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IoT enables profitable communication between sensor/actuator devices and the cloud. 

Slow network causing Edge data to lack Cloud analytics hinders real-time analytics adoption. 

VRebalance solves priority-based workload performance for stream processing at the Edge. BO is 

used in VRebalance to prioritize workloads and find optimal resource configurations for efficient 

resource management. Apache Storm platform was used with RIoTBench IoT benchmark tool for 

real-time stream processing. Tools were used to evaluate VRebalance. Study shows VRebalance 

is more effective than traditional methods, meeting SLO targets despite system changes. 

VRebalance decreased SLO violation rates by almost 30% for static priority-based workloads and 

52.2% for dynamic priority-based workloads compared to hill climbing algorithm. Using 

VRebalance decreased SLO violations by 66.1% compared to Apache Storm's default allocation. 
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CHAPTER I 

INTRODUCTION 

The successful implementation of IoT applications is heavily dependent on the continuous 

execution of data stream processing from various devices. The fundamental purpose of this 

processing is to ensure seamless and effective data integration, as well as adequate control 

operations. Additionally, optimal data integration within intelligent systems is an essential 

requirement for IoT applications, as highlighted by relevant literature [1], [2]. Cloud-based data 

processing for Internet of Things (IoT) systems is less than ideal as it is constrained in its ability 

to support real-time data acquisition because of network jitters and delays [3]. The process of 

extracting valuable information for subsequent actions from data may entail imposing strict time 

limitations, which may necessitate processing of data in near real-time to identify relevant patterns. 

Contemporary business entities are availing themselves to large-scale data processing frameworks 

to extract substantial insights from voluminous data, otherwise known as "big data." The intended 

purpose of such a strategy is to ascertain and capitalize on novel business prospects, scrutinize 

consumer behavior, curtail operating expenses, and accelerate and boost decision-making 

processes. As per the findings of IBM, an immense quantity of data is produced on a daily basis, 

with an estimated volume of 2.5 quintillion bytes [4].  

In a report presented by SAS [5], it was observed that prominent establishments are 

employing diverse big data analytics tools for the purpose of formulating customer-centric product 

and service strategies, enhancing prompt decision-making abilities, and mitigating operational 
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expenditures. In contemporary data analysis, big data is defined by three integral and interrelated 

elements, namely Volume, Variety, and Velocity [6]. In the realm of data analysis, the measure of 

data present is referred to as volume, while the heterogeneous assortment of data types and 

structures is categorized as variety, and the metrical representation of the rate at which data is 

received is known as velocity. Stream processing has become a popular computing paradigm for 

analyzing continuous and high-volume data streams to extract real-time insights from the data [7].  

It should be noted that certain prevalent stream processing engines, such as Apache Storm 

and Apache Spark, are predominantly suited for utilization in resource-abundant cloud 

environments. Therefore, it is imperative to consider that their performance may not be optimized 

when operating within edge environments that are resource-constrained. Several batch processing 

frameworks have effectively tackled the issues of volume and variety in big data processing, such 

as MapReduce, Spark [8], and Hadoop [9]. However, a novel category of big data processing 

platforms has arisen to tackle the velocity aspect of big data. Stream processing platforms, such as 

Apache Storm, are commonly employed for the purpose of processing streaming data that 

emanates from diverse sources, such as Internet of Things (IoT) applications and social networks. 

A stream processing application comprises a directed acyclic graph composed of vertices that 

signify data processing operations and edges that indicate data flow.  

Recent research findings as reported by various sources [10], [11] indicate that Internet of 

Things (IoT) workloads have been extensively investigated. The divergent nature and potential 

complex variations of distinct application domains can result in significant disparities and 

variations. It can be affected by a variety of factors, such as external stimuli and internal processes, 

make event-driven systems complex and challenging to model and analyze. Event-driven systems 

present a complex challenge in modeling and analysis due to their dynamic characteristics. The 
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rate at which events arrive is subject to various factors, including external stimuli and internal 

processes. Over the course of time, there is a significant alteration observed. adaptation is required, 

thus leading to the necessity of modifying the current approach in order to address the situation 

accordingly. 

The need to leverage the Edge in an agile and efficient way paramount importance. Existing 

literature on resource scaling for distributed systems [12], [13] has explored the challenges and 

opportunities associated with the efficient allocation and management of resources in such settings. 

Stream processing primarily concentrates on mitigating bottlenecks within the data flow. A sole 

stream processing topology is designed for the purpose of optimal enhancement of mean 

performance. Additionally, these techniques frequently exhibit limitations. Due to the latency 

inherent in the scaling mechanism of the SPEs, performance may be affected. In this regard, the 

current study endeavors to address the issue of end-to-end tail latency. The objectives of concurrent 

stream processing workloads are targeted by rebalancing the dexterous and granular resources at 

the system-level. 

Related Work 

The management of resources is an essential component of Edge computing, which holds 

significant importance in various domains. The authors in [14] have presented a novel protocol 

that relies on an auction-based mechanism for the purpose of realizing resource contract 

establishment while concurrently leveraging a latency-aware scheduling technique to effectively 

optimize utility for both Edge computing infrastructures and service providers. Araldo et al. [15] 

have successfully deployed a resource allocation algorithm with polynomial time complexity that 

enables Edge network operators to optimize their utility. This algorithm has the potential to 
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enhance a range of performance metrics, such as inter-domain traffic savings, user quality of 

experience (QoE), and more.  

In the study [16], the authors explored the optimization of workload reduction and resource 

allocation for cloudlet applications as a means of effectively managing the quality of service for 

such applications within the context of resource contention for cloudlet resources. Within the realm 

of stream processing, a number of studies have turned their attention towards the auto-scaling of 

distributed systems through observation and analysis of the performance dynamics inherent to 

streaming dataflow. This area of research has been explored in various works, including those 

outlined in [17] and [18].   

Load shedding is a crucial strategy implemented in the field of edge computing with the 

purpose of mitigating system overload, guaranteeing prompt execution of high-priority 

assignments, and simultaneously adhering to a prescribed latency threshold. Recent scholarly 

publications [19], [20] have suggested load-shedding frameworks that adopt a probabilistic model 

to acquire knowledge on the impact of events within a given window based on their position and 

type. The authors present algorithms that aid in the determination of the appropriate number of 

events to drop and the optimal timing for such drops, while also facilitating the prediction of the 

utility threshold required to achieve the desired latency constraint. Input-based load shedding is 

frequently employed as a technique for handling complex event processing (CEP) queries. 

However, it must be noted that the effectiveness of this approach with respect to individual events 

may be greatly impacted by the presence or absence of partial matches, thereby giving rise to 

potential quality challenges. In order to tackle this issue, pertinent state-based methodologies have 

been devised to deliberately eliminate incomplete matching instances while upholding superior 

outcome precision within constrained resources [21]. 
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The study conducted by [22] proposes the implementation of a scheduled program that runs 

periodically. The present study presents a methodology to develop a systematic timetable by 

mapping the Storm topology executors onto the worker processes of supervisor nodes in a manner 

that ensures that no supervisor node exceeds a predetermined threshold for CPU usage. In [23], a 

scheduling algorithm for Apache Storm which employs graph partitioning has been introduced. 

The aim of the present scheduling framework is to decrease the overall network burden arising 

from data migration across nodes within a Storm cluster, whilst ensuring that an equitable level of 

computational capacity is assigned to each node, thus avoiding any potential imbalances in the 

workload distribution. It is pertinent to acknowledge that the real-time rescheduling of topologies 

can be executed with the aid of the online scheduling algorithms. 

