.2). However, the success of

such approach is based on finding good partitions and mainly experimented with

planar graphs to ensure good partitions [91]. Additionally, the APSP approach

in [93] is restricted only in the use of BCC components that are not revealing in

detail the embedded graph properties of complex networks. Therefore we pro-

pose a divide and conquer approach that partitions graph in Strongly Connected

Components (SCCs) and shortest paths are concurrently computed over these

components. Further details about the implementation based on SCCs can be

found in Chapter 4.

BFS exploration in FPGAs

The APSP computation can also derive from graph exploration algorithms as BFS

where its computational complexity is only O(|V |+|E|). The modified version of

BFS that computes APSP is known as the all-pairs breadth-first-search (AP-

BFS) [53] and its complexity is O(|V |(|E| + |V |)). For sparse graphs with E =

O(|V |), the complexity of AP-BFS is O(|V |2) (Table 2.1). Many attempts in the

literature aimed to accelerate graph exploration through innovative programming,

including usage of multi-core systems, Graphic processing units (GPUs) and Field

programmable gate Arrays (FPGAs). For multicore processors, Agarwal et al.

proposed a BFS implementation that optimize cache utilization and intersocket
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Table 2.2: Previous GPU-based parallel APSP approaches.

Algorithm GPU Parallel APSP

Harish and Narayan [84], 5K vertices - 2x acceleration

Dijkstra Davidson et al. [89], 1M vertices - 1.3x acceleration

Bell-Man Ford Davidson et al. [89], 1M vertices - 2x acceleration

Micikevicius et al. [83], 2048 vertices - 3x acceleration

Floyd-Warshall Harish and Narayan [85], 5K - 1.5x acceleration

Buluc et al. [86], 8K vertices - 0.7x acceleration

Okuyama et al. [87], 32K vertices - 2x acceleration

Matsumoto et al. [88], 8K vertices - 0.8x acceleration

Djidjev et al. [91], 100K vertices - 7x acceleration

Banerjee et al. [93], 400K vertices - 2x acceleration

communication [94]. Hong et al. designed a hybrid method of level-synchronous

BFS that dynamically chooses the best execution method for each BFS-level that

can be either multi-core CPU or GPU execution [95]. Luo et al. proposed a GPU

targeted approach where each thread is mapped to each frontier vertex of the

current BFS level [96]. Instead of an architecture specific implementation Zhong

et al. developed a GPU programming framework for graph processing [97].

In the area of FPGAs, previous work mostly focused on memory access op-

timization [98]. In 2010, Wang et al. proposed a multi-softcore architecture on

FPGA for BFS and exploited the on-chip memory to store graphs [99]. In 2012,

Betkaoui et al. provided a scalable BFS implementation [81] for a specific FPGA

architecture known as Convey HC-1 platform [100] (Table 2.3). Such platforms

are known for their high memory bandwidth and their exploitation let them to

achieve 2x improvement comparable to the state-of-art GPU and CPU imple-

mentations. An optimization on Betkaoui’s work was presented in 2014 by Attia

et al. [101] where they provided higher memory utilization based on a Convey

HC-1 platform and achieved 5x relative speedup. Buluc et al. used a parallel

BFS approach based on linear algebra to develop a scalable implementation for

distributing memory systems [102]. In this context, we propose an efficient BFS
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approach implemented based on linear algebra, independent of any data depen-

dencies and able to provide acceleration in common FPGA architectures. Further

details of the new implementation are provided in Chapter 5.

Table 2.3: Previous FPGA-based parallel APSP approaches based on BFS.

Algorithm FPGA Parallel APSP

Betkaoui et al. [81], 40K vertices - 2.7x acceleration

AP-BFS Attia et al. [101], 1M vertices - 1.3x acceleration

2.3 Parallel Hardware Architectures

The transformation of a parallel algorithm to an efficient program that entirely

exploits the characteristics of the targeted parallel architecture is known as par-

allel programming [103]. The parallel programmer needs to choose the right

parallel architecture, understand their parallel programming model and express

the needed parallelism. Parallel programming with GPUs and FPGAs differs a

lot as in the one we need to operate within a multi-threading environment while

in the other we have to express a behavioural description that leads in a cus-

tomised hardware design. Further details about GPU’s and FPGA’s architecture

and programming model are given in Sections 2.3.1 and 2.3.2.

2.3.1 GPGPU Computing

GPUs are general purpose platforms with several SIMD cores. They are used

as co-processors in order to enhance applications demand for more processing

power. In 2006, NVIDIA introduced a GPU abstract programming model called

Compute Unified Device Architecture (CUDA) [68]. It is an extension of C lan-

guage and defines its own thread hierarchy for GPU platforms (Fig. 2.8, a). The

bottom level contains individual threads that communicate through local mem-

ory. The intermediate level classifies threads on groups that are known as blocks.

Threads within a block can communicate through shared memory (SM) while
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their synchronisation can be forced with the use of a synchronisation barrier by

using the specific statement of syncthreads(); [104]. Finally, all blocks form the

top level called as grid.

GPU’s micro-architecture contains several multiprocessors (MPs) each con-

taining multiple stream processors (SPs) (Fig. 2.8, b). Data are transferred from

CPU to global memory (GM) that is implemented as DRAM while shared mem-

ory as SRAM. Shared memory is characterised by low latency and high bandwidth

therefore is faster than global memory. Blocks of threads use global memory in

order to share data between them. Threads in GPU differ from threads in com-

mon operating systems as they are much lighter. The programmer designs kernel

functions while having in mind only one thread but then specifies the number of

block threads and blocks per grid needed for the certain kernel. Each thread pro-

cesses only one data element each time and each block of threads is independently

assigned and executed on each SP.

Multiple threads are executed concurrently in GPU. From hardware perspec-

tive, threads are organised in groups of 32 called warps. The number of parallel

executed blocks is restricted from the available resources in GPU as registers and

shared memory. In reality, each SP executes a warp at a time and schedules the

rest on a time sharing mode. Warp execution applies the same instruction on

32 threads and as concept is not exposed on the programmer. In case that each

SP contains 8 functional units then it will spend 4 cycles to execute a warp of

32 threads. However, as 32 threads access shared memory simultaneously then a

bank conflict may be created. This will have as result shared memory access to

take much more cycles [105]. When the SM executes a memory instruction then

it switches on a different warp until data are fetched from memory. The ideal

scenario would be to combine all memory requests needed by a warp to only one

instruction. All memory fetches can be combined together to a coalesced memory

transaction if memory addresses are sequential [106]. If not, then a non-coalesced

memory transaction will force warp to wait for all memory transactions and this

can lead on performance degradation.
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Figure 2.8: (a) CUDA Thread Hierarchy - (b) GPU Architecture.

2.3.2 Dataflow Computing

Dataflow computation, as discussed in Section 2.2.1, became feasible due to the

introduction of the FPGA technology. The first commercially successful FPGA

was developed by Xilinx in 1985 [107]. Reconfigurable devices as FPGA are

composed by multiple configurable logic blocks (CLBs). The principle of re-

programmability characterises both the functionality and the routing resources

between CLBs. FPGA programming differs from GPU programming as the latter

provides a higher level of abstraction . Hardware programmer needs to provide a

behavioural description of the needed design while having in mind lower hardware

details. The procedure of converting an algorithmic description to a low level RTL

(register-transfer level) design is known as High Level Synthesis (HLS). The al-

gorithm described with a High Level Language (HLL) is compiled to a structural

description and mapped on FPGA through logic and layout synthesis [108].

In 2003, Maxeler introduced a compiler for dataflow programmability in FP-

GAs [109]. The Maxeler framework describes the physical FPGA device as a

Dataflow Engine (DFE). Each DFE can implement multiple kernels that describe

the needed computation. Two types of memory are defined by the Maxeler frame-

work: the Fast Memory (FMem) that is implemented as BRAM and the Large

Memory (LMem) as DRAM (Fig. 2.9, a). The FMem can store on-chip several
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megabytes of data while LMem several gigabytes off-chip. A dataflow program

contains at least one kernel and a manager that organises the data movement in

the DFE. The code that runs on DFE is described by a Java library. Dataflow

code compiles with MaxCompiler and links with CPU code to create an acceler-

ated application executable. The Dataflow implementations are called from the

CPU though the Simple Live CPU (SLiC) interface. While in CUDA devices

synchronisation can be implemented with specific statements, FPGAs are more

flexible and can implement various types of barriers as counter and tree based

approaches that are directly implemented in the hardware [104].

In essence, kernels describe graph structures of pipelined arithmetic units

(Fig. 2.9, b). If there are not any loops in the dataflow graph then data just flow

from inputs to outputs. In the case of a dataflow graph with loops then data

simply flow in a physical loop inside the DFE. As long as there are more data

than the stages in the pipeline, the execution of the computation is extremely

efficient. The combination of deep-pipelining and exploitation of both inter- and

intra-kernel parallelism can enhance performance.

2.3.3 Graph Representation on HPC

A wrong choice of the data representation can affect the performance of the paral-

lel graph algorithm. While hardware architectures are characterised by different

memory hierarchies they also need a different data structure in order to exploit

the maximum performance. It is very significant graph data to be represented in

memory in such way that will not waste the available memory bandwidth.

In particular, in GPUs this can be done by minimizing the non-coalesced

memory transfers [110] as mentioned in Section 2.3.1. However, the adjacency

lists may not be the most efficient data structure for the GPGPU model [84].

As CUDA allows arrays with arbitrary lengths then adjacency lists can be com-

pressed to one large array. This approach is named as Compressed Sparse Row

(CSR) representation [84] and also known as Compact Adjacency List (CAL)

[111]. It consists also an ideal graph representation for FPGA platforms [112].

CSR include an array ind that contains all the adjacency lists that define a graph.

An array ptr with |V |+1 positions is used to determine which adjacencies belong
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to which vertex. The elements stored in ptr are pointers to ind that indicate the

beginning and the end of the adjacencies (Fig. 2.10,b). The size of ind is equal

with the number of non-zero (nnz) values. If the graph is weighted then weights

are stored on extra array named val. For unweighted graphs this array is not

needed.

2.3.4 Performance Measures

Speedup

By using parallel computing we target to speedup computationally expensive

algorithms. Parallel computing, as defined in Section 2.2.2, is the partition of

a problem with size n in smaller sub-problems that are simultaneously executed

in p processing units. The achieved speedup, due to parallel computation, is

measured by comparing how much faster a parallel algorithm runs in contrast

to the best sequential one. It is defined as the fraction of the serial Tserial and

parallel run-time Tparallel:

Speedup =
Tserial
Tparallel

(2.5)

Speedup will be increased linearly if it grows as function of p. In such case, we

call this linear speedup and assume that additional overheads of the algorithm

are in the same percentage with its execution time. If Tparallel = Tserial/p then we

can talk about perfect linear speedup (Fig. 2.11). From a theoretical perspective
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this is the maximum feasible speedup in case that problem n has a fixed size.

However, it is very unlikely to reach a linear or perfect linear speedup. Over-

heads, caused from threads forced by mutexes to be executed serially due to

critical sections or memory bottlenecks, make it hard to achieve such a speedup.

In reality algorithms manage to achieve sub-linear speedups (Fig. 2.11). How-

ever, Gustafson [113] considered that super-linear speedup would be possible if

speedup is considered as ratio of speeds (speed=work/time) and not as ratio of

times. The assumptions of constant work and fixed-size speedup are the major

reasons making impossible the super-linear speedup [114].

Speedup can be classified based on three models. The fixed-size model as-

sumes that the size of the problem n is fixed and the number of processing units

p is variable. In contrast, the scaled speedup considers a variable n and p with

constant problem size on each processing unit while the fixed-time speedup con-

siders constant work per processing unit. In this thesis, we consider fixed-size

speedup by default.
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Chapter 3

Optimised perturbation analysis

3.1 Introduction

Real-world systems ranging from social networks till internet communication can

be conceptualised as graphs [115], [116]. There is a great interest to understand

how such systems react on external threats and be able to identify nodes that

are critical for their robustness. Human diseases can be viewed as perturbations

of highly interconnected cellular networks [117] while terrorist attacks can affect

the international air traffic [118]. This reveals the importance and the need for

tools that can simulate how such perturbations, created by node removals, can

influence real-world networks.

Perturbation analysis is becoming a routine strategy for data interpretation

in domains ranging from bioinformatics till sociology. It helps to assess their

resilience on targeted or random node removals (Fig. 3.1) that can disturb their

’robust, yet fragile’ nature [119]. Most real-world networks are extremely resilient

on random failures and very sensitive on targeted attacks, as mentioned in Section

2.1. Common graph analysis tools as Cytoscape [34], [35] and Nexcade [16]

provide an automated mechanism for perturbation analysis on Protein to Protein

Interaction (PPI) networks, by using only targeted attacks based on centrality

measures as outlined in 2.1. However, they can’t predict what would be the

best combination of nodes to remove from a graph in order to cause a higher

impact. Such high-impact combinations are unlikely to be found unless they are
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specifically optimised or searched for [36].

As the real-world graphs are characterised by properties that are not yet

well understood, similarly the search space in such graph problems is not so well

understood and relatively unstructured. In such irregular environments, heuristic

strategies as genetic algorithms (GAs) can provide a powerful heuristic search for

large complex problems as the computation of high-impact combinations. They

may not guarantee the discovery of an optimal solution however they will often

provide a good solution if one exists. Their simplicity as algorithms as well as

their power to discover good solutions rapidly for difficult search problems makes

them appealing for the detection of high impact node removals.

In this Chapter, we provide a genetic algorithm that searches for optimised

node removals that can achieve higher impact than random and targeted attacks.

Our GA uses a population of boolean strings that represent different node re-

moval patterns. Over time the survival of the fittest candidates favours better

combinations of node removals. As this process is repeated over hundred times, it

eventually converges in a well estimated combination of nodes where their removal

produce higher impact. In this context, we evaluate our GA with real-world Pro-

tein Protein Interaction networks and show that the effectiveness of our genetic

algorithm is much higher than the common perturbation strategies of random

and targeted node attacks.

The remainder of the Chapter is structured as follows: In Section 3.2, we

give a brief introduction about genetic algorithms. Section 3.3 introduces the

overall methodology used for the design of our optimised perturbation analyser.

In Section 3.4, we present the implementation of our genetic algorithm. Section

3.5 shows our experimental results. Finally, we conclude with Section 3.6 that
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draws conclusions.

3.2 Background

Perturbation Analysis

Perturbations in real-world systems can have catastrophic impact in their overall

functionality. Diseases or terrorist attacks can arise from perturbations within the

intermolecular communication or the international air traffic respectively [120].

Such phenomena reveal the importance and necessity to study and monitor how

perturbations affect the robustness of a graph.

However, perturbations can only be studied with the help of simulations. Both

single node removals and paired perturbations can reveal crucial information for

the robustness of a graph. The simulation of sequential perturbations is a method

used to monitor the behaviour of a graph in cascading failures. Different groups

of nodes are sequentially removed from a graph and its behaviour is monitored

continuously based on certain topological properties. Such simulations of sequen-

tial perturbations are commonly used by the research community as a standard

technique to study the behaviour of graphs over sequential failures [16]. A simu-

lated perturbation is performed either as a random or targeted loss of a node or

a group of nodes. The targeted perturbation involves the removal of nodes that

are ranked based on a topological property while the random approach corre-

sponds in the random removal of nodes. Both random and targeted perturbation

approaches provide inefficient node removal predictions. Therefore, the use of

a heuristic search strategy based on evolutionary algorithms can improve the

prediction of nodes that can affect more the robustness of a graph.

