
This document is downloaded from the
VTT’s Research Information Portal
https://cris.vtt.fi

VTT
http://www.vtt.fi
P.O. box 1000FI-02044 VTT
Finland

By using VTT’s Research Information Portal you are bound by the
following Terms & Conditions.

I have read and I understand the following statement:

This document is protected by copyright and other intellectual
property rights, and duplication or sale of all or part of any of this
document is not permitted, except duplication for research use or
educational purposes in electronic or print form. You must obtain
permission for any other use. Electronic or print copies may not be
offered for sale.

VTT Technical Research Centre of Finland

Agile and Holistic Medical Software Development
Lähteenmäki, Jaakko; Ahola, Pasi; Baraian, Andrei; Förger, Klaus; Granlund, Tuomas; Hopia,
Jani; Kaikkonen, Risto; Mikkonen, Tommi ; Niemirepo, Timo; Pajula, Juha; Partanen, Jari;
Pellinen, Timo; Stirbu, Vlad; Torhola, Mika

Published: 13/02/2023

Document Version
Publisher's final version

Link to publication

Please cite the original version:
Lähteenmäki, J. (Ed.), Ahola, P., Baraian, A., Förger, K., Granlund, T., Hopia, J., Kaikkonen, R., Mikkonen, T.,
Niemirepo, T., Pajula, J., Partanen, J., Pellinen, T., Stirbu, V., & Torhola, M. (2023). Agile and Holistic Medical
Software Development: Final report of AHMED project. VTT Technical Research Centre of Finland. VTT
Research Report No. VTT-R-01079-22

Download date: 20. Feb. 2023

https://cris.vtt.fi/en/publications/9cd29f7b-bcc0-4b7a-98b6-5e3e8cc3596e

RESEARCH REPORT VTT-R-01079-22

Agile and Holistic Medical Software
Development

Final report of AHMED project

Authors: Jaakko Lähteenmäki (editor), Pasi Ahola, Andrei Baraian,

Klaus Förger, Tuomas Granlund, Jani Hopia, Risto Kaikkonen,
Tommi Mikkonen, Timo Niemirepo, Juha Pajula, Jari Partanen,
Timo Pellinen, Vlad Stirbu, Mika Torhola

Confidentiality: Public

Date: 13.02.2023

 RESEARCH REPORT VTT-R-01079-22

1 (53)

Report’s title

Agile and Holistic Medical Software Development – Final report of AHMED project

Customer, contact person, address Order reference

Pekka Ollikainen, Business Finland 27048/31/2020 (BF)

Project name Project number/Short name

Agile and Holistic Medical Software Development (AHMED) 126 VTT-R-01079-22

Author(s) Pages

Jaakko Lähteenmäki (editor), Andrei Baraian, Timo Niemirepo, Juha Pajula (VTT)
Pasi Ahola (Taipuva Consulting)
Klaus Förger, Mika Torhola (Atostek)
Tuomas Granlund, Risto Kaikkonen (Solita),
Jani Hopia (Terveystalo)
Jari Partanen (Bittium)
Timo Pellinen (Mylab)
Vlad Stirbu (University of Helsinki)
Tommi Mikkonen (University of Helsinki / University of Jyväskylä)

53/

Keywords Report identification code

MDR, IVDR, artificial intelligence, machine learning, MLOps, RegOps VTT-R-01079-22

Summary

AHMED is a co-innovation project (https://www.regops.fi/) with six companies (Atostek, Bittium, Mylab, Solita, Taipuva

Consulting and Terveystalo) and two research organisations (University of Helsinki and VTT). This report provides

summarized results of the AHMED project focused on research, development and adoption of solutions for efficient

production of data-driven applications for healthcare. The project particularly addressed challenges related to the usage of

artificial intelligence, machine learning and personal data in regulated medical software. We present experiences and best

practices for transition to the new medical device regulation (MDR), AI/ML compliant RegOps models, tools and toolchains

for medical software development, healthcare register data usage for innovative applications and traceability approaches for

research and AI/ML model development.

Confidentiality Public

Espoo 13.02.2023

Written by

Jaakko Lähteenmäki

Principal Scientist

 Reviewed by

Mika Hilvo

Research Team Leader

VTT’s contact address

Jaakko Lähteenmäki, Teknologian tutkimuskeskus VTT Oy, jaakko.lahteenmaki@vtt.fi

Distribution (customer and VTT)

Business Finland, AHMED project partners and external steering group members.

Open distribution to all interest parties.

The use of the name of “VTT” in advertising or publishing of a part of this report is only permissible

with written authorisation from VTT Technical Research Centre of Finland Ltd.

https://www.regops.fi/

 RESEARCH REPORT VTT-R-01079-22

2 (53)

 RESEARCH REPORT VTT-R-01079-22

3 (53)

Preface

The AHMED co-innovation project responds to several major trends affecting the development of software
based innovations for healthcare. Artificial intelligence and machine learning are increasingly used in
healthcare applications and information systems. Sensitive personal data is in many cases needed already
in the software development phase. At the same time, there is a need for improving productivity by
employing agile software development methods. These trends are challenging from the regulated medical
software perspective, which assumes waterfall type development processes and rigorous acceptance
procedures for software changes. For many companies these challenges are acute as the deadlines
concerning the transition to the new medical device regulation are rapidly approaching.

The AHMED project started in July 2020 with six industrial partners (Atostek, Bittium, Mylab, Solita,
Taipuva Consulting and Terveystalo) and two research partners (University of Helsinki and VTT). This
report provides a summary of project results achieved by the end of 2022 when most partners completed
their part of the project. Atostek, Taipuva, University of Helsinki and VTT continue their project activities
still during 2023.

We are grateful for the support of Business Finland which was essential for the realization of the co-
operative project and for the dissemination of the results to a wider audience. We also extend our warm
thanks to all AHMED steering group members for their excellent co-operation and guidance throughout
the project.

Espoo 13.02.2023,

Authors

 RESEARCH REPORT VTT-R-01079-22

4 (53)

Contents

Preface ... 3

Contents ... 4

1. Introduction .. 6

2. Experiences on MDR transitions .. 8

2.1 MDR transition periods ... 8

2.2 Bittium experience on MDR certification process .. 8

2.3 Early stage reflections of AI/ML themes .. 9

2.4 MDR from Terveystalo perspective ... 9

2.5 IVDR from Mylab perspective ... 10

3. RegOps Lifecycle for AI/ML compliance .. 12

3.1 Overview .. 12

3.2 Objectives... 12

3.3 Key outcomes ... 13

3.3.1 Regulatory landscape ... 13

3.3.2 Continuous training of AI/ML in a regulated environment .. 14

3.3.3 RegOps Lifecycle for AI/ML ... 16

3.4 Business opportunities.. 17

4. Methodologies and tools for developing medical device software .. 18

4.1 Overview of activities .. 18

4.2 Medical software development processes and regulatory Background 18

4.3 True RegOps cycle ... 19

4.4 Tools .. 20

4.4.1 GitHub and GitLab – software development, version control and task management ... 21

4.4.2 Polarion – for planning, management and documentation ... 21

4.4.3 JIRA, Confluence – agile project management and documentation 22

4.5 Out-of-the-box process for software development .. 22

4.6 Traceability ... 23

4.7 Reusable process for tool chain validation .. 25

4.8 Challenges in building multitool RegOps tool chains ... 26

4.9 Considerations on using ML technology in medical devices ... 28

4.9.1 Model cards as ML development ledger .. 28

4.9.2 Multi-organization ML development ... 29

5. Data exploitation challenges .. 30

5.1 Overview .. 30

5.2 Goals .. 30

5.3 Methods ... 30

5.4 Challenges ... 30

5.5 Outcome ... 31

6. Research and ML model development for medical device software ... 32

 RESEARCH REPORT VTT-R-01079-22

5 (53)

6.1 Overview .. 32

6.2 Machine learning model development using sensitive personal data 32

6.2.1 General ... 32

6.2.2 Use case: health and social services decision support .. 33

6.2.3 Secure processing environment .. 33

6.2.4 ETL and analysis scripts ... 34

6.2.5 Ensuring traceability .. 35

6.2.6 Data version control tools .. 38

6.3 DevOps tools supporting ML based health monitoring solution ... 39

6.3.1 General ... 39

6.3.2 Tools ... 39

6.3.3 Reference system ... 40

6.3.4 Integrated system .. 41

6.3.5 Requirements and issues management .. 42

6.3.6 Continuous integration and deployment .. 43

6.4 Development of ML based machine vision for medical purposes .. 43

6.4.1 General ... 43

6.4.2 Image enhancement using AI for endoscopic imaging... 43

6.4.3 DVC and Gitlab in supporting image data control .. 44

7. Conclusions ... 47

References ... 49

Annex 1: Terms and Acronyms ... 52

 RESEARCH REPORT VTT-R-01079-22

6 (53)

1. Introduction

Agile software development has become the dominant approach in modern software production. The agile
development model emphasizes incremental delivery, team collaboration and continuous planning,
instead of waterfall type planning and static documentation. Productivity is enhanced further by applying
DevOps practices, targeted to improve collaboration between development and IT operations teams [1].

