
ARCHITECTURE AWARE PARALLEL

PROGRAMMING IN

GLASGOW PARALLEL HASKELL (GPH)

By

Mustafa KH. Aswad

Submitted for the Degree of

Doctor of Philosophy

at Heriot-Watt University

on Completion of Research in the

School of Mathematical and Computer Sciences

August, 2012

The copyright in this thesis is owned by the author. Any quotation from the thesis
or use of any of the information contained in it must acknowledge this thesis as the
source of the quotation or information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ROS: The Research Output Service. Heriot-Watt University Edinburgh

https://core.ac.uk/display/77035377?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that the work presented in this the-

sis was carried out by myself at Heriot-Watt University,

Edinburgh, except where due acknowledgement is made,

and has not been submitted for any other degree.

Mustafa Kh. Aswad (Candidate)

Phil Trinder, Hans-Wolfgang Loidl (Supervisors)

(Date)

i

Abstract

General purpose computing architectures are evolving quickly to become many-

core and hierarchical: i.e. a core can communicate more quickly locally than

globally. To be effective on such architectures, programming models must be

aware of the communications hierarchy. This thesis investigates a programming

model that aims to share the responsibility of task placement, load balance, thread

creation, and synchronisation between the application developer and the runtime

system.

The main contribution of this thesis is the development of four new architecture-

aware constructs for Glasgow parallel Haskell that exploit information about task

size and aim to reduce communication for small tasks, preserve data locality, or to

distribute large units of work. We define a semantics for the constructs that spec-

ifies the sets of PEs that each construct identifies, and we check four properties

of the semantics using QuickCheck.

We report a preliminary investigation of architecture aware programming

models that abstract over the new constructs. In particular, we propose archi-

tecture aware evaluation strategies and skeletons. We investigate three common

paradigms, such as data parallelism, divide-and-conquer and nested parallelism,

on hierarchical architectures with up to 224 cores. The results show that the

architecture-aware programming model consistently delivers better speedup and

scalability than existing constructs, together with a dramatic reduction in the

execution time variability.

We present a comparison of functional multicore technologies and it reports

some of the first ever multicore results for the Feedback Directed Implicit Paral-

lelism (FDIP) and the semi-explicit parallelism (GpH and Eden) languages. The

comparison reflects the growing maturity of the field by systematically evaluat-

ing four parallel Haskell implementations on a common multicore architecture.

The comparison contrasts the programming effort each language requires with

the parallel performance delivered.

We investigate the minimum thread granularity required to achieve satisfac-

tory performance for three implementations parallel functional language on a

multicore platform. The results show that GHC-GUM requires a larger thread

granularity than Eden and GHC-SMP. The thread granularity rises as the number

of cores rises.

Acknowledgements

My praises to God for giving me the good health, the strength of determination

and support to finish my work successfully.

I would like to thank my PhD supervisor, Professor Phil Trinder, for all his

enthusiasm, guidance and support over the years. He was a constant source of

inspiration and I have benefited greatly from his experience and wisdom. I would

also like to thank the various second supervisors I have been lucky enough to

work with over the course of this PhD, particularly Dr Hans Wolfgang Loidl who

was invaluable in providing guidance from a different perspective.

Many thanks to the Libyan higher education sector for offering me this schol-

arship. And also I would like to thank them for providing the finance support

throughout the years of study for me and my family.

Last, but by no means least, I wish to thank my family for their love and

affection.

iv

Contents

1 Introduction 1

1.1 Thesis Statement . 3

1.2 Contributions . 4

1.3 Thesis Structure . 6

1.4 Authorship and Publications . 7

2 Background 10

2.1 Parallel Hardware . 10

2.1.1 Classification by Memory Structure 11

2.1.2 Multi-core Architecture . 12

2.1.3 Homogeneous vs Heterogeneous Multicore 13

2.1.4 Distributed Computing . 14

2.1.5 Summary . 17

2.2 Parallel Programming Classifications 19

2.2.1 Parallel Software Development 20

2.2.2 Parallel Programming Models and Languages 22

v

Contents

2.2.3 Implicit Models . 25

2.2.4 Semi-Explicit Parallel Models 27

2.2.5 Explicit Models . 36

2.2.6 Hybrid Programming Models 38

2.2.7 Summary . 39

2.3 Key Runtime Aspects in a Semi-Explicit Model 42

2.3.1 Thread Creation and Synchronisation 42

2.3.2 Storage Management . 45

2.3.3 Data Locality . 46

2.4 Summary . 48

3 Multicore Parallel Haskell Comparison 50

3.1 Introduction . 50

3.1.1 BenchMark Suite . 53

3.2 Parallel Haskell Language Comparison 54

3.2.1 Indicating Parallelism in GpH 55

3.2.2 Indicating Parallelism in Eden 57

3.2.3 Language Coordination Comparison 61

3.3 Parallel Haskell Implementation Comparison 62

3.3.1 Feedback Directed Implicit Parallelism (FDIP) 63

3.3.2 GpH-SMP . 64

3.3.3 GUM Implementation of GpH 65

vi

Contents

3.3.4 Eden Implementation . 69

3.3.5 Implementation Comparison 70

3.4 Experiment Design . 72

3.4.1 Measurement Methodology 72

3.5 Runtime Comparison . 74

3.6 Programming Effort and Performance Results 80

3.6.1 FDIP Multicore Performance 81

3.6.2 GpH-SMP Multicore Performance 82

3.6.3 GpH-GUM Multicore Performance 83

3.6.4 Eden Multicore Performance 84

3.7 Comparative Study . 85

3.7.1 Programming Effort Comparison 85

3.7.2 Scalability . 87

3.7.3 Performance Comparison 88

3.8 Conclusion . 90

3.8.1 Summary . 90

3.8.2 Discussion . 92

4 Parallel Programming Practice 96

4.1 Using and benchmarking New Evaluation Strategies 97

4.1.1 Original Strategies . 97

4.1.2 Space Leak Problem . 101

vii

Contents

4.1.3 New Evaluation Strategies 104

4.1.4 Using Strategies for Parallel Paradigms 107

4.1.4.1 Task Parallelism 107

4.1.4.2 Data-oriented Parallelism 110

4.1.5 Evaluation of the New Strategies 112

4.1.5.1 Apparatus . 112

4.1.5.2 Sequential Overhead 115

4.1.5.3 Parallel Performance of Strategies 116

4.2 Granularity Control . 119

4.2.1 The Importance of Thread Granularity 119

4.2.2 Eden Multicore Thread Granularity 121

4.2.3 Thread Granularity of Parallel Haskells 122

4.2.4 Discussion . 130

4.3 Summary . 132

5 Architecture-Aware Constructs 133

5.1 The Trend Towards Hierarchical Architectures 135

5.2 Other Architecture-Aware Languages 136

5.3 New Architecture-Aware Constructs 138

5.3.1 Virtual Architectures . 138

5.3.2 Placing Task on Hierarchical Architecture 139

5.3.3 New Constructs . 142

viii

Contents

5.4 The Semantics of Constructs . 145

5.4.1 Distance Function . 145

5.4.2 setparDist Function . 149

5.4.3 setparBound Function . 151

5.4.4 setparAtLeast Function . 151

5.4.5 Construct Properties Test 152

5.4.5.1 Basic Properties 153

5.4.5.2 Specialised Properties 154

5.4.6 Summary . 157

5.5 Implementation of Architecture-Aware Constructs 158

5.5.1 Runtime Systems Modification 158

5.5.2 Work Placement Mechanism 159

5.5.3 parDist Primitive Implementation 161

5.6 Architecture-Aware Constructs Evaluation 161

5.6.1 Divide-and-Conquer Parallelism 162

5.6.2 Data Parallelism . 165

5.6.3 Nested Parallelism . 173

5.6.4 Performance Variability 175

5.6.5 Discussion . 176

5.7 Applying constructs in other Languages 177

5.8 Summary . 179

ix

Contents

6 Towards Architecture Aware Programming Models 182

6.1 Architecture-Aware Decisions . 183

6.2 Architecture Aware Evaluation Strategies 186

6.2.1 Using the parDistList Function 187

6.2.2 Using the parListLevel Function 188

6.3 Architecture Aware Skeletons . 189

6.3.1 An Architecture Aware Parallel Map Skeleton 190

6.3.2 A Divide-and-Conquer(DC) Skeleton 191

6.4 Evaluation of Architecture Aware Strategies 192

6.4.1 SumEulerDist . 193

6.4.1.1 parListLevel Strategy Results 193

6.4.1.2 Deep Strategy Results 197

6.4.1.3 Summary: . 198

6.4.2 Queen . 199

6.4.2.1 Shared Memory Results 199

6.4.2.2 Distributed Memory Results 200

6.4.2.3 Architecture Awareness Comparison 202

6.4.2.4 Summary: . 205

6.5 Evaluation of the Architecture Aware Skeletons 206

6.5.1 sumEulerSkel Results . 206

6.5.2 Coins Results . 211

6.6 Memory and Potential Parallelism Performance 214

x

Contents

6.7 Summary . 216

7 Conclusion 218

7.1 Achievements and Contributions 218

7.1.1 Architecture-aware Constructs 219

7.1.2 Programming and Performance Comparison: 221

7.2 Limitations and Future Work . 222

A Benchmark Code 225

A.1 parMapList Program . 225

A.2 parMapIntervals Program . 228

B Location Semantics of Architecture-Aware Constructs 229

C Architecture-Aware Programs 236

C.1 sumEulerDist Code . 236

C.2 sumEulerSkel Program . 238

C.3 Coins Program . 240

Bibliography 242

xi

List of Tables

1 Memory Classification . 18

2 Classification of Parallel Models 25

3 Comparison of some Popular Parallel Programming Languages. . 40

4 Language-level Comparison of Parallel Haskells 61

5 Implementation-level Comparison of Parallel Haskells 70

6 Sequential Runtime Comparison (seconds). 74

7 8 Core Parallel Runtime Comparison (seconds). 76

8 FDIP Programs Improved. 81

9 GpH-SMP Programs Improved. 82

10 GpH-GUM Programs Improved. 83

11 Eden Programs Improved. 84

12 Comparative Multicore Performance Summary 85

13 Comparative Speedup of Parallel Haskells on Multi-core Machine 90

14 Programs Characteristics . 113

xii

List of Tables

15 Sequential Runtime Overheads 115

16 Speedups, Number of Sparks and Heap Consumption on 7 Cores. 119

17 The Most Profitable Thread Granularities for the nfibList Program126

18 The Most Profitable Thread Granularity of the sumEulerList Pro-

gram . 127

19 GpH par Construct Comparison (Increasingly Specific) 145

20 A Static Information Table for Five Cores from Figure 34 159

21 findLevel Configuration . 163

22 Task Size and Irregularity . 165

23 Variability of benchmark runtimes (11 executions) on 64 cores. . . 176

24 Comparison of parList and parListLevel (sumEulerDist) . . . 195

25 Comparison of parListLevel vs Deep 197

26 Runtime Comparison on Shared Memory (Queen) 199

27 Runtime Comparison on Distributed Memory (Queen) 202

28 Comparison of Divide-and-Conquer Skeleton (sumEulerSkel) . . . 210

29 Comparison of Divide-and-Conquer Skeleton (Coins) 211

30 Speedups, Number of Sparks and Memory Consumption on 16 cores215

xiii

List of Figures

1 Comparison of Single Core and Different Multicore Architectures([2]) 12

2 Hierarchical Architectures . 17

3 Types of the basic coordination constructs in GpH 30

4 Basic Coordination Constructs in Eden 33

5 Sequential Top-level Boyer function 55

6 Evaluation Strategies . 56

7 GpH Top-level Boyer function . 57

8 Eden Farm Skeleton . 58

9 Eden Master-Worker Skeleton (Static Task Pool) 59

10 Eden Top-level Boyer function . 60

11 GUM FISH - SCHEDULE - ACK Sequence 68

12 Runtime Comparison of Parallel Haskells (Boyer/Rewrite) 77

13 Absolute Speedup Comparison of Parallel Haskells (Boyer/Rewrite) 78

14 Comparing the Performance Scalability of Parallel Haskells on 4

Cores. 87

xiv

List of Figures

15 Performance Comparison of Parallel Haskells (8 cores) 89

16 parList Strategy . 100

17 parMap Strategy . 101

18 Original Strategies versus New Strategies 107

19 Coins Using Original Strategy . 108

20 Coins Using New Strategy . 108

21 Divide-and-Conquer Skeleton . 110

22 Runtime Comparison of the Original and the New Strategies . . . 117

23 Speedups Comparison of the Original and the New Strategies . . . 118

24 nfibList Program . 120

25 Thread Granularity vs Speedup Comparison of nfibList 123

26 Thread Granularity vs Speedup Comparison of nfibList 124

27 The Most Profitable Thread Granularity Comparison of nfibList

Program . 125

28 sumEulerList Program . 126

29 Thread Granularity vs Speedup Comparison of GpH-GUM and

Eden Implementations of sumEulerList Program 128

30 Thread Granularity vs Speedup Comparison of GpH-SMP Imple-

mentation of sumEulerList program 129

31 The Most Protable Thread Granularity of sumEulerList program 130

32 Real and Virtual Hierarchical Architectures 136

xv

List of Figures

33 New Architecture Aware Constructs 142

34 Using New Architecture Aware Constructs 143

35 Architecture Aware Construct Definitions 144

36 An Example of Hierarchical Architecture. 146

37 Distance Function . 147

38 setparDist Locations Function 150

39 setparBound Locations Function 151

40 setparAtLeast Locations Function 152

41 Tree Example of Specialised Proposed Property One 155

42 Tree Example of Specialised Proposed Property Two. 156

43 The original GUM Work Placement Mechanism 160

44 Extended GUM Work Placement Mechanism 160

45 parFibDist Program . 162

46 parFibDist Speedup . 164

47 parMapList Program . 166

48 parMapIntervals Program . 167

49 parMapList Speedups (64 Cores) 168

50 parMapList Runtimes . 170

51 parMapIntervals Runtimes . 170

52 parMapList Speedups (224 Cores) 171

53 parMapIntervals Speedups (224 Cores) 171

54 Allparam Program . 173

xvi

List of Figures

55 Allparam Runtimes . 174

56 Allparam Speedups(224 Cores) 174

57 findLevel Based on Input Argument 185

58 findLevel Based on Depth of Recursive Call 185

59 Original parList . 187

60 Architecture-aware parDistList Strategy 187

61 Architecture-aware parListLevel Strategy 187

62 Queen Top Level Function . 188

63 Architecture-aware sumEulerDist 189

64 Sequential Map and Parallel parMap Skeletons 190

65 parMapLevel Skeleton . 190

66 Monadic parMap Skeleton . 191

67 Monadic parMapLevel Skeleton 191

68 General Parallel Divide-and-Conquer Skeleton 191

69 Architecture Aware Divide and Conquer Skeleton 191

70 Arch. Aware vs Orig. Strategies Runtime Comparison (sumEulerDist)193

71 Arch. Aware vs Orig. Strategies: messages Comparison (sumEulerDist)194

72 Arch. Aware vs Orig. Strategies Speedup Comparison (sumEulerDist)196

73 Runtime Comparison on Shared Memory (Queen) 201

74 Speedup Comparison on Shared Memory (Queen) 201

75 Messages Comparison on Shared Memory (Queen) 203

xvii

List of Figures

76 Messages Comparison on Distributed Memory (Queen) 203

77 Speedup Comparison on Distributed Memory (Queen) 205

78 Arch. Aware vs Orig. Skeleton Runtime Comparison (sumEulerSkel)207

79 Arch. Aware vs Orig. Skeleton Messages Comparison (sumEulerSkel)208

80 Arch. Aware vs Orig. Skeleton Speedup Comparison (sumEulerSkel)209

81 Runtime Architecture Aware Skeleton Comparison (Coins) 212

82 Messages Architecture Aware Skeleton Comparison (Coins) 212

83 Speedup Architecture Aware Skeleton Comparison (Coins) 213

xviii

Glossary

closure represents a unit of computation and is evaluated by jumping to the

code it points to. See also thunk.

FCFS First Come First Served (FCFS) is a scheduling algorithm for dynamic

real-time computer system in which tasks arrive as random process.

FDIP Feedback Directed Implicit Parallelism (FDIP) is fully implicit parallel

Haskell implementations..

GpH-GUM Graph-reduction on a Unified Machine-model (GUM) is a portable,

parallel runtime environment for GpH [121], designed for both shared and

distributed memory architectures..

GpH-SMP Glasgow Haskell Compiler (GHC) supports shared-memory imple-

mentation of Glasgow parallel Haskell (GpH).

NF Normal Form (NF), if an expression is in its normal form status, it means

that no further reduction can be made on the expression.

xix

Glossary

parAtLeast is a parallel coordination construct that indicates that the expres-

sion may be executed in parallel and specifies the minimum distance in the

communication hierarchy that the expression can be sent.

parBound is a parallel coordination construct that indicates that the expression

may be executed in parallel and specifies the maximum distance in the

communication hierarchy that the expression can be sent.

parDist is a parallel coordination primitive that indicates that the expression

may be executed in parallel and specifies the execution boundaries in the

communication hierarchythat the expression can be sent.

parExact is a parallel coordination construct that indicates that the expression

may be executed in parallel and specifies a specific execution level in the

communication hierarchy that the expression can be sent.

PE Processing Element (PE) is a core within a multicore machine. It may or

may not associated with resources such as memory, disk, and screen.

process A process is a program that is running on a computer. A computer

is likely to have more processes running than actual program. In parallel

programming a program is divided into multiple process with the objective

of running a program in less time.

QuickCheck is a tool which aids the Haskell programmer in formulating and

xx

Glossary

testing properties of programs. Properties are described as Haskell func-

tions, and can be automatically tested on random or custom test data input.

rnf Reduce to Normal Form (rnf) means that reduce a given expression to a form

contain no reducable expressions.

rwhnf Reduce to Weak Head Normal Form (rwnf) means that reduce a given

expression to its top constructor only.

spark Spark is a pointer to an sub-graph indicates that the sub-graph can be

evaluated in parallel.

sparkpool is simply a set of pointers to computations that have been sparked

by a parallel coordination primitive.

Thread is a sequential computation whose purpose is to reduce a particular

sub-graph to normal form. Threads are normally generated by a fork of a

program in multiple parallel tasks.

thunk represents an unevaluated expression which will be updated with its re-

sult. See also closure.

WHNF Weak Head Normal Form is the evaluation of an expression to its top

constructor.

xxi

Chapter 1

Introduction

For nearly half a century, processors have been in a constant development to

meet the demand for computing capability. The development follows Moore’s

Law, where the number of transistors in an integrated circuit has doubled every

two years [84]. Since 2002, however, the trend has reached a point where little

further improvement can be achieved on a single processor, as clock frequency is

constrained by power expenditure and heat generation. Hence, architectural de-

sign is driving to multicore architectures. However, a conventional single threaded

program does not benefit from this new architecture. The performance may also

suffer as a result of the lowered clock speed of each core. The shift towards new

multicore architectures poses several challenges to software developers. These

challenges aim to translate the potential processing power into an equal increase

in computational performance.

1

Chapter 1. Introduction

Furthermore, future architectures will inevitably have a hierarchical, or tree-

like, communications structure. The number of cores will steadily increase, as

will the level of heterogeneity. Already the most common parallel architectures

are clusters of multicore nodes, with three communication level in the hierarchy:

on-core, sharing memory, on another node. The communication hierarchy is likely

to become deeper as the number of cores increases. Heterogeneous parallel archi-

tectures have several different types of processing units, each of which is intended

to execute a specific set of tasks. For example, graphics processing units (GPUs)

are now present in commodity computer systems [102]. GPUs are specifically de-

signed to take advantage of data parallelism and have significantly better floating

point performance than an equivalent CPU. Field Programmable Gate Arrays

(FPGAs) are another type of processing unit. FPGAs are non-conventional pro-

cessors built primarily out of logic blocks connected by programmable wires[35].

FPGAs can be very useful to execute data parallelism.

This research is intended to exploiting only the heterogeneity of cores in clus-

ters of multicores. To exploit such architectures, programming models must be

aware of the communication hierarchy. Given the rate of architecture evolution

it is important that the programming model preserves performance portability as

far as possible.

The target of this work is to develop a high-level programming model for

hierarchical architectures. The philosophy is to move the responsibility of task

2

Chapter 1. Introduction

placement, load balance, thread creation, and synchronisation from the applica-

tion developer to the runtime system. However, the proposed approach keeps

some control of parallel aspects, e.g. data locality and task allocation. The in-

tention is that applications can exploit the potential performance of hierarchical

architecture with minimal parallel coordination.

1.1 Thesis Statement

Given the difficulties involved in programming hierarchical architectures, this

thesis asserts that an architecture-aware programming model with a high level

of abstraction can effectively exploit hierarchical architectures. The assertion

is demonstrated by providing an architecture-aware programming model that

exploits the underlying architecture. GpH-GUM is extended to record the com-

munication topology of the architecture for task placement. The performance of

the architecture-aware programming model is evaluated by measuring a set of

demonstration benchmarks on a hierarchical architecture.

The GpH-GUM implementation was ported from the early GHC-4.06 version

to the considerably enhanced GHC-6.12 version. The work involved modify-

ing many of the runtime system functions, as GHC-6.12 introduces many new

features: new closures types, new data types, and new functions. Some mod-

ifications are also required to the compiler. This process took eight months to

finish. While the current port successfully executes small programs, there are still

3

Chapter 1. Introduction

unknown stability issues, in particular the system fails for programs with large

data structures.

1.2 Contributions

This thesis investigates parallel functional programming on multicore and dis-

tributed memory architectures. A primary contribution is to develop and eval-

uate new high level architecture-aware programming constructs for hierarchical

parallel platforms.

• We propose four new architecture-aware constructs for GpH that exploit

information about task size and aim to reduce communication for small

tasks, preserve data locality, or to distribute large units of work. We

define a semantics for the constructs that specifies the sets of PEs that

each construct identifies and we check several properties of the semantics

using Quickcheck. We investigate three common paradigms, data paral-

lelism, divide-and-conquer and nested parallelism, on hierarchical archi-

tectures with up to 224 cores. The results show that the new constructs

consistently deliver better speedup and scalability than existing primitives,

together with a dramatic reduction in the execution time variability. At

times, speedup is improved by an order of magnitude [9] (Section 5.6).

• We make a preliminary investigation into architecture-aware programming

models that abstract over the new constructs. In particular, we propose

4

Chapter 1. Introduction

architecture-aware evaluation strategies, and architecture-aware skeletons.

The abstractions aid performance portability by isolating architecture-specific

aspects of the program. The new abstractions are used in the programs

measured and the performance results are promising [9] (Section 5.6, Chap-

ter 6).

• We demonstrate the first programming and performance comparison of four

functional multicore technologies and report some of the first ever multicore

results for two parallel Haskell languages, GpH and Eden. The comparison

contrasts the programming effort each language requires with the parallel

performance delivered. The study uses 15 typical programs to compare a

“no pain”, i.e. entirely implicit, parallel language with three “low pain”,

i.e. semi-explicit languages1. There are many encouraging signs for mul-

ticore functional languages. The GpH and Eden semi-explicit approaches

deliver effective high level coordination, and hence require very small pro-

gram changes, and modest effort to introduce and tune the parallelism, for

a known program [8] (Chapter 3).

• We investigate the most profitable thread granularity required to achieve

satisfactory performance for a distributed memory parallel functional lan-

guage on a multicore platform. We address the question by undertaking a

limit study and by studying more typical programs. The programs cover

1In contrast, much parallel programming is high pain for high gain. For example GPUs or
classic HPC programming requires the programmer to expend intense programming effort to
obtain the best possible parallel performance.

5

Chapter 1. Introduction

both divide-and-conquer and data parallel paradigms. The limit study iden-

tifies the most profitable thread granularity required to gain good perfor-

mance from a message-passing semi-explicit functional language like Eden

on a multicore architecture [3] (Chapter 4, Section 4.2).

• We have implemented and investigated the performance of a new formu-

lation of evaluation strategies on a selection of parallel Haskell bench-

marks [77] (Chapter 4).

1.3 Thesis Structure

Chapter 2 reviews relevant issues in the area of general purpose parallel com-

puting architectures. It outlines the new trends towards hierarchical communica-

tions architectures. Parallel programming approaches are reviewed and discussed.

At the end of the chapter, we outline the runtime aspects that are crucial to the

implementation of implicit or semi-explicit parallel functional languages.

Chapter 3 presents the findings of the comparison of four different parallel

Haskell implementations on multicore architecture. It outlines the key features,

programming effort, and performance of each implementation.

Chapter 4 outlines the first uses of a new formulation of evaluation strategies

for GpH by undertaking a systematic benchmarking of the new formulation. The

chapter also investigates the thread granularity required to achieve acceptable

6

Chapter 1. Introduction

performance from a distributed-memory parallel functional language, i.e. Eden

and GpH, on multicores.

Chapter 5 presents the design of new architecture-aware constructs for the

GpH language which can exploit information about task size and aim to re-

duce communication for small tasks, preserve data locality, or distribute large

units of work. The architecture-aware constructs provide multiple levels of par-

allelism to maximise the performance of new architectures. The behaviour of the

architecture-aware constructs is also investigated.

Chapter 6 presents preliminary investigations of architecture-aware program-

ming models that abstract over the new constructs. Specifically, we present some

key abstractions and demonstrate some architecture-aware evaluation strategies

and skeletons.

Chapter 7 concludes and suggests the opportunities for future work that may

extend the work presented in this dissertation.

1.4 Authorship and Publications

Unless otherwise stated the work presented throughout this doctoral thesis was

authored by myself and the work contained herein is my own. As a result of the

research activities the following research papers were published:

[8] Aswad, M., Trinder, P., Al Zain, A., Michaelson, G., and Berthold, J. Low

7

Chapter 1. Introduction

Pain vs No Pain Multi-core Haskells. TFP09, Sympo- sium on Trends in

Functional Programming, Komarno, Slovakia 10 (June 2009), pp. 4963.

[3] Al Zain, A., Hammond, K., Berthold, J., Trinder, P., Michaelson, G., and

Aswad, M. Low-pain, High-gain Multicore Programming in Haskell: Coor-

dinating Irregular Symbolic Computations on Multicore Architectures. In

Proceedings of the 4th workshop on Declarative aspects of multicore pro-

gramming (2009), ACM, pp. 2536.

[77] Marlow, S., Maier, P., Loidl, H.-W., Aswad, M. K., and Trinder, P. Seq

no more: Better Strategies for Parallel Haskell. In Proceedings of the 3rd

ACM SIGPLAN symposium on Haskell (Baltimore, MD, United States,

Sept. 2010), ACM Press, pp. 91102.

[9] Aswad, M., Trinder, P. W., and Loidl, H. Architecture-Aware Parallel Pro-

gramming in Glasgow Parallel Haskell (GPH). In Proceedings of the Inter-

national Conference on Computational Science (ICCS) (Omaha, USA, June

2012), Procedia Computer Science, pp. 18071816.

The content of the papers is related to the chapters of the thesis as follows:

• In [8], we present a programming and performance comparison of functional

multicore technologies material for four parallel Haskell implementations

(Chapter 3).

8

Chapter 1. Introduction

• In [77], we present a performance evaluation of the new Eval monad strate-

gies material (Section 4.1.3).

• In Section 6 of [3], we present the results of the thread granularity limited

study on multicores (Section 4.2).

• In [9], we describe the design of the new architecture-aware constructs for

the parallel Haskell extension GpH material (Chapter 5).

9

Chapter 2

Background

2.1 Parallel Hardware

Up until recently, improvements in performance of commodity machines relied on

increased clock frequency and instruction-level parallelism. However, the amount

of instruction-level parallelism that can be extracted from sequential programs is

limited [110], and since 2002, CPU clock frequency increases have stalled, due to

power and heat issues [101]. Therefore, the whole microprocessor industry has

turned to manufacturing processors incorporating multiple cores onto a single

die [12]. These architectures are known as multicores. These multicore machines

are becoming the predominant architecture for general propose computing sys-

tems. In such environments, heterogeneity occurs in several forms: e.g. PEs

may have different instruction sets, different operating systems, or there may be

different network connections between PEs [111].

10

Chapter 2. Background

2.1.1 Classification by Memory Structure

Parallel architecture can be classified as shared memory or distributed memory.

In a shared memory system, cores share a single address memory space. Typically,

this is implemented through a shared bus, although this design is limited to a few

dozen cores. In a distributed memory system, each core has exclusive access to

its own local memory, whereas this memory space can be logically or physically

distributed [106]. Separately from the physical structure of memory, it can be

logically distributed or virtually shared. These forms of logical organisation can

be combined with underlying physical structure by e.g. implementing a virtual

shared memory abstraction. In addition to the memory structure, each core

(Processor Element) has a private cache and possibly shares the cache with other

local cores (e.g. L2 cache). The L1 cache is located close to the core and is used

to store blocks of values required by the process executing on the core to exploit

data locality. Cores may share the standard Random Access Memory (RAM)

through a common bus.

Thus, modern architectures realise a deep memory hierarchy of remote mem-

ory, local memory, (several levels of) cache and register, with decreasing access

time and decreasing size. Efficiently exploiting this memory hierarchy is crucial

for high-performance computing.

11

Chapter 2. Background

CPU State

a) Single Core B) Multiprocessor

CPU State CPU State CPU State CPU State

D) Multicore C) Hyper−Threading Technology

E) Multicore With Shared Cache

CPU State CPU State CPU State CPU State

CPU State

Cache

CPU State

Cache

CPU State

CacheExecution
Units

CPU State

Execution
Units

Execution
Units

Interrupt Logic Interrupt Logic Interrupt Logic

Interrupt Logic Interrupt Logic Interrupt Logic Interrupt Logic

Units
Execution

Cache Units
Execution Cache

Units
Execution Cache

Interrupt Logic Interrupt Logic

Execution
Units

L1
Cache

Execution
Units

L1
Cache

Cache L2

Interrupt Logic Interrupt Logic Interrupt Logic Interrupt Logic

Units
Execution CacheCacheUnits

Execution

F) Multicore with Hyper−Threading Technology

Figure 1: Comparison of Single Core and Different Multicore Architectures([2])

2.1.2 Multi-core Architecture

Multicore devices have been around for many years, in different forms [113]. Most

of them are homogeneous devices consisting of several identical cores to form a

multicore. However, future multicore systems will be heterogeneous multicore de-

vices, including several cores with different capability [42, 60]. The homogeneous

option is used in most of today’s systems because it is easy to implement. An

example a simple multicore system is a dual core system containing two identical

cores within a single die, which aims to double the performance [62, 20]. Fig-

ure 1 illustrates typical multicore architecture, specifically some Intel multicore

architectures and their memory topologies:

12

Chapter 2. Background

a) A single core consists of core and cache.

b) A multiprocessor consists of two identical chips where each has its core and

cache.

c) Hyper-Threading on a single chip consists of a core with two or more CPUs

and interrupt logic.

d) A multicore chip consists of two cores where each has its own cache.

e) A multicore consists of two cores sharing only L2 cache.

f) A multicore consists of two hyper-threaded cores sharing a cache.

In a dual core, the performance can be increased without any software mod-

ification as the operating system can dedicate one core for the main application

and the other core for a specific task such as interrupt handling. However, in

a multiple core device, it is desirable to use several cores to execute one user

application and the application must be reshaped to make use of all the cores for

optimal performance.

2.1.3 Homogeneous vs Heterogeneous Multicore

Today systems for massive parallelism often consist of several homogeneous clus-

ters of different speeds and sizes interconnected through traditional networks,

which means the architecture becomes heterogeneous [112]. A heterogeneous ar-

chitecture has the advantage that it may improve performance and efficiency, both

13

Chapter 2. Background

through increased specialisation of core types and the large numbers of proces-

sors. The objective is to provide better balance between sequential and parallel

workload. The different core capability of heterogeneous architectures are usually

developed in a way that each core is dedicated to a different workload. The most

powerful core is assigned to perform heavy tasks, e.g. operating system actions.

In contrast, cores in homogeneous architectures are treated equally but not spe-

cialising any of the cores for a particular task. It is therefore very difficult to

distribute an irregular parallel workload in a manner that balances the workload

between cores [82]. The property of easy construction and mapping tasks in ho-

mogeneous parallel architectures, which are usually in a single machine or single

cluster, will soon be unavailable because of the increasing number of cores in a

single chip. This increase will allow the construction of multicore machines with

cores of different capabilities.

2.1.4 Distributed Computing

A distributed memory system is a system in which the processing elements are

connected by a network. Several computing paradigms can be considered as

distributed computing: cluster computing, Grid computing and, more recently,

Cloud computing. Sadashiv [104] has presented a detailed comparison between

the three architectures. Buyya [23] defines these paradigms as “a cluster is a

category of parallel and distributed platform, which consists of a collection of

14

Chapter 2. Background

interconnected standard computers working jointly as a single incorporated com-

puting resource”. A Grid is a parallel and distributed architecture that enables

sharing of resources dynamically at runtime system level [1]. A Cloud is a par-

allel and distributed architecture consisting of a collection of interconnected and

virtual parallel computers. It can be provided dynamically and viewed as a single

or several computing resources depending on consumers needs.

This thesis primarily focuses on clusters, e.g. the proposed model is evaluated

on a group of interconnecting clusters in Chapter 6.

Cluster Computing consists of multiple standalone computers connected by

a local area network. Computers in one cluster should be identical to minimise

the difficulty of achievement of the load balance. The most common type of

such a cluster is the Beowulf cluster [99], which consist of multiple intercon-

nected (identical) commercial off-the-shelf computers. Commonly, the ordinary

network technology is used [109]. With multicores becoming standard machines,

the individual nodes in the clusters are themselves dominant. This architectural

change has complicated the implementation of load balancing and has introduced

additional challenges to parallel programming developers. They have to take ad-

vantage of multicore features in their software development. One of the most

important features that needs to be captured is the hierarchical memory struc-

ture, which can be achieved by exploiting data locality in a parallel program [5].

15

Chapter 2. Background

Grid Computing is a collection of computer resources where computing is

executed over a network. This approach is viewed as one set of a virtual global

community, where resources are heterogeneous. This virtual community is geo-

graphically distributed and belongs to different organisations. Grid are used to

solve comprehensive computational problems in science, engineering, and com-

merce [11].

Hybrid Architecture is a high speed parallel computing architecture consist-

ing of several nodes with private address space. A hybrid architecture can be

viewed as a combination of Von Neumann features and Dataflow features [50]. It

is an array of identical processors, connected through a suitable switching network

to a global memory. Moreover, a hybrid architecture can take different forms: it

can be a small cluster of single core machines or cluster of multicore machines.

It can also be geographically distributed clusters connected by a network.

Hierarchical Architectures: These are geographically distributed hierarchi-

cal architectures [22]. Moreover, even common parallel clusters of multicore

nodes can be considered as hierarchical, with three hierarchy levels. Threads on

the same core can communicate most efficiently with a thread on the same core,

more slowly with a thread on another core in the node, and even more slowly

with threads on remote nodes. The communication hierarchy is likely to become

deeper as the number of cores increases. For example, the number of cores shar-

ing the same memory is likely to be restricted, and hence many core architectures

16

Chapter 2. Background

O
rg

an
is

at
io

n
A

PE

Node Node
LEVEL 2

Beowulf cluster

Network

Network

Network

LEVEL 4

PE

PE

PE

PE PE

PE PE

PE

Multicore Node

PE

Multicore Node Multicore Node

Multicore Node

Multicore Node

Multicore Node

PE

PE

LEVEL 1

LEVEL 0

PE

Real Architecture

O
rg

an
is

at
io

n
B

LEVEL 3

Figure 2: Hierarchical Architectures

may introduce another level within a node.

Figure 2 illustrates a hierarchical architecture of two organisations A & B.

The architecture can be viewed as an unbalanced tree of nodes.

2.1.5 Summary

The increasing deployment of multicore architectures brings parallel computing

into the mainstream. This paradigm shift creates a challenge of parallel program-

ming and system understanding in general. Clusters are the dominant server

technology and can be constructed from various computer types.

17

Chapter 2. Background

Memory
Single Multi-Core Symmetric Distributed
Core L1+L2 Multi-Core (SMP) Memory

Own Cache Yes Yes Yes

Own Ram Yes Yes

Shared Cache Yes Yes

Shared Ram Yes Yes

Communication coordinated accesses coordinated accesses Message Passing

Table 1: Memory Classification

Table 1 summarises the types of computers from a memory perspective. The

first column shows the comparison categories. The second column shows a single

core architecture where nothing is shared. The third column presents a multicore

architecture in which memory appears in the form of a hierarchy: each core has

it own cache and two cores have a shared cache, and in addition to that all cores

share the same RAM. The fourth column shows a symmetric multicore architec-

ture; cores share both cache and RAM. The final column shows a distributed

memory architecture, where each core has a local cache and RAM, and a bus or

network interconnects all cores. Cores within multicore and SMP communicate

with each other through memory access. In contrast, cores in distributed memory

communicate through message passing.

Heterogeneous multicores and clusters consisting of these different kinds of

processors are becoming the predominant architectures. This trend needs a

matching programming model to exploit the potential performance.

18

Chapter 2. Background

2.2 Parallel Programming Classifications

Since hardware is parallel by default nowadays, software must become parallel,

too. This requires modifications to the existing software to cope with new parallel

architectures. For many application a key requirement of the parallel program-

ming model is that it has to be easy. In particular, it should not be much more

difficult than the traditional sequential programming model. Of course, there are

other requirements like maintaining the existing sequential software, portability

and, most of all, the performance. The main challenge in parallel language de-

sign is to find a suitable balance between performance and abstraction. To start

with, the application must be designed in a manner that can be parallelised i.e.

decomposed into a number of tasks that can be executed in parallel. This section

discusses a number of alternative parallel programming languages.

Before the parallel software development process is studied in general, we have

to explain the two possible types of parallelism in any given application: data

parallelism or task parallelism.

Data parallelism describes a type of parallelism where a function is applied

to multiple data items simultaneously. It can be flat data parallelism, where

the function is applied to a one dimensional data set, or nested data parallelism,

where the function is applied to a many dimensional data set. It is not necessarily

the case that the same function is applied to both dimensions. It may happen that

different functions are applied to different dimensions. Parallel array computation

19

Chapter 2. Background

is the most common approach used by many data parallel languages such as

NESL [21], High Performance Fortran (HPF) [29], ZPL [26], and Hierarchically

Tiled Arrays (HTAs) [17].

Task parallelism is a form of parallelism where computational units, e.g. func-

tions, are distributed to be executed in parallel. The key notion is that an ap-

plication has to be divided into several independent tasks. These tasks can be

mapped automatically onto physical processors [6]. The scheduling of the tasks

to the physical processors is usually performed by the implementation.

There are a number of important parallel paradigms and this section fo-

cuses on those related to the thesis. Some important paradigms not covered

here include Single Program Multiple Data (SPMD) [51], Bulk Synchronous Pro-

cesses (BSP) [123], and the increasingly important GPU programming models

like CUDA [102] and OpenCL [85].

2.2.1 Parallel Software Development

Parallel software development has a number of distinctive issues in addition to

issues inherited from sequential software development. Either the programmer or

the compiler is responsible for addressing these issues [41, 96]. The following are

the distinctive issues related to parallel software development:

20

Chapter 2. Background

• Exploitation of the Potential Parallelism: the algorithm should indi-

cate the source of parallelism existing in the problem. This involves parti-

tioning the program into sequential parts that can be performed in parallel.

However, exploiting every single source of parallelism is not always the best

choice because this generates extremely small pieces of computation, for

which the system overhead dominates the computation.

• Resource Utilisation: the exploited parallelism has to be mapped to par-

allel hardware in a way to make efficient use of the available resources. For

example a program should utilise a suitable number of cores, and make lim-

ited memory and communication demands. The efficiency of the parallelism

depends on the programmer and on the parallel software model involved.

High efficiency can be achieved by statically grouping tasks and scheduling

their execution on cores equally or by achieving the load balance at runtime

by assigning tasks to idle cores.

• Synchronisation & Communication: communication in parallel pro-

gramming refers to the information exchange between parallel computa-

tions. The information exchange between parallel computations requires

some form of synchronisation, either implicit or explicit. Synchronisation

can be achieved by either shared variable communication primitives that

control access to critical sections or message passing communication prim-

itives, which guarantee exclusive access to shared objects. It is crucial to

21

Chapter 2. Background

avoid deadlock, starvation and non-termination.

• Correctness of parallel implementation needs to be preserved. Because

parallelisation often requires structural changes to the code, as well as ad-

ditional coordination code, assuring that the parallel program produces the

same result as the sequential program is non-trivial. Not only must the

result be correct but the performance must be reasonable. In parallel pro-

grams, we may get the correct result, but at the price of losing performance

as a result of unequal distribution of tasks among processors.