Stream Processing Engine (SPE) 

The present study takes into consideration edge Stream Processing Engines (SPEs) 

deployed on an Internet of Things (IoT) Gateway, adopting a model akin to that examined in a 

recent academic publication [24]. The Internet of Things (IoT) Gateways possess a restricted 

quantity of computational resources when compared to the Cloud. Nonetheless, they offer more 

resources than those that are within reach of embedded, wireless sensor networks, among other 

similar networks. As is evident from the illustration presented in Figure 1. The data streams 

generated by Internet of Things (IoT) devices are subject to processing by an IoT Gateway that 

runs multiple topologies. The process of stream processing adheres to the dataflow programming 

model [25], wherein every application is contained within a directed acyclic graph (DAG) data 

structure, commonly referred to as a topology. The flow of individual data points, referred to as 

tuples, occurs within a topology whereby such tuples traverse from their sources to corresponding 

sinks. The process of this data transmission is characterized by its discrete and granular nature. 
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Each internal node within the system executes computational operations of varying complexity on 

the data, which can range from basic filtering to intricate processes such as classification 

algorithms based on Machine Learning (ML) principles. It is posited that every application 

possesses a Service Level Objective (SLO) target regarding the end-to-end latency of data tuples 

circulating throughout the topology, specifically within the 95th percentile.  

 

Figure 1 Internet of Things: Sensors to Cloud [51] 

We have employed Apache Storm as an exemplar Stream Processing Engine (SPE). Storm 

is a distributed system designed for real-time computation, specifically for the purpose of 

processing streams of data that are limitless in size. A Storm topology refers to a directed acyclic 

graph (DAG) consisting of spouts and bolts. A spout, in this context, serves as a data stream source 

while a bolt acts as a data processing unit. In a typical deployment scenario, Storm is employed on 

a clustered system utilizing the master-worker architecture, as illustrated in Figure 2.  
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Figure 2 Architecture of Storm Cluster [51] 

A Storm cluster comprises two categories of nodes along with zookeeper: 

• Nimbus Node: The nimbus is a critical component, operating as the master node within 

a Storm cluster. This daemon, known as the nimbus, is responsible for directing and 

managing overall cluster activities. In the context of the Storm computing framework, 

developers submit job requests to the Nimbus component, which subsequently 

disseminates the tasks of said jobs to the worker nodes through the utilization of a 

scheduler. Nimbus systematically monitors the state of the cluster and in the event of a 

failure of a supervisor node, endeavors to either initiate a restart of the supervisor node 

or reassign the task of processing to alternative supervisor nodes. 

• Supervisor Node: A Storm cluster has the capability of accommodating a multitude of 

supervisor nodes, each equipped with a supervisor daemon. Every supervisor node 

accommodates a predetermined quantity of worker processes in a prearranged manner. 

Each employed entity executes either a single or a multiple unit of tasks that make up 
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a specific network structure in Storm. The supervisor daemons bear the responsibility 

of initiating and terminating the worker processes for the purpose of executing and 

discontinuing the topologies. 

• Apache Zookeeper: In addition to the above mentioned nodes, Storm clusters rely on 

Apache Zookeeper to facilitate cluster synchronization and management of the cluster 

state. An "ensemble" is formed by multiple nodes executing the Zookeeper daemon, 

which facilitates replicated synchronization and state management services with 

eventual consistency to the nimbus and supervisor nodes. 

The representation of a stream in Storm comprises an infinite sequence of distinct data 

structures denoted as tuples. A tuple is an assemblage of named elements of data, consisting of 

values of various types such as string, integer, float, among others. The processing tasks executed 

on Storm clusters are referred to as topologies in the field of academic writing on the subject of 

stream computation. A topology consists of two distinct categories of components and incorporates 

three principal abstractions: 

• Spout and bolt are two components of a topology as shown in Figure 3. Spouts 

facilitate connectivity with external data sources, encompassing diverse message 

brokers like Apache Kafka. The spout serves to encapsulate the application logic 

required for establishing connections to message brokers and facilitating the 

transmission of data streams to downstream processing components. The bolts serve as 

fundamental processing units in the implementation of a Storm topology. The 

application logic utilized for stream processing is condensed within bolts. These bolts 

carry out diverse operations (e.g., filtering and aggregating) on the tuples of the stream 

in accordance with user-defined logic. 
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• Worker processes, tasks and executers are three main abstractions to run a topology. 

Each worker process refers to a distinct and independent instance of a Java Virtual 

Machine (JVM), which executes a specific subset of the constituent elements 

comprising a given topology. Every supervisory node is equipped with a pre-

established quantity of slots to carry out the operations of the worker processes. 

Executors refer to threads of execution that are created by worker processes, which in 

turn operate within the Java Virtual Machine (JVM) process of said worker processes. 

Executors are responsible for the execution of one or multiple specified tasks associated 

with a given component, as directed by the end-users. A "task" refers to an active 

instantiation of a Storm component that may include a Spout or a Bolt entity. The 

processing operation is executed by the assigned tasks, which are operated within their 

corresponding parent executors. In order to effectively manage a project, developers 

must ascertain the appropriate quantity of laborers required to accomplish said project.  

 

Figure 3 Data Model for Apache Storm 
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Priority Scheduling 

The Apache Streaming framework exclusively employs the first-in, first-out (FIFO) 

queuing discipline for job processing, without any provision for alternative queueing 

methodologies. By default, the submitted tasks of an application's threads are processed in a 

sequential order, following a first-in, first-out (FIFO) approach as shown in Figure 4. If the tasks 

assigned to a thread exhibit a substantial size, they will expend a commensurate quantity of 

resources in their processing. This could potentially result in impediments for the remaining 

threads of application that are currently in line for execution. In the event that the application does 

not necessitate the complete allocation of resources, the subsequent thread in the queue has the 

potential to commence execution of its designated tasks.  

 

Figure 4 Apache storm stream framework that implements FIFO 

 

There may arise instances where it is deemed desirable to allocate precedence to particular 

input data elements. In cases where there is a significant influx of incoming data or a sporadic 

input load, it is possible that the timely processing of high priority data may be impeded. The 



 

11 

capacity to allocate priorities to data inputs serves as a means to guarantee that the most critical 

data is processed at the outset in such scenarios [10]. Streaming platforms are frequently employed 

as the preferred instrument for carrying out data analytics. Ideally, adequate resource allocation 

should be pursued to enable efficient handling of input loads without resulting in queuing delays. 

The functionality of the system is contingent upon its ability to rapidly process incoming data loads 

in real-time.  

This scheduling methodology necessitates the user to allocate priorities to the various 

forms of input data in advance. In our proposed system, during program execution, the scheduler 

assigns a higher precedence to input data that exhibits greater priority. In instances of a significant 

surge in system load, the latency exhibited by higher priority tasks remains consistent, while the 

lower priority tasks remain enqueued and thus experience processing delays. When the input load 

diminishes to a threshold at which the system can accommodate all jobs, it is observed that 

equitable apportionment of resources is provided to both high and low priority jobs.  

This scheduling technique operates without any requisition of supplementary resources. 

Nevertheless, it is feasible to utilize it alongside dynamic resource allocation techniques. The data-

driven priority scheduler has the potential for adoption across multiple micro-batching streaming 

engines. Micro-batching engines refer to streaming engines that partition the input stream data into 

diminutive batches, which are subsequently processed at a granular level in batches. This work 

entails the implementation of a data-driven priority scheduler on the Storm Streaming framework 

as shown in Figure 5. The Storm Streaming scheduler is adapted to conduct a thorough evaluation 

of the input dataset such that it can prioritize data elements with higher levels of significance.  
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Figure 5 Stream processing with priority-data scheduler 

 

Problem Formulation 

In light of an Edge stream processing application and workload, we endeavor to identify 

an optimal resource configuration that fulfills the specified service level objective (SLO) while 

minimizing the allocation of resources. The present study endeavors to elucidate the resource 

configurations that encompass the limits of CPU usage of containerized SPE workers, while 

simultaneously establishing the SLO target in regard to the end-to-end tail latency of a given 

application. Memory was excluded as a potential candidate for dynamic resource configuration. 