Agile software and DevOps approaches aim at faster software development cycles and continuous
deployment. This contradicts the regulatory requirements in safety critical application areas, such as
healthcare, where regulatory compliance of a product is based on rigorous risk management and release
acceptance processes. Typically, a new regulatory acceptance is needed whenever the product has been
changed.

The legal and regulatory requirements of medical devices are set out in the Medical Device Regulation
745/2017 (MDR) and in Vitro Diagnostic Device Regulation 746/2017 (IVDR) [2], [3]. Medical device
software is software that is intended to be used, alone or in combination, for a purpose as specified in the
definition of a “medical device” in the MDR or IVDR. Food and Drug Administration (FDA) is responsible
for the corresponding regulation in the United States, where the term Software as a Medical Device
(SaMD) is used for regulated medical software [4].

There is a growing interest towards the use artificial intelligence and machine learning (AI/ML) to improve
healthcare [5]. These technologies are extensively used for automatic medical image analysis for
supporting and improving human interpretation. AI/ML is increasingly also used to support precision
medicine by predicting patient outcomes, identifying patients with elevated risk and suggesting most
favourable care pathways and services for patients. AI/ML models empower decision support applications
providing guidance to healthcare professionals and patients [6]–[8].

The increasing use of AI/ML in healthcare is especially challenging from regulatory perspective as such
applications would need to be frequently updated when new data becomes available1 [9]–[11]. The specific
practices for trustworthy and efficient deployment and maintenance of AI/ML based solutions in production
are referred as MLOps [12].

Traceability of software product versions is an important regulatory requirement, but difficult to achieve in
AI/ML based application development. This is especially the case when personal data is needed for AI/ML
model development due to the limitations for data access implied by the General Data Protection
Regulation (GDPR)2 and the specific legislation on secondary use of data3 [13]. Additional requirements
for AI/ML based applications are set out in the Artificial Intelligence Act, a new regulatory proposal by EU
[14]. After approved, the Artificial Intelligence Act will considerably affect the development, marketing and
use of AI/ML based applications.

In addition to the international regulation, also national regulation may apply to the use of medical software
in the national healthcare information system infrastructure4. For example, all information systems and
applications to be connected with the Finnish national Kanta architecture, need to pass a specific process
to demonstrate compliance with the related essential requirements [15].

For efficient production of high-quality medical software it is essential to fully understand the regulatory
requirements and to integrate them closely with the software development pipeline. Such integration, also

1 https://futurium.ec.europa.eu/en/european-ai-alliance/document/artificial-intelligence-medical-device-legislation
2 EUR-Lex - 32016R0679 - EN - EUR-Lex (europa.eu)
3 Laki sosiaali- ja terveystietojen toissijaisesta… 552/2019 - Säädökset alkuperäisinä - FINLEX ®
4 https://health.ec.europa.eu/other-pages/basic-page/overview-national-laws-electronic-health-records-eu-member-
states-2016_en

https://futurium.ec.europa.eu/en/european-ai-alliance/document/artificial-intelligence-medical-device-legislation
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://www.finlex.fi/fi/laki/alkup/2019/20190552
https://health.ec.europa.eu/other-pages/basic-page/overview-national-laws-electronic-health-records-eu-member-states-2016_en
https://health.ec.europa.eu/other-pages/basic-page/overview-national-laws-electronic-health-records-eu-member-states-2016_en

 RESEARCH REPORT VTT-R-01079-22

7 (53)

referred as RegOps1, requires new processes, tools and skills to be developed by the organizations
involved in the development of medical software. The objective of the AHMED project was to research,
identify, share and adopt solutions and best practices for efficient production of data-driven applications
for healthcare. The AHMED project creates continuous software engineering approaches enabling efficient
development of regulation-compliant applications for healthcare. In particular, the project seeks best
practices for data-driven application development under medical device regulation.

The project partners include six companies (Atostek, Bittium, Mylab, Solita, Taipuva Consulting and
Terveystalo). The project responds directly to the business objectives of the participating companies to
develop their MDR/IVDR compatible infrastructures. The AHMED project enabled such capacity to be co-
created with other companies and the two participating research organisations (VTT Technical Research
Centre of Finland and University of Helsinki). AHMED is a co-innovation project financed by Business
Finland and the participating organisations.

The activities carried out in AHMED roughly divide into the following categories:

• Transitioning from earlier regulation on medical devices2 and in vitro medical devices3 to the new
MDR and IVDR regulation (Chapter 2 by Bittium, Terveystalo and Mylab)

• AI/ML compliant RegOps lifecycle development (Chapter 3 by Solita)

• Tools supporting the RegOps cycle (Chapter 4 by Taipuva and University of Helsinki)

• Large scale personal data exploitation from company perspective (Chapter 5 by Atostek)

• Research and AI/ML model development for medical software (Chapter 6 by VTT)

1 https://link.springer.com/chapter/10.1007/978-3-030-91452-3_20
2 EUR-Lex - 31993L0042 - EN - EUR-Lex (europa.eu)
3 EUR-Lex - 31998L0079 - EN - EUR-Lex (europa.eu)

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31993L0042
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A31998L0079

 RESEARCH REPORT VTT-R-01079-22

8 (53)

2. Experiences on MDR transitions

2.1 MDR transition periods

The MDR and IVDR regulation include transition periods targeted to ensure that manufacturers have
enough time to update their quality systems to comply with the new regulation1. At the moment a new
transition scheme into MDR is under negotiation in EU and first guidelines were introduced in early
December 20222,3. Basically, the transition period is now shifting until May 2027 / May 2028 depending on
medical device classification varying from the original May 2024 target schedule. However, as the basic
requirements introduced for MDR still remain, the RegOps approaches developed during AHMED project
are even increasingly important as they help to adapt the operations in the ever changing requirements
environment.

2.2 Bittium´s experience on MDR certification process

Bittium´s medical technologies business provides healthcare technology products and services for
biosignal measurements and analysis in the areas of cardiology, neurology, rehabilitation, occupational
health, and sports medicine4.

During the project Bittium implemented the transition of its quality system from MDD to MDR directive. The
preparation phase included the discovery of MDR requirements and extensive gap analysis during roughly
one year. Based on the gap analysis preparations for the quality system improvements were addressed.
All the quality management system parts were thoroughly analysed, and the original changes conducted
through a comprehensive review during the first half of 2021 (Figure 1).

Figure 1. Timeline for Bittium MDR certification June 2021 – June 2022.

Technical documentation according to MDR was first submitted to the notified body during October 2021.
The MDR application was approved based on the maturity of the documentation in November 2021. During
the first quarter of 2022 the MDR stage 1 and stage 2 audits were conducted. As a result some QMS non-
conformities were indicated. Based on the audits corrections for the technical and QMS documentation
were addressed during quarter 4 of 2022.

In summary, the timeline from the MDR application into the point where the QMS certificate based on MDR
requirements was granted was about 12 months in total. According to EU Eudamed5 Bittium was the 14th
company to receive the certification in June 2022. However, it has to be noted that based on information

1 https://health.ec.europa.eu/system/files/2020-09/importersdistributors_factsheet_en_0.pdf
2 https://www.fimea.fi/-/komissio-kertoi-epsco-ministerikokouksessa-md-asetuksen-suunnitelluista-
lisasiirtymaajoista
3 https://data.consilium.europa.eu/doc/document/ST-15520-2022-INIT/en/pdf
4 https://www.bittium.com/medical.

