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Abstract

Divide-and-conquer algorithms appear in the solution of many computationally
intensive problems, and are good candidates for parallelization. A divide-and-
conquer computation can be expressed in a programming language in many
ways. This paper presents a set of small, semantics-preserving code transfor-
mations, and a methodology to refactor divide-and-conquer functions in a func-
tional programming language. By applying a sequence of transformations using
a refactoring tool, many divide-and-conquer functions can be restructured into
a canonical form — which then can be refactored into an instance of a parallel
divide-and-conquer pattern. This methodology offers an effective and safe way
to parallelize HPC applications.

Keywords: parallel patterns, Erlang, semantics-preserving, refactoring tool
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1. Introduction

Refactoring is the process of restructuring, shaping, or transforming some
program code in order to improve its quality, to change its non-functional prop-
erties, or to make it suitable to add a new feature. This activity can be carried
out by hand, or by using dedicated source code transformation tools. This paper
investigates how a tool can be used to refactor the source code of divide-and-
conquer functions written in a functional programming language. The main
benefit of such refactoring tools is that they offer semantics preserving source
code transformations: the software developer may apply these refactoring trans-
formations without worries about breaking the code.

Divide-and-conquer is a principle that is at the heart of many useful al-
gorithms in different domains, including searching, sorting, FFT, and number
theory [1l 2, B]. By their very nature, these algorithms can be implemented
in a parallel way, and be efficiently executed on a parallel machine. Divide-
and-conquer is therefore often perceived not only as a generic algorithm design
principle, but also as a high-level parallel programming pattern [4} 5] [6].

A divide-and-conquer computation splits a problem into smaller subprob-
lems, and recurses on these subproblems until a base case is reached. The
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solutions of the subproblems are combined to form the solution of the original
problem. This structure can be expressed by the following pseudo-code.

solve (Problem) =
if is_base_case (Problem)
then solve_base_case (Problem)
else SubProblems = divide (Problem)
Solutions = map (solve, SubProblems)
combine (Solutions)
end
is_base_case (Problem) =
solve_base_case (Problem) =
divide (Problem) =
combine (Problem) =

Note how solve calls itself recursively on subproblems using the well-known
higher-order map function.

Obviously, in any programming language one can express this kind of rou-
tines in numerous ways — and the above structure may very well be hidden.
Our goal is to provide a systematic way to refactor such routines so that the
divide-and-conquer structure is let free. In the end the routines can be rewritten
as a parametrization of a generic higher-order dc operation.

solve = dc(is_base_case, solve_base_case,divide, combine)
dc (IsBase,Base,Divide, Combine) =
let Solve (Problem) =
if IsBase (Problem)
then Base (Problem)
else SubProblems = Divide (Problem)
Solutions = map(Solve, SubProblems)
Combine (Solutions)
end
in Solve

Now the software developer may anytime decide to replace the call to this
sequential implementation of the divide-and-conquer pattern with a call to a
parallel implementation, e.g. one which uses parmap, the parallel version of
map.

pardc (ShouldBeSequential, IsBase,Base,Divide, Combine) =
let Solve (Problem) =
if ShouldBeSequential (Problem)
then dc (IsBase,Base,Divide, Combine) (Problem)
else SubProblems = Divide (Problem)
Solutions = parmap (Solve, SubProblems)
Combine (Solutions)
end
in Solve
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The rest of the paper is structured as follows. In Section[2]a motivational ex-
ample is shown. In the paper the examples will be written in the functional pro-
gramming language Erlang. Section [3] provides background information about
the techniques and tools we use. A discussion of related work is given in Sec-
tion Section [6] suggests a canonical form for divide-and-conquer functions.
Section [4] presents the refactoring transformations that can be applied in order
to change a divide-and-conquer function into the canonical form. Section [§] in-
troduces an informal methodology which tells us how to select, and in which
order to apply, the refactoring transformations in order to reach the canonical
form. Finally, Section [9] concludes.

The contributions of this paper are the following.

e We have identified a set of semantics preserving refactoring transforma-
tions, together with their (sufficient, but not always necessary) side condi-
tions, which can be useful when restructuring a divide-and-conquer func-
tion into the canonical form. Some of the proposed transformations al-
ready exist and are well-known, others are quite specific to refactoring
divide-and-conquer functions, and are — to the best of our knowledge —
novel (Section [4)).

e We offer an implementation of these refactoring transformations for the
Erlang language in our open source tool RefactorErl. RefactorErl is ac-
cessible at https://plc.inf.elte.hu/erlang/.

e We propose a methodology a software developer may follow to successfully
apply these refactoring transformations in order to reach the canonical
divide-and-conquer form (Section .

These contributions help software developers to safely restructure and paral-
lelize divide-and-conquer functions in order to improve performance of computa-
tions. Note, however, that we have not (yet) proved formally the correctness of
our proposed transformations. This is still ongoing research, with some promis-
ing first results [7].

2. Motivational example

A divide-and-conquer computation can be expressed in many ways in a pro-
gramming language. We present here an Erlang implementation of mergesort,
and show how it looks like after refactoring into the canonical form. The
lists:split/2 and lists:merge/2 functions are from the standard library.
The former splits a list into two at a given position, and the latter merges two
sorted lists into one.

ms( [1 ) —> I[I;
ms ( [H] ) — [H];
ms( L ) —> {L1,L2} = lists:split(length(L) div 2, L),

lists:merge( ms(Ll), ms(L2) ).
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The semantically equivalent canonical form can be achieved by performing a
number of small refactoring transformations. These include the introduction of
functions is_base, base, divide and combine, and the re-organization of the
recursive calls to a call of the standard library function 1ists:map/2. Altogether
about a dozen semantics preserving transformations are applied to arrive at
the canonical divide-and-conquer form, which we define for Erlang, somewhat
arbitrarily, and modulo alpha-conversion, as follows.

ms (Lst) —>
case is_base (Lst) of

true —>
base (Lst) ;
false —>
SubProblems = divide (Lst),
Solutions = lists:map (fun ms/1, SubProblems),

combine (Solutions)
end.

The introduced helper functions, after applying some clean-up refactorings,
may look the following.

is_base( []1) —> true; base( [1) —> [1;
is_base([-]1) —> true; base ([H]) —> [H].
is_base( - ) —> false.
divide (Lst) —>
{L1, L2} = lists:split (length(Lst) div 2, Lst),
[L1, L2].

combine (Solutions) —>
[SL1, SL2] = Solutions,
lists:merge (SL1, SL2).

In Section M| the refactoring transformations applied here, as well as other
useful ones, are explained in more detail. The canonical form presented here is
already suitable for introducing a call to a sequential or parallel implementation
of a higher-order divide-and-conquer function. Considerations for the use of the
parallel divide-and-conquer pattern are presented now, in the next section.