• Parallel Software Debugging is the process of testing the parallel pro-

gram and improving the performance. Tracking errors in parallel software

(especially performance errors) is exceptionally difficult. There are tools to

aid this process that give an overview of the cores’ status at any given mo-

ment of the program execution. This is manageable for a small number of

cores, but for a large number of cores, say thousands, this will be extremely

difficult.

2.2.2 Parallel Programming Models and Languages

Parallel programming models can be classified in several ways to determine their

suitability for challenges such as portability, efficiency and ease of programming.

Unfortunately, these properties conflict with each other. For example, for ease

of programing, the programmer can ignore the underlying architecture in their

22

Chapter 2. Background

application. However, high performance may require that the programmer gives

some details about the underlying architecture. The more specified the architec-

ture, the less the application will be portable and thus the higher the maintenance

cost.

Parallel programming languages can be classified into imperative approaches

and declarative approaches. An imperative parallel programming language [118]

represents a computation as a group of interacting parallel tasks that communi-

cate and synchronise using message passing, shared memory locks or via remote

procedure call. The strength of the imperative is in explicitly representing tasks

and operations from the problem specification and thus achieving detailed con-

trol of the parallel programming. Its disadvantage is the difficulty of expressing

parallelism and the interaction patterns of its operations. In contrast, declarative

parallel programming [73] represents the logic of computation without describing

its control flow. Due to referential transparency, expressions can be evaluated in

any order, in particular also in parallel. Thus, correctness of the parallel program-

ming is often trivial. The coordination of the parallelism is typically managed by

the compiler and by the runtime system. Consequently, programmers only have

to deal with the decomposition of their problems into parallel tasks.

Skillicorn and Talia [106] categorised parallel models based on their degree of

abstraction.

• Nothing Explicit (Implicit) models hide all parallel details from the

23

Chapter 2. Background

programmer. The programmer continues to program in a sequential man-

ner. These are easy to use and highly abstract, but potentially inefficient.

• Explicit Parallelism (semi-Explicit) models require a programmer to

expose the inherent parallelism in the program. However, the runtime sys-

tem is responsible for determination of the actual parallelism, execution,

mapping, communication and synchronisation.

• Explicit Decomposition models require a programmer to indicate the

potential parallelism inherited from the program and divide this parallelism

into tasks but to allow the placement of the tasks be decided by the runtime

system.

• Explicit Mapping models require a programmer to indicate the poten-

tial parallelism inherited from the program: how the program is divided

into pieces and where to place each task. However, the communication and

synchronisation are left to the runtime system.

• Everything Explicit models require a programmer to identify all parallel

details activities. It is extremely difficult to write an application using such

models, because both correctness and performance can only be reached

by knowing large number of complex details of the system and underlying

architecture.

Loogen[71] classifies parallel programming models with respect to the level of

24

Chapter 2. Background

Control Parallelism Data Parallel

Implicit automatic parallelisation data parallel languages

Controlled semi-Explicit annotation based languages high-level data parallelism
evaluation strategies
skeleton languages

Controlled Explicit process control languages
message passing languages
concurrent languages

Table 2: Classification of Parallel Models

control and type of parallelism. The models are split into three categories. With

implicit approaches, the system tries automatically to exploit the parallelism

that is inherent in the semantics. With controlled approaches, the programmer

is involved in inserting a notation either to exploit parallelism or to control the

execution behaviour. With explicit approaches, a programmer is required to

describe all parallel aspects in the program. Table 2 shows Loogen’s classification.

2.2.3 Implicit Models

In an implicit model, the compiler automatically exploits the parallelism avail-

able in the computations [71]. There is no need for special directives, operators

or functions to enable parallelism. Therefore, the job of the implementer of the

language becomes much harder, since the compiler and/or runtime system must

infer all parallel structures of the eventual program [59]. Ideally, automatic par-

allelisation would exploit all the potential parallelism of reasonable granularity.

Whether generating parallelism is worthwhile heavily depends on the size of the

25

Chapter 2. Background

expression and the underlying architecture characteristics. Therefore, informa-

tion about thread granularity is often involved in deciding the size of expression

that should be evaluated in parallel. There are many implicit parallel models

available. The rest of this section discusses some prominent systems supporting

implicit parallelism.

Intel has developed an automatic partitioning packet processing applications

compiler for pipelined architectures [33]. This approach automatically splits a

sequential C code into coordinated pipeline parallel subtasks. These tasks are

mapped to processing elements of a network or parallel architecture. The tech-

nique allows a minimisation of data transfer between subtasks and a balance of

processing tasks in the pipeline. Using this compiler, the programmer can con-

tinue to write applications in a sequential manner even if they should be executed

on heterogeneous multicore architecture. Nevertheless, the extraction of paral-

lelisation depends on the amount of inherent data parallelism from the algorithm

and its dependencies.

Feedback Directed Implicit Parallelism (FDIP) is an implicitly parallel

implementation of the Haskell functional language [46]. FDIP extracts potential

parallelism from sequential Haskell code in four processing stages. In the first

stage, it executes and profiles the sequential code. In the second stage, it analy-

ses the profile output to identify useful sources of parallelism. A Haskell program

26

Chapter 2. Background

usually contains a large number of potential computation thunks, which may rep-

resent useful sources of parallelism. However, the hard question is: which of these

are suitable for potential parallelism. In the third stage, the program is automati-

cally recompiled to introduce parallelism at the identified sites. In the final stage,

the output of stage three is executed on sophisticated mechanisms implemented

in the GHC runtime system. The implementation dynamically manages thread

generation and load balance.

2.2.4 Semi-Explicit Parallel Models

A semi-explicit parallel model requires the programmer to indicate the source

of potential parallelism in the algorithm, whereas the decision of realising the

actual parallelism is left to the compiler or to the runtime system. Annotations

to the compiler are used to identify sources of parallelism in the algorithm, and

hence to control the parallel behaviour of the algorithm, whilst hiding the low

level implementation details from the programmer. The annotations affect only

the run-time behaviour of programs, but not the result.

OpenMP uses an imperative parallel programming style [28]. It is a portable

programming interface for shared memory multithreaded programming using

C/C++ and Fortran as host languages. OpenMP consists of a set of compiler

directives, library routines, and environment variables that affect run-time be-

haviour. OpenMP uses a fork-join threading model; a master thread forks a

27

Chapter 2. Background

task into a number of worker threads that share the work and then wait until

they finish to join before continuing. OpenMP is a scalable model that gives

programmers a simple and flexible interface for developing parallel applications

for a range of parallel architectures. The model is identified as easy to use and

portable. The programmer does not need to put significant effort into parallelis-

ing the existing sequential program. However, this is not always the case, as

the multicore resources are not fully utilised if the programmer is not expert in

parallel programming.

High Performance Fortran (HPF) is a standardised imperative parallel lan-

guage, which focuses mainly on the issues of distributing data across the mem-

ories of a distributed memory multicore [29]. It is an extension of Fortran90

that exploits data parallelism. Data parallelism exists when a single operation

is carried out over a collection of data. HPF adds a set of directives such as

Processors, Distribute and alignments directives. Processors allocates the

number of abstract cores. It is usually equal to the number of actual physical

cores. Distribute distributes the data in an array along cores in a combination

of operational groups, and or block modes.

The Manticore project combines NESL style data parallelism with more gen-

eral task parallelism as found in some other languages such as Concurrent ML

(CML) [98]. In a sense, it represents a heterogeneous parallel language [40, 25].

Manticore combines features of CML supporting explicit concurrency as well as

28

Chapter 2. Background

of NESL data parallelism. It is based on three components: sequential functional

programming features of SML; explicit concurrent programming primitives us-

ing threads and synchronous message passing inherited from CML; and implicit

nested data parallelism from NESL and Nepal[24]. The underlying hardware

topology can be hidden behind data and type abstraction using a CML abstrac-

tion mechanism called first-class synchronous operations. Using event values,

programmers can easily specify very complicated communication and synchroni-

sation protocols. Parallel arrays in Manticore can be of any type and they can

be nested. The compiler maps parallel array operations onto appropriate parallel

architecture.

NESL is a strict, strongly-typed, nested data-parallel language with implicit

parallelism and implicit thread interaction [21]. It has been implemented on

a variety of parallel architectures, including several vector computers. NESL

fully supports nested sequences and nested parallelism. The language allows

a programmer to perform a higher-order function on a list in parallel. NESL is

loosely based on the ML functional language. In NESL the Apply-to-each is the

central construct to exploit parallelism. This construct uses a set-like notation.

NESL uses a method based on asynchronous core groups to reduce communication

and a run-time load-balancing system to cope with dynamic data distributions.

This is achieved by translating the user’s algorithm into ANSI C with MPI calls,

and linking this code with an MPI (Message Passing Interface) library.

29

Chapter 2. Background

Glasgow Parallel Haskell (GpH) is a modest extension of Haskell98 [121].

It uses a thread-based approach to parallelism. This approach allows the creation

of parallel threads, but does not require mechanisms to control them. Synchro-

nisation is implicit through shared variables. It exploits different types of paral-

lelism such as data parallelism and divide-and-conquer parallelism by defining a

higher order function which combines coordination primitives. Evaluation strate-

gies [121] are the preferred mechanism of high-level coordination of parallelism.

GpH extends Haskell98 with parallel par and sequential pseq composition prim-

itives (see Figure 3). Denotationally, both primitives are projections onto the

second argument. Operationally, pseq causes the first argument to be evaluated

before the second and par indicates that the first argument can be evaluated in

parallel with the second argument. The latter operation is called sparking of

parallelism and it is implemented using a lazy task creation approach. A spark

in GpH is not immediately converted to a thread. The runtime environment is

responsible for determining which sparks are going to be converted to parallel

threads based on load and other information.

par :: a -> b -> b -- parallel composition

pseq :: a -> b -> b -- sequential composition

Figure 3: Types of the basic coordination constructs in GpH

Several implementations of GpH are available for parallel architectures. The

GpH-SMP is an optimised shared memory implementation integrated into GHC

30

Chapter 2. Background

from version 6.6 onwards [16]. The GpH-GUM implementation is a message-

passing implementing a virtual shared heap [121]. The GpH-GUM has been

ported from GHC version (GHC-4.06) to the recent GHC version (GHC-6.12) as

part of this thesis.

Caliban is a declarative parallel programming language defined on top of the

Haskell functional programming language [57, 114]. Caliban defines aspects of

parallel runtime behaviours of the application program using annotations. The

annotations do not effect the result produced by the program, although they can

affect the termination properties of the program. As with GpH, the coordination

level does not affect the result, although it can affect the termination properties

of the program. The coordination-level entities in Caliban are processes that are

connected by streams. Processes in the Caliban form a cyclic graph whose nodes

are the physical processors and arcs are streams of data. The potential parallelism

is gained from the data dependencies of the application. The Node construct is

used to place the expression in a separate processor, where the Arc construct is

used to connect nodes reflecting the data dependencies in the programme. The

use of higher-order functions in the Caliban coordination language facilitates code

re-use.

Clean is a pure concurrent lazy functional language[95]. It provides higher-

order functions supporting concurrent processes and distributed execution, mak-

ing use of an I/O library included in the language. Clean can dynamically create

31

Chapter 2. Background

processes, which may run interleaved or in parallel. The interconnection between

processes such as communication and synchronisation is handled automatically

by the runtime system. However, the process topology can be defined by pro-

grammer using higher-order functions. Clean has been extended with a set of

primitives in D-CLean [48]. These new primitives allow programmers to dis-

tribute computation in several layers. These layers can be distributed easily over

clusters. The details of the underlying architecture can be hidden from the pro-

grammer using skeletons. The primitives that D-CLean provide are: DStart

starts the distributed computation. DStop receives and saves the result of the

computation. DApply applies the same function expression in parallel n times.

Eden [15] extends Haskell with syntactic constructs to explicitly define and in-

stantiate processes. In contrast to the other languages, such direct Eden program-

ming exposes parallel tasks at the language level, and requires the programmer to

manage them using the control mechanisms provided in the language. In practice

however, Eden provides libraries of skeletons [13] for parallelising applications.

Eden supports a distributed memory parallel paradigm. That is, processes

share no values, and communicate only by messages. It might be thought that

such a paradigm would not be suitable for parallelism on shared-memory multi-

core architectures; however recent results have shown good performance [16].

In direct usage, Eden is explicit about process creation and about the com-

munication topology, but implicit about other control issues, such as sending

32

Chapter 2. Background

and receiving messages and process placement. Granularity is under the pro-

grammer’s control because he/she decides which expressions must be evaluated

as parallel processes, and also some control of the load balancing is possible, at

the program level.

Eden provides process abstractions and process instantiations for coordina-

tion, as shown in Figure 4.

newtype Process a b = ...

-- process abstraction (language construct)

process (Trans a, Trans b) => (a->b) -> Process a b

-- process instantiation

(#) :: (Trans a, Trans b) =>

Process a b -> a -> b

-- non-deterministic merge process

merge :: Process [[a]] [a]

Figure 4: Basic Coordination Constructs in Eden

The expression process (\ x -> e) of a predefined polymorphic type Process

a b defines a process abstraction that takes a function of type (a->b) and con-

structs an analogous Process a b. When instantiated, processes are executed

in parallel and if the output or input expression is a tuple, a separate concur-

rent thread is created for the evaluation of each tuple element. We refer to each

output tuple element as a channel. A process instantiation is achieved with the

predefined infix operator (#), and the Trans context supports the transmission

of lists as streams and the creation of threads for tuple elements. Each time an

33

Chapter 2. Background

expression e1 # e2 is evaluated, a new process is created to evaluate the applica-

tion of e1 to e2. We will refer to the latter as the child process, and to the owner

of the instantiation expression as the parent process. The instantiation semantics

specifies in which processes these expressions shall be evaluated: (1) Expression

e1 together with its whole environment is copied in the current evaluation state

to a new processor, and the child process is created there to evaluate the appli-

cation of e1 to e2, where e2 must be remotely received. (2) Expression e2 is

eagerly evaluated in the parent process. The resulting full normal form data is

communicated to the child process as its input argument.

Once processes are created, only fully evaluated data objects are communi-

cated. The only exceptions are lists: they are transmitted in a stream-like fashion,

i.e. element by element. Each list element is first evaluated to full normal form

and then transmitted. Processes trying to access input not yet available are

temporarily suspended. This is the only synchronising mechanism in Eden.

Algorithmic skeletons in Eden abstract common patterns of parallel evalua-

tion into higher order functions [32]. They simplify the development of parallel

programs by hiding coordination details from the programmer and may provide

ready-made parallel cost models.

Para-Functional parallel programming is based on a functional program-

ming model enhanced with features that allow programs to be mapped to specific

multiprocessor topologies [49]. There are extended control clauses, which can be

34

Chapter 2. Background

used to express quite sophisticated placement and evaluation schemes. These

control clauses effectively form a separation between the language and process

control. Parallelism may be exploited by a number of annotations such as $on,

send, receive. The compiler generates parallel PACLIB C with explicit task

creation and synchronisation statements.

X10 is a parallel programming model under development at IBM for program-

ming hierarchical parallelism [30]. X10 increases performance by integrating

new constructs (notably, places, regions and distributions) to model hierarchi-

cal parallelism and nonuniform data access. X10 provides four storage classes:

(1) Activity-local class to store private data structures of activities such as

a stack for the local thread information and it is located in the activity place

(thread-local). (2) Place-local is a local class for a place, but can be accessed

coherently by all activities executing in the same place. (3) Partitioned-global

(shared memory) is a global address space containing elements of place type.

The elements are accessible by both local and remote activities. (4) Values (Vir-

tual shared memory) is a class used to store values that can be moved between

places depending on the implementation.

The foreach construct serves as a convenient mechanism for spawning local

activities. The ateach construct serves as a convenient mechanism for spawning

remote activities. X10 place and its activities can be mapped to underlying

heterogeneous nodes, taking advantage of the hardware features of each node

35

Chapter 2. Background

while maintaining the portability of code.

2.2.5 Explicit Models

In explicit models, the programmer is required to describe details of the paral-

lel coordination. In other words, it is the responsibility of the programmer to

describe many implementation details. This detailed control allows the program-

mer to tune parallel performance and tailor it to one particular architecture, at

the cost of programming simplicity and performance portability. In the research

community, a consensus is emerging that such models are problematic in the

direction of parallel programming, despite the good performance which can be

obtained from it. The main problem with this model is that it requires detailed

expert knowledge about parallel programming to achieve good parallel perfor-

mance [56]. It also requires manual code changing if a program is executed on

another architecture.

The rest of this section describes concrete systems for explicit parallelism.

Message Passing Interface (MPI) [125] standard defines an interface for

sending and receiving messages. Specifically the interface includes point-to-point

communication functions, send operations performing a data transfer between

two concurrently executing tasks, and receive operations to accept data from

another processor into program memory space. It also has other operations, such

as broadcast barriers and reduction that explicitly involve a group of processors.

36

Chapter 2. Background

It is heavily used in high performance computing and, with considerable tuning,

delivers an acceptable performance across a wide range of architectures. MPI is

a MIMD style model. However a shared-memory style can be simulated using

send and receive messages of MPI. MPI does not provide the dynamic creation

or deletion of processes during a program runtime (the total number of processes

is fixed) [107].

Parallel Virtual Machine (PVM) [88] is a parallel programming environ-

ment for developing and executing large scale applications consisting of several

independent interacting tasks. It is developed to work on a collection of hetero-

geneous architectures interconnected by common networks. The PVM system

provides a number of user interface primitives: for the invocation of processes,

message manipulation, broadcasting, synchronisation via barriers, mutual exclu-

sion, and shared memory. A parallel application views the PVM system as a

general, flexible parallel computation resource that can be utilised through in-

voking its functions.

Erlang is a parallel programming language. It is a concurrent, real-time, dis-

tributed fault-tolerant programming language designed at the Ericsson Computer

Science Laboratory in 1986 [61]. Erlang uses an explicit model, in which the pro-

grammer is required to explicitly specify which tasks are to be executed in parallel.

It has primitives for multiprocessing: spawn starts a parallel computation (called

a process); send sends a message to a process; and receive receives a message

37

Chapter 2. Background

from a process. These primitives are for controlling parallel tasks. The overhead

associated with the creation of an Erlang process is really small. This is one of

the main reasons why Erlang is of interest for programming parallel architectures.

2.2.6 Hybrid Programming Models

A hybrid programming model combines shared-memory and distributed-memory.

This style of programming is used to program architectures similar to the archi-

tecture presented earlier in Figure 2. A common way to develop a hybrid model is

a combination of OpenMP and MPI libraries. The idea is to use OpenMP threads

to exploit the multiple cores per node while using MPI to communicate among

the nodes [75]. The weakness of these models is that they are heavily dependent

on the hardware, the OpenMP and MPI implementations, and the skill of the ap-

plication programmer. Rabenseifner [97] categorised hybrid programming using

MPI and OpenMP as follows:

1. Using only MPI, where each SMP node represents a MPI process. The

MPI library communicates using a shared memory between MPI processes

on the same SMP node, and by message passing between MPI processes on

different nodes.

2. Hybrid MPI+OpenMP: each MPI process consists of several OpenMP threads.

These MPI processes communicating with each using MPI outside of OpenMP

parallel regions.

38

Chapter 2. Background

3. Using only OpenMP: this style of programming relies on virtual distributed

shared memory systems (DSM). The programmer uses only shared memory

directives to exploit parallelism. However, this can not be achieved with

standard openMP. Some researchers have already used the NanosCompiler

or the NthLib runtime library, which provides a full support for nested

parallelism in OpenMP [36].

In fact, a hybrid programming model that extends MPI with OpenMP man-

ages to program clusters consisting of a number of SMP nodes. However, there

are remaining issues to address, such as thread granularity: the model requires

large thread granularity to achieve better performance. It does not provide any

advantage over a hybrid MPI-only approach. Moreover, this style of programming

is not easy enough for a programmer to write efficient applications [47].

Global Arrays is a shared memory programming model which combines the

advantages of a distributed memory model with the ease of use of shared memory.

It exploits SMP locality by sharing data placed in shared address space rather

than using message passing. This is achieved by functions that work on locally

distributed data and functions that transfer data between a shared address space

and local storage [86].

2.2.7 Summary

In order to build software that can take advantage of emerging parallel architec-

tures, a parallel programming model needs to be provided which will coordinate

39

Chapter 2. Background

Model Task Task Data Communication Synchronisation
Identification Mapping Distributed Mapping

HPF Implicit Implicit Implicit Implicit Implicit
FDIP Implicit Implicit Implicit Implicit Implicit
OpenMP Explicit Implicit Implicit Implicit Implicit
GpH Explicit Implicit Implicit Implicit Implicit
Nesl Explicit Implicit Implicit Implicit Implicit
Clean Explicit Explicit Explicit Implicit Implicit
Eden Explicit Explicit Explicit Implicit Implicit
X10 Explicit Explicit Explicit Implicit Implicit
MPI Explicit Explicit Explicit Explicit Explicit
PVM Explicit Explicit Explicit Explicit Explicit

Table 3: Comparison of some Popular Parallel Programming Languages.

parallelism and describe placement of data. In addition to these core parallel

programming issues, a developer must often deal with scheduling tasks under a

heterogeneous processor environment, and the management of nonuniform mem-

ory access. This chapter has reviewed a number of parallel programming models

that aim to address these challenges. Table 3 ranks models according to five dif-

ferent aspects. The categories in the rows of the table start from the most implicit

to most explicit models. The performance typically increases as the explicitness

increases while at the same time, the productivity of parallel programming de-

creases, due to the complexity of the program. We draw the following conclusions.

Traditionally, implicit models are better approaches for parallel programming

as a programmer does not have to control the parallel execution in detail. How-

ever, they are hard to implement sufficiently well to produce acceptable parallel

performance across all parallel architectures.

The semi-explicit models provide some control of generated parallelism, which

we believe is suitable for parallel programming. The level of explicit properties

40

Chapter 2. Background

varies in existing models. In the most abstract of these models, task identification

is sufficient. The main advantage of this model is that it provides the necessary

control for the model to be portable and yet easy to program.

The explicit models can deliver very high performance but at the price of

programming productivity and performance portability. The loss of productiv-

ity means that developing the parallel programming is time consuming. The

loss of performance portability means that the program cannot be moved from

one architecture to another architecture without code changing, whilst achieving

comparable parallel performance.

In Chapter 5 we propose semi-explicit mechanisms for controlling task place-

ment, and hence data locality on hierarchical architectures.

41

Chapter 2. Background

2.3 Key Runtime Aspects in a Semi-Explicit Model

Given that the work in this thesis depends on the functional programming model,

we discuss the runtime aspects of parallel functional programming. Many of these

aspects are crucial to the implementation of implicit or semi-explicit parallel

functional languages. Here we give a detailed introduction to the GUM runtime

system implementing the GpH language [121]

2.3.1 Thread Creation and Synchronisation

Parallel models need to address the issue of when and how threads are created,

how to prevent threads from evaluating expressions that are already under eval-

uation, and data transfer between threads. The decision as to when and how

threads are created is achieved using a sparking mechanism to identify the po-

tential parallelism. To prevent several threads from evaluating the same expres-

sion the locking mechanism is used. The wait list mechanism is used on the

data structure for synchronisation.

Indicating Parallelism: The potential parallelism can be indicated in various

ways: by using a parallel let annotation or by using fixed parallelism primitives

for parallel programming that can be allocated to any expression. We focus on

annotation based parallelism. This type of parallelism is deterministic, i.e. it

does not change the result of the program. Some, annotated parallelism does

not actually enforce parallel evaluation, but rather advises the runtime system

42

Chapter 2. Background

to generate parallelism. The runtime may make the decision, whether to exploit

this potential parallelism or not, depending on the workload.

Sparking is the most popular mechanism to generate potential parallelism in

graph reduction models [53]. A spark is a new pointer to a sub-graph which

represents some computation. There are two approaches to parallelism using

sparks. Mandatory parallelism ensures that all sparks are converted to threads.

In contrast, advisory parallelism merely hints to the runtime system by using

information provided by the programmer or by the compiler about potential

parallelism. However, the runtime system is free to decide whether to convert

the spark to a parallel thread. The weakness of mandatory parallelism is that

converting every single spark to a thread results in a fine-grained parallelism

which may possibly overload the system. In contrast, advisory parallelism yields

a high flexibility in the number of threads created. Advisory sparking is similar to

lazy task creation, where a task is generated only when it is demanded. It retains

only the information required to generate the task later [124]. The laziness aims

to reduce the overhead of exposing parallelism. These advantages come at the

price of thread creation management. Advisory sparking has been implemented

in many approaches such as GRIP [92], (ν, G)-machine [10], GUM [121], Feedback

Directed Implicit Parallelism [46] and GpH-SMP [16].

43

Chapter 2. Background

Locking is the mechanism used to ensure the synchronisation between parallel

threads. It is one of the major source of sequential overhead, and reducing lock-

ing is therefore potentially highly significant. Therefore, parallel model should

minimise the locking as much as possible. There are systems minimise locking by

allowing duplication of work. This is good only for short-running tasks. However

for long-running tasks, it is necessary in a graph reduction mechanism to avoid

the evaluation of sub-graphs by more than one thread at the same time. Lock-

ing prevents other threads evaluating a sub-graph currently under evaluation by

another thread.

In a purely functional language locking can be omitted to reduce synchroni-

sation overheads at the cost of duplication. However locking as implemented in

most parallel graph reduction models such as GUM, (ν, G)-machine, etc. The

implementation of locking in GUM is as follows: if a thread demands a result of a

graph node currently under evaluation, the demanding thread will be blocked on

this graph structure until the result becomes available [64]. The (ν, G)-machine

implements the locking mechanism in a similar way: it locks the node under eval-

uation using an indicating flag. If the flag is set, all processes trying to access

this node will be blocked until the node is updated [10].

The efficient implementation of locking is critical for performance, as updating

nodes is an extremely common operation in graph reduction systems.

44

Chapter 2. Background

The Waiting List is a technique used to record threads while waiting for the

result of a computation. It is usually attached to the locked node in a sub-graph:

a thread starting to evaluate a sub-graph locks the root. When another thread

tries to access the root closure, it finds the root closure locked and is added to the

waiting list attached to the root. If the thread evaluating the graph updates

the root closure all threads in the waiting list are re-awoken to continue with

their evaluations, using the result of the completed computation [66]. However,

there is an issue that should be taken into account when adopting the waiting

list; the model must minimise the heap usage. GUM and (ν, G)-machine achieve

this reduction by reusing parts of the node for the root of the waiting list.

GUM uses the first two words of the closure. The (ν, G)-machine uses a back-

link in the graph structure.

2.3.2 Storage Management

Large scale parallel processing involves the exploitation of hundreds or thousands

of processing elements (PEs) connected by a high speed interconnect network.

Normally every PE includes a physical processor, local memory and an interface

device connecting the PE to the network. In this system, each processor has a

favoured low latency, high bandwidth path to local memory bank, and a longer

latency, lower bandwidth to remote memory. One method to access a global

memory is by creating a virtual address heap interpreted to a physical address on

the local memory of a processing element [90]. This method is discussed in more

45

Chapter 2. Background

detail here. Using a global address space is a technique to model a distributed

memory in a graph reduction parallel system. The global space holds information

about the remote processor and graph structures evaluated remotely. This storage

mechanism is implemented in X10 [30] and GUM [121]. The locking mechanism

described earlier is implemented: threads may block waiting upon arriving data

from a remote processor. Therefore, it is necessary to hide the communication

overhead by a computation or by avoiding communication between tasks (data

locality).

2.3.3 Data Locality

Data locality refers to the use of data elements within relatively close storage

locations, i.e. the arrangement of related tasks and their data close to each other

as much as possible. This can improve parallel program execution time signifi-

cantly by reducing the fetching time of remote data between threads. This can be

achieved by executing tasks close to the data they need. A well-known fact to all

parallel implementers is that the communication overhead can dramatically affect

the performance of parallel computations [100]. This problem arises from small

computations demanding remote data, causing a communication overhead much

larger than the computation. Thread allocation and thread placement decisions

are even harder on heterogeneous multicore architectures. Many parallel pro-

gramming models use sophisticated adaptive algorithms that support dynamic,

46

Chapter 2. Background

lightweight threads. The heart of these models is a thread scheduler that bal-

ances the load among the processes. In particular, the processor can execute

another thread while one thread is waiting for communication. However, not

only a good load balance is essential for high performance, good data locality is

an important factor too. One technique is to allow the programmer to specify

the data access patterns in the program. This can be quite difficult for complex

data access patterns. The most popular load balance algorithm is work stealing,

which is based on random scheduling of threads. However, the randomisation in

the work-stealing algorithm can work against data locality. The current mod-

els implementing work stealing still need to be improved to achieve good data

locality.

X10 improves data locality by integrating new constructs (notably, places,

regions and distributions) to model hierarchical parallelism and nonuniform data

access [30]. X10 splits the memory space into parts known as partitioned global

address space. Constructs enable programmers to assign a single place to each

global address space. During execution of an activity, it will be located on the

same partitioned global address of its place. With this design, X10 claims to

minimise the communication between remote nodes.

Unified Parallel C (UPC) is a parallel extension of the C programming

language developed for multiprocessors[37]. It is a distributed shared memory

programming model. UPC facilities shared-memory programs, while exploiting

47

Chapter 2. Background

data locality. UPC provides constructs for placing data close to thread need it.

These constructs provide a mechanism that a private object can only be accessed

by its owner thread; any synchronisation with other threads can be made through

a shared address space.

Scalable Locality-aware Adaptive Work-stealing Scheduler (SLAW) is

a scheduler designed for parallel programming models [43]. The scheduler is

currently implemented in the Habanero Java (HJ) language. The goal is to allow

programmers or compilers to give locality hints to runtime. Like the X10 model,

SLAW achieves locality by grouping workers into places. Each place has a mailbox

to receive a remote task from a worker in another place. Each worker within a

place has its own queue. Tasks in the mailbox have less priority than tasks in the

worker queue. If a worker becomes idle, it looks for tasks in its local queue, then

in other worker’s queue in the same place, and finally from the mailbox.

2.4 Summary

A parallel model that can exploit heterogeneous multicore architecture must deal

with a parallel heterogeneous programming environment, scheduling on heteroge-

neous processors, and with the management of nonuniform memory. Earlier work

has focused on spawning threads dynamically using annotations, without taking

the distance notion into account while spawning a thread. The distance notion

means the communication overhead associated with a spawning thread on remote

48

Chapter 2. Background

processor element. It can be represented by the latency between processors or

by the number of communication hubs traversed between PEs as we did in this

thesis.

We have shown that existing mechanisms have limited support for improving

data locality, which can have a high impact on parallel programming performance.

In the next chapter, we will present the first programming and performance com-

parison of functional multicore technologies and report some of the multicore

results for two languages. The results of the comparison is one of the motivations

to introduce new annotations in GpH to improve data locality.

49

Chapter 3

Multicore Parallel Haskell

Comparison

This chapter compares four different parallel Haskell implementations on a mul-

ticore architecture. It outlines the key features of each implementation. Finally,

we present the findings of the comparison.

3.1 Introduction

There is a long-held assertion that functional languages are suited for parallel

computation. The fundamental motivation of this claim is that, because of the

lack of side effects, there will often be a chance to evaluate sub-expressions in

parallel without risk of interference [52]. Moreover, parallelism can be achieved

using high order functions, thus controlling the parallelism and at the same time

50

Chapter 3. Multicore Parallel Haskell Comparison

hiding the low-level coordination details. The low-level details are managed by

the compiler or dynamically by the runtime system.

High level programming languages such as MPI [59], UPC, OpenMP [28] and

Pthreads may be implemented on multicore architectures but this is usually not

the best alternative for the migration of most mainstream applications [27]. MPI,

UPC, and Pthreads require a high amount of code to be reorganised in order to

achieve reasonable performance while OpenMP programs require less code reor-

ganisation. However, OpenMP does not yet provide features for the expression

of locality and modularity that may be needed for multicore applications.

While there are likely to be several successful approaches to multicore pro-

gramming, we believe that functional language is relatively convenient for multi-

core. Parallel Haskell languages have been successfully deployed on shared mem-

ory systems (SMPs) and distributed memory architectures (DSMs).

This chapter presents a programming and performance comparison of func-

tional multicore technologies and reports some of the first multicore results for

the approaches. The comparison contrasts the programming effort required to

specify coordination with the parallel performance delivered in each language.

The comparison uses 15 programs carefully selected, i.e. without regard for their

inherent parallelism, from representative parts of the Nofib benchmark suite [89].

In consequence, the results reflect the multicore performance that might be ex-

pected for a “typical” set of Haskell programs (Section 3.4).

This comparison was conducted between a “no pain” parallel implementation

51

Chapter 3. Multicore Parallel Haskell Comparison

Feedback Directed Implicit Parallelism (FDIP) [46], and three “low pain”, i.e.

semi-explicit languages (Section 2.2.4). The semi-explicit Haskells are Eden [74]

and two implementations of Glasgow parallel Haskell (GpH) [121], GpH-SMP and

GpH-GUM (Section 3.3).

Although the parallel Haskell implementations all share the same optimising

Glasgow Haskell Compiler technology (GHC), each uses a different version, and

hence the performance comparisons are based on speedups, which are normalised

against different sequential performance. We establish a baseline for the speedup

comparisons by reporting sequential and parallel runtimes and efficiencies for

three of the languages (Section 3.5).

We report detailed parallel performance and programming effort studies, fo-

cusing on the number of programs improved, speedups delivered, and program

changes required to coordinate parallel evaluation (Section 3.6). The study com-

pares the scalability, the programming effort required, and the parallel perfor-

mance achieved, in each language (Section 3.7). We conclude by summarising

the key results and discussing their implications (Section 3.8).

For the GpH-GUM measurements presented in this chapter, we use an earlier

GHC-4.06 version which was upgraded later as a part of work conducted for this

thesis and is used to evaluate the architecture-aware constructs in chapter 6.

Moreover, it uses the original strategies style [122] to parallelise the benchmark

using GpH-GUM. The strategies have been improved in [77]. The next chapter

discusses the new strategies in more detail.

52

Chapter 3. Multicore Parallel Haskell Comparison

3.1.1 BenchMark Suite

We compare the performance of the four parallel Haskell implementations using

the 15 programs from the “real” and “spectral” sections of the Nofib benchmark

suite [89]. The “real” and “spectral” sections of the Nofib suite are carefully

designed to be representative of small Haskell programs, i.e. around 300 source

lines of code. The programs are :

• atom is a floating point simulation.

• Boyer is a Gabriel suite Boyer benchmark. It rewrites a given input term

according to a given set of lemmas in an attempt to produce the value True

meaning that the original term was a valid theorem.

• circsim is a circuit simulator.

• clausify reduces propositions to clausal form.

• compress is a text compression algorithm.

• fft2 performs Fourier transforms using floating point arithmetic.

• hidden is a line rendering tool.

• lcss is a hirschbergs LCSS algorithm.

• multiplier is a binary-multiplier simulator.

• para formats paragraphs in text.

53

Chapter 3. Multicore Parallel Haskell Comparison

• primetest is a primality testing program.

• rewrite is a equation rewriting system.

• scs is a circuit simulator. It largely relies on arrays, and arithmetic.

• simple is a hydrodynamics and heat-flow program.

• sphere is a ray tracing program.

The programs are a substantial subset of the 20 multicore benchmarks used

in [46]. Of the five programs not measured, the bsort-1 and bsort-2 programs

are not Nofib benchmarks, and three (cacheprof, calendar and fibheaps) are

too small to benefit from parallel execution, i.e. where the input cannot be sized

to give a runtime of 3s on current hardware. Crucially, other than to exclude

short programs, the programs are not selected a priori for having obvious parallel

structure. Hence, our results reflect the multicore performance that might be

expected for a set of “typical” small Haskell programs.

This chapter is closely based on “Low Pain vs No Pain Multi-core Haskells” [8].

3.2 Parallel Haskell Language Comparison

This section outlines the parallel languages compared in the study. The FDIP

implicit approach supports an unchanged Concurrent Haskell [93]. Indeed both

Eden and GpH-SMP support multiple stateful (IO) threads (concurrency) and

stateless parallel threads. More precisely, GpH-SMP is a superset of Concurrent

54

Chapter 3. Multicore Parallel Haskell Comparison

Haskell. However, concurrency is not used in our study and so our language

comparisons focuses on parallelism only.

test :: Int -> Bool

test n = all test0 (take n (repeat (Var X)))

Figure 5: Sequential Top-level Boyer function

We illustrate the coordination extensions by using them to parallelise the

Boyer Nofib program [89].

Figure 5 shows the key top-level function where the obvious extension can be

made to the original program. The function takes n size as input parameter.

3.2.1 Indicating Parallelism in GpH

Many parallel functional languages including GpH, generate tasks of a finer grain

than an implementation can exploit efficiently [83]. The par and pseq operations

are used to write high-level functions that would assist in parallel programming.

Experience of implementing nontrivial programs in GpH shows that the unstruc-

tured use of par and pseq operators can lead to rather obscure programs [65].

This problem can be overcome by using evaluation strategies [122]: lazy, polymor-

phic, higher-order functions controlling the evaluation degree and the parallelism

of an expression. They provide a clean separation between coordination and com-

putation. The driving philosophy behind evaluation strategies is that it should

be possible to understand the computation specified by a function without con-

sidering its coordination.

55

Chapter 3. Multicore Parallel Haskell Comparison

type Strategy a = a -> () -- type of eval. strategies

using :: a -> Strategy a -> a -- strategy application

rwhnf :: Strategy a -- reduce to weak hd norm form

class NFData a where -- class of reducible types

rnf :: Strategy a -- reduce to normal form

parList :: Strategy a -> Strategy [a]

parList strat [] = ()

parList strat (x:xs) = strat x ‘par‘ (parList strat xs)

Figure 6: Evaluation Strategies

Figure 6 shows the basic operations and composite evaluation strategies. The

using construct applies a strategy to an expression. The basic strategy rwhnf

reduces an expression to weak head normal form (WHNF). The overloaded basic

strategy rnf reduces an expression to normal form (NF), and is instantiated for

all major types. As functions, strategies can be combined using the power of the

language, e.g. composed or passed as arguments. For example, parList applies

strategy strat to every element of a list in parallel. Evaluation strategies will be

revisited in Section 4.1.3, focusing on their functionality in more detail.

To demonstrate how to write parallel programs using GpH, Figure 7 shows

the GpH parallelisation of the top-level Boyer test function, and works as follows.

The input list is bound to a variable xs, and then split into m chunks and bound

to xs1. Next the condition (all test0) is mapped over the chunks to give a

list of intermediate results res. It is this mapping that is parallelised (‘using‘

parList rnf). The final stage is to combine the intermediate results all (&&

56

Chapter 3. Multicore Parallel Haskell Comparison

test :: Int -> Bool

test n m = all (&& True) res

where xs = take n (repeat (Var X))

xs1 = splitAtN m xs

res = map (all test0) xs1 ‘using‘ parList rnf

splitAtN :: Int -> [a] -> [[a]]

splitAtN n [] = []

splitAtN n xs = ys : splitAtN n zs

where (ys,zs) = splitAt n xs

Figure 7: GpH Top-level Boyer function

True) res.

The parallelisation illustrates some interesting points. In this program, just

one function of the 52 functions in the 300 line program changes. This is the case

for many, but not all, programs. Exceptions include Sphere and Hidden where

parallelism is introduced in more than one function. The parallel paradigm is

chunked data parallelism. That is, the parallelism is determined by the under-

lying data structure, and to obtain suitable thread granularity, the program has

been changed to aggregate the input. In other programs it is possible to intro-

duce parallelism without changing the algorithmic or computational part of the

program, e.g. [69].

3.2.2 Indicating Parallelism in Eden

Eden [74] extends Haskell with syntactic constructs to explicitly define and in-

stantiate processes, as described earlier (see section 2.2.4). Eden uses the skeleton

framework to overcome the difficulties of programming, and provide more control

57

Chapter 3. Multicore Parallel Haskell Comparison

over fine-grain tasks. Algorithmic skeletons abstract common patterns of parallel

evaluation into higher-order functions [32]. They simplify the development of

parallel programs by hiding coordination details from the programmer, and may

provide ready-made parallel cost models. Eden supports a range of skeletons [13],

and some of these skeletons have been used to parallelise the Nofib programs.

Farm skeleton is a scheme that generates a finite number np of processes

and allocates every process more than one task. It uses the parameter functions

distribute and combine for distributing tasks among the processes and com-

bining the results. Figure 8 shows the implementation of the Eden farm skeleton.

farm :: (Transmissible a,Transmissible b) =>

Int -> (Int->[a]->[[a]]) -> ([[b]]->[b]) ->

Process [a] [b] -> [a] -> [b]

farm np distribute combine proc tasks

=combine (parMap proc (distribute np tasks))

Figure 8: Eden Farm Skeleton

The skeleton takes three parameters: the number of processes, the distributed

function and the combine function. The parMap is used to create the processes.