5 https://ec.europa.eu/tools/eudamed/#/screen/hom

https://health.ec.europa.eu/system/files/2020-09/importersdistributors_factsheet_en_0.pdf
https://www.fimea.fi/-/komissio-kertoi-epsco-ministerikokouksessa-md-asetuksen-suunnitelluista-lisasiirtymaajoista
https://www.fimea.fi/-/komissio-kertoi-epsco-ministerikokouksessa-md-asetuksen-suunnitelluista-lisasiirtymaajoista
https://data.consilium.europa.eu/doc/document/ST-15520-2022-INIT/en/pdf
https://www.bittium.com/medical

 RESEARCH REPORT VTT-R-01079-22

9 (53)

received from notified body (NB) representatives the Eudamed register information is updated non-
periodically based on NB own policies so information might not be totally up-to-date.

2.3 Early stage reflections of AI/ML themes

The AHMED project addressed many of the challenging parts of RegOps development including the use
of machine learning and artificial intelligence. Learnings and identified opportunities in relation to AI/ML
approaches were the following:

• “Good data” is required to be able to make good AI/ML models (e.g. various annotations of similar
phenomena)

• Regulated development of medical software requires continuous documentation, which is challenging
in AI/ML context

• Use of ML/AI to support doctors in their documentary challenges and reduce the barrier to accept
ML/AI

• Regulation and interaction with the notified body – especially in AI/ML context

• Applying high level of automation to regulatory compliance validation

The comments of the notified body on the use of ML were mostly related to understanding the design. For
example, the NB wanted to know about use of on-line learning, transparency of the datasets and how the
performance was evaluated.

In summary, a lot of data is needed for comprehensive use of AI/ML, as one needs good validation dataset
and data for training the model. It is also easy to lose the focus from solving actual problems and instead
juggle with the regulative issues and spend time discussing what is required by MDR and what is not.

2.4 MDR from Terveystalo perspective

As Medical Device Regulation (MDR) came into force in 2017 replacing Medical Device Directive (MDD)
after three-year transition period, many healthcare service providers were still fast asleep as whether the
changes in the regulation environment would indeed have an impact on them. Terveystalo, even though
being a private health care service provider, was paying attention and quickly realized that MDR would
have an impact that would have implications on how Terveystalo’s software products would be viewed and
classified in the future from the medical device regulation perspective.

Timeline was still very critical for many operators in this domain even though due to Covid-19 the three-
year transition period became a four-year transition period as MDD was allowed to co-exist with MDR until
May 2021.

The AHMED project was very well-timed to provide its participants with relevant information and
experience sharing especially concerning the very tight timelines and critical nature of the MDR. The
project proved to be very useful when creating and building up a suitable medical device software
development framework that takes into account the requirements of regulated medical software and agile
software development.

Under the framework of the AHMED project software development processes were further developed in
order to make them medical device software development compliant. This included activities such as
harnessing and embedding software development tools into more integral part of the software
development, including software development tool validation. Terveystalo received ISO 13485:2016
certification during the AHMED project in August 2021 which proved that software development process

 RESEARCH REPORT VTT-R-01079-22

10 (53)

along with interfacing support processes were assessed to be compliant from medical device manufacturer
quality management standard viewpoint.

The project received extensions allowing all partners to carry on work until the end of 2022 or longer. The
extensions were well utilized by the AHMED project participants, and in fact most face-to-face meetings
with all the collaborators took place during the extensions. This is naturally mostly due to Covid-19 which
prevented such meetings from taking place earlier. These face-to-face meetings, however, were extremely
useful and will bear fruit in the future.

At the end of the year 2022 work in Terveystalo related to AHMED project is work in progress. This is
largely due to in-house medical device software development timeline. All the information and sparring
received in the AHMED project has had, and will have, an imperative role when finalizing Terveystalo’s
first ever medical device software product. The work started in AHMED will naturally continue in the future
as medical device software development activities will be continuously improved.

2.5 IVDR from Mylab perspective

Mylab Oy is the only pure IVD (in vitro medical device) software manufacturer in the AHMED consortium.
The MD and IVD regulations were just getting new guidance for classifications and clearer interpretations
of rules, when the AHMED project started. We carefully made regulatory assessment and risk analysis for
the products and found that the IVD regulation was still valid for us. It was clear that although our medical
devices already had CE certifications under IVD directive the product documentation needed an upgrade
to achieve new CE mark under the regulation.

Mylab’s primary research question as documented in the project plan was: “We aim to recognize
opportunities for improvement and automatization in Medical Device Design and Development design
processes for accelerated market entry, thus fulfil the regulatory requirements. We aim to call into question
how IEC 62304 (Software Development Lifecycle) fits to current IVD/MD-Regulation and what are the
possible bottlenecks when the Agile development paradigm is introduced.

For finding answers to the research question we started comprehensive gap analysis by comparing the
existing Quality Management System (QMS) (ISO 13485:2016), the software lifecycle management (ISO
62304: 2006/Amd 1/2015) and Risk management (ISO 14971:2019) to IVDR and relevant MDCG
guidance requirements. We decided to refine the QMS according to gap analysis results.

The QMS Processes and instructions were written and structured against on IVDR and Standards so that
the audition is clear and fast. The process artefacts were bind into instructions and Jira workflows so that
they cannot be bypassed. Furthermore, we found out that it could be beneficial to have more holistic way
to manage product and service lifecycle than the current system. We implemented SAFe (Scaled Agile
Framework)1 set of organization and workflow patterns to scale better the agile practices.

DevOps is obviously the key ingredient - the oil - in the well-aligned medical device software development.
During the AHMED project we focused on making prototypes in test automation, automatic system test
environment building processes and artifact as well as on version control. We are exploring the possibilities
to implement continuous integration,delivery and deployment (CI, CD) pipelines. It was equally important
to research container technology for the microservices. Microservice architecture increases uptime for the
services and makes faster release cycles possible.

The key outcome from the AHMED project was that it is crucial to have comprehensive gap-analysis
against current regulations, guidelines and standards. Furthermore, well-defined regulatory strategy for
the products helps to focus on key issues and artefacts. We also found that change control could be a

1 https://www.scaledagileframework.com/

https://www.scaledagileframework.com/

 RESEARCH REPORT VTT-R-01079-22

11 (53)

restriction in implementing the DevOps in medical device development processes. The manufacturer must
have a clear plan for isolating medical device modules and for controlling risks and changes. Finally, quality
and DevOps are philosophies that need strong organizational culture to support them.

 RESEARCH REPORT VTT-R-01079-22

12 (53)

3. RegOps Lifecycle for AI/ML compliance

3.1 Overview

Before the start of the AHMED project, Solita had developed an ISO 13485-based quality management
system to address the QMS-related EU regulatory requirements for medical device manufacturers. Solita’s
medical device, Oravizio1, is the world’s first CE-marked surgical risk assessment tool for orthopedic
surgeons.

Although Solita had already made the necessary initial investments to enable the development of medical
device software within the company in Finland, there were identified further development needs to answer
the interest in Solita’s expertise in international business. To meet the requirements of large global
companies, there was a need to create a service model to enable product development partnerships in
compliance with the regulatory requirements. Furthermore, to ensure that the service model meets
customer expectations as closely as possible, there was an identified need to standardize working
practices of product development to improve efficiency and ensure compliance with relevant requirements.
The concrete result of the AHMED project was the establishment of the Solita RegOps framework, which
is Solita’s standardized practice for medical device software development in compliance with the EU
regulatory framework.

One of the core components of Solita RegOps is related to AI/ML development practices in relation to
applicable regulatory requirements. This aspect of the medical device software product realization process
was particularly interesting to Solita because of the presence of AI/ML components in Oravizio. In addition,
as AI technology has already become a reality in healthcare, the related development capabilities can be
seen as a vital enabler for development partnerships with global companies in the field.

3.2 Objectives

Solita’s initial objectives related to AI/ML development capabilities in the AHMED project were:

• Identification and research of relevant regulatory requirements related to data-driven AI/ML
software products to understand how they are assessed by the regulatory authorities

• Identification of different approaches for AI/ML product real-world monitoring and evidence
collection in relation to regulatory requirements for post-market surveillance

• ML model re-training in a real operating environment

• Scientific publishing of relevant research outcomes and, in this way, participating in the scientific
discourse and validating conclusions

During the AHMED project, the following new objectives were set:

• Understanding specific characteristics of an AI system that are of specific interest from a
regulatory perspective

• Extending existing RegOps development practices to include necessary AI-specific lifecycle
aspects according to the identified needs

1 https://oraviz.io/

https://oraviz.io/

 RESEARCH REPORT VTT-R-01079-22

13 (53)

3.3 Key outcomes

This section describes Solita’s key outcomes of the AHMED project related to AI/ML-specific aspects.