The aforementioned observation is attributable to the fact that in order to attain low latency, a 

processing element (SPE) must possess the capability to execute priority-based message 

processing procedures devoid of expensive storage operations within the crucial processing 

pathway, as inferred from a reputable source [20]. When investigating memory configuration via 

online means, it may give rise to thrashing or other unforeseeable behaviors. The problem is 

formulated in the following manner: 
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𝐶𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝑥) =  ∑ �⃗�   ×   𝑚𝑎𝑥𝑖𝑚𝑢𝑚( 𝑡𝑎𝑖𝑙𝑙𝑎𝑡𝑒𝑛𝑐𝑦 , 𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑡𝑎𝑖𝑙_𝑙𝑎𝑡𝑒𝑛𝑐𝑦) 

 

(1) 

Where 

∑ �⃗�  ≤ 𝑇𝑜𝑡𝑎𝑙_𝐶𝑃𝑈 

The present study examines the maximum central processing unit resources, denoted as 

𝐶𝑃𝑈𝑇𝑜𝑡𝑎𝑙, that an edge server can provide, along with the total cost, represented as CPU(�⃗�), that 

is associated with a given resource configuration �⃗�. The normalized CPU usage limitations of the 

SPE workers that are containerized are denoted by the vector �⃗� in academic writing. The cost 

function, denoted by 𝐶𝑃𝑈(�⃗�), accounts for possible over-provisioning of resources for 

configurations that meet or exceed the Service Level Objective (SLO) target. This consideration 

is included in order to optimize the allocation of resources and reduce unnecessary expenses. In 

the event that the SLO objective remains unattained, the tail latency measured exhibits significant 

influence over the 𝐶𝑃𝑈(�⃗�). 

Contribution of this Thesis 

The following work introduces VRebalance, which is a virtual resource management 

system designed to offer a comprehensive performance guarantee for concurrent stream processing 

applications located at the Edge. Bayesian Optimization (BO) is the method utilized by 

VRebalance to promptly identify resource configurations that minimize the infringement of 

performance Service Level Objective (SLO) targets, in terms of 95th percentile latency. It is 

significant to note that VRebalance does not necessitate any prior acquaintance with the 

application or costly workload profiling. Additionally, it successfully satisfies the performance 

service level objective (SLO) targets for priority-based workloads involving stream processing, 
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even in the presence of dynamic changes in system behavior. The experimental findings pertaining 

to an open-source Internet of Things benchmark, namely RIoTBench, and a stream processing 

engine representative of its kind, namely Apache Storm, evince the higher efficacy, resource 

optimization, and adaptability of the resource management system we have developed. The 

methodologies pursued in this investigation diverge from our own line of inquiry, which centers 

around analyzing the intricacies of prioritized stream processing in the context of a resource-

limited Edge node, utilizing a range of resource allocation methodologies. This study emphasizes 

the efficacy of adopting a data prioritization approach in conjunction with BO-driven resource 

allocation techniques, as a means of attaining superior Service Level Objective (SLO) guarantees 

pertaining to 95th percentile latency. 

Key contributions can be enlisted as: 

• The present study undertakes an examination of the constraints inherent in extant 

Stream Processing Engines (SPEs), specifically Apache Storm, with regards to their 

ability to efficaciously alter the parallelism of extant processing topologies in a swift 

manner. Additionally, we bring to the fore its suboptimal use of resources within Edge 

environments. 

• In this study, we present the development of a virtual resource orchestrator rooted in 

BO, which exhibits an awareness of Service Level Objectives (SLOs). The framework 

aims to efficiently identify and deploy configurations of resources that approach 

optimality for priority-based stream processing applications when located at the Edge. 

• An algorithm for coordinated resource configuration of concurrent priority-based 

stream processing applications has been developed. The algorithm is based on 

suggestions gathered from various BO models. In order to manage varying priority-
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based workloads, we employ an effective approach by utilizing BO models that are 

suited to specific intensity ranges of priority-based workloads. 

• This study entails the implementation and evaluation of our system through the 

application of a laboratory-scaled real testbed, utilizing an edge server employing the 

RIoT benchmark. Through empirical analysis, a comparison between a hill-climbing 

approach and Bayesian optimization (BO) reveals a reduction in the likelihood of 

latency service level objective (SLO) violations.  
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CHAPTER II 

BAYESIAN OPTIMIZATION 

The Bayesian optimization methodology constitutes an efficient strategy to optimize 

objective functions that entail a substantial time interval for evaluation, typically ranging from 

minutes to hours. The optimization technique is most appropriate for continuous domains 

comprising fewer than 20 dimensions and can effectively accommodate stochastic noise in the 

assessment of functions. This approach involves the construction of a surrogate model to represent 

the objective, coupled with the quantitative assessment of uncertainty in this surrogate employing 

a Bayesian machine learning method known as Gaussian process regression. The surrogate model 

is further employed to determine potential sampling locations through the utilization of an 

acquisition function defined from the aforementioned surrogate model. This manuscript expounds 

on the Bayesian optimization technique, highlighting the fundamental principles governing the 

approach, namely, Gaussian process regression, and three crucial acquisition functions; expected 

improvement, entropy search, and knowledge gradient. Subsequently, we expound upon 

sophisticated methodologies, encompassing the concurrent execution of numerous function 

evaluations, optimization techniques that incorporate multiple sources of fidelity and information, 

cost-intensive constraint handling, environmental vagaries, the concurrent pursuit of multiple tasks 

using Bayesian optimization, and the integration of derivative information. In conclusion, the 

present study culminates with an in-depth discourse on Bayesian optimization software, as well as 

the prospective research avenues yet to be explored in this discipline. In our instructional materials, 
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we present an extension of the concept of expected improvement in the context of evaluations that 

are subject to noise, as opposed to the typical setting of noise-free evaluations. This assertion is 

substantiated by a decision-theoretic reasoning, which conforms to a formal paradigm, and is 

divergent from antecedent makeshift alterations. 

Bayesian Optimization (BO) is employed for the purpose of optimizing objective functions 

that tend to necessitate profound assessment. The possible objective functions that can be 

optimized utilizing Bayesian optimization (BO) are comprehensively inclusive of but not limited 

to those that necessitate thorough search, exhibit computational extravagance, lack discernible 

structure, are treated as opaque entities, are bereft of derivations and may require estimation of 

gradients. The BO methodology is a multifaceted approach that possesses the capacity to assess 

black-box problems without requiring access to their derivative information. 

In contemporary times, the use of Bayesian Optimization (BO) has gained traction in the 

context of fine-tuning hyper-parameters in machine learning algorithms and associated 

methodologies [26]. The origins of Bayesian Optimization (BO) can be traced back to the seminal 

work of Kushner (1964) [27]. However, the widespread adoption of BO occurred following its 

generalization and practical implementation by Jones et al. The year 1998 marked a significant 

point in time. Drawing from the methodology documented in reference [28], subsequent scholarly 

endeavors pertaining to multi-fidelity optimization [29], multi-objective optimization [30], as well 

as convergence-rate investigations [31, 32] have advanced the frontiers of numerous research 

spheres and domains. The studies cited in references [30, 33] were directed towards the training 

of deep neural networks [34] and the implementation of parallel methodologies [35, 36]. In recent 

times, the reference cited has been reported. The aforementioned study endeavors to enhance and 
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formulate simulations utilizing discrete event simulations in an optimal and model-based 

approach, as evidenced by sources [37, 38]. 

It should be highlighted that Black-Box Optimization (BO) is not confined to a particular 

family of algorithms, but rather represents an ideological methodology for optimizing objective 

functions, which subsequently facilitates the development of numerous algorithms. Bayesian 

Optimization (BO) employs techniques grounded in the principles of Bayes' Theorem. It is worth 

noting that BO relies on a probabilistic framework that is closely linked to the objective function. 