The farm allocation is done under the assumption that tasks are regular, and the

number of tasks is larger than the number of processors will keep every processor

busy during the program runtime.

58

Chapter 3. Multicore Parallel Haskell Comparison

Master-Worker skeleton is a scheme that dynamically assigns tasks to free

worker processes. The Master-Worker philosophy is that each processor accom-

modates one worker process and that the worker receives work from the workpool.

If the worker finishes the task, the result is sent back. The received result is trans-

lated, as a new work request.

mw :: (Trans t, Trans r) => Int -> Int -> (t -> r) -> [t] -> [r]

mw n prefetch wf tasks = ress

where (reqs, ress) = (unzip . merge) (spawn workers inputs)

-- workers :: [Process [t] [(Int,r)]]

workers = [process (zip [i,i..] . map wf) | i <- [0..n-1]]

inputs = distribute n tasks (initReqs ++ reqs)

initReqs = concat (replicate prefetch [0..n-1])

-- task distribution according to worker requests

distribute :: Int -> [t] -> [Int] -> [[t]]

distribute np tasks reqs = [taskList reqs tasks n | n<-[0..np-1]]

where taskList (r:rs) (t:ts) pe | pe == r = t:(taskList rs ts pe)

| otherwise = taskList rs ts pe

taskList _ _ _ = []

Figure 9: Eden Master-Worker Skeleton (Static Task Pool)

Figure 9 shows the implementation of a relatively simple master worker skele-

ton. The details of the implementation are not salient here, but the essence is

as follows. Tasks are distributed to n worker processes, the worker function wf is

applied to each task and returns a pair consisting of the worker number and the

result of the task evaluation to the master process, i.e. the process evaluating mw.

The worker numbers are interpreted as requests for new tasks. The master uses a

function distribute to send tasks to the workers according to the (n*prefetch)

requests initially created and the ones received from the workers. The master

59

Chapter 3. Multicore Parallel Haskell Comparison

worker skeleton has been used to parallelise several programs of the Nofib suite,

including Boyer.

test n m f = all (&& True) res

where xs = take n (repeat (Var X))

xs1 = splitAtN m xs

res = parallelMap (all test0) xs1

where

np = noPe

parallelMap = mw np pf

pf = min 100 maxpf

maxf= max 2 (n ‘div‘ (m*np*f))

splitAtN :: Int -> [a] -> [[a]]

splitAtN n [] = []

splitAtN n xs = ys : splitAtN n zs

where (ys,zs) = splitAt n xs

Figure 10: Eden Top-level Boyer function

Figure 10 shows the Eden skeleton-based parallelisation of the top-level Boyer

test function, and works as follows. The input list is chunked and bounded

to the variable xs1, and the intermediate results combined by all (&& True)

res in the final stage. For Eden, the mapping of all test0 over the chunks is

parallelised using a master worker skeleton parametrised by the number of cores

and the number of tasks to prefetech: mw np pf. The f parameter specifies the

number of tasks to be prefetched: 1
f

of the average tasks per worker , but not more

than 100 tasks. The average tasks per worker is list length (n) divided by chunk

size (m) and no of workers (np),that is
⌊

n
m·np·f

⌋
. As in GpH the paradigm is

chunked data parallelism, and just one out of 52 functions has been parallelised,

although this time an algorithmic skeleton is used.

60

Chapter 3. Multicore Parallel Haskell Comparison

Description FDIP GpH Eden
Classification Implicit Semi-explicit Semi-explicit
Evaluation Normal Normal/ Mixed
Order Order Mixed
Methodology FDIP Tools Evaluation Direct or

Strategies Skeletons
Process Model Speculative Optional Explicit
& Creation Threads Threads Processes,

Mandatory
Creation

Thread Implicit Implicit & Implicit &
Placement Dynamic Static
Communication Implicit Implicit Implicit &
Channels Explicit

Table 4: Language-level Comparison of Parallel Haskells

3.2.3 Language Coordination Comparison

FDIP performs sophisticated static analysis and program synthesis in order to

generate a sufficient amount of parallelism. Both GpH and Eden rely mainly on

a sophisticated runtime-system with dynamic resource management.

Table 4 summarises the language level differences in coordination specification

in the three parallel Haskells. Much of the table summarises aspects outlined

above. However, a key distinction between the languages is that while FDIP

preserves normal-order evaluation of pure expressions, GpH may not, and Eden

does not. GpH preserves normal-order evaluation if every evaluation strategy

added is no more strict than the embedding function. However, it is often useful

to be more strict, e.g. speculatively evaluating expressions in the anticipation that

they will be used. While Eden processes preserve some normal-order evaluation,

61

Chapter 3. Multicore Parallel Haskell Comparison

e.g. of expressions within the body of a process, they are more strict than the

corresponding function, i.e. they eagerly evaluate their arguments.

As an entirely implicit language, FDIP has the highest level of coordination

abstraction, GpH has an intermediate level and Eden has the lowest. That is,

Eden is most explicit about coordination behaviour, but, as we shall see in Sec-

tion 3.7, the use of appropriate skeletons can raise the level of abstraction.

3.3 Parallel Haskell Implementation Compari-

son

All of the parallel Haskells support high-level coordination, and rely on sophisti-

cated implementations to effectively manage a vast array of low-level coordination

issues, typically including task placement, communication, synchronisation and

storage management. All four implementations perform parallel graph reduc-

tion [94]. No simple models have ever been constructed of such systems, and

their performance is often extremely hard to analyse. Indeed, this is why profil-

ing tools are an essential aid to understand parallel behaviour when tuning the

parallel performance of programs written in this class of language.

62

Chapter 3. Multicore Parallel Haskell Comparison

3.3.1 Feedback Directed Implicit Parallelism (FDIP)

FDIP exploits information from a profiled execution of the program, and the

number of processors available on the underlying platform, to take better par-

allelisation decisions. This is intended to optimise the program for best perfor-

mance when performing the same work with the number of processors available.

FDIP supports the full Concurrent Haskell language, compiled with traditional

optimisations and including I/O operations, and synchronisation, as well as pure

computation. The available parallelism in the program is realised by tracing and

recording the dependencies between different pieces on thunk execution. Paral-

lelism is introduced and controlled in FDIP in a four stage process [46] as follows.

Firstly an example execution of the program is profiled. Secondly the pro-

file trace is analysed as a dependency graph of computations to identify useful

sources of parallelism. Given the large number of potential computation thunks

in almost any Haskell program, the challenge is to identify thunks that are si-

multaneously independent of other thunks, demanded by the program, and with

large thread granularity. The third stage is to recompile the program to automat-

ically introduce parallelism at the identified program sites. Finally, sophisticated

mechanisms are introduced into the runtime system to manage the threads intro-

duced at these sites. These include treating the parallel threads as speculative,

and managing load with work stealing.

A simulated limit study shows the potential of FDIP to produce substantial

63

Chapter 3. Multicore Parallel Haskell Comparison

amounts of parallelism for many programs, e.g. utilising at least 8 cores for

40% and at least 2 cores for 80% of the 20 Nofib programs studied. However, the

multicore performance is disappointing, with only 5 programs out of 20 delivering

a speedup of more than 10% [46].

3.3.2 GpH-SMP

Since 2004, the Glasgow Haskell Compiler (GHC) has supported a shared-memory

implementation of GpH. The shared memory implementation is evolving rapidly,

and the precise version we describe here and measure in later sections is based on

GHC 6.10.1. The GHC runtime system implements Concurrent Haskell threads

using a system of lightweight threads multiplexed onto a small number of heavy-

weight OS threads in order to achieve real parallelism on a multiprocessor, while

still keeping the overheads of concurrency low. The parallel runtime system is

built around the notion of capability. A capability represents the resources

for running a Haskell computation. The number of capabilities equates to the

number of Haskell threads that can be running simultaneously at any one time.

GHC’s capabilities correspond precisely to the Eden and GUM Processing Ele-

ments (PEs) described below. It is the responsibility of the scheduler to allocate

Haskell threads to capabilities, and Haskell threads may migrate between capa-

bilities at runtime depending on the scheduling policy and runtime parameters.

Although the GHC 6.10.1 implementation measured here distributes work ea-

gerly, later, unreleased versions gain improved performance by adopting a lazy

64

Chapter 3. Multicore Parallel Haskell Comparison

work stealing approach [16].

The capability holds all of the private state that a worker needs to execute

Haskell code. The capability has its own allocation area so that allocation pro-

ceeds without expensive per-object synchronisation[45]. GHC 6.10 supports both

parallel and sequential garbage collection, and the measurements in the following

sections use the former. In this scheme, when memory is exhausted, all cores

cease reduction and perform garbage collection in parallel.

GpH-SMP is under development and published performance results are sparse.

Performance results comparing adapted versions of GHC 6.10.1 on an 8-core

machine are reported in [16], together with the identification of a number of

areas for improvement. The results in Sections 3.5, 3.6.2, and 3.7 are the first

performance results for a released version of GpH-SMP.

3.3.3 GUM Implementation of GpH

Graph-reduction on a Unified Machine-model (GUM) is a portable, parallel run-

time environment for GpH [121]. As the name suggests, GUM is designed for

both shared and distributed memory architectures. It implements a Distributed

Shared Memory (DSM) [87] model of parallel graph reduction on a distributed

memory architectures as a virtually shared graph. Graph segments are commu-

nicated via messages, using standard communication libraries like PVM [88] or

MPI [125] to provide an architecture-neutral and portable runtime environment.

If the GUM implementation uses the PVM communication library environment.

65

Chapter 3. Multicore Parallel Haskell Comparison

It starts by creating a PVM manager task, which controls start up and termina-

tion. It spawns the required number of virtual PEs as PVM tasks. These PVM

tasks are mapped to available processors. Once all PEs finish their initialisation,

the main task starts executing the Haskell program on a main thread. The pro-

gram terminates when either the main thread has finished or a FINISH message

is received from the manager task, in case of an error.

Throughout the runtime of the program, each PE executes the main sched-

ule loop until it receives a FINISH message. The main scheduler performs the

following:

1. Perform garbage collection if required.

2. Process any incoming message.

3. Run thread from runable threads if there are any.

4. Look for work locally or remotely.

Thread Management: The unit of computation in GUM is a lightweight

thread, and each logical PE is an operating system process that co-schedules

multiple lightweight threads. Threads are automatically synchronised using the

graph structure, and each PE maintains a pool of runnable threads. At each

scheduling step, the runtime scheduler selects one thread from the thread pool

for execution. This thread then runs until it finishes, blocks, or the system ter-

minates as the result of an error. Parallelism is initiated by the par combinator:

66

Chapter 3. Multicore Parallel Haskell Comparison

when an expression x ‘par‘ e is evaluated, the heap object referred to by the

variable x is sparked, and then e is evaluated. By design, sparking a reducible

expression (thunk) is a relatively cheap operation, and sparks may freely be dis-

carded if they become too numerous. If a PE is idle, a spark may be converted to

a thread and executed. Threads are more heavyweight than sparks as they must

record the current execution state.

Load distribution: GUM uses dynamic, decentralised, and blind load man-

agement. The load distribution mechanism is designed for homogeneous architec-

tures with uniform PE speed and communication latency, and works as follows.

If (and only if) a PE has no runnable threads, it creates a thread to execute from

a spark in its sparkpool, if there is one. If there are no local sparks, then the PE

sends a FISH message to a PE chosen at random, seeking to steal work. Initially,

only the main PE has work. The other PEs are all idle and they start fishing at

the beginning of execution. A FISH has limited age before it is returned to the

originator and discarded from the system.

If the PE that receives a FISH has a useful spark, it sends a SCHEDULE mes-

sage to the PE that originated the FISH containing the sparked thunk packaged

with a nearby graph. The originating PE unpacks the graph, and adds the newly-

acquired thunk to its local sparkpool. Figure 11 shows the sequence of FISH and

SCHEDULE messages. To maintain the shared virtual graph, a message is then

sent to record a reference to the new location of the thunk.

67

Chapter 3. Multicore Parallel Haskell Comparison

PE A

PE B

PE C
FISH FISH

SECHEDULE MESSAGE

ACK MESSAGE

Figure 11: GUM FISH - SCHEDULE - ACK Sequence

Memory Management: GUM is a distributed shared memory model. It man-

ages a virtual shared memory in the graph it inhabits. Each globally visible clo-

sure in the heap has a unique identifier via Global Address (GA). The FetchMe

closure uses a GA to accesses the remote object. A GA consists of a PE identifier

and a local identifier as a pair. In fact, it has three different tables: the GIT

(Global Identifier Table) maps each allocated local identifier to its local address,

GALA (Global Address to Local Address) maps remote GA to their LA, LAGA

(Local Address to Global Address) maps local address to its corresponding global

address [64].

GUM delivers good performance for a range of benchmark and real appli-

cations on a variety of parallel architectures, including conventional shared and

distributed-memory architectures [69]. The results reported in Sections 3.5, 3.6.3,

and 3.7 extend earlier shared memory results with the first multicore performance

results for GUM. GUM’s performance is also comparable with other mature par-

allel functional languages and with conventional parallel paradigms [67].

68

Chapter 3. Multicore Parallel Haskell Comparison

3.3.4 Eden Implementation

The Eden implementation extends GHC making a few changes to the front-end,

but major modifications to the runtime environment [15]. When run in parallel,

each PE runs a sequential copy of the GHC runtime system. Multiple PEs com-

municate by message-passing, and the communication layer has been designed

to allow plug-in replacement of different message-passing libraries. Typically, it

uses either PVM or MPI libraries.

Eden implements an explicit remote task creation mechanism and channel-

based communication mechanisms between PEs. Both are exposed to the Haskell

level via primitive operations. Eden language-level constructs are implemented

as a Haskell module on top of these more basic primitives [15]. To synchronise

communication between the PEs, placeholders in the heap are used, which will

be replaced by arriving message data, i.e. computation subgraph structures,

serialised into one or more packets for transmission.

An important difference between Eden and both GpH-SMP and FDIP is that

the Eden process construct maintains completely independent sub-heaps. Unlike

GUM which maintains a virtual shared graph by maintaining references between

distributed heaps, an Eden process is a link to other sub-heaps via communication

channels that have the key property that all communicated data is always fully

evaluated.

Eden’s distributed memory parallel performance is widely reported and shows

69

Chapter 3. Multicore Parallel Haskell Comparison

excellent runtimes, speedup and scale-up, e.g. [58, 91, 72]. Eden’s distributed

memory performance is also comparable with other mature parallel functional

languages. The explicit process model and strict communication give performance

advantages for applications with coarse thread granularity [67]. Impressive mul-

ticore performance results are now emerging, e.g. using Eden to coordinate large

symbolic computations [3] and a comparison with optimised GHC-6.8 [16].

3.3.5 Implementation Comparison

Description FDIP GpH-SMP GpH-GUM Eden

GHC Version GHC 6.6 GHC 6.10 GHC 4.06 GHC 6.8

Evaluation Par. Graph Par. Graph Par. Graph Par. Graph
Model Reduction Reduction Reduction Reduction

Granularity Dynamic Dynamic Dynamic Static
Control

Synchronisation. Thunk Thunk Thunk Channel
Unit Locking Locking Locking Locking

Work Work Work Work Dynamic
Distribution Stealing Pushing Stealing Process

Placement

Work Not Poss. Possible Not Poss. Possible
Duplication

Heap Shared Shared Virtual Distributed.
Heap Heap Shared Heap Heap

Garbage Depend. Depend. & Indep. & Indep. &
Sequential Parallel Parallel Parallel

Table 5: Implementation-level Comparison of Parallel Haskells

Table 5 summarises the implementation level differences between the four

parallel Haskells. All four implementations perform parallel graph reduction.

While an arbitrary number of Eden processes can be dynamically created, each

process is mandatory. In contrast, the other implementations support dynamic

70

Chapter 3. Multicore Parallel Haskell Comparison

techniques, including thread subsumption, sparking, and the creation of optional

or speculative threads. Eden also uses eager work distribution: newly created

processes are pushed out to available PEs: while the other implementations are

lazy and idle, PEs steal work, i.e. thunks. FDIP and GpH-GUM are both careful

not to duplicate work by evaluating the same thunk more than once, but work

may be duplicated in GpH-SMP or Eden.

A key distinction between the implementations is the heap model: while FDIP

and GpH-SMP have shared heaps, GUM maintains a virtual shared heap, and

Eden supports distributed independent heaps, both supported by message pass-

ing. Message passing is essential for distributed systems but initially seems enor-

mously expensive compared with shared memory access. That is, a graph must

be serialised into, and deserialised from, messages and computationally expensive

message-passing libraries invoked.

However, the independent heaps maintained by GUM and Eden convey four

significant advantages for shared-memory systems like multicores. Firstly, while

the cores in shared heap implementations like FDIP and GpH-SMP must syn-

chronise to garbage collect, GUM and Eden cores can collect independently and

hence in parallel. Secondly, synchronisation is confined to limited shared memory

areas, essentially the communication buffers. Thirdly, synchronisation granular-

ity is often large, i.e. on large messages, rather than on individual thunks or

memory locations. Finally, cache coherency issues are reduced, as tasks do not

share caches [3]. We discuss the performance implications of the heap designs

71

Chapter 3. Multicore Parallel Haskell Comparison

further in Section 3.8.2.

Although both FDIP and GpH-SMP use dependent stop-the-world GC, such

a design is not inherent. An implementation that maintains some form of thread-

private heap, e.g. [34], would enable independent garbage collection and offer

many of the advantages outlined above, without incurring the high communica-

tion costs of message passing. Indeed we argue that some form of independent

heaps will be essential as multicores evolve towards many cores.

3.4 Experiment Design

3.4.1 Measurement Methodology

To parallelise the programs in Eden and GpH the programs were first time and

space profiled to identify computationally expensive functions and these were

parallelised. A variety of parallelisation options was investigated for each program

and the best was selected. The same GpH program is evaluated under GpH-

SMP and GpH-GUM, and the Eden program introduces an appropriate skeleton.

Example GpH and Eden parallelisation of the Boyer benchmark are discussed

in 3.2.

All programs are measured on the same input and with the same heap size.

We follow the common practice of increasing input size in many cases, to match

improvements in processor technology since the benchmarks were established in

1992. The best parallel performance is reported for each system.

72

Chapter 3. Multicore Parallel Haskell Comparison

The parallel implementations are all based on the GHC compiler, but use

different versions of it. The FDIP approach uses GHC 6.6, GpH-SMP uses GHC

6.10.1, GpH-GUM uses GHC 4.06 and Eden uses GHC 6.8. As research platform,

GHC evolves and typically the sequential execution time of programs is improved

by later versions of the compiler. To address the issue of varying sequential perfor-

mance, the primary comparative measure is absolute speedup, i.e. relative to the

corresponding optimised sequential GHC compiler, e.g. GpH-SMP speedups are

relative to GHC 6.10.1. This measure substantially normalises against sequential

performance and is grounded by runtime measurements in Section 3.5.

The programs are all measured on common multicore architectures, namely

eight core machines comprising two quad-cores. The GpH-SMP, GpH-GUM and

Eden measurements are for Intel Xeon 5410 cores running at 2.33GHz, with a

1998 MHz front-side bus, 6144 KB and 8GB RAM running under Linux Fedora

7. The FDIP measurements are for Intel Xeon X5350 running at 2.66GHz with

4GB RAM running under Windows Server 2003 R2 x64 service pack 2.

All measurements reported throughout the thesis are given in terms of real

(elapsed) time used by the program, and represent the median of several measure-

ments (normally at least three times). As far as possible timing runs were made

on machine with minimal other load. The benchmark programs have different

runtimes and different speedups therefore the geometric mean is used to find a

single runtime and speedup figure for them, as in other studies [105, 79, 80].

73

Chapter 3. Multicore Parallel Haskell Comparison

3.5 Runtime Comparison

As the parallel implementations use different versions of the GHC compiler (Sec-

tion 3.4), this section provides a baseline for the speedup measurements in the

following sections by comparing the runtimes and efficiencies of the GpH-SMP,

GpH-GUM and Eden parallel implementations on 1, 2, 3, 4, 6, and 8 cores. FDIP

is excluded, as an implementation is not available. On a single core, the runtimes

of the parallel implementations are compared with the runtime of fully optimised

sequential execution (GHC 6.10).

Sequential 1 Core
Program GHC GHC GHC SMP GUM Eden

6.10 4.06 6.8

Boyer 34.3 49.3 36.7 34.1 77.5 37.1

Clausify 31.1 51.2 29.1 30.4 78.7 29.3

Fft2 35.8 75.7 48.6 35.9 80.9 49.2

Rewrite 34.3 68.1 46.8 35.1 94.9 52.1

Geometric Mean 33.8 60.1 39.5 33.8 82.7 40.9

Table 6: Sequential Runtime Comparison (seconds).

Table 6 summarises the single core runtimes of 4 Nofib programs that de-

liver good speedup. To facilitate comparison, the inputs for the programs are

sized to give sequential GHC 6.10 runtimes of approximately 35s. Columns 2–4

of the table report runtimes for the sequential compiler instances extended by

the parallel Haskell implementations, and these form the basis for the absolute

speedup calculations in the remainder of the chapter. The remaining columns of

the table report the 1 core parallel runtimes for each implementation. We make

74

Chapter 3. Multicore Parallel Haskell Comparison

the following observations.

• The sequential runtimes vary by as much as a factor of 2.1: Fft2 under GHC

6.10 takes 35.8s, and under GHC 4.06 takes 75.7s, but typical variation is

less.

• The geometric mean runtimes show that GHC 4.06 is the slowest on a sin-

gle core, and 1.8 (60.1/33.8) times slower than GHC 6.10. This reflects

recent GHC performance improvements. GHC 6.8 is 1.2 (39.5/33.8) slower

than GHC 6.10. Longer runtimes for GHC 4.06 and GHC 6.8 give GpH-

GUM, and to a lesser extent Eden, an advantage in the following speedup

measurements, as the compute time is relatively large compared with com-

munication time.

• It is generally anticipated that a parallel language implementation will in-

troduce some sequential overhead compared with optimised sequential ex-

ecution. The overhead is termed sequential efficiency and represents the

additional costs of parallel execution, e.g. launching a single virtual PE

and synchronising on closures. The overhead is a function of both the par-

allel program and the architecture, and is typically around 80% [121].

Comparing Columns 3 and 6, and columns 4 and 7, of Table 6 shows that

this expectation is met for GpH-GUM and Eden, with geometric mean se-

quential efficiencies of 72% (60.1/82.7) and 97% (39.5/40.9) respectively.

75

Chapter 3. Multicore Parallel Haskell Comparison

Surprisingly, however, GpH-SMP apparently has no overheads, i.e. an effi-

ciency of 100%.

SMP GUM Eden

Boyer 10.0 14.1 10.1

Clausify 4.7 11.5 5.1

Fft2 13.1 45.8 17.7

Rewrite 6.5 26.9 9.9

Geometric Mean 8.0 21.1 9.7

Table 7: 8 Core Parallel Runtime Comparison (seconds).

Table 7 summarises the runtimes of the same 4 programs on 8 cores. We make

the following observations.

• On 8 cores the variation in runtimes is at most a factor of 4.1 (26.9/6.5),

between GpH-SMP and GpH-GUM Rewrite, but is typically rather less.

• The geometric mean 8-core runtimes show that, for this collection of pro-

grams, GpH-SMP remains fastest, Eden is just 21% (9.7/8.0) slower, and

GpH-GUM slowest by a factor of 64% (21.1/8.0).

Figures 12 and 13 compare the runtimes and absolute speedups of two of the

programs from Table 6, namely Boyer and Rewrite. The programs are measured

on 1, 2, 3, 4, 6, and 8 cores. We make the following observations.

• For both programs the runtime curves are broadly similar for all implemen-

tations. For GpH-SMP and Eden the curves are very similar, and while

the Eden is a little (< 36%) slower on 1 core, the 8 core results are very

76

Chapter 3. Multicore Parallel Haskell Comparison

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9

 T
im

e
in

 s
ec

on
d

E
de

n
G

pH
 A

nd
 G

H
C

-S
M

P

No-of-Cores

Boyer Runtimes

GpH-SMP
GpH-GUM

Eden
GHC6.11
GHC4.06

(a) Boyer Runtime

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 2 3 4 5 6 7 8 9

 T
im

e
in

 s
ec

on
d

E
de

n
G

pH
 A

nd
 G

H
C

-S
M

P

No-of-Cores

Rewrite Runtimes

GpH-SMP
GpH-GUM

Eden
GHC6.10
GHC4.06

(b) Rewrite Runtimes

Figure 12: Runtime Comparison of Parallel Haskells (Boyer/Rewrite)

77

Chapter 3. Multicore Parallel Haskell Comparison

 0

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7 8 9

 S
pe

ed
up

No-of-Cores

Boyer Speedup

GpH-SMP11
GpH-GUM

Eden

(a) Boyer Speedup

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8 9

 S
pe

ed
up

No-of-Cores

Rewrite Speedup

GpH-SMP
GpH-GUM

Eden

(b) Rewrite Speedup

Figure 13: Absolute Speedup Comparison of Parallel Haskells (Boyer/Rewrite)

78

Chapter 3. Multicore Parallel Haskell Comparison

similar. This is reflected in the speedup graphs, where Eden has better

8-core speedups.

• Both programs are scale for all three implementations, i.e. the runtimes fall

as cores are added. The only exceptions are for Boyer between 2 and 4

cores under GpH-GUM and between 4 and 6 cores under GpH-SMP, and

Eden. This is in marked contrast to FDIP, where the best performance

may be achieved under 2,3 or 4 cores [46], and we shall return to this point

in Section 3.7.2.

• The absolute speedups of the Boyer program on 8 cores is similar for all

implementations, this is expected for both Eden and GpH-SMP implemen-

tations but for the GpH-GUM implementation we attribute this to lucky

scheduling of potential parallelism.

• Reflecting the runtime curves, the speedup curves for both programs are

broadly similar, and for GpH-SMP and Eden, very similar.

• The absolute speedup on a single core reflects the sequential efficiencies of

the implementations.

79

Chapter 3. Multicore Parallel Haskell Comparison

3.6 Programming Effort and Performance Re-

sults

This section investigates the parallel performance of the four parallel Haskells in

conjunction with the programming effort required to achieve that performance.

Parallel performance is measured as absolute speedup over optimised sequential

execution (GHC), i.e. not relative to the single core parallel execution. The

programming effort is measured using logical source lines of code (SLOC), both

as an absolute number and as a percentage of program length. The common

definition of logical SLOC is a count of lines in the text of the program’s source

code excluding comment lines. SLOC is normally exploited to predict the amount

of effort that will be required to develop an application, as well as to estimate

programming productivity or maintainability [39]. The SLOC is used in our

comparison for these reasons: all implementations use the same sequential code

of benchmark. SLOC has the advantages of simplicity and relatively wide use.

We also record the parallel paradigm applied in GpH and Eden.

The following subsections report the programming effort and performance of

each language, and the absolute speedups achieved for all 15 programs in the four

languages are depicted in Figure 15 and summarised in Table 11. Section 3.7 then

makes a comparison of the approaches.

80

Chapter 3. Multicore Parallel Haskell Comparison

Program Speedup Lines
Name Of Code

Hidden 1.82 316

Atom 1.27 57

Simple 1.27 1053

Geometric Mean 1.4

Table 8: FDIP Programs Improved.

3.6.1 FDIP Multicore Performance

FDIP is entirely implicit, and so no programmer effort is expended other than

in profiling and using a special compiler. Similarly the programmer does not

need to identify and apply some parallel paradigm. The FDIP implementation

is not publicly available, therefore, the FDIP performance results reported in

this thesis are based on the ICFP’07 paper [46], augmented with some additional

results from the authors. Where the other parallel Haskell implementations are

measured on 8 cores, FDIP performs better on 4 cores than on 8 and hence

Table 8 follows [46] in reporting the programs that are improved on 4 cores. It

shows that FDIP speeds up 3 of the 15 programs, with a geometric mean speedup

of 1.4, and maximum speedup of 1.8.

Automatically extracting good parallel performance is acknowledged to be

a challenging problem. However, some of the reasons for the relatively poor

performance of FDIP are because the implementation is immature compared

with the other systems and has some known technical problems [46]. Specifically,

the simulation phase of FDIP profiling ignores several crucial aspects of parallel

coordination, namely contention within the GHC run-time system; the locking

81

Chapter 3. Multicore Parallel Haskell Comparison

overheads; and finally the overheads of sparking work and the cache effects of

moving data from a sparking core to one running work speculatively.

3.6.2 GpH-SMP Multicore Performance

Program Speedup Lines Lines % Paradigm
Name Code Changed Changed

Clausify 6.6 101 6 6 Chunked Data
Parallelism

Rewrite 5.3 408 14 3 Chunked Data
Parallelism

Sphere 4.0 332 12 4 Nested Data
Parallelism

Boyer 3.4 295 9 3 Chunked Data
Parallelism

Fft2 2.7 705 13 2 Data Parallelism

Primetest 2.0 112 15 13 Chunked Data
Parallelism

Hidden 1.8 316 6 2 Nested Data
Parallelism

Para 1.2 274 3 1 Data Parallelism

Geometric Mean 2.9 9 3.2

Table 9: GpH-SMP Programs Improved.

Table 9 reports the programming effort and parallel performance of programs

improved by GpH-SMP on 8 cores. As a semi-explicit parallel language, GpH

requires the programmer to identify a suitable parallel paradigm and introduce

evaluation strategies to apply it. Introducing the parallelism requires changing

an average of just 9 lines in each program, i.e. 3.2% of the code, and we discuss

this further in Section 3.7.1.

The table shows that GpH-SMP improves more than half of the programs, 8

out of 15 programs. The geometric mean speedup is 2.9, with a best speedup of

82

Chapter 3. Multicore Parallel Haskell Comparison

6.6 for Clausify. It is impressive that 3 of the programs achieve speedups of 4 or

more on 8 cores, i.e. a parallel efficiency of 50% or more.

3.6.3 GpH-GUM Multicore Performance

Program Speedup Lines Lines % Paradigm
Name Code Changed Changed

Clausify 4.5 101 6 6 Chunked Data
Parallelism

Boyer 3.5 295 9 3 Chunked Data
Parallelism

Rewrite 2.5 408 14 3 Chunked Data
Parallelism

Sphere 1.8 332 12 4 Nested Data
Parallelism

Fft2 1.7 705 13 2 Data Parallelism

Geometric Mean 2.6 10 3.4

Table 10: GpH-GUM Programs Improved.

Table 10 reports the programming effort and parallel performance of programs

improved by GpH-GUM on 8 cores. Only 12 of the 15 programs are attempted

for GpH-GUM as Compress, Hidden and Primetest import modules not available

in GHC 4.06.

As before, GpH requires the programmer to identify a suitable parallel paradigm

and apply it. Introducing the parallelism requires changing an average of just 11

lines of each of these programs, i.e. 3.4% of the code, and we discuss this further

in Section 3.7.1.

The table shows that GpH-GUM improves nearly half of the programs, 5 out

of 12 programs. The geometric mean speedup is 2.6, with a best speedup of 4.5

83

Chapter 3. Multicore Parallel Haskell Comparison

for Clausify.

3.6.4 Eden Multicore Performance

Program Speedup Lines Lines % Paradigm
Name Code Changed Changed

Clausify 6.2 101 7 7 Data Parallelism

Rewrite 4.7 408 15 4 Chunked Data
Parallelism

Boyer 3.7 295 14 5 Chunked Data
Parallelism

Fft2 3.7 705 11 2 Data Parallelism

Compress 1.6 109 3 2 Data Parallelism

Sphere 1.5 332 7 2 Data Parallelism

Geometric Mean 3.1 8 3.2

Table 11: Eden Programs Improved.

Table 11 reports the programming effort and parallel performance of programs

improved by Eden on 8 cores. Eden requires that the programmer identify a suit-

able parallel paradigm and introduce an appropriately parameterised algorithmic

skeleton to exploit it. This set of programs all use the master-worker skeleton

discussed in Section 3.2.2, but some do so directly, while others like Boyer and

Rewrite chunk the input to improve thread granularity. Introducing the parallel

coordination requires changing an average of just 8 lines in each program, again

just 3.2% of the program text.

The table shows that Eden improves a slightly smaller fraction of the programs

than GpH-SMP and GpH-GUM, i.e. just 6 of the 15 programs. The maximum

speedup of 6.2 is similar to GpH-SMP (6.6), and the geometric mean speedup is

84

Chapter 3. Multicore Parallel Haskell Comparison

slightly greater, 3.1. It is impressive that 4 of the programs achieve speedups of

3.7 or more on 8 cores, , i.e. a parallel efficiency of 46% or more.

3.7 Comparative Study

This section compares the parallel performance of the four Haskell languages

and the programming effort required to achieve that performance. Table 12

summarises the key metrics from section 3.6.

Description FDIP* GpH- GpH- Eden
SMP GUM

No. Programs Measured 15 15 12 15

No. Programs Improved 3 8 5 6

% Programs Improved 20% 53% 42% 40%

No. Lines Changed 0 9 10 8

% Code Changed 0 3.2% 3.4 % 3.2 %

Geometric Mean Speedup 1.4* 2.9 2.6 3.1

* Performance on 4 Cores

Table 12: Comparative Multicore Performance Summary

3.7.1 Programming Effort Comparison

As a purely implicit approach, FDIP requires minimal programmer effort, simply

the execution of a profiling run. In contrast GpH and Eden both require program-

mer effort, to time profile the program, to insert evaluation strategies or skeletons

and to tune the parallel performance. Tables 9, 10, and 11 show that the scale

of the program changes is on average small, in both absolute and relative terms,

e.g. representing just 10 lines or 3.4% of the program text in both languages. We

85

Chapter 3. Multicore Parallel Haskell Comparison

conclude that, for these relatively simple programs, using existing Eden skeletons

represents a similar level of coordination abstraction to evaluation strategies used

in GpH.

The results also illustrate that, in both GpH and Eden, some programs are

easier to parallelise than others. That is, the scale of program changes induced

by parallelisation may vary significantly in both absolute and relative terms. For

example, Table 9 shows that in GpH, the number of lines changed may vary from

3 to 15, and the percentage of program text may vary from 1% to 13%. Similarly,

Table 11 shows that in Eden, the number of lines changed may vary from 3 to

15, and the percentage of program text may vary from 2% to 7%.

Although the parallelisation changes are small, the number of source lines of

code metric does not reflect the programmer effort expended on understanding

the program, on sequential time/space profiling, and on investigating alternative

parallelisations. While time/space profiling is a fast and routine activity, the key

intellectual challenge is to understand the computational structure of a program

written by another programmer. Some, like Clausify, are simple but others, like

SCS, are far more complex. The complexity in all programs comes from the

dependencies between the functions, and typically the longer the program the

harder it is to complete. The time to comprehend programs was not measured

systematically, but the mean time is roughly estimated at several days. Of course

this effort would be minimised if programmers are parallelising a program they

themselves wrote. Once the program is understood, only half a working day is

86

Chapter 3. Multicore Parallel Haskell Comparison

Figure 14: Comparing the Performance Scalability of Parallel Haskells on 4 Cores.

required to introduce and tune the parallelism.

The parallel paradigms used in the improved programs are all forms of data

parallelism, sometimes combined with chunking to increase thread granularity,

or nesting to introduce additional parallelism. Section 3.2 outlines the chunking

data parallelism in the Boyer program.

3.7.2 Scalability

A key property of a parallel implementation is scalability, i.e. whether perfor-

mance increases as processing elements are added. We have already seen the

scalability of the GpH-SMP, GpH-GUM and Eden implementations up to 8 cores

in the discussion of Figure 12.

Figure 14 provides a more detailed analysis for three programs (Boyer, FFT2

and Simple) in each language on 1, 2, 3 or 4 cores. Each program gives good

87

Chapter 3. Multicore Parallel Haskell Comparison

performance on at least one implementation. The figure shows that, in GpH-SMP,

GpH-GUM and Eden, the performance of programs that speed up, i.e. Boyer and

FFT2, improves steadily as cores are added. In contrast FDIP delivers the best

speedup for Simple on 3 cores. This is not an isolated result: the 5 programs

delivering speedups under FDIP reported in [46] deliver maximum speedup twice

on 3 cores, and three times on 4 cores.

Furthermore, FDIP ceases to scale beyond 4 cores [103] and this is illustrated

by the 4 core performances of Boyer, Simple and FFT2 in Figure 14, which are

uniformly better than the 8 core performances reported in Figure 15. The reasons

for this have not been established but are likely to be either lock contention or

low-level memory effects, e.g. disrupting caches when transferring threads between

cores.

3.7.3 Performance Comparison

A complete comparison of the 8 core speedups achieved for all 15 programs in

the four languages is depicted in Figure 15 and summarised in Table 13.

The performance price of FDIP’s purely implicit approach is high, and it is the

least effective of the languages surveyed here. It improves the fewest programs: 3

out of 15 on 4 cores (Table 8), and 2 out of 15 on 8 cores (Figure 15). Moreover,

the geometric mean and maximum speedup are both relatively small, at 1.4 and

1.8 respectively, on 4 cores. However, a geometric mean speedup of 1.4 on 4 cores

shows parallel efficiency approaching that of the semi-explicit implementations,

88

Chapter 3. Multicore Parallel Haskell Comparison

Figure 15: Performance Comparison of Parallel Haskells (8 cores)

i.e. speedups of approximately 3.5 on 8 cores. However, FDIP parallelism scales

both irregularly, and only to a limited extent. That is, FDIP does not deliver

significant performance gains beyond 4 cores, and it is hard to predict how many

cores will deliver the maximum performance, as outlined in section 3.7.2.

The performance of GpH-SMP and Eden is broadly similar. The geometric

mean of speedups are similar: 1.5 for GpH-SMP and 1.5 for Eden, as are the

maximum speedups: 6.6 for GpH-SMP and 6.2 for Eden. However, Eden improves

a smaller percentage of the programs: 40% (6/15) compared with 53% (8/15) for

GpH-SMP.

The performance of GpH-GUM is marginally worse than GpH-SMP and Eden,

with geometric mean speedup of 1.4 and maximum speedup of 4.5 GpH-GUM

improves an intermediate percentage of programs, i.e. 42% (5/12).

We analyse the implications of these relative performances in section 3.8.2.

89

Chapter 3. Multicore Parallel Haskell Comparison

Program Name FDIP GpH-SMP GpH Eden

Atom 1.27 0.93 0.6 0.6

Boyer 0.8 3.40 3.50 3.70

Circsim .65 0.88 0.77 0.96

Clausify 0.96 6.60 4.50 6.20

Compress 0.43 0.61 Not tested 1.60

FFT2 0.82 2.70 1.70 3.70

Fibheaps 0.83 Not tested Not tested Not tested

Hidden 1.80 1.84 Not tested 1.00

Lcss 0.82 0.54 0.93 0.99

Multiplier 0.00 0.67 0.93 0.93

Para 0.83 1.20 0.93 1.00

Primetest 0.77 2.00 Not tested 0.97

Rewrite 0.00 5.30 2.50 4.70

Scs 0.00 0.88 0.98 0.98

Simple 1.27 0.33 0.86 0.97

Sphere 0.53 4.00 1.80 1.50

Geometric Mean 0.80 1.50 1.40 1.50

Table 13: Comparative Speedup of Parallel Haskells on Multi-core Machine

3.8 Conclusion

This section summaries the comparison results and concludes the key lesson

learnt. It outlines the advantages and disadvantages of using functional pro-

gramming to exploit multicore architectures. Moreover, it suggests enhancing

GpH with a new technique for exploiting multicore architectures.

3.8.1 Summary

The preceding sections have reported the first comparison of functional multicore

technologies and are some of the first ever GpH-GUM and GpH-SMP multicore

results. The study reflects the current state of the technology and compares the

programming effort each variant requires with the parallel performance delivered.

90

Chapter 3. Multicore Parallel Haskell Comparison

We have contrasted a “no pain” parallel language with three “low pain” languages.

The comparison uses 15 programs selected from the representative parts of the

Nofib suite and hence reflects the multicore performance that might be expected

for a typical set of Haskell programs (Section 3.4).

Although the parallel Haskell implementations all use GHC, they each use a

different version, and hence the primary performance comparisons are based on

absolute speedups, which normalise against sequential performance. To ground

the speedup comparisons we have reported sequential and parallel runtimes and

efficiencies for three of the languages. We have found that sequential runtimes

vary by as much as a factor of 2.1, and 8-core runtimes by as much as a factor

of 4.1. On a single core GpH-SMP is fastest and GpH-GUM slowest, and se-

quential efficiencies vary between 72% and 100%. Finally, runtime and speedup

graphs show that GpH-SMP, GpH-GUM and Eden parallel performance scales,

i.e. runtimes fall consistently as cores are added (Section 3.5).

We have reported detailed parallel performance and programming effort stud-

ies (Section 3.6), and made a comparative study with the following key results

(Section 3.7).