3. Background

There may be many advantages to make the divide-and-conquer structure
explicit in a function definition, such as improved readability and maintainabil-
ity. However, we emphasize here its usefulness in the introduction of parallelism
in a code base. Earlier papers have already investigated the role of refactoring
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in general, and of tool supported refactoring in particular, in the process of
pattern-based parallelization. Building on the results of the EU FP7 Para-
Phrase project [§], one can express parallel computations in terms of parallel
patterns, and benefit from their algorithmic skeleton based, compositional im-
plementation, which can exploit heterogeneous hardware, and which is able to
dynamically adapt to available hardware resources. According to the Para-
Phrase approach, a programmer can use software development tools to find
parallel pattern candidates (parallelizable code fragments) in a code base, to
prioritize them based on their potential for parallel speedup, and to refactor
them into applications of algorithmic skeletons. The composability of the par-
allel patterns ensure that even large and complex parallel computations can
be defined, and easily restructured when the programmer wishes to change the
parallel behaviour of the code.

Over the course of the ParaPhrase project, a dedicated refactoring tool for
the Erlang programming language was developed. The ParaPhrase Refactoring
Tool for Erlang (or PaRTE, for short — pronounced as party) is able to au-
tomatically identify and prioritize parallel pattern candidates in Erlang code,
and provides refactoring transformations for the introduction of task farm and
pipeline patterns into the code [9, [10]. The transformations described in this
paper extend the capabilities of PaRTE for dealing with the divide-and-conquer
pattern.

The PaRTE tool has been built atop of RefactorErl [II], a static source
code analysis and transformation tool, and Wrangler [12], a refactoring tool
for Erlang. In the current research we have been using the static analysis and
transformation facilities of RefactorErl [I3], and we are relying on the existing,
already implemented refactorings provided by RefactorErl [14] [T5] as well. Some
of these existing refactorings (Introduce Variable, Introduce Function, and In-
troduce lists:map/2) had to be generalized in order to make them more effective
in the context of this research.

The programming language of our choice, Erlang, is a functional style actor
language, providing excellent support for concurrent and distributed program-
ming, such as processes and message-based communication primitives. Together
with its standard library, Erlang/OTP, it facilitates the development of large-
scale fault-tolerant systems. The ParaPhrase project opted for C++ (impera-
tive) and Erlang (functional) to demonstrate the feasibility of its methodology
based on adaptive, heterogeneous parallel patterns. This methodology, as well
as our refactoring support for divide-and-conquer patterns, can be generalized
to other languages. However, to keep this paper focused, we stick to a single
language, Erlang, in the discourse.

From our point of view, what is interesting is the suitability of Erlang for
static source code analysis and transformation. Erlang is functional, but im-
pure, which gives us only a limited capacity of referential transparency. The
language is also dynamically typed, which makes it more difficult to develop
static analyses for pattern candidate discovery, as well as for checking side con-
ditions of a refactoring. Earlier papers of ours [9] [10] explained how analyses of
Erlang code are implemented in RefactorErl. In particular, we have presented
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static analyses for discovering task farm and pipeline candidates [10].

In a previous paper [16], we investigated the discovery of divide-and-conquer
pattern candidates. We described how to find the candidates, without explain-
ing how to refactor them using a refactoring tool. In contrast, the current paper
covers the refactoring technique, but does not provide any further information
about the discovery process. The former, divide-and-conquer discovery, paper
shows a wide range of code samples where the pattern can be identified. The
same code samples were used in the present research: we are able to refactor
these samples to the canonical divide-and-conquer form using semantics pre-
serving transformations of a refactoring tool.

This paper asserts that a smart software developer is able to apply a number
of automated transformations in a sequence in order to arrive at the canonical
form. The next step would be to provide a composite refactoring, which is able
to infer the right sequence of transformations, and apply them all at once. This
appears to be an Al search problem, and is left as future work.

After refactoring the Erlang code, and freeing the divide-and-conquer struc-
ture, a refactoring transformation to introduce the parallel pattern can be ap-
plied. The divide-and-conquer parallel pattern has been defined in the Para-
Phrase project as a “high-level pattern”, and implemented for Erlang in the
skel-library [I7, [I§]. The example of Section [2[ can be rewritten with this li-
brary as follows.

ms (L) —>
(sk-hlp:dc-1lim( fun is_base/1l, fun base/l,
fun divide/1, fun combine/1, 1024)
) (L) .

The dc_1im/5 higher-order function from the sk_hlp module takes an inte-
ger number as fifth argument, which limits parallelism to (approximately) this
amount of used Erlang processes. (Determining the optimal number of pro-
cesses / threads / cores used for an occurrence of a parallel pattern is itself an
interesting research topic [19 [9].)

8.1. Divide-and-Congquer pattern candidate discovery

Divide-and-Conquer pattern candidate discovery [16] can be used to iden-
tify functions which recursively call themselves multiple times. One important
property of the identified candidate functions is that the recursive calls in them
are independent: the parameter of one recursive call does not depend on the
result of other recursive calls. This is exactly the reason why such functions can
be restructured into the proposed divide-and-conquer canonical form, where re-
cursion is factored out into the map higher-order function. Our approach is
in accordance with the standard definition of divide-and-conquer functions; for
example, Mou and Hudak [20] gave an algebraic model which characterizes a
large class of divide-and-conquer algorithms as pseudomorphisms: a “divacon”
is a function f that is defined as the function composition

coho(map f)ogod
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on “non-basic inputs” (i.e. on inputs that are intended to be further divided),
where d is a divide function, ¢ is a combine function, and g and h are “adjust
functions”. Note that this simple characterization considers functions like map
or fold as divacons — from our perspective these examples are, in fact, degen-
erate cases, since we prefer to conceive map and fold as other patterns. The
functions we identify as divide-and-conquer call themselves recursively multiple
times on the same execution path.

The concept of execution path is important here: recursive definitions may
have “base cases”, i.e. non-recursive execution paths, and recursive cases (i.e.
execution paths with recursive calls). We do not consider here functions without
a base case: such stream-processing style functions are not taken as divide-and-
conquer candidates. As a consequence, we may assume that there is a branch-
ing construct in the definition of the candidate function, which distinguishes
between base cases and recursive cases. It might happen that this branching
construct is not lexically in the definition of the candidate function, but in
an another function called from the candidate. This, and some other trickier
examples can be seen at https://plc.inf.elte.hu/erlang/dnc/ (under the
home page of RefactorErl), for example the case when the divide-and-conquer
candidate is not directly recursive, but a member in a set of mutually recursive
functions.

A generalization of divide-and-conquer algorithms can be expressed with
hylomorphisms. A hylomorphism is a composition of an anamorphism (“un-
folding” a set of solutions to subproblems) and a catamorphism (“folding” the
set of solutions into the solution of the original problem). Pattern candidate
discovery could be generalized according to this concept to be able to find even
more pattern candidates [21].