This procedure works in two parts: 

• By using a probabilistic framework offering a surrogate function. 

• By offering an acquisition function that is grounded in a surrogate function. 

The utilization of a pre-determined acquisition function facilitates Bayesian optimization 

in exploring multiple neighborhoods within the search space while achieving a harmonious 

equilibrium between "exploration" of regions with high levels of uncertainty and "exploitation" of 

non-sampled regions exhibiting high predicted mean values on the surrogate model. 

Surrogate Function 

Statistical inference presents a structured framework for the derivation of ambiguous 

parameters within a given system, which can be substantiated by the principles of probability 

theory. In the context of inference, any quantities that are not known a priori are treated as 

stochastic variables. The surrogate function provides the most optimal approximation of the input 

samples to a resultant output score. Various techniques are available for modeling a surrogate 

function; however, the prevalent approach is regression predictive modeling. This method employs 

input data samples and generates a score representing the model's output. The most frequently 

utilized models in statistical and machine learning applications are the Gaussian Process (GP) and 
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random forest methodologies. This study employed the GP model, which operates as a 

multivariate-Gaussian for distributions of finite dimensions. The multivariate Gaussian process 

(GP) model pertains to a statistical framework that entails the estimation of the mean and standard 

deviation of a distribution. The Gaussian process model demonstrates effectiveness in the 

optimization of a substantial number of functions, while concurrently facilitating a seamless 

transition among observations. In the domain of Genetic Programming, the selection of the 

"kernel" holds significant importance as it represents a critical undertaking. The selection of the 

kernel is characterized by its ability to ensure minimal distance between any pair of points in the 

given sample size, a property that is attributable to a strong positive correlation between the pairs 

in question. As a consequence, the covariance matrix exhibits positive semi-definiteness. 

When crafting a surrogate function, one may utilize a Gaussian Process Regression (GPR) 

model that employs a Radial Basis Function (RBF) kernel of default specifications. The selection 

of the kernel is of utmost importance as the functional shape at distinct points is contingent upon 

this decision. Various kernels can be employed, with certain kernels exhibiting superior outcomes 

contingent upon the dataset utilized. Once the conceptual framework has been established, it may 

be invoked for the purpose of being configured to suit the given data set. The model is capable of 

furnishing an estimation of the cost associated with one or more input samples. The outcome of 

the provided sample will take the format of both the standard deviation and the mean of the 

distribution. In this illustrative example, the surrogate function is anticipated to execute a 

rudimentary approximation of the authentic non-corrupted objective function. Figure 6 displays 

the Ground Penetrating Radar (GPR) analysis on the test function, wherein scattered data points 

denote the noisy samples, and the continuous curve denotes the outcome of the surrogate function.  
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Figure 6 Illustration of Bayesian optimization, using Gaussian regression as a surrogate 

function 

Acquisition Function 

The surrogate function assumes the responsibility to examine potential samples, from 

which one or multiple candidates may be chosen for evaluation based on the resulting outcomes. 

The acquisition function comprises two main components, namely the selection of a search 

strategy for domain navigation and the subsequent evaluation and interpretation of score responses 

from the surrogate function. Effective search techniques for optimization problems include grid-

based sampling and random sampling. However, local search strategies such as the BFGS 

algorithm are the prevailing techniques utilized in these scenarios. The acquisition function 

leverages the probabilistic data provided by the surrogate function to determine the value of 
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assessing the presented sample. The preponderantly utilized probabilistic acquisition functions are 

typically identified as [40]: 

 

• PI: Probability Improvement.  

• LCB: Lower Confidence Bound.  

• EI: Expected Improvement. 

The PI method represents the most uncomplicated option available whilst the EI method 

stands as the preferred and prevalent technique utilized in various contexts. Employing the 

principle of Expected Improvement (EI), a decision rule known as an acquisition function is 

formulated to systematically identify the next sampling point that maximizes the projected increase 

over the present optimal solution. Due to its ability to provide a practical equilibrium between 

exploration and exploitation at a reasonable cost of valuation, VRebalance has opted to utilize EI. 

Equation 2, 3 and 4 show the calculation of each method. Acquisition function consist of 

exploitation μ(x) and exploration σ(x). 

 

𝑃𝐼 = 𝑐𝑑𝑓 ((𝑀𝑒𝑎𝑛𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒 − 𝑀𝑒𝑎𝑛𝐵𝑒𝑠𝑡)/𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛) (2) 

 

𝐿𝐶𝐵 = 𝜇(𝑥) + 𝜆𝜎(𝑥) 

 

(3) 

 

𝐸𝐼 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥 𝜇(𝑥) − 𝑓𝑚𝑎𝑥 

 

(4) 

 

The aforementioned illustration employed a rudimentary search methodology whereby a 

series of random samples were extracted from the candidate samples and subjected to thorough 

evaluation through the adoption of an acquisition function. The acquisition function attains its 
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maximum value through the selection of the sample exhibiting the highest score. The acquisition 

function assumes the responsibility of assessing the probability that a given input sample is 

meritorious of further evaluation. The PI probability function employs the standard normal 

cumulative probability distribution to determine the optimal score. The evaluation points generated 

by the BayesOpt methodology are illustrated in Figure 3. The dots depicted in the plot represent 

the random samples, while the solid line corresponds to the surrogate function's output.

 

Figure 7 Illustration of Bayesian optimization, using acquisition function to maximize the 

function 
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CHAPTER III 

METHODOLOGY 

This section elucidates an adaptive system known as VRebalance that exhibits a 

sophisticated awareness of Service Level Objectives (SLOs). This technology is devised with the 

aim of providing a robust performance assurance for Edge stream processing, particularly in the 

context of priority-linked workloads. In order to circumvent the constraints presented by the 

current Systematic Investment Plan Executives (SPEs) and the challenges inherent in the allocation 

of Edge resources, the VRebalance system employs two significant architectural tenets. To 

efficiently utilize the limited resources available, a crucial principle is to adopt resource-efficient 

and agile practices that facilitate the maximum number of applications that can benefit from them. 

This is accomplished by selectively assigning solely the essential and indispensable assortment of 

resources mandatory for attaining the service level objective (SLO) of each application. Rather 

than opting for employee expansion, VRebalance achieves this objective by dynamically 

configuring the resource utilization thresholds of SPE workers that are containerized. This 

approach successfully avoids the delay commonly encountered while attempting to rebalance a 

topology. The utilization of models possessing sufficient precision to differentiate between 

approximate and suboptimal solutions represents the secondary principle. The proposed 

VRebalance method proficiently identifies the optimal resource configurations for concurrent 

stream processing topologies without the requirement of any pre-existing proficiencies or 

significant workload profiling expenses. Specifically, the VRebalance method utilizes Bayesian 
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optimization to intelligently analyze optimal resource pairings while simultaneously monitoring 

their efficacy. Figure 8 shows the entire working of our proposed methodology, it also shows the 

interplay among different constituents of VRebalance alongside containerized SPE operatives that 

operate on an Edge node.  

 

Figure 8 Proposed Methodology 

 

Design Options for BO 

The utilization of Bayesian optimization (BO) emerges as a viable approach for enhancing 

the performance of a costly black-box function, particularly in the context of VRebalance. The 

term "blackbox" refers to an equivocal association between the input and the objective function. 

Nevertheless, this association can be inferred through systematic and empirical means such as 

experimentation, probing, and monitoring techniques. In the VRebalance framework, the 

assessment of the objective function entails the implementation of a prospective resource 
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configuration and the subsequent quantification of its effect on the end-to-end tail latency of an 

application. Undoubtedly, this procedure is characterized by a substantial cost since the repetitive 

examination of resource configurations poses the risk of non-compliance with the Service Level 

Objectives (SLOs) owing to under-provisioning, or excessive resource utilization due to over-

provisioning. The proficiency of BO lies in the ability to identify nearly optimal solutions with a 

minimal number of iterations. During the process of search space exploration, Bayesian 

optimization (BO) conducts an evaluation of the objective function utilizing various input samples, 

or configurations.  