3.3.1 Regulatory landscape

The EU regulatory framework for medical devices can be interpreted to consist of several layers, including
the following [12]:

• Union harmonized legislation (such as MDR and IVDR)

• National legislation

• Harmonized standards (such as ISO 13485:2016)

• Guidelines (such as MDCG Guidance documents)

Even though the new EU medical device regulations seek to resolve specific problems of previous
legislation by introducing new concepts regarding, for example, scientific innovations and manufacturing
technologies, the aspects of AI/ML are not explicitly addressed at the legislation level. At the beginning of
the AHMED project, it was expected that the Medical Device Coordination Group (MDCG) would publish
a guidance document titled “Artificial Intelligence under MDR/IVDR framework,” as expressed in their work
program. Still, the document title was later withdrawn from their public plans. In addition, the currently
known list of standards already harmonized1 or planned to be harmonized2 [3] against medical device
regulations does not include specific AI/ML device related standards. The missing guidelines and
harmonized standards lead to a lack of shared understanding of how regulatory compliance is achieved in
practice in the context of AI systems.

As a result of this shortcoming, the set of commonly used standards in general medical device software
development, as presented in Figure 2, must be applied also when developing AI/ML systems. In addition,
all general requirements, such as MDR/IVDR general safety and performance requirements, must be
interpreted in the context of AI/ML development. To support this work in practice, it is highly recommended
to consult other non-binding regulatory sources for reference, such as “Good Machine Learning Practice
for Medical Device Development: Guiding Principles”3.

1 European Commission. Summary of references of harmonised standards published in the Official Journal, 2022.
https://ec.europa.eu/docsroom/documents/50115

2 European Parliament and the Council. M/575 commission implementing decision of 14.4.2021 on a standardisation
request to the European committee for standardization and the European committee for electrotechnical
standardization as regards medical devices in support of regulation (EU) 2017/745 of the European Parliament and
of the council and in vitro diagnostic medical devices in support of regulation (EU) 2017/746 of the European
Parliament and of the council, 2021.

3 The U.S. Food and Drug Administration (FDA), Health Canada, and the United Kingdom’s Medicines and
Healthcare products Regulatory Agency (MHRA). Good Machine Learning Practice for Medical Device Development:
Guiding Principles, 2021

https://ec.europa.eu/docsroom/documents/50115

 RESEARCH REPORT VTT-R-01079-22

14 (53)

Figure 2. Relevant standards for general medical device software development

3.3.2 Continuous training of AI/ML in a regulated environment

One of the key technological advantages of AI/ML systems is their ability to learn, adapt and optimize
operations in real time. In fact, the change capacity may be, in general, the most valuable asset of AI/ML
technology. However, the concepts of change management and change control are essential medical
device software development paradigms. To elaborate, the traditional paradigm for performing verification
and validation activities rely on the fact that the system remains static between the releases and, when
the change occurs, is re-validated prior to the deployment to the operational environment1[5]. Therefore,
the real-time adaptation breaks the paradigm of being able to maintain a validated state. As a result, the
regulatory authorities have traditionally promoted the approach of “locked” AI/ML algorithms2 , where
systems are trained during the development phase, and the ability to improve is disabled in the actual
operational environment.

1 AAMI. AAMI Consensus report, Appropriate Use of Public Cloud Computing for Quality Systems and Medical
Devices. AAMI/CR510:2021. 2021.

2 FDA. Proposed regulatory framework for modifications to artificial intelligence/machine learning (ai/ml)-based
software as a medical device (samd) - discussion paper and request for feedback., 2019.
https://www.fda.gov/media/122535/download.

https://www.fda.gov/media/122535/download

 RESEARCH REPORT VTT-R-01079-22

15 (53)

Figure 3. Continuous training pipeline [12]

During the AHMED project, we revisited the development project of Oravizio to enhance the maturity of
the MLOps practices used in the development to ensure compliance against new MDR requirements in
the future and to improve quality assurance activities further. Our journal article “Towards Regulatory-
Compliant MLOps: Oravizio’s Journey from a Machine Learning Experiment to a Deployed Certified
Medical Product" reports the complete research [12].

The primary outcome of the research, a continuous training pipeline, is presented in Figure 3. For
regulatory reasons, Oravizio was designed to be deployed to the operational environment in a “locked”
state. However, there was an identified need to be able to re-train the ML model based on the new data.
The specific challenge was related to the fact that the data was privacy-sensitive patient information and,
therefore, could not be accessed and used without special arrangements. Working in an isolated and
restricted computational environment, the automated training pipeline minimizes the need for human
interaction and access to restricted data. The pipeline produces the re-trained ML model and related
automatically generated performance reports in an anonymized form. As a result, the deliverables can be
distributed to the development team. The main difference to the general MLOps practices is that deploying
the model to the operational environment requires manual actions and approval.

 RESEARCH REPORT VTT-R-01079-22

16 (53)

3.3.3 RegOps Lifecycle for AI/ML

During the AHMED project, we identified the need for new objectives to be achieved within the project
context. First, as there is a lack of regulatory requirements that specifically address AI-related aspects, we
needed to identify specific characteristics of AI systems that are of interest from a regulatory perspective.
This task was carried out using an informal literature review of various guidance documents on the subject
from different stakeholders and regulatory authorities. In addition, relevant AI/ML-related standards from
other industries were examined. However, it is worth noting that if relying heavily on a document outside
the EU regulatory framework to demonstrate compliance, the use of the document may need to be justified
in the device’s technical documentation. Finally, the already established RegOps development model was
extended to include the identified AI-lifecycle aspects.

There are certain advantages to using a general medical device development model as a baseline for
AI/ML extension. The AI/ML systems are, by nature, a combination of “traditional” software items and
AI/ML-based software items. Therefore, general processes are needed in any case to develop the system.
In addition, as discussed before, also the AI/ML items are a subject of the general regulatory design
controls. Furthermore, re-using the already battle-proven existing practices is beneficial when aiming for
effective process implementation.

Figure 4. AI-specific addition to general medical device software development lifecycle process

The AI-specific additions to Solita’s RegOps development model are presented in Figure 4. The model is
loosely based on the general idea of the AI system lifecycle model presented in the draft version of
standard ISO/IEC DIS 5338:20221. It is worth noting that Solita’s RegOps software development model is
currently under active development, especially as regards AI-specific aspects presented in Figure 4.

The model addresses specific AI-related aspects that are especially relevant from the regulatory
perspective but are currently not explicitly covered within the requirements. From the point of view of the

1 ISO/IEC DIS 5338 - Information technology — Artificial intelligence — AI system life cycle processes. Draft version,
2022.

 RESEARCH REPORT VTT-R-01079-22

17 (53)

intended clinical purpose of the system, the use of AI-enabled technology needs to be justified and proven
safe, clinically effective, and secure.

As AI systems may be more complex than traditional software systems, there needs to be an audit strategy
that allows the conformity of the product to be assessed. As a result of the increased complexity, regular
peer reviews need to be implemented within the development workflow to minimize the probability of
mistakes made by a single person. Furthermore, especially ML-enabled applications may be data-
intensive, and the data can be interpreted as being a raw material for the manufacture of the product.
Therefore, data management practices need special consideration and alignment with the regulatory
requirements. Finally, as the change dynamics of an AI-based product can differ from a traditional software
system, the system's risk profile may be more dynamic by nature, and risk management activities need to
be tailored to address the system's specific characteristics.

The EU regulatory framework contains comprehensive requirements for post-market surveillance
activities; hence, the real-world performance monitoring of an AI system requires particular attention. The
most important factors are related to the capability to detect data and concept drifts of the system during
its use. Naturally, these capabilities are based on selecting appropriate and relevant indicators from the
viewpoint of clinical performance, safety, and security. Due to the dynamic nature of the AI/ML system,
continuous quality assurance is critical.

3.4 Business opportunities

The AHMED project has allowed Solita to develop our RegOps framework and competencies further,
differentiating us from our competitors and has helped us gain new customers.

With this new knowledge, we have, for example, helped our customers to significantly improve their
medical device software processes. We are expecting much growth in this business area. However, we
have also realized the size of the problem, e.g., the digitalization maturity in some sectors of the health
Industry like big pharma.

 RESEARCH REPORT VTT-R-01079-22

18 (53)

4. Methodologies and tools for developing medical device software

4.1 Overview of activities

Agile methodologies have become the way to develop software intensive products in a wide range of
industries. Relying on fast feedback, responding quickly to changes originating from various stakeholders,
and employing continuous software engineering practices allowed agile teams to deliver at increasing
pace. The result is high quality software products that fulfils the user's needs. Despite of these advantages,
many companies developing medical device software have been slow in adopting agile methodologies
and practices. The lean manner in which agile is often used lends to the perception that it lacks the
discipline of the traditional plan-driven methodologies, such as waterfall or V-model. As a result, agile is
perceived unsuitable to handle key regulatory requirements such as risk management, or validation,
verification and traceability.