Genetic Algorithms

The evolutionary algorithms are inspired by the principle of evolution in nature.

They thrive in environments with large amount of candidate solutions where

they apply a trial-and-error problem solving strategy in order to find the fittest

solutions [121]. Genetic algorithms belong in the larger class of evolutionary
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algorithms. Their main advantage is their ability not to be trapped in suboptimal

local maximum or minimum. They exploit historical information to guide their

search in regions with better performance and avoid a local maximum. Also,

they try to gradually improve a group of solution candidates by utilising different

variation operators as mutation and crossover.

In general, genetic algorithms work by creating initially a randomly generated

population of several candidate solutions. Each candidate is evaluated based

on a specific fitness function that measures how well they perform at a given

task. Candidate solutions are also known as ’chromosomes’ while each member

of a chromosome is called as ’gene’. Based on a selection strategy the fittest

candidates are selected as parents for a new generation. Their breeding process

where new fitter offspring are generated is known as crossover. Such process helps

to discard not well-performed chromosomes and keep only the best individuals.

However, the crossover process can lead on a population with similar candidate

solutions. The low diversity among chromosomes is encountered by using the

mutation process that randomly alters their genes. Finally, a genetic algorithm

is terminated when a suitable solution is found or fixed number of generations is

reached.

3.3 Methodology

3.3.1 Optimised Node Attacks

The design of our genetic algorithm has been mainly based on the needs of se-

quential perturbations. As mentioned in Section 3.2, the model of sequential

perturbations dictates the sequential removal of a certain number of nodes per

step. As a result instead of letting the GA to disable a minimum number of

nodes we use the needed constraints in order to follow the model of sequential

perturbations. Each removal of nodes is totally independent from the previous

one and only a predefined number of nodes is removed. As each step corresponds

in sequentially increasing number of nodes, our GA uses this rule and searches

for an optimised group of nodes to remove in each step.

Initially, our genetic algorithm creates a randomly generated population of
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boolean strings representing different protein target sets (Fig. 3.2, a). The re-

moved nodes contained in a boolean string, for the particular case of PPI net-

works, represent the deletion of certain proteins. The length of these strings

is equal with the total number of nodes n contained in the analysed graph G.

Boolean string’s true values represent the existent nodes in the graph while false

values the removed ones. In essence, boolean strings represent multiple versions

of the same graph G but with different node combinations removed each time.

Each string is evaluated based on a fitness function corresponding on the average

connected distance d̄ of graph G. Based on Equation 2.1, d̄ is defined as:

d̄ =
2

n(n− 1)

n∑
u=1

n∑
v=u+1

d(u, v) (3.1)

where n equals with the number of nodes in the graph. By computing the

average connected distance, we quantitatively measure the alternation of graph

robustness caused from the removal of the certain set of c nodes. A fitness score

Fitn, expressing the impact created by the removed nodes, is assigned on each

boolean string (Fig. 3.2, b).

The boolean strings with the highest scores are chosen as parents and con-

tribute in the generation of new strings that contain better combinations of re-

moved nodes. They are selected based on the tournament selection strategy. A

tournament between two randomly chosen candidates is organised and the fittest

one is chosen. Parents give birth to new children through the crossover process.

In particular, two boolean strings belonging to different parents are divided in

the middle and a new children is generated by combining each half of each parent

to a new boolean string (Fig. 3.2, c). As it is hard to detect from the beginning

which crossover type may provide the most efficient results we decided to use the

simplest form of a single crossover point and eventually to alternate this process

if the results are not efficient enough.

Furthermore, in order to keep population’s diversity in high level our algorithm

applies mutations on its offsprings. Boolean string’s values are randomly flipped

based on a certain probability (Fig. 3.2, d). However, the process of mutation

could faulty increase the predefined number of removed nodes. For this reason,
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we used a normalisation function that regularises the number of removed nodes

back to the default one. Moreover, in order to combat the phenomenon of good

candidates being lost due to crossover or mutation, we use a feature called elitism.

This guarantees that a percentage of the elite boolean strings will be copied

unchanged in the next generation. If for instance the size of our population is

100 then an elitism of 5 will mean that 5% of the fittest candidates will be copied

unmodified in the next generation. All four steps of the GA are repeated for

many cycles until a predefined number of iterations (Fig. 3.2, e).

3.4 Implementation

Our genetic algorithm has been developed through an extensible framework,

called Watchmaker [122], that implements Java based genetic algorithms. The

Watchmaker framework offers the basic outline of an evolutionary algorithm. It

uses a loop that creates one generation per iteration and contains template func-

tions that perform fitness evaluation, selection and crossover. The programmer

needs to populate all the needed functions, adjust the mutation probability and

choose a selection strategy. Finally, an evolutionary engine orchestrates all the

needed steps of the genetic algorithm.

In our implementation, we specifically utilise an enhanced tournament selec-

tion process provided by the Watchmaker framework. A probability parameter

is used as a mechanism to adjust the selection pressure. This process involves

the generation of random values between zero and one that are compared with a

predefined probability. If the probability is larger from the predefined one then

the fitter boolean string is selected while if it is smaller the weaker one is selected.

In practice, the probability needs to be above 0.5 in order to favour the selection

of fitter candidates. By giving a higher probability in individuals of higher quality

new better generations are created that eventually can help GA to focus in more

promising areas in the search space [123].

What differs at most in each GA implementation is the used fitness function.

In our implementation, each boolean string is evaluated based on the computation

of average connected distance. In essence, the removed nodes represented in

each boolean string are depicted on different adjacency matrices (Fig. 3.3, b,d).
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Figure 3.3: Basic steps of Graph Impact Analysis: Let G be the initial graph
represented as adjacency matrix A (a). Each boolean string dictates the removal
of certain nodes (b). Let r be the removed node then this is implemented by
creating a new adjacency matrix Ar without the in- and out-going edges of r.
The impact created on graph G by the removed node r is measured by computing
APSP for the matrix Ar and then calculating the average connected distance.

By computing the all pairs shortest paths (APSP) on each of them we provide

the needed values for the calculation of the average connected distance for each

boolean string (Fig. 3.3, e).

Node Removal

Let G be a directed graph represented as an adjacency matrix Aij. As we men-

tioned in Section 2.1.1, connections between vertices in an adjacency matrix are

represented with values of one while non-existing edges with infinity ∞. The

removal of a node r from graph G disables its functionality but also affects all

the other vertices directly connected on this node. It practically means the elim-
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ination the incident in-going and out-going edges of the removed node (Fig. 3.3).

Edges belonging on the removed node r are deleted by creating a new adjacency

matrix Ar and replacing the existing edge connections with infinity. The dis-

turbances created in the graph due to the removal of node r are quantitatively

measured by computing the average connected distance based on resulted matrix

Ar.

Random and Targeted Node Attacks

The same process of node removal was also used by the random and targeted

attacks that we used as benchmarks in order to compare the effectiveness of

our genetic algorithm. The process of perturbation analysis evaluates how the

removal of a single node or a set of nodes affects the structure of a graph. Our

simulator implements the random impact analysis by using a random number

generator in order to choose which node or set of nodes will be removed from

the graph (Fig. 3.4). In case of removing a set of vertices it will not allow the

removal of a node more than once.

On the other hand, a targeted approach removes nodes based on certain topo-

logical features. Our simulator uses network centrality measures that are closely

connected with the graph robustness. Each vertex v is assigned with a numeric

value based on the used centrality function CN(v). This simulator uses the de-

gree CNdegree(v) and betweenness CNbetweeness(v) centrality functions in order to

conduct targeted attacks (Fig. 3.4). As we mentioned in Section 2.1, degree cen-

trality is defined as the number of edges connected on a node while betweenness

centrality is the number of shortest paths between all nodes that pass through a

vertex v. In particular, for directed networks the degree centrality counts both

in-going and out-going edges. It is calculated as the sum of in-degree deg+(v)

and out-degree deg−(v) where

deg(v) = deg+(v) + deg−(v) (3.2)
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3.5 Evaluation

The performance of our genetic algorithm has been assessed by conducting ex-

tensive tests on real-word graphs representing protein-protein interaction (PPI)

networks. The real-world graph data have been provided by e-Therapeutics [4].

The tested networks range from 87 to 561 vertices and contain up to almost

7000 edges. The experiments were conducted on a single Intel Core i5-2500 CPU

processor @3.30 Ghz (4 cores) with 3.9GB RAM, running Ubuntu 12.4.

In all the experiments conducted for our GA algorithm, the population of

candidates has a fixed size of 100 boolean strings while the whole GA runs for

1000 iterations. Furthermore, as mentioned in Section 3.4 we used an enhanced

tournament selection process with a probability parameter known as selection

pressure where we set it to 0.7. Moreover, we used a probability of 0.001 for our

boolean array mutator and 5% of elitism. The algorithm terminates if there is no

improvement in fitness score after 100 iterations. Also, the APSP computation

was implemented with the Floyd-Warshall algorithm that has a cubic complexity

(Section 2.1.1).
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Experimental Results

The simulation begins by measuring the average connected distance without any

node removal. It proceeds by removing groups of nodes with augmentative num-

ber, beginning from an individual node till a predefined number of vertices. The

effectiveness of the optimised analysis based on our genetic algorithm was evalu-

ated based on one random and two targeted impact analysis strategies. The two

targeted strategies are conducting attacks with the use of degree and betweenness

centrality. After computing the degree and betweenness centrality for each node

then vertices are ranked based on these topological features from the maximum

to minimum value. The simulator begins by removing initially the vertices with

the highest values and monitors the alternation of graph robustness by measuring

the average connected distance. As nodes are sorted based on their significance

inside the network, the targeted attacks on these nodes cause important pertur-

bations in the graph comparatively to the random attacks. Due to the simulation

of sequential perturbations each removal of nodes is independent from the pre-

vious one. As a result we don’t need to compute the network centrality every

time that we remove nodes from the graph as in each sequential step we use the

initial form of the analysed graph. This means that node removals performed in

the previous step are not reflected in the next ones. Consequently, a removal in

the previous step will not affect the structure and connections between nodes in

the next sequential step.

In all four tested cases of variable graph size (Fig. 3.5, Fig. 3.6), the random

removal of nodes doesn’t cause any effect in the robustness of the graphs. How-

ever, the targeted attacks based on the degree and betweenness centrality achieve

greater disturbances in the structure of the graph. Attacks based on betweenness

centrality are much more effective than the attacks conducted based on degree.

Both the structure of the analysed graph and the nature of betweenness central-

ity as a measure force that behaviour. The betweenness centrality in comparison

to degree centrality is a global based measure that is able to detect more crit-

ical interconnections between nodes so that’s the reason leading on attacks of

better effectiveness (Section 2.1). Both types of targeted node attacks, after the

removal of a certain number of nodes, can lead on a point that the whole graph
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Figure 3.5: Comparing random, targeted and genetic impact analysis on real-
world protein networks. Sample networks: (a) 87 nodes - 404 edges (b) 279
nodes - 3399 edges.
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breaks down to a large number of smaller unconnected components. This point

is known as percolation threshold [40], [124] and consists the critical fraction of

nodes where their removal disintegrates the whole graph (Fig. 3.5, Fig. 3.6). If

we keep moving nodes after the percolation point, we observe that the average

connected distance is decreased and can reach negative values meaning that no

many interconnections are left in the graph (Fig. 3.5, a).

Furthermore, we apply our GA to compute nodes removals ranging from in-

dividual nodes till groups of 30 nodes in the first test case (Fig. 3.5, a) and 100

nodes in the rest test cases (Fig. 3.5, b & Fig. 3.6). We observe that our GA

selects much better node combinations and its effectiveness is much higher than

the random and targeted strategies. In particular, Figure 3.5 depicts the impact

of node removals on two real-word graphs with different size ranging from 87 till

279 nodes and 279 till 3399 edges. In both scenarios our GA algorithm for the

first 10 and 20 removed nodes respectively has the same impact as the targeted

and random impact analysis (Fig. 3.5, a,b). However, after that point our GA

begins to attain better effectiveness and reaches a point of notable impact dif-

ference with the other strategies. Same behaviour is also regarded in the two

other tested graph cases where our GA similarly as before reaches a better level

of impact effectiveness (Fig. 3.6). As an overall observation we could comment

that GA’s effectiveness may also be affected by the structure of the graph and

this can explain a better impact in some cases as in Figure 3.5, b.

Moreover, we examine the quality of our GA algorithm with an optimum so-

lution. We compare the effectiveness of our GA with a brute force algorithm

that exhaustively searches for nodes of high significance. While the brute force

approach is highly computational expensive process we perform the needed eval-

uation only with a small graph of 87 nodes and 404 edges. We apply both brute

force and GA in the exploration of effective node removals ranging from indi-

vidual nodes till groups of 30 . We observe that our algorithm computes node

combinations with a relatively same efficiency as the exhaustive search (Fig. 3.7).

Our GA algorithm provides a sufficient heuristic search solution for the problem

of graph impact analysis . However, its effectiveness can be further enhanced by

alternating its genetic operators. For instance, the use of two random crossover

points instead of one can explore more solutions and eventually provide more
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Figure 3.6: Comparing random, targeted and genetic impact analysis on real-
world protein networks. Sample networks: (a) 349 nodes - 3228 edges (b) 561
nodes - 7179 edges.
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Figure 3.7: Comparing brute force and genetic impact analysis on real-world
protein networks. Sample network: 87 nodes - 404 edges.

enhanced results. Moreover, GA’s effectiveness could be enhanced by replacing

the computationally expensive fitness function with a less accurate but low-cost

fitness function [125]. This strategy is known as evaluation relaxation, however,

is not ideal for our GA as it may produce results of low accuracy. Such margin

of error is not tolerable by critical applications as the drug discovery process as

it may affect the pharmaceutical impact of drugs.

Our GA provides solutions of satisfactory effectiveness, however, this comes

with a price. The overall execution time for all the tested graph samples is rel-

atively high and gets even worse for larger graphs. In particular, our GA needs

9 hours to compute a group of combinations ranging from 1 till 100 nodes for a

graph with 561 nodes and 7179 edges (Table 3.1). Consequently, the high compu-

tational load diminishes the overall performance of our GA. Similar problems have

been countered in the past and already addressed in literature through the par-

allelisation strategy where the computational load is distributed among different

processors [126]. Instead of workload distribution it has been also proposed ei-

ther to distribute the fitness evaluation over different processors or create smaller

populations that can be assessed faster [127]. In our GA the most demanding

operator is the fitness function that is based on the average connected distance.
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While such metric is given by the highly computational expensive APSP algo-

rithm this results in the deterioration of our GA’s overall performance. The high

execution time can affect negatively the drug discovery process as it can delay

the research for new drug solutions that are highly needed by patients. There-

fore, in the next two chapters we target in the acceleration of APSP computation

where we propose two novel parallel APSP approaches based on different parallel

processing architectures and algorithmic strategies.