This evaluation leads to the construction of a probabilistic model, also referred to as a 

surrogate model, which serves to estimate the performance of diverse configurations. Such an 

approach enables efficient and effective optimization of the objective function within the search 

space. Subsequently, Bayesian optimization (BO) navigates a range of neighborhoods within the 

search space by means of a pre-established acquisition function that effectively balances the dual 

objectives of "exploration" and "exploitation". The former involves venturing into areas of the 

search space where uncertainty is high, whereas the latter is aimed at leveraging regions that have 

not been previously sampled, but are expected to yield high mean values based on the surrogate 

model's predictions. 

Surrogate and Acquisition Function 

The Gaussian Process (GP) is utilized as the surrogate model to establish the 

prior/posterior distribution for the objective function. The Gaussian process (GP) is a non-

parametric model that affords a probability distribution over the entire set of potential functions 

that align with the available data. In Bayesian optimization, the definition of the prior and posterior 

distributions can be established through multiple conjugate distributions. However, the Gaussian 
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process (GP) is selected due to its inherent flexibility. Sufficient data samples enable the approach 

of the actual function, while maintaining computational feasibility. Moreover, it is widely 

acknowledged as a substitute model. Following our empirical findings, we have selected the 

RationalQuadratic kernel [39] as the optimal choice for the covariance kernel function to be 

utilized within the GP model. The measure of similarity between a pair of resource configurations 

is determined by the covariance function. The present discourse employs the nomenclatures, 

surrogate model and BO model, in a mutually exchangeable manner. 

There exists multiple approaches to devising an acquisition function. Common 

approaches comprised of probability of improvement (PI), expected improvement (EI), and upper 

confidence bounds (UCB) have been found to be effective, as indicated by previous studies [24]. 

The present study employs the concept of expected improvement (EI) in devising an acquisition 

function aimed at selecting the subsequent sampling point, with the primary objective of achieving 

maximum improvement over the existing optimum. The selection of EI for VRebalance stems 

from its capacity to strike a pragmatic equilibrium between the dimensions of exploration and 

exploitation. The efficient utilization of resources by means of cost-effective evaluation techniques 

is demonstrated through the implementation of exploitation endeavors. Alternative methods, such 

as the PI approach, have been observed to frequently encounter local optima, while the utilization 

of UCB may necessitate supplementary parametric adjustments [24]. 

Search Space Reduction, Phases, Stop Condition, and Changing Workload 

The search space has been restricted through the employment of quantization techniques 

for resource configuration, thus expediting the process of Bayesian Optimization convergence. A 

quantization step of 50 millicores, with a conversion factor of 1000 millicores per CPU core, is 

employed. Furthermore, we have ascertained the threshold values for the CPU usage parameters, 
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with the minimum and maximum limits currently set at 150 and 4,000 millicores, respectively. 

The process of quantization results in a notable decrease in the overall search range, specifically 

from 3, 850 times the number of SPE worker nodes to 77 times the same quantity, whereby the 

variable 'n' represents the aforementioned number. This is deemed a methodological approach 

commonly utilized within academic research. 

In the current experimental context, Nmin and Nmax were determined empirically to be 5 

and 16, respectively. Once VRebalance has gathered data on a minimum of N resource 

combinations, the exploration phase transitions to the exploitation phase. In the exploitation phase, 

the optimal configuration is selected by VRebalance, as identified thus far. "If there exist two 

consecutive infractions of the SLO_target parameter, the VRebalance algorithm initiates the 

recommencement of the BO search procedure." This process persists until the evaluation of Nmax 

resource configurations has been completed. Despite the occurrence of Service Level Objective 

(SLO) violations, the VRebalance system will persist in the exploitation phase, while undertaking 

an assessment of the Nmax resource configurations. The existing circumstance implies a 

deficiency in the availability of resources, and further exploration into the configuration of said 

resources may prove to be deleterious. 

We employed discrete Bayesian optimization models to cater to different levels of 

workload intensity, in order to expedite the adaptation of Bayesian optimization (BO) to evolving 

workloads. The determination of workload levels depends on the spectrum of workload intensity 

(l) in academic writing. The VRebalance system is utilized to measure and record the number of 

resource configurations observed at each value of l. Additionally, it implements the necessary BO 

model in situations where the workload intensity returns to a previously observed level. 

 



 

28 

Priority-Based Stream Processing 

In this section, we explicate our approach towards facilitating stream processing based on 

priority. A spout denotes a distinctive component determined by a user which gains access to data 

from an external origin and subsequently discharges basic unit of data or tuples into a topology 

designated for analysis. The data processing unit is commonly referred to as a "bolt". Upon the 

receipt of each record, the system processes it in an individualized manner. However, this 

particular approach does not consider the differing levels of immediate significance attributed to 

discrete data entities. Conversely, our priority-oriented stream processing system, depicted in 

figure n, takes precedence over other competing systems. The use of the method illustrated in 

Figure 9, is highly advantageous in scenarios where certain sets of data possess a higher level of 

time-sensitivity or criticality than others, thereby necessitating immediate processing. Conversely, 

other data items have the ability to accommodate relatively longer processing periods.  

The prioritization scheduler has been incorporated into the spout. Upon the ingress of data 

items into the system, a scanning mechanism is initiated to discern priority levels within the input 

stream. Each set of data tuples obtained in micro-batches is subjected to priority-based sorting, 

following which the resultant data is streamed to the remaining components of the topology. In the 

present study, a batch size of 10, 20, and 100 is employed. In the upcoming chapter, a sensitivity 

analysis pertaining to the batch size shall be presented in an academic manner. At present, the 

algorithm has the capability to accommodate three distinct levels of priority, namely low, medium, 

and high. The processing of high-priority data items is accorded precedence, with a preferential 

allocation of computing resources, whereas those classified under the categories of medium and 

low-priority are subsequently handled at a later time. This guarantees the prioritization of high-

priority tasks, and maintains their latency at a constant level, despite abrupt surges in input load. 
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This process aims to enhance the performance of the system, while also ensuring that crucial data 

pertaining to important tasks are executed punctually. Additionally, the aforementioned algorithm 

can be expanded to accommodate a larger range of priority levels, leading to enhanced precision 

in managing the processing of data items and allocation of resources.  

 

Figure 9 Priority Scheduler designed at the spout 

Algorithm 

In this particular section, the modality of line numbering derived from Algorithm 1 has 

been employed to comprehensively explain the functional mechanics of VRebalance. Every 

program that is operational on the Edge server has its data accumulated by the Performance 

Monitor, wherein the sampling interval is set to one minute. The computation of the throughput of 

a topology involves the utilization of the number of tuples generated by the downstream 

components that are situated at the greatest distance in the system. By assigning a unique identifier 

to each tuple and calculating the time difference between the recorded timestamps at the source 

and destination, it becomes feasible to ascertain the end-to-end latency of a topology. During 
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multiple iterations, VRebalance may shift between the exploration and exploitation phases. The 

allocation of resources and identification of service level objective violations thus far documented 

(lines 6-10) will determine future actions. The Bayesian Optimization Engine employs a process 

of updating the workload-specific BO model for a particular application using observed data 

gathered during the exploration phase (lines 7-9). Subsequently, the acquisition function of the 

engine is employed to identify a prospective 𝑐𝑝𝑢𝑎
𝑗
 value for the desired resource configuration that 

will be subject to assessment. During the exploitation phase (as depicted in lines 9-10), 

VRebalance selects the most advantageous configuration that has been identified for an application 

at a given level of workload, while disregarding the BO models. It is necessary to rephrase the 

given text in a scholarly and formal manner: "Line 10 of the aforementioned text mandates the 

need for its rephrasing in the context of academic writing." The Co-ordinated Virtual Rebalancer 

is responsible for determining the optimal allocation of CPU power for the set of applications 𝐴𝑝𝑝𝑗
′  

(line 11) in an integrated and systematic manner. Therefore, it is imperative to identify appropriate 

resource configurations for these applications at an early stage. Subsequently, it discerns the 

comprehensive central processing unit (CPU) resources that are necessitated by the extant 

applications, in conjunction with the quantum of residual CPU resources that would subsist 

following the distribution of the finalized CPU resources (as denoted in lines 12-13). In cases 

where the need for CPU resources of a program surpasses the current availability of resources, 

allocation of resources to each remaining program is performed proportionally according to their 

respective needs. (line 15) The potential need to increase the number of nodes arises if there 

persists a recurrent occurrence of SLO violations across multiple time periods. By utilizing the 

cgroup CPU subsystem, it becomes possible to modify the resource configuration of individual 
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applications. This is achieved by accessing the appropriate directory at 

(/sys/fs/cgroup/cpu,cpuacct/kubepods/burstable/pod/cpu.cfs quota us). 