3.2. Related work

Tool supported parallelization is a well researched topic. Parallelizing com-
pilers — such as SkelML [22], the skeleton-based parallelizing compiler for ML
— automatically identify certain forms of parallel skeletons and transform them
to parallel equivalents at compile time. Compared to our approach, a main dif-
ference is that the programmer cannot see, or further modify, the resulting code.
In our approach, parallelization takes place before compilation.

Support for the introduction of parallel skeletons appears in refactoring tools
as well. For example, Brown, Janjic, Hammond et al. (2014) have proposed a
small number of basic refactorings to introduce task farm and pipeline skeletons
into C++ using the FastFlow library [23].

For Haskell, Brown, Loidl and Hammond (2011) introduced a limited number
of parallelization refactorings in HaRe — the Haskell Refactorer. This work
introduces parallelism using structural refactorings [24].

Ad hoc approaches for parallelizing Erlang programs can be found in the
parallelization of Dialyzer [25] and a suite of Erlang benchmarks [26]. None of
these applied structured parallelism or parallel skeletons. In contrast, Barwell
et al. (2016) used program shaping to introduce parallelism in a multi-agent
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system based on task farm, pipeline and feedback algorithmic skeletons [27].
This approach is similar to ours, but more focused on the application and does
not provide general methodology. We are providing general purpose refactor-
ings that can be used not just in divide-and-conquer parallelization. Another
difference is that our transformations are semantic preserving, while theirs are
not.

Several refactoring frameworks exists for Erlang. We have chosen the basic
infrastructure provided by RefactorErl [I1], 5], however, our transformations
can be implemented in the domain-specific language described by Horpécsi,
Készegi and Thompson (2016) [7].

There has been some work on using static analysis to discover parallelism
bottlenecks, and providing help to the programmer to reshape the program in ac-
cordance with such analyses. Markstrum et al. use static analyses to introduce
parallelism in X10 programs by refactoring [28] 29], and Wloka, Sridharan and
Tip (2009) use static analyses to discover parallelism bottlenecks and provide
thread safety and/or reentrancy [30]. Compared to our approach, they neither
consider patterns as instances of algorithmic skeletons, nor provide suggestions
on which skeletons to apply.

Molitorisz (2013) describes a tool for automatic discovery of parts of a se-
quential application that implement some rather basic parallel patterns, and
proposes supporting refactoring and performance tuning techniques [31]. Moli-
torisz, Schimmel and Otto (2012) present AutoFutures [32], a tool that performs
static analysis on Java programs to discover portions of code showing no data
dependencies, and inserts parallel constructs (Futures) directing asynchronously
parallel execution.

Work by Dig et al. introduces concurrency in Java programs, also by tar-
geting thread safety, aiming to increase throughput and scalability [33, [34) [35].
Dig’s refactoring tool contains a minor selection of transformations that are able
to rewrite Java code so that it employs generic Java Concurrency libraries to
control parallel execution. Mak, Faxén, Janson and Mycroft (2010) report on
promising results in automatic shaping and parallelization in C code based on
dependence profiling [36].

4. Refactoring transformations

There are many well-known refactoring transformations offered by various
refactoring tools, including RefactorErl, which are useful also for our current
divide-and-conquer case. These transformations are usually well documented in
the literature. In our research, we have used Rename (for renaming variables
and functions), Introduce/Eliminate Function (for extracting a sequence of ex-
pressions into a new function definition, and for f-reducing a function call),
Introduce/Eliminate Variable (for giving a name to an expression, and to inline
the definition of a variable where it is used) and Reorder Function Arguments
(for changing the order of parameters in the formal and actual parameter lists of
a function). A somewhat less known refactoring is Tuple Function Arguments,



330

335

340

345

350

355

360

365

which can decrease the arity of a function by packing some of the formal param-
eters into a tuple structure. Our definition of these transformations are given
in [I4} 87, [15]. (These refactorings are also known as Extract/Inline Function,
Extract Variable / Inline Temp, Reorder Parameters, and Introduce Parameter
Object [38].) The transformation Eliminate Code Duplicate is also well studied
in the literature, with implementations for the Erlang language [39, 40]. Due to
space limits, we omit the detailed description of these transformations. In this
section we turn our attention to some novel ones instead.

We have identified a number of refactorings which are essential for restruc-
turing divide-and-conquer functions, and also some clean-up transformations,
which are not obligatory to use, but which may improve code quality a lot. Here
we explain how the novel transformations behave, and provide (informally) their
side conditions.

In the description of the transformations we use concrete Erlang syntax
with typewriter font, and meta-variables with italics: ¢ (expression), p (pat-
tern), g (guard), b (body, i.e. sequence of expressions), f (function symbol),
V' (variable). A comma- or semicolon-separated sequence of syntactic units
o; with @ € [1.n] is written as (03);eq1..n)- In the abstract syntax used here,
we make guards explicit in function clauses and case clauses. (Note that a
guard which always evaluates to true can be omitted in the concrete syntax.)
Hence we write the definition of a unary function given with a single clause as:
f(p) when g — b. Some of the transformations are illustrated with examples,
which will appear also in later sections. The transformations are denoted with
= and < (unidirectional and bidirectional), indicating the way it is useful to
perform them.

Function Clauses to/from Case Clauses. Pattern matching on function
clause level can be moved inside the function definition as a top-level case-
expression, and vice versa: a top-level case-expression can be turned into func-
tion clauses. For simplicity, we defined these transformations only for unary
functions. (Functions can be turned unary using the Tuple Function Arguments
refactoring.)

?

<f(pz> when g; — bi>i€[1..n]

f(V) — case V of <p¢ when g; — bi> d

i€lt.n] ™

The side condition of the transformations is that the variable V' should not
occur in the patterns, guards, and bodies. (Another variable with the same
name may occur in the bodies, i.e. introduced as a formal argument of a fun-
expression though.) The transformations in both ways preserve the meaning of
any semantically correct program, but the two variants raise different exceptions
when violating dynamic semantical rules of the language (pattern-matching fail-
ure). Therefore it may be a good idea to implement the transformations in such
a way that the refactoring tool notifies the user, or asks permission from them,
before performing the transformation, or the transformation may be extended
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with compensations (modifying dynamically enclosing exception handlers ac-
cordingly).

ms (List) —> case List of [] — [1;

ms ([1) —> [1; [H] —> [H]

ms ([H]) —> [H]. <

end.

Group Case Branches. This refactoring allows us to partition the branches
of a case-expression into two groups. In the divide-and-conquer case, this can
separate the base case(s) and the recursive case(s) of a function. When applying
this transformation, we can select the branches to belong to the true-group, and
the other branches will belong to the false-group. (This selection is captured
below with the meta-function § : [1..n] — {true, false}.)