• FDIP’s purely implicit approach requires minimal programmer effort. In

contrast, GpH and Eden both require programmer effort to understand the

program’s computational structure, to profile it, to insert parallel coordi-

nation, and to tune the parallel performance. As the languages provide

91

Chapter 3. Multicore Parallel Haskell Comparison

high levels of coordination abstraction the program changes are small, on

average no more than 4.3% of the program text in both languages. We

conclude that Eden skeletons represent a similar high level of coordination

abstraction to evaluation strategies in GpH (Section 3.7.1).

• While GpH-SMP, GpH-GUM and Eden all scale consistently up to 8 cores,

FDIP does not scale beyond 4 cores and may deliver best performance on

3 or 4 cores (Section 3.7.2).

• The performance price of FDIP’s purely implicit approach is high: it im-

proves the fewest programs (just 3 out of 15) and the geometric mean and

maximum speedup are both relatively small at 1.4 and 1.8 respectively on

4 cores (Section 3.7.3).

• All three semi-explicit approaches improve approximately half of the pro-

grams, and the performance of GpH-SMP and Eden is broadly similar

with geometric mean and maximum speedups of approximately 3.1 and 6.5.

GpH-GUM performance is marginally worse with geometric mean speedup

of 2.6 and maximum speedup of 4.5. (Section 3.7.3).

3.8.2 Discussion

As multicores become the dominant processor technology, it is beneficial that

functional languages realise their theoretical potential to exploit them effectively.

92

Chapter 3. Multicore Parallel Haskell Comparison

Our study reflects some of the technologies emerging to do so, namely four mul-

ticore Haskell implementations, and the results have a number of implications for

the field.

It is clear that purely implicit parallelism remains an elusive goal. The FDIP

approach speeds up fewer programs, with smaller speedups, and does not scale

well. While it is not clear that the scaling issues with FDIP are fundamental, the

move towards many cores will make scalability a crucial property for languages

and implementations.

It might be seen as discouraging that, even in the low pain languages, only

half of the programs deliver absolute speedups (Table 13), and that the geometric

mean parallel efficiencies are only around 45% (Tables 9, 10, and 11). However,

recall that these programs were neither designed to be parallel, nor selected for

their inherent parallelism. While some algorithms will remain inherently sequen-

tial, it is likely that, with thoughtful design, a far higher percentage of programs

can be effectively parallelised. Moreover, the implementations are evolving fast

and we can expect greater parallel efficiencies in the near future.

Interestingly, Eden, with an implementation designed for distributed memory

architectures, performs fractionally better than GpH-SMP, which is designed for

multicores. Similarly the geometric mean speedups of GpH-GUM, with an ar-

chitecture designed for both distributed and shared memory systems, are within

11% of the GpH-SMP results. These implementations must have significant ad-

vantages to outweigh the massive communication and synchronisation overheads

93

Chapter 3. Multicore Parallel Haskell Comparison

incurred by serialising heap, calling expensive communication libraries, and de-

serialising heap.

We argue that the key reason for the good performance of Eden and GUM is

the maintenance of independent heaps using a message-passing architecture. Inde-

pendent heaps convey four significant advantages for shared-memory systems like

multicores. They enable cores to garbage collect independently, they also confine

synchronisation to both limited and large-grain memory areas, i.e. the message

buffers, and simplify cache coherency issues (Section 3.3.5). We further predict

that, as multicore scale to many cores, the advantages of independent heaps will

be greatly magnified and that some form of thread-private heap, e.g. [34], will be

essential on these architectures.

There are many encouraging signs for multicore functional languages. The

GpH and Eden semi-explicit approaches deliver effective high level coordination,

and hence require very small program changes, and perhaps only half a work-

ing day to introduce and tune the parallelism for a known program. The fact

that there are 4 multicore Haskells to compare reflects the level of interest in

addressing the challenges. The implementations have considerable room for im-

provement. For example where GpH-GUM and Eden currently use very naive

distributed memory implementations, these could be significantly improved for

shared-memory multicores, e.g. using shared-memory variants of the communi-

cation libraries. Another promising line of future work is to integrate distributed

and shared-memory implementations to better exploit the increasingly ubiquitous

94

Chapter 3. Multicore Parallel Haskell Comparison

clusters of multicore architectures.

This thesis investigates the issue of improving GpH-GUM to achieve better

exploitation of clusters of multicore architectures. In chapters 5 and 6, we in-

vestigate the possibility of extending parallel Haskells with architecture-aware

constructs.

95

Chapter 4

Parallel Programming Practice

This chapter presents two areas of research into practical aspects of parallel func-

tional programming. The first is one of the first uses of a new formulation of eval-

uation strategies for GpH and includes undertaking a systematic benchmarking

of the new formulation against the evaluation section of [77] (Section 4.1).

The second is to investigate the thread granularity required to achieve good

performance from a distributed-memory parallel functional language, e.g. Eden

and GpH, on multicores. The initial Eden results reported in [3] are extended to

be more systematic and to cover GpH-GUM and GpH-SMP (Section 4.2).

96

Chapter 4. Parallel Programming Practice

4.1 Using and benchmarking New Evaluation

Strategies

The evaluation strategies are a key concept for specifying pure, deterministic par-

allelism in Haskell programs. With strategies, parallel specifications can be built

up in a compositional way, and the parallel coordination can be separated from

the algorithm. In addition, to what original strategies provide, the new strate-

gies introduce an evaluation-order monad to provide clearer, more generic, and

more efficient identification of parallel evaluation. The new formulation resolves

a subtle space management issue with the original strategies, allowing parallelism

(sparks) to be preserved while reclaiming heap associated with superfluous par-

allelism.

4.1.1 Original Strategies

We start by describing the original evaluation strategies. The basic operations

provided for parallel Haskell programming are par and pseq:

par :: a -> b -> b

pseq :: a -> b -> b

The par construct annotates an expression (its first argument) as being po-

tentially beneficial to evaluate in parallel, and evaluates to the value of its second

argument. The pseq construct expresses sequential evaluation ordering: its first

argument is evaluated, followed by its second. The par construct represents an

97

Chapter 4. Parallel Programming Practice

overlap between lazy evaluation and future execution. To benefit from lazy eval-

uation and futures, expressions must have a representation in which their value

may be demanded later. Thus, those expressions may evaluate in parallel for

future demand. This is what the par operator provides, annotating a lazy com-

putation as being potentially profitable to evaluate in parallel, in effect turning

a lazy computation into a future [78].

While a detailed control of evaluation order and degree is necessary in order to

achieve significant parallelism. The unstructured use of par and pseq constructs

in non-trivial GpH programs could lead to unnecessarily obscure programs. This

problem can be overcome by using evaluation strategies.

The par and pseq constructs provide the raw material for expressing paral-

lelism in Haskell. Evaluation strategies are high level abstraction functions built

on top of them, allowing the expression of large scale parallel algorithms. A

strategy specifies the dynamic behaviour required when computing a value of a

given type. A strategy makes no contribution towards the value being computed

by the algorithmic component of the function: it is evaluated purely for effect,

and hence it returns just the unit tuple (). Therefore, the type of strategy is:

type Strategy a = a -> ()

The strategy may fully or partially evaluate its argument and may not perform

any evaluation. Therefore, strategies specifying only the degree of evaluation are

essential. The simplest strategy which introduces no parallelism is:

98

Chapter 4. Parallel Programming Practice

r0 :: Strategy a

r0 x = ()

r0 is a strategy that evaluates none of its argument. This strategy is useful

in a case that we need to evaluate only the first element of a data structure but

not the second.

rnf :: Strategy a

rnf x = x ‘pseq‘ ()

rwhnf evaluates its argument to weak-head normal from, the default evalua-

tion degree in GpH. The rwhnf evaluation is not enough, many expressions can

be reduced to normal form. The rnf is a strategy for reducing an expression to

normal form.

rnf :: NFData a => Strategy a -- reduce to normal form

class NFData a where

rnf :: Strategy a

rnf = rwhnf -- default definition

NFData is a class that specifies the evaluation degree of a evaluated value. For

each data type, an instance of the NFData class must be declared that specifies

how to reduce its value to normal form.

The using function applies a strategy to an expression, and to data structure

x before returning it.

using :: a -> Strategy a -> a -- applies a strategy to an expression

x ‘using‘ s = s x ‘pseq‘ x

99

Chapter 4. Parallel Programming Practice

The strategies described above do not contain any actual parallelism. A basic

parallel strategy is parList, which applies a strategy to each element of a list in

parallel:

parList s xs

S:

Figure 16: parList Strategy

parList :: Strategy a -> Strategy [a]

parList strat [] = ()

parList strat (x:xs) = strat x ‘par‘ parList strat xs

The function parList illustrates the compositional nature of the strategies

abstraction achieved through the usage of the higher-order functions: it takes as

an argument a strategy to apply to each list element and returns a strategy for

the whole list. Circles shown in Figure 16 represent the list of computations and

the parallel vertical bars indicate that the parList function evaluates its elements

in parallel. The strategy argument s is typically used to specify the evaluation

degree, that is, how much each list element should be evaluated. For instance,

parList rwhnf causes each spark to evaluate its list element as far as the top-

level constructor, whereas parList rnf evaluates the elements completely.

The parList function can also be used to illustrate the modular nature of

strategies; for example:

parMap :: Strategy b -> (a -> b) -> [a] -> [b]

parMap strat f xs = map f xs ‘using‘ parList strat

100

Chapter 4. Parallel Programming Practice

parMap s f xs

f f f f f

Figure 17: parMap Strategy

The parMap function takes a strategy strat, a function f, and a list xs as

arguments and maps the function f over the list in parallel, applying strat to

every element, as shown in Figure 17. The empty circles in the figure represent the

list of elements before the function f is applied, while the filled circles represent

the list of the function f applied on each element. Note how the construction of

the result with map, on the left of using, is separate from the specification of the

parallelism, on the right. This is a small-scale example, but the idea also scales

to much more elaborate settings [70].

4.1.2 Space Leak Problem

This section describes a space problem with the original strategies. The discussion

is from Marlow in Runtime Support for Multicore Haskell [80].

When the par x y expression is evaluated, the runtime system saves a pointer

to the heap node representing x in a data structure called sparkpool. The

sparkpool is a set of pointers to heap objects representing computations that

have been sparked by par. This sparkpool is consumed by the runtime system:

whenever there is an idle processor the runtime removes one spark from the pool.

There are two policies to treat the sparkpool data structure during garbage

101

Chapter 4. Parallel Programming Practice

collection:

• The ROOT policy: sparks in the sparkpool are treated as roots for the

garbage collector. Thus the garbage collector retains all sparks and objects

which they point to in the heap.

• The WEAK policy: the garbage collector retains only sparks that are reachable

from the roots of the program.

In fact, both of these policies lead to problems with original strategies. First, let

us consider WEAK, and examine how it works with the definition of parList in

the previous section. The sparks created by parList are all expressions of the

form strat x for some strategy strat applied to some list element x. Now, every

such expression is uniquely allocated for the sole purpose of being passed to par;

the sparkpool will contain references to many expressions of the form strat x,

and in every case, the reference from the spark pool is the only reference to that

expression in the heap. So, by definition, if we adopt the WEAK policy then every

spark created by parList will be discarded by the garbage collector, and we lose

all the parallelism.

Moreover, there is no definition of parList that can avoid this problem. The

only value that the parList strategy can return is (), so the only way that

parList can create a reachable spark is by sparking part of the structure it was

originally given, such as the list elements. For example, we can define a non

102

Chapter 4. Parallel Programming Practice

parametric variant of parListWHNF as follows 1:

parListWHNF :: Strategy [a]

parListWHNF [] = ()

parListWHNF (x:xs) = x ‘par‘ parListWHNF xs

But unfortunately we lose the compositional nature of strategies that was so

appealing about the original formulation.

So what about the alternative garbage collection policy, ROOT, where we treat

the spark pool as a source of roots? Considering the parList example again, the

spark pool would still contain references to expressions of the form strat x in the

heap, but this time, all the expressions will be retained by the garbage collector

and no parallelism is lost. However, another problem arises: what happens when

there are not enough parallel processors to evaluate all the sparks? The spark

pool retains references to all the strat x expressions, perhaps long after each x

is no longer required by the program and would otherwise be reclaimed by the

garbage collector.

In an attempt to retain potential parallelism, the storage manager is retaining

memory that should have been released: this is a space leak, and can and does

have dramatic performance implications

1Non parametric compare with parametric parList :: Strategy a -> Strategy [a]

103

Chapter 4. Parallel Programming Practice

4.1.3 New Evaluation Strategies

In collaborative work with Marlow et al., we have developed and measured a new

version of evaluation strategies. The new version preserves the key composition-

ality and modularity benefits of the original strategies, together with their low

time and space overheads. The new Evaluation Strategies are developed on top

of the Eval monad [77]. Before we go into any details of the new strategies, let us

mention the reason leading to its development. The main reason behind rewriting

the strategies is the difficulty of managing the space behaviour of sparks in the

original strategies, particularly apparent on multicores. If a strategy is a function

returning the unit type (), then there is no way for it to spark new expressions

and to return them to the caller, thus ensuring that the sparked expressions re-

main reachable from the callers’ heap. The key idea in the reformulation is that

a strategy returns a new version of its argument, in which the sparked compu-

tations have been embedded. For example, when sparking a new parallel task

of the form strat x, rather than discarding this expression, the strategy will

now build a new version of the original data structure with strat x in place of

x. The caller will consume the new data structure and discard the old, so that

the parallel task strat x remains reachable as long as the consumer requires

it. Furthermore, if the consumer evaluates strat x before it is evaluated by a

parallel thread, then the spark fizzles; superfluous parallelism is discarded by the

compiler garbage collector, which is exactly what we need. We build an elaborate

104

Chapter 4. Parallel Programming Practice

optimisation machinery to avoid unnecessary computation in trivial cases.

The new version reformulates the strategy type to return the value instead of

unit.

type Strategy a = a -> Eval a

The strategies are identity functions, and do not contribute to the result

other than to specify how the result will be computed. This is guaranteed for

all functions defined in the strategies module but not for user defined strategies.

The Eval monad is just a strict identity monad, and runEval is used to lift and

unlift the result. A lifted type means that a strategy like r0, that performs no

evaluation, can still return a (lifted) result.

data Eval a = Done a

runEval :: Eval a -> a

runEval (Done a) = a

The strategies library adds two useful strategies: rpar sparks the argument to

be evaluated in parallel; and rseq evaluates the argument to weak head normal

form.

rpar :: Strategy a

rpar x = x ‘par‘ Done x

rseq :: Strategy a

rseq x = x ‘pseq‘ Done x

In case of a composed data structure, if the user wants to apply different

evaluation degree on a different element the r0 strategy is redefined as follows:

105

Chapter 4. Parallel Programming Practice

r0:: Strategy a

r0 x = return x

The default reduction of lazy evaluation in GpH is Weak Head Normal Form

(WHNF). WHNF means that the expression is evaluated as far as the top-level

constructor. For example, if the expression is a list, then the applied strategy

would perform enough evaluation to determine whether the list is empty ([]) or

nonempty (:), but would not evaluate the head nor evaluate the tail of the list.

In order to apply the strategy to all elements in the list, the rdeepseq strategy

is used. The rdeepseq evaluates its argument to normal form.

rdeepseq :: NFData a => Strategy a

rdeepseq x = rseq (deepseq x)

where deepseq from the DeepSeq module traverses the entire data structure

evaluating it completely. NFData is a class for specifying how to reduce a value

of type a to normal form.

A new using function applies a strategy to value a and returns a as result.

using :: Strategy a -> a

x ‘using‘ s = runEval (s x)

The using function is different from the using function in original strategies.

The intentions is that all new strategies should be identity functions, but it is up

to the programmer to guarantee this if they define a new strategy.

106

Chapter 4. Parallel Programming Practice

4.1.4 Using Strategies for Parallel Paradigms

This section demonstrates how strategies can be used for indicating parallelism

in different parallel paradigms. We will first consider the divide-and-conquer

(Section 4.1.4.1) and data-oriented (Section 4.1.4.2) paradigms.

let

x = fib (n-1)

y = fib (n-2)

in

x ‘par‘ (y ‘pseq‘ x + y + 1)

let

x = fib (n-1)

y = fib (n-2)

in runEval $ do

x <- rpar (fib (n-1))

y <- rseq (fib (n-2))

return (x + y + 1)

Figure 18: Original Strategies versus New Strategies

4.1.4.1 Task Parallelism

The strict identity monad gives a convenient and flexible notation for expressing

evaluation order, i.e. the ordering between applications of rseq and rpar, which

is exactly what a programmer needs for expressing basic parallel evaluation [77].

For example, the left hand side of Figure 18 presents a fragment of the parallel

Fibonacci function (fib) written using the original par and pseq operators to

indicate that x should be evaluated in parallel and guarantee that y is evaluated

before the expression. Finally the result (x+y+1) should be returned. The right-

hand side presents parallel code of the same function using rpar and rseq. The

latter clearly expresses the ordering between rpar and rseq, using a notation

that Haskell programmers will find familiar.

Another example to demonstrate how the parallel Eval monad basic operation

107

Chapter 4. Parallel Programming Practice

payne :: Int -> [(Int,Int)] -> Int

payne 0 coins = 1

payne _ [] = 0

payne val ((c,q):coins)

| c > val = payne val coins

| otherwise = (left + right)

‘using‘ strat

where

left = payne (val - c) coins’

right = payne val coins

strat = rnf left ‘par‘

rnf right

coins’

| q == 1 = coins

| otherwise =(c,q-1):coins

Figure 19: Coins Using Original Strategy

payne :: Int -> [(Int,Int)] -> Int

payne 0 coins = 1

payne _ [] = 0

payne val ((c,q):coins)

| c > val = payne val coins

| otherwise = res

where

left = payne (val - c) coins’

right = payne val coins

res = runEval $ do

l <- rpar left

r <- rseq right

return (l+r)

coins’

| q == 1 = coins

| otherwise =(c,q-1):coins

Figure 20: Coins Using New Strategy

can be used is the simple Coins program. The Coins program takes a price and a

list representing a set of coins, and determines how many different combinations

of coins could be used to pay for an object at the given price.

We start with an original strategy parallel version for the main function in the

program (shown in Figure 19). The function just returns the number of results,

not the results themselves. If the value of coin (c) is greater than the value (val),

then do not pay with this coin. Otherwise, the left branch detects the coin from

the value and the right branch computes the number of coins.

Note that the expressions left and right can be evaluated in parallel. The

red lines in Figures 19 and 20 describe how left and right branches can be

evaluated in parallel without affecting the final result. The left branch is sparked

108

Chapter 4. Parallel Programming Practice

with rpar construct and bound to the variable l; while the right branch is

evaluated sequentially using rseq construct and bound to the variable r.

The examples above explain how a programmer can express parallelism using

rpar and rseq. However, a programmer can express parallelism in a smarter

way, by using strategies. For example, a fib program can be rewritten in term

of strategies, as follows.

fib n = res ‘using‘ strat

where

x = fib (n-1)

y = fib (n-2)

res = (x+ y+1)

strat res = do

x’ <- (rpar ‘dot‘ rdeepseq) x

y’ <- (rseq ‘dot‘ rdeepseq) y

return (x’+ y’+1)

The strat describes how two subcomputations x and y should be evaluated.

A Divide-and-Conquer Pattern: the main power of strategies is the possi-

bility of building abstractions over patterns of parallel computation. One way of

such abstraction is to define high level functions that can be parameterised to

exploit parallelism, commonly known as algorithmic skeletons [32]. A divide-and-

conquer skeleton is shown in Figure 21. All coordination aspects of the function

are encoded in the strategy strat, which describes how the two subcomputations

l and r should be evaluated. The thresholding predicate threshold, provided by

the caller, places a bound on the depth of parallelism, and this is used by strat

109

Chapter 4. Parallel Programming Practice

divConq :: (Ord a,Num a) => (a -> b) -> a -> (a -> Bool) ->

(b -> b -> b) -> (a -> Bool) -> (a -> (a,a)) -> b

divConq f arg threshold conquer divisible divide

| not (divisible arg) = f arg

| otherwise = conquer l r

where

(lt,rt) = divide arg

left = divConq f lt threshold conquer divisible divide

right = divConq f rt threshold conquer divisible divide

(l,r) = (left, right) ‘using‘ strat

strat (l,r)

| (threshold arg) = (evalTuple2 rseq rseq) $(l,r)

| otherwise =

(evalTuple2 (rpar ‘dot‘ rseq)

(rpar ‘dot‘ rseq)) $ (l,r)

Figure 21: Divide-and-Conquer Skeleton

to decide whether to spark both l and r or to evaluate them sequentially. The

evalTuple2 is a strategy that evaluates a tuple according to a given strategy. The

definition of diverging achieves a separation between the specifications of the

algorithm and the parallelism, the latter being confined entirely to the definition

of strat.

4.1.4.2 Data-oriented Parallelism

Data parallelism can be classified into: flat data parallelism and nested data

parallelism. A flat data parallelism applies a function to a collection of elements.

In this case, it is not appropriate to spawn a thread for each element. Because in

most cases it leads to very tiny threads that do not offset their creation, scheduling

and other overheads. The appropriate way to parallelise this class of problem is

to chunk the collection into suitable blocks, depending on the available processors

and the computational size of each element. Nested data parallelism applies a

110

Chapter 4. Parallel Programming Practice

function over a collection of elements but each of these elements may applies

another function over another data structure. Thus, it is irregular parallelism

where each task may take a different time.

In strategies, parallelism is expressed by applying a higher order function to

collections of data. The map function that applies a function over a list of elements

can be parallelised as follows:

parMap f xs = map f xs ‘using‘ parList rdeepseq

The benefits of the strategies are not only the separation of the algorithm from

the parallelism, but also the reuse of the map function. The parList function is

a strategy that applies f to each element in the list in parallel. It defined as

following:

parList :: Strategy a -> Strategy [a]

parList strat [] = []

parList strat (x:xs) = do

x’ <- rpar (x ‘using‘ strat)

xs’ <- parList strat xs

return(x’:xs’)

The rpar creates a spark to evaluate the current element. The spark evaluates

(x ‘using‘ strat) which applies a strategy strat to x.

A more advanced strategy like parBuffer n s xs yields a list in which eval-

uation of the ith element induces parallel evaluation of the (i + n)th element

with the first n elements being evaluated in parallel immediately.

parBuffer :: Int -> Strategy a -> Strategy [a]

parBuffer n s = evalBuffer n (rpar dot s)

The result list must therefore be lazy, at least beyond the first n elements.

111

Chapter 4. Parallel Programming Practice

4.1.5 Evaluation of the New Strategies

This section discusses our measurements in detail, but first we summarise the key

results:

• For all programs, the speedup and runtime results with original and new

strategies are very similar, giving us confidence that they specify the same

parallel coordination for a range of programs and parallel paradigms (Fig-

ure 23).

• The speedups achieved with the new strategies are slightly better compared

to those with the original strategies: a mean of 3.85 versus 3.72 across all

applications (Columns 3 & 2 of Table 16).

• The new strategies fix the space leak outlined in Section 4.1.2, and better

support speculative parallelism.

• The sequential run-time overhead of the new strategies is very low: a

mean of 1.91% (Table 15). Memory overheads are low for most programs

(Columns 8 – 11 of Table 16).

4.1.5.1 Apparatus

Our measurements were made on an eight-core, 8GB RAM, HP XW6600 Work-

station comprising two Intel Xeon 5410 quad-core processors, each running at

2.33GHz. The benchmarks are run under Linux Fedora 7 using a recent devel-

opment GHC snapshot (6.13 as of 20.5.2010), and parallel packages 1.1.0.1 and

112

Chapter 4. Parallel Programming Practice

2.3.0.0, for original and new strategies respectively. The data points reported are

the median of 3 executions and we measure up to 7 cores, as measurements on

the 8th core are known to introduce some variability.

Our benchmarks are 10 parallel applications from a range of application areas;

some have previously been studied [70, 68] and others are taken from the GHC

Nofib suite and parallelised [8]. The programs are the computational kernels of

realistic applications, cover a variety of parallel paradigms and employing several

important parallel programming techniques, such as thresholding to limit the

amount of parallelism generated and clustering to obtain coarser thread granu-

larity. Table 14 summaries the program characteristics.

Program Application Area Paradigm Regularity

LinSolv Symbolic Algebra Nested Data Parallelism Limit irregular
Sphere Graphic Nested Data Parallelism High irregular
Hidden Graphic Nested Data Parallelism Irregular
Coins Search Application Divide-and-Conquer Irregular
MiniMax Game Application Divide-and-Conquer Irregular
Queens Game Application Divide-and-Conquer Regular
Genetic Scientific Application Divide-and-Conquer Irregular
MatMult Numeric Divide-and-Conquer Irregular
Maze Scientific Application Data Parallelism Irregular
TransClos Scientific Application Data Parallelism Irregular

Table 14: Programs Characteristics

Genetic is a program aligns RNA sequences from related organisms. The par-

allel paradigm used in the program is divide-and-conquer parallelism and nested

data parallelism. The sequential and parallel versions of the program are well op-

timised in [7]. The parallelism is in a divide-and-conquer style, using par and seq

113

Chapter 4. Parallel Programming Practice

on the top level function. The second source of parallelism is in a data parallel

style, using the parMap function.

MiniMax performs an alpha-beta search in a tree representing positions in a

two-player game. The program is in a divide-and-conquer style and laziness is

exploited to prune unnecessary subtrees. The program is a recursive algorithm

for choosing the next move in an n-player game, usually a two-player game.

The Queens program places chess pieces on a board. The Queens is intended

to solve the n-queens problem. The program is implemented using divide-and-

conquer parallelism with an explicit threshold.

LinSolv finds an exact solution to a set of linear equations, employing the

data parallel multiple homomorphic images approach often used in symbolic com-

putation.

Hidden performs hidden-line removal in 3D rendering and uses data paral-

lelism via the parList strategy.

Maze searches for a path in a 2D maze and uses speculative data parallelism.

Sphere is a ray-tracer from the Haskell Nofib suite, using nested data paral-

lelism, implemented as parMap.

TransClos finds all elements that are reachable via a given relation from a

given set of seed values, i.e. that are in the range of the transitive closure of the

given relation. The algorithm uses a queue-based parBuffer over an infinite list.

Coins computes the number of ways of paying a given value from a given set

of coins, using a divide-and-conquer paradigm.

114

Chapter 4. Parallel Programming Practice

Program Sequential ∆ Time (%)
Runtime Original New

(seconds) Strategies Strategies

LinSolv 23.40 +0.90 +1.97

Sphere 21.11 +4.78 +3.32

Hidden 41.49 +8.41 +2.70

Coins 42.49 +1.11 +2.12

MiniMax 36.98 +0.87 +3.22

Queens 25.51 +1.37 +6.12

Genetic 33.46 +2.96 +3.97

MatMult 35.48 -1.35 -2.06

Maze 40.93 -2.22 -3.59

TransClos 83.13 +0.75 +1.68

Geom. Mean +1.72 +1.91

Table 15: Sequential Runtime Overheads

MatMult performs matrix multiplication using data parallelism with explicit

clustering.

4.1.5.2 Sequential Overhead

Table 15 shows the sequential runtime as baseline, and the difference of the single

processor runtime with both original and new strategies. For the new strategies,

we encounter a runtime overhead of, at most, +6.12% for the divide-and-conquer

style Queens implementation. Two programs show a negative overhead and we

do not yet understand why this happen. The geometric mean of the runtime

overhead with the new strategies (+1.91%) is only slightly higher than with the

original strategies (+1.72%). Notably, the data parallel programs have a fairly

low overhead, despite the additional traversal of a data structure to expose paral-

lelism. Comparing the runtime overheads imposed by both old and new versions

115

Chapter 4. Parallel Programming Practice

of the strategies, we do not encounter a consistently higher overhead for the new

strategies. This justifies the new strategy approach of high-level generic abstrac-

tions.

4.1.5.3 Parallel Performance of Strategies

Runtimes: Figure 22 compares the runtime curves for applications with the

original and new strategies. We chose one program from each paradigm that

has a similar sequential runtime. They are measured on 1, 2, 3, 4, 5, 6, and 7

cores. The runtime curves are broadly similar for all applications. There is an

exception; the New Strategies is slower than Original Strategies for the Genetic

program on one core. This reflects the claim was made in section 4.1.5.2. The

second observation is that both strategies are scaling, i.e. the runtime falls as

cores are added.

Speedups: Figure 23 compares the absolute speedup curves (i.e. speedup rela-

tive to sequential runtime) for the applications with the original and new strate-

gies. Both the runtime curves (not reported here) and speedup curves for the

original and new strategies are very similar. This pattern is seen to be repeated

in more detailed analysis, e.g. in Columns 2 and 3 of Table 16. We conclude

that the original and new strategies specify the same parallel coordination for a

variety of programs representing a range of parallel paradigms, and several tuning

techniques.

116

Chapter 4. Parallel Programming Practice

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 2 3 4 5 6 7

R
un

tim
e

Number of Cores

Original Strategies

LinSolv
TransClos

Sphere
MiniMax

Coins
Queens
MatMult
Genetic
Hidden

Maze

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 2 3 4 5 6 7

R
un

tim
e

Number of Cores

New Strategies

LinSolv
TransClos

Sphere
MiniMax

Coins
Queens
MatMult
Genetic
Hidden

Maze

Figure 22: Runtime Comparison of the Original and the New Strategies

117

Chapter 4. Parallel Programming Practice

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7

S
pe

ed
up

Number of Cores

Original Strategies

LinSolv
TransClos

Sphere
MiniMax

Coins
Queens
MatMult
Genetic
Hidden

Maze

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7

S
pe

ed
up

Number of Cores

New Strategies

LinSolv
TransClos

Sphere
MiniMax

Coins
Queens
MatMult
Genetic
Hidden

Maze

Figure 23: Speedups Comparison of the Original and the New Strategies

118

Chapter 4. Parallel Programming Practice

Speedup Generated Converted Allocated Maximum
Sparks Sparks Heap Residency

Orig. New Orig. New Orig. New Orig. (MB) New ∆% Orig. (KB) New ∆%
LinSolv 6.59 6.44 7562 7562 7562 7562 6050.10 +0.15 7104.70 +3.87
TransClos 6.04 5.81 1041 1041 1041 1040 80174.60 +0.07 108.60 +1.47
Sphere 4.95 5.67 160 160 160 160 8636.40 -1.14 120943.30 -14.53
MiniMax 5.67 5.48 1464 1464 1464 163 30476.85 -0.01 98.05 -7.17
Coins 5.61 5.53 145925 146853 2702 1060 79833.20 +1.59 302.10 +20.36
Queens 4.58 5.49 1589 1563 1589 636 14903.30 -17.52 19134.50 -24.11
MatMult 5.04 5.39 100 100 100 100 109.00 -6.97 12272.80 +102.04
Genetic 4.95 5.02 659 674 659 166 12180.20 -6.75 493.90 +7.88
Hidden 4.66 4.66 324 324 324 324 4805.50 -0.01 2349.80 -0.44
Maze 2.05 2.01 2723 2835 2525 481 194122.00 +7.74 71.20 -33.15
Geom. Mean 4.83 4.96 -2.51 +1.03

Table 16: Speedups, Number of Sparks and Heap Consumption on 7 Cores.

The top six programs in Table 16 have been carefully tuned for parallelism,

and hence are most relevant when assessing the performance of the new strategies.

The mean speedups of these programs are 4.83 for the original and 4.96 for the new

strategies. The remaining applications have potential for additional performance

tuning, and yet none has a significantly lower speedup with the new strategies.

4.2 Granularity Control

4.2.1 The Importance of Thread Granularity

Thread granularity in parallel computing means the balance between the size

of parallel computation and its associated communication. In other words, it is

the ratio of computation to the amount of communication. The tasks should

be neither too fine nor too coarse. The runtime will not be able to effectively

load-balance to keep all CPUs constantly busy if there are too few large tasks,

119

Chapter 4. Parallel Programming Practice

i.e. coarse tasks: the costs of creating and scheduling the tiny tasks outweigh the

benefits of executing them in parallel [54]. Many real parallel programs produce

small grained computations. For this reason, fine grained computations need

to be arranged into groups, to produce large computations, depending on the

communication overhead. The key question is: how large do the computations

need to be for a parallel model to be effective on a multicore architecture? The

answer to this question entails balancing two dynamic properties of a parallel

program, namely the thread granularity and amount of communication. We

address the question by undertaking a limited study using two different parallel

programs. The programs are all measured on common multicore architectures,

namely eight core machines, comprising two quad-cores, Intel Xeon 5410 cores

running at 2.33GHz, with a 1998 MHz front-side bus 6144 KB and 8GB RAM

running under Linux CentOS 5.5.

....

....

xs = take l (repeat n)

foo [] = []

foo xs =(map nfib xs) ‘using‘ parList rdeepseq

nfib ::Int-> Int

nfib 0 = 1

nfib 1 = 1

nfib n = nfib (n-2) + nfib (n-1) + 1

Figure 24: nfibList Program

120

Chapter 4. Parallel Programming Practice

4.2.2 Eden Multicore Thread Granularity

A key question arises is how coarse-grained each thread needs to be in order

for us to achieve reasonable parallel performance. The answer to this question

entails balancing two dynamic properties of a parallel program, namely the thread

granularity and the amount of communication.

In Section 6 of [3], we perform a limit study to measure thread granularity on

multicore. The results show that the most profitable thread granularity required

to achieve reasonable parallel performance for the Fibonacci program is of the

order of 0.25ms. This time is converted to its equivalent number of cycles as

follows:

cycles = CPU speed (cycle/second) ∗ TIME (second)

From the above equation the number of cycles for a thread granularity of

0.25ms in a 2.33GHz processor is ((2.33 ∗ 109) ∗ (0.25 ∗ 10(−3)))/106 = 0.58Mcycle

is approximately (1 Mcycle). Similarly a thread granularity of 30ms is ((2.33 ∗

109) ∗ (30 ∗ 10(−3)))/106 = 69.9Mcycle (70 Mcycle) is required for programs com-

municating more data per thread, i.e. Clausify and Rewrite from the Nofib

benchmark suite [89]. The reason for converting the obtained time to Mcycles is

to provide an architecture neutral measure.

The next section will investigate the thread granularity in more details using

three different parallel Haskells implementations GpH-GUM, Eden, and GpH-

SMP.

121

Chapter 4. Parallel Programming Practice

4.2.3 Thread Granularity of Parallel Haskells

We construct two programs to determine the most profitable thread granularity

on a multicore architecture. The nfibList program performs a näıve Fibonacci

function over a list of integers. Figure 24 presents nfibList code. The program

uses a data parallel paradigm which requires communicating just a single integer

between threads. For the purposes of the experiment, we start with small numbers

that generate fine-grain threads and then we increase the input number gradually

to generate bigger thread sizes, attempting to determine the optimal granularity

for multicore architecture.

Figures 25(a), 25(b), and 26 compare the absolute speedup curves (i.e. speedup

relative to the sequential runtime) for the nfibList program with GpH-GUM,

Eden, and GpH-SMP. The figures show how speedup varies against thread gran-

ularity, as determined by the input parameter. The speedup curves for the im-

plementation show an increase in speedup as the thread granularity increases.

However, each system has a different maximum value, where no further speedup

can be achieved.

Figure 27 compares the thread granularity threshold of the three parallel

approaches to nfibList. The threshold values achieved by each system reflect

the overheads associated with it. For instance, for GpH-GUM on 8 cores the

threshold is 92.67ms but just 35.5ms on 2 cores, for Eden on 8 cores 21.83ms but

just 5.3ms on 2 cores, and GHC-SMP on 8 cores the threshold is 12.17ms but

122

Chapter 4. Parallel Programming Practice

 0

 1

 2

 3

 4

 5

 6

 7

 1 10 100 1000 10000

 S
pe

ed
up

Thread size (ms)

Granularity for Fibonacci using GHC-GUM

1 core
2 core
3 core
4 core
5 core
6 core
7 core
8 core

(a) nfibList using GUM

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.1 1 10 100 1000 10000

 S
pe

ed
up

Thread size (ms)

Granularity Comparison for Fibonacci using Eden

1 core
2 core
3 core
4 core
5 core
6 core
7 core
8 core

(b) nfibList using Eden

Figure 25: Thread Granularity vs Speedup Comparison of nfibList

123

Chapter 4. Parallel Programming Practice

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.1 1 10 100 1000 10000

 S
pe

ed
up

Thread size (ms)

Granularity for Fibonacci Using GHC-SMP

1 core
2 core
3 core
4 core
5 core
6 core
7 core
8 core

Figure 26: Thread Granularity vs Speedup Comparison of nfibList

just 1.17ms on 2 cores (Table 17).

Table 17 analyses the performance of nfibList given an input list of length

60 and varying the input parameter of a recursive Fibonacci function (fib). The

first column shows the number of cores that are involved in the computation; the

second and third columns report the threshold in milliseconds and Mcycles for

GpH-GUM, Eden and GpH-SMP. The threshold granularity, given in Mcycles,

reflects the required thread size independent from the target architecture. The

sixth and seventh columns report the execution time for each thread in millisec-

onds and Mcycles for GHC-SMP. Analysis of the results reported in

Table 17 and Figure 27 show that the minimum thread granularity varies

between 35.5ms on two cores and 92.6ms on eight cores for GHC-GUM, between

124

Chapter 4. Parallel Programming Practice

 0.1

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8 9

T
hr

ea
d

G
ra

nu
la

rit
y

(m
s)

Number of PEs

Granularity Comparison for Fibonacci

GHC-SMP
GHC-GUM

EDEN

Figure 27: The Most Profitable Thread Granularity Comparison of nfibList

Program

5.3ms on two cores and 21.83ms on eight cores for Eden, and 1.17ms on two

cores and 12.17ms on eight cores for GHC-SMP.

We conclude that the most profitable thread granularity required to gain

satisfactory performance on similar architecture to the experimental multicore

is of the order of 92.6ms (215.92 Mcycles), 21.83ms (50.86 Mcycles), and

12.17ms (28.36 Mcycles), for each implementations respectively. Interestingly,

the threshold of 50.86 Mcycle obtained using Eden implementation is higher than

1Mcycle obtained in [3] for the same Eden implementation. We attribute this to

two reasons: first, the difference between Eden versions GHC-6.8 and GHC-6.12.

Second, in [3], we believe that bigger thread sizes evolve in the computation rather

than the 1Mcycle thread.

125

Chapter 4. Parallel Programming Practice

GHC-GUM Eden GHC-SMP
NO-of-PEs Thread Thread Thread Thread Thread Thread

Gran. (ms)Gran. (Mcycles)Gran. (ms)Gran. (Mcycles)Gran. (ms)Gran. (Mcycles)
2 35.50 82.72 5.33 12.42 1.17 2.73
3 35.50 82.72 5.33 12.42 2.83 6.59
4 35.50 82.72 5.33 12.42 2.83 6.59
5 35.50 82.72 5.33 12.42 12.17 28.36
6 57.33 133.58 21.83 50.86 12.17 28.36
7 92.67 215.92 21.83 50.86 12.17 28.36
8 92.67 215.92 21.83 50.86 12.17 28.36

Table 17: The Most Profitable Thread Granularities for the nfibList Program

Programs communicating more data per thread may require coarser granular-

ities to offset the communication time. We therefore construct sumEulerList

program involving more communication per thread than the nfibList program.

....

....

xs = take l (repeat n)

xss = map gList xs

gList :: Int -> [Int]

gList x = [1..x]

foo [] = []

foo xs =(map sumTotient xs) ‘using‘ parList rdeepseq

sumTotient :: [Int] -> Int

sumTotient xs = sum (map euler xs)

Figure 28: sumEulerList Program

Figure 28 shows the main functions of the sumEulerList program, and it

works as follows. The program takes two input arguments: the first parameter

represents the number n we need to calculate its sum Euler value. The second pa-

rameter represents the length of the list l. The sumEulerList program generates

a list of length l from the n parameter. The generated list is bound to a variable

126

Chapter 4. Parallel Programming Practice

GpH-GUM Eden GpH-SMP
NO-of-PEs Thread Thread Thread Thread Thread Thread

Gran. (ms)Gran. (Mcycles)Gran. (ms)Gran. (Mcycles)Gran. (ms)Gran. (Mcycles)
2 8.67 20.20 15 34.95 2.17 5.06
3 13.83 32.22 15 34.95 2.17 5.06
4 20.17 47.00 15 34.95 9.33 21.74
5 37.17 86.61 22 51.26 9.33 21.74
6 37.17 86.61 22 51.26 9.33 21.74
7 37.17 86.61 30.67 71.46 9.33 21.74
8 87.83 204.64 30.67 71.46 15.17 35.35

Table 18: The Most Profitable Thread Granularity of the sumEulerList Program

xs. Next the gList is mapped over the xs list and bound to a variable xss. In

the final stage the foo function shown in Figure 28 maps sumTotient over xss

list in parallel, using parList function. The definition of the euler function is

given in Appendix A. We use a parameter n to control the granularity of threads

that are created, by varying the size of the list that is evaluated in each single

data parallel task.