Table 3.1: Execution time of used impact analysis strategies: Targeted (Between-
ness, Degree), Random and Genetic. Time in Minutes.

Nodes Edges Betweeness Degree Random GA

87 404 1.11 1.06 1.01 21.34

279 3399 2.02 1.36 1.30 152.4

349 3228 2.12 1.27 1.22 77.5

561 7179 15.09 11.13 12.18 569.1

3.6 Summary and Conclusions

In this Chapter, we provided a genetic algorithm that detects combinations of

highly optimised node removals. Our algorithm has been evaluated on real-world

protein interaction networks. It was shown that our genetic algorithm computes

node removals that can affect graph’s robustness more effectively than the com-

mon random and targeted impact analysis strategies. However, the heuristic

search properties of the genetic algorithms are coming with a high price. All the

solution candidates need to be assessed with a fitness function based on the av-

erage connected distance. Its calculation requires the computation of the highly

expensive APSP algorithm for the whole graph. Such calculations lead in a higher

execution time as even more fitness evaluations are required for all the solution

candidates in every new population.

The overall execution time of our GA can be minimised by accelerating the

APSP computation that is needed for the calculation of the average connected
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distance. Parallel processing architectures can provide enhanced processing re-

sources that can help the acceleration of the APSP computation. However, the

use of parallel computing for parallel graph processing is very challenging due to

the irregular structure of the real-world graphs. In the next two Chapters 4 and

5, we present two parallel APSP implementations based on GPGPU and FPGA

computing. The GPU-based approach parallelises the APSP computation by util-

ising the divide and conquer strategy while the FPGA algorithm expresses the

APSP computation in linear algebra calculations that are executed concurrently.
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Chapter 4

Tailoring graph algorithms over

GPUs: Multi-Layer Graph

Decomposition

4.1 Introduction

Graphs describe systems as diverse as the World-Wide Web or social and biolog-

ical communities. The representation of a system as a network of interconnected

vertices provides one analysis method aimed at generating and understanding

the global behaviour of that system [128]. Epidemiologists [22], sociologists [129],

computer scientists [130] and neuroscientists [131] explore the way that viruses,

ideas, information and electrochemical signals are spread along that systems re-

spectively. While the use of graphs is expanded in a range of research fields,

there is need to develop tools that measure and capture their underlying orga-

nizing principles [132]. However, computing quickly over these networks is a

challenge for both algorithms and architectures due to their size and structure

[133].

Networks with large node and edge counts push current network analysis tech-

niques to their limits and the processing power available in a CPU is unable to

analyze such networks efficiently. Current graph analysis packages as Pajek [134],

Igraph [135] and Gephi [136] are limited by the available processing resources of
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Figure 4.1: Network Decomposition: Each component of the new abstract net-
work is mapped and processed in parallel on a different core.

commonly used workstations. Application of multi-core computing approaches

could improve the efficiency of network analysis. However, such analysis pose sig-

nificant challenges to parallel processing. Non-contiguous and concurrent access

to global data structures with low degree of locality are the main problems [137].

Recent progress in parallel graph algorithms addresses these challenges through

innovative data structures, memory layouts, and SIMD optimizations [84, 138,

139]. However, new algorithms and implementation strategies are required for

efficient processing of current generation graphs on modern multi-core architec-

tures. Such strategies should help algorithms and their implementations benefit

from the properties of the graphs. The accurate segmentation and mapping of

a network onto different cores is almost impossible. However, the mapping com-

plexity can be reduced by exploiting properties of real-world networks.

Design and implementation decisions based on the nature of the graph con-

sists an emerging research area. Current parallel APSP algorithms do not take

advantage of the real-world graph properties [86, 88, 91]. Most of the recent stud-

ies used graph properties to develop trimming techniques for small-world graphs

[140] and computation of biconnected components in symmetric multiprocessors

[141]. Only Banerjee et al. proposed in 2015 a GPU implementation based on

a graph pruning technique and used of bi-connected components (BCC) in or-

der to compute APSP [93]. However, the success of such approach is based on

finding good partitions and mainly experimented with planar graphs to ensure

good partitions [91]. As we discussed in Section 2.2.5, there were many attempts
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to accelerate APSP on GPU platforms. In this study, we build upon ideas from

two previous works related with a divide and conquer approach that decomposes

a graph in several components [91] and implementation decisions based on the

nature of the graph [93]. We incorporate them into an efficient parallel graph

processing pattern for GPU platforms. Due to the high clustering coefficient

[142] real-world graphs can be partitioned by discovering its strongly connected

components. Since graph connectivity can be used to detect similarity in a graph

[143], we employ the notion of strongly connected components to partition our

graph in further smaller groups of similar connectivity.

In this chapter, we present a Multi Layer Network Decomposition (µ-Layer)

that works as a general pattern for the analysis of networks on multi-core archi-

tectures. The µ-Layer algorithm takes its name from the fact that it decomposes

a network, based on its strongly connected components, into a layered organi-

zation and then uses these layers to represent that network within the multiple

cores of the GPU (Fig. 4.1). The current implementation takes a two layer

approach named Double Layer Network Decomposition (DLND) but, in theory,

the algorithm is generalizable to more layers. We introduce a new algorithmic

approach whose design is driven by the multi-core architecture of the GPU plat-

form. A graph is decomposed into smaller modules without loss of information.

We show that any graph G = (V,E) can be decomposed into components that

can be mapped to multiple cores. A new formula µ, relates the number of blocks

of threads NB(k) and the number of analysed components Cnum(G) and defines

the needed level of decomposition. This is feasible due to the introduction of

a novel data structure called ∆, that controls the balance between the number

of the cores that a multi-core processor contains and the number of components

that are needed to be analyzed in parallel.

Furthermore, we present an efficient graph processing technique on GPUs,

synthesised by four separate kernel functions that represent the needed steps to

implement a divide and conquer approach. In this chapter, we implement the

algorithmic structure needed for the all pairs shortest path computation over the

µ-Layer approach. We evaluate the µ-Layer algorithm by using a two layer (µ =

2) implementation as the number of blocks of threads in the used GPU are enough

to analyse all the candidate components of the tested graphs. Consequently, there
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is no need for further decomposition. The algorithm has been characterised across

a number of graphs with random, scale-free and small-world structure, generated

by a well known network platform called NetworkX [144]. Our experiments show

that a two layer implementation (µ = 2) achieved acceleration across all different

network structures relative to a serial Bellman-Ford approach implemented from

the igraph [135] platform and a parallel Bellman-Ford approach based on the

current state-of-art parallel graph library LonestarGPU [90].

The remainder of this chapter is organised as follows: We give the background

in Section 4.2. Section 4.3 gives the methodology of the new µ-Layer algorithm.

Section 4.4 describes the shortest path computation over a two layer (µ = 2)

implementation of the µ-Layer algorithm. Section 4.5 shows the experimental

results. Finally, we conclude with Section 4.6 that draws conclusions.

4.2 Background

Over the last decade, it has been revealed that real-world graphs have totally dif-

ferent characteristics from artificial graphs as tree and hypercubes [145, 146, 147].

They are not based on any explicit structure but they naturally evolve and grow.

Graphs as social networks, web graphs and protein protein interactions belong on

this category. A range of interesting properties, characterising these real-world

graphs, have been already identified. The most known feature is the small-world

property where the diameter of even large graphs remains small and shrinks

rapidly if some edges are randomly rewired [145]. They are also characterised by

high clustering coefficient meaning that nodes tend to cluster together in high

degree. That feature can create a natural way for graph partitioning based on its

Strongly Connected Components (SCC). In graph theory, an SCC is a maximal

subgraph where there exists a path between any two vertices in the subgraph

[140]. Real-world graphs tend to have a giant SCC of size O(N), where N denote

the total number of nodes in the graph [147]. The rest SCCs have small size,

however, they tend to be more frequent than large-sized components [148].

While each directed graph can be decomposed to a set of disjoint SCCs, we

use this concept to divide our analysed graph on further smaller subgraphs that

are processed concurrently. A classic sequential method for detecting SCCs in a
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graph is Tarjans algorithm [149] with a linear-time complexity. However, Tarjans

algorithm cannot be easily parallelised as it is an extension of depth-first search

(DFS) algorithm that is inherently sequential [150]. For that reason we compute

the SCCs in CPU and transfer the needed data in GPU.

Our DLND algorithm is a divide and conquer approach that processes all

strongly connected components concurrently. Both component and initial graph

graph are represented through the Compact Adjacency List (CAL) data structure

(Section 2.3.3) that stores only the non-zero values. Blocks of threads are respon-

sible to process concurrently each component and calculate the needed network

metric. In this Chapter, we focus on the acceleration of the all-pairs shortest path

(APSP) computation. We developed a framework that can be adopted by many

network algorithms and function as a scaffolding for their further acceleration.

4.3 Methodology

The development of the µ-Layer algorithm is based on the divide and conquer

approach. A problem is divided into multiple sub-problems that are solved in-

dependently and the individual results are combined to produce the final answer

[79]. Since graph connectivity can be used to detect similar functionality within a

graph [143], we employ the notion of strongly connected components to partition

our graph in further smaller subgraphs that are processed concurrently in GPU.

Since NVIDIA’s GPU threading model is organised on blocks of threads and the

size of the analysed components is irregular, we employ a new data structure

that facilitates the concurrent process of irregular sized components by thousand

threads.

4.3.1 Overview

Let G = (V,E) be an initial directed graph which can be partitioned in further

smaller sub-graphs by discovering its strongly connected components. A strongly

connected component is a maximal set of vertices C ⊆ V such that for every

pair of vertices u and v in C, we have both u −→ v and v −→ u, where vertices

u and v are reachable from each other [79]. Our algorithm utilises the concept
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Figure 4.2: The CPU side uses the µ-Layer concept to define the needed level of
decomposition in order to map all the inserted components in different processing
resources and synthesizes the needed double layer representation ∆ based on the
initial graph G. The last two steps of the divide and conquer approach, both
parallel processing and recombination of subnetworks are processed concurrently
in the GPU side.

of SCCs by mapping and processing multiple components concurrently in GPU.

The methodology of our µ-Layer algorithm is based on two main steps (Fig. 4.2):

• µ-Layer Decomposition: A new concept that defines the needed level of

decomposition in order to assure the analysis of all the components by the

existed blocks of threads provided by the used GPU.

• Double Layer Representation (∆): A novel data structure that controls

the balance between the number of the cores that a multi-processor contains

and the number of components that are going to be analysed concurrently.

Both steps are further described in the next subsections.

4.3.2 µ-Layer Decomposition

A graph is decomposed until its components can be mapped on the available

number of block of threads that a GPU architecture has (Fig. 4.3). This is

done by forcing, in every level of the decomposition, the algorithm to analyse

components less or equal than the number of blocks of threads. Let NB(k) be

the number of blocks of threads and Cnum(G) the number of components that

are needed to be analysed. If the number of components exaggerate the number
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Figure 4.3: µ defines the number of layers that a network needs to get decom-
posed in order to fit inside a GPU. It is closely dependent with the number of
available blocks of threads NB(k). For this specific scenario, where the number
of components is equal with 10 and there are only 3 blocks of threads to analyse
them, the needed levels of decomposition are equal with µ = 3. Symbols I, II, III
denote respectively the specific level of decomposition.

of available blocks of threads then the needed level of decomposition can be

expressed through the inequality:

NB(k)µ ≥ Cnum(G)

µ · log2(NB(k)) ≥ log2(Cnum(G))

µ ≥ log2(Cnum(G))

log2(NB(k))
(4.1)

where the number of needed levels of decomposition µ can be further expressed

as the ceiling of the logarithm of the number of components with base the number

of available blocks of threads :

µ =
⌈
logNB(k)(Cnum(G))

⌉
(4.2)

For instance, suppose the µ-Layer algorithm needs to analyse 10 components

but the available blocks of threads are only 3 (Fig. 4.4). Then due to the equation

4.2 the needed level of decomposition will be equal with µ = 3. Three levels of

decomposition are needed to fit all the components. The first level contains all the

separate components. In the next level, three groups are formulated due to the

number of available blocks of threads. As one of the group exaggerates in number
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Figure 4.4: Example: In this specific scenario, where NB(k) = 3 and Cnum(G) =
10, the first level I contains the separate components of the initial graph. In the
second level II, groups of three are formulated. As one of them contains more
components than the available blocks of threads then it is further decomposed.
The new third level III, that contains less components, makes possible now the
mapping of the available blocks.

of components then it is further decomposed to fit on the 3 blocks of threads.

This has as result the insertion of the third and final level of decomposition.

4.3.3 Double Layer Representation (∆)

Both the initial graph G and its strongly connected components C1, C2, . . . , Ck

are used to formulate the double layer representation (∆) in the CPU side. The

∆Up layer denotes an abstract form of the initial graph G synthesized by its

components and the lower layer ∆Down stores the actual subnetworks of each

component.

Suppose that the component graph GSCC = (V SCC , ESCC) has strongly con-

nected components C1, C2, ..., Ck. The vertex set V SCC is {v1, v2, ..., vk}, and it

contains a vertex vi for each strongly connected component Ci of G (Fig. 4.5).

There is an edge (vi, vj) ∈ ESCC if G contains a directed edge (x, y) for some

x ∈ Ci and some y ∈ Cj [79]. This process forms the upper layer ∆Up of the dou-

ble layer representation ∆. In Figure 4.6, each node of the ∆Up level represents a

condensed component ui. Their initial form is stored as individual subnetworks

Si in the ∆Down layer.

In essence the nodes of the graph G are the union of all components, where

V = C1 ∪ C2 ∪ . . .Ck. The new abstract graph ∆Up = (VUp, EUp) depicted in

figure 4.7 can be defined as:
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Figure 4.5: A set SSC of strongly connected components is detected on the initial
graph G = (V,E). If at least one directed edge (x, y) exists between the nodes
of components Ci and Cj, then a directed edge will exist between nodes on the
abstract network GSCC .
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Figure 4.6: The outcome of the graph decomposition is a double layer represen-
tation ∆. Each node ui of the component graph GSCC in the ∆Up layer represent
a condensed component. The ∆Down layer stores the original subnetwork Si of
each component individually.
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Figure 4.7: (a) µ-layer algorithm decomposes an initial graph G = (V,E) to
two further new graphs: (b) ∆Up where each node represents a condensed com-
ponent and (c) a second graph ∆Down that stores the initial state of the graph
components.

∆Up =

{
VUp = {C1, . . . , Ck}

EUp = {(i, j) | (v, u) ∈ E, v ∈ Ci, u ∈ Cj}

and the ∆Down = (Vk, Ek) that corresponds to a subgraph of G induced by

Ck, as:

∆Down =

{
Vk = Ck

Ek = {(v, u) | (v, u) ∈ E, v ∈ Ck, u ∈ Ck}

The content of the ∆ structure is totally related with the number of the

µ-Layer decomposition (Fig. 4.8). In the specific scenario where µ = 3, the

∆ representation has 3 stages of evolution. The first level contains a network

synthesised by the strongly connected components of the initial graph G. In

the next step, where µ = 2, groups of three components are formulating new
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Figure 4.8: While µ is getting increased, the content of the ∆ structure is evolved.
For instance when µ = 3, in the first level of decomposition the data structure
contains the components of the initial network G. In the next level, groups of
three components from the above level formulate new individual components.
As the last component exceeds the number of three, this forces the last level of
decomposition, where two further components are synthesised.
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individual components based on the previous stage. As the third group contains

more than three components, then it is furthered decomposed in the third level

(µ = 3) and formulates two more individual components. In each stage, the

upper level ∆Up of the ∆ contains a network of individual nodes that represent

the synthesis of more subnetworks that their real form is stored in the lower level

∆Down.