The transformation replaces the original case-expression with a combination
of four case-expressions. In order to avoid warnings about unused variables,
care must be taken with the patterns and guards of the first case-expression:
for every binding occurrence of a variable in these patterns, a fresh name must
be introduced, starting with an underscore. This also holds for “comparing”
situations, when the same unbound variable occurs multiple times in the same
pattern (such as [_H,_H]). Below, p; and g, denote the suitably modified vari-
ants of p; and g;.

case ¢ of <p¢ when g; — bi>z’€[1..n] end

[

case (case e of (p; when g; — B(i)) end) of

i€[l..n]

true — case € of <pz- when g; — bi> end;

1€[1..n]AB(i)=true

false — case ¢ of <p¢ when g; — bi> d

i€[1..n]AB(i)=false
end

The side condition of the transformation is that the head-expression of the
case, i.e. ¢, is pure (it does not contain side-effects, such as 10, sending/receiving
messages etc.). Since patterns and guards are always pure in Erlang, we need
not include them in the side condition.

ms (L) —>
case L of
[1 —> I[1;
[H] — [H];
- — {11,12} = lists:split (length(L) div 2, L),
lists:merge( ms(Ll), ms(L2) )
end.

10
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ms (L) —>
IsBase = case L of [] —> true;
[.-H] —> true;

_ —> false
end,
case IsBase —>
true —>
case L of [] — [1;
[H] —> [H]
end;
false —>

case L of
- — {L1,12} = lists:split (length(L) div 2, L),
lists:merge( ms(Ll), ms(L2) )
end
end.

Eliminate Single Branch. When a case-expression contains only a single
branch, it can be simplified to an optional match-expression followed by the
branch body. We need no side condition here.

?
casecof p—+bend = |Dbeginp=c¢, bend

Similarly to the Function Clauses to/from Case Clauses transformation, the
equivalence of the two expressions is provided when the expressions are se-
mantically correct (the pattern match succeeds), but raise different exceptions
otherwise. The user can be notified, or compensation in dynamically containing
exception handlers can be performed when possible.

If the transformation is carried out on a top-level expression in a body, the
begin-end construct might be superfluous, and can be left out. Moreover, if the
pattern is statically guaranteed to match and does not bind any variables (for
example p is € or _), the match-expression can be left out as well, leaving just
the body b.

This clean-up transformation can be applied on the fourth case-expression
in the previous example (no match-expression is needed), but the general form
is better illustrated on the following example.

case L of [H] —> [H] end - |[H] =L, [H]

Introduce lists:map/2. A divide-and-conquer function calls itself recursively
multiple times, and in the canonical form these calls are collected in an appli-
cation of lists:map/2. A list-expression with elements which are calls to the
same (unary) function can be refactored into a call to lists:map/2.

[ <f(€i)>i€[1”n] ] < lists:map (fun f/1, [ <si>i€[1”n] ])

11
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The side condition is that the expressions ¢; or the body of f are pure.
(Otherwise side effects could take place in different order.)

[ms (L1), ms (L2)] = lists:map (fun ms/1, [L1,L2])

A variant of this refactoring can transform a list comprehension with a single
generator to an application of lists:map/2 [10].

Bindings To List. To prepare for the previous transformation, it might be
necessary to turn a sequence of match-expressions into a single match-expression
with a list pattern and a list-valued right-hand side.

[ wi)iew.m) | = [ Edicnom ]

A completely safe side condition here is that the expressions ¢; are pure.
When they are not, and the program is not semantically correct (i.e. some
p; does not match the corresponding ¢,), the list-binding may execute more
side-effects than the list of bindings before failing with an exception.

?

(pi = Ei)iG[l..n]

S1 = ms(L1l), S2 = ms(L2) = [S1,S2] = [ms(Ll), ms(L2)]

Reorder Expressions. This transformation allows us to change the order of
expressions in a body (a sequence of expressions).

?

€1, €2 €2, €1

The side condition is that the second expression must not use any variables
bound in the first one (since the transformation would change the binding struc-
ture of variables, if the code remained meaningful at all). Furthermore, at most
one of the two expressions may contain side-effects. (If both expressions were
impure, the transformation would change the order in which side effects take
place.)

Move Expression Out Of Case. When the last expression of all the branches
of a case-expression is the same, it can be moved out of the case expression.

?
case € of <pi when g; — b, €/>i6[1..n] end =

case ¢ of (p; when g; — b;) | end, ¢’

i€[l.n
This transformation can be performed without checking any specific side-
condition. Note, however, that we defined it in a very strict manner, requiring
that the expressions in the end of the original case branches lexically match.
Also note that when performed on a subexpression of a top-level expression,
it is necessary to put the resulting sequence of expressions inside a begin-end
construct — similarly to the Eliminate Single Branch refactoring.

12
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case Problem of
{{ Node, Depth }, max} —> F = fun lists:max/1,
D = min,
work (Depth, Node, F, D);
{{ Node, Depth }, min} —> F = fun lists:min/1,
D = max,
work (Depth, Node, F, D)
end

4

case Problem of

{{ Node, Depth }, max} —> F = fun lists:max/1,

min;

{{ Node, Depth }, min} —> fun lists:min/1,

© mH © =

= max
end
work (Depth, Node, F, D);

Move Expression Into Case. An expression preceding a case-expression can
be moved inside the case-expression, by repeating it in all of the branches.

?

¢’,case ¢ of (p; when g; — bi>ie[1..n] end

case ¢ of <pi when g; — ¢, bi>ie[1.‘n] end

Since this transformation changes the evaluation order of expressions, its side
conditions are similar to those of Reorder Expressions. The variables bound in &’
should not be used in € and in any of the patterns p; and guards g;. Furthermore,
at least one of ¢/ and ¢ must be pure. (Patterns and guards cannot have side
effects in Erlang.)

Introduce Unused Parameter. In Section ] we have seen that the con-
stituents of a divide-and-conquer definition, namely is_base/1, base/1 and
divide/1, expects the same parameter: a problem. To lift functions to the
same state space, we may need a transformation which can add unused param-
eters to a function definition. This extension of the state space of a function
does not affect the meaning of the function.

The refactoring extends the formal parameter list of the function with a
parameter (since it is not used in the function definition, an unnamed parameter
suffices). Moreover, as a compensation, the calls to this function should also be
extended with a dummy actual parameter.

<f(<pi,j>je[1..m]) when g; — bi> =

i€[l..n]

<f(<Pi,j>je[1..m]» -) when g; — bi>i€[1..n]
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and for all calls ¢ of the function, an expression ¢, is chosen with

flei)ienm) = FlEjen.m) &c)-

The side condition is that the dummy actual parameters passed to the mod-
ified function are free of side effects, and are statically guaranteed not to raise
an exception.