We conducted research activities in two areas of interest. First, we investigated current mainstream
continuous engineering ways of working to identify best practices that can serve as candidates for
developing processes for medical device software development. Secondly, we looked at the working
practices of data engineers and data scientists to identify how these specialties should be integrated into
the strict processes required for medical software. As a supporting activity, we developed tools that assist
the implementations of these processes using mainstream off-the-shelf tools. Both activities have been
conducted together with relevant industrial partners, resulting in scientific publications and open-source
technology demonstrators.

Tool chains of software engineering were investigated and further developed. Polarion tool was equipped
with a process implementation that facilitates agile documentation and management which is essential in
integrated RegOps cycle. The total process needed to be simple and fast to use, also combining the actual
agile work management, in order to be really useful for software developers. The resulting project outcome
meets these expectations very well.

In a joint work between Taipuva and University of Helsinki workflow automation was taken all the way to

unite DevOps in GitHub and documentation of changes in Polarion. There were encouraging comments

from the consortium members and other medical device manufacturers that such an automation is good

for improving efficiency and making sure that documentation keeps in sync with actual code changes

without forgetting something or laborious manual checking afterwards.

What shall not be overlooked is that the tools and processes used in the medical software development
(i.e., design work) need to be validated. As part of the project a clear and reusable approach for the tool
validation was created.

4.2 Medical software development processes and regulatory Background

EU’s Medical Devices Regulation (MDR) and In-Vitro Diagnostics Regulation (IVDR) define some key
requirements for design and development as well as set requirements for risk-based approach and post-
market surveillance, among other things. They require a quality management system according to ISO
13485 (the US counterpart being the very similar content in FDA CFR Title 21 Part 820) and risk
management according to ISO 14791:2019. Specific for software development, one needs to consider
usability according to IEC-62366-1. For health applications it is also advisable to follow IEC 82304-1.

In practice, the unharmonized standard for software life cycle processes (IEC-62304:2006) is the state-of-
the-art reference. It defines the different process areas of software development in more detail and sets
requirements for different risk class software.

 RESEARCH REPORT VTT-R-01079-22

19 (53)

For software development tool chain validation the requirements come from ISO 13485, more specifically
from clauses 4.1.6, 7.5.6 and 7.6. Additionally, guidelines are set forth in ISO/TR 80002-2. In this sense
the US requirements of FDA CFR Title 21 Part 820 and AAMI TIR36:2007 (Validation of software for
regulated processes) are practically identical. For electronic signatures and electronic archiving the state
of the art is according to US FDA CFR Title 21 Part 11.

Following process areas for medical software development are identified according to IEC 62304:

• SW Risk Management

• SW Development Planning

• SW Requirements Analysis

• SW Architectural Design

• SW Detailed Design

• SW Unit Implementation & Verification

• SW Integration & Integration Testing

• SW System Testing

• SW Release

• SW Configuration Management

• SW Problem Resolution

There are few very fundamental requirements that govern the design and development, as well as
documentation – also called as technical file or device history file:

• Traceability between design artefacts, for example tests to requirements and risk-mitigating risk
control measures to hazards
(for some risk classes the traceability needs to extend between code and its design artefacts)

• Change control

• Documentation control, so that there are defined design reviews and all documentation is
reviewed, approved and signed off by electronic or paper signatures

Besides the mentioned product safety and effectiveness concerns [16], MDR and IVDR mandates
manufacturers to handle cybersecurity concerns during product development lifecycle [17].

4.3 True RegOps cycle

The usual DevOps cycle does not mention documentation or process control. And why would it? These
areas are something that are not emphasized or even needed in agile development, and that’s one of the
contradictions to regulated industries. Namely, in medical devices development one needs to present and
maintain a lot of documentation as described in Section 4.2. Process control comes into the picture, as
one needs to be absolutely sure that organization’s defined quality processes (standard operating
procedures, SOPs) are followed, and written evidence is left behind (which makes up the audit trail). Some
medical device manufacturers estimate that the documentation activity takes more than 70% of the total
work effort of a usual medical software development project. Therefore, it is not in vain to think how this
part can be done more efficiently than today.

For the above-mentioned reasons, an agile RegOps cycle as depicted below was driven forward within
this project. The basic idea is that there is no development activity that would not be appropriately
documented, and there is enough process control to ensure it.

 RESEARCH REPORT VTT-R-01079-22

20 (53)

Figure 5. RegOps cycle where the needed documentation activity is an integral part of agile changes.

Process control is something that can be performed in many ways. The traditional way is to apply SOPs
and working instructions, and combine them with, e.g., check lists. These typically involve phasing series
of activities with so-called quality gates, manual activities and remembering things. The following section
describes how tools come into the play in this context.

4.4 Tools

Tools in the RegOps space can be categorized according to their principal “position” in the RegOps cycle,
which includes at least the following areas (Figure 5):

A. Planning, management & documentation

B. Software development

C. Integration

D. Testing

E. Deployment

F. Operations & monitoring

The preceding section introduced the concept of process control. Tools can help in this by employing
workflows, which ensure that certain tasks are done and which guide or even force activities to take place
in a definitive order. Tools can provide automation to workflows. Examples of automation are conditional
checks that some required piece of information exists, or there can be automatic workflow actions that
take care of multiple things with a press of a button. More complex workflow automation combines several
simple workflows together, for example approving a specification document makes all the individual
requirement objects in the document approved in their own workflow. At its best RegOps can involve
workflow automation that connects different domains and areas together. Typically, this requires that tools
of different areas are integrated. In many cases, the gaps requiring manual labor and checking are at the
interfaces of different tools. These interfaces are also the place where traceability is most often
compromised.

 RESEARCH REPORT VTT-R-01079-22

21 (53)

Workflow automation is something that can considerably speed things up, but sometimes it is also a two-
bladed sword, when it forces a one-size-fits-all solution to all cases. If substantial amount of human
intervention is needed to “fix” automated things afterwards, then it is of no use. Therefore, automation
must be carefully designed, and often applied to certain process points which are seen feasible to be
standardized.

4.4.1 GitHub and GitLab – software development, version control and task management

GitHub is an internet hosting service for software development. Besides the basic source code version
control that leverages Git, the service provides capabilities for change control, task management, bug
tracking, continuous integration and wiki. A recent capability serves as a basic enabler for project
management using continuous development methodologies, like Scrum or Kanban, custom reports
categorizations using labels.

Besides the capabilities available via the web user interface, GitHub provides two extension mechanisms
that enable 3rd parties to augment the native functionality. The first consist of APIs (REST/GraphQL for
accessing resources and Webhooks for notifications) which allows the creation of standalone services.
The second consist of actions, which allows custom container to be run inside GitHub’s infrastructure. Both
mechanisms can be used to augment the GitHub’s capabilities with functionality provided by other
services, allowing medical software manufacturers to develop holistic RegOps toolchains. The built-in
capabilities and the extension capabilities can be used successfully to develop requirements to
implementation traceability [18].

GitHub provides its functionality via the cloud, using a SaaS model, or on-premises (e.g. GitHub
Enterprise). Historically, new features are released to the cloud before being available to the enterprise
customers. GitLab provides similar functionality. Gitlab offers cloud and on-premises installation options
(see also Section 6.3.2).

4.4.2 Polarion – for planning, management and documentation

Polarion ® is an Application Lifecycle Management (ALM) tool originally developed by Polarion Software,
and after an acquisition in 2016 being a part of Siemens Digital Industries Software’s portfolio. This tool
was originally designed to meet the requirements of regulated industries, and some medical device
manufacturers gave feedback early on to influence its core principles and key features. Software and
product development teams use it for requirements management, architecture specification, risk
management, test management, change management, configuration management, project management
and agile work management. Siemens Polarion is a scaled agile partner platform and it supports Scaled
Agile Framework® (SAFe) 5.0 – as well as smaller scale agile methodologies with its highly configurable
information model, supported by Kanban boards and Scrum burndown charts.