4.4 Implementation

The previous description of the µ-Layer decomposition was generic for any value of

µ. In this section, we describe the implementation of the Double Layer Network

Decomposition where µ = 2. Our DLND algorithm is a divide and conquer

approach that processes all the strongly connected components concurrently. We

apply DLND on the calculation of APSP by using a parallel implementation of

the Bellman-Ford algorithm [79]. Blocks of threads calculate APSP concurrently

on each component and results from each component are combined to provide

the all pairs shortest paths over the whole graph. Our decision to use the APSP

calculation was driven by the fact that the APSP problem forms the basis of

numerous network metrics and centralities needed by graph analysis tools as

mentioned in Section 2.1.

Overview

The DLND implementation of the Bellman-Ford algorithm is outlined in pseudo-

code in Algorithm 3. The Double Layer Network Decomposition (DLND) algo-

rithm, where µ = 2, begins with the transformation of the initial graphG = (V,E)

to a compact adjacency list Gcal that minimizes the memory storage (Algorithm

3). The same tactic is followed for the network of components Gscc
cal . Both Gcal

and Gscc
cal compact adjacency lists are combined to form the double layer data

structure ∆ = (∆Up,∆Down) that decomposes the initial graph G into smaller

size parts (Fig. 4.9). Briefly, in words, the algorithm consists of the following

steps:

1. Precomputation: Needed variables as the largest component and needed
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size of the new normalised structure are computed.

2. Normalization: As the number of nodes in each component is irregular, a

new array is set up based on the largest component detected in the previous

step in order to create a homogeneous data structure easily separable in

equally numbered data portions.

3. Parallel Processing: Multiple blocks of threads compute the all pairs

shortest path in each sub-network concurrently.

4. Recombination: The components detected on the shortest path in the

upper layer are combined together concurrently based on common vertices

existing between them, in order to provide the final answer.

We decided to use four separate kernels in order to accelerate not only the

section of graph processing but also all the processes related with the pre- and

post-processing of graphs. The two first kernels related with the precomputation

and normalisation could be also executed in the CPU side. However, as GPU

provides enhanced processing resources and the nature of the problems is embar-

rassingly parallel we decided to use GPU in order to enhance the overall speedup.

Details of the individual steps are given in the following sub-sections.

Precomputation Kernel

The precomputation Kernelpre( SCC, Size) takes as input a set of strongly con-

nected components SCC and detects the largest one CMax. Its size multiplied

with the number of components Cnum provides the size of the new array that

needs to be allocated in the parallel processing kernel Kernelparal( Size,∆norm )

in order to implement the normalisation of ∆. The precomputation Kernelpre as

all the other kernels of the µ-Layer algorithm are launched with the same num-

ber of blocks of threads NB(k). Its value is defined by the number of strongly

connected components Cnum(G). The existence of that pairing is due to the im-

plementation of the specific scenario where µ = 2. There are enough blocks of

threads available that can be equally allocated on the components without the

need of further decomposition (Fig. 4.10). Threads Nt(k) of each block of threads
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Algorithm 3 The multithreaded DLND algorithm that decomposes the initial
network to multiple components that are mapped and processed by several blocks
of threads.
Input: Initial directed graph G(V,E) and Strongly Connected Components
SCCs.
Output: Shortest path Spi.

1: function Main( )
2: Memory Allocation(Host)
3: Synthesize ∆ = (∆Up,∆Down)
4: Di

sp[]← Compute all pairs shortest path in ∆Up

5: Memory Allocation(Device)
6: Data Transfer(Host =⇒ Device)
7: Kernelpre [< NB(k) >](SCC, Size)
8: . [< .. >] denotes the kernel launch with NB(k) threads
9: Kernelparal [< NB(k) >](Size,∆,∆norm)

10: for u ∈ V do
11: Kernelcomp [< NB(k) >](∆norm, Ssp)

12: Kernelcombin [< NB(k) >](Ssp, Spi)
13: Data Transfer(Device =⇒ Host)

C1
C2

C3

C4

C5

Ck-1

Ck
.....

....

C1 Ck...C2C3

C2C3C4C5

S1S2S3 Sk

Ck-1...

......

Components 

Subnetworks

Δ

Figure 4.9: The decomposed network is stored on a Double-Layer data structure
(∆). The ∆Up is the network of components and the ∆Down stores the related
subnetworks. Both layers are implemented on a Compact Adjacency List (CAL).
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are responsible for processing not only the allocated vertices but also its outgoing

vertices (Fig. 4.11).

Algorithm 4 Kernel that pre-computes needed variables. Detects the largest
component and calculates the needed size of the new normalised structure.
Input: Strongly Connected Components SCCs.
Output: Size of the biggest SCC.

1: function Kernelpre( SCC, Size )
2: do in parallel
3: CMax ← Size of largest SCC
4: Size ← CMax × CNum
5: return Size

Normalization Kernel

The CAL data structure representing the graph should be able to be partitioned

into equally sized parts before insertion into the GPU. Separate block of threads

will be responsible for their analysis. However, the number of nodes contained

within the components C is not uniform. Consequently, the structure represent-

ing the data should be normalised (Fig. 4.10). This is done by detecting the

component with the largest number of nodes and based on that value a new ho-

mogeneous data structure New[Size] stores the normalised data representation

∆norm. If the number of nodes in a component is less than the size of the array,

then the empty cells are filled with a value denoting that. When the kernel is

launched, equal parts of data are assigned on different blocks of threads. Each

thread is responsible for processing each node of the component and its outgoing

edges (Fig. 4.11).

Parallel Processing Kernel

Once a kernel is launched each block of threads accesses a unique part of the

CAL data structure ∆ which denotes a different subnetwork Si. By processing a

copy of the same code, the shortest paths Ssp are computed concurrently in all

subnetworks. However, data dependencies don’t allow the total parallelization of

the SP algorithm.
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Figure 4.10: Each separated segment of the ∆ data structure denotes a component
Ci with its subnetwork Si. Data are normalised before they mapped on the
different blocks of threads.

Algorithm 5 Kernel related with the parallel process of subnetworks. Rearrang-
ing and normalising networks.
Input: ∆ double layer data structure and Size of the biggest SCC.
Output: ∆norm normalised ∆ data structure.

1: function Kernelparal( Size,∆,∆norm )
2: do in parallel
3: Rearrange networks by using New[Size]
4: ∆norm ←Normalised ∆
5: return ∆norm
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The Bellman-Ford algorithm computes the distance of a node v, by comparing

its distance with the sum of the distance of the node u plus the weight that lays

between the two nodes (Section 2.1.2). Results containing previously computed

distances are expected by multiple threads working in parallel. This is solved by

iterating the same code times proportional to the number of nodes u ∈ V . This

can be described as a sequential loop that in each iteration internally conducts

parallel execution. Instead of using two kernels as in [111], only one kernel with

an external for loop was used. A new array stores in a unique position the

distances of each node from the source node inside the subnetworks. The size

of the array scales from zero, which denotes the source node, until the total

number of nodes contained in the subnetwork. As the network is partitioned

its scale changes. The correct definition of the distance array is needed for the

normal function of the SP algorithm. Consequently, a rearrangement of the nodes

in each subnetwork is needed. Figure 4.11 shows threads t1, t2, t3 belonging to

Block1 penetrating the nodes of the subnetwork. Threads are assigned only on

the nodes of the component and they are responsible for processing every attached

node on them. As the shortest path computation is based on the Bellman-Ford

algorithm, then its relaxation step [151] is executed concurrently by multiple

threads running on GPU. For instance, thread t1 is responsible to compute both

relaxation inequalities :

d[n] > d[k] +Wkn (4.3)

d[p] > d[k] +Wkp (4.4)

as node k has two outgoing edges to node n and p, where Wkn and Wkp are the

weights between node pairs k - n and k - p respectively. The same process is

happening in parallel in all the nodes of each components.

In Algorithm 6, at the beginning of the kernel an inequality statement ensures

that the number of threads id launched by the Grid will not exceed the size of

the data structure in Figure 4.12. The needed boundaries that should not be

outreached, are given by multiplying the number of components Cnum with the

size of each component Csize. The same strategy is followed for the individual

70



k

l

n
C1
p

k

0 2 3

0 21 3
n

S1

p

k n

p
l

t1 t2 t3

t1

t2

t3

Figure 4.11: Parallel Thread blocks are processing individually multiple sub-
networks. Each thread is allocated on each node and is responsible for all the
connected edges.

Algorithm 6 The CUDA specific Update function of the Computation Kernel.
It shows the use of block threads for concurrent access in data.
Input: ∆norm normalised ∆ data structure.
Output: Ssp Shortest Paths (SP) in each subnetwork S.

1: function Kernelcomp( ∆norm, Ssp )
2: id← threadIdx.x+ blockIdx.x ∗ blockDim.x
3: stride← blockDim.x ∗ gridDim.x
4: idbl ← blockIdx.x
5: idth ← threadIdx.x
6: while id < Cnum ∗ Csize do

7:
...

8: function Distanceupdate( )
9: if idth < Csize then
10: if Udist[idth + (idbl ∗ Csize)] <
11: Ddist[idth + (idbl ∗ Csize)] then
12:

13: Ddist[idth + (idbl ∗ Csize)] =
14: Udist[idth + (idbl ∗ Csize)]
15:

...
16: id+ = stride;
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Figure 4.12: Accessing data concurrently. Each block of threads BlockIdx.k is
responsible for a Csise component. Each thread ThreadIdx.n compares in parallel
the distances stored in two separate arrays Ddist[] and Udist[]. Threads should
not excced the total size of the structure Csize.

threads that are accessing separately each cell of size mL. The statement (idbl ∗
Csize) enclosed between the brackets of both Ddist and Udist arrays in the update

function Distanceupdate( ), provides parallel data access across all the components

with the help of idbl blocks of threads. The Ddist array stores all the computed

distances while the Udist is used for consistency. Distances are firstly stored in

the update array Udist and then they replace the distances in Ddist if only they

are smaller than Udist. The addition of the thread id idth in both Ddist and

Udist expressions will force threads to access each cell individually. It is used to

compare the node distances of the two arrays Ddist and Udist that are stored in

separate cells (Fig. 4.12). All the threads assigned to Ddist are responsible to

compare concurrently and update, if it is needed, its values.

Recombination Kernel

The last step of the µ-Layer algorithm is the composition of the independent SP

results Ssp produced by each subnetwork into a unified answer Spi concerning the

total network. The computation of the all pairs shortest paths in the components

network GSCC was preceded of the parallel processing process. This provided an

array Di
sp[] for each single SSSP, in the beginning of the algorithm 3, denoting

the backtracking path from a node Ck−1 to a source node Ci (Fig. 4.13).

The representation of the components tracked on each SSSP are normalised

back to the size of the initial graph. Each pair of components is processed con-

72



Algorithm 7 Kernel responsible for combining subnetworks to provide the final
answer for the APSP computation.
Input: Ssp SP in each subnetwork S.
Output: Shortest paths Spi.

1: function Kernelcombin( Ssp, Spi )
2: Sj ← predecessor of Si
3: do in parallel for all Si, Sj ∈ Csp
4: for all vi ∈ Si and uj ∈ Sj then
5: if vi = uj then
6: if d[vi] = s then
7: d[Sij]← d[vi] + d[uj]
8: elseif d[vj] > d[vi] then
9: d[Sij]← d[vi]

10: end If
11: else
12: Add new node ui on Sij
13: Store new node’s ui distance on d[Sij]
14: end if
15: Sij ← Si ∪ Sj
16: Spi ← Sij ∈ P
17: return Spi
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Figure 4.13: Each component Ci is related with a subnetwork Si denoting its
previous state. Let the SSSP from source node C3 to Ck−1 contains the related
subnetworks from S3 to Sk−1 then the APSP distances of pairs of components
are processed concurrently by the combination kernel. Similar nodes are tracked,
their distances are updated to the minimum cost path and stored on a new APSP
matrix. All produced APSP matrices are further compared to provide the final
APSP result Spi.

currently by multiple blocks of threads. The combination kernel is responsible to

detect similar nodes between the processed pair of components Sij and update

their distances d[Sij] by storing the smallest values. The product of all compar-

isons between pairs of components for a single SSSP is stored on a new n × n

matrix, where n the number of nodes in graph G. All steps described above are

repeated for all the SSSPs in GSCC and their APSP matirx products are further

compared to provide the final APSP result Spi (Algorithm 7).

Performance Analysis

The development of the µ-Layer algorithm is based on the Divide and Conquer

approach. The philosophy of such an algorithm supposes that a graph problem of

size n is decomposed into two or more smaller subnetworks that can be processed

in less time Ts than the normal T (n). Let Td(n) be the time needed for the

decomposition and Tc(n) the time to combine each of these smaller solutions to

one final answer, then the total computation time is given by [152]:

T (n) = Td(n) + Ts + Tc(n) (4.5)

Based on the same logic, the µ-Layer algorithm implements a parallel divide

and conquer approach, where both the smaller problems and the recombination

74



process are implemented through a series of kernels running in parallel on multiple

GPU cores.

In this study we used the µ-Layer algorithm with two levels of decomposition

(µ = 2) and as such this version is called Double Layer Network Decomposition

(DLND). DLND’s execution time TDLND(n) is expressed as the time spent both

in CPU and GPU. Due to the equation (4.5), the execution time can be expressed

as:

TDLND(n) =

CPU︷ ︸︸ ︷
T∆(n) +

GPU︷ ︸︸ ︷
(Tkpre(n) + Tkparal(n) + Tkcomp(n))

+ Tkcombin
(n)︸ ︷︷ ︸

GPU

(4.6)

where the total time needed by the DLND is expressed through the summation

of the time spent by CPU to develop the Double Layer Representation ∆, plus

the time needed by the three kernels (Tkpre(n), Tkparal(n),Tkcomp(n) ) to process

in parallel the allocated components and the kernel Tkcombin
(n) that combines the

produced information to synthesize the all pairs shortest path.