Technically, the transformation is carried out at a call site of a function,
specifying an (side-effect free) expression as actual parameter to match the
novel formal. All other calls of the function in the program will be extended
with the atom undefined as the last actual parameter.

Merge Function Definitions. A set of unary function definitions are replaced
by this transformation with a single function definition, where the clauses of the
new function are coming from the clauses of the original functions. In the new
function an additional argument (discriminator) is introduced, and the clauses
of the new function will pattern-match on this argument. The name of the new
function and the (distinct) values for the discriminator are the parameters of
the refactoring.

(£i(pij) vhen gij = bij)icty wiichm =

<f(Pz‘,j,ﬂ(J')) when g; ; — bz‘,j>

i€[l..n;],j€[1..m]

and for all calls of the function f;:

fite) = fle BG))-

The side condition is that the name of the new function must be fresh, and
that the functions f; are either all exported in the containing module, or none
of them is exported. As a compensation, the new function must be exported
instead of the original ones, if those were exported.

5. Transformations in action

In this section we look at the mergesort function, and investigate how it
can be refactored to the expected canonical form. In this particular example
we are able to achieve our goal by simply applying semantics-preserving trans-
formations using a refactoring tool, without any further manual editing of the
code. This is indeed the best possible workflow in this methodology: if software
developers have confidence in the refactoring tool, they can restructure the code
without worrying about accidentally breaking it. Therefore, they can work very
effectively: they can focus on achieving the desired code structure, and need
not waste time and effort on understanding every small detail in the code.

We start with the definition of ms/1 as shown in Section
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ms(  [1) —=> [1;

ms ( [H] ) —> [H];

ms( L ) —> {L1,L2} = lists:split (length(L) div 2, L),
lists:merge( ms(Ll), ms(L2) ).

First of all, we apply Function Clauses to Case Clauses. We also Rename the
parameter to Lst, in order to have a meaningful name.

ms (Lst) —>
case Lst of
[1 — I[1;
[H] — [H];
L —> {L1,L2} = lists:split (length(L) div 2, L),
lists:merge( ms(Ll), ms(L2) )
end.

Next, we apply Group Case Branches, and select branches 1 and 2 as the true-
branch.

ms (Lst) —>
IsBase = case Lst of [] —> true;
[.H] —> true;
_L —> false

end,
case IsBase of
true —>
case Lst of [] —> [1;
[H] — [H]
end;
false —>

case Lst of
L — {L1,12} = lists:split (length(L) div 2, L),
lists:merge( ms(Ll), ms(L2) )
end
end.

Applying the Introduce Function refactoring twice, we can create the is_base/1
and base/1 functions, and call them in ms/1.

base (Lst) —> case Lst of [] — [1;

[H] —> [H]
end.
is_base (Lst) —> ... % similar
ms (Lst) —>
IsBase = is_base (Lst),
case IsBase of

true —>
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base (Lst) ;
false —>
case Lst of
L —> {L1,L2} = lists:split(length(L) div 2, L),
lists:merge( ms(Ll), ms(L2) )
end
end.

Both base/1 and is_base/1 can be beautified by applying Case Clauses to
Function Clauses. We can also get rid of the IsBase variable using Eliminate
Variable. Moreover, the inner case-expression can be removed with the Elimi-
nate Single Branch refactoring.

base( [1) —> [1;
base ([H]) —> [H].
is_base ... % similar

ms (Lst) —>
case is_base (Lst) —>

true —>
base (Lst) ;
false —>
L = Lst,

{L1,12} = lists:split (length(L) div 2, L),
lists:merge( ms(Ll), ms(L2) )
end.

We can simplify the code further with Eliminate Variable, and replace all oc-
currences of L with its definition, Lst.

ms (Lst) —>
case is_base (Lst) —>

true —>
base (Lst) ;
false —>

{11,12} = lists:split(length(Lst) div 2, Lst),
lists:merge( ms(Ll), ms(L2) )
end.

Now most of ms/1 looks like the canonical form for the divide-and-conquer
pattern, only the false-branch needs to be transformed further. Using Introduce
Variable twice, the variables SL1 and SL2 are introduced.

{L1,12} = lists:split (length(Lst) div 2, Lst),
SL1 = ms(L1l),

SL2 = ms (L2),

lists:merge( SL1, SL2 )

The two new bindings for SL1 and SL2 can be turned into a compound binding
with Bindings to List.
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[SL1, SL2] = [ms(Ll), ms(L2)],

The list on the right-hand side turns into an application of the 1lists:map/2
function, when we apply the Introduce lists:map/2 transformation.

[SL1, SL2] = lists:map(fun ms/1, [L1,L2]),

The new variables are introduced now with the Introduce Variable refactoring:
SubProblems for the second argument of lists:map/2, and Solutions for its
result.

{L1,12} = lists:split (length(Lst) div 2, Lst),
SubProblems = [L1, L2],
Solutions = lists:map(fun ms/1, SubProblems),
[SL1, SL2] = Solutions,
lists:merge( SL1, SL2 )

The divide and combine functions can be extracted with the Introduce Function
transformation.

ms (Lst) —>
case is_base(Lst) —>

true —>
base (Lst) ;
false —>
SubProblems = divide (Lst),
Solutions = lists:map(fun ms/1, SubProblems),

combine (Solutions)
end.

divide (Lst) —>
{L1, 12} = lists:split (length(Lst) div 2, Lst),
SubProblems = [L1, L2],
SubProblems.

combine (Solutions) —>
[SL1, SL2] = Solutions,
lists:merge( SL1, SL2 ).

We have reached the canonical form for divide-and-conquer pattern candidate;
the ms/1 function is ready for the Introduce dnc transformation, which replaces
the body of the function with a call to the high-level pattern implementation in
the sk_hlp module. As a final step, we can clean up the code of divide/1 with
Eliminate Variable, and remove SubProblems.

ms (Lst) —> (sk-hlp:dc(fun is_base/1l, fun base/1,
fun divide/1, fun combine/1)
) (Lst) .
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divide (Lst) —>
{11, L2} = lists:split (length(Lst) div 2, Lst),
[L1, L2].

6. Generalized canonical form

After investigating several concrete examples of divide-and-conquer function
definitions, we realized that it is useful to generalize the canonical form com-
pared to the nice and simple one usually found in the literature, and presented
in the previous sections. This is a straightforward generalization, allowing lo-
cal bindings to be shared in the extracted is_base, base, divide, and combine
functions.

dcgen (Problem) —>
Bindings = bindings (Problem)
case is_base (Bindings) of
true —> base (Bindings);

false —>
{SubProblems,BindingsZ} = divide (Bindings),
Solutions = lists:map (fun dcgen/1l, SubProblems),
combine (Solutions,Bindings?2)
end.