Figures 29(a), 29(b), and 30 shows speedup graphs for the sumEulerList

program, plotted against various thread granularity sizes. We can see that

speedups for sumEulerList are similar to speedups for the nfibList program.

The speedup increases as the thread granularity increases. As expected, the

sumEulerList program requires bigger thread granularity to achieve maximum

speedup.

Figure 31 compares the thread granularity thresholding of the three parallel

approaches of sumEulerList. The threshold values achieved by each system

reflects the overheads associated with it. For GpH-GUM on 8 cores the threshold

is 87.83ms but just 8.67ms on 2 cores, Eden on 8 cores 30.67ms but just 15.0ms

127

Chapter 4. Parallel Programming Practice

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.1 1 10 100 1000 10000

 S
pe

ed
up

Thread size (ms)

Granularity Comperison for sumEuler using GHC-GUM

1 core
2 core
3 core
4 core
5 core
6 core
7 core
8 core

(a) sumEulerList using GUM

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.1 1 10 100 1000 10000

 S
pe

ed
up

Thread size (ms)

Granularity Comparison for sumEuler using Eden

1 core
2 core
3 core
4 core
5 core
6 core
7 core
8 core

(b) sumEulerList using Eden

Figure 29: Thread Granularity vs Speedup Comparison of GpH-GUM and Eden
Implementations of sumEulerList Program

128

Chapter 4. Parallel Programming Practice

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.1 1 10 100 1000 10000

 S
pe

ed
up

Thread size (ms)

Granularity Comparison for sumEular using GHC-SMP

1 core
2 core
3 core
4 core
5 core
6 core
7 core
8 core

Figure 30: Thread Granularity vs Speedup Comparison of GpH-SMP Imple-
mentation of sumEulerList program

on 2 cores, and GHC-SMP on 8 cores the threshold is 15.17ms but just 2.17ms

on 2 cores (Table 18).

Translating the results to Mcycles to achieve good parallel performance, GpH-

GUM requires 204.64 Mcycles, Eden requires 71.46 Mcycle, and GpH-SMP re-

quires 35.35 Mcycles. The results show that threshold granularity of 71.46 Mcy-

cles is in agreement with the [3] result using the Eden implementation.

129

Chapter 4. Parallel Programming Practice

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9

T
hr

ea
d

G
ra

nu
la

rit
y

(m
s)

Number of PEs

Granularity Comparison for sumEulerList

GHCSMP
GUM

EDEN

Figure 31: The Most Protable Thread Granularity of sumEulerList program

4.2.4 Discussion

Thread granularity information is important to gain better performance for a

parallel application. We have performed a study on a multicore architecture us-

ing two different data parallel programs. We have compared three different GHC

parallel implementations, GHC-GUM, Eden and GHC-SMP. The difference is in

the technique that each implementation uses to communicate between participat-

ing PEs. GHC-SMP is a purely shared memory module, which does not perform

any message passing other than to exchange pointers. GHC-GUM uses message

passing to communicate between PEs as well as to maintain a shared heap be-

tween them. Eden uses message passing to communicate between PEs through

an explicit channel. We make the following observations.

130

Chapter 4. Parallel Programming Practice

• The most profitable thread granularity rises as the number of cores rises.

As the number of cores increases, more overhead occurs and more work

is needed. One of the reasons for this is the increase number of messages

needed, (i.e. GHC-GUM requires sending 213 messages on two cores com-

pared with 953 messages on eight cores, for the same input). The number of

messages rises by a factor of 4.5 (953/213) between 1 and 8 cores. Another

reason may be from the costs of maintaining the shared heap.

• GpH-GUM requires larger thread granularity, since it needs to maintain

a virtual shared heap along with communicating data. Figures 27 and 31

show that GHC-GUM requires up to 92.67ms for the nfibList program

and 87.83ms for the sumEulerList program on eight cores. We believe this

is for two reasons, first GpH-GUM maintains a shared heap between PEs

in addition to messages passing overhead; second GHC-GUM needs extra

communications to indicate which processor can be used, i.e. the time spent

by an idle PE looking for work.

• GpH-SMP requires the smallest thread granularity because it does not need

to communicate data between PEs. Instead, GpH-SMP exchanges pointers

between PEs.

131

Chapter 4. Parallel Programming Practice

4.3 Summary

In this chapter we have explained the philosophy behind the evaluation strate-

gies model. We have discussed the redesign of the evaluation strategies module

and assessed the new strategies with a very carefully selected number of parallel

benchmarks, covering a data parallel paradigm and divide-and-conquer paral-

lel paradigm. However it has some minor drawbacks: being relatively complex,

providing relatively weak type safety, and requiring care to express control paral-

lelism, the advantages are many and substantial: It provides clear, generic, and

efficient specification of parallelism with low runtime overheads. It resolves a

subtle space management issue associated with parallelism, better supports spec-

ulation, and is able to directly express parallelism embedded within lazy data

structures.

We have investigated the most profitable thread granularity for parallel func-

tional languages on multicore architectures. From the limit study, we believe

that for a program similar to nfibList benchmark and executed on similar ar-

chitecture, the most profitable thread granularity for the three implementations

GHC-GUM, Eden, and GHC-SMP are in the range of 200, 50, and 30 megacycles

respectively. Most parallel programs communicate far more data than such ideal

programs and greater thread granularity is required to offset the communication

time. Measurement of one such program, sumEulerList, on the three implemen-

tations suggests a thread granularity of 200, 70, and 35 megacycles respectively.

132

Chapter 5

Architecture-Aware Constructs

Increasingly, physical limitations are forcing hardware designers toward develop-

ing multicore architectures, which means parallel hardware is coming to commod-

ity hardware. Therefore, general purpose parallel programming that maximises

application performance is essential. Many existing parallel programming lan-

guages target scientific applications; however only a few languages are targeting

general-purpose parallel programming, which must be the mainstream [40].

This chapter describes the challenges involved in designing architecture-aware

constructs for the GpH language in particular, that will exploit information about

task size and aims to preserve data locality, or to distribute large units of work,

thereby reducing communication for small tasks. The architecture-aware con-

structs need to provide mechanisms for multiple levels of parallelism because

the new architectures provide parallelism at multiple levels to maximise perfor-

mance [55].

133

Chapter 5. Architecture-Aware Constructs

We have chosen the non-strict functional language GpH to implement architecture-

aware constructs, because we believe that architecture-aware constructs are eas-

ier to implement in a functional language. The non-strict semantics (laziness) of

GpH means that an expression is evaluated only when its result is needed. GpH

takes advantage of this flexibility by annotating expressions that can be evalu-

ated in parallel. Moreover, a functional language requires minor modifications to

the sequential program to exploit parallelism. However, the constructs could be

implemented in any language that has process spawning.

Section 5.1 outlines the trend towards hierarchical architectures and illustrates

the view of this architecture as a virtual architecture, using the new constructs.

Section 5.2 describes how the constructs preserve the data locality and compares

this approach with other approaches. Section 5.3, we discusses the design issues

of the new constructs and their features. Section 5.4 defines the semantics of the

new constructs. Section 5.5 demonstrates the implementation of the constructs as

an extension of the GUM runtime features. Section 5.6 reports the performance

results of the architecture-aware constructs compared with the par construct.

Section 5.7 describes how the constructs could be implemented in other languages

such as Erlang.

134

Chapter 5. Architecture-Aware Constructs

5.1 The Trend Towards Hierarchical Architec-

tures

Physical limitations and manufacturing technologies are driving general purpose

computing architectures inexorably towards many cores, with the number of cores

following Moore’s Law. It is widely anticipated that future architectures will

both evolve quickly, and have hierarchical communications structures [81]. The

number of cores will steadily increase as will the level of heterogeneity. Already

the most common parallel architectures are clusters of multicore nodes, with 3

levels in the hierarchy: cores, chips and nodes. Threads on the same core can

communicate most quickly with a thread on the same core, more slowly with a

thread on another core in the node, and slower still with threads on remote nodes,

as discussed in Section 2.1.4. The communication hierarchy is likely to become

deeper as the number of cores increases. For example, the number of cores sharing

the same memory is likely to be restricted, and hence many core architectures

may introduce another level within a node. Figure 32 illustrates both a virtual

hierarchical architecture, and the real hierarchical architecture. Only Heriot Watt

machines from Figure 32 are used for measurements in this research. The virtual

architecture comprises a tree, possibly unbalanced, and where the degree of the

nodes may vary. We expect communication at lower levels in the tree to be faster

than at higher levels. Of course, not only the physical distance is a factor in

clustering processor elements (PEs). Communication latency and CPU speed are

135

Chapter 5. Architecture-Aware Constructs

 PE PE

 PE PE

 PE PE PE PE

 PE

 PE

LEVEL 0

LEVEL 2

LEVEL 3 LEVEL 3

LEVEL 2

Beowulf cluster

LEVEL 1

Real Architecture Virtual Achitecture

LEVEL 1

LEVEL 0

Network

Multicore LEVEL 4LEVEL 4

Network

Network

Lxpara3

Node 2 Node 32

Node 1

O
rg

an
is

at
io

n
−

1

H
er

io
t W

at
t U

ni
ve

rs
ity

O

rg
an

is
at

io
n

 −
 2

Figure 32: Real and Virtual Hierarchical Architectures

other factors that can be considered in clustering processors. For example, if we

have two processors physically located far from each other, but connected with

exceptionally fast network facilities, they may be considered to be as in the same

level.

5.2 Other Architecture-Aware Languages

Shared memory architectures are sufficiently simple that parallel Haskell imple-

mentations do not need architecture awareness to preserve data locality, and the

current multicore support in GHC does provide it [80].

The Eden distributed memory parallel Haskell has no architecture awareness.

Processes are randomly placed by the runtime system [14]. Other distributed

136

Chapter 5. Architecture-Aware Constructs

memory parallel Haskells, like Cloud Haskell, explicitly place a process at named

location (node) [38]. Architecture-aware GpH occupies a middle ground between

explicit placement and implicit placement by specifying placement abstractly.

Outside the functional language community, some recent parallel languages

are architecture-aware. For example X10 [30] improves data locality by integrat-

ing new constructs: (activity, places, regions and distributions), into hierarchical

parallel model and nonuniform data access. X10 splits the memory space into

parts known as a partitioned global address space. Constructs enable program-

mers to assign a single place to each global address space. During execution

of an activity, it will be located at the same partitioned global address of its

place. The X10 language constructs are more explicit than our new notion of

abstract communication levels.

Other parallel languages use similar architecture-aware approaches to ours

is the Scalable Locality-aware Adaptive Work-stealing Scheduler (SLAW)[43].

Workers in SLAW execute spawned tasks eagerly and leave the continuation to

be stolen. The placement of spawned tasks is done by the runtime system. It has

the notion that the worker can only steal work from workers which appear in the

same place.

137

Chapter 5. Architecture-Aware Constructs

5.3 New Architecture-Aware Constructs

This section describes the key features for architecture-aware constructs. We

describe the virtual architecture and how it is related to parallelism, and discuss

the challenges required for scheduling and placing parallel tasks in a parallel

platform. Finally, we describe the basic operational concepts of constructs.

5.3.1 Virtual Architectures

Many applications can exhibit parallelism at multiple levels with different gran-

ularities, which reflects the modern parallel clusters of multicore architecture

[40]. The challenges are to develop a parallel programming model that allows

the programmer to represent parallelism in a multi level style. We believe that

a fully implicit approach will not deliver an acceptable performance on hierar-

chical architectures because for some problems, e.g. regular problems like many

matrix manipulations, optimal performance can only be obtained on a specific

architecture by explicitly placing threads within the architecture. However, many

problems do not exhibit this regularity. Moreover, explicit placement prevents

performance portability: the program must be rewritten for a new architecture,

a crucial deficiency in the presence of fast-evolving architectures. To avoid these

deficiencies we, like others, propose language constructs that expose a virtual

138

Chapter 5. Architecture-Aware Constructs

architecture rather than the actual architecture. Clearly the virtual architec-

ture must be readily mapped to physical architectures. In addition, our con-

structs minimise prescription: they identify sets of locations where the thread

may be placed. Moreover, we support performance portability by isolating the

architecture-specific parts of the program in just a few functions that can be

re-factored for a new architecture.

5.3.2 Placing Task on Hierarchical Architecture

A mapping means the process of assigning and scheduling the abstract represen-

tation of tasks onto physical resources, determining where and when each task

executes. The existing assigning and scheduling mechanism of GUM that we use

for implementing architecture-aware constructs has been described earlier in Sec-

tion 2.3. The thread management of the model is responsible for deciding when

to generate a new thread and how to schedule the threads. However, this man-

agement requires some enhancement in order to perform well on a hierarchical

architecture.

Broadly speaking there are two challenges to be solved simultaneously, when

controlling parallelism on a hierarchical architecture:

• Limit the communication costs for small computations. This en-

tails limiting how far small computations are communicated, and requires

information about thread granularity (i.e. execution time). Without this

139

Chapter 5. Architecture-Aware Constructs

information, programs often have poor resource utilisation, as the system

is saturated with small threads [44]. Thread granularity information may

be obtained from a number of sources, for example, from some resource

analysis, or by profiling, or by the programmer. There are many models

which use the resource analysis techniques to achieve better performance on

a parallel platform. Most models focus on the level of abstraction over the

hardware that is provided and they are classified by the level of machine

abstraction. For example, the Parallel Memory Hierarchy (PMH) model de-

veloped by Alpern et al., uses a single mechanism to model the costs of both

interprocessor communication and the memory hierarchy [4]. The physical

platform is modeled as a tree of memory modules with processors at the

leaves. The PMH program can be viewed as a collection of modules. Each

module m has four parameters: the blocksize, which tells how many bytes

there are per block; blockcount, which tells how many blocks fit in m; the

childcount, which tells how many children there are in m; and the transfer

time, which tells how many cycles it takes to transfer a block between m

and its parent.

Another multi-level parallel programming model example, is the bulk syn-

chronous parallel model (BSP) proposed by Valiant in 1989 [19]. The BSP

model consists of a collection of processors, each with private memory, and a

communication network that allows processors to access memories of other

140

Chapter 5. Architecture-Aware Constructs

processors. If a processor reads or writes from its private memory the op-

eration is relatively fast. If it reads or writes from a remote memory, a

message must be sent through the communication network, and this oper-

ation is slower. The BSP computation proceeds in a series of supersteps

comprising three stages. The independent concurrent computation step on

each processor using only local values. The communication step in which

each processor exchanges data with every other processor. The barrier syn-

chronisation step where all processes wait until all other processes have

finished their communication actions.

Bischof et al. in [18] have presented a multi-level parallel programming

model. This model is a cost-optimal implementation of the divide-and-

conquer skeleton. The model consists of a number of conventional lists,

called segments. These segments have different costs. The cost depend on

the underlying architecture.

We do not address the problem of obtaining this information here. Although

the examples throughout this thesis use granularity information from pro-

gram parameters, we have adapted the runtime system to store granularity

information with each spark, if required.

• Keep all cores busy: for example, at system start up we must quickly

distribute work to all cores. This entails sending large grain computations

long distances over the communications hierarchy.

141

Chapter 5. Architecture-Aware Constructs

5.3.3 New Constructs

parDist :: Int -> Int -> a -> b -> b

parBound :: Int -> a -> b -> b

parAtLeast :: Int -> a -> b -> b

parExact :: Int -> a -> b -> b

Figure 33: New Architecture Aware Constructs

The new architecture-aware constructs are summarised in Figure 33. The con-

structs identify sets of locations where a computation may be performed, and the

runtime system is free to place the computation within this set. These sets often

include multiple levels in the communication hierarchy. The parDist primitive

is implemented in the GUM runtime system. The parDist primitive introduces

a potential for parallel evaluation of its third argument. The first two arguments

specify a minimal and maximal distance for the placement of the parallel eval-

uation. The value of the expression is its fourth argument. The distance is the

shortest path between two nodes. The exact semantics of parDist, in terms of

the set of possible locations is defined in Section 5.4. All remaining constructs

are implemented using the parDist primitive. To limit the communication costs

for small computations, or to preserve data locality, we propose parBound that

behaves like par, except that it takes an additional integer parameter specify-

ing the maximum distance in the communication hierarchy that the computation

may be located. The distance represents a level in the hierarchy illustrated in

Figure 34.

parBound illustrates a key characteristic of our constructs, namely that while

142

Chapter 5. Architecture-Aware Constructs

placing restrictions on how work is communicated, they aim for minimal prescrip-

tion. That is, the constructs identify sets of locations where a computation may

be performed, and the runtime system is free to place the computation within

this set. These sets often include multiple levels in the communication hierarchy.

For example a computation sparked by a parBound 1 may be placed on any core

in the shared memory node, and a computation sparked by a parBound 2 may

be placed on any core in the set identified in Figure 34.

parAtLeast 2 x y = parDist 2 3 x y

parBound 1 x y = parDist 0 1 x y

PE

Current

Virtual Achitecture

Beowulf cluster

parExact 3 x y = parDist 3 3 x y

Lxpara3 machine

LEVEL 0

LEVEL 1

LEVEL 2

LEVEL 3

Figure 34: Using New Architecture Aware Constructs

parAtLeast is a dual to parBound, as it takes an additional integer param-

eter specifying the minimum distance in the communication hierarchy that the

computation may be communicated. The idea is to communicate large-grain

computations over large distances, for example to evenly distribute work across

the machine at the beginning of the execution. On the example architecture

143

Chapter 5. Architecture-Aware Constructs

parBound:: Int -> a -> b -> b

parBound n = parDist 0 n x y

parAtLeast:: Int -> a -> b -> b

parAtLeast n = parDist n maxLevel x y

parExact :: Int -> a -> b -> b

parExact n = parDist n n x y

Figure 35: Architecture Aware Construct Definitions

shown in Figure 34, parAtLeast 3 means that the computation must be sent the

greatest distance in the communications hierarchy, i.e. to the lxpara3 machine.

parAtLeast 2 means that the computation must be communicated at least to

another node in the Beowulf cluster, parAtLeast 1 means that the computation

must be communicated at least to another core within a shared memory node,

and parAtLeast 0 means that it may be communicated freely to any core in the

machine.

parDist can also be used to define other constructs. By way of illustration,

parExact in Figure 33 specifies an exact level, although not a specific processor. A

parDist can also be parameterised to capture other notions, for example parDist

(n-1) n specifies that a spark may be communicated to a core residing at either

level (n-1) or level n, and parDist (n-2) n is similar. This provides more

flexibility as there is a bigger set of locations that can fish the spark away.

Table 19 summarises the new constructs in comparison with par. Thread cre-

ation remains optional for all constructs; likewise, no specific location is identified

by any of the constructs. The constructs may, or may not, restrict the placement

144

Chapter 5. Architecture-Aware Constructs

Construct par parBound parAtLeast parDist parExact

Existing New New New New
Thread Creation Optional Optional Optional Optional Optional
Placement Not Not Not Not Not

Restricted Restricted Restricted Not Restricted Restricted
Hierarchy Placement Not Restricted Restricted Restricted Restricted Specific
Work Distribution Passive Passive Passive Passive Passive

Table 19: GpH par Construct Comparison (Increasingly Specific)

within the communication hierarchy, and parExact identifies a specific hierarchy

level. Work distribution for all constructs is dynamic and passive, that is, idle

cores seek work, and select only sparks for the appropriate communication level.

5.4 The Semantics of Constructs

The new constructs are not prescriptive: rather than specifying a single PE for

a task, they identify sets of PEs within the communication hierarchy of the ar-

chitecture. We present a simple Haskell specification of the sets of PEs that each

construct identifies when executed on any PE of participating PEs. The complete

Haskell program specifying the constructs, including all auxiliary functions, can

be found in Appendix B. We first need some mechanism specifying paths and

distances in the tree hierarchy.

5.4.1 Distance Function

In order to illustrate how the distance function is working, we define a binary

tree (Tree t) structure representing an underlying parallel platform (e.g. the

one shown in Figure 36). The definition of the tree data structure is as follows:

145

Chapter 5. Architecture-Aware Constructs

76 10

1

3

98

212017 1815 16

1914131211

54

2

Figure 36: An Example of Hierarchical Architecture.

data Tree a = Node a (Tree a) (Tree a)

| Leaf {pId ::Int} deriving (Eq, Show)

A tree is a leaf with a PE Id as value, or a node represents network possibly

parametrised with information such as latency, leaves represents PEs. A node

has a value and two branches, each of which is a subtree.

The function distance t p1 p2 calculates the distance, defined as the num-

ber of steps to the nearest common node in the hierarchy between two leaves in

the architecture hierarchy. The function takes a tree t representing the architec-

ture and two leaves p1 and p2 as input and returns the distance between the two

leaves as an integer.

The definitation of the distance function uses an additional auxiliary functions,

path shown in Figure 37. The call path (Node v t u) p calculates the path

to leaf p from the root of the tree represented as a list. It takes a tree (Node v

t u) and leaf p and returns list of nodes that lead to the leaf p. The complete

Haskell program defining all auxiliary functions, e.g. prefixOf function can be

146

Chapter 5. Architecture-Aware Constructs

distance :: Tree Int -> Int -> Int -> Int

distance t p1 p2 = d1+d2

where

pathTop1 = path t p1

pathTop2 = path t p2

comNodes = length (prefixOf pathTop1 pathTop2)

d1 = length pathTop1 - comNodes

d2 = length pathTop2 - comNodes

path :: Tree Int -> Int -> [Int]

path (Leaf p) s

| p==s = [s]

| otherwise = []

path (Node v t u) s

| v == s = [v]

| left== [] && right == [] = []

| left /= [] = [v] ++ left

| right /= [] = [v] ++ right

where

left = path t s

right = path u s

Figure 37: Distance Function

147

Chapter 5. Architecture-Aware Constructs

found in Appendix B. For simplicity, we use a tree of integers shown in Figure

36 to demonstrate the constructs semantics. Squares in the tree represent PEs in

the hierarchy (Leaf). Circles in the tree represent the networks connecting Pes

or sub-networks (Node).

Aa an example, if we need to compute a distance between Leaf 15 and Leaf

20, we proceed by the following steps.

1. Path to Leaf 15 =⇒ pathTop1 = [1,3,8,6,15]

2. Path to Leaf 20 =⇒ pathTop2 =[1,3,9,10,20]

3. Length of the longest common prefix of pathTop1 and pathTop2 =⇒ comNodes

= length [1,3] =2

Node 3 is the nearest common node between Leaf 15 and Node 20

4. Length of path to Leaf 15 from nearest common Node =⇒ d1 = length

(pathTop1) - length (comNodes) = 3

5. Length of path to Leaf 20 from nearest common Node =⇒ d2 = length(pathTop2)

- length(comNodes) = 3

6. The distance between Leaf 15 and Leaf 20 = d1 + d2 = 6, is the sum of

steps moving from one leaf to the nearest common parent and down to other

leaf.

148

Chapter 5. Architecture-Aware Constructs

5.4.2 setparDist Function

The most basic primitive we propose is the parDist primitive. We therefore

start by defining its semantics in terms of the possible locations defiened by it.

A setparDist t m u p specifies the set of PEs on which a parDist m u task

may be executed from PEp in an architecture t. It takes an architecture tree t,

a minimum bound m, maximum bound u, and a leaf p, the current location, as

input and returns a list of all possible PEs (Figure 38). For example, if we need

to generate sparks intended to be executed between levels 1 and 3 from Leaf 20

of the tree shown in Figure 36, we perform the following:

1. Calculate path to Leaf 20 =⇒ pathTop = [1,3,9,10,20].

2. Calculate the common node distant by u levels from Leaf 20 =⇒ commonu

= last (take (5 - 3) [1,3,9,10,20]) =⇒ 3.

3. Calculate the common node that is m levels from Leaf 20 =⇒ commonm=

last (take (5 - 1) [1,3,9,10,20]) =⇒ 10.

4. Calculate the subtree of the commonu leaf 3 =⇒ subtreeu = (Node 3 (Node

8 (Node 6 (Leaf pId = 15) (Leaf pId = 16)) (Node 7 (Leaf pId = 17) (Leaf

pId = 18))) (Node 9 (Leaf pId = 19) (Node 10 (Leaf pId = 20) (Leaf pId

= 21))))

5. Calculate the complementary tree of the common node 10. The comple-

mentary tree is the original tree excluding the subtree of a given node.

149

Chapter 5. Architecture-Aware Constructs

setparDist :: Tree Int -> Int -> Int -> Int -> [Int]

setparDist t m u p

| ((m<0) || (u<0)) = []

| ((m==0) && (u==0))= [p]

| (u > (length (pp)-1)&& (m==0)) = (rLeaf (t))

| ((m==u) || (u > (length (pp)-1))) = exact (subexact) p

| m==0 = [p]++setPes

| otherwise = setPes

where

pp = path t p

commonnu = last (take (length (pp) - u) pp)

commonnm =last (take (length (pp) - m) pp)

subu=subTree t commonnu

subexact= subTree t commonnm

complementtree = (complementTree subu commonnm)

setPes= filter (/= commonnm) (rLeaf (complementtree))

subTree ::Tree Int -> Int -> (Tree Int)

subTree (Leaf p) s =EmptyTree

subTree (Node v t u) s

| v == s = (Node v t u)

| left== EmptyTree && right == EmptyTree = EmptyTree

| left /= EmptyTree = left

| right /=EmptyTree =right

where

left = subTree t s

right = subTree u s

complementTree :: Tree Int -> Int -> Tree Int

complementTree (Leaf p1) s = (Leaf p1)

complementTree (Node v l EmptyTree) s

| v==s = EmptyTree

| otherwise = (Node v (complementTree l s) EmptyTree)

complementTree (Node v t u) s

| v==s = EmptyTree

| otherwise = (Node v

(complementTree t s)

(complementTree u s))

Figure 38: setparDist Locations Function

150

Chapter 5. Architecture-Aware Constructs

setparBound ::Tree a ->Int -> a -> [a]

setparBound t n p = setparDist t 0 n p

Figure 39: setparBound Locations Function

In our case, we calculate the complement for subtreeu of node 10. =⇒

complementtree = Node 3 (Node 8 (Node 6 (Leaf pId = 15) (Leaf pId =

16)) (Node 7 (Leaf pId = 17) (Leaf pId = 18))) (Node 9 (Leaf pId = 19))

6. Finally calculate the leaves of the complementtree subtree =⇒ setPes =

[15,16,17,18,19].

5.4.3 setparBound Function

As mentioned in the previous section, parDist is the most basic primitive. We can

use it to define the other constructs. A setparBound t n p (Figure 39) specifies

the set of PEs that tasks generated by a parBound n may be executed on, from

PEp in architecture t. For example if we need to generate sparks bounded by two

levels from leaf 11 of the tree shown in Figure 36, we just call setparDist with the

following parameters t 0 2 11, where t is the tree. The result is [11,12,13,14],

a list of leaves with a distance of at most 2 in the architecture tree (t).

5.4.4 setparAtLeast Function

A parAtLeast is similar to parBound, as it takes an additional integer param-

eter specifying the minimum distance in the communication hierarchy that the

151

Chapter 5. Architecture-Aware Constructs

setparAtLeast::(Ord a, Show a) =>Tree a ->Int -> a -> [a]

setparAtLeast t n p = setdFun t n maxLevel p

where

maxLevel = 3

Figure 40: setparAtLeast Locations Function

computation may be communicated. Therefore, it can be defined in a similar

way, as shown in Figure 40. So, if we need to generate sparks intended to be

executed at least two levels from leaf 11 of the tree shown in Figure 36, we just

call setparDist t 2 maxLevel 11, where t is the tree and maxLevel is the max-

imum distance that sparks can be sent within the architecture hierarchy. In this

example, the result is [15,16,17,18,19,20,21].

5.4.5 Construct Properties Test

This section presents implementation-relevant properties that the architecture-

aware semantics should satisfy. These properties are expressed as boolean func-

tions in Haskell and validated using QuickCheck [31], that is the properties are

written as Haskell functions and can be automatically checked on either random

input or with custom test data generators. Two types of properties are tested:

the basic properties and specialised properties. The complete Haskell program

specifying the properties can be found in Appendix B.

152

Chapter 5. Architecture-Aware Constructs

5.4.5.1 Basic Properties

Let P be the set of PEs which are the leaves of the tree representing a given hier-

archical architecture. The domain H is the domain of all possible tree hierarchies.

The domain P is the domain of all possible processor elements.

1. Basic property one. For any processing element p ∈ P , the only possible

placement of a bounded spark with upper and lower bounds of 0 and 0 is

the p itself. Formally, this is written as:

∀h ∈ H,∀p ∈ P . setparDist h 0 0 p = {p}

2. Basic property two. Let path p be a function that returns the longest

path to the PE from the root of the tree hierarchy. Let rLeaf h be a

function that returns all processor elements (PEs) in the tree hierarchy.

The path and rLeaf functions are described in Section 5.4.1. For p ∈ P

and h ∈ H, the set of PEs returned by calling the setparDist h 0 (length

(path h p)) p function is equal to the set of all PEs in the hierarchy, as

returned by rLeaf h.

∀h ∈ H,∀p ∈ P . setparDist h 0 (length (path h p)) p =

rLeaf h

3. Basic property three. If the upper bound u is less than 0 or lower bound

m is greater than the longest path to the PE from root of the tree hierarchy

then the set of PEs returned by calling setparDist h m u p function is an

153

Chapter 5. Architecture-Aware Constructs

empty set of PEs.

∀h ∈ H,∀p ∈ P , m ∈ Z, u ∈ Z.

((u < 0) || m > (length (path h p))) ⇒ setparDist h m u p = { }

The above three basic properties can be considered sanity checks of the se-

mantics. All basic properties have passed Quickcheck testing using one hundred

randomly generated inputs, each with a randomly generated tree hierarchy.

5.4.5.2 Specialised Properties

The proposed architecture-aware model exposes the tree hierarchy to the pro-

grammer through the parDist primitive. The parDist primitive provides a

mechanism to spark tasks that can be executed in certain levels of the archi-

tecture hierarchy. We believe, for the implementation, it is important that these

sparks do not leave their neighbourhood, where neighbourhood is the set of PEs

specified by parDist primitive. Otherwise the bounded spark may diffuse to

arbitrary locations after several steps of fishing (workstealing, as outlined in Sec-

tion 3.3.3). We define the following property to formally specify and check this

property.

1. Specialised proposed property one. This property reflects the initial

intention of the bounded parDist. For p ∈ P and h ∈ H, the set of PEs

returned by setparDist h 0 u p is equal to the set of PEs returned by

setparDist h 0 u p’, where p’ is a possible location after one step of

154

Chapter 5. Architecture-Aware Constructs

fishing. The aim is to guarantee that if the spark is fished again from p’ it

will be executed in the same neighbourhood specified by the original p.

∀h ∈ H, ∀p, p′ ∈ P , u ∈ Z , p′ ∈ (setparDist h 0 u p)⇒

setparDist h 0 u p′ = setparDist h 0 u p

On closer examination, this property fails under the quickcheck test. In

the case of an unbalanced tree hierarchy, the result of setparDist h 0 u

p may return a subset of the set returned by setparDist h 0 u p.

C

B

 D

Figure 41: Tree Example of Specialised Proposed Property One

For example, in the tree hierarchy shown in Figure 41, if PE (B) launches a

spark with boundaries 0 and 2, then any PE in the outer circle can fish the

spark. In particular, it can be fished by PE (D). In second step the spark

can be fished only from PEs in the inner circle. That is why the property

fails. However, this is not always true, as illustrated in the next proposed

property.

2. Specialised proposed property two. For p ∈ P and h ∈ H, the set

155

Chapter 5. Architecture-Aware Constructs

of PEs returned by setparDist h 0 u p’ is a subset of the set of PEs

returned by setparDist h 0 u p.

∀h ∈ H,∀p, p′ ∈ P , u ∈ Z. p′ ∈ (setparDist h 0 u p)⇒

setparDist h 0 u p′ ⊆ setparDist h 0 u p

A
C

 D

B

Figure 42: Tree Example of Specialised Proposed Property Two.

The property also fails the quickCheck test, because of unbalanced tree

hierarchies. In the second step, the spark may be fished by a PE which is

not one of the elements of the original PE neighbourhood. For example,

in the tree hierarchy shown in Figure 42, if PE (B) launches a spark with

boundaries 0 and 2, then any PE in the blue circle can fish the spark. In

particular, it can be fished by PE (C). In a second step, the spark can

be fished from PE (C) by any PE in the red circle. In particular, it can

be fished by PE (A), which is outside the original neighbourhood. We

call this behaviour of the fishing mechanism diffusion of sparks. In the

156

Chapter 5. Architecture-Aware Constructs

implementation, we must prevent this scenario from happening. We achieve

this by resetting the boundaries of the spark to be 0 and 0, after the first

fishing stage. This forces evaluation of the spark on the initial target PE,

and thus within the neighbourhood specified by the spark.

3. Specialised proposed property two. For p ∈ P and h ∈ H, after fishing

a spark from p to p’, which is within the bound u and after resetting the

bound u for the spark to 1, this spark can only be fished by a p inside the

original neighbourhood of p. The set of PEs returned by setparDist h 0

1 p’ is a subset of the set of PEs returned by setparDist h 0 u p.

∀h ∈ H,∀p, p′ ∈ P , u ∈ Z, p′ ∈ (setparDist h 0 u p)⇒

setparDist h 0 1 p′ ⊆ setparDist h 0 u p

This property passes the quickCheck and guarantees that there is no dif-

fusion of sparks, i.e. sparks always remain in the neighbourhood specified

by the original parDist.

5.4.6 Summary

We have presented the semantics for the architecture aware constructs, specifying

the set of possible locations when providing boundaries to the sparks. We have

specified the expected behaviour of the constructs by Haskell functions, achiev-

ing an executable specification. We have formulated several properties as Haskell

predicates and used Quickcheck to check them on random input. The three

157

Chapter 5. Architecture-Aware Constructs

basic properties represent a sanity checks of the semantics. Two proposed imple-

mentation relevant properties did not hold, and counterexamples extracted from

Quickcheck identified diffusion of sparks to be the problem. In the implementa-

tion, we avoided this problem by resetting the boundaries after one fishing stage.

The final property, checked with Quickcheck, shows that with this modification,

the desired property holds.

5.5 Implementation of Architecture-Aware Con-

structs

The implementation of the new constructs requires modifying the GpH language

in various places in the runtime system and the GHC compiler.

5.5.1 Runtime Systems Modification

The implementation of architecture-aware constructs requires adapting the GUM

runtime system outlined in Section 2.3 to store granularity information with each

spark. The modifications involve two kinds of information:

• Static information, including the number of the PE and the distances from

the PE to other PEs.

• Dynamic information, including the minimum and maximum distance for

each spark.

158

Chapter 5. Architecture-Aware Constructs

Each PE maintains static information about other PEs that participate in the

computation in a local table that is collected at the beginning of the program

execution.

PEId Speed Distance IP address
1 1596 0 137.195.143.104
2 1596 2 137.195.143.101
3 1998 3 137.195.27.241
4 1998 3 137.195.27.241
5 1596 1 137.195.143.104

Table 20: A Static Information Table for Five Cores from Figure 34

Table 20 shows the static information table. A PEId is a unique number

generated by the communication library, to distinguish between PEs in the case

of sending and receiving messages. CPU speed and IP address are collected using

the pvm config function. After collecting the IP addresses, the distance between

the current PE and other PEs is calculated.

5.5.2 Work Placement Mechanism

The work placement mechanism in GUM identifies randomly a destination PE

to donate work. Original GUM responds with any spark FCFS. This mechanism

has been improved by replying to the work request with only work that is worth

executing on the requester location.

Figure 44 shows the improved work placement mechanism in GUM. Idle PEs

which lack local sparks may seek work from other randomly chosen PEs by sending

them FISH messages. If a fished PE does have sparks available in the sparkpool,

159

Chapter 5. Architecture-Aware Constructs

IF idle(localPE) THEN

IF runnable thread THEN

evaluate new thread

ELSE

IF spark in spark pool THEN

activate new spark

FI

FI

IF no spark THEN

send FISH to random PE

FI

IF received FISH THEN

IF spark in spark pool THEN

send SCHEDULE to origin-PE

ELSE

send FISH to random PE

FI

FI

FI

Figure 43: The original GUM Work
Placement Mechanism

IF idle(localPE) THEN

IF runnable thread THEN

evaluate new thread

ELSE

IF spark in spark pool THEN

activate new spark

FI

FI

IF no spark THEN

send FISH to random PE

FI

IF received FISH THEN

IF spark in spark pool THEN

IF (Distance of origin-PE

between minimum and

maximum attached to spark)

THEN

send SCHEDULE to origin-PE

ELSE

send FISH to random PE

FI

FI

FI

Figure 44: Extended GUM Work Place-
ment Mechanism

GUM uses static information when it is replying to the incoming FISH. It com-

pares the distance of the original PE stored in the static table with distances

attached to the spark. If the PE distance is less than the maximum and greater

than the minimum spark distance, then a SCHEDULE message will be sent to

the original PE. If it is not, the FISH message will be forwarded to another ran-

domly chosen PE, unless its maximum life time is reached and it is re-forwarded

to the original PE.

160

Chapter 5. Architecture-Aware Constructs

5.5.3 parDist Primitive Implementation

The implementation of the basic parDist primitive does not need modification

only in the GUM runtime system. It also requires some modification to the

GHC compiler in order to the parDist primitive be recognised from the Haskell

program. We followed exactly the implementation of the par primitive. The only

difference is that parDist primitive takes two additional integers representing

the minimum and the maximum boundaries and a pointer to an expression in the

graph (Closure).

5.6 Architecture-Aware Constructs Evaluation

We first investigate whether the new architecture-aware constructs can deliver

improved performance on hierarchical architectures. We do so by considering

common paradigms data parallelism, divide-and-conquer, and nested parallelism.

All measurements that have been performed in this chapter and the next chap-

ter of this thesis use the machines located at Heriot-Watt University (MACS).

lxpara3 is an eight-core 8GB RAM, HP XW6600 workstation, comprising two

Intel 5410 quad-core processors each running at 2.33GHz. The 32 Beowulf cluster

nodes each comprise eight Intel 5506 cores running at 2.13GHz and 6GB RAM.

All machines run CentOS 5.5 Linux. The Beowulf nodes are connected via a

Baystack 5510-48T switch with 48 10/100/1000 ports. Both Beowulf and lx-

para3 are connected to the network with Extreme Networks Summit 400-48t, 48

161

Chapter 5. Architecture-Aware Constructs

parFibDist :: Int -> Int -> Int

parFibDist 0 t = 1

parFibDist 1 t = 1

parFibDist n t

| n <= t = nFib n

| otherwise = parDist min max x (y ‘pseq‘ (x + y + 1))

where

x = parFibDist (n-1) t

y = parFibDist (n-2) t

(min, max) = findLevel n

nFib n = nFib (n-1) + nFib (n-2) + 1

findLevel ::(Ord a,Num a)=> a -> (a,a)

findLevel x

| (x <= 46) =(0,0)

| (x == 47) =(1,1)

| (x == 48) =(2,2)

| otherwise =(3,3)

Figure 45: parFibDist Program

10/100/1000BASE-T, 4 mini-GBIC, Extremeware.

The behaviour of the new architecture-aware constructs is investigated with

common parallel programming paradigms. A divide-and-conquer paradigm is a

parallelism that generates more parallelism from sub-workers. A data parallel

paradigm is a parallelism which generates by a master process with varying com-

putation size. A combined paradigm parallelism is a mixed source of parallelism,

where the inner source of parallel should be kept together.

5.6.1 Divide-and-Conquer Parallelism

To investigate the new architecture-aware constructs for divide-and-conquer par-

allelism, we use the parFibDist version of the parallel nfib function shown in

Figure 45. Here, n is the Fibonacci number, and t is the threshold value below

162

Chapter 5. Architecture-Aware Constructs

Block Size par parBound parAtLeast parDist (n-1) n parDist (n-2) n parExact

Very Small 0 – maxLevel 0 – 0 0 – maxLevel 0 – 0 0 – 0 0 – 0
Small 0 – maxLevel 0 – 1 1 – maxLevel 0 – 1 0 – 1 1 – 1

Medium 0 – maxLevel 0 – 2 2 – maxLevel 1 – 2 0 – 2 2 – 2
Large 0 – maxLevel 0 – 3 3 – maxLevel 2 – 3 1 – 3 3 – 3

Table 21: findLevel Configuration

which we use sequential computation (nFib). Above the threshold, x is sparked

with a parDist parametrised by levels computed by findLevel.

findLevel is a programming abstraction that is used, with the parameters

specified in Table 21, for several experiments in this section. Table 21 shows

possible configurations of the findLevel function, ordered from left to right with

increasingly specific spark placement.