 

Algorithm:1 Algorithm for Virtual Rebalancing of Priority-Based Data on Edge Node 

1. Resource configuration is performed for each application that is denoted by 𝐴𝑝𝑝𝑖 if 

finalized for each interval j  

2. for j =1 to ∞  do: 

3:  𝐴𝑝𝑝𝑗 → {Apps executing on the edge server | a} →;   𝐴𝑝𝑝𝑗
′   ∅; 

4:  for all a ∈ 𝐴𝑝𝑝𝑖 do: 

5:   Priority-based workload (tuple per minute) using priority-scheduler at spout 

→ 𝑤𝑎 ; 

Performance score calculation (latency, throughput) → 𝑝𝑎 ; 

6:   if (𝐵𝑂_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑤𝑎  < 𝑁𝑚𝑖𝑛 )  or ( 𝑁𝑚𝑎𝑥 > 𝐵𝑂_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑤𝑎  and two 

consecutive violations of SLO_target happens)   then: 

7:   𝐵𝑂_𝑚𝑜𝑑𝑒𝑙 𝑤𝑎 will be updated using  𝑝𝑎 𝑎𝑛𝑑 𝑐𝑝𝑢𝑎
𝑗−1

 ; 

8:   𝑐𝑝𝑢𝑎
𝑗

 → Ask for next CPU configurations from 𝐵𝑂𝑚𝑜𝑑𝑒𝑙
 𝑤𝑎 

according to equation 1;  else 

9:   𝑐𝑝𝑢𝑎
𝑗

  ;Best configuration observed for workload w 

𝐴𝑝𝑝𝑗
′  → 𝐴𝑝𝑝𝑗

′  ∪ {a} 

End 

10:  end for 

11:  𝑐𝑝𝑢𝑓𝑖𝑛𝑎𝑙 → ∑ 𝑐𝑝𝑢𝑎
𝑗
  ; 

12:  𝑐𝑝𝑢𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 → 𝑐𝑝𝑢𝑡𝑜𝑡𝑎𝑙  -  𝑐𝑝𝑢𝑓𝑖𝑛𝑎𝑙   ; 

13:  ∑ 𝑐𝑝𝑢𝑎
𝑗

𝑎∈ 𝐴𝑝𝑝𝑗 −𝐴𝑝𝑝𝑗
′   → 𝑐𝑝𝑢𝑛𝑒𝑒𝑑   ; 

14:  for all a ∈ 𝐴𝑝𝑝𝑖 do: 

15:   if (𝑐𝑝𝑢𝑛𝑒𝑒𝑑   > 𝑐𝑝𝑢𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 )    then: 

cpu  →  
𝑐𝑝𝑢𝑎

𝑗

𝑐𝑝𝑢𝑛𝑒𝑒𝑑 
⁄  x 𝐶𝑃𝑈𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒  

16:   Else 

CPU → 𝑐𝑝𝑢𝑎
𝑖  

End 

17:   Use Cgroup to update the CPU resources for application a; 

18:  end for 

19: end for 
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CHAPTER IV 

EVALUATION AND RESULTS 

The present chapter undertakes an evaluation of the stream processing engine that was 

developed, leveraging a prototype and measurement methodology, with the goal of ascertaining 

its performance under two distinct scenarios. The primary scenario entails a static workload, while 

the secondary scenario involves a dynamic workload. 

Experiment Testbed 

Dataset 

We utilized two Internet of Things (IoT) datasets, namely Sense your City [44] and NY 

city taxi trips [45]. The present study concerns the data stream of Sense your City (CITY), which 

represents real-life information gathered from a network of crowd-sourced sensors that were 

deployed across seven cities in three different continents. Each city was equipped with 

approximately 12 sensors, according to the report by [46]. The study records six consecutive 

timestamped observations encompassing temperature, humidity, ambient light, sound, dust, and 

air quality. Each minute, the sensors capture these measurements alongside metadata on the sensor 

identifier and its geographic location. The dataset entitled "New York City Taxi Trips (TAXI)" 

provides a continuous flow of intelligent transportation data stemming from 2 million taxi trips 

that occurred in 2013 involving 20,355 taxis in New York City, all of which are equipped with 

GPS technology. Each excursion furnishes information on both the commencement and 

termination dates, particulars regarding the hired taxi including its license number, as well as 
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details pertaining to the initial and concluding geographic coordinates alongside the timestamp. 

Furthermore, the recorded distance, as quantified by the taximeter, as well as the precise amount 

of incurred taxes and tolls are also cataloged. The benchmark runs in this study utilized aggregated 

data from January 2013, as outlined in sources [47] and [48]. In this study, the CITY dataset was 

utilized for generating a static workload, while the TAXI dataset was employed for generating a 

dynamic workload. 

Configurations at Edge Node 

A prototype testbed was established in order to simulate an Internet of Things (IoT) 

Gateway. This was accomplished by employing a Ubuntu 16.04 machine that boasted 4 central 

processing unit (CPU) cores and 8 gigabytes (GB) of random access memory (RAM). In the 

present study, Docker container engine (Version 18.06.2-ce) and Kubernetes (Version 1.18.2) 

container orchestration system were employed for the deployment of an Apache Storm cluster 

comprised of a total of 12 containers. Two of the containers were allocated for Nimbus and 

Zookeeper, while the remaining containers were operational as worker nodes. During the course 

of our empirical investigations, the containers under scrutiny were subjected to a standard initial 

CPU limit of 400 millicores, which is equivalent to 0.4 CPU cores. Furthermore, the designated 

CPU requirement for these containers was established at 200 millicores. 

RIOTBench Benchmark 

The study employed the utilization of the RIoTBench benchmark suite [46], encompassing 

a total of four distinct IoT applications categorized in accordance with prevalent IoT patterns, 

geared towards executing tasks within the realm of data pre-processing, statistical summarization, 

and predictive analytics. The distinct applications of ETL (Extraction, Transform, and Load) and 
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PRED (Predictive Analytics) were selected to thoroughly dissect the provided datasets, as depicted 

in Figures 10 and 11. It is necessary to utilize a formal tone and appropriate language in academic 

writing to convey information effectively to a specific audience. Therefore, the text should be 

revised to adhere to these conventions. The utilization of the two alternative applications (namely: 

STATS and TRAIN) is eschewed as a result of their integration with public cloud services, which 

renders them unsuitable for the prompt Edge stream processing objectives. In order to generate a 

dynamic workload in the conducted experiments, an adaptation was made to the input generator 

of RIoTBench as follows. In a recurring interval of one minute, the input generator supplies 

numerous batches of data, each containing a constant number of tuples (i.e., 10), to the source task 

(Spout) of the Storm system. The present study incorporates data batches which are subject to 

random delays that conform to a Poisson distribution, as reported in previous literature [49]. Data 

batches are adjusted at regular intervals in order to modify the level of workload intensity. 