According to this scheme, computations can be performed, and their results
stored in local variables (collected in a tuple Bindings) at the beginning of the
divide-and-conquer function. These bindings are passed to is_base/1, base/1,
and divide/1. This is very useful if the values computed by bindings/1 are
shared by some of these functions, because the overhead of recomputing the
values from Problem multiple times can be avoided. The value describing the
problem to solve, Problem, can also be wrapped into the Bindings tuple. This
technique allows as to make the domain of is_base/1, base/1 and divide/1
the same.

The divide/1 function can also introduce bindings, and return them to-
gether with the list of subproblems. This Bindings2 tuple may contain values
from Bindings, but some other values as well. In contrast to the elements of
SubProblems, the bindings do not go through the recursive calls of the divide-
and-conquer function, but go into combine/2 directly.

Technically, we could avoid the generalized canonical from, and do our job
with the original simple one, using for example the following two tricks. Firstly,
the call to bindings can be moved inside is_base, base and divide. Secondly,
the Bindings?2 tuple produced in divide could be zipped into each subproblem,
and then passed untouched into the solutions of the subproblems by the recur-
sive calls to the divide-and-conquer function. This is demonstrated with the
following code scheme, which contains already the simple dc canonical form.
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dcgen (Problem) —>
{Solution, dummy} = dc ({Problem, dummy}),
Solution.

dc (DecoratedProblem) —>
case is_base (DecoratedProblem) of
true —> base (DecoratedProblem);

false —>
SubProblems = divide (DecoratedProblem),
Solutions = lists:map (fun dc/1, SubProblems),

combine (Solutions)
end.

base ({Problem, DoNotTouch}) —>
Bindings = bindings (Problem),

)

% continue with original base body using Bindings

is,base({Problem,DoNotTouch}) —>

Bindings = bindings (Problem), % orig. is_-base body
divide ({Problem, DoNotTouch}) —>

Bindings = bindings (Problem),

{SubProblems, Bindings2} = % original divide body

[{P, {DoNotTouch,Bindings2}} || P <— SubProblems].

combine ( DecoratedSolutions =

[{-,{DoNotTouch,Bindings2}}|-Tail] ) —>
Solutions = [S || {S, -} <— DecoratedSolutions],
Solution = % original combine body

{Solution, DoNotTouch}.

The price to pay is high due to the increased complexity of divide/1 and
combine/1. Even more importantly, the latter scheme incurs heavy overhead in
terms of execution time and consumed memory. Recomputing values multiple
times, and passing around values down the call chain and back may seriously
degrade performance. (Other solutions to put the simple canonical form in
place of the generalized one, such as computing combine as a closure in divide,
also suffer from this problem.) This justifies the introduction of the generalized
canonical form for the divide-and-conquer candidate.

Note, finally, that the generalized divide-and-conquer scheme can express
the original one by choosing the identity function as bindings, and by using
an empty tuple for Bindings2. However, for convenience reasons it is advanta-
geous to keep both the generalized and the original divide-and-conquer schemes,
and provide refactorings to introduce calls to higher-order divide-and-conquer
functions for both variants.
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6.1. Example

Now we illustrate the applicability of the generalized canonical form on an-
other divide-and-conquer function, one which implements Karatsuba big integer
multiplication. This function takes two bitstrings (representing big integer num-
bers), cuts them into lower and higher halves, and computes the product of the
original numbers with three recursive multiplications of half-sized bitstrings.

karatsuba (Numl, Num2) —>
S1 = bit_size( Numl ),
S2 = bit_size( Num2 ),
case {Numl, Num2} of

{<<0:1>>, _ } —> <<0: S2>>; % base case
{- , <<0:1>>} —> <<0: S1>>; % base case
{<<1:1>>, _ } —> Num2; % base case
{- , <<1:1>>} —> Numl; $ base case
- —> % recursive

M = max( S1, S2 ),
M2 = M — (Mdiv 2),
<<Lowl : M2/bitstring, Highl/bitstring>> = Numl,
<<Low2 : M2/bitstring, High2/bitstring>> Num2,
720 = karatsuba (Lowl, Low2),
Z1 = karatsuba (add(Lowl,Highl), add(Low2,High2)),
72 = karatsuba (Highl, High2),
add( add( shift(z2, M2x2), Z0 ),

shift ( sub(Zl, add(z2,z0)), M2 ) )

end.

We can carry out a transformation sequence on this definition very similarly
to the mergesort example. Let us point out that in this example, as well, the
application of semantics-preserving transformations using a refactoring tool can
take us to the canonical form, without any manual editing of the code. Before
we start the transformation sequence learnt from the mergesort example, the
refactoring Tuple Function Arguments should be used to turn karatsuba/2 into
a unary function.

karatsuba ({Numl, Num2}) —>

Z0 karatsuba ({Lowl, Low2}),
z1 karatsuba({add(Lowl,Highl), add(LowZ,Hith)}),
72 = karatsuba ({Highl, High2}),

Now we can really apply the previously successful transformation sequence.
We can start with Group Case Branches, then extract is_base and base with
Introduce Function, apply Eliminate Variable on the introduced IsBase, and
simplify the code with Eliminate Single Branch. We can use Bindings to List
and Introduce lists:map/2 for the recursive calls, and Introduce Variable to
add SubProblems and Solutions. Then we can extract the divide and combine
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functions using Introduce Function. Note, however, that on the one hand, divide
returns a pair, since it binds two variables — namely SubProblems and M2 — which
are used outside of divide. (The refactoring allows us to make a decision on the
order of the two elements in the result: we should choose SubProblems to come
first.) On the other hand, combine depends on Solutions and M2, so it will
be a binary function. We may need to apply Reorder Function Arguments to
ensure that Solutions is the first argument.

karatsuba ({Numl, Num2}) —>
S1 bit_size ( Numl ),
S2 = bit_size ( Num2 ),
case is_base (Numl, Num2) of
true —> base (Numl, Num2, S1, S2);
false —>
{SubProblems, M2} = divide (Numl, Num2, S1, S2),
Solutions=lists:map (fun karatsuba/l, SubProblems),
combine (Solutions, M2)

end.

divide (Numl, Num2, S1, S2) —>

_ = {Numl, Num2},

M = max(Sl, S2),

M2 = M — (M div 2),

<<Lowl:M2/bitstring, Highl/bitstring>> = Numl,

<<Low2:M2/bitstring, High2/bitstring>> Num2,

SubProblems = [ {Lowl,Low2}
, {add(Lowl,Highl),add(Low2,High2)}
, {Highl,High2} 1],

{SubProblems, M2}.

combine (Solutions, M2) —>
[z0, Z1, Z2] = Solutions,
add( add( shift(z2, M2x2), z0 ),
shift( sub(z1, add(z2,Z0)), M2 ) ).

