1,319 research outputs found

    Research on improving navigation safety based on big data and cloud computing technology for Qiongzhou strait

    Get PDF

    Engineering model transformations with transML

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007%2Fs10270-011-0211-2Model transformation is one of the pillars of model-driven engineering (MDE). The increasing complexity of systems and modelling languages has dramatically raised the complexity and size of model transformations as well. Even though many transformation languages and tools have been proposed in the last few years, most of them are directed to the implementation phase of transformation development. In this way, even though transformations should be built using sound engineering principles—just like any other kind of software—there is currently a lack of cohesive support for the other phases of the transformation development, like requirements, analysis, design and testing. In this paper, we propose a unified family of languages to cover the life cycle of transformation development enabling the engineering of transformations. Moreover, following an MDE approach, we provide tools to partially automate the progressive refinement of models between the different phases and the generation of code for several transformation implementation languages.This work has been sponsored by the Spanish Ministry of Science and Innovation with project METEORIC (TIN2008-02081), and by the R&D program of the Community of Madrid with projects “e-Madrid" (S2009/TIC-1650). Parts of this work were done during the research stays of Esther and Juan at the University of York, with financial support from the Spanish Ministry of Science and Innovation (grant refs. JC2009-00015, PR2009-0019 and PR2008-0185)

    Using Semantic Web technologies in the development of data warehouses: A systematic mapping

    Get PDF
    The exploration and use of Semantic Web technologies have attracted considerable attention from researchers examining data warehouse (DW) development. However, the impact of this research and the maturity level of its results are still unclear. The objective of this study is to examine recently published research articles that take into account the use of Semantic Web technologies in the DW arena with the intention of summarizing their results, classifying their contributions to the field according to publication type, evaluating the maturity level of the results, and identifying future research challenges. Three main conclusions were derived from this study: (a) there is a major technological gap that inhibits the wide adoption of Semantic Web technologies in the business domain;(b) there is limited evidence that the results of the analyzed studies are applicable and transferable to industrial use; and (c) interest in researching the relationship between DWs and Semantic Web has decreased because new paradigms, such as linked open data, have attracted the interest of researchers.This study was supported by the Universidad de La Frontera, Chile, PROY. DI15-0020. Universidad de la Frontera, Chile, Grant Numbers: DI15-0020 and DI17-0043

    Data Pipeline Quality: Influencing Factors, Root Causes of Data-related Issues, and Processing Problem Areas for Developers

    Full text link
    Data pipelines are an integral part of various modern data-driven systems. However, despite their importance, they are often unreliable and deliver poor-quality data. A critical step toward improving this situation is a solid understanding of the aspects contributing to the quality of data pipelines. Therefore, this article first introduces a taxonomy of 41 factors that influence the ability of data pipelines to provide quality data. The taxonomy is based on a multivocal literature review and validated by eight interviews with experts from the data engineering domain. Data, infrastructure, life cycle management, development & deployment, and processing were found to be the main influencing themes. Second, we investigate the root causes of data-related issues, their location in data pipelines, and the main topics of data pipeline processing issues for developers by mining GitHub projects and Stack Overflow posts. We found data-related issues to be primarily caused by incorrect data types (33%), mainly occurring in the data cleaning stage of pipelines (35%). Data integration and ingestion tasks were found to be the most asked topics of developers, accounting for nearly half (47%) of all questions. Compatibility issues were found to be a separate problem area in addition to issues corresponding to the usual data pipeline processing areas (i.e., data loading, ingestion, integration, cleaning, and transformation). These findings suggest that future research efforts should focus on analyzing compatibility and data type issues in more depth and assisting developers in data integration and ingestion tasks. The proposed taxonomy is valuable to practitioners in the context of quality assurance activities and fosters future research into data pipeline quality.Comment: To be published by The Journal of Systems & Softwar

    Computer-Aided Warehouse Engineering (CAWE): Leveraging MDA and ADM for the Development of Data Warehouses

    Get PDF
    During the last decade, data warehousing has reached a high maturity and is a well-accepted technology in decision support systems. Nevertheless, development and maintenance are still tedious tasks since the systems grow over time and complex architectures have been established. The paper at hand adopts the concepts of Model Driven Architecture (MDA) and Architecture Driven Modernization (ADM) taken from the software engineering discipline to the data warehousing discipline. We show the works already available, outline further research directions and give hints for implementation of Computer-Aided Warehouse Engineering systems