Polarion is a commercial tool, which can be run on cloud (SaaS), hosted anywhere and even on-premise
in a closed network. It’s guiding principles are openess and a non-proprietary information model in the
backend. Various interface (e.g., REST API) options make it easy to integrate Polarion as part of the
RegOps tool chain. Connectors to most popular tools, such as Jenkins, exist out of the box. Connectors
to Jira and MS Azure DevOps are there to support co-existence and migrations.

The commercial model for obtaining Polarion is based on user licensing only, i.e., there are no separate
fees for server or database. The cost of a user license varies roughly from 5 to 100 € per month, depending
on the user’s functionality set. Named and concurrent (floating) licenses are available, and bigger
organizations tend to have a lower unit cost due to exploiting concurrent licensing effectively.

Polarion is often relied to for all planning, management and documentation aspects because of its very
wide process coverage. There are no plugins or additional maintenance needed to fulfill the regulatory
requirements. Key capabilities that make Polarion suitable for regulated industries:

 RESEARCH REPORT VTT-R-01079-22

22 (53)

• All processes on one platform enable seamless traceability and transparency

• LiveDocTM – online documents with trackable objects, for integrated document management

• Full history and versioning of documents, with the contained objects consistently

• Audit trail

• Electronic signature (FDA 21 CFR Part 11 compliant)

• Configurable workflows with automation for actions & conditions and freezing content

• Workflows allow interactions with 3rd party tools

• Versatile reuse features that allow reusing the latest or historic information, even with links
preserved between object structures

4.4.3 JIRA, Confluence – agile project management and documentation

JIRA enables agile project management features (see also Section 6.3.2). Confluence is an enterprise
knowledge management system that enables maintaining complex documentation using the simplicity of
the wikis. Both services are provided by Atlassian, and can be integrated with GitHub, GitLab and Polarion.

4.5 Out-of-the-box process for software development

Each organization developing software classified as medical device, or possibly to be classified as such
in the future, faces the problem of knowing how to be compliant. The next phase is to implement the
capability for doing so and getting it rolled out to the organization. The third phase is – if the organization
ever gets there – is to analyze if their ways of working are efficient and how to improve. Doing this all from
scratch might take years and several hundreds of thousand euros, and even it may not be fully digital or
as efficient as it could be.

Before AHMED project Taipuva Consulting had been working a long time with Siemens Polarion tool.
Polarion, as described above, is an ideal platform to support RegOps in its areas for planning,
documentation and agile work management. Polarion is the market leader in ALM tools in the Nordic
Countries: more than one third of big and medium-size medical device manufacturers use Polarion.

No matter how capable a tool is – it is just an empty shell without knowing how to use it. There needs to a
smart configuration on it to be able to deal with all process areas required by IEC 62304, and to be able
to keep everything simple – as well as agile. That was the ultimate goal within AHMED project: to perfect
the process concept and make Polarion realize it in an optimum way.

The key result was a modern and all-digital process package (Figure 6). On the background there was a
profound understanding of the latest regulatory requirements (MDR), as supported by the project.
Solution’s highlights include:

• Simple total approach, with years of experience how to fulfill regulations and make it agile

• Efficient workflows for carrying out needed documentation reviews and approvals, with integrated

electronic signatures.

• Software architecture and detailed design incorporated into the process so that the traceability to

requirements, risks and V&V is intuitive.

• Risk management being able to deal with both safety and cybersecurity risks and incorporate

their complex traceability relationships to other design artefacts.

 RESEARCH REPORT VTT-R-01079-22

23 (53)

• Agile work management realized with a simple approach that is suitable to team-level, but which

is very easy to adapt to the preferences of organizations enterprise agile.

• Verification test management suitable for fast testing results reporting, with a custom widget

extension that enables agile test planning.

• Flexible and versatile traceability reporting incorporated (see Section 4.6).

Figure 6. RegOps full-coverage process package developed on Polarion tool by Taipuva.

The process package is now commercially available from Taipuva, thanks to AHMED project. A brand-
new concept, Design Controls as a Service, was introduced. It means that organizations are able to use it
as a secure service, just via a browser and internet connection. It can be launched immediately and with
a short training any organization can use it. Another alternative is to engage in a service relationship with
Taipuva. It allows a customer to adapt the process configuration with quick changes to match it to the
organization’s preferences. There are also designed services available for data migration from legacy
sources, in order to get fast into speed.

The benefits of using this kind of all-digital and efficient process on a capable tool platform are unparalleled.
Companies needing traceability in their design work have reported saved effort of 80 % in maintaining
traceability and more than 20 % in total. In MDR and other quality audits there have been no non-
conformities regarding design processes or created technical file. When writing this final report, two new
customer relationships, one in Denmark and one in Finland, are starting that make use of the newly created
product.

4.6 Traceability

Traceability between design documentation artefacts is a key regulatory requirement and one of the central
pain points, because it usually takes so much effort to maintain. Companies have estimated that working
with traceability information can take 20-25 % of project effort. Traceability matrices are also becoming
bigger due to having more software features in products. With the interrelations between safety and
cybersecurity features (and risks at the same time), the structure of design traceability is becoming more

 RESEARCH REPORT VTT-R-01079-22

24 (53)

complex – not only having a classical tree structure but a grid of objects, dependencies going back and
forth.

Originally the regulatory requirement for traceability was meant to ease tracking of dependencies and the
impact of changes in the design. FDA records reveal, year after year, that changes to software after the
initial product launch are a cause of many issues in product safety. This is understandable if traceability is
followed and updated manually. Even a “few” manual links among thousands automated, leave too much
room for human errors. Therefore, 100 % of links need to be covered seamlessly – otherwise automation
is of little use.

The above-described complete design process on Polarion tool puts all information on one platform, which
handles 100 % automatic coverage for traceability. At the same time, Polarion takes care of audit trail and
historic traceability, thanks to its full and consistent version history. Taipuva’s process package has a very
carefully designed information model that uses directional links of different types. Each link has a semantic
meaning. Polarion’s basic feature is filtering information based on link types. This makes it possible to see
selected relationships of the information grid at one time, which offers designers to focus on what they
need to see at each time.

As explained above, the demands for traceability information are becoming too difficult for even the best
out-of-the-box tool features. When there are thousands of objects and easily more than 10,000 links
between them, designers need even better views to control all of it. Imagine an extensive software system
consisting of multiple layers, applications, modules and components. In time there will be various versions
of each of them, and perhaps also variants for different customer deliveries. For one thing, the information
needs to be organized and categorized well. Once this has been done, the used tool shall serve designers
easily in the daily work. These needs Taipuva Consulting has seen during more than 10 years of working
with medical device manufacturers. AHMED project offered a perfect framework to develop a solution that
will help organizations to take benefit of design traceability information – today and in the future. A new,
flexible and user-friendly traceability matrix view was developed on top of Polarion (Figure 7).

Figure 7. Traceability matrix view on Polarion

Taipuva’s Traceability Matrix has the following advanced features:

• Clear and logical representation, end-to-end to verification/validation results.

• Generic approach that is not tied to certain process configuration.

 RESEARCH REPORT VTT-R-01079-22

25 (53)

• Flexible matrix structure to select displayed objects and their information fields.

• Quick filters for all layers of information (which can be added easily if there are new needs)

• Smart quality indicators that reveal:

o Missing test coverage

o Unhandled changes

o Obsolete test results

o Incomplete information because of user’s limited access

o Process violations

• Ability to span across different “projects” (which typically are subsystems and components that

make up the total product).

• Exporting to PDF and Excel formats – to support organizations that do not want to rely on one

solution as an electronic archive

Even though filtered and precise information is useful for designers and testers, for regulatory compliance
it must be possible to represent the full product traceability matrix, in order to prove that there are no gaps.
For complete products, the full matrix consists of thousands of rows. The solution generates such a report
on demand in real-time which is difficult to achieve and cannot be not taken for granted.

It is worth mentioning that the matrix is able to run for a given time point in history. This means that exported
snapshots of traceability do not need to be stored separately for regulatory compliance purposes.
Everything is available electronically, should the auditors desire to see it.

As a conclusion, traceability information is so essential that it is the first thing auditors usually want to see.
As discussed, it needs to be represented very differently in different cases. It is the only way to make real
use of the traceability information – actually help designers in their work, instead of being a burden.
Taipuva’s solution is available to enhance productivity and to help designers ensure safety and
cybersecurity, as well as prove compliance with a press of a button.

4.7 Reusable process for tool chain validation

It is required by the ISO 13485 quality management standard that design tools must be validated, so that
patient-safe and cybersecure design as well as the correctness of product documentation can be ensured.
The validation itself for an unexperienced organization can take roughly one year or longer and cost more
than 100,000 euros in work effort.