At this point we can start to create the bindings function. As a first step,
we introduce two temporary variables for Numl and Num2 by applying Intro-
duce Variable twice, on any of the non-binding occurrences of Num1 and Num?2,
respectively.

karatsuba ({Numl, Num2}) —>
Tmpl = Numl,
S1 = bit_size ( Numl ),
Tmp2 = Num2,
S2 = bit_size( Num2 ),
case is_base (Tmpl, Tmp2) of
true —> base(Tmpl, Tmp2, S1, S2);
false —>
{SubProblems, M2} = divide (Tmpl, Tmp2, S1, S2),
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Solutions=lists:map (fun karatsuba/l, SubProblems),
combine (Solutions, M2)
end.

We need to ensure that the domains of is_base, base, and divide are identical.
For this reason, we use Introduce Unused Parameter twice on the call to is_base,
passing S1 and S2 as the unused parameters. Finally, we create a 4-tuple from
the parameters of is_base, base and divide using Tuple Function Arguments.

karatsuba ({Numl, Num2}) —>
Tmpl = Numl,
S1 = bit_size( Numl ),
Tmp2 = Num2,
S2 = bit_size ( Num2 ),
case is_base ({Tmpl, Tmp2, S1, S2}) of
true —> base ({Impl, Tmp2, S1, S2});
false —>
{SubProblems, M2} = divide ({Tmpl, Tmp2, S1, S2}),
Solutions=lists:map (fun karatsuba/l, SubProblems),
combine (Solutions, M2)
end.

is_base ({Numl, Num2, _, _}) —> ...
base ({Numl, Num2, S1, S2}) —>
divide ({Numl, Num2, S1, S2}) —>

The occurrences of the 4-tuple in karatsuba/1 can be extracted into a vari-
able Bindings with the Introduce Variable refactoring.

karatsuba ({Numl, Num2}) —>
Tmpl = Numl,
S1 = bit_size( Numl ),
Tmp2 = Num2,
S2 = bit_size( Num2 ),
Bindings = {Tmpl, Tmp2, S1, S2},
case is_base (Bindings) of
true —> base (Bindings);
false —>
{SubProblems, M2} = divide (Bindings),
Solutions=lists:map (fun karatsuba/l, SubProblems),
combine (Solutions, M2)
end.

We can extract function bindings with Introduce Function. Since it depends
on two variables, Num1 and Num2, it will be a binary function. Using Tuple
Function Arguments, we can turn it into unary, and arrive at the generalized
canonical form.

karatsuba ({Numl, Num2}) —>
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Bindings = bindings ({Numl,Num2}),
case is_base (Bindings) of
true —> base (Bindings);
false —>
{SubProblems, M2} = divide (Bindings),
Solutions=lists:map (fun karatsuba/l, SubProblems),
combine (Solutions, M2)
end.

bindings ({Numl,Num2}) —>
Tmpl = Numl,
S1 = bit_size ( Numl ),
Tmp2 = Num2,
S2 = bit_size( Num2 ),
Bindings = {Tmpl, Tmp2, S1, S2},
Bindings.

As the last step, we can clean up bindings/1, using Eliminate Variable on
Tmp1, Tmp2, S1, S2, and Bindings.

bindings ({Numl, Num2}) —>
{Numl, Num2, bit.size( Numl ), bit.size( Num2 )}.

7. Mutually recursive functions

Divide-and-conquer computations may be spread in multiple, mutually re-
cursive functions. We should now consider how to deal with those. Without
aiming at covering all possible issues, in this section we look at two, quite dif-
ferent, examples. The first example will be a simple variant of mergesort.

ms( [1 ) —> 1I1;
ms ( [H] ) —> [H];
ms( L ) —>

{11, L2} = lists:split ( length(L) div 2, L ),
sort_and.-merge (L1, L2).

sort_and-merge ( Listl, List2 ) —>
lists:merge( ms(Listl), ms(List2) ).

In a set of mutually recursive functions, any function can be chosen as the
divide-and-conquer candidate: indeed, the pattern candidate discovery will find
and report all of them. Sometimes, however, one of the functions seems naturally
the best choice; in this case it is ms/1. An indirect recursion can often be
turned into direct recursion by applying the Eliminate Function refactoring,
which inlines the body of a function at a call site.
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ms( L ) —>
{11, 12} = lists:split ( length(L) div 2, L ),
lists:merge( ms(Ll), ms(L2) ).

After eliminating the call to sort_and_merge/2, we arrived at the definition
addressed in Section [El

In a more complicated case of mutual recursion the Eliminate Function tech-
nique may not be suitable. Consider for instance the following minimaz algo-
rithm. Function mm_max/2 calls mm_min/2 in the head of a list comprehension
(hence probably multiple times in the same execution path), and vice-versa.
Both of these functions are candidates for the divide-and-conquer pattern. The
Node parameter gives the starting node of the minimax-search in the game tree,
and Depth gives the number of levels to visit in the tree. A terminal node in
the tree (terminal/1) is described with its value (value/1), and a non-terminal
node has children in the tree (children/1).

mm-max ( Node, Depth ) —>
case Depth == 0 orelse terminal (Node) of
true —>
value ( Node );
false —>
lists:max([anmin(C,Depthfl)|\C<fchildren(Node)])
end.
mm-min ( Node, Depth ) —>
case Depth == 0 orelse terminal (Node) of
true —>
value ( Node );
false —>
lists:min([mm_max (C,Depth—1) || C<—children (Node)])
end.

We propose a different approach for resolving indirect recursion in this kind
of situations. We can collapse the set of mutually recursive definitions into a
single function with the Merge Function Definitions refactoring. For simplicity,
we have defined this refactoring only on unary functions, so we need to use
Tuple Function Arguments first. The Merge Function Definitions refactoring
introduces a discriminator parameter, for which the actual parameters should
be provided. In our case we use the atoms max and min as discriminating values.

mm( {Node, Depth}, max ) —>
lists:max ([mm({C,Depth—1},min) || C<—children (Node)])

end;
mm( {Node, Depth}, min ) —>
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lists:min ([mm({C,Depth—1},max) || C<—children (Node)])
end.

In order to exploit the symmetry in these function clauses, we capture the
differences in variables introduced for expressions min, max, lists:max and
lists:min (Introduce Variable applied 4 times).

mm( {Node, Depth}, max ) —>
D = min,
F = fun lists:max/1,
case Depth == 0 orelse terminal (Node) of

true —> value( Node );
false — F ([mm({C,Depth—1},D) ||C <— children (Node)])
end.

mm( {Node, Depth}, min ) —>
D = max,
F = fun lists:min/1,
case Depth == 0 orelse terminal (Node) of

true —> value( Node );
false —> F ([mm({C,Depth—1},D) ||C <— children (Node)])
end.