To obtain reasonable performance, a key issue is to determine the thresh-

old thread granularity values in the findLevel function. One approach, and

that used for these benchmarks, is to determine the threshold values by experi-

mentation. An automatic runtime system level solution is possible if the thread

granularity of each spark can be identified, for example by program or resource

analysis. Then suitable thread granularity thresholds can be determined for each

level in a given architecture, for example using a benchmarking suite.

Figure 46 compares the performance of par and the architecture-aware con-

structs on the architecture specified in Section 5.1 configured with 1, 2, 4, 8 or

16 cores. The cores are distributed equally among machines. Throughout the

results section, each data point, unless otherwise stated, is the median of 3 exe-

cutions. The results show that the architecture-aware constructs perform better

163

Chapter 5. Architecture-Aware Constructs

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 16

 S
pe

ed
up

No-of-Pes

parfibDist Speedups Comparison

parExact
parAtLeast

parDist n-2 n
parDist n-1 n
parBounded

par

Figure 46: parFibDist Speedup

than par in almost all cases. A rare exception occurs on 16 cores where the

parBound speedup is 3.24, and par is 4.8, and occurs as all constructs are subject

to scheduling accidents. However, this degree of influence depends on the speci-

ficity of the spark: the more specific the spark is, the less influence scheduling

accidents have. Interestingly, all constructs scale as the number of cores increases,

except parBound which performs slightly worse on 16 cores. The best speedup is

achieved by parExact: a speedup of 5.62 on 16 cores.

Moreover, the constructs give almost identical performance on a single core

and very similar performance on small architectures up to 4-cores. This pattern

is repeated for all programs in the following sections.

164

Chapter 5. Architecture-Aware Constructs

Program Smallest Spark Largest Spark Number of
Name Runtime (s) Runtime (s) Sparks

parMapList 0.14 40.47 277
parMapIntervals 0.19 55.00 276

Allparam 0.43 2.90 3003

Table 22: Task Size and Irregularity

5.6.2 Data Parallelism

To investigate the new architecture-aware constructs for data parallelism, we use

two programs. The intention for both programs is to generate data parallel tasks

of random thread granularity. Both programs compute some function on every

element of a list. The first program, parMapList in Figure 47, splits the list into

sublists of random sizes, and the second program, parMapIntervals in Figure 48,

splits the interval into subintervals of random sizes, and the variation in task sizes

for the programs is shown in Table 22. The Allparam program will be presented

in Section 5.6.3. The difference between the programs is that parMapList com-

municates the list, where parMapIntervals communicates only the start and end

points of the interval. Both programs compute the Euler sumTotient on each

list interval or sublist. The complete code for the parMapList program can be

found in Appendix A.1.

For both programs the architecture-aware constructs distribute the work de-

pending on the size of the sublist or interval: small intervals are executed lo-

cally and large intervals are sent to be executed on a remote core. We use the

parMapLevel skeleton in both programs to achieve parallelism. A parMapLevel

165

Chapter 5. Architecture-Aware Constructs

-- Top level functions of parMapList program

dataListtop :: ([Int] -> a) -> Int -> Int -> Int -> a

dataListtop f lower upper t =

let

randomList = mkRandom t

list = splitWithSize randomList [lower..upper]

in

sum (parMapLevel f findLevel list)

sumTotient :: [Int] -> Int

sumTotient xs = sum (map euler xs)

parMapLevel :: (Ord a ,Num a)=>(a -> b)->(a -> (Int,Int))-> [a] -> [b]

parMapLevel f fl [] = []

parMapLevel f fl (x:xs)= parDist min max fx (fxs ‘pseq‘(fx : fxs))

where

fx = f x

fxs = parMapLevel f xs

(min,max) = fl x

splitWithSize::[Int] -> [Int]-> [[Int]]

splitWithSize _ [] = []

splitWithSize (b:bs) xs = xss

where

xss = (take b xs):splitWithSize bs (drop b xs)

Figure 47: parMapList Program

166

Chapter 5. Architecture-Aware Constructs

-- Top level function of parMapintervals program

dataIntervaltop f lower upper seed =

let

randomList = mkRandom seed

intervalList = splitIntervals (lower,upper) randomlist

in

sum (parMapLevel f findLevel intervalList)

splitIntervals ::(Ord a,Num a)=> (a,a) -> [a] -> [(a,a)]

splitIntervals (lower,upper) (b:bs)

| ((upper-b-1) <= lower) =[(lower,upper)]

| otherwise = ((upper-b),upper):splitIntervals

(lower,(upper-b-1)) bs

mkRandom mx =

let

g = mkStdGen 1601

cs :: [Int]

cs = randoms g

randomList = map (‘mod‘ mx) $ cs

in

randomList

Figure 48: parMapIntervals Program

167

Chapter 5. Architecture-Aware Constructs

sparks the mapped function using parDist constructs for each list element. Fig-

ure 47 includes the definition of the parMapLevel skeleton. We will discuss the

skeleton in more detail later in section 6.3.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

0 1 2 4 8 16 32 64

 S
pe

ed
up

No-of-Pes

parExact
parAtLeast

parDist n-2 n
parDist n-1 n
parBounded

par

Figure 49: parMapList Speedups (64 Cores)

Both programs have similar performance on 64 cores. Figure 49 compares the

absolute speedup of par and architecture-aware constructs for both programs, on

up to 64 cores. We make the following observations:

• All architecture-aware constructs perform better than par, sometimes by a

factor of 2, e.g. on 64 cores.

168

Chapter 5. Architecture-Aware Constructs

• All of the architecture-aware constructs scale: as the number of processors

increase, the speedup increases. par, however does not scale beyond 16

cores. The reason is that par does not provide any restriction on thread

placement. Thus, a small thread can be executed remotely which does not

cover the communication cost.

• The maximum speedup of 25.1 is obtained from parDist (n-2) n.

• While parExact gives good performance, it is vulnerable to adverse schedul-

ing because it identifies a specific level. Less prescriptive constructs like

parDist (n-2) n can give better performance on large architectures, e.g.

parMapIntervals on 32 and 64 cores.

Figures 50 and 51 contain the corresponding runtime curves for both programs.

The efficiency of the constructs and par are compared by plotting its runtime for

increasing numbers of PEs. The x-axis enumerates the number of participating

PEs, and the y-axis gives the resulting runtimes in seconds. Note that the x-axis

starts from 8 PEs, the number of cores in each multicore machine. These results

show that par is slower than the architecture-aware constructs by a factor of 2.27

(674.14/296.53) for parMapIntervals and by a factor of 1.56 (577.54/368.67) for

parMapList on 8 cores.

Figures 52 and 53 show the absolute speedups of parMapList and parMapIntervals

169

Chapter 5. Architecture-Aware Constructs

 0

 100

 200

 300

 400

 500

 600

8 16 32 64 96 128 192 224

R
un

tim
e

(s
)

No-of-Pes

parExact
parAtLeast

parDist n-2 n
parDist n-1 n
parBounded

par

Figure 50: parMapList Runtimes

 0

 100

 200

 300

 400

 500

 600

 700

8 16 32 64 96 128 192 224

R
un

tim
e

(s
)

No-of-Pes

parExact
parAtLeast

parDist n-2 n
parDist n-1 n
parBounded

par

Figure 51: parMapIntervals Runtimes

170

Chapter 5. Architecture-Aware Constructs

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

8 16 32 64 96 128 192 224

 S
pe

ed
up

No-of-Pes

parExact
parAtLeast

parDist n-2 n
parDist n-1 n
parBounded

par

Figure 52: parMapList Speedups (224 Cores)

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

8 16 32 64 96 128 192 224

 S
pe

ed
up

No-of-Pes

par
parExact

parDist n-1 n
parDist n-2 n

parAtLeast
parBounded

Figure 53: parMapIntervals Speedups (224 Cores)

171

Chapter 5. Architecture-Aware Constructs

programs measured on 8, 16, 32, 64,..., 224 cores. The absolute speedups are cal-

culated with respect to the optimised sequential runtime (2252.60s) for the larger

problem size of 140000. We make the following observations:

• As before, the architecture-aware constructs consistently perform better

than par: by a factor of 2.5 (454.4/175.9) in the worst case for 224 cores,

and 10.2 (454.4/44.7) in the best case.

• The parExact architecture-aware construct scales: as the number of pro-

cessors increases, the speedup increases. In general, the architecture-aware

constructs consistently perform better than par: by a factor of between 2.5

and 10.2 on 224 cores.

• The par has poorer performance because the par program generates sig-

nificantly higher number of messages than the other construct programs.

E.g. on 224 cores the par exchanges 13360 messages, where the parExact

program exchanges just 2292 messages.

• While parExact gives good performance, it is vulnerable to adverse schedul-

ing because it identifies a specific level. Less prescriptive constructs like

parDist (n-2) n can give better performance on large architectures, e.g.

parMapIntervals on 32 and 64 cores.

• All of the architecture-aware constructs scale better than par. par, however,

does not scale beyond 32 cores. The reason is that par does not provide

172

Chapter 5. Architecture-Aware Constructs

any restriction on thread placement. Thus small thread can be executed

remotely, which does not cover the communication cost.

• In both graphs parExact scales more smoothly, but parDist (n-1) n ul-

timately delivers the best performance.

• In absolute terms, parMapIntervals has 20% better performance than

parMapList, as it communicates only a pair of numbers, rather than a

list segment.

mapparfib n t xs = parMapLevel (parFibOneLevel t) findLevel randomList

where

randomList = take n (filter (>35) xs)

parFibOneLevel ::Int-> Int -> Int

parFibOneLevel t n

| n < t = nfib n

| otherwise = parBound 1 x (y ‘pseq‘ (x+y+1))

where

x = parFibOneLevel t (n-1)

y = parFibOneLevel t (n-2)

Figure 54: Allparam Program

5.6.3 Nested Parallelism

To investigate the new architecture-aware constructs for nested parallelism we use

the Allparam program, in Figure 54, with top level data parallelism and nested

divide-and-conquer parallelism. More specifically, it maps the parallel divide-

and-conquer Fibonacci function parFibOneLevel over a list of random integers,

in parallel, using parMapLevel.

173

Chapter 5. Architecture-Aware Constructs

 0

 100

 200

 300

 400

 500

 600

8 16 32 64 96 128 192 224

 R
un

tim
e

(s
)

No-of-Pes

Runtime Comparison for Allparam

parExact
parAtLeast

parDist n-2 n
parDist n-1 n
parBounded

par

Figure 55: Allparam Runtimes

 5

 10

 15

 20

 25

 30

8 16 32 64 96 128 192 224

 S
pe

ed
up

No-of-Pes

Speedups Comparison for Allparam

parExact
parAtLeast

parDist n-2 n
parDist n-1 n
parBounded

par

Figure 56: Allparam Speedups(224 Cores)

174

Chapter 5. Architecture-Aware Constructs

Figure 55 illustrates the runtime curves obtained with the constructs. The

efficiency of the constructs and par are compared by plotting their runtimes for

increasingly large numbers of PEs. These results show that par is slightly slower

than architecture constructs, by a factor of 1.1 (484.46/452.88) on 8 cores. All

runtime curves decrease as the number of PEs increases up to 128 cores.

Figure 56 shows the absolute speedups obtained with the constructs. The

results are similar to those observed with the divide and conquer and data parallel

programs: the architecture-aware constructs consistently outperform par, with

an exception at 224 cores. parExact and parDist (n-1) n deliver the best

performance. None of the constructs scales beyond 128 cores, and we attribute

this to the task sizes being too small for large architectures, as illustrated by the

maximum task size in Table 22.

5.6.4 Performance Variability

Finally, we investigate the performance variability induced by each construct. The

variability reflects how susceptible the work distribution policy of each construct

is to scheduling accidents. Table 23 shows the wide variation in runtimes for

11 executions of the three programs with the different constructs. We make the

following observation, taking parMapIntervals as an example for discussion:

• The architecture-aware constructs have far less variation than par, with a

range of 121s and a standard deviation (sd.) of 33s.

175

Chapter 5. Architecture-Aware Constructs

par parBound parAtLeast parDist (n-1) n parDist (n-2) n parExact

p
a
r
M
a
p
I
n
t
e
r
v
a
l
s

Median 98.2 32.7 42.4 23.4 26.9 29.9

Mean 89.6 35.7 45.7 25.4 26.9 30.3

Max 149.7 58.4 79.1 35.3 33.3 38.6

Min 29.1 24.2 24.9 21.6 23.1 24.4

Range 120.6 34.2 54.2 13.7 10.2 14.2

Stdev 33.0 10.2 15.6 4.3 3.2 4.8

p
a
r
M
a
p
L
i
s
t Median 57.0 23.1 30.2 22.9 23.6 22.4

Mean 54.3 24.5 31.0 22.9 24.1 22.7

Max 62.6 37.1 38.5 25.3 31.8 29.6

Min 41.4 21.1 22.4 19.5 19.8 19.0

Range 21.2 16.0 16.0 5.8 12.1 10.6

Stdev 6.3 4.3 4.6 1.4 3.5 2.5

A
l
l
p
a
r
a
m

Median 27.7 23.9 21.5 23.4 23.5 24.2

Mean 27.8 23.6 22.2 22.9 23.5 23.8

Max 32.1 27.0 26.2 25.7 25.2 26.6

Min 22.9 20.0 19.2 20.0 20.8 21.0

Range 9.2 7.1 7.0 5.7 4.4 5.6

Stdev 2.8 2.3 2.3 1.9 1.3 1.7

Table 23: Variability of benchmark runtimes (11 executions) on 64 cores.

• parDist (n-1) n and parDist (n-2) n have the least variation (range

13.7s and 10.2s, sd.s 4.3s and 3.2s). It seems that having multiple levels

available enables the runtime system to ameliorate scheduling accidents.

• Of the architecture-aware constructs, parAtLeast has the worst perfor-

mance.

5.6.5 Discussion

The results obtained for the prospective architecture-aware constructs are con-

sistent for all three classes of programs investigated. Every architecture-aware

construct consistently delivers better speedup and scalability than par, with dra-

matically reduced variability. The parExact and parDist (n-1) n constructs

176

Chapter 5. Architecture-Aware Constructs

deliver the best performance, and for these programs with simple coordination,

parExact scales more smoothly. parDist is clearly the most powerful construct,

but requires the programmer to specify the most information, i.e. both an upper

and a lower bound. It is therefore best to be used internally or only by expert

parallel programmers.

In summary, we recommend using both the parDist and the parExact con-

structs: parDist for expressive power and parExact for simplicity and perfor-

mance.

5.7 Applying constructs in other Languages

The suggested architecture-aware constructs could be implemented in any lan-

guage with task creation. For example, the Erlang distribution model permits

explicit process placement [61]. A process in Erlang is spawned on a named node.

Such a static, directive mechanism is hard for programmers to manage for any-

thing other than small scale or very regular process networks. We believe there

is a possibility to build an abstraction layer that maintains a tree of node groups,

loosely modeling the underlying architecture. This tree contains a number of lev-

els: Level 0 for this Core, Level 1 for Cores in SMP, Level 2 for Cores in cluster,

Level 3 for Cores in other clusters, ..., etc. An explicit spawn function can be

defined to place a process in a group of PEs. This group of PEs may appear in

a multi-cluster or group of multi-clusters.

177

Chapter 5. Architecture-Aware Constructs

RemoteProcess = spawnAt(GroupId,...)

The process placement can be directly controlled with a new mechanism,

and more explicit portable distribution can be obtained by semi-automatically

controlling of two locality aspects:

• Affinity specifies how close processes must be located, e.g. two rapidly

communicating processes may need to be located in the node group on the

same SMP. The language primitive is a bounded spawn that specifies the

maximum number of levels in the node group hierarchy in which a spawn

may occur in. For example:

SpawnBounded(0,...) Process must be placed on

the same core

SpawnBounded(1,...) Process must be placed on

the same SMP node

SpawnBounded(2,...) Process must be placed on

the same cluster

• Distribution specifies how far the process must be placed from the spawning

process. For example, two large computations, e.g. simulation components

or test sets, may need to be placed on separate clusters. The language

primitive is a bounded spawn that specifies the maximum number of levels

in the node group hierarchy that a spawn may occur in. For example:

SpawnAtLeast(1,...) Process must be placed on

some other core

178

Chapter 5. Architecture-Aware Constructs

SpawnAtLeast(2,...) Process must be placed on

some other SMP

SpawnAtLeast(3,...) Process must be placed on

some other cluster

Of course these primitives can be generalised as a primitive that controls maxi-

mum and minimum simultaneously, e.g. SpawnDist(0,3,...).

A key point of the mechanisms is that the mapping between the node group

hierarchy is abstract, e.g. two clusters with a fast interconnect can be treated

as a single cluster. The distance measures are abstract, and could be computed.

While the primitives restrict the set of nodes where a process may be placed, they

do not identify them specifically. The advantages of this technique are preserving

performance portability by exposing a virtual, rather than physical architecture

and minimising prescription.

5.8 Summary

In this chapter, we highlighted the trend towards hierarchical architecture as

the dominating low-level architecture for high performance computing, which has

become the usual form for building clusters of computers. We present an example

of a Beowulf cluster built from multicore nodes and how this cluster may connect

to other clusters within the same organisation or other organisations (Section 5.1).

We have presented a selection of relevant proposed approaches. We believe

179

Chapter 5. Architecture-Aware Constructs

that the concept of architecture awareness is essential for hierarchical architec-

tures. We also outlined how the approach proposed in this thesis can be imple-

mented in other languages that include task creation (Sections 5.2 and 5.7).

In response to the architecture trend towards hierarchical communication

topologies, and due to rapid evolution of these topologies, we have proposed

an architecture-aware programming model for parallel Haskell. We started by

defining four new architecture-aware constructs for GpH. The constructs aim to

control data locality and work distribution, guided by information about task size.

They do so by constraining communication abstractly and with as little specific

prescription as possible; that is, the constructs identify layers of the communica-

tion hierarchy, and allow the implementation to dynamically control placement

within the layer (Section 5.3).

We have presented a simple Haskell definition of the sets of PEs that each con-

struct identifies when executed on a PE of participating PEs. We have defined a

set of functions to demonstrate the constructs’ semantics. A distance function

is used to calculate the distance between two given PEs in the architecture hierar-

chy. A setparDist function specifies a set of PEs on which task may be executed

in the architecture hierarchy, for given boundary. The setparDist function is

used to define the setparBound and setparAtLeast functions (Section 5.4).

In Section 5.5, we have presented the implementation of the suggested con-

structs. We have described the improvement that has been made on the GUM

runtime system. The amendments include the storage of granularity information

180

Chapter 5. Architecture-Aware Constructs

with each spark, the storage of distance information between PEs and the exten-

sion of the fishing mechanism. We also describe the implementation of the basic

parDist primitive on the compiler.

We have evaluated the constructs using simple data parallel, divide-and-

conquer, and mixed-source parallel programs, each with irregular thread granu-

larity. The evaluation shows that every architecture-aware construct consistently

delivers better speedups, better scalability on up to 224 cores and far less vari-

ation in execution time than the existing par primitive. Because par does not

provide any restriction on thread placement, small threads can be executed re-

motely, thus leading to poorer performance. At times, speedup is improved by an

order of magnitude. Of the proposed constructs, parExact and parDist (n-1)

n deliver the best performance with good task size information, parExact scales

most smoothly, and parDist is the most expressive construct. We recommend

parDist for expressive power and parExact for simplicity and performance (Sec-

tion 5.6).

181

Chapter 6

Towards Architecture Aware

Programming Models

This chapter presents some high-level abstractions over the new architecture-

aware constructs. We develop some architecture-aware evaluation strategies (Sec-

tion 6.2) and skeletons (Section 6.3).

A key issue in the programming model is deciding on what level in a hierar-

chical architecture a computation of a given size should be executed? We discuss

this issue and seek abstractions over the architecture topology (Section 6.1).

We illustrate the performance of the architecture-aware strategies by ex-

amining the behaviour of two programs representative of two common parallel

paradigms: a data parallel sumEulerDist program, and a divide-and-conquer

queen placement program (Section 6.4). We report the performance results of

182

Chapter 6. Towards Architecture Aware Programming Models

architecture-aware skeletons (Section 6.5). We demonstrate the effect of architecture-

aware programming on memory consumption and generated parallelism (Sec-

tion 6.6). The most significant improvements are due to preventing small tasks

from being executed far from their originator and the dramatic reduction of com-

munication overheads.

6.1 Architecture-Aware Decisions

To achieve reasonable performance with modest programming effort, four issues

must be addressed in the proposed architecture-aware programming model. The

first two are identification of the architecture hierarchy levels and the thread gran-

ularity of each task. The third is providing an effective mechanism for mapping

threads onto levels. Finally abstractions must be provided that enable program-

mers to exploit the architecture while preserving performance as far as possible.

The parallel computational resources are increasingly hierarchical. They may

be imbalanced in communication costs, processor speed, and memory access,

as previously discussed in Section 2.1.4 and Section 5.1. The abstraction must

capture the essential topological properties of the hierarchy as a tree, possibly

unbalanced. The leaves of the tree represent PEs which are grouped into levels,

depending on the expected latency of communications between them. For the

benchmarks in this thesis, we have adapted the runtime system to automatically

generate a virtual architecture tree, reflecting the underlying architecture and

183

Chapter 6. Towards Architecture Aware Programming Models

store the tree in each participating PE, to be used for threads mapping. To gen-

erate the virtual tree, the runtime enviroment generates its own unique number

for each PE to distinguish between PEs, and collects the CPU speed and network

IP address. Then the PEs are grouped in a number of levels according to the

distance to each PE according to their IP address. The levels constructed are:

Level 0 represents the current PEs, Level 1 represents all PEs in the same node,

Level 2 represents all PEs in other nodes of the same cluster, Level 3 represents

all PEs in other clusters.

Thread granularity [108] is one of the most relevant parameters for parallel

programs, since it determines the amount of real work in the parallel task. Too

fine a granularity leads to high communication overheads, while too coarse gran-

ularity leads to imbalanced loads. The aim is to determine the right granularity

for parallel tasks to achieve the best performance.

In a hierarchical architecture a key issue is to determine at what level a task

of a given granularity should execute. For some programs, like our benchmarks,

this may be readily apparent. However, an automatic runtime system level so-

lution is possible if the thread granularity of each spark can be identified, for

example by program or resource analysis. Teresco et. al. present a variety of

architecture-aware approaches to parallel computation some of which automat-

ically use resource information [117]. The task granularity for the benchmarks

used in this thesis is determined by experimentation, based on a threshold value.

184

Chapter 6. Towards Architecture Aware Programming Models

We support architecture-aware programming by providing high level abstrac-

tion functions. Figure 57 shows the definition of a findLevel function based on

input value which is used in the programs measured in Section 5.6.1. Figure 58

shows an alternative method based on the depth of recursion. The depth of re-

cursion is the number of recursive calls within a function. The second alternative

is a relative choice because it is independent of problem description. We use the

depth of recursion alternative in all programs measured in Section 6.5. Here x

findLevel::(Ord a,Num a)=>a->(a,a)

findLevel x

| (x <= 46) =(0,0)

| (x == 47) =(1,1)

| (x == 48) =(2,2)

| otherwise =(3,3)

Figure 57: findLevel Based on Input
Argument

findLevel::(Ord a,Num a)=>a->(a,a)

findLevel x

| (x < 8) = (3,3)

| (x >= 8 && x < 10) = (2,2)

| (x >= 10 && x < 12) = (1,1

| otherwise = (0,0)

Figure 58: findLevel Based on Depth of Re-
cursive Call

represents the depth of recursion, i.e. the number of calls to the worker function.

The constant numbers in Figures 57, 58 are obtained by sequential profiling of

the programs and then manually coding them into the programs. This is useful,

for example, for divide-and-conquer algorithms, which start with large problems

and breaks them into smaller problems with each recursive call. We can therefore

allocate tasks generated from different recursive calls among different architecture

hierarchy levels. The measurements in Section 5.6.1 show similar performance for

both alternatives.

185

Chapter 6. Towards Architecture Aware Programming Models

6.2 Architecture Aware Evaluation Strategies

This section illustrates how architecture awareness can be expressed in the eval-

uation strategies. The basic architecture awareness strategy is rparDist. It is a

replacement of the rpar strategy.

rparDist :: Int -> Int -> Strategy a

rparDist min max x = parDist min max x (return x)

The rparDist strategy is used for creating parallelism; it indicates that its

argument could be evaluated in parallel within a lower bound and an upper bound

of hierarchy. The rparDist strategy is used for the development of all strategies

and skeletons presented in this chapter.

We have discussed different versions of parList in Chapter 4. All parList

versions described previously traverse the list, sparking list elements. The parList

function in Figure 59 returns a new list containing the strategy applied to each

element of the list.

We define a parDistList strategy to include architecture awareness in Fig-

ure 60, which takes a boundary directly from the programmer and sparks tasks

accordingly. The parDistList is used in the Queen program measured in Sec-

tion 6.4.2. Figure 62 shows only the key top-level function where the parallel

coordination is inserted.

Another architecture-aware strategy similar to the parList strategy is the

186

Chapter 6. Towards Architecture Aware Programming Models

parList :: Strategy a ->

Strategy [a]

parList start [] = []

parList start (x:xs) = do

x’ <- rpar (x ‘using‘ strat)

xs’ <- parList strat xs

return(x’:xs’)

Figure 59: Original parList

parDistList :: Int -> Int ->

Strategy a ->

Strategy [a]

parDistList min max strat (x:xs) = do

let

x’<-rparDist min max (x ‘using‘ strat)

xs’<-parDistList min max strat xs

return (x’:xs’)

Figure 60: Architecture-aware
parDistList Strategy

parListLevel shown in Figure 61. The parListLevel strategy takes an addi-

tional list, containing the level of each element of the input list. This could be gen-

rated by mapping the findLevel function over the input list. The parListLevel

strategy is used in the sumEulerDist program measured in Section 6.4.1. The

complete code for the program is listed in Appendix C.1 .

parListLevel :: [Int] -> Strategy a -> Strategy [a]

parListLevel ns strat [] =return []

parListLevel (n:ns) strat (x:xs) = do

let

x’ <- rparDist n n (x ‘using‘ strat)

xs’<- parListLevel ns strat xs

return (x’:xs’)

Figure 61: Architecture-aware parListLevel Strategy

6.2.1 Using the parDistList Function

We have used the parDistList function in the Queen program, which places

queens on a NxN chess board so that they do not attack each other. Figure 62

shows the key top-level function where the parallel coordination is inserted using

187

Chapter 6. Towards Architecture Aware Programming Models

the rparDist and parDistList strategies.

pargen :: Int -> [Int] -> [[Int]]

pargen n b

| n >= threshold = iterate gen [b] !! (nq -n)

| otherwise = concat bs

where

bs = do

let

level = findLevel (nq-n)

xs <- rparDist level level ((map (pargen (n+1))

(gen [b]))‘using‘ parDistList 0 1 rdeepseq)

return(xs)

findLevel n

| (n < 8) = 0

| ((n >=8) && (n < 10)) = 1

| ((n >=10) && (n < 13)) = 2

|otherwise =3

Figure 62: Queen Top Level Function

The rparDist strategy is to generate sparks for a certain level. The parDistList

strategy is to localise the generated parallelism to be executed on the same multi-

core machine. The performance of Queen using parDistList strategy is presented

Section 6.4.2.

6.2.2 Using the parListLevel Function

To investigate the performance of parListLevel we use the sumEulerDist pro-

gram. Figure 63 shows the key function of the sumEulerDist program, using

the parList and parListLevel strategies. The program computes the sum of

the Euler’s totient function applied to each integer up to a given bound. The

188

Chapter 6. Towards Architecture Aware Programming Models

sumEulerDist program splits the input list into sublists of fixed size and then

computes the sumTotient on each sublist, in parallel. The complete code for

the sumEulerDist can be found in Appendix C.1. The performance results for

program are presented in Section 6.4.1.

-- parList strategy version

fun lower upper block = sum((map sumTotient subList)

‘using‘ parList rdeepseq)

where

subList = splitAtN block [lower ..upper]

-- parListLevel strategy version

fun lower upper block = sum((map sumTotient subList)

‘using‘ parListLevel cosList rdeepseq)

where

subList = splitAtN block [lower ..upper]

cosList= map findLevel subList

Figure 63: Architecture-aware sumEulerDist

6.3 Architecture Aware Skeletons

Algorithmic skeletons define general patterns of computation which are use-

ful for exposing the computational structure of a program [32]. Skeletons are

high level abstractions that support widely used parallel programming patterns,

where parallelism details are encapsulated into these abstractions [13]. We have

adapted some skeletons to make use of the architecture-aware constructs. The

parMapLevel skeleton is used in all programs measured in Section 5.6.2. Further

189

Chapter 6. Towards Architecture Aware Programming Models

performance results can be found in Section 6.4.1.2. The remaining skeletons are

used for measurement in Section 6.5.

6.3.1 An Architecture Aware Parallel Map Skeleton

Figure 64 presents both the sequential map and a simple parallel map skeleton.

-- Sequential version

map :: (a -> b) -> [a] -> [b]

map f (x:xs) = f x : map f xs

-- Parallel version

parMap :: (a -> b) -> [a] -> [b]

parMap f (x:xs) = fx ‘par‘ fxs

‘pseq‘ res

where

fx = f x

fxs = parMap f xs

res = fx:fxs

Figure 64: Sequential Map and Par-
allel parMap Skeletons

parMapLevel :: (Ord a ,Num a)=>

(a -> b)->

(a -> (Int,Int))->

[a] -> [b]

parMapLevel f fl (x:xs)= res

where

fx = f x

fxs = parMapLevel f fl xs

(min,max) = fl x

res = parDist min max fx (fxs

‘pseq‘(fx:fxs))

Figure 65: parMapLevel Skeleton

The parMap function could be modified to capture the architecture topology

by replacing the par with the architecture-aware construct parDist. We call the

new architecture abstraction function parMapLevel.

The function parMapLevel takes three arguments: f is the function that will

be applied to each element in the list, fl is the findLevel architecture abstraction

function, and a list. The performance of a parMapLevel is illustrated in Section

5.6.2. Figures 66 and 67 present both the original and architecture-aware parMap

skeletons.

190

Chapter 6. Towards Architecture Aware Programming Models

parMap f (x:xs) = do

b <- rpar (f x)

bs <- parMap f xs

return(b:bs)

Figure 66: Monadic parMap Skeleton

parMapLevel fl f (x:xs) = do

let

(mn,mx) = fl x

b <- rparDist mn mx (f x)

bs <- parMapLevel fl f xs

return(b:bs)

Figure 67: Monadic parMapLevel Skeleton

6.3.2 A Divide-and-Conquer(DC) Skeleton

The general divide-and-conquer skeleton can be modified to capture the architec-

ture topology by just one additional parameter. Figure 68 shows a simple par-

allel divide-and-conquer skeleton using the original evaluation strategies model

presented in chapter 4.

divCon :: (a -> Bool)->

(a -> b) ->

(a -> [a]) ->

([b] -> b) ->

a -> b

divCon t s d c x

| t x = s x

| otherwise = runEval $(do

let

(l,r) = (d x)

x’ <- (rpar ‘dot‘ rdeepseq)

(divCon t s d c l)

y’ <- (rpar ‘dot‘ rdeepseq)

(divCon t s d c l)

return(c x’ y’)

Figure 68: General Parallel Divide-
and-Conquer Skeleton

divCon :: (a -> Bool)->

(a -> Int) ->

(a -> b) ->

(a -> [a]) ->

([b] -> b) ->

a ->

a -> b

divCon t f s d c depth x

| t x = s x

| otherwise = runEval $(do

let

(l,r) = (d x)

mx = f r

x’<-((rparDist mx mx) ‘dot‘ rdeepseq)

(divCon t f s d c (depth-1) r)

y’<-((rparDist mx mx) ‘dot‘ rdeepseq)

(divCon t f s d c (depth-1) l)

return(c x’ y’)

Figure 69: Architecture Aware Divide and
Conquer Skeleton

191

Chapter 6. Towards Architecture Aware Programming Models

The parallel skeleton can be adapted to make use of architecture-aware con-

structs, as in Figure 69. The skeleton is parameterised with the typical control

functions for divide-and-conquer which decide if a subproblem is trivial (t), how to

solve a trivial subproblem (s), how to divide a non-trivial problem (d) and how

to combine results of subproblems (c). Additionally, we provide a findLevel

function along with depth. findLevel is a new parameter to exploit the com-

munication architecture. The depth is to limit the amount of parallelism, by

evaluating children below the depth sequentially. The performance of the skele-

tons is discussed in Section 6.5 and Section 6.6.

6.4 Evaluation of Architecture Aware Strate-

gies

This section reports a performance evaluation of the architecture-aware strategies

by reporting distributed memory results for the sumEulerDist program (Sec-

tion 6.4.1) and shared and distributed memory results for the Queen program

(Section 6.4.2). We investigate the performance of the abstractions on the tar-

get architecture described in Section 5.6. The runtime reported is the median of

three executions to ameliorate variability of parallel runtimes caused by factors

like the operating system (OS) and other users.

192

Chapter 6. Towards Architecture Aware Programming Models

 0

 500

 1000

 1500

 2000

 2500

1 2 4 8 10 16 32 64 96 128

192

224

R
un

tim
e

(s
)

No-of-Processors

y=x

Architecture aware runtime
Original parList runtime

Sequential runtime

Figure 70: Arch. Aware vs Orig. Strategies Runtime Comparison
(sumEulerDist)

6.4.1 SumEulerDist

The sumEulerDist program was measured on 1, 2, 4, 8, 16, 32, 64, ..., 224 cores

of the architecture described in Section 5.1. The absolute speedup is based on the

optimised sequential runtime (2242.59s) for problem size 140000. We evaluated

two architecture-aware versions the parListLevel strategy and Deep strategy.

6.4.1.1 parListLevel Strategy Results

Figure 70 shows the runtime curves of the parList and the parListLevel strate-

gies. Both strategies produce the same number of sparks. Therefore, we do not

193

Chapter 6. Towards Architecture Aware Programming Models

expect any sequential overhead difference on a single core. Both original and

architecture-aware strategies produce similar sequential overhead between 13.12%

and 7.54% (Table 24). We believe the small difference in sequential overhead is

a result of the system load during the program execution. If the underlying ma-

chines are heavily loaded by other processes, the system overhead will increase,

as a result of the increase in OS processes scheduling time.

 1000

 10000

 100000

1 2 4 8 10 16 32 64 96 128

192

224

N
um

be
r

of
 m

es
sa

ge
s

No-of-Processors

Architecture aware messages
Original parList messages

Figure 71: Arch. Aware vs Orig. Strategies: messages Comparison
(sumEulerDist)

The runtime curves for all strategies are very similar on a small number of

cores, and scale as cores are added. However, the parListLevel strategy scales

better than the parList beyond 8 cores. This is due to the difference in the

194

Chapter 6. Towards Architecture Aware Programming Models

amount of messages. Figure 71 shows that the parList program exchanges more

messages than the parListLevel program. This pattern is repeated for all num-

bers of cores from 2 through 224. The interesting observation is that the difference

in the number of messages increases as cores are added.

sumEulerDist (Sequential Runtime 2242.72s)
No Orig. parList Arch. Aware parListLevel ∆ Time ∆ Msgs
PEs Time (s) Spd Msgs Time (s) Spd Msgs (%) (%)

1 2536.93 0.88 - 2411.82 0.93 - -4.93 -
2 1450.99 1.55 2829 1445.58 1.55 2483 -0.37 -12.23
4 758.6 2.96 5756 756.56 2.96 3105 -0.27 -46.06
8 376.58 5.96 14075 369.28 6.07 5725 -1.94 -59.33
16 376.58 6.41 65728 182.16 12.31 3558 -51.63 -94.59
32 220.26 10.18 70495 96.12 23.33 9325 -56.36 -86.77
64 229.8 9.76 80257 44.16 50.78 5950 -80.78 -92.59
96 482.17 4.65 107000 29.7 75.51 8161 -93.84 -92.37
128 258.33 8.68 44249 23.61 94.98 8669 -90.86 -80.41
192 181.25 12.37 63134 19.72 113.72 11398 -89.12 -81.95
224 181.71 12.34 100230 17.55 127.78 12876 -90.34 -87.15

Table 24: Comparison of parList and parListLevel (sumEulerDist)

Table 24 analyses in detail the runtimes, speedups and number of messages

of each strategy, running on 224 cores. Columns 2 and 5 of the table report

runtimes of strategies. Columns 3 and 6 of the table report speedups. Columns

4 and 7 of the table report total messages. On 192 cores the wall-clock time for

the parListLevel program is decreased by 89.12% compared with the parList

program and the number of messages is decreased by 81.95% on the same number

of cores. This indicates that the architecture-aware approach is successfully de-

creasing the messages by sending only large tasks to remote cores. To investigate

this in more detail, we analyse the type of messages between cores.

195

Chapter 6. Towards Architecture Aware Programming Models

 1

 10

 100

1 2 4 8 10 16 32 64 96 128 192224

S
pe

ed
up

No-of-Processors

Architecture aware
Original par

Ideal

Figure 72: Arch. Aware vs Orig. Strategies Speedup Comparison
(sumEulerDist)

Section 3.3 describes GUM messages between cores: Fish, Schedule, Ack,

Resume and Fetchme. We focus only on the most important. Fish, Schedule and

Resume. We study the number of fired messages when we execute both parList

and parListLevel programs on 192 cores. The parList sends and receives 63134

Fish message in total compared with 11398 using parListLevel. In contrast to

data messages, they send and receive 655 compared with 704, respectively. This

means cores in the parList programs spend more time seeking for work than

when other strategies are used. It also has another consequence: small tasks

generated at the beginning of the program execution can be chosen by remote

196

Chapter 6. Towards Architecture Aware Programming Models

sumEulerDist
No Orig. parList Arch. Aware Deep
PEs Time (s) Spd Msgs Time (s) Spd Msgs

1 2536.93 0.88 - 2444.21 0.92 -
2 1450.99 1.55 2829 1477.08 1.52 1170
4 758.60 2.96 5756 682.29 3.29 2585
8 376.58 5.96 14075 342.99 6.54 3777
16 376.58 6.41 65728 167.58 13.38 3345
32 220.26 10.18 70495 80.27 27.94 3975
64 229.80 9.76 80257 42.34 52.97 6280
96 482.17 4.65 107000 30.11 74.48 9158
128 258.33 8.68 44249 22.40 100.12 6979
192 181.25 12.37 63134 19.10 117.41 12690
224 181.71 12.34 100230 25.60 87.60 21881

Table 25: Comparison of parListLevel vs Deep

cores in the parList programs but not in the parListLevel programs.

Figure 72 depicts the absolute speedup curves relative to sequential runtime

for the sumEulerDist program, with the original parList and the parListLevel

strategy. Both strategies scale with the number of cores added, and the architec-

ture aware strategy performs better than parList beyond 8 cores.

6.4.1.2 Deep Strategy Results

This subsection presents another version of sumEulerDist using architecture-

aware abstraction functions. The fun function of the program presented in Sec-

tion 6.2.2 can be rewritten to capture the architecture topology, as follows:

fun lower upper block = sum(deep$runEval$(parMapLevel

findLevel sumTotient subList))

deep :: NFData a => a -> a

deep a = deepseq a a

197

Chapter 6. Towards Architecture Aware Programming Models

The program uses the parMapLevel skeleton defined in Section 6.3.1. Compar-

ing Column 6 of Table 24 and Column 6 of Table 25, we conclude that both Deep

and parMapLevel strategies perform better than the original parList strategy

and also have similar performance.

6.4.1.3 Summary:

• Both original and architecture-aware strategies have similar sequential over-

head.

• The architecture aware approach successfully reduces communication over-

head by sending only large tasks to remote cores. This claim can be drawn

from the fact that fine grain tasks may lead to communication overhead.

Both the original and architecture-aware programs produce the same num-

ber of tasks but the architecture-aware programs restricts the execution

locations of small tasks. This is supported by the experiment results. The

number of messages are reduced by 81.95% on 192 cores (Table 24 and

Figure 71).

• Architecture aware strategy scales as the number of cores increases and per-

forms better than the original strategy. It delivers a maximum speedup of

127.78 on 224 cores compared with 12.34 for the original strategy (Table 24).