As part of the project Taipuva Consulting created a reusable approach for the tool validation. The validation
process was designed according to the guidelines of ISO/TR 80002-2. It was realized on Polarion tool as
a project template. As an example of the process feasibility the design controls package described in
Section 4.5 was validated.

The validation process makes use of Polarion’s work item object configuration, workflows and test
management capabilities. It also contains document templates and base documentation. Therefore, the
validation package can be used as a basis and a trusted process for any tool validation – just by completing
documents defining intended use, specific requirements, risks and validation test cases. The general
documentation structure is represented in Figure 8. It is designed to minimize the effort in the case of re-
validations. Documents can be reviewed and approved electronically. Polarion’s test management allows
to execute and report the defined tests, and the automatically generated report becomes a part of the
documentation, as well as automated reports show the needed traceability between risks, requirements

 RESEARCH REPORT VTT-R-01079-22

26 (53)

and tests. In the very end, conclusions and the final result are stated in the validation report. In case the
validated software is changed the revalidation can be done with minor work effort.

Figure 8. General documentation structure for medical software.

Taipuva is now able to offer a ready-made validation process as a service – and apply it to any part of the
tool chain in cooperation with the customer. Cooperation is always needed, because tools and processes
have a strong link to organizational quality system definitions. The first commercial tool validation for a
globally operating medical device company has been delivered using the results of this project.

The biggest benefits of such a validation package and service come for organizations that have not done
tool validations before, or who have a lot of them or if they need to repeatedly re-validate. Instead of
months or even years spent in tool validation we are talking about weeks. In the case of Polarion or very
similar tool validation, it can just take just a few days.

4.8 Challenges in building multitool RegOps tool chains

Building effective RegOps toolchains requires different people with specialties to work together.
Traditionally, following a waterfall process, the regulatory specialists and the software developers have
performed their activities at different stages of product development, using different tools. As innovation in
medical devices is driven more and more through software, the appeal of agile software development
methodologies increases. The iterative and incremental nature of these methodologies brings the
regulatory specialists more and more in contact with software developers, as a result they need to perform
regulatory activities efficiently using DevOps style practices [19]. To achieve this goal, the tools used by
each specialty need to integrate together and the processes need to be aligned [20].

To achieve this goal, Taipuva and University of Helsinki performed a series of proof-of-concept
experiments and gathered feedback from medical software manufacturers on using RegOps practices.
The experiments involved an imaginary example of developing a medical software that had a web interface
to access the medical data stored in an SQL database. High-level product planning and documentation
was managed in Polarion, while the software development was implemented in GitHub. The integration of
these two domains made it possible to couple the workflows and tie together the regulatory documentation
and development activities.

We considered two change scenarios, which are depicted below.

 RESEARCH REPORT VTT-R-01079-22

27 (53)

1. Top-down (Figure 9): A change is initiated from the specifications point of view by creating a
change request in Polarion, approving it and then proceeding to both development (in GitHub)
and updating documentation (in Polarion) as synchronized activities.

2. Bottom-up (Figure 10): A change is initiated from the code point of view by creating an issue in
GitHub, connecting it to a change request in Polarion. Development (in GitHub) and
documentation (in Polarion) can be started after the approval of the request.

Figure 9. Scenario 1 of a top-down agile change.

Figure 10. Scenario 2 of a bottom-up agile change.

The two systems were connected via a backend service that mapped the Polarion’s work items to GitHub’s
issues and pull requests. The backend service monitored both Polarion and GitHub, created the
corresponding mapping and transferred the updates done by the regulatory specialist or the software
developer. Additionally, the workflow control mechanism specific to Polarion (work item status) and GitHub

 RESEARCH REPORT VTT-R-01079-22

28 (53)

(e.g. pull request review state) were synchronized, preventing the workflow to proceed unless both tools
were aligned.

The results revealed that although it is technically possible to realize an API level multitool RegOps tool
chains (Polarion-GitHub in this case), the integration and concept mapping between the tools is not
straightforward. Further study is needed to determine how to better transform the dynamics from one tool
to the other, in a meaningful way for all roles involved.

4.9 Considerations on using ML technology in medical devices

AI/ML technology introduces additional challenges when used in a regulated environment, compared with

traditional software. Besides software engineers, AI/ML technology requires two additional specialities:

data scientists for developing the models and data engineers for preparing the data used for training. As

the end result of these development activities are included in medical software as software components,

the IEC 62304 needs to be adapted and applied to data engineering and data science development

activities. Manufacturers need to ensure they have enough provisions to ensure lineage for the datasets

used for training and model development experiments are tracked accordingly.

4.9.1 Model cards as ML development ledger

Model cards are a proposal from Google Research [21] that aims to collect in a single place the relevant
information about a model development .

The model card approach consists of a metadata document that captures:

• Administrative information: owner, version, or license

• Model parameters: inputs, outputs, and datasets used for training

• Quantitative information: performance metrics that can be used to monitor drifts

• Considerations: comprehensive documentation about the intended users and use-cases,
limitations and tradeoffs, as well as ethical considerations.

The metadata document can be used to create specific documentation intended for developers, end users
or regulatory purposes. The evaluation of the suitability of the model cards approach was implemented in
the context of continuous development for machine learning (CD4ML), a reference implementation of
automating the ML system life cycle in an end-to-end fashion formalized by Thoughtworks1. The model
card is able to capture the versioned training, validation and test datasets, the selected model out of the
experiments tracked in MLflow, as well as monitoring the model performance based on the expected
quantitative parameters [22]. The model card is an effective development ledger that supports both
engineering and regulatory needs.

1 https://martinfowler.com/articles/cd4ml.html

https://martinfowler.com/articles/cd4ml.html

 RESEARCH REPORT VTT-R-01079-22

29 (53)

Figure 11. CD4ML: Continuous development for machine learning

4.9.2 Multi-organization ML development

Developing ML technology in regulated environments may introduce specific challenges that complicates
the development process. For example, in the Oravizio case (see also Chapter 3), due to privacy concerns
related to the data used for training the model, the model is developed in an isolated environment then
transferred to the software developers for integration. In practice, the Oravizio’s development boundaries
resemble a multi organization setup [23]. From a regulatory perspective, the development processes and
practices across these boundaries needs to be properly documented using model cards or similar
techniques.

For the cases where the ML model development practices cannot be assessed, the models should be
considered SOUP ML [24], in the same way as any other software components not developed according
to MDR/IVDR compliant practices.

 RESEARCH REPORT VTT-R-01079-22

30 (53)

5. Data exploitation challenges

5.1 Overview

As part of the project AHMED, Atostek has worked on developing new ways to use big health data to
create innovative software solutions for healthcare [6]. The related sub-project is named Jasmine. The
project was inspired by the Kanta archive1 which the is the national electronic health record system of
Finland, and the Act on the Secondary Use of Health and Social Data (552/2019), which allows researcher
access to health and social data. The Kanta archive contains a wealth of data that could be potentially
used in development of new health related software solutions. The data application process from Findata
(Finnish Social and Health Data Permit Authority) turned out to be much longer than initially anticipated.
Thus, the project Jasmine is still a work in progress and extended until 31.12.2023.

5.2 Goals

The initial goals set for the project Jasmine were:

1. Identify health data driven use cases that are considered valuable by medical professionals

2. Gain research access to health data in Kanta
3. Use artificial intelligence and machine learning methods to realize the use cases
4. Prepare a demonstration of the data driven use cases outside the research environment

An additional consideration in the project Jasmine is that it should be possible to continue after research
project with R&D activities, that aim to create actual software products. Thus, in addition to the research
activity also working technical solutions, discovering and solving possible obstacles related to regulations,
privacy, and data availability must also be considered.

5.3 Methods

Methods used for identifying valuable health data driven use cases were brainstorming, interviews of
medical experts, and analysis of data available in the XML format used by the Kanta archive. The found
use cases were used as basis of the research questions required by the data application to Findata. The
key issue for the data application was to get the data in original XML format as that is the format available
to operational health care software. Once the data is available, we plan to make an analysis of the actual
data resources in Kanta, for example the amount of structured data vs. non-structured data. Methods
planned for data analysis include natural language Processing (NLP) and deep learning for automated
analysis of textual data, and automatic classification methods for structured health data. The practical
demonstration is planned to be a simple replication of the found solutions outside of the secured research
environment. The idea is to show that taking advantage of results from machine learning on sensitive
health data is possible without privacy violations.