We can extract one of the case-expressions into a function definition (work/4)
with Introduce Function, and use the Eliminate Duplicated Code to replace the
syntactically equivalent other case-expression with a call to the same function.

mm( {Node, Depth}, max ) —>
D = min,
F = fun lists:max/1,
work (Node, Depth,D,F) ;

mm( {Node, Depth}, min ) —>
D = max,
F = fun lists:min/1,

work (Node, Depth,D,F) .

work (Node, Depth,D,F) —>
case Depth == 0 orelse terminal (Node) of
true —> value( Node );
false —> F ([mm({C,Depth—1},D) ||C <— children (Node)])
end.

Now we turn the mm/2 function unary again with the Tuple Function Argu-
ments transformation, and apply Function Clauses to Case Clauses.

mm (Problem) —>
case Problem of
{{Node, Depth}, max} —>
D = min,
F = fun lists:max/1,

25




1065

1070

1075

1080

1085

1090

1095

1100

1105

1110

work (Node, Depth, D, F);
{{Node, Depth}, min} —>
D = max,
F = fun lists:min/1,
work (Node, Depth, D, F)
end.

The next transformation to apply is Move out from Case, with which the call
to work/4 can be moved from the case branches outside of the case-expression.

mm (Problem) —>
case Problem of
{{Node, Depth}, max} —>

D = min,

F = fun lists:max/1;
{{Node, Depth}, min} —>

D = max,

F = fun lists:min/1

end,
work (Node, Depth, D, F).

The structure of this code is very similar to that of the example with ms/1
and sort_and_merge/2. After inlining the definition of work/4, we can ap-
ply the usual transformations to shape mm/1 to the canonical form — without
manual editing of the code.

mm (Problem) —>
Bindings = bindings (Problem),
case is_base (Bindings) of
true —> base(Bindings);

false —>
{SubProblems, F} = divide (Bindings),
Solutions = lists:map (fun mm/1, SubProblems),
combine (Solutions, F)
end.
bindings( {{Node, Depth}, max} ) —>
{Node, Depth, min, fun lists:max/l};
bindings( {{Node, Depth}, min} ) —>

{Node, Depth, max, fun lists:min/1}.

is_base ({Node, Depth, _, _}) —>
Depth == 0 orelse terminal (Node) .

base ({Node, _, _, _}) —> value (Node) .

divide ({Node, Depth, D, F}) —>
{ [{{c, Depth — 1}, D} || C<—children(Node)], F}.

combine (Solutions, F) —> F(Solutions).
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8. Methodology

Based on lessons learnt in the previous sections, we propose a workflow to
follow when refactoring a divide-and-conquer pattern candidate into the (simple
or generalized) canonical form (Figure . Our methodology relies on the ex-
traction of the bindings (optional), is_base, base, divide and combine functions,
and their separation from the recursive calls. We have investigated several func-
tion definitions identified by divide-and-conquer pattern discovery [16], and we
have found that the methodology presented here is applicable for them. How-
ever, these examples do not contain nested case-expressions. Flattening nested
case-expressions may require further refactoring transformations, and this is not
covered in the current paper.

The refactoring process presented here works well for many divide-and-
conquer functions, and without any manual editing of the code. However, one
can always find examples where manual refactoring cannot be avoided. Ex-
tending the refactoring tool with further semantics-preserving transformations
might be a solution, but of course the number of transformations the software
developer can keep in mind is limited. Therefore a refactoring tool should prefer
transformations which are sufficiently generic and flexible.

9. Conclusion

In this paper we present a methodology to refactor divide-and-conquer func-
tions in a functional programming language. The refactoring is defined as a
sequence of semantics-preserving code transformations, and is supposed to be
performed using a refactoring tool. The aim of the refactoring is to restructure
a function describing some divide-and-conquer computation into a “canonical
form”, which can be further refactored into the application of a generic higher-
order divide-and-conquer function with a sequential or parallel implementation
(i.e. an instance of a high-level parallel pattern). This process can facilitate
the pattern-based parallelization of many computationally intensive software
applications.

The main benefit of our approach is that software developers (if they are
confident about the soundness of the refactoring tool) need not worry about
breaking the code during the refactoring process. Moreover, using pattern can-
didate discovery (described in an earlier paper), the refactoring tool can au-
tomatically find divide-and-conquer pattern candidates: without spending too
much time and effort on understanding either the whole code-base or even just
the candidate, software developers are able to safely refactor, and increase the
performance of, the code.

We have introduced a generalized canonical form for divide-and-conquer
functions, and presented a number of semantics-preserving code transformations
which are useful for this problem domain. The discussions used the Erlang pro-
gramming language (and the transformations are implemented in RefactorErl, a
refactoring tool for Erlang), but the results naturally apply to other functional
languages as well.
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1. Introduce tuple to make the function unary
2. Merge function definitions

imi 3. Introduce tuple
Eliminate .m“t”a' 4. Introduce variables to avoid differences in function clauses
recursion 5. Extract function and eliminate code duplicates

6, Function clauses to case clauses
7. Move expression out from case expression

v

8. Inline function

Y 9. Function clauses to case clauses
Prepare case | 10. Introduce tuple to make the function unary
structure 7| 11. Group case expression branches
12. Eliminate single branch case expression
\ /
Prepare base 13. Extract functions: ishase and base
functions » 14. Eliminate variable IsBase

15. Introduce variables (for recursive calls)
v 16. Bindings to list

5 17. Introduce map (List comprehension or list calls to map)
Prepare d'V-.and . Introduce variables SubProblems and Solutions
comb. functions 19. Introduce variables for bindings used in combine
20. Reorder expressions to shift variable bindings to divide
21. Extract divide and combine

\ J
&

\ /

Unify the domain 22. Argument reordering
23. Add unused arguments
of the extracted 24. Tuple function arguments to make them unary

\ J

functions
Extract local 25. Introduce variable Bindings
bindings 26. Extract functions: bindings
h / — -
27. Eliminate variables
Cleanup »| 28. Rename variables, rename functions
29. etc

Figure 1: Workflow for transformation to canonical form
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We investigated different implementations of various divide-and-conquer al-
gorithms (which can all be identified by pattern candidate discovery). For these
code examples the tool-performed transformations were effective, without the
need of manual editing of the code. We concluded that for not very complex and
deeply nested function definitions the smart, human guided consecutive appli-
cation of about a dozen transformations are appropriate to reach the canonical
form. (For brevity, we did not include all of the invented transformations in
this paper. However, the interested reader can find them in the open-source
RefactorErl tool.) As future work, we shall investigate the addition of further
transformations to the tool (in order to cope with more complex candidates), as
well as develop an algorithm to apply the necessary sequence of transformations
all at once, without human guidance.
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