 

Figure 10 Layout of ETL (Extraction, Transform, and Load) topology. 
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Figure 11 Layout of PRED (Predictive Analytics) topology 

Measurement of Throughput and Tail Latency 

Determining the 95th-percentile latency can be efficiently achieved through the 

organization of all recorded latencies per tuple in ascending order, followed by the retrieval of the 

value located at the 95/100th position. Nonetheless, it is noteworthy that this approach incurs a 

considerable overhead in situations where the rate of arrival of workload is high. The prevalent 

concern is effectively tackled by invoking the employment of a histogram approximation 

methodology as outlined in reference [50]. Rather than retaining and arranging all the values, we 

categorize them into clusters. The sampling interval employed in this study is one minute, resulting 

in latency values that will fall within the range of 0 to 60,000ms. The application of histogram bins 

with logarithmically increasing intervals, ranging from 1ms to 60,000ms, is feasible, including (0-

1ms], (1,2ms], (2,4ms], ..., and (512, 1024ms], among others. Increasing the duration to 65536 

milliseconds, a value representing 216, would result in the formation of 18 bins. Each bin will 

register the quantity of values that pertain to its specified range. Therefore, the requirement is 
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limited to storing only 18 counts as opposed to indefinitely preserving the latency values. Table 1 

exemplifies this approach. The initial column denotes the bin's range, while the second column 

indicates the count of values encompassed by the bin. The third column depicts a cumulative sum 

of observed counts up until the corresponding row. The eCDF(x) denotes the empirical cumulative 

distribution function, which is computed by dividing the running total by the aggregate of all 

counts. In the present illustration, the 95th-percentile latency falls within the range of 128ms and 

256ms. Linear interpolation is employed to determine the precise location of the value at 136.7ms 

within the bin. The efficacy of this aforementioned technique is contingent upon the quantity of 

bins employed. To augment the precision of our results, we increased the quantity of bins utilized 

from 18 to 36. The present technique offers a favorable balance between swiftness and precision.  

Table 1 Example of histogram bins for tail-latency calculation 

Range Count Total eCDF 

… … … … 

(4ms, 16ms) 1026 5152 44.4% 

(16ms, 32ms) 2011 7163 61.8% 

(32ms, 64ms) 1346 8509 73.4% 

(64ms, 128ms) 409 8918 76.9% 

(128ms, 256ms) 984 9902 85.4% 

(256ms, 512ms) 356 10258 88.5% 

(512ms, 1024ms) 1298 11556 98.1% 

… … … … 

 

Evaluation under Static Workload 

The present study assesses the performance and resource efficiency of a resource 

management system based on Bayesian optimization (BO) in the context of a static workload of 

90,000 tuples per minute as shown in Figure 12. In order to accomplish this objective, the CITY 
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dataset and an extract, transform, and load (ETL) topology as depicted in Figure 3.1 are employed. 

To facilitate a comparison of performance, we apply a hill climbing-based search approach with 

varying step sizes (i.e., HC-50 and HC-200) in order to determine the optimal configuration of 

resources. In addition to our utilization of the Storm Rebalance technique in its unaltered form 

(SR1), we also employ the technique while implementing executor scaling (SR2). Both SR1 and 

SR2 introduce an additional worker to the Storm cluster every half hour. 

In the domain of CPU resource allocation, the BO technique, as expounded in VRebalance 

[51], is utilized with the central objective of fulfilling the service level objective (SLO) of 200 

milliseconds. The results presents evidence of the efficacy of the priority scheduler in the 

prevention of service level objective (SLO) violations for high priority data that is obtained at two-

hour intervals. Based on the findings of Figure 13, it is evident that the absence of the priority 

scheduler leads to susceptibility of high priority data to Service Level Objective (SLO) violations, 

owing to the variance observed in the 95th percentile latency. In contrast, the data presented in 

Figure 14 indicate a significant divergence from the aforementioned results. The findings of Figure 

14 indicate that the priority scheduler successfully preserved the 95th percentile latency within the 

SLO threshold of 100 ms.  The results of the study shown in Table 2 and 3 support the notion that 

implementing a data scheduler based on prioritization can sufficiently guarantee uninterrupted 

operation for data of higher priority and preclude any potential transgressions in Service Level 

Objectives (SLOs). 
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Figure 12 Static Workload 

 

 

Figure 13 95th percentile latency for ETL topology with TAXI dataset under static workload 

without priority scheduler 
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Figure 14 95th percentile latency for ETL topology with TAXI dataset under static workload 

with priority scheduler 

 

Table 2 Static workload results without priority scheduler (%) 

Priority Level BO HC-200 HC-50 CPU-400 CPU-4000 

Low Priority 3.6 15.11 25.45 29.96 28.67 

Medium Priority 4.3 24.63 19.84 26.78 25.46 

High Priority 2.1 28.71 23.32 17.79 29.21 

 

Table 3 Static workload results with priority scheduler (%) 

Priority Level BO HC-200 HC-50 CPU-400 CPU-4000 

Low Priority 8.6 28.76 34.43 48.36 54.59 

Medium Priority 3.4 16.24 22.32 21.63 25.41 

High Priority 0 0 0 0 0 
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The research findings in Figure 15 and 16, suggests that BO surpasses all alternative 

methods by achieving the SLO target rapidly. As illustrated in the bar chart presented in Figure 

17, the employment of the tactic results in a reduction of the rate of SLO violations by no less than 

24% when compared to the utilization of the hill climbing approach. The susceptibility of the hill 

climbing approach to decision-making primarily grounded in the localized behavior of the 

objective function is the underlying cause of this phenomenon. On the contrary, Bayesian 

Optimization (BO) facilitates the making of more informed decisions through the utilization of a 

data-driven approach that models the global behavior of the objective function based on a sample 

of available data. The utilization of BO exhibits a notable reduction in the rate of SLO violation, 

achieving an 85.1% decline in comparison to the Storm Rebalancing approach. The efficacy of tail 

latency reduction of SR1 and SR2 appears to be impeded by the overheads inherent in the process 

of rebalancing the ETL topology upon the addition of new workers. It is noteworthy to mention 

that augmenting the number of workers results in an escalation in the inter-process communication 

cost. In contrast to Storm Rebalance, our approach of updating Container CPU limits yields an 

instantaneous effect on the tail latency. 

 

Figure 15 Bayesian Optimization vs Hill Climbing method 
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Figure 16 Bayesian Optimization vs Hill Climbing method 

 

Figure 17 SLO Violation rate under Static Workload 
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Evaluation under Dynamic Workload 

The current study seeks to determine the influence of prioritized scheduling on Service 

Level Objective (SLO) infractions of numerous concurrent applications operating amidst 

fluctuating workload dynamics. As evidenced by the illustration in Figure 18. The entities ETL-

CITY and PRED-TAXI are subject to fluctuating workloads, in contrast to ETL-TAXI and PRED-

CITY, which operate under static workloads. The entirety of the tasks involved spans a duration 

of 24 hours and comprises recurring patterns. In this study, a comparative analysis was performed 

on dynamic resource allocation techniques, including VRebalance [4] BO, and Hill Climbing 

utilizing two distinct step sizes (50 millicore and 200 millicore). Additionally, a static resource 

allocation approach was also assessed using two varying levels of resource allocation (400 

millicore and 4000 millicore), representing partial and full resource utilization, respectively. 

 

Figure 18 Both static and dynamic workloads. Throughput is measured in tuples per minute 

and shown in log scale 
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In Figure 19, a comparison is made of the rates of SLO violations across all methods. It is 

essential to understand the significant impact that technology has bestowed upon our daily lives. 