4.5 Evaluation

DLND’s performance has been assessed by conducting extensive tests with net-

works of different structure, number of nodes and edge density. We initially eval-

uate our DLND algorithm with real-world graphs, provided by e-Therapeutics

[4]. The tested graphs represent protein-protein interactions and their size range

till 3487 nodes and 57949 edges (Table 1). Futhermore, the algorithm has been

evaluated by using four different network generators provided by the NetworkX

platform [144]. The tested networks ranged from 512 to 8192 vertices and contain

up to almost 2.5 million edges (Table 2). The experiments were conducted on a

single NVIDIA GeForce GTX 560 card with 1GB memory and 7 multiprocessors

(336 cuda cores) controlled by an Intel Core i5-2500 CPU processor @3.30 Ghz

(4 cores) with 3.9GB RAM, running Ubuntu 12.4. Based on equation 2.5, the

speedup is computed as the ratio of DLND’s execution time TDLND(n) to serial’s
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running time TSerial(n) :

Speedup =
TDLND(n)

TSerial(n)
(4.7)

Results

In Figure 4.14, we evaluate DLND’s performance over real-world graphs repre-

senting protein interaction networks [4]. DLND’s performance is compared with

a similar Bellman-Ford approach implemented with the c++ igraph platform

[135] and a GPU-based approach implemented with the state-of-art LonestarGPU

graph library [90]. Both parallel DLND and LonestarGPU implementations are

slower than the CPU-based igraph implementation for the first small graph sam-

ples (Fig. 4.14). Overheads created due to data transfer from CPU to GPU

are causing the overall degradation in performance. However, DLND begins to

achieve a faster APSP computation beyond the graph sample with size of 2000

nodes. In the largest graph sample, DLND accelerates APSP computation by 1.8

times in comparison to the igraph library and 1.3 times to the GPU-based ap-

proach (Table 1). However, in order to further characterise DLND’s performance

and assess its capability for further acceleration, we conducted a series of tests

with graphs of variable number of nodes, edges and structure.

We conducted experiments with graphs of variable number of nodes and edges.

Vertices ranged from 512 to 8192 and arcs from 2K to 2.5M. Based on the edge

density probability, each sample of the same distribution and set of nodes, had

four different sets of edges, that gradually increased in relation to their probability

that ranged from 0.01 to 0.04. The number of edges was generated based on the

edge density equation [30]:

density(G) =
m

n(n− 1)
(4.8)

where n the number of nodes and m the number of edges. Density is defined

as the ratio of the number of actual to possible edges. The use of different edge

density corresponded to a graph with a unique number of edges. The parameters

of the generating functions has been accordingly adjusted in order to produce
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Figure 4.14: DLND’s performance compared with a sequential Bellman-Ford approach
(igraph) and GPU-based one (LonestarGPU), over real-world graphs.

graph samples with the right number of edges emerged by equation 4.8.

Figure 4.15 compares DLND’s performance over scale-free graphs [144] where

the edge density is gradually increased from p=0.01 to p=0.04. In all four figures

it is clearly depicted that DLND consumes less time in contrast to the serial igraph

implementation. While the edge density is getting larger DLND’s execution time

remains almost the same but the execution time of the serial implementation is

doubled each time. DLND is 1.5 times faster than the GPU-based (LonestarGPU)

approach and accelerates the shortest path computation 3.43 times more than the

serial Bellman-Ford (Table 3).

The algorithm has been tested over networks with different structural char-

acteristics. The tested graphs with small world, random, scale free and powerlaw

distribution of average clustering coefficient have been generated by the NetworkX

platform [144]. The Newman-Watts model [153] has been used to generate small-

world graphs with high clustering coefficient and average shortest path [154].

Scale-free networks characterised by a powerlaw distribution has been generated

based on the Barabasi-Albert model [146]. Such graphs tend to have few nodes

with many connections and most nodes with very few link connections [116]. A
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Figure 4.15: DLND TDLND(n) compared with igraph and LonestarGPU, over graphs of same
structure and same probability of edges density ( p ) but scalable number of nodes.
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Figure 4.16: DLND execution time TDLND(n) over networks of different distribu-
tion with same set of nodes each time but scalable probability of edges density (
p ).
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similar model named as Holme-Kim grows graphs with powerlaw distribution but

an approximate average clustering coefficient [155]. Random networks has been

produced through the Erdos-Reyni generator [156], [157].

Figure 4.16 depicts a collection of data obtained from the execution of the

DLND over networks of different structure but with the same number of nodes.

The first two figures shows that better performance is achieved for powerlaw net-

works with average clustering. In contrast the two next figures, where the number

of nodes is increased, show that DLND achieves better acceleration for networks

of small-world structure. The variance of the time execution can be justified by

considering the fact that networks belonging in this family are characterised by

higher clustering coefficient than the others. Consequently, the larger number

of components the better the mapping and distribution to blocks of threads of

the GPU. Furthermore, we also tested igraph and LonestarGPU implementations

over the same graph samples. The maximum speedups achieved by DLND over

igraph and LonestarGPU were 5.31 and 2.56 times improvement, respectively

(Table 3).

Furthermore, apart from evaluating the performance of our DLND algorithm

we also verify the correctness of its results. While DLND’s APSP results are pro-

vided by approximation we compared them with results produced from a common

APSP approach based on the sequential Bell-man ford algorithm. In particular,

we repeated their execution for 1000 times and used the average values from both

algorithms in order to validate our APSP results. Our experiments showed a 3

percent error between the APSP results of our DLND and the common APSP

approach. Such errors are generated in the recombination process where indepen-

dent APSP results from each component are combined together to provide the

final APSP answers. These results are combined based on the condensed upper

layer network. However, all the connections between components in the upper

layer are replaced by design with single edges. This process affects the initial

connectivity of the graph where some direct paths between nodes belonging in

the analysed components used to exist. Consequently, their absence from the

upper layer network may create some errors in path computation.

Our experiments have shown that our DLND algorithm in comparison to

similar GPU-based approaches can provide a maximum speedup of 2.56x for the

80



APSP computation. However, we expected higher speedups due to the enhanced

processing resources that GPUs are equipped with. The embedded graph proper-

ties as well as the dependencies existing between graph data prevented a full scale

parallelisation and mapping in the GPU. As a result, we applied the strategies

of graph division and parallel processing. In particular, the analysed graphs are

partitioned in smaller components that are concurrently processed in GPU. Each

component is processed by a different block of threads that is executed concur-

rently in the available GPU cores. By applying this strategy we concluded that

same speedups would be also achievable in a multi-core CPU. It appears that

enhanced processing resources cannot offer enough acceleration in problems as

the parallel graph processing due to their irregular structure and dependencies

between data.

Finally, based on the observed speedups we concluded that our DLND al-

gorithm is not so efficient for small scale graphs. However, when we increased

the amount of the workload by using larger graphs then we observed better ac-

celerations ranging from 1.5x to 2.56x. It appears that communication over-

heads between CPU and GPU and also the small workload of biological graphs

contributed in the not so efficient acceleration. Our DLND algorithm is more

suitable for larger graphs with higher edges density and higher clustering coeffi-

cient. Such graphs provide enough workload in GPU and help to overcome any

additional communication overheads.

4.6 Summary and Conclusions

This work studies both processes of tailoring and implementing graph analysis

algorithms on parallel multi-core architectures as GPUs. We proposed a novel

algorithm that is based on the divide and conquer approach. The new method de-

composes a graph to further abstract layers where smaller subgraphs are processed

by multiple concurrent blocks of threads. The proposed method was rigorously

evaluated by using real-world and artificially generated graphs as small-world,

scale-free, random and an average clustering coefficient version of powerlaw dis-

tribution with variable edge density and number of nodes. Our algorithm demon-

strated a 5.31x speed-up relative to a serial APSP implementation and 2.56 times
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faster than a GPU-based approach.
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Chapter 5

Linear algebra approach for

parallel graph exploration on

FPGAs: case study of APSP

5.1 Introduction

Graphs describe systems as diverse as social [129] and biological communities

[22]. Traversing quickly these graphs is a challenge for both algorithms and

architectures due to their size and structure. A graph traversal corresponds on the

systematic exploration of all nodes and edges. The most common used algorithm

for graph exploration is breadth first search (BFS) and consists a key subroutine

in other graph algorithms.

Algorithms as BFS have data-driven computation dictated by the structure

of the graph. Common software and hardware cannot provide efficient imple-

mentations as they mostly favour regular computations with low memory foot-

prints and penalize fine-grained random memory accesses with poor spatial and

temporal locality. Such problems lead to low compute capacity utilisation with

execution times dominated by memory latency. Reconfigurable computing as

field programmable gate arrays (FPGAs) can tackle this with the use of cus-

tomised hardware design and software flexibility. Many studies have attempted

to implement graph exploration on FPGAs. Most of them focused in memory
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Figure 5.1: Computing BFS based on linear algebra through a fully pipeline
implementation.

optimization techniques and targeted on specific FPGA platforms that optimize

memory latency [101], [158].

Most parallel BFS implementations are based on the concept of reusing the

common sequential BFS algorithm as a core subroutine in their parallel designs.

However, this approach doesn’t solve the problem of irregular data access as

common serial BFS amplifies it more. The use of linear algebra has recently

proved a major alternative approach in distributed memory systems [102]. Graph

algorithms can be expressed as a sequence of linear algebraic operations where

BFS is equivalent with the fundamental operation of matrix vector multiplication.

In this Chapter, we propose using a linear algebra based implementation of BFS

in FPGA. We suggest to map the BFS computation on a reconfigurable platform

based on a sparse matrix vector multiplication (SpMV). In SpMV based BFS,

new nodes are discovered through consecutive multiplications of the transposed

graph adjacency matrix AT multiplied with an initialised vector that its values

denote the source node and the ones that will be discovered (Fig. 5.1).

We propose the transformation of complex sparse graph algorithms to a sparse

matrix matrix multiplication (SpMM) algorithm. This is a generic method for

mapping sparse graph algorithms to FPGAs. The main property enabling embar-

rassing parallelism is that matrix-matrix multiply might be thought as a collection

of matrix-vector multiplies with same matrix but different vectors. This approach
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provides us with an embarrassingly parallel execution strategy where graph data

dependencies are no more existed and can be easily implemented on dataflow im-

plementation. As each matrix vector multiply corresponds on a BFS search this

can easily provide the distance of a visited node from its source only by storing

the level that it has been discovered. This process is commonly known as single

source shortest path (SSSP) computation (Section 2.1.1). As a case study for

our design we use the SpMV based BFS to compute the all pairs shortest paths

(APSP) of a graph by simply executing multiple BFS searches from all nodes of

graph. So SSSP results from individual BFS searches synthesise the APSP.

As we discussed in Section 2.2.5, there were many attempts to accelerate BFS

on FPGA platforms. In this study, we build upon ideas from two previous works

related with concurrent execution of multiple sequential BFS searches [81] and

expression of BFS as a linear algebraic operation equivalent with sparse matrix

vector multiplication (SpMV) [102]. We incorporate them into an optimized

graph traversal solution that is defined as the computation of multiple concurrent

sequential BFS searches implemented as SpMVs on FPGA.

In this Chapter, we present a custom hardware accelerator for parallel graph

exploration that works both for dense and sparse graphs. We introduce an FPGA

friendly dataflow architecture for APSP computation based on linear algebra

which has a non-trivial parameter space presented in Section 5.3. We present a

case study of computing all pairs shortest paths (APSP) based on concurrent BFS

searches in Section 5.3.4. We provide a fully pipelined implementation that avoids

any stalls in Section 5.4. Finally, we evaluate the proposed design in Section 5.5

on a range of graphs and compare its performance with well established CPU and

GPU implementations.

5.2 Background

Graph representation

A graph G can be written as G = (V,E), where V is a set of N vertices and E

is a set of M directed edges. It can be represented as N × N matrix A where

N =| V | and A(i, j) = 1 whenever (i, j) is an edge (Section 2.1.1). Instead
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of using a whole adjacency matrix A, graph’s representation can be compressed

through the Compressed Sparse Row (CSR) data structure (Section 2.3.3) that

stores only the non-zero values.

Breadth First Search (BFS)

Given a source vertex s, breadth-first search systematically explores the edges of

G to discover every vertex that is reachable from s. BFS forms a fundamental

building block for many graph algorithms as finding maximum-flow/minimum-cut

[159] and detecting community structure [160] in graphs. It plays significant role

in shortest path computation as it can naturally compute the distance of a visited

node from s by storing the current BFS exploration level. The algorithm discovers

all vertices at distance k from s before discovering any vertices at distance k + 1

(Section 2.1.3). The end of BFS level k consists of the barrier synchronisation

before BFS proceeds in the next level k + 1. The majority of novel parallel

BFS implementations follow the general structure of the level synchronous BFS

algorithm by adapting it to better fit on the underlying architecture. Algorithm 8

is a high level description of a parallel level synchronous BFS implementation. It

exposes the nature of parallelism but abstracts several important details related

with the needed queue data structure. Operations as push and pop that are

needed while discovering new nodes and expanding frontier are not included. It

mainly explains how distances of nodes are computed related with the BFS level.

The distance of a new discovered node will be equivalent with bfsLevel+1, where

bfsLevel equals with zero when BFS search is on source node.

However, an alternative implementation of the level synchronous BFS can be

given through linear algebraic operations. The search of each BFS level from

source node s is computationally equivalent to a sparse matrix - vector multi-

plication (SpMV) where xks denotes the kth frontier, represented as vector with

integer variables. The exploration of level k+1 in BFS is algebraically equivalent

to [102], [161] :

xk+1
s ←− AT ⊗ xks (5.1)
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Algorithm 8 Level-synchronous BFS

Input: G(V,E), source vertex us
Output: Array distance[1..n] with distance[i] = minimumdistance(us, ui)

1: parallel for each node ui ∈ V do
2: distance[i]←∞
3: end parallel for
4: distance[s]← 0, bfsLevel← 0
5: repeat
6: done← true
7: parallel for each node ui ∈ V do
8: if (distance[i] = bfsLevel) then
9: for (uj adjacent to ui) do

10: if (distance[j] =∞) then
11: distance[j]← bfsLevel + 1
12: done← false

13: end parallel for
14: bfsLevel = bfsLevel + 1
15: until done == true

where AT corresponds on the transposed adjacency matrix and ⊗ implies

the matrix-vector multiplication process through a special semiring that refers

to abstract algebra axioms. The algorithm does not have to store the previous

frontiers explicitly as multiple sparse vectors. Multiplying xks by AT gives nodes

two steps away and so on. For instance, let a be the source node of graph G (Fig.

5.2) expressed through vector x1
a where x1

a(a) = 1 and distance of source node

Dn[a] equal with zero. The multiplication of AT with x1
a picks out the nodes c, b.

As this is the first BFS level then the distance of Dn[b] and Dn[c] will be equal

with level L1. This multiplication is repeated until all nodes of the graph are

discovered. Multiplication stops when the product of vector x2
a with AT discovers

the last node d. The result of this process is an array Dn that contains the

distances from a source node to all the others which is commonly known as single

source shortest path (SSSP) computation [79].
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Figure 5.2: BFS based on SpMV: Each multiplication of the transposed sparse
matrix AT with the vector xks discovers new nodes in the next BFS level. The
distance of a node from the source node is equal with the current BFS level except
the distance of the source node that is zero.
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BFS based algorithms: case of all pairs shortest path (APSP)

If the same procedure of BFS search is repeated for all nodes then all pairs

shortest path (APSP) can be computed. The use of BFS algorithm for computing

APSP is named as all-pairs breadth-first-search (AP-BFS) [53] and its complexity

is O(|V |(|E| + |V |)). As we discussed in Section 2.1.1, APSP can also derive

from repetitive SSSP computation based on algorithms as Dijkstra (O(|E| +

|V | log |V |)) and Bellman-Ford (O(|V ||E|) or from traditional APSP algorithms

as Floyd-Warshal where its computational complexity is O(|V |3) [79].