198

Chapter 6. Towards Architecture Aware Programming Models

Queen
Original Arch. Aware ∆ Time ∆ Msgs

GpH-SMP GpH-GUM parDistList (%) (%)
NoPEs T(s) Spd T(s) Spd Msgs T(s) Spd Msgs

1 45.04 1.02 52.95 0.87 0 58.42 0.79 0 +10.33 -
2 24.26 1.90 35.17 1.31 462 34.21 1.34 696 -2.73 +50.64
3 15.95 2.89 24.83 1.85 678 23.31 1.97 382 -6.12 -43.65
4 12.57 3.67 20.62 2.23 748 20.03 2.29 1854 -2.86 +147.86
5 10.01 4.61 17.33 2.65 1685 15.98 2.87 1240 -7.79 -26.40
6 8.50 5.43 16.05 2.86 1817 15.26 3.01 1265 -4.92 -30.38
7 7.29 6.33 15.09 3.04 2851 14.06 3.27 2353 -6.83 -17.47
8 6.51 7.09 13.54 3.39 1673 12.47 3.68 1043 -7.90 -37.66

Table 26: Runtime Comparison on Shared Memory (Queen)

6.4.2 Queen

Having ported GUM implementation to GHC version 6.12, it is worth inves-

tigating its efficiency on shared-memory architecture, before investigating the

architecture-aware strategies. We compare the Queen program on a single node

of the Beowulf cluster with two parallel implementations GpH-GUM and GpH-

SMP. They both use the same version of GHC compiler (6.12).

6.4.2.1 Shared Memory Results

Table 26 summarises runtimes and speedups of the Queen program running on

a single node of the Beowulf cluster. The program was measured on 1, 2, 3, 4,

..., 8 cores. The absolute speedup is based on the optimised sequential runtime

(45.93s) for problem size 14x14 queens. Columns 2, 4 and 7 of the table report

the 1-8 cores parallel runtimes for the parallel implementations. Columns 3, 5

and 8 of the table report the speedups. Columns 6 and 9 of the table report the

199

Chapter 6. Towards Architecture Aware Programming Models

messages exchanged between cores using GpH-GUM. Columns 10 and 11 of the

table report the difference in time and messages for architecture-aware strategy

compared with original strategy.

The sequential efficiency can be determined by comparing the sequential run-

time of a program with the runtime of the same program after inserting the

parallel coordination on a single core. The sequential efficiency is defined as the

additional overhead introduced by parallel functions, on one PE runtime over the

sequential runtime, e.g. launching the process elements (PEs). Comparing the

runtimes on a single core shows sequential efficiencies of 102% (46.16s/45.04s) for

GpH-SMP and 87% (45.93s/52.95s) for GpH-GUM. The runtimes show that, for

this program, GpH-SMP remains faster than GpH-GUM for all numbers of cores,

by a factor of 2 (13.54s/6.51s) on 8 cores.

Figure 73 and Figure 74 show the runtime and speedup curves for GpH-SMP

and GpH-GUM Queen implementations. They show that the program under

GpH-SMP performs better, yielding a maximum speedup of 7.09 on 8 cores.

Comparing columns 3 and 5 of Table 26, GpH-GUM is slower than GpH-SMP,

for all numbers of cores. This can be attributed to communication overhead

introduced by message passing in GpH-GUM.

6.4.2.2 Distributed Memory Results

As expected, comparing the runtime curves of Figures 73 and Table 27 shows

that the Queen program is slower in GpH-GUM, as it communicates by using

200

Chapter 6. Towards Architecture Aware Programming Models

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8 9

R
un

tim
e

 (
s)

Number of PEs

parList GpH-SMP
parDistList GpH-GUM

parList GpH-GUM
Sequential

Figure 73: Runtime Comparison on Shared Memory (Queen)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8 9

S
pe

ed
up

Number of PEs

parList GpH-SMP
parDistList GpH-GUM

parList GpH-GUM
Ideal

Figure 74: Speedup Comparison on Shared Memory (Queen)

201

Chapter 6. Towards Architecture Aware Programming Models

Original Arc. Aware

parList parDistList ∆ Time ∆ Msgs
NoPEs T(s) Spd Msgs T(s) Spd Msgs (%) (%)

1 51.52 0.89 0 49.37 0.93 0 -4.17
2 34.80 1.32 609 40.45 1.14 1383 16.24 127.09
3 27.16 1.69 749 24.78 1.85 234 -8.76 -68.76
4 20.97 2.19 1311 21.42 2.14 1184 2.15 -9.69
5 22.07 2.08 1887 17.21 2.67 808 -22.02 -57.18
6 17.32 2.65 1332 16.00 2.87 1247 -7.62 -6.38
7 17.63 2.61 2018 16.01 2.87 1371 -9.19 -32.06
8 16.84 2.73 2079 16.35 2.81 1796 -2.91 -13.61

Table 27: Runtime Comparison on Distributed Memory (Queen)

the expensive message passing library PVM. For example, on eight cores the

parDistList strategy is slower by a factor of 1.3 (16.35s/12.47s) and by a factor of

1.2 (16.84s/13.54s) for the parList strategy on a distributed memory architecture

(Table 26 Columns 4 and 7, Table 27 Column 2 and 5). Table 27 also shows that

parDistList performs better on all numbers of cores. There is an exception,

however: on two and four cores, parList performs better. We will discuss the

circumstances in the following section.

6.4.2.3 Architecture Awareness Comparison

Figures 75 and 76 compare the number of messages of the Queen program for

the parDistList and the parList strategy. We observe that parDistList re-

quires fewer messages than the parList strategy. The only exception is under

two and four cores on shared memory architecture, where parDistList sends

more messages. There are two possible reasons: first, the generated processes

do not enough to cover all generated sparks for each level. Second, the lucky

202

Chapter 6. Towards Architecture Aware Programming Models

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1 2 3 4 5 6 7 8 9

N
um

be
r

of
 M

es
sa

ge
s

Number of PEs

parDistList
parList

Figure 75: Messages Comparison on Shared Memory (Queen)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1 2 3 4 5 6 7 8 9

 N
um

be
r

of
 M

es
sa

ge
s

Number of PEs

parDistList
parList

Figure 76: Messages Comparison on Distributed Memory (Queen)

203

Chapter 6. Towards Architecture Aware Programming Models

scheduling of parList sparks, as discussed earlier in Section 5.6.4. Excluding the

two cases where parDistList sends more messages than parList, the difference

in messages varies in a range between -17.47% and -43.65% on shared memory

architecture (Table 26), and between -6.38 and -68.78 on distributed architecture

(Table 27).

Table 27 reports runtimes, speedups and the number of exchanged messages

for the Queen program executing on eight nodes of the Beowulf cluster, specified

in Section 5.6. The results show that while the architecture-aware approach im-

proves performance on most configurations, it degrades it on two; the 2-cores and

4-cores configurations. The performance we have for the Queen program for both

strategies is modest. Figure 77 plots the speedup curves for the Queen program,

executed on 8 cores. In the graph, the top line is linear speedup. The second

line is the parDistList speedup. The third line is the parList speedup. The

architecture-aware strategy consistently gives a very small performance improve-

ment; (∼ 2%) (2.81s/2.73s) when the program is run on a distributed memory

architecture and (∼ 8%) (3.68s/3.39s) when the program is run on a shared

memory architecture. The GHC-SMP is faster by factor of 1.8 (6.33s/3.39s) than

GpH-GUM, on a shared memory architecture. This is expected, as GHC-SMP

does not send any messages for thread communication. We believe that the poor

scalability of Queen program is due to the high communication costs of large list,

which dominates the total program execution time for larger number of PEs.

204

Chapter 6. Towards Architecture Aware Programming Models

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8 9

S
pe

ed
up

Number of PEs

parDistList
parList

Ideal

Figure 77: Speedup Comparison on Distributed Memory (Queen)

6.4.2.4 Summary:

• GpH-SMP has a higher sequential efficiency (102%) compared with 87%

(45.93s/52.95s) for GpH-GUM. This can be attributed to the differences in

launching parallel coordination between the two implementations on single

cores.

• GpH-SMP has better speedup, a maximum speedup of 7.09 compared with

205

Chapter 6. Towards Architecture Aware Programming Models

3.39 under GpH-GUM implementation on an 8 cores shared memory archi-

tecture. This can be attributed to the communication overhead introduced

by message passing in GpH-GUM (Table 26).

• Adding architecture awareness to Queen consistently gives a small perfor-

mance improvement on both shared-memory and distributed-memory ar-

chitectures, i.e. ∼8% and ∼2%, respectively.

6.5 Evaluation of the Architecture Aware Skele-

tons

This section evaluates the performance of the divide and conquer skeleton pre-

sented in section 6.3. It reports performance results of two programs: the

sumEulerSkel program, which is an artificial skeleton program that computes

the sum of the value of Euler’s totient function, and a highly parallel Coins pro-

gram that computes the number of ways of paying the given value from a given

set of coins. The complete code for the programs can be found in Appendices C.2

and C.3.

6.5.1 sumEulerSkel Results

In this section we investigate a divide-and-conquer skeleton using the sumEulerSkel

program measured on 1, 2, 4, 8, 16, ..., and 224 cores. The sumEulerSkel program

206

Chapter 6. Towards Architecture Aware Programming Models

 0

 500

 1000

 1500

 2000

 2500

1 2 4 8 10 16 32 64 96 128

192
224

300

R
un

tim
e

(s
)

No-of-Processors

Architecture aware runtime
Original rpar runtime

Sequential runtime

Figure 78: Arch. Aware vs Orig. Skeleton Runtime Comparison (sumEulerSkel)

is listed in Appendix C.2, and uses the divide-and-conquer skeleton presented in

section 6.3. The program computes the sum of the value of Euler’s totient func-

tion. Figure 78 shows the runtime curves for the skeletons from Section 6.3,

using the original rpar and rparDist strategy. Both skeletons produce the same

number of sparks (1392) on a single core, so we do not expect any difference in

sequential overhead. The runtime curves show very similar performance, for small

configurations of up to 8 cores of both constructs. Beyond 8 cores the rparDist

strategy performs better than the rpar strategy, as rpar sends more messages as

the number of cores increases, shown in Figure 79. This reflects that, with rpar,

207

Chapter 6. Towards Architecture Aware Programming Models

 1000

 10000

 100000

2 4 8 10 16 32 64 96 128

192

224

N
um

be
r

of
 m

es
sa

ge
s

No-of-Processors

Architecture aware messages
Original rpar messages

Figure 79: Arch. Aware vs Orig. Skeleton Messages Comparison (sumEulerSkel)

small tasks are executed by remote processors, which increases the possibility for

processors to become idle and thus release more messages searching for work.

Table 28 analyses the runtimes, speedups and messages of the skeletons. The

results are very similar to those obtained from using the parListLevel strategy

in section 6.4.1. As the number of cores increases, the difference in the amount

of exchanged messages becomes bigger. This gives further confidence that archi-

tecture awareness is a better direction for exploiting hierarchical architectures.

For example, on 192 cores, the number of released messages falls by 89.73% for

the architecture-aware skeleton, with respect to the rpar skeleton. The only

208

Chapter 6. Towards Architecture Aware Programming Models

 1

 10

 100

1 2 4 8 10 16 32 64 96 128

192

224

S
pe

ed
up

No-of-Processors

Architecture aware
Original rpar

Ideal

Figure 80: Arch. Aware vs Orig. Skeleton Speedup Comparison (sumEulerSkel)

exception is on two cores, where the number of messages is slightly higher for

the architecture-aware program. We again believe that there are not enough

PVM processes available for each level to pick up the generated sparks. For the

two cores configuration, the system selects one core from two different multicore

nodes, which means that only the two level sparks will be picked by the remote

core.

For instance, on 192 cores the rpar skeleton sends and receives 59716 Fish

messages, compared with 6134 Fish messages, sent by the rparDist skeleton.

The number of Fish messages for the rpar is higher by a factor of 9.74 (59709/6130)

209

Chapter 6. Towards Architecture Aware Programming Models

sumEulerSkel

Original Arch. Aware
rpar Skeleton rparDist Skeleton ∆ Time ∆ Msgs

NoPEs Time(s) Spd Msgs Time (s) Spd Msgs (%) (%)

1 2371.66 0.95 0 2371.03 0.95 0 -0.03

2 2003.17 1.12 8507 2090.41 1.07 8605 4.36 1.15

4 1346.81 1.67 132131 742.10 3.03 6584 -44.90 -95.02

8 352.42 6.37 6692 347.22 6.47 5069 -1.48 -24.25

16 239.43 9.38 32475 160.50 13.99 3252 -32.97 -89.99

32 99.76 22.50 15187 75.29 29.82 2763 -24.53 -81.81

64 189.76 11.83 124837 38.05 59.00 3769 -79.95 -96.98

96 94.42 23.78 85460 25.90 86.68 4040 -72.57 -95.27

128 62.64 35.84 57600 21.86 102.70 4957 -65.10 -91.39

192 65.57 34.24 59716 16.15 139.01 6134 -75.37 -89.73

224 58.04 38.68 46750 18.79 119.48 9954 -67.63 -78.71

Table 28: Comparison of Divide-and-Conquer Skeleton (sumEulerSkel)

than rparDist Fish messages, indicating that cores spend more time seeking for

work.

The speedup curves reflect the runtime curves. Figure 80 shows speedups

curves for both rparDist and rpar. Both strategies scale as the number of cores

increases. The rparDist performs better than rpar beyond 4 cores.

Summary:

• Adding architecture awareness to a general divide-and-conquer skeleton

used in the sumEulerSkel program consistently delivers better performance,

i.e. the maximum speedup is 139.01 for the architecture-aware program

compared with 34.24 for the original program on 192 cores (Table 28).

• The number of messages for the rpar is higher by a factor of 9.7 (59709/6130)

than rparDist Fish messages. This is reflected in the runtime and speedup

210

Chapter 6. Towards Architecture Aware Programming Models

Coins
rpar Skeleton rparDist Skeleton ∆ Time ∆ Msgs

NoPEs Time(s) Spd Msgs Time (s) Spd Msgs (%) (%)

1 633.23 0.65 0 637.22 0.65 0 0.63 –

2 355.70 1.16 84 325.52 1.27 76 -8.48 -9.52

4 231.66 1.78 193 206.97 1.99 223 -10.66 15.54

8 138.15 2.99 331 123.25 3.35 371 -10.79 12.08

16 171.60 2.40 686 101.93 4.05 535 -40.60 -22.01

32 85.87 4.80 796 89.97 4.58 815 4.77 2.39

64 103.06 4.00 1313 76.79 5.37 872 -25.49 -33.59

96 125.56 3.28 1800 64.40 6.40 1392 -48.71 -22.67

128 85.94 4.80 1725 62.78 6.57 1484 -26.95 -13.97

192 85.95 4.80 2261 64.72 6.37 1917 -24.70 -15.21

224 88.17 4.68 2037 64.19 6.43 2002 -27.20 -1.72

Table 29: Comparison of Divide-and-Conquer Skeleton (Coins)

curves, where the rparDist strategy is faster than rpar (Table 28, Fig-

ure 79).

6.5.2 Coins Results

This section investigates the performance of the architecture-aware skeleton de-

fined in Section 6.3.2. We reported performance results for an artificial program

in Section 6.5.1, now we report results for the highly parallel Coins program.

The program is the computational kernel of a realistic application that uses the

thresholding technique to limit the amount of parallelism generated and increases

thread granularity.

Table 29 shows that the architecture-aware skeleton scores modest improve-

ment against the rpar skeleton of the Coins program. For instance, the improve-

ment in execution time is between 8.48% and 40.60%. This is again because

211

Chapter 6. Towards Architecture Aware Programming Models

 0

 100

 200

 300

 400

 500

 600

 700

1 2 4 8 10 16 32 64 96 128

192
224

300

R
un

tim
e

(s
)

No-of-Processors

Architecture aware runtime
Original par runtime

Sequential runtime

Figure 81: Runtime Architecture Aware Skeleton Comparison (Coins)

 0

 500

 1000

 1500

 2000

1 2 4 8 10 16 32 64 96 128

192

224

M
es

sa
ge

s

No-of-Processors

Architecture aware messages
Original par messages

Figure 82: Messages Architecture Aware Skeleton Comparison (Coins)

212

Chapter 6. Towards Architecture Aware Programming Models

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 10 16 32 64 96 128

192

224

S
pe

ed
up

No-of-Processors

Architecture aware
Original par

Ideal

Figure 83: Speedup Architecture Aware Skeleton Comparison (Coins)

the architecture-aware skeleton successfully localises the small tasks and reduces

the number of exchanged messages. The reduction in the amount of messages

is between 1.72% on 224 cores and 33.59% on 64 cores. Of course, there is an

exception: on 4 and 8 cores the number of exchanged messages is increased for

architecture-aware skeleton by 15.54% and 12.04% respectively. We believe this is

due to the random scheduling mechanism implemented GUM. In these two cases,

the lucky scheduling of rpar sparks is the cause of rpar sending fewer messages

than rparDist.

213

Chapter 6. Towards Architecture Aware Programming Models

Summary: Adding architecture awareness to a general divide-and-conquer skele-

ton used in the Coins program consistently delivers better performance. Fig-

ures 81, 82, and 83 show the runtime, speedup and the number of exchanged

messages for rparDist and rpar skeleton Coins program. The speedup curves

show that rparDist delivers better speedup. It delivers a maximum speedup of

6.57 on 128 cores, compared with 4.80 delivered by the rpar on the same number

of cores(Table 28). The rpar strategy has a higher number of messages 1725

compared with 1484 for the rparDist strategy. This is reflected in the runtime

and speedup curves, where the rparDist strategy is faster than the rpar strategy

(Table 81, Figure 83). Of course, such speedup is poor on 128 cores. We attribute

this to instability of the GUM implementation. We believe better performance

can be obtained when the system becomes stable as discussed in Section 1.1. In

general, the architecture-aware approach exchanges fewer messages as shown in

Figures 82.

6.6 Memory and Potential Parallelism Perfor-

mance

This section is a preliminary investigation into the effect of architecture-aware

programming on memory consumption and on the amount of parallelism gener-

ated. The most significant improvements are due to preventing small tasks from

214

Chapter 6. Towards Architecture Aware Programming Models

being executed far from their originator and the dramatic reduction in commu-

nication overheads. The investigation uses four programs.

Speedup Generated Converted Allocated Maximum Messages
Name Sparks Sparks Heap Residency

Orig. Arch. Orig. Arch. Orig Arch. Orig. Arch. Orig. Arch. Orig. Arch.
∆% (MB) ∆% (KB) ∆% ∆%

SumEulerDist 9.38 13.99 1392 1392 688 1.16 5296 148.49 28144 0.09 32475 -89.99
Coins 2.40 4.05 1367 1367 19 247.37 37661 6.10 44032 -0.04 686 -22.01
Queen 3.01 3.26 16883 16632 11185 147.81 8677 -66.05 491 -1.12 2663 -29.89
Fib 6.70 8.74 49853 8019 91 68.13 11,188 -81.99 72,272 -28.57 269 24.91
Geom. Mean 4.62 6.34 205.14 -59.82 -10.95 -11.94

Table 30: Speedups, Number of Sparks and Memory Consumption on 16 cores

Table 30 summarises the speedups, number of sparks and memory consump-

tion of four programs, running on 16 cores, with the original strategies and new

architectures aware strategies. The results show that the architecture-aware pro-

grams convert more sparks than the original construct, e.g. the geometric mean

is +205.14% more. This reflects that, with par, large sparks may be picked by

any PE, including the main PE, during the early stage of the program execu-

tion. This means that only small sparks remain for remote PEs. However, in

the architecture-aware case, large sparks are kept in the sparkpool until they are

picked by remote PEs.

The results show that the mean of heap residency of architecture-aware pro-

grams is smaller by 10.95% compared with the original strategies. This reflects

the fact that the architecture-aware programs have fewer active threads. The

comparison of exchanged messages demonstrates that the new approach substan-

tially reduces the communication overhead, leading to performance improvement

215

Chapter 6. Towards Architecture Aware Programming Models

by a mean factor of 1.38 (6.34/4.62).

6.7 Summary

We have outlined the development of high-level architecture-aware programming

constructs that abstract over the new parDist and parExact constructs. In par-

ticular, we have developed architecture-aware evaluation strategies (Section 6.2)

and architecture aware skeletons (Section 6.3).

We have discussed the key issue of determining threaded granularity and how

it can be used to distributed tasks on the architecture’s levels (Section 6.1). In

this work we assume that the programmer supplies the task granularity informa-

tion to the program. We seek to find an abstraction like the findLevel function

to address this issue. The function is used for developing architecture-aware ab-

straction functions employed by the programs measured in Chapters 5 and 6.

For example, the performance of the parMapLevel abstraction skeleton devel-

oped (Section 6.3.1) is exploited in the programs measured in Section 5.6. The

remaining abstraction functions are exploited in Sections 6.4 and 6.5. The results

show that architecture-aware strategies can improve the performance of programs

dramatically. For example, the sumEulerDist program improves by a factor of

10.4 (127.78s/12.34s) on 224 cores.

Measurement of four programs shows that the new abstractions improve heap

residency by 10.95% over the original strategies. The new abstractions deliver

216

Chapter 6. Towards Architecture Aware Programming Models

performance benefits, for example, the mean improvement in speedup is 1.4 and

in the number of exchanged messages, it is -11.94% for the programs measured

in Table 30.

217

Chapter 7

Conclusion

This chapter provides a summary of the work from this thesis, pointing out the

main issues investigated and discusses the main achievements and contributions

(Section 7.1). It also discusses some limitations of the work conducted in the

thesis and suggests avenues of future work (Section 7.2).

7.1 Achievements and Contributions

The objective of this thesis was to develop a parallel programming model exploit-

ing general purpose hierarchical computing architectures using a functional pro-

gramming language. We proposed a new parallel programming model to exploit

such architectures. The model is aware of the abstract communication hierarchy

of the architecture and preserves performance portability, as far as possible. The

main contributions of this thesis are summarised as follows:

218

Chapter 7. Conclusion

7.1.1 Architecture-aware Constructs

We propose four new architecture-aware constructs for GpH that exploit informa-

tion about task size and aim to reduce communication for small tasks, to preserve

data locality, or to distribute large units of work. They do so by constraining

communication abstractly and with as little specific prescription as possible, that

is the constructs identify layers of the communication hierarchy, and allow the im-

plementation to dynamically control placement within the layer. The constructs

are implemented using a single parDist primitive in the GUM runtime system.

The constructs aid performance portability by exposing a virtual, rather than

physical, architecture and minimising prescription.

The first step to implement the proposed parDist primitive was to assist in

porting GUM to a recent GHC compiler (GHC-6.12). In addition to the porting,

the GUM runtime system was adapted to store granularity information with each

spark, if required. The modifications comprise two kinds of information. The first

is static information including the number of the PE and the distances from the

PE to other PEs. The second is dynamic information including the minimum

and maximum distance for each spark (Section 5.5).

We also outlined how the approach proposed in this thesis can be implemented

in other languages that include task creation. A process in Erlang is spawned

on a named node. We believe there is a possibility to build an abstraction layer

over this process directive. The abstraction layer maintains a tree of node groups,

219

Chapter 7. Conclusion

loosely modelling the underlying architecture (Sections 5.2 and 5.7).

We have investigated the constructs using three common paradigms, data par-

allelism, divide-and-conquer parallelism, and nested parallelism, on hierarchical

architectures with up to 224 cores. The results obtained for the architecture-aware

constructs are consistent for all three programming paradigms investigated. This

also shows that the new constructs consistently deliver better speedup and scala-

bility than existing primitives together with dramatic reduction in the execution

time variability (Section 5.6). A preliminary version of these results has been pub-

lished in [9]. We have demonstrated high-level architecture-aware programming

abstractions that abstract over the new constructs. In particular, we have demon-

strated architecture-aware evaluation strategies and architecture aware skeletons

(Chapter 6). We have discussed the key issues that must be addressed in the

proposed architecture-aware programming model: the identification of the archi-

tecture hierarchy levels, the identification of the thread granularity of each task,

the mapping of threads onto levels, and the architecture-aware abstractions that

allow the programmer to exploit the hierarchical architectures. The experimen-

tal results show that the new abstractions deliver performance benefits over the

original constructs (Table 24 page 195). The architecture-aware approach is suc-

cessfully decreasing the number of messages by sending only large tasks to remote

cores (Section 6.4 and Section 6.5).

220

Chapter 7. Conclusion

7.1.2 Programming and Performance Comparison:

We have demonstrated the first programming and performance comparison of

four functional multicore technologies and report some of the first ever multi-

core results for three functional languages of the field FDIP, Eden and GpH.

The comparison has been made between a purely implicit parallel language and

three semi-explicit languages. The comparison reflects the current state of the

technology and compares the programming effort each variant requires with the

parallel performance delivered. The experimental results show that semi-explicit

languages are a better choice for exploiting hierarchical architectures. A purely

implicit parallelism remains an elusive goal as the FDIP’s purely implicit approach

improves the fewest number of programs. However, the semi-explicit approaches

GpH-SMP, GpH-GUM, and Eden improve approximately half of the programs

(Tables 9, 10, and 11 pages 82, 83, and 84).

We have presented a semantics for the architecture-aware constructs, speci-

fying the set of possible locations when providing boundaries to the sparks. We

have shown the expected behaviour of constructs, using Haskell functions. We

have formulated several properties as Haskell predicates and used Quickcheck

to check them on random input. The three basic properties represent a sanity

check of the semantics. Two proposed implementation relevent properties did

not hold, and counter examples extracted from Quickcheck identified diffusion

of sparks to be the problem. This observation justifies our implementation, where

221

Chapter 7. Conclusion

we avoided this problem by resetting the boundaries after one fishing stage. The

final property checked with Quickcheck shows that with this modification, the

desired property holds (Section 5.4.5).

Finally, we have investigated thread granularity on multicore architecture us-

ing three different GHC parallel Haskell implementations: GHC-GUM, Eden and

GHC-SMP. GHC-SMP is a purely shared memory module that does not perform

any communication between PEs other than exchange pointers. GHC-GUM uses

message passing to communicate between PEs, as well as maintaining the shared

heap between them. Eden uses message passing to communicate between PEs

through an explicit channel. We have suggested the most profitable thread gran-

ularity for the three implementations, GHC-GUM, Eden, and GHC-SMP in case

of programs similar to our benchmark are used.

7.2 Limitations and Future Work

There are a number of limitations to this thesis’ investigation of an architecture-

aware programming model. This section discusses some of these limitations and

possible future work.

System stability. The current GUM implementation used for the measure-

ments is not yet stable, i.e. the current GUM implementation fails for pro-

grams with large data structures. Therefore, the performance evaluation of the

model is illustrated by a limited number of programs that expose different parallel

222

Chapter 7. Conclusion

paradigms. Further work on stabilising the GUM implementation is essential to

evaluate the architecture aware approach with a range of benchmarks and better

evaluate its effectiveness.

Investigated architectures. The benchmarks were measured only on one hi-

erarchical architecture as the current architecture-awareness was implemented

using GUM, which works on both shared memory and distributed memory archi-

tectures. We have made some limited measurements on a small shared memory

architecture (Section 6.4.2) and the results are encouraging. It would be valuable

to investigate the model on a range of other hierarchical architectures including

larger scale architectures. In particular, GPUs (Graphics Processing Unit) are

becoming increasingly available for general purpose programming. GPUs provide

another level to multicore machines and open a new field for investigating the

architecture-awareness of the model.

An automatic thread granularity system. We have discussed how a key

issue to achieve better performance is the identification of the thread size and the

determination of in what architecture level, where it should be performed. The

current architecture-aware approach depends on the explicit insertion of the re-

quired information into the program. It would be valuable to extend the current

system to automatically determine the thread granularity of tasks, the execution

level of a computation of given size. This can be done by some resource analysis

and program profiling [120, 115, 116], maybe following the FDIP implementation

223

Chapter 7. Conclusion

which uses the profiling technique for identifying the dependency, and automat-

ically inserting parallelism into the program. There are also emerging analyses

for such hierarchical architectures, like Multi-BSP [123] or SGL [63].

High-level abstraction. We presented some architecture-aware abstractions

like strategies and skeletons (Sections 6.2 and 6.3). The avenue remaining open

for future work is to develop a fuller set of architecture-aware high-level abstrac-

tions. In particular, for developing a complete evaluation strategies model and a

complete set of skeletons.

Architecture-awareness in other languages. As described in Section 5.7,

the architecture-aware approach could be implemented in any language with task

creation. The Erlang distribution model permits explicit process placement [61].

A process in Erlang is spawned on a named node. Such a static, directive mech-

anism is hard for programmers to manage for anything other than small scale

or very regular process networks. RELEASE is an EU FP7 STREP (287510)

project which has already started looking at using the idea of this thesis to build

general-purpose software (Scalable Distributed (SD) Erlang) [119]. This idea

is also implemented in Haskell distributed parallel Haskell (HdpH) as part of

SymGrid-Par2 in the HPC-GAP project [76].

224

Appendix A

Benchmark Code

This appendix presents the complete code for the benchmark programs measured

in Section 5.6.2. The parMapList program is presented in Section A.1. Sec-

tion A.2 presents only the parMapIntervals functions that are different from

the parMapList program.

A.1 parMapList Program

The parMapList program splits the list into sublists of random sizes and calcu-

lates each sublist in parallel. The findLevel function is presented in five different

definitions, reflecting all possible configurations, as described in table 21.

module Main where

import System(getArgs)

import Random

import Control.Parallel

import Control.Parallel.Strategies

225

Appendix A. Benchmark Code

main = do args <- getArgs

let

lower = read (args !!0) :: Int -- Get lower value

upper = read (args !!1) :: Int -- Get upper value

seed = read (args !!2) :: Int -- Get seed

res = dataListtop lower upper seed

putStrLn (" sumEuler [1.." ++(show upper)++ "] = "++(show res))

dataListtop lower upper seed =

let

cs0 = mkRandom seed -- Generated random blocks list

dataList = sumTotient lower upper cs0

in

dataList

sumTotient :: Int -> Int -> [Int]-> Int

sumTotient lower upper bs = sum (parMapLevel (faa euler)

findLevel (xs1))

where

xs1 = splitWithsize bs [lower.. upper]

faa f ys =sum(map f ys)

parMapLevel f findLevel [] = []

parMapLevel f findLevel (x:xs) = parDist min max fx

(fxs ‘pseq ‘ (fx : fxs))

where

(min , max)= findLevel x

fx = f x

fxs =parMapLevel f findLevel xs

-- splitWithsize splits alist into sublists

splitWithsize :: [Int] -> [Int]-> [[Int]]

splitWithsize _ [] = []

splitWithsize (b:bs) xs = xss

where

xss = (take b xs): splitWithsize bs (drop b xs)

mkRandom n =

let

g = mkStdGen 1601

cs :: [Int]

cs = randoms g

cs0 = map (‘mod ‘ n) \$ cs

226

Appendix A. Benchmark Code

in

cs0

euler :: Int -> Int

euler n = let

relPrimes = let

numbers = [1..(n-1)]

in

(filter (relprime n) numbers)

in

(length relPrimes)

hcf :: Int -> Int -> Int

hcf x 0 = x

hcf x y = hcf y (rem x y)

relprime :: Int -> Int -> Bool

relprime x y = hcf x y == 1

#if defined(PARBOUND)

#warning "parBound compilation "

findLevel :: (Ord a,Num a)=> [a]-> (a,a)

findLevel x

| b < 300 = (0,0)

| (b >= 300 && b <=600) = (0,1)

| (b >= 600 && b <=800)= (0,2)

| otherwise = (0,3)

where

b = length x

#elif defined(PARN_1)

#warning " parDist N-1 compilation"

findLevel :: (Ord a,Num a)=> [a]-> (a,a)

findLevel x

| b < 300 = (0,0)

| (b >= 300 && b <=600) = (0,1)

| (b >= 600 && b <=800)= (1,2)

| otherwise = (2,3)

where

b = length x

#elif defined(PARN_2)

#warning "parDist N-2 compliation "

findLevel :: (Ord a,Num a)=> [a]-> (a,a)

findLevel x

| b < 300 = (0,0)

| (b >= 300 && b <=600) = (0,1)

227

Appendix A. Benchmark Code

| (b >= 600 && b <=800)= (0,2)

| otherwise = (1,3)

where

b =length x

#elif defined(PARATLEAST)

#warning " parAtLeast compilation "

findLevel :: (Ord a,Num a)=> [a]-> (a,a)

findLevel x

| b < 300 = (0,3)

| (b >= 300 && b <=600) = (1,3)

| (b >= 600 && b <=800)= (2,3)

| otherwise = (3,3)

where

b = length x

#elif defined(PAREXACT)

#warning "parExact compilation "

findLevel :: (Ord a,Num a)=> [a] -> (a,a)

findLevel x

| b < 300 = (0,0)

| (b >= 300 && b <=600) = (1,1)

| (b >= 600 && b <=800)= (2,2)

| otherwise = (3,3)

where

b = length x

#endif

A.2 parMapIntervals Program

The parMapIntervals program splits the interval into subintervals of random

sizes and calculates subintervals in parallel. The difference between the two pro-

grams is described in Section 5.6.2.

splitIntervals ::(Ord a,Num a)=> (a,a) -> [a] -> [(a,a)]

splitIntervals (lower ,upper) (b:bs)

| ((upper -b-1) <= lower) =[(lower ,upper)]

| otherwise = ((upper -b),upper): splitIntervals

(lower ,(upper -b-1)) bs

sumTotient :: (Int , Int) -> Int

sumTotient (lower ,upper) = sum (map euler [lower ,lower +1.. upper])

228

Appendix B

Location Semantics of

Architecture-Aware Constructs

This Appendix presents a simple Haskell specification of the sets of PEs that

each construct identifies when executed on a PE in some hierarchy of PEs. The

program defines a tree data structure representing the architecture. Leaves in

the tree represent PEs and nodes represent network connections (Figure 36).

Section 5.4 describes how the program works and gives example output.

module Main(main) where

import System

import Debug.Trace

import List

import QuickCheck

import System.Random

import Control.Monad

data Tree a = EmptyTree

| Leaf a

| Node a (Tree a) (Tree a) deriving (Eq ,Show)

229

Appendix B. Location Semantics of Architecture-Aware Constructs

insertT :: (Ord a,Num a) => a -> Tree a -> Tree a

insertT x EmptyTree = (Node x EmptyTree EmptyTree)

insertT x (Node a EmptyTree EmptyTree)

| x < a = (Node x (Node x EmptyTree EmptyTree)

EmptyTree)

| otherwise = (Node x EmptyTree (Node x EmptyTree

EmptyTree))

insertT x (Node a left right)

| x < a = Node a (insertT x left) right

| x > a = Node a left (insertT x right)

| otherwise = Node x left right

mkRandom n =

let

g = mkStdGen 1601

cs :: [Int]

cs = randoms g

cs0 = map (‘mod ‘ n) $ cs

in

cs0

buildTree :: Int -> Tree Int -> Tree Int

buildTree n EmptyTree =

buildTree (n-1) (Node n EmptyTree EmptyTree)

buildTree n (Node a EmptyTree EmptyTree) =

buildTree (n-1)(Node a (Node n EmptyTree

EmptyTree) EmptyTree)

buildTree n (Node a l EmptyTree) =

buildTree (n-1) (Node a l (Node n EmptyTree

EmptyTree))

buildTree n (Node x l r) = setTree n (Node x l r)

where

setTree n (Node x l r)

| (n<=0) = (Node x l r)

|((n>0) && (even n))= setTree (n-1)(Node x left r)

|((n>0) &&(odd n))= setTree (n-1)(Node x l right)

| otherwise = (Node x l r)

230

Appendix B. Location Semantics of Architecture-Aware Constructs

where

left = insertT n l

right = insertT n r

fillTree :: Int -> Tree Int

fillTree n =Node n left right

where

t = EmptyTree

depth = mkRandom n

left = buildTree (head depth) t

right = buildTree (head(drop 1 depth)) t

-- The rLeaf returns all leaves in the tree

rLeaf :: (Tree Int) -> [Int]

rLeaf ((Leaf p)) = [p]

rLeaf (Node v EmptyTree EmptyTree)= []

rLeaf ((Node v EmptyTree u)) = rLeaf (u)

rLeaf ((Node v l EmptyTree)) = rLeaf (l)

rLeaf ((Node v t u)) = rLeaf (t) ++ rLeaf (u)

-- The insertLeaf function fill random leaves to thtree

insertLeaf (x:xs) EmptyTree = Leaf x

insertLeaf (x:y:xs) (Node v EmptyTree EmptyTree)=

(Node v (Leaf x) (Leaf y))

insertLeaf (x:xs) (Node v EmptyTree u) =

(Node v (Leaf x)(insertLeaf xs u))

insertLeaf (x:xs) (Node v l EmptyTree) =

(Node v (insertLeaf xs l)(Leaf x))

insertLeaf xs (Node v l u) = (Node v (insertLeaf lx l)

(insertLeaf rx u))

where

lx = take (length(xs) ‘div ‘ 2) xs

rx = drop (length(xs) ‘div ‘ 2) xs

-- The setparDist Haskell implemntation of parDist

setparDist :: Tree Int -> Int -> Int -> Int -> [Int]

setparDist t m u p

| ((m<0) || (u<0)) = []

| (m > (length (pp))) = []

| ((m==0) && (u==0))= [p]

| (u > (length (pp) -1)&& (m==0)) = (rLeaf (t))

| ((m==u) || (u > (length (pp) -1))) = exact(subexact) p

| m==0 =filter (/= commonnm) ([p]++ setPes)

| otherwise = setPes

231

Appendix B. Location Semantics of Architecture-Aware Constructs

where

pp = path t p

commonnu = last (take (length (pp) - u) pp)

commonnm =last (take (length (pp) - m) pp)

subu=subTree t commonnu

subexact= subTree t commonnm

complementtree = (complementTree subu commonnm)

setPes= filter (/= commonnm) (rLeaf (complementtree))

distance :: Tree Int -> Int -> Int -> Int

distance t p1 p2 = d1+d2

where

pathTop1 = path t p1

pathTop2 = path t p2

comNodes = length (prefixOf pathTop1 pathTop2)

d1 = length pathTop1 - comNodes

d2 = length pathTop2 - comNodes

prefixOf [] _ = []

prefixOf _ [] = []

prefixOf (x:xs) (y:ys)

| x /= y = []

| otherwise =x: prefixOf xs ys

path :: Tree Int -> Int -> [Int]

path (Leaf p) s

| p==s = [s]

| otherwise = []

path (Node v t u) s

| v == s = [v]

| left== [] && right == [] = []

| left /= [] = [v] ++ left

| right /= [] = [v] ++ right

where

left = path t s

right = path u s

subTree ::Tree Int -> Int -> (Tree Int)

subTree (Leaf p) s =EmptyTree

subTree (Node v t u) s

| v == s = (Node v t u)

| left== EmptyTree && right == EmptyTree = EmptyTree

| left /= EmptyTree = left

| right /= EmptyTree =right

232

Appendix B. Location Semantics of Architecture-Aware Constructs

where

left = subTree t s

right = subTree u s

complementTree :: Tree Int -> Int -> Tree Int

complementTree (Node v (Leaf p1) (Leaf p2)) s

| v == s = EmptyTree

| otherwise = (Node v (Leaf p1) (Leaf p2))

complementTree (Node v (Leaf p1) u) s

| v == s = EmptyTree

| otherwise = (Node v (Leaf p1)(complementTree u s))

complementTree (Leaf p1) s = (Leaf p1)

complementTree (Node v EmptyTree EmptyTree) s

| v==s = EmptyTree

| otherwise =(Node v EmptyTree EmptyTree)

complementTree (Node v EmptyTree u) s

| v==s = EmptyTree

| otherwise = (Node v EmptyTree (complementTree u s))

complementTree (Node v l EmptyTree) s

| v==s = EmptyTree

| otherwise = (Node v (complementTree l s) EmptyTree)

complementTree (Node v t u) s

| v==s = EmptyTree

| otherwise = (Node v (complementTree t s)

(complementTree u s))

exact (Node v t u) p

| (not (elem p zz)) = zz

| otherwise = yy

where

yy = rLeaf(t)

zz = rLeaf(u)

subset [] ys =trace(show("amrr "))$ False

subset xs [] = True

subset xs (y:ys)

| (not (y ‘elem ‘ xs)) = False

| otherwise= subset xs ys

--The test1 function is the implementation of properties (1,2)

test1 h m u p p’

233

Appendix B. Location Semantics of Architecture-Aware Constructs

| (setparDist h m u p == [])= True

| otherwise = (not(p’ ‘elem ‘ l)) || (subset l l’)

where

l = setparDist h m u p

l’= setparDist h m u p’

--The test2 function is the implementation specialised property (3)

test2 h m u p p’

| (setparDist h m u p == [])= True

| otherwise = (not(p’ ‘elem ‘ l)) || (subset l l’)

where

l = setparDist h m u p

l’= setparDist h 0 1 p’

randomPE = head(filter (>100) (mkRandom 300))

randomTree n = (insertLeaf [100..300] (fillTree n))

main = do args <- getArgs

let

n = read (args !!0) :: Int -- lower limit of the interval

newtree = (insertLeaf [100..n+100] (fillTree n))

--t1 = xlll [1,2,3] [1,4,3,2,5,6,8]

putStrLn (show("The test of basic property (1) "))

res <-quickCheck((\s->(setparDist

(randomTree n) 0 0 s == [s]))

::Int -> Bool)

putStrLn (show("The test of basic property (2) "))

res <-quickCheck((\s->(setparDist (randomTree n) 0

((length (path (randomTree n) randomPE))+1)

randomPE == (rLeaf ((randomTree n)))))

::Int -> Bool)

putStrLn (show("The test of basic property (3) "))

res <-quickCheck((\s->let

h =(randomTree n)

m = 100

u = 200

in

(setparDist h m u s == []))

::Int -> Bool)

putStrLn (show("The test of relevent property (1,2) "))

res <- quickCheck ((\s->let

h =(randomTree n)

234

Appendix B. Location Semantics of Architecture-Aware Constructs

p’=head (setparDist h 0 s randomPE)

in

test1 h 0 s randomPE p’)

::Int -> Bool)

putStrLn (show("The test of relevent property (3) "))

res <- quickCheck ((\s->let

h =(randomTree n)

p’=head(setparDist h 0 s randomPE)

in

test2 h 0 s randomPE p’)

::Int -> Bool)

putStrLn (show(" Quick check test is finish "))

235

Appendix C

Architecture-Aware Programs

This Appendix contains the architecture-aware code for the programs measured

in Chapter 6. Section 6.4.1.2 presents more results for sumEulerDist program

from Section 6.4.1.