Modern advancements have redefined the way we communicate, work, and access information, 

rendering traditional methods obsolete. The reliance on technology has reached unprecedented 

levels, with an increasing number of individuals using it as a fundamental tool for almost all 

aspects of their lives. As such, it is imperative to recognize the undeniable role technology plays 

in our society and its ongoing evolution. Table 4 and 5 presents a comparative analysis of the 

reduction in SLO violation rate brought about by BO in relation to HC-200, HC-50, CPU-4000, 

and CPU-400 with and without priority scheduler. The utilization of Bayesian optimization (BO) 

exhibits a noteworthy reduction in the rate of service level objective (SLO) violations, ranging 

from 53% to 60% in comparison to the hill climbing approach, and ranging from 55.7% to 72% in 

comparison to the static resource allocation method. The CPU-400 is plagued by significant 

violations of Service Level Objectives (SLOs) as a result of being inadequately provisioned to 

handle escalating workloads, as demonstrated by the ETL-taxi software. In relation to the CPU-

4000, it can be inferred that every application is granted unhampered utilization of the entire 

computational resources offered by the Edge server, provided that such capacity is feasible. 

Consequently, the competition for central processing unit (CPU) resources and the interference 

that arises between applications under conditions of elevated workloads lead to a number of 

violations of service level objectives (SLOs). In comparison to BO, the hill climbing approaches 

(HC-200 and HC-50) exhibit inferior performance as a result of the inadequacy of a comprehensive 

model for the behavior of the objective function. 
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Figure 19 SLO Violation rate for all applications 

 

Table 4 Improvement in SLO violation rate using BO without priority scheduler (%) 

vs HC-200 HC-50 CPU-400 CPU-4000 

BO-Exploration 60.1 60.48 64 72.4 

BO-Exploitation 59.28 59.18 58.24 70.8 

 

Table 5 Improvement in SLO violation rate using BO with priority scheduler (%) 

vs HC-200 HC-50 CPU-400 CPU-4000 

BO-Exploration 53.6 53.1 55 66.4 

BO-Exploitation 52.28 52.28 53.24 65.8 
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The bar charts presented in Figures 20-27 and Tables 6 and 7, we analyzed the incidence 

of SLO violations associated with various resource allocation techniques, both with and without 

the incorporation of priority scheduling. The findings presented in Figure 20, 22, 24, and 26 

demonstrate that, when priority scheduling is not implemented, all resource allocation techniques 

result in breaches of service level objectives for all types of data and applications. The ETL-CITY 

system experiences SLO violations of as much as 30% even for data that is deemed to be of high-

priority. On the other hand, it is worth noting Figures 21, 23, 25, and 27. The findings of the study 

indicate that the priority scheduler demonstrates the capability to effectively diminish the SLO 

violation rate pertaining to high-priority data for various applications and resource allocation 

techniques, achieving a rate of 0%. Based on empirical analysis, it has been determined that BO 

utilizing priority scheduling exhibits superior aggregate performance, leading to SLO violations 

of no more than 8.5% for low-priority data and 3% for medium priority data.  

 

Table 6 SLO violation for each app without priority (%) 

App BO-

exploration 

BO-

exploitation 

HC-200 HC-50 CPU-400 CPU-

4000 

ETL-City 10.93 9.33 68.45 68.61 74.53 83.34 

ETL-Taxi 8 9 3 2 1.8        1.9 

PRED-CITY 7.9 11.7 3.5 2.2 1.5 1.7 

PRED-Taxi 8 11.1 3 2 1.1 1.5 
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Table 7 SLO violation for each app with priority (%) 

App BO-

exploration 

BO-

exploitation 

HC-200 HC-50 CPU-400 CPU-

4000 

ETL-City 14.91 14.11 68.11 67.61 69.59 80.91 

ETL-Taxi 7.4 6.8 2.7 1.45 1.31      1.87 

PRED-CITY 6.6 6.1 3.5 1.9 1.5 1.7 

PRED-Taxi 8.9 11.2 3.6 2.8 1.7 2.7 

 

Figure 20 SLO violation without priority scheduler. ETL-CITY 

 

Figure 21 SLO violation without priority scheduler. ETL-CITY 
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Figure 22 SLO violation without priority scheduler. ETL-TAXI 

 

 

Figure 23 SLO violation with priority scheduler. ETL-TAXI 
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Figure 24 SLO violation without priority scheduler. PRED-CITY 

 

 

Figure 25 SLO violation with priority scheduler. PRED-CITY 
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Figure 26 SLO violation without priority scheduler. PRED-TAXI 

 

 

Figure 27 SLO violation with priority scheduler. PRED-TAXI 
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Evaluation for Different Batch sizes 

The selection of batch size is a crucial determinant that could drastically influence the 

effectiveness and productivity of a stream processing infrastructure. This study aims to analyze 

the SLO violation rates in the context of BO with priority scheduling using various batch sizes. 

The present study demonstrates that, across all considered applications, the implementation of a 

batch size of 10 yields lower rates of SLO violation compared to that of a batch size of 100 as 

shown in Figures 28 and 29. The employment of a batch size of 10 leads to a considerable decrease 

in the incidence of Service Level Objective (SLO) violations, with reductions of approximately 

55% and 30% observed for low- and medium-priority data correspondingly. When considering 

high-priority data, the violation rate of the Service Level Objective is found to be 0% for both 

batch sizes. In general, the reduction of batch sizes enables more frequent system updates, which 

in turn results in expedited processing times of individual data items. Timely updates play a critical 

role in real-time processing, highlighting their significance. However, in the case of an insufficient 

batch size, the efficacy of priority scheduling may be considerably diminished. In the most critical 

scenario, a singular batch size will have the same effect as the deactivation of prioritization 

scheduling. Conversely, augmented batch sizes have the potential to yield greater latency within 

the system as data units necessitate deferral for processing until the whole batch is finished. The 

present study employs a batch size of 10 as it effectively achieves an optimal equilibrium between 

prompt responsiveness and differential treatment of data items according to their respective 

priorities. 
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Figure 28 SLO violation rate for medium-priority data for all apps. 

 

 

Figure 29 SLO violation rate for low-priority data for all apps 
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

The present study introduces VRebalance, a virtual resource orchestrator that offers a 

comprehensive performance assurance for concurrent stream processing tasks in an Edge 

computing setting that is resource-limited. The primary focus of our efforts involved devising and 

enacting a resource management system of high agility and efficacy, drawing inspiration from BO 

as its foundation. The present study endeavors to examine the influence of data prioritization on 

the operational efficiency and resilience of pivotal applications within stream processing 

frameworks that operate under resource limitations at the Edge. The present study indicates that 

the adoption of a priority-based organizing system for data and subsequent processing of 

information has the potential to considerably enhance the effectiveness and robustness of the 

system. This work pertained to the performance analysis of the priority scheduler, with emphasis 

on its ability to handle high-priority data in RIoTBench applications running concurrently. Of 

particular interest was the 95th percentile latency, and it was observed that the said scheduler was 

able to achieve a 0% violation rate of the Service Level Objective (SLO) metric. 

In future research, an examination will be conducted on the union of priority scheduling 

and load shedding in order to mitigate congestion and address increasingly intricate scenarios. The 

implementation of load shedding can facilitate the discerning exclusion of incoming data during 

periods characterized by heightened congestion, thereby diminishing the system's burden and 

averting an overtaxed state. Overall, it is imperative to conduct a thorough evaluation of the 
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compromises associated with processing efficacy and potential loss of data when incorporating 

load shedding. It is of critical importance to consider the potential impacts of dropping essential 

data, as such actions may have substantial repercussions in particular applications. In general, the 

amalgamation of priority scheduling and load shedding presents a prospect for acquiring 

significant knowledge on how to effectively manage congestion and enhance the efficacy of stream 

processing systems. Accordingly, our future endeavors involve the exploration of these techniques 

through a concentrated lens on assessing their efficacy, discerning potential compromises, and 

unearthing the most suitable setups for designated utilization scenarios. 
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