In this study, we provide an APSP case study based on a BFS FPGA-based

implementation. The following commutative diagram illustrates the relation be-

tween graph and linear algebra problems:

G BFS APSP/SSSP

AT SpMV SpMM

(5.2)

A graph G that is represented as an adjacency matrix AT is explored by BFS im-

plemented as sparse matrix vector multiplication (SpMV). The result of multiple

SpMVs that form a sparse matrix matrix multiplication (SpMM) correspond to

multiple SSSPs that APSP consists of.

5.3 Hardware Architecture

In this section we propose a reconfigurable computing solution for efficient graph

exploration based on SpMV. Figure 5.3 shows the general structure of our design.

Multiple hardware pipes equivalent to BFS threads, equipped each with indepen-

dent BRAM buffer, SpMV circuit and control logic, are concurrently executing

independent SSSP computations.

The logic of each BFS thread is implemented through our SSSP kernel. The

adjacency matrix representing graph G is stored in DRAM. All needed vectors

are hosted in BRAM. Pipes share the same adjacency matrix stored in DRAM

but only one vector is assigned on each of them. Matrix data are streamed

contiguously and repeatedly from DRAM to BRAM. If vectors are small in size
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Figure 5.3: Overview of our reconfigurable graph exploration algorithm. Multiple
BFS threads with independent BRAM buffers, SpMV kernel and contol logic
searching graph from different source nodes.

then they are placed in BRAM. Otherwise if their size exaggerates BRAM then

matrix blocking is applied. Each BRAM buffer implements a window in the

vector of its pipe, stored in DRAM. In each cycle vector’s next entry is transferred

from DRAM and stored in BRAM. The same technique is applied to old vector

entries that are sent from BRAM back to DRAM once they are not needed any

more. This traffic is fully overlapped with computation. The size of graph data

transferred from DRAM to BRAM is only constrained by the size of the used

shifting window.

In our design, the number of hardware pipes is less than the total number of

nodes in graph. Consequently, less pipes need to process more than one of the

source nodes. Each pipe begins a BFS search from a new source node only after it

has finished its execution with the previous one. All pipes conduct the multipli-

cation of current entry of the global shared matrix with the entry corresponding

to the same position in their local vector. This process forms the parallel exe-

cution of concurrent BFS threads where if it is repeated for all source nodes of

the graph, provides as outcome the all pairs shortest paths (APSP). However,

the nature of the design implies that each pipe may finish its SSSP on a moment

totally different from other threads, so synchronisation strategy is ever required.
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5.3.1 SSSP Kernel

Our SSSP kernel based on SpMV computes the single source shortest path (SSSP)

from a given node to all the other nodes. Vector Dn used by SpMV is stored in

BRAM. It is initialised to nth unit vector to denote source node Sn from which

it will start exploring the given graph. If new nodes are discovered then data in

BRAM are overwritten in place in order to include the new distances. Array Dn

stores the distances between source node Sn and the current visited node. Its

binary format is also used for next SpMVs as it points out from which nodes to

continue search. The SSSP kernel also uses a binary array nodeV isitn stored in

BRAM. It is updated synchronously with Dn whenever a new node is discovered

and is used to check if node has been already visited in the past. Algorithm 9

illustrates the SSSP computation for unweighted edges. Weighted graphs could

also be supported, if additionally to Dn and nodeV isitn array we add a vector of

total paths to each pipe.

The mechanics of the SSSP kernel can be summarised in two main states (Fig.
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5.4):

• Initialisation: The arrays Dn and nodeV isitn are initialised with zero in

the very first cycles until initEnable signal, that denotes the initialisation

period is over. Only nodeV isitn[Sn] is initialised with one indicating that

source node Sn has already been visited.

• Multiplication: As multiply process constantly uses vector xks in order to

check its values then random memory access is needed. In our design this is

avoided by keeping vector in BRAM. Only one nonzero entry is processed

per cycle so there would be only one random memory access on vector. As

there is no need to duplicate vector data in BRAM then more resources are

free to be used and larger number of pipes are available to be launched.

The product of a common matrix vector multiplication is computed by mul-

tiplying all the values of matrix row with vector values and adding them

all together. In our implementation graph data are represented with CSR

which means that only non zero values (nnz) are stored. These nnzs corre-

spond to values of one so multiplication with vector xks is not needed as it

does not alter the final result. Only addition is needed which is equivalent

with the logical OR operation (Algorithm 9). The accumulation of the log-

ical OR operation is implemented by using a feedback loop. Distance data

are translated on the fly into binary format and are used as input to feed-

back accumulator. The result of accumulation that denotes the existence of

a new node or not is written back to BRAM. Also there is a short stall stage

at the end of matrix multiply which guarantees that accumulator will write

correctly the data to BRAM before next state begins. In contrast no stalls

exist at the matrix multiply state due to the sequential implementation of

SpMV.

If the product of accumulation nodeDiscovery is equal with one and nodeV isitn

is zero this means the discovery of a new node that has never been visited

before in the past. In such case the distance of the discovered node is up-

dated with the current BFS step. SSSP kernel is terminated either if the

whole matrix multiply has been finished and did not discovered any new

92



nodes or if system counters denote that all nodes has been already discov-

ered. This technique helps to save a wasted matrix multiply that could

happen if we have already discovered all nodes at this matrix multiply. At

the end of the SSSP kernel, stored distances are read and moved back to

DRAM while in the same time we overwrite them with the data of nth

column of unit matrix.

Algorithm 9 SSSP Kernel

Input: G(V,E), source vertex Sn
Data: Array nodeV isitn[1..n]
Special Function: binary(n), if n > 0 returns 1 otherwise 0
Output: Array Dn[1..n]

1: initEnable← 1
2: for each node ui ∈ V do
3: Dn[i]←∞
4: nodeV isitn[i]← 0

5: Dn[Sn]← 0, nodeV isitn[Sn]← 1
6: initEnable← 0, bfsStep← 0
7: binx ← 0
8: if (initEnable == 0) then
9: repeat

10: for each node ui ∈ V do
11: nodeDiscovery[i]← 0
12: for (all nnz ∈ ui) do
13: binx ← binary(Dn(i))
14: nodeDiscovery[i]← nodeDiscovery[i] ‖ binx
15: if (nodeDiscovery[i] == 1 && nodeV isitn[i] == 0) then
16: Dn[i]← bfsStep+ 1
17: nodeV isitn[i]← 1

18: bfsStep← bfsStep+ 1

19: until Dn == idle

5.3.2 Parallelisation and Synchronisation

As we discussed earlier, the SSSP kernel is responsible to explore a graph from a

certain source node Sn. Multiple instances of the same SSSP kernel are named as
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BFS threads. They can execute parallel BFS searches and compute SSSPs from

multiple source nodes Sn. Algorithm 10 describes the parallel exploration of all

nodes for a given graph G. It takes as input the transposed graph GT and the

number of used pipes numPipes that denote the number of same circuit copies

that can be deployed on FPGA. The ’synchronise’ statement below the SSSP

kernel call indicates the synchronisation of concurrent BFS threads. Synchroni-

sation is mostly needed when a BFS thread terminate its graph exploration and

it will need to start a new search from a different source node. In this case it will

need to synchronise the reinitialisation of its buffers and output SSSP results on a

matrix distAll. This matrix will host all results from all BFS threads. After the

termination of their execution matrix distAll will provide the all pairs shortest

paths (APSP) computation.

Algorithm 10 All-pairs shortest path: BFS SpMV-based

Input: GT : transposed graph with CSR representation,
numPipes: number of concurrent pipes
Output: distAll[][]: matrix with all pairs shortest paths

1: parallel for each node u ∈ V do
2: KernelSSSP (GT , numPipes);
3: Syncronise();
4: end parallel for

The synchronisation of BFS threads plays a crucial role in the overall struc-

ture of our algorithm. As we discussed in Section 5.2 each new BFS search xk+1
s

is equivalent with the multiplication of transposed matrix AT with a vector xks .

The variable k is closely related with structure of the analysed graph and more

precisely with the diameter of the graph that corresponds in the longest shortest

path in the graph. Multiple BFS threads using the same graph can be indepen-

dently terminated after various number of BFS steps. This is mostly affected by

the variable k, so their execution needs to be precisely synchronised. For instance,

let two parallel BFS threads A and B that start concurrent BFS searches from

nodes a and b (Fig. 5.6). Both of them share the same transposed adjacency

matrix AT for the multiplication with vector xka,b that corresponds on two differ-

ent BFS searches. Threads A and B proceed independent and search graph until

there are no more nodes left to be discovered. Thread A stops after two BFS
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Figure 5.6: Parallel BFS threads: (a) starts BFS search from source node a and
(b) starts from source node b.

step but Thread B needs one more step in order to finish its graph exploration.

Here is clear that variable k is different for both threads and synchronisation is

needed.

All BFS threads are globally synchronous while running through the shared

matrix AT . The biggest challenge is the case where one BFS thread needs to run

for a different source node Sn. It has to enter the initialisation stage in order to

send data from its buffers out to DRAM and reinitialise them. There are two

strategies to synchronise threads as A and B (Fig. 5.7). Both synchronisation

strategies begin with the initialisation of thread A and B for the very first cycles.

In order to better understand these two strategies let us take the scenario where

A is finishing the matrix multiply step and thread B starts the multiplication

step. Then their synchronisation can be done as:

• Single thread-wait: In this case, thread A can proceed in the initialisation
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step while thread B is progressing in matrix multiply. So matrix multiply

and initialisation steps may overlap for different threads. In this case thread

A needs to wait for the other threads after finishing its initialisation.

• All threads-wait: On the contrary, all threads have to wait for thread A

to finish its initialization so that they all start doing matrix multiply in a

global synchronous mode.

5.3.3 Design Trade-offs

Certain design trade-offs need to get into consideration while developing the

APSP SpMV-based algorithm as they can determine its further performance.

These trade-offs can be categorised as:

• Synchronisation: There are two synchronisation strategies. One of them

allows threads to overlap so thread initialisation can overlap with the rest

threads. Otherwise, a whole cycle needs to get spent from all threads due

to the initialisation of a single thread.
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• Reading Data: In each cycle read and write functions compete for access

on the same data. Such situation can be avoided by either spending an

extra cycle or by implementing an extra array as binary mask in order to

process data on the same cycle. So here there is a trade-off on whether we

prefer to spend more time or more memory.

• Shifting Window: Graph data are stored in the DRAM. Depending on the

size of the shifting window data are moved on BRAM. We don’t constrain

the size of the used vector but the size of the shifting window. So, the trade-

off here is that either we have small vectors and large number of threads or

large vectors with less threads.

• Parallelism: The internal achievable level of parallelism is closely related

with the number of used threads. The trade-off lies on the fact that we

need to choose either small number of more complex processing elements

(PE) or large number of PEs with less complexity.

5.3.4 Performance Modelling

Let r be the total number of nodes in graph and k the number of BFS steps. Then

the total number of ticks needed to compute APSP through SpMV on FPGA can

be given by:

ticks = r × Initcycles + k × Proccycles + Synccycles (5.3)

where Initcycles stands for the initialisation process, Proccycles for the needed cy-

cles to process matrix and Synccycles denotes the cycles spent for synchronisation.

The cycles needed for initialisation are equivalent with the total number of nodes

V in graph G and cycles to process matrix are equal with the number of nnz

values which are equal with the total number of graph edges E. So equation 5.3

can also be written as:

ticks = V 2 + k × E + Synccycles (5.4)
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The cycles needed for synchronisation can vary as they are affected by the

synchronisation strategy that will be chosen. Let τ be the number of threads,

nnz the number of non-zero values and vecSize the size of the vector xji . Also,

let us take the scenario where a thread A starts a BFS search from a new source

node Sn. If thread A overlaps its initialisation step with other threads conducting

matrix multiply then it wastes nnz− vecSize cycles waiting for these threads. If

that is done in the same time for τ threads then τ×(nnz−vecSize) cycles will be

wasted in total. The cycles for the single thread-wait synchronisation approach

can be expressed as:

SyncSWcycles = τ × (nnz − vecSize) (5.5)

If, instead, all threads wait for τ threads to complete the initialisation step

then these numPipes−τ threads will waste (numPipes−τ)×vecSize cycles, each

time we potentially start matrix multiply. The cycles needed for all threads-wait

synchronisation can be expressed as:

SyncAWcycles = (numPipes− τ)× vecSize (5.6)

The choice of synchronisation strategy depends both on the frequency of BFS

thread restarts for new source nodes and the graph sparsity. As we discussed

earlier in subsection 5.3.2 the number of steps that BFS threads can execute

in the same graph can vary from thread to thread. This means that some BFS

threads can stop sooner or later than others so they would have to start a new BFS

search from a new source node. Consequently this affects the overall frequency

of BFS thread restarts. Overheads in both synchronisation strategies are adding

up due to different numbers of τ each time. Except the unevenly number of BFS

threads τ , graph sparsity plays a crucial role in the overall performance of the

algorithm. The difference (nnz − vectorSize) affects the overall synchronisation

time as it is closely related with the graph sparsity. The dense the graph, the

larger this factor (nnz − vectorsize) becomes.

As there are two synchronisation strategies, then equation 5.4 that describes
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the total number of ticks due to equation 5.5 that uses single thread-wait syn-

chronisation will become:

ticks = V 2 + k × E + τ(E − V ) (5.7)

On the contrary, if all threads-wait synchronisation is used then the total number

of ticks due to equation 5.6 is becoming:

ticks = V 2 + k × E + (numPipes− τ)× V (5.8)

The total time to compute APSP based on FPGA is affected by clocking FPGA

at different frequency rates.

5.4 Implementation

The APSP SpMV-based algorithm has been implemented on a Maxeler Max-

Workstation [162] equipped with an Intel Core i7 with 16GB of RAM. It is cou-

pled with a Virtex-6 XC6VVSX475T FPGA equipped with 24GB private dynamic

RAM and 38Mb on-chip BRAM. The FPGA is linked with the CPU through a

PCI bus that attains a maximum throughput of 2GB/s. Our APSP SpMV-based

design operates on a maximum frequency of 150 Mhz with 128 processing ele-

ments (Table 5.1).

Our algorithm has been tested for a series of graphs representing protein-

protein interaction (PPI) networks. The real-world graph data have been pro-

vided by e-Therapeutics [4]. Also, for our benchmark algorithms we used a single

NVIDIA GeForce GTX 560 card (336 CUDA cores) with 1GB memory and an

Intel Core i5-2500 CPU processor @3.30 Ghz (4 cores) with 3.9GB RAM, running

Ubuntu 12.4. In particular, all the sequential algorithms used for our experiments

have been executed on the Intel Core i5-2500 CPU processor. We decided to use

this certain CPU as we utilised the same CPU processor in Chapter 4 in order to

assess the performance of our GPU algorithm. The use of the same CPU in both
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Chapters 4, 5 will help us to compare the performance of our GPU- and FPGA-

based algorithms over the same real-world biological graphs. Further details can

be found in Section 6.

Table 5.1: Device Utilisation.