    Resource optimization of edge servers dealing with priority-based workloads by utilizing service level objective-aware virtual rebalancing

    Get PDF
    IoT enables profitable communication between sensor/actuator devices and the cloud. Slow network causing Edge data to lack Cloud analytics hinders real-time analytics adoption. VRebalance solves priority-based workload performance for stream processing at the Edge. BO is used in VRebalance to prioritize workloads and find optimal resource configurations for efficient resource management. Apache Storm platform was used with RIoTBench IoT benchmark tool for real-time stream processing. Tools were used to evaluate VRebalance. Study shows VRebalance is more effective than traditional methods, meeting SLO targets despite system changes. VRebalance decreased SLO violation rates by almost 30% for static priority-based workloads and 52.2% for dynamic priority-based workloads compared to hill climbing algorithm. Using VRebalance decreased SLO violations by 66.1% compared to Apache Storm\u27s default allocation

    Business intelligence in the electrical power industry

    Get PDF
    Nowadays, the electrical power industry has gained tremendous interest from both entrepreneurs and researchers due to its essential roles in everyday life. However, the current sources for generating electricity are astonishing decreasing, which leads to more challenges for the power industry. Based on the viewpoint of sustainable development, the solution should maintain three layers of economically, ecologically, and society; simultaneously, support business decision-making, increases organizational productivity and operational energy efficiency. In the smart and innovative technology context, business intelligence solution is considered as a potential option in the data-rich environment, which is still witnessed disjointed theoretical progress. Therefore, this study aimed to conduct a systematic literature review and build a body of knowledge related to business intelligence in the electrical power sector. The author also built an integrative framework displaying linkages between antecedents and outcomes of business intelligence in the electrical power industry. Finally, the paper depicted the underexplored areas of the literature and shed light on the research objectives in terms of theoretical and practical implications

    Development of a Common Framework for Analysing Public Transport Smart Card Data

    Get PDF
    The data generated in public transport systems have proven to be of great importance in improving knowledge of public transport systems, being very valuable in promoting the sustainability of public transport through rational management. However, the analysis of this data involves numerous tasks, so that when the value of analysing the data is finally verified, the effort has already been very great. The management and analysis of the collected data face some difficulties. This is the case of the data collected by the current automated fare collection systems. These systems do not follow any open standards and are not usually designed with a multipurpose nature, so they do not facilitate the data analysis workflow (i.e., acquisition, storage, quality control, integration and quantitative analysis). Intending to reduce this workload, we propose a conceptual framework for analysing data from automated fare collection systems in mobility studies. The main components of this framework are (1) a simple data model, (2) scripts for creating and querying the database and (3) a system for reusing the most useful queries. This framework has been tested in a real public transport consortium in a Spanish region shaped by tourism. The outcomes of this research work could be reused and applied, with a lower initial effort, in other areas that have data recorded by an automated fare collection system but are not sure if it is worth investing in exploiting the data. After this experience, we consider that, even with the legal limitations applicable to the analysis of this type of data, the use of open standards by automated fare collection systems would facilitate the use of this type of data to its full potential. Meanwhile, the use of a common framework may be enough to start analysing the data

    Production trend identification and forecast for shop-floor business intelligence

    Get PDF
    The paper introduces a methodology to define production trend classes and also the results to serve with trend prognosis in a given manufacturing situation. The prognosis is valid for one, selected production measure (e.g. a quality dimension of one product, like diameters, angles, surface roughness, pressure, basis position, etc.) but the applied model takes into account the past values of many other, related production data collected typically on the shop-floor, too. Consequently, it is useful in batch or (customized) mass production environments. The proposed solution is applicable to realize production control inside the tolerance limits to proactively avoid the production process going outside from the given upper and lower tolerance limits. The solution was developed and validated on real data collected on the shop-floor; the paper also summarizes the validated application results of the proposed methodology. © 2016, IMEKO-International Measurement Federation Secretariat. All rights reserved
    corecore