C.1 sumEulerDist Code

This section presents complete code for sumEulerDist program using parListLevel

strategy measured in Section 6.4.1.

module Main where

import System(getArgs)

import Control.Parallel

import Control.Parallel.Strategies

import Control.DeepSeq

main = do args <- getArgs

let

lower = read (args !!0) :: Int

upper = read (args !!1) :: Int

236

Appendix C. Architecture-Aware Programs

block = read (args !!2) :: Int -- block size

result= fun lower upper block

putStrLn (" sumEuler [" ++(show lower)++".." ++

(show upper) ++"] = " ++ (show result))

fun lower upper block = sum((map sumTotient subList)

‘using ‘ parListLevel cosList rdeepseq)

where

subList = splitAtN block [lower .. upper]

cosList= map findLevel subList

sumTotient :: [Int]-> Int

sumTotient lower = sum (map euler lower)

splitAtN :: Int -> [a] -> [[a]]

splitAtN n [] = []

splitAtN n xs = ys : splitAtN n zs

where (ys,zs) = splitAt n xs

findLevel :: [Int] -> Int

findLevel (x:xs)

| (x < 10000) = 0

| ((x >= 10000) && (x < 20000)) =1

| ((x >= 20000) && (x <= 80000)) =2

| otherwise =3

euler :: Int -> Int

euler n = let

relPrimes = let

numbers = [1..(n-1)]

in

(filter (relprime n) numbers)

in

(length relPrimes)

hcf :: Int -> Int -> Int

hcf x 0 = x

hcf x y = hcf y (rem x y)

relprime :: Int -> Int -> Bool

relprime x y = hcf x y == 1

237

Appendix C. Architecture-Aware Programs

C.2 sumEulerSkel Program

This Section presents complete code for sumEulerSkel program using the architecture-

aware divide-and-conquer skeleton measured in Section 6.5.1.

module Main where

import System(getArgs)

import Random

import Control.Parallel

import Control.Parallel.Strategies

import Control.DeepSeq

main = do args <- getArgs

let

lower = read (args !!0) :: Int

upper = read (args !!1) :: Int

block = read (args !!2) :: Int

res = foo lower upper block

putStrLn (" sumEuler [1.." ++ (show upper)

++ "] = " ++ (show res))

sumTotient :: [Int] -> Int

sumTotient xs =sum (map euler xs)

findLevel :: Int -> Int

findLevel n

| (n < 10000) = 0

| ((n >= 10000) && (n <= 20000)) =1

| ((n >= 20000) && (n <= 30000)) = 2

| otherwise = 3

euler :: Int -> Int

euler n = let

relPrimes = let

numbers = [1..(n-1)]

in

(filter (relprime n) numbers)

in

238

Appendix C. Architecture-Aware Programs

(length relPrimes)

hcf :: Int -> Int -> Int

hcf x 0 = x

hcf x y = hcf y (rem x y)

relprime :: Int -> Int -> Bool

relprime x y = hcf x y == 1

divCon ::(Enum b, NFData a) =>

(b -> b -> a -> Bool)

-> (b -> Int)

-> ([b] -> a)

-> (b -> b -> a -> ((b, b), (b, b)))

-> (a -> a -> a)

-> a

-> (b, b)

-> a

divCon divisible

findLevel

solve

divide

combine block (lower ,upper)

|(divisible lower upper block) = solve [lower.. upper]

| otherwise = runEval $(do

let

(c1 ,(r1,r2)) = (divide lower upper block)

mx = findLevel r1

x’ <- ((rparDist mx mx) ‘dot ‘ rdeepseq)

(solve [r1.. r2])

y’ <- ((rparDist mx mx) ‘dot ‘ rdeepseq)

((divCon divisible findLevel solve

divide combine block) (c1))

return((combine x’ y’)))

foo :: Int -> Int -> Int -> Int

foo lower upper block =divCon divisible findLevel

sumTotient divide

combine block (lower ,upper)

divisible :: (Num a, Ord a) => a -> a -> a -> Bool

divisible lower upper block

| ((upper -block) <= lower) = True

|otherwise = False

239

Appendix C. Architecture-Aware Programs

divide :: (Num a) => t -> a -> a -> ((t, a), (a, a))

divide lower upper block = (l,r)

where

l = (lower ,(upper -block -1))

r = ((upper -block) , upper)

combine :: Int -> Int -> Int

combine x y = x+y

C.3 Coins Program

This section presents the complete code for Coins program using the architecture-

aware divide-and-conquer skeleton measured in Section 6.5.2.

module Main where

import System(getArgs)

import Random

import Control.Parallel

import Control.Parallel.Strategies

import Control.DeepSeq

main = do

let vals = [250, 100, 25, 10, 5, 1]

let quants = [55, 88, 88, 99, 122, 177] -- large setup

let coins = concat (zipWith replicate quants vals)

coins1 = zip vals quants

[n,arg] <- fmap (fmap read) getArgs

print $ foo n arg coins1

findLevel :: Int -> Int

findLevel x

| (x < 7) = 2

| (x== 7) = 1

| otherwise =0

foo :: Int -> Int ->[(Int ,Int)] -> Int

foo depth val coins = divCon divisible findLevel

payN divide combine depth (val ,coins)

240

Appendix C. Architecture-Aware Programs

divisible :: Int -> Int ->[(Int ,Int)] -> Bool

divisible _ _ [] = True

divisible depth val (coins)

| (depth <= 1) = True -- False

| (val <=0) = True

| otherwise = False

divide ::(Int ,[(Int , Int)]) ->

((Int ,[(Int , Int)]), (Int ,[(Int , Int)]))

divide (val , ((c1,q1):[])) = (((val -c1),[]),(val ,[]))

divide (val , (c1,q1):coins)

|q1==1 = (((val -c1),coins) ,(val ,coins))

|otherwise = (((val -c1),(c1 ,(q1 -1)): coins),(val ,coins))

combine :: Int -> Int -> Int

combine x y = x+y

divCon divisible findLevel payN divide combine depth (val ,coins)

|(divisible depth val coins) = payN val coins -- d

coins

| otherwise = runEval $(do

let

(xs ’, xs ’’) = (divide (val ,coins))

(mx) = findLevel depth

x’ <- ((rparDist mx mx) ‘dot ‘ rdeepseq)

(divCon divisible findLevel payN

divide combine (depth -1) xs ’)

y’ <- ((rparDist mx mx) ‘dot ‘ rdeepseq)

(divCon divisible findLevel payN

divide combine (depth -1) xs ’’)

return(combine x’ y’))

payN :: Int -> [(Int ,Int)] -> Int

payN 0 coins = 1

payN _ [] = 0

payN val ((c,q): coins)

| c > val = payN val coins

| otherwise = left + right

where

left = payN (val - c) coins ’

right = payN val coins

coins ’ | q == 1 = coins

| otherwise = (c,q-1) : coins

241

Bibliography

[1] Adabala, S., Chadha, V., Chawla, P., Figueiredo, R., Fortes,

J., Krsul, I., Matsunaga, A., Tsugawa, M., Zhang, J., Zhao,

M., et al. From Virtualized Resources to Virtual Computing Grids: The

In-VIGO System. Future Generation Computer Systems 21, 6 (2005), pp.

896–909.

[2] Akhter, S., and Roberts, J. Multi-Core Programming. No. ISBN:0-

9764832-4-6. Intel Press, April 2006.

[3] Al Zain, A., Hammond, K., Berthold, J., Trinder, P., Michael-

son, G., and Aswad, M. Low-pain, High-gain Multicore Programming

in Haskell: Coordinating Irregular Symbolic Computations on Multicore

Architectures. In Proceedings of the 4th Workshop on Declarative Aspects

of Multicore Programming (2009), ACM, pp. 25–36.

[4] Alpern, A., Cater, L., and Ferrante, J. Modeling Parallel Com-

puters as Memory Hierarchies. IEEE (1993), pp. 116–123.

242

Bibliography

[5] Anand, C., and Kahl, W. Synthesising and Verifying Multi-Core Par-

allelism in Categories of Nested Code Graphs. Tech. Rep. SQRL No. 50,

Department of Computing and Software, McMaster University, January

2008.

[6] Andrade, D., Fraguela, B., Brodman, J., and Padua, D. Task-

parallel Versus Data-Parallel Library-Based Programming in Multicore Sys-

tems. In Parallel, Distributed and Network-based Processing, 2009 17th

Euromicro International Conference on (2009), IEEE, pp. 101–110.

[7] Aswad, M. Multi-Architecture Parallel Programming Using GpH, a Func-

tional Language. Master’s thesis, School of Mathematics and Computer

Science,Heriot-Watt University., 2002.

[8] Aswad, M., Trinder, P., Al Zain, A., Michaelson, G., and

Berthold, J. Low Pain vs No Pain Multi-core Haskells. Symposium on

Trends in Functional Programming (TFP09) 10 (June 2009), pp. 49–63.

[9] Aswad, M., Trinder, P. W., and Loidl, H. Architecture-Aware Par-

allel Programming in Glasgow Parallel Haskell (GPH). In Proceedings of

the International Conference on Computational Science (ICCS) (Omaha,

USA, June 2012), Procedia Computer Science, pp. 1807–1816.

[10] Augustsson, L., and Johnsson, T. Parallel Graph Reduction with

the (ν, G)-Machine. In Proceedings of the Fourth International Conference

243

Bibliography

on Functional Programming Languages and Computer Architecture (1989),

ACM, pp. 202–213.

[11] Baker, M., Buyya, R., and Laforenza, D. Grids and Grid Tech-

nologies for Wide-area Distributed Computing. Software: Practice and

Experience 32, 15 (2002), pp. 1437–1466.

[12] Barroso, L., Gharachorloo, K., McNamara, R., Nowatzyk, A.,

Qadeer, S., Sano, B., Smith, S., Stets, R., and Verghese, B.

Piranha: A Scalable Architecture Based on Single-Chip Multiprocessing.

In ACM SIGARCH Computer Architecture News (2000), vol. 28, ACM,

pp. 282–293.

[13] Berthold, J., Dieterle, M., Loogen, R., and Priebe, S. Hier-

archical Master-worker Skeletons. In Proceedings of the 10th International

Conference on Practical Aspects of Declarative Languages (2008), Springer-

Verlag, pp. 248–264.

[14] Berthold, J., Klusik, U., Loogen, R., Priebe, S., and Weskamp,

N. High-level Process Control in Eden. Euro-Par 2003 Parallel Processing

(2004), pp. 732–741.

[15] Berthold, J., and Loogen, R. Parallel Coordination Made Explicit

in a Functional Setting. Implementation and Application of Functional

Languages (2007), pp. 73–90.

244

Bibliography

[16] Berthold, J., Marlow, S., Al Zain, A., , and Hammond, K. Com-

paring and Optimising Parallel Haskell Implementations on Multicores. In

IFL’08 International Symposia on Implementation and Application of Func-

tional Language , Inproceeding (Hatfield, UK, 2008), pp. 386–393.

[17] Bikshandi, G., Guo, J., Hoeflinger, D., Almasi, G., Fraguela,

B., Garzarán, M., Padua, D., and Von Praun, C. Programming for

Parallelism and Locality with Hierarchically Tiled Arrays. In Proceedings

of the eleventh ACM SIGPLAN symposium on Principles and practice of

parallel programming (2006), ACM, pp. pp. 48–57.

[18] Bischof, H., Gorlatch, S., and Kitzelmann, E. Cost Optimality

and Predictability of Parallel Programming with Skeletons. Parallel Pro-

cessing Letters 13, 4 (2003), pp. 575–587.

[19] Bisseling, R. Parallel Scientific Computation: A Structured Approach

using BSP and MPI. No. ISBN:0190829392. Oxford University Press, USA,

2004.

[20] Blake, G., Dreslinski, R., and Mudge, T. A Survey of Multicore

Processors. IEEE, Signal Processing Magazine 26, 6 (2009), pp. 26–37.

[21] Blelloch, G. Programming Parallel Algorithms. Communications of the

ACM 39, 3 (1996), pp. 85–97.

245

Bibliography

[22] Buyya, R., Abramson, D., and Giddy, J. An Economy Driven Re-

source Management Architecture for Global Computational Power Grids.

In The 2000 International Conference on Parallel and Distributed Process-

ing Techniques and Applications (PDPTA 2000), Las Vegas, USA (2000),

vol. 2, pp. 26–29.

[23] Buyya, R., Yeo, C., Venugopal, S., Broberg, J., and Brandic, I.

Cloud Computing and Emerging IT Platforms: Vision, Hype, and Reality

for Delivering Computing as The 5th Utility. Future Generation Computer

Systems 25, 6 (2009), pp. 599–616.

[24] Chakravarty, M., Keller, G., Lechtchinsky, R., and Pfannen-

stiel, W. Nepal-Nested Data Parallelism in Haskell. Euro-Par 2001 Par-

allel Processing (2001), pp. 524–534.

[25] Chakravarty, M., Leshchinskiy, R., Jones, S., Keller, G., and

Marlow, S. Data Parallel Haskell: a Status Report. In Proceedings of

the 2007 workshop on Declarative aspects of multicore programming (2007),

ACM, pp. 10–18.

[26] Chamberlain, B., Choi, S., Lewis, E., Snyder, L., Weathersby,

W., and Lin, C. The Case for High-level Parallel Programming in ZPL.

Computational Science & Engineering, IEEE 5, 3 (1998), pp.76–86.

246

Bibliography

[27] Chapman, B., and Huang, L. Enhancing OpenMP and Its Implemen-

tation for Programming Multicore Systems. PARCO. Advances in Parallel

Computing 15 (2008), pp. 3–18.

[28] Chapman, B., Jost, G., and Ruud, V. Using OpenMP. Portable Shared

Memory Parallel Programming. No. ISBN-13: 978-0-262-53302-7. The MIT

Press Cambridge, Massachusetts, London, England, 2008.

[29] Chapman, B., Mehrotra, P., and Zima, H. High Performance Fortran

without Templates: an Alternative Model for Distribution and Alignment.

In PPOPP ’93: Proceedings of the Fourth ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (1993), ACM, pp. 92–101.

[30] Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kiel-

stra, A., Ebcioglu, K., Von Praun, C., and Sarkar, V. X10: An

Object-Oriented Approach to Non-Uniform Cluster Computing. In ACM

SIGPLAN Notices (2005), vol. 40, ACM, pp. 519–538.

[31] Claessen, K., and Hughes, J. QuickCheck: A Lightweight Tool for

Random Testing of Haskell Programs. In Acm sigplan notices (2000),

vol. 35, ACM, pp. 268–279.

[32] Cole, M. Algorithmic Skeletons: Structured Management of Parallel Com-

putation. PhD thesis, University of Edinburgh, 1988. Also published in book

form by Pittman/MIT, 1989.

247

Bibliography

[33] Dai, J., Huang, B., Li, L., and Harrison, L. Automatically Parti-

tioning Packet Processing Applications for Pipelined Architectures. ACM

SIGPLAN Notices 40, 6 (2005), pp. 237–248.

[34] Domani, T., Goldshtein, G., Kolodner, E. K., Lewis, E., Pe-

trank, E., and Sheinwald, D. Thread-Local Heaps for Java. In SIG-

PLAN Not (2002), ACM Press, pp. 76–87.

[35] Draper, B., Beveridge, J., Bohm, A., Ross, C., and Chawathe,

M. Accelerated Image Processing on FPGAs. Image Processing, IEEE

Transactions on 12, 12 (2003), pp. 1543–1551.

[36] Duran, A., Gonzàlez, M., and Corbalán, J. Automatic Thread

Distribution for Nested Parallelism in OpenMP. In Proceedings of the

19th Annual International Conference on Supercomputing (2005), ACM,

pp. 121–130.

[37] El-Ghazawi, T., and Cantonnet, F. UPC Performance and Potential:

A NPB Experimental Study. In Proceedings of the 2002 Conference on

Supercomputing (2002), IEEE Computer Society Press, pp. 1–26.

[38] Epstein, J. Functional Programming for The Data Centre. Master’s

thesis, University of Cambridge Computer Laboratory Fitzwilliam College,

June 2011.

248

Bibliography

[39] Fenton, N., and Pfleeger, S. Software Metrics: a Rigorous and Prac-

tical Approach. PWS Publishing Co. Boston, MA, USA, 1998.

[40] Fluet, M., Rainey, M., Reppy, J., Shaw, A., and Xiao, Y. Man-

ticore: A Heterogeneous Parallel Language. In Proceedings of the 2007

Workshop on Declarative Aspects of Multicore programming (2007), ACM,

pp. 37–44.

[41] Foster, I. Designing and Building Parallel Programs, vol. 95. Addison-

Wesley Reading, MA, 1995.

[42] Gepner, P., and Kowalik, M. Multi-core Processors: New Way to

Achieve High System Performance. In Parallel Computing in Electrical

Engineering, 2006. PAR ELEC 2006. International Symposium on (2006),

IEEE, pp. 9–13.

[43] Guo, Y., Zhao, J., Cave, V., and Sarkar, V. SLAW: a Scal-

able Locality-Aware Adaptive Work-Stealing Scheduler. In Parallel &

Distributed Processing (IPDPS), 2010 IEEE International Symposium on

(2010), IEEE, pp. 1–12.

[44] Hammond, K., and Peyton-Jones, S. L. Some Early Experiments on

the GRIP Parallel Reducer. In Intl. Workshop on the Parallel Implemen-

tation of Functional Languages (Nijmegen, The Netherlands, June 1990),

pp. 51–72.

249

Bibliography

[45] Harris, T., Marlow, S., and Jones, S. Haskell on a Shared-memory

Multiprocessor. In Proceedings of the 2005 ACM SIGPLAN Workshop on

Haskell (2005), ACM, pp. 49–61.

[46] Harris, T., and Singh, S. Feedback Directed Implicit Parallelism. In

The 12 th ACM SIGPLAN International Conference on Functional Pro-

gramming(ICFP 2007); Freiburg (2007), ACM, Inc, One Astor Plaza, 1515

Broadway, New York, NY, 10036-5701, USA,, pp. pp. 251–264.

[47] Henty, D. Performance of Hybrid Message-passing and Shared-Memory

Parallelism for Discrete Element Modeling. In Proceedings of the 2000

ACM/IEEE Conference on Supercomputing (CDROM) (2000), IEEE Com-

puter Society, p. 10.

[48] Horváth, Z., Hernyák, Z., and Zsók, V. Coordination Language for

Distributed Clean. Acta Cybernetica 17, 2 (2005), pp. 247–271.

[49] Hudak, P. Para-Functional Programming. IEEE, Computer Society Press

19, 8 (1986), pp. 60–70.

[50] Iannucci, R. Toward a Dataflow/Von Neumann Hybrid Architecture.

ACM SIGARCH Computer Architecture News 16, 2 (1988), pp. 131–140.

250

Bibliography

[51] James-Roxby, P., Schumacher, P., and Ross, C. A Single Pro-

gram Multiple Data Parallel Processing Platform for FPGAs. In Field-

Programmable Custom Computing Machines, 2004. FCCM 2004. 12th An-

nual IEEE Symposium on (2004), IEEE, pp. 302–303.

[52] Jones, M., and Hudak, P. Implicit and Explicit Parallel Programming

in Haskell. Tech. Rep. YALEU/DCS/RR-682, University of Yale, August

1993.

[53] Jones, S., Clack, C., and Salkild, J. High-Performance Parallel

Graph Reduction. Lecture Notes in Computer Science 365 (1989), pp.

193–206. Berlin/Heidelberg.

[54] Jones Jr, D., Marlow, S., and Singh, S. Parallel Performance Tun-

ing for Haskell. In Proceedings of the 2nd ACM SIGPLAN Symposium on

Haskell (2009), ACM, pp. 81–92.

[55] Karonis, N., De Supinski, B., Foster, I., Gropp, W., Lusk, E.,

and Bresnahan, J. Exploiting Hierarchy in Parallel Computer Networks

to Optimize Collective Operation Performance. In Parallel and Distributed

Processing Symposium, 2000. Proceedings. (2000), IEEE, pp. 377–384.

[56] Kasim, H., March, V., Zhang, R., and See, S. Survey on Parallel

Programming Model. Network and Parallel Computing (2008), pp. 266–275.

251

Bibliography

[57] Kelly, P. Functional Programming for Loosely-Coupled Multiprocessors.

Research Monographs in Parallel and Distributed Computing, Cambridge,

MIT Press, 1989. ISBN 0262610574.

[58] Klusik, U., Loogen, R., Priebe, S., and Rubio, F. Implementa-

tion Skeletons in Eden - Low-Effort Parallel Programming. In IFL’00 -

Intl. Workshop on the Implementation of Functional Languages (Aachen,

Germany, Sept. 2000), vol. 2011 of LNCS 2011, Springer, pp. 71–88.

[59] Krste, A., Ras, K., Christopher, B., James, G., Parry, H., Kurt,

K., Patterson, A., Plishker, W., Shalf, J., Williams, S., and

Yelick, K. The Landscape of Parallel Computing Research: A View from

Berkeley. Tech. Rep. UCB/EECS-2006-183, EECS Department, University

of California, Berkeley, Dec 2006.

[60] Kumar, R., Farkas, K., Jouppi, N., Ranganathan, P., and

Tullsen, D. Single-ISA Heterogeneous Multi-core Architectures: The Po-

tential for Processor Power Reduction. In Microarchitecture, 2003. MICRO-

36. Proceedings. 36th Annual IEEE/ACM International Symposium on

(2003), pp. 81–92.

[61] Larson, J. Erlang for Concurrent Programming. ACM Queue 6, 5 (2008),

pp. 18–23.

252

Bibliography

[62] Levy, M., and Conte, T. Embedded Multicore Processors and Systems.

IEEE, Micro 29, 3 (2009), pp. 7–9. NY NY 10017-2394 USA.

[63] Li, C., and Hains, G. A Simple Bridging Model for High-Performance

Computing. In High Performance Computing and Simulation (HPCS),

2011 International Conference on (2011), IEEE, pp. 249–256.

[64] Loidl, H. The Virtual Shared Memory Performance of a Parallel Graph

Reducer. In Cluster Computing and the 2nd International Symposium on

Grid (2002), IEEE Computer Society, pp. 311–311.

[65] Loidl, H., Trinder, P., K., H., A., A. Z., and C., B.-F. Semi-

Explicit Parallel Programming in a Purely Functional Style: GpH. In

Process Algebra for Parallel and Distributed Processing, M. Alexander and

W. Gardner, Eds. Chapman & Hall/CRC, 2008, pp. pp. 47–76.

[66] Loidl, H.-W. Granularity in Large-Scale Parallel Functional Program-

ming. PhD thesis, Department of Computing Science, University of Glas-

gow, Mar 1998.

[67] Loidl, H.-W., Rubio Diez, F., Scaife, N., Hammond, K., Klusik,

U., Loogen, R., Michaelson, G., Horiguchi, S., Pena Mari, R.,

Priebe, S., Rebon Portillo, A., and Trinder, P. Comparing Par-

allel Functional Languages: Programming and Performance. Higher-order

and Symbolic Computation 16, 3 (2003), pp. 203–251.

253

Bibliography

[68] Loidl, H.-W., Rubio Diez, F., Scaife, N., Hammond, K., Klusik,

U., Loogen, R., Michaelson, G., Horiguchi, S., Pena Mari, R.,

Priebe, S., Rebon Portillo, A., and Trinder, P. Comparing Par-

allel Functional Languages: Programming and Performance. Higher-order

and Symbolic Computation 16, 3 (2003).

[69] Loidl, H.-W., Trinder, P., Hammond, K., Junaidu, S., Morgan,

R., and Peyton Jones, S. Engineering Parallel Symbolic Programs in

GPH. Concurrency — Practice and Experience 11, 12 (October 1999), pp.

701–752.

[70] Loidl, H.-W., Trinder, P., Hammond, K., Junaidu, S., Morgan,

R., and Peyton Jones, S. Engineering Parallel Symbolic Programs in

GPH. CPE 11 (1999), pp. 701–752.

[71] Loogen, R. Programming Language Constructs. In Research Directions

in Parallel Functional Programming, K. Hammond and G. Michaelson, Eds.

Springer-Verlag, 1999, pp. 63–91.

[72] Loogen, R., Ortega-Mallén, Y., Peña, R., Priebe, S., and Ru-

bio, F. Parallelism Abstractions in Eden. In Patterns and Skeletons for

Parallel and Distributed Computing. Springer, 2003, ch. 4, pp. 95–124.

[73] Loogen, R., Ortega-Mallén, Y., and Peña-Maŕı, R. Parallel Func-

tional Programming in Eden. Journal of Functional Programming 15, 03

254

Bibliography

(2005), pp. 431–475.

[74] Loogen, R., Ortega-Mallén, Y., and Peña-Maŕı, R. Parallel Func-

tional Programming in Eden. Journal of Functional Programming 15, 3

(2005), pp. 431–475.

[75] Lusk, E., and Chan, A. Early Experiments With The OpenMP/MPI

Hybrid Programming Model. In Proceedings of the 4th International Con-

ference on OpenMP in a New era of Parallelism (2008), Springer-Verlag,

pp. 36–47.

[76] Maier, P., and Trinder, P. Implementing a High-

level Distributed-memory Parallel Haskell in Haskell.

Tech. Rep. HW-MACS-TR-0091, School of Mathemati-

cal and Computer Sciences, Heriot-Watt University, 2011.

www.macs.hw.ac.uk/∼pm175/papers/Maier Trinder IFL2011 XT.pdf.

[77] Marlow, S., Maier, P., Loidl, H.-W., Aswad, M., and Trinder,

P. Seq no More: Better Strategies for Parallel Haskell. In Proceedings of

the 3rd ACM SIGPLAN Symposium on Haskell (Baltimore, MD, United

States, Sept. 2010), ACM Press, pp. 91–102.

[78] Marlow, S., Newton, R., and Peyton Jones, S. A Monad for

Deterministic Parallelism. In Proceedings of the 4th ACM Symposium on

Haskell (2011), ACM, pp. 71–82.

255

Bibliography

[79] Marlow, S., and Peyton Jones, S. Multicore Garbage Collection

With Local Heaps. In Proceedings of the International Symposium on Mem-

ory Management (2011), ACM, pp. 21–32.

[80] Marlow, S., Peyton Jones, S., and Singh, S. Runtime Support

for Multicore Haskell. In ACM SIGPLAN Notices (2009), vol. 44, ACM,

pp. 65–78.

[81] McGowen, R., Poirier, C., Bostak, C., Ignowski, J., Millican,

M., Parks, W., and Naffziger, S. Power and Temperature Control

on a 90-nm Itanium Family Processor. Solid-State Circuits, IEEE Journal

of 41, 1 (2006), pp. 229–237.

[82] McIlroy, R. Using Program Behaviour to Exploit Heterogeneous Multi-

core Processors. PhD thesis, School of Computing Science, University of

Glasgow, April 2010.

[83] Mohr, E., Kranz, D., and Halstead Jr, R. Lazy Task Creation:

A Technique for Increasing the Granularity of Parallel Programs. IEEE

Transactions on Parallel and Distributed Systems (1991), pp. 264–280.

[84] Moore, G. Cramming more Components onto Integrated Circuits. IEEE

SolidState Circuits Newsletter 20, 3 (2006), pp. 33–35.

[85] Munshi, A., Gaster, B., Mattson, T., Fung, J., and Ginsburg,

D. OpenCL Programming Guide. Addison-Wesley Professional, 2011.

256

Bibliography

[86] Nieplocha, J., Palmer, B., Tipparaju, V., Krishnan, M., Trease,

H., and Aprà, E. Advances, Applications and Performance of The Global

Arrays Shared Memory Programming Toolkit. International Journal of

High Performance Computing Applications 20, 2 (2006), 203.

[87] Nitzberg, B., and Lo, V. Distributed Shared Memory: A Survey of

Issues and Algorithms. IEEE, Computer 24, 8 (1991), pp. 52–60.

[88] Oak Ridge National Laboratory. Parallel Virtual Machine Reference

Manual. University of Tennessee, Aug 1993.

[89] Partain, W. The Nofib Benchmark Suite of Haskell Programs. In Glasgow

Workshop on Functional Programming (Ayr, Scotland, 1992), Workshops

in Computing, Springer-Verlag, pp. 195–202.

[90] Pase, D., and Wagner, D. Method of Managing Distributed Mem-

ory within a Massively Parallel Processing System, Oct 1996. US Patent

5,566,321.

[91] Peña, R., Rubio, F., and Segura, C. Deriving Non-Hierarchical

Process Topologies. In 3rd Scottish Functional Programming Workshop

(SFP01), selected papers (2001), K. Hammond and S. Curtis, Eds., vol. 3

of Trends in Functional Programming, Intellect, pp. 51–62.

257

Bibliography

[92] Peyton J., S., Clack, C., Salkild, J., and Hardie, M. GRIP

a High-Performance Architecture for Parallel Graph Reduction. Lecture

Notes in Computer Science 274 (1987), pp. 98–112.

[93] Peyton Jones, S., Gordon, A., and Finne, S. Concurrent Haskell.

In POPL’96 - Symposium on Principles of Programming Languages (St

Petersburg, Florida, Jan. 1996), ACM, pp. 295–308.

[94] Peyton Jones, S., and Lester, D. Implementation of Functional Pro-

gramming Languages. No. ISBN:013453333X. Prentice-Hall International

Series in Computer Science, Upper Saddle River, NJ, USA, 1987.

[95] Plasmeijer, M. J. CLEAN: A Programming Environment Based on

Term Graph Rewriting. In Proc. of Joint COMPUGRAPH/SEMAGRAPH

Workshop on Graph Rewriting and Computation (SEGRAGRA95 (1995),

Elsevier, pp. 233–240.

[96] Quinn, M. Designing efficient algorithms for parallel computers. McGraw-

Hill, Inc., 1986.

[97] Rabenseifner, R. Hybrid Parallel Programming on HPC Platforms. In

proceedings of the Fifth European Workshop on OpenMP, EWOMP (2003),

vol. 3, pp. 185–194.

[98] REPPY, J., RUSSO, C., and YINGQI, X. Parallel Concurrent ML.

ACM SIGPLAN notices 44, 9 (2009), pp. 257–268.

258

Bibliography

[99] Ridge, D., Becker, D., Merkey, P., and Sterling, T. Beowulf:

Harnessing the Power of Parallelism in a Pile-of-PCs. In Aerospace Confer-

ence, 1997. Proceedings., IEEE (1997), vol. 2, IEEE, pp. 79–91.

[100] Rinard, M. Locality Optimizations for Parallel Computing using Data

Access Information. International Journal of High Speed Computing 9, 2

(1997), pp. 161–161.

[101] Ross, P. Why CPU Frequency Stalled. IEEE, Spectrum. 45, 4 (2008). NY

NY 10017-2394 USA.

[102] Ryoo, S., Rodrigues, C., Baghsorkhi, S., Stone, S., Kirk, D.,

and Hwu, W. Optimization Principles and Application Performance Eval-

uation of a Multithreaded GPU using CUDA. In Proceedings of the 13th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-

gramming (2008), ACM, pp. 73–82.

[103] S., S. Private Communication Regrading FDIP Performance. 11 2008.

[104] Sadashiv, N., and Kumar, S. Cluster, Grid and Cloud Computing: A

Detailed Comparison. In Computer Science & Education (ICCSE), 2011

6th International Conference on (2011), IEEE, pp. 477–482.

[105] Santos, A. M. Compilation by Transformation in Non-Strict Functional

Languages. PhD thesis, Department of Computing Science, University of

Glasgow, July 1995.

259

Bibliography

[106] Skillicorn, D., and Talia, D. Models and Languages for Parallel

Computation. ACM Computing Surveys (CSUR) 30, 2 (1998), pp. 123–

169.

[107] Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Don-

garr, J. MPI: The Complete Reference , vol. 1. The MIT Press, 1998.

MIT, Cambridge.

[108] Sohn, A., Sato, M., Yoo, N., and Gaudiot, J. Data and Work-

load Distribution in a Multithreaded Architecture. Journal of Parallel and

Distributed Computing 40, 2 (1997), pp. 256–264.

[109] Sterling, T., Gropp, W., and Lusk, E. Beowulf Cluster Comput-

ing with Linux, Second Edition. No. ISBN:0262692929. The MIT Press,

Massachusetts Institute of Technology, London, England, 2003.

[110] Steven, G., Christianson, B., Collins, R., Potter, R., and

Steven, F. A Superscalar Architecture to Exploit Instruction Level Par-

allelism. Microprocessors and Microsystems 20, 7 (1997), pp. 391–400.

[111] Sunderam, V., and Geist, G. Heterogeneous Parallel and Distributed

Computing. Parallel Computing 25, 13-14 (1999), pp. 1699–1721.

[112] Suter, F., Desprez, F., and Casanova, H. From Heterogeneous task

Scheduling to Heterogeneous Mixed Parallel Scheduling. In Euro-Par 2004

Parallel Processing (2004), Springer, pp. 230–237.

260

Bibliography

[113] Svennebring, J., Logen, J., Engblom, J., and Stőmblad, P.

Embedded Multicore: An Introduction. Tech. Rep. EMBMCRM Rev 0,

Freescale Semiconductor, Inc., 07 2009.

[114] Taylor, F. Parallel Functional Programming by Partitioning. PhD thesis,

Imperial collage of Science, Technology and Medicine, Depart. of Comput-

ing, London, UK, 9 1996.

[115] Taylor, X., and Stevens, R. Design and Implementation of Prophesy

Automatic Instrumentation and Data Entry System. In Proc. 13th IASTED

Intl Conf. Parallel and Distributed Computing and Systems (PDCS01)

(2001).

[116] Teresco, J., Fair, J., and Flaherty, J. Resource-aware Scientific

Computation on a Heterogeneous Cluster. IEEE, Computing in science &

engineering 7, 2 (2005), pp. 40–50.

[117] Teresco, J., Flaherty, J., Baden, S., Faik, J., Lacour, S.,

Parashar, M., Taylor, V., et al. Approaches to Architecture-aware

Parallel Scientific Computation. Tech. Rep. CS-04-09, Williams College

Department of Computer Science, 2005.

[118] Thornley, J. Integrating Functional and Imperative Parallel Program-

ming: CC++ Solutions to The Salishan Problems. In Parallel Processing

261

Bibliography

Symposium, 1994. Proceedings., Eighth International (1994), IEEE, pp. 61–

67.

[119] Trinder, P. RELEASE A High-Level Paradigm for Reliable Large-

Scale Server Software. Web Page, 02 2012. http://www.release-

project.eu/publications.php.

[120] Trinder, P., Cole, M., Hammond, K., Loidl, H., and Michael-

son, G. Resource Analyses for Parallel and Distributed Coordination.

Concurrency and Computation: Practice and Experience (2011). Wiley

Online Library (to appear).

[121] Trinder, P. W., Hammond, J., Mattson, J., Partridge, A., and

Peyton Jones, S. L. GUM: a Portable Parallel Implementation of

Haskell. In PLDI 1996: Proc ACM SIGPLAN 1996 Conf. on Program-

ming Language Design and Implementation (New York, NY, USA, 1996),

ACM Press, pp. 79–88.

[122] Trinder, P. W., Hammond, K., Loidl, H. W., and Jones, P. Al-

gorithm + Strategy = Parallelism. Journal of Functional Programming 8

(1998), pp. 23–60.

[123] Valiant, L. A Bridging Model for Multi-core Computing. Journal of

Computer and System Sciences 77, 1 (2011), pp. 154–166.

262

Bibliography

[124] Wagner, D., and Calder, B. Leapfrogging: A Portable Technique for

Implementing Efficient Futures. In ACM SIGPLAN Notices (1993), vol. 28,

ACM, pp. 208–217.

[125] Walker, D., and Dongarra, J. MPI: a Standard Message Passing

Interface. Supercomputer 12 (1996), pp. 56–68. ASFRA BV.

263

	Introduction
	Thesis Statement
	Contributions
	Thesis Structure
	Authorship and Publications

	Background
	Parallel Hardware
	Classification by Memory Structure
	Multi-core Architecture
	Homogeneous vs Heterogeneous Multicore
	Distributed Computing
	Summary

	Parallel Programming Classifications
	Parallel Software Development
	Parallel Programming Models and Languages
	Implicit Models
	Semi-Explicit Parallel Models
	Explicit Models
	Hybrid Programming Models
	Summary

	Key Runtime Aspects in a Semi-Explicit Model
	Thread Creation and Synchronisation
	Storage Management
	Data Locality

	Summary

	Multicore Parallel Haskell Comparison
	Introduction
	BenchMark Suite

	Parallel Haskell Language Comparison
	Indicating Parallelism in GpH
	Indicating Parallelism in Eden
	Language Coordination Comparison

	Parallel Haskell Implementation Comparison
	Feedback Directed Implicit Parallelism (fdip)
	gphsmp
	GUM Implementation of GpH
	Eden Implementation
	Implementation Comparison

	Experiment Design
	Measurement Methodology

	Runtime Comparison
	 Programming Effort and Performance Results
	fdip Multicore Performance
	gphsmp Multicore Performance
	gphgum Multicore Performance
	Eden Multicore Performance

	Comparative Study
	Programming Effort Comparison
	Scalability
	Performance Comparison

	Conclusion
	 Summary
	 Discussion

	Parallel Programming Practice
	Using and benchmarking New Evaluation Strategies
	Original Strategies
	Space Leak Problem
	New Evaluation Strategies
	Using Strategies for Parallel Paradigms
	Task Parallelism
	Data-oriented Parallelism

	Evaluation of the New Strategies
	Apparatus
	Sequential Overhead
	 Parallel Performance of Strategies

	Granularity Control
	The Importance of Thread Granularity
	Eden Multicore Thread Granularity
	Thread Granularity of Parallel Haskells
	Discussion

	Summary

	Architecture-Aware Constructs
	The Trend Towards Hierarchical Architectures
	Other Architecture-Aware Languages
	New Architecture-Aware Constructs
	Virtual Architectures
	Placing Task on Hierarchical Architecture
	New Constructs

	The Semantics of Constructs
	Distance Function
	setparDist Function
	setparBound Function
	setparAtLeast Function
	Construct Properties Test
	Basic Properties
	Specialised Properties

	Summary

	Implementation of Architecture-Aware Constructs
	Runtime Systems Modification
	Work Placement Mechanism
	parDist Primitive Implementation

	 Architecture-Aware Constructs Evaluation
	Divide-and-Conquer Parallelism
	Data Parallelism
	Nested Parallelism
	Performance Variability
	Discussion

	Applying constructs in other Languages
	Summary

	Towards Architecture Aware Programming Models
	Architecture-Aware Decisions
	Architecture Aware Evaluation Strategies
	Using the parDistList Function
	Using the parListLevel Function

	Architecture Aware Skeletons
	An Architecture Aware Parallel Map Skeleton
	A Divide-and-Conquer(DC) Skeleton

	Evaluation of Architecture Aware Strategies
	SumEulerDist
	parListLevel Strategy Results
	Deep Strategy Results
	Summary:

	Queen
	Shared Memory Results
	Distributed Memory Results
	Architecture Awareness Comparison
	Summary:

	Evaluation of the Architecture Aware Skeletons
	sumEulerSkel Results
	Coins Results

	Memory and Potential Parallelism Performance
	Summary

	Conclusion
	Achievements and Contributions
	Architecture-aware Constructs
	 Programming and Performance Comparison:

	Limitations and Future Work

	Benchmark Code
	parMapList Program
	parMapIntervals Program

	Location Semantics of Architecture-Aware Constructs
	Architecture-Aware Programs
	sumEulerDist Code
	sumEulerSkel Program
	Coins Program

	Bibliography