Num. of PEs Slice LUTs BRAMs FFs Max.Frequency (MHz)

128 47212 1956 31235 150

5.5 Evaluation

In this section, we validate the performance of our APSP SpMV-based implemen-

tation that we describe in Section 5.3. We evaluate our algorithms with real-world

graphs [4] ranging from 561 nodes till 3487 and 404 edges till 57949 (Table 4).

Additionally, we use generated graphs with small world, random and scale free

distribution based on the NetworkX platform [144]. The Newman-Watts model

[153] has been used to generate small-world graphs with high clustering coefficient

and average shortest path [154]. Scale-free networks characterised by a powerlaw

distribution has been generated based on the Barabasi-Albert model [146]. Such

graphs tend to have few nodes with many connections and most nodes with very

few link connections [116]. Random networks has been produced through the

Erdos-Reyni generator [156], [157].

The performance of the APSP SpMV-based algorithm has been compared

with the igraph c++ library, in particular with an optimised approach that com-

putes APSP on graphs without weights [135]. Additionally, we evaluate the

performance of our algorithm with a similar parallel AP-BFS-based GPU imple-

mentation for APSP computation [163], currently used as a state-of-art framework

for the acceleration of brain network analysis.

Results

In Figure 5.8, we evaluate the performance of our algorithm with real-world

graphs in comparison to a sequential and parallel APSP implementation. For
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the first tested small size graphs, both FPGA- and GPU-based implementations

have a larger execution time than the sequential igraph (Table 4). This is caused

due to overheads created by data transferred between CPU and GPU,FPGA

devices respectively. Both parallel implementations begin to attain acceleration

on graphs with size larger of 2000 nodes. Our FPGA implementation achieves a

1.9 times faster APSP computation over the sequential igraph platform and 1.5

times faster than the GPU parallel implementation.

Furthermore, we verify our performance analysis model by using the same

sample of real-world graphs. We compare the real execution time with the pre-

dicted one that is given by our performance analysis model based on equation 5.6.

As we observe in Figure 5.8 the real execution time is higher than the predicted

one for all the graph samples ranging from 87 nodes till 1946. Such difference in

the execution time is caused due to the additional time needed for the commu-

nication between CPU and FPGA. The time needed to transfer the data from

CPU to FPGA as well as the small workload leads in higher execution time.

However, the two lines representing the predicted and real time execution in fig-

ure 5.8 almost merge in the graph sample of 3487 nodes. This means that our

model predicts correctly the execution time of our algorithm however the high

communications overheads for small graphs are not reflected in our model.

Furthermore, in order to further characterise the performance of our algorithm

we conducted experiments with graphs of incremental edges density. As our

design was build with a restricted size of arrays (5000 cells) this gave us the

upper limit of graphs’ size that we could test our algorithm. Consequently, we

used a fixed number of 5000 nodes with a variable edges density (p) ranging from

0.01 to 0.06 where the largest tested graph contains 1.499.700 edges. Figure 5.10

depicts the performance of our algorithm in comparison to igraph and the GPU-

based approach. While the edges density is getting increased this has a positive

impact on the performance of our algorithm as it achieves a 4 times faster APSP

computation in comparison to igraph and 1.9 times faster than the GPU AP-BFS

implementation (Fig. 5.10, a) (Table 5).

We also tested the performance of our algorithm over graphs with variable

size of nodes and fixed size of edges density (p = 0.06). All three APSP imple-

mentations have a similar behaviour as in the previous experiments of variable
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Figure 5.10: SpMV’s performance compared with a CPU-based APSP approach
(igraph) and GPU-based one (AP-BFS), over generated scale-free graphs [144]
of: (a) variable edges density (p), (b) variable size of nodes.
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Figure 5.11: SpMV’s performance over generated graphs [144] of variable struc-
ture and edges density (p = 0.06) but fixed size of nodes.

edges density (Fig. 5.10, a). However, it can be observed in Figure 5.10, b that

both parallel implementations compared to igraph gain better performance be-

yond the graph sample of 2500 nodes. In contrast, FPGA’s performance is further

improved beyond the graph sample of 4500 nodes in comparison to igraph and

GPU (Table 6). Furthermore, we evaluate how the performance of our algorithm

reacts on graphs of variable structure as small world, random and scale-free dis-

tribution. The APSP SpMV-based algorithm is not affected by the nature of the

graph (Fig. 5.11) as its implementation is based on common matrix multipli-

cation that actually neutralises any dependencies between structure and graph

algorithm as it could happen with common sequential algorithms (Table 7).

Furthermore, we observe that GPU’s performance is not so efficient in such

graph problems. As it is depicted in Figures 5.8 and 5.10, GPU’s execution

time is worse than a single CPU. This can lead us in the conclusion that such

architectures may not be ideal for parallel graph algorithms. GPUs may be char-

acterised by enhanced processing resources, however, the communication over-

heads between CPU and GPU can result in poor speedups. GPUs are ideal

for embarrassingly parallel problems that can be partitioned in smaller indepen-

dent sub-problems and processed concurrently by multiple threads. However,
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graphs are synthesised by highly interconnected data that cannot be easily par-

titioned. As a result, we used in this Chapter the concept of linear algebra in

order to overcome any dependencies between graph data. The APSP compu-

tation is transformed in independent matrix vector multiplications that can be

easily executed concurrently. The same approach is also ideal for parallel ar-

chitectures as the GPU platform. The use of independent sub-problems without

any inter-communication between them will help to fully exploit GPU’s enhanced

computational capabilities.

5.6 Summary and Conclusions

In this Chapter, we proposed a fully pipelined implementation of the BFS al-

gorithm based on the sparse matrix matrix multiplication (SpMM). As a case

study for our design we used the SpMV based BFS to compute the all pairs

shortest paths (APSP) of a graph by simply executing multiple BFS searches

from all nodes of graph. We provided a FPGA friendly hardware architecture

that works both for dense and sparse graphs. Our algorithm’s performance has

been compared with CPU- and GPU-based APSP implementations. Our FPGA

implementation achieved a 1.9 times faster APSP computation over the sequen-

tial igraph platform and 1.5 times faster than the GPU parallel implementation.
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Chapter 6

Discussion

Network Pharmacology

Network pharmacology consists an emerging field that combines both experiments

and computation for the development of new drugs by using protein-protein in-

teraction networks (PPIs) [3]. Over the last century, the pharmaceutical industry

developed drugs by identifying ’drugable’ proteins that can be used for the devel-

opment of compounds with desired actions against such proteins [5, 6, 7]. A great

percentage of drugs function by binding to particular proteins in order modify

their biochemical and biophysical operations, however, they cause side effects on

a variety of other non-targeted functions [8]. In contrast, network pharmacology

uses a more effective, targeted and systematic drug discovery approach:

”Based on advances in chemical biology and network science, net-

work pharmacology is a distinctive new approach to drug discovery.

It involves the application of network analysis to determine the set of

proteins most critical in any disease, and chemical biology to identify

molecules capable of targeting that set of proteins”. [4].

A pioneer of network pharmacology is E-therapeutics, a drug discovery company

founded in 2001:

”e-Therapeutics developed a proprietary network pharmacology plat-

form for analyzing networks of proteins associated with particular dis-
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eases. After these analyses - which number in the millions - drug

candidates with optimal impact are identified.” [164] (p. 1).

The analysis of PPIs allows the detection of specific nodes that could be used

as effective targets for drug intervention [13]. Instead of focusing on particular

druggable targets, it was shown that is more advantageous to target a set of

proteins [14]. A promising area in network-based pharmacology is the ability

to compute combinations of protein complexes, which will produce better syner-

gistic effects when targeted together [15]. However, computing efficient protein

combinations is still a bottleneck in computational biology despite many already

developed computational techniques based on network centrality features [16].

Common graph analysis tools as Cytoscape [34], [35] and Nexcade [16] pro-

vide an automated mechanism for perturbation analyses on Protein to Protein

Interaction networks, by using only targeted attacks based on centrality measures

as outlined in 2.1. However, they can’t predict what would be the best combi-

nation of nodes to remove from a graph in order to cause a higher impact. Such

high-impact combinations are unlikely to be found unless they are specifically

optimised or searched for [36].

Therefore, in order to optimise the removal of nodes that achieve higher impact

than random and targeted attacks, we presented in Chapter 3 a novel perturbation

analysis approach based on genetic algorithms. Our GA uses a population of

boolean strings that represent different node removal patterns. Over time the

survival of the fittest candidates favours better combinations of node removals.

As this process is repeated over hundred times, it eventually converges in a well

estimated combination of nodes where their removal produce higher impact.

In this context, we evaluated our GA with real-world Protein Protein Inter-

action networks and showed that the effectiveness of our genetic algorithm is

much higher than common perturbation analysis strategies based on random and

targeted node attacks. The size of such real-world PPI graphs range from hun-

dred till 1500 nodes and 500 till 30000 edges. The ability to compute such high

impact node combinations based on our GA would help researchers in network

pharmacology [33] to produce better multi-target drugs for complex diseases as

cancer and diabetes with better efficiency and lower toxicity. Nevertheless, the

core functionality of such perturbation analysis tools as our GA is based on the
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APSP computation. In particular, our GA uses the graph metric of average con-

nected distance in order to characterise the graph robustness variation after the

removal of a group of nodes. However, the computation of average connected

distance is based on the shortest cost paths between all pairs of nodes. Such

highly computationally expensive algorithm as APSP with the additional burden

of GA’s strategy to compute repeatedly new candidate solutions leads the per-

formance of graph analysis tools in a very low level. Therefore, the use of high

performance computing and parallel graph processing can enhance their perfor-

mance and further accelerate the drug discovery process which is so important

for million human lives.

Parallel graph processing

The generation of molecular interaction data is getting increased exponentially

[18] due to biological related technologies as mass spectrometry [165, 166] and

data mining techniques [167]. Therefore, as biological data are getting increased

this has as result graphs representing such data to get also bigger [17]. As the scale

and complexity of graph problems is getting increased, common processing units

as CPUs cannot cope with the need for high memory and computing resources.

Such poor processing performance consists a major hurdle for the drug discovery

process:

”e-Therapeutics has led the development of Network Pharmacology

since its foundation. However, network analysis processed on conven-

tional workstations is inefficient and time-consuming. International

databases for active compounds and protein interactions are growing

rapidly. These factors lead to a clear demand for more efficient com-

puting methodology for the necessary networked biochemical analysis.”

[168] (p. 4)

Current graph analysis packages as Pajek [134], Igraph [135] and Gephi [136]

are limited by the available processing resources of commonly used workstations.

Application of multi-core computing approaches could improve the efficiency of

network analysis. However, such analysis pose significant challenges to parallel
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processing. Non-contiguous and concurrent access to global data structures with

low degree of locality are the main problems [137]. Recent progress in paral-

lel graph algorithms addresses these challenges through innovative data struc-

tures, memory layouts, and SIMD optimizations [84, 138, 139]. However, new

algorithms and implementation strategies are required for efficient processing of

current generation graphs on modern multi-core architectures. Such strategies

should help algorithms and their implementations benefit from the properties of

the graphs. The accurate segmentation and mapping of a network onto different

cores is almost impossible. However, the mapping complexity can be reduced by

exploiting properties of real-world networks.

Biological networks as PPI networks are very diverse as they are generated

from data belonging on diverse sources both computationally and experimen-

tally. This makes it difficult to produce a general conclusion about their embed-

ded properties [169]. In most cases, PPI networks [170] as all real-world graphs

are characterised by the ’scale-free’ and ’small-world’ property. The small-world

phenomenon [171] refers to a short average length from node to node while the

scale-free [146] property indicates an overall power-law distribution with nodes

of high degree called hubs. Discovering efficient parallel graph processing algo-

rithms means overcoming challenges related with graph partitioning and map-

ping on parallel computing resources as multi-core GPUs. Small-world networks

are characterised by high clustering coefficient that shows the high tendency of

such graphs to be divided into clusters [169]. This property was exploited in

Chapter 4, where provided the core idea of using natural graph properties to

partition our graphs through strongly connected components. As connectivity

reveals similarity, this helps to gather the edges of close connected nodes on the

same component.

In Chapter 4, we developed an efficient parallel network analysis pattern that

incorporates the natural graph properties in order to create a representation that

can help in the parallel processing of smaller subgraphs. It can be potentially used

to compress the graph data that are needed to be analysed. We presented a Multi

Layer Network Decomposition (µ-Layer) that works as a general pattern for the

analysis of networks on multi-core architectures. The µ-Layer algorithm takes its

name from the fact that it decomposes a network, based on its strongly connected
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components, into a layered organization and then uses these layers to represent

that network within the multiple cores of the GPU. The current implementation

takes a two layer approach named Double Layer Network Decomposition (DLND)

but, in theory, the algorithm is generalizable to more layers. We introduced a

new algorithmic approach whose design is driven by the multi-core architecture

of the GPU platform. A graph is decomposed into smaller modules without loss

of information. We showed that any graph G = (V,E) can be decomposed into

components that can be mapped to multiple cores. A new formula µ, relates

the number of blocks of threads NB(k) and the number of analysed components

Cnum(G) and defines the needed level of decomposition. This is feasible due to

the introduction of a novel data structure called ∆, that controls the balance

between the number of the cores that a multi-core processor contains and the

number of components that are to be analyzed in parallel.

We evaluated our DLND algorithm through APSP computation based on a

parallel approach of Bellman-Ford algorithm. We used the Bellman-Ford algo-

rithm due to its capability to process negative weight edges that may represent

the antagonism between proteins. The performance of our algorithm has been

assessed with real-word PPIs ranging from 87 till 3487 nodes and 404 till 57949

edges. Our DLND algorithm accelerated APSP computation by 1.8 times in com-

parison to a sequential implementation and 1.3 times to a GPU-based approach.

In order to further characterise our algorithm we evaluated its performance with

artificially generated graphs of variable edges density, structure and number of

nodes. The maximum speedups achieved by DLND over the sequential and par-

allel implementation were 5.31 and 2.56 times improvement, respectively.

However, as the acceleration of the GPU-based approach in Chapter 4 was

ranging between 1.3 to 1.8 times improvement we hypothesized that a parallel

graph algorithmic approach without any graph dependencies and pre-processing

steps could create less overheads and potentially provide a better acceleration.

Therefore, we developed a linear algebraic approach that transforms the APSP

computation on a simple matrix-matrix multiplication. Algorithms as BFS have

data-driven computation dictated by the structure of the graph. Common soft-

ware and hardware cannot provide efficient implementations as they mostly favour

regular computations with low memory footprints and penalize fine-grained ran-
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dom memory accesses with poor spatial and temporal locality. Such problems lead

to low compute capacity utilisation with execution times dominated by memory

latency. Reconfigurable computing as field programmable gate arrays (FPGAs)

can tackle this with the use of customised hardware design and software flexibility.

The use of linear algebra has recently proved a major alternative approach

in distributed memory systems [102]. Graph algorithms can be expressed as a

sequence of linear algebraic operations where BFS is equivalent with the fun-

damental operation of matrix vector multiplication. In Chapter 5, we proposed

using a linear algebra based implementation of BFS in FPGA. We suggested

to map the BFS computation on a reconfigurable platform based on a sparse

matrix vector multiplication (SpMV). We proposed the transformation of com-

plex sparse graph algorithms to a sparse matrix matrix multiplication (SpMM)

algorithm. This is a generic method for mapping sparse graph algorithms to FP-

GAs. The main property enabling embarrassing parallelism is that matrix-matrix

multiply might be thought as a collection of matrix-vector multiplies with same

matrix but different vectors. This approach provided us with an embarrassingly

parallel execution strategy where graph data dependencies are no more existed

and could be easily implemented on dataflow implementation. The performance

of our FPGA implementation was evaluated with real-world PPIs and achieved

1.9 times faster APSP computation over the sequential platform and 1.5 times

improvement over the GPU parallel implementation. We also assessed the perfor-

mance of our FPGA implementation over graphs of increasing edges density and

variable structure. Our FPGA implementation achieved a maximum speedup of

4 times improvement over the sequential APSP implementation.

Both parallel graph processing approaches proposed in Chapters 4 and 5 con-

tributed in the acceleration of the APSP computation. Such acceleration had

a positive impact in the genetic algorithm presented in Chapter 3 as it helped

to accelerate its overall execution time. When our GA was initially evaluated

in Chapter 3 we observed that its execution time was high enough even with

small graphs ranging from 87 to 561 nodes. In particular, the execution time

ranged from several minutes to almost 9 hours (Table 3.1). Therefore the last

two chapters of our thesis focused in the acceleration of the APSP computation.

We utilised the same real-world graphs in order to assess and compare their per-

111



formance. The size of the graphs ranged between 87 nodes - 404 edges and 561

nodes - 7179 edges. The highest execution time of our GA was observed in the

larger tested graph (561 nodes - 7179 edges) where 569 minutes were spent for the

computation of highly critical node removals. Both parallel approaches in Chap-

ter 4 and 5 accelerated the overall GA process by 1.8x and 1.9x respectively. In

particular, GA’s execution time was diminished from 569 minutes (9 hours) to

316 and 299 minutes respectively.

Such acceleration is very crucial for the overall drug discovery process. It will

help to compute faster the needed groups of proteins that if targeted together

can produce better drugs and save millions of lives. ”The project would enable

e-Therapeutics to analyse larger and more realistic biochemical datasets and to do

so much faster.” [168] (p. 14), as mentioned by e-Therapeutics. Both accelerated

versions of the GA algorithm have not been yet fully utilised in e-Therapeutic’s

drug production line. However, small scale integration tests have shown that

several days will be saved by using these two accelerated versions of our GA

algorithm. This will create an impact in the day-to-day drug discovery process

and eventually help in the faster development of drugs with high pharmaceutical

efficiency.

112



Chapter 7

Conclusions

Recent advances in drug discovery process dictate the use of graph analysis tools

that provide efficient and on-time analysis of biological graphs as PPIs. Predicting

sets of proteins that if targeted together may provide better synergistic effects is

an emerging field in network pharmacology. However, classic graph analysis tools

cannot provide efficient predictions. Furthermore, most of the graph analysis

tools suffer from low performance due to the size of the analysed graphs and use

of common CPU processors. Despite the existence of architectures with many

parallel execution resources, there are no any efficient parallel graph processing

patterns for emerging architectures as FPGAs and GPUs. Existing strategies

are not exploiting the natural graph properties and linear algebra operations to

create better parallel graph processing implementations on such architectures.

This thesis investigated the potential benefits of evolutionary and high per-

formance computing for the optimization and acceleration of graph analysis. The

development of algorithms related with optimised perturabtion analysis and par-

allel graph processing served as the basis for this endeavour.

The remainder of this chapter recalls the main contributions of this thesis and

presents open questions and directions for future research. An overall statement

about the study concludes the thesis.
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7.1 Main contributions

In Chapter 3, the development of a genetic algorithm (GA) that searches for

highly optimised node removals that achieved higher impact than random and

targeted attacks. It uses a population of boolean strings that represent different

node removal patterns. Over time the survival of the fittest candidates favours

better combinations of node removals. As this process is repeated over hundred

times, it eventually converges in a well estimated combination of nodes where

their removal produce a more efficient impact in graph’s robustness.

In Chapter 4, a general pattern for graph analysis on multi-core GPUs by

exploiting the properties of the analysed graphs has been developed. The MLND

algorithm has a multi-functional character that is novel in the area of parallel

network processing. It uses a data structure that can be used to control the

balance between the number of the cores that a multi-core processor contains

and the number of components that are going to be analyzed in parallel. At

the same time this approach acts as a compressor while is able to decompose

a network into smaller modules without losing information regarding its initial

state and process each component concurrently in order to compute the all pairs

shortest path.

In Chapter 5, the construction of a linear based graph algorithm that computes

the APSP on FPGA based on a sparse matrix vector (SpMV) multiplication

approach that is highly concurrent. The all pairs shortest path computation

is implemented through a breadth first search (BFS) algorithm based on linear

algebra. New nodes are discovered though consecutive multiplications of the

transposed adjacency matrix of the graph multiplied with a vector that its values

denote the source and the discovered nodes. This approach provided us with

an embarrassingly parallel problem where graph data dependencies are no more

existed and was implemented on dataflow computing.

7.2 Directions for future research

The work presented in this thesis has exploited the benefits of evolutionary and

high performance computing for optimised and high performance graph analysis.
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However, many questions are in need of further investigation and many opportu-

nities for new studies have also emerged.

In Chapter 3, the evaluation of our GA algorithm not be restricted only in

data produced from the biological community but also from a different field as

air traffic where we can detect what are the most valuable targets for terrorist

attacks. In Chapter 4, use our novel data structure for the computation of other

network features as closenss and betwweness centrality on different components.

In Chapter 5, use more enhanced hardware with more execution resources that

will let us experiment with larger graphs and observe how our SPMV algorithms

operates on such cases.

7.3 Conclusion

Despite the establishment of the evolutionary and high performance computing,

many challenges in the field of optimised and high performance graph analysis

need to be addressed. Classical perturbation analysis tools cannot compute effi-

cient node combinations where their removal could cause a better impact in the

robustness of a PPI graph. Traditional sequential graph algorithms have evolved

into a major bottleneck and alternative parallel graph processing strategies need

to be developed to effectively solve existing problems. This thesis has mani-

fested the potential use of evolutionary and high performance computing in high

performance and optimised graph analysis.
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Appendix A

Table 1: Results of testing igraph (Bellman-Ford), LonestarGPU(Bellman-Ford)
and DLND (Bellman-Ford) on real-world graphs from e-Therapeutics [172] for
APSP computation. Time in Seconds.

Nodes Edges igraph [135] LonestarGPU [90] DLND Speedup over igraph

87 404 0.091 0.262 0.254 0.6x

279 3399 0.101 0.290 0.259 0.38x

349 3228 0.150 0.137 0.132 1.13x

561 7179 0.251 0.250 0.249 1x

1628 26703 1.102 1.091 1.021 1.08x

1946 36596 1.256 1.141 1.103 1.51x

3487 57949 2.981 2.156 1.656 1.8x
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Table 2: Execution times of graphs produced by NetworkX platform [173]. Time in seconds

Number of Vertices and edges in graph

Algorithm Graph Type Probability 512 2048 4096 8192
2-10K 40-170K 170-700K 700K-2.5M

p=0.01 0.262 1.317 4.565 25.687
Erdos-Reyni p=0.02 0.322 1.650 6.172 53.612

p=0.03 0.571 2.955 9.893 74.357
p=0.04 0.872 3.283 13.821 105.825

igraph

p=0.01 0.015 0.222 2.54 21.707
Newman p=0.02 0.020 0.555 6.205 33.832

p=0.03 0.030 0.840 7.963 48.135
(CPU) p=0.04 0.052 1.175 12.772 61.767

Execution Time (Sec)

p=0.01 0.010 0.340 3.577 25.032
Powerlaw p=0.02 0.015 0.582 5.185 48.873

p=0.03 0.030 0.917 8.851 61.514
p=0.04 0.475 1.242 11.873 94.256
p=0.01 0.010 0.315 2.547 21.711

Barabasi p=0.02 0.014 0.635 5.165 44.482
p=0.03 0.015 0.957 7.995 66.785
p=0.04 0.025 1.287 10.72 85.991

p=0.01 0.689 0.621 3.121 11.245
Erdos-Reyni p=0.02 2.481 0.945 4.710 20.712

p=0.03 6.400 1.521 6.821 32.513
p=0.04 8.692 1.829 8.321 45.245

LonestarGPU

p=0.01 0.123 0.125 0.199 9.321
Newman p=0.02 4.624 0.457 4.451 12.213

p=0.03 9.431 1.325 5.651 17.456
(GPU) p=0.04 10.165 3.244 7.121 21.561

Execution Time (Sec)

p=0.01 0.612 0.345 1.921 7.414
Powerlaw p=0.02 2.314 0.981 3.145 13.211

p=0.03 6.185 1.453 5.432 19.561
p=0.04 11.123 1.721 7.212 25.931
p=0.01 0.751 0.521 1.721 9.456

Barabasi p=0.02 2.569 0.956 4.312 17.313
p=0.03 5.731 1.431 5.021 23.131
p=0.04 14.451 1.567 7.931 30.455

p=0.01 0.682 0.533 2.316 8.273
Erdos-Reyni p=0.02 2.473 0.863 3.597 15.608

p=0.03 6.505 1.075 5.737 27.723
p=0.04 8.477 1.875 7.288 36.591

DLND

p=0.01 0.903 0.839 0.917 5.123
Newman p=0.02 4.798 0.961 1.734 8.626

p=0.03 8.967 1.076 2.928 10.525
(CPU + GPU) p=0.04 10.264 2.866 4.374 14.932

Execution Time (Sec)

p=0.01 0.525 0.286 1.133 4.745
Powerlaw p=0.02 2.209 0.609 2.291 9.199

p=0.03 5.121 0.918 3.622 14.507
p=0.04 10.982 1.101 4.696 18.294
p=0.01 0.688 0.328 1.308 5.323

Barabasi p=0.02 2.484 0.664 2.554 10.771
p=0.03 5.603 0.990 3.932 15.991
p=0.04 12.521 1.319 5.211 20.783
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Table 3: DLND speedups over LonestarGPU and igraph implementations based on graphs
produced by NetworkX platform [173].

Number of Vertices and edges in graph

Algorithm Graph Type Probability 512 2048 4096 8192
2-10K 40-170K 170-700K 700K-2.5M

p=0.01 1.01x 1.16x 1.34x 1.35x
Erdos-Reyni p=0.02 1.01x 1.09x 1.30x 1.33x

p=0.03 0.98x 1.42x 1.18x 1.17x
p=0.04 1.02x 0.97x 1.14x 1.23x

DLND

p=0.01 0.13x 0.16x 0.21x 1.81x
Newman p=0.02 0.96x 0.48x 2.56x 1.41x

p=0.03 1.05x 1.23x 1.92x 1.65x
(CPU + GPU) p=0.04 0.99x 1.13x 1.62x 1.44x

Speedup (Times)

p=0.01 1.16x 1.21x 1.69x 1.56x
Powerlaw p=0.02 1.04x 1.62x 1.37x 1.43x

p=0.03 1.20x 1.60x 1.49x 1.34x
p=0.04 1.01x 1.56x 1.53x 1.41x

over LonestarGPU

p=0.01 1.09x 1.58x 1.31x 1.77x
Barabasi p=0.02 1.03x 1.43x 1.68x 1.60x

p=0.03 1.02x 1.45x 1.27x 1.44x
p=0.04 1.15x 1.18x 1.52x 1.46x

p=0.01 0.38x 2.47x 1.97x 3.10x
Erdos-Reyni p=0.02 0.13x 1.91x 1.71x 3.43x

p=0.03 0.08x 2.74x 1.72x 2.68x
p=0.04 0.10x 1.75x 1.89x 2.89x

DLND

p=0.01 0.01x 0.26x 2.76x 4.23x
Newman p=0.02 0.004x 0.57x 3.57x 3.92x

p=0.03 0.003x 0.78x 2.71x 4.57x
(CPU + GPU) p=0.04 0.005x 0.40x 2.91x 4.13x

Speedup (Times)

p=0.01 0.019x 1.18x 3.15x 5.27x
Powerlaw p=0.02 0.006x 0.95x 2.26x 5.31x

p=0.03 0.005x 0.99x 2.44x 4.24x
p=0.04 0.043x 1.12x 2.52x 5.15x

over igraph

p=0.01 0.014x 0.96x 1.94x 4.07x
Barabasi p=0.02 0.005x 0.95x 2.02x 4.12x

p=0.03 0.002x 0.96x 2.03x 4.17x
p=0.04 0.001x 0.97x 2.05x 4.13x
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Table 4: Results of testing igraph (optimised approach without weights), AP-
BFS and SpMM (FPGA) on real-world graphs from e-Therapeutics [172] for
APSP computation. Time in Seconds.

Nodes Edges igraph [135] GPU [163] FPGA Speedup over igraph

87 404 0.031 0.320 0.492 0.06x

279 3399 0.072 0.299 0.354 0.2x

349 3228 0.112 0.213 0.356 0.3x

561 7179 0.223 0.341 0.451 0.4x

1628 26703 1.015 1.010 1.012 1x

1946 36596 1.146 1.112 1.001 1.4x

3487 57949 2.743 2.135 1.456 1.9x

Table 5: Results of testing igraph (optimised approach without weights), AP-BFS
and SpMM (FPGA) on scale-free graphs (NetworkX [144]) of variable density for
APSP computation. Number of nodes : 5000. Time in Seconds.

Density (p) Edges igraph [135] GPU [163] FPGA Speedup over igraph

0.01 249950 7.451 5.973 3.967 1.9x

0.02 499900 10.531 7.851 5.495 1.9x

0.03 749850 15.678 10.456 6.813 2.3x

0.04 999800 29.531 17.821 11.812 2.5x

0.05 1249750 56.781 28.345 16.453 3.45x

0.06 1499700 75.878 36.215 18.969 4x
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Table 6: Results of testing igraph (optimised approach without weights), AP-BFS
and SpMM (FPGA) on scale-free graphs (NetworkX [144]) of variable number of
nodes for APSP computation. Edges density (p): 0.06. Time in Seconds.

Nodes Edges igraph [135] GPU [163] FPGA Speedup over igraph

500 14940 1.934 3.145 4.821 0.4x

1000 59940 2.845 4.018 5.213 0.5x

2500 374850 12.567 8.567 7.425 1.7x

3000 539820 25.451 17.834 14.213 1.8x

4500 1214730 46.821 27.399 16.345 2.9x

5000 1499700 75.878 36.215 18.969 4x

Table 7: Results of testing SpMM (FPGA) on generated graphs of variable struc-
ture and edges density for APSP computation. Number of nodes: 5000. Time in
Seconds.

Density Edges Random [156] Small-world [153] Scale-free [146]

0.01 249950 4.965 4.123 3.812

0.02 499900 6.875 6.121 5.145

0.03 749850 7.653 7.185 6.745

0.04 999800 12.451 11.213 10.891

0.05 1249750 16.121 15.989 15.456

0.06 1499700 17.943 18.961 19.432
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