5.4 Challenges

During the work on project Jasmine, we have identified the following challenges which should be
considered when planning similar projects in the future:

1 https://www.kanta.fi/en/system-developers/what-are-kanta-services

https://www.kanta.fi/en/system-developers/what-are-kanta-services

 RESEARCH REPORT VTT-R-01079-22

31 (53)

1. Data application process from Findata and collecting and pseudonymization of the data can take
more than a year. In our case, it took 14 months from submission of the application to acceptance
of the application. The current estimate for time required for collection and pseudonymization of
the data is 8 months. This creates uncertainly for the allocation of personnel for the work.

2. Data in Kanta on the level of individuals is not available for product development. Individual-level
data can only be used for scientific research and the results must be published. For companies,
this limits the competitive advantage gained from the research, thus there is a need to carefully
consider what type of research is good use of resources.

3. All requested data needs to be justified by the research questions in data application, thus
enough time needs to be reserved for defining the proposed research.

4. Data Protection Impact Assessment (DPIA) may be needed in large data application. Thus,
expertise and time for making the assessment is required.

5. Use of machine learning based solutions for example in automatic identification of people with
medical risks may lead to inequality in offered health services, which could hinder practical use of
such solutions

6. Kapseli is a secured research environment, a virtual machine, where the data will be made
available. The environment is accessible only to named researchers and does not have an
internet connection which sets limitations on practical research work.

7. No individual level health data is allowed to be exported from the Kapseli, thus machine learned
results must be checked carefully to prevent accidental inclusion of private data.

5.5 Outcome

 Results this far from the project Jasmine include:

• Two promising health data driven use cases were identified:

o Automated medical risk calculation

o Summarisation of data for medical professionals

• Data application for Kanta data in original XML format has been accepted by Findata, and data
pseudonymization is in progress

• Master’s thesis work done with an alternative health data set showed that natural language
processing methods are promising for example finding out if a person is a smoker based on
textual data

• Comparison of existing medical risk calculator against data that should be available in Kanta was
done, and resulted in a publication that is in pre-print [25]

o We found that by improving the availability of a few risk calculator parameters, we can
calculate multiple different risk calculators

▪ Data identified to be required by part of examined risk calculators, but that is
completely missing from Kanta include: data about living habits, habitation, and
physical activity and family related data such as family medical history

 RESEARCH REPORT VTT-R-01079-22

32 (53)

6. Research and ML model development for medical device software

6.1 Overview

Data and AI driven health applications, such as those used to assist diagnosis or care path selection are
categorized as regulated medical software. Companies developing medical software are responsible for
MDR/IVDR compliance of the final product. Typically, the development of data-driven medical applications
is a long process contributed by several partner organisations. In particular, the development process may
involve a scientific research and model development phase carried out by a university or a research
institute. The research performer should then take MDR/IVDR requirements into account in order to ensure
efficient transition from research to product development. For example, it is important that the process of
tuning, validating and testing an ML model is properly documented and traceable, if the model is to be
used as part of medical software at a later stage.

In the following subsections, regulatory challenges of healthcare innovation development are analysed
through three use cases:

• Machine learning model development using sensitive personal data

• DevOps tools supporting ML based health monitoring solution

• Development of ML based machine vision applications

6.2 Machine learning model development using sensitive personal data

6.2.1 General

Machine learning models are extensively used for automatic medical image analysis to support and
improve human interpretation. They are increasingly also used to support precision medicine by predicting
patient outcomes, identifying patients with elevated risk and suggesting most favourable care pathways
and services for the patients. Machine learning models empower decision support applications providing
guidance to healthcare professionals and patients [2, 3].

Availability of data is a critical precondition for ML model development [26]. Concerning applications
supporting social and health services, sensitive personal data is typically needed. Such use of data may
take place in Finland under the Act of Secondary Use of Health and Social Data1 as described in Section
5.The legislation enables the use of data from health and social services data for register-based studies.
Alternatively, the model development may take place in the context of a prospective trial setting where
data is collected based on the consent of the data subject.

In both cases, the security requirements for data processing are high. In the case of register-based study
settings, data is only available for a fixed time period and in an isolated processing environment2 without
connections to external systems. Such processing environment cannot be directly integrated with standard
software development environments, which causes challenges to maintain the link between ML model
development and the final software product. The medical software product documentation should include
accurate information about the used data sets the for ML model training, validation and testing.

1 https://www.finlex.fi/fi/laki/ajantasa/2019/20190552 (in Finnish)
2 https://findata.fi/en/kapseli/regulation-on-secure-operating-environments/

https://www.finlex.fi/fi/laki/ajantasa/2019/20190552
https://findata.fi/en/kapseli/regulation-on-secure-operating-environments/

 RESEARCH REPORT VTT-R-01079-22

33 (53)

We developed a concept to support traceability for ML model development in a secure processing
environment. We tested the concept in the case of MAITE project [13], which develops AI based models
for predicting elderly population’s needs for health and social services.

6.2.2 Use case: health and social services decision support

The MAITE project emerges from the observation that health and social services expenditure is dominated
by service consumption by a small fraction of the population1. It is expected that future heavy users of
services could be identified based on their current health and social status and service usage history. The
objective of the MAITE project is to develop an ML based model and proof-of-concept (PoC) application
for predicting future service usage of elderly individuals. In particular, the project aims to identify individuals
which use a large number of different services and which would benefit from integrated services.
Identification of such target groups would help in service planning and in executing personalized and
group-level preventive interventions.

VTT is responsible for the ML model development based on register data of Päijät-Häme Joint Authority
for Health and Wellbeing (PHHYKY), a public health and social services provider with catchment area of
200 000 inhabitants in Southern Finland. The Finnish institute of health and welfare (THL) is responsible
for coordinating the co-operation of stakeholders and ensuring continuous interaction between developers
and end-users.

6.2.3 Secure processing environment

The data resources needed by the MAITE project include health and social services encounter data
(demographic data, diagnoses, medication, laboratory, operations), social services decisions and
assessments of service need and physical functioning. The cohort includes data from 37 000 individuals.
Data permit to use the data was issued by PHHYKY. For processing, the data was transferred to the
secure processing environment (Kapseli) operated by Findata2. The setting for data processing in Kapseli
is depicted in Figure 12.

1 https://www.julkari.fi/handle/10024/80171
2 https://findata.fi/

https://www.julkari.fi/handle/10024/80171
https://findata.fi/

 RESEARCH REPORT VTT-R-01079-22

34 (53)

Figure 12. Data processing set up for MAITE project.

The data processing in Kapseli takes place in data permit specific user environments also referred as
secure processing environments. The data user (research performer) has a remote desktop access to
environment. Most typical data analytics tools are preinstalled in the environment and available for the
data user. Also the Git, DVC and DataLad version control tools are available. The remote desktop access
provides a data view and keyboard entries, but does not enable data downloads or uploads. All data
transfers to and from the environment go through the Findata’s control process. In the beginning of the
project, pseudonymized data (raw data files) and any needed support files (e.g. clinical vocabularies) are
transferred to the environment. In the end and during the project analysis results and user developed
scripts need to be transferred out from the environment. Findata’s control process aims to ensure that all
materials exported from Kapseli are anonymous. Additionally, the data user is responsible for ensuring
that materials requested to be exported are anonymous.

6.2.4 ETL and analysis scripts

The ML model development workflow involves two kinds of scripts: ETL scripts and analysis scripts. Extract
transform load (ETL) refers to the process of extracting data from its original source, transforming it to the
required form and loading it to a database where it is ready to be used for the data analytics task in
question. In the case of MAITE, the first part of data extraction was carried out in the data lake environment
of Päijät-Häme. The resulting raw CSV-files were transferred to Kapseli using the NextCloud services of
Findata. In Kapseli a number of ETL scripts were executed in sequence. First, the data was extracted from
the raw CSV files and transferred to the staging area in the research database (MySQL). Then the data
was transformed into suitable form for data analysis and loaded into the main analysis table of the research
database. The main analysis table has one row per participant with >300 variables describing the
individual’s health history and usage of social and health services.

 RESEARCH REPORT VTT-R-01079-22

35 (53)

The analysis scripts support the ML model development involving feature extraction, training, validation
and testing. Feature extraction includes the operations needed to derive informative and non-redundant
variables (“features”) from the original variables as relevant for the ML model. Training refers to the phase
where machine learning model versions are iteratively evaluated based on validation data not used for
model training. Testing refers to the phase where a final, unbiased evaluation of the model performance
is carried out based on data not yet used in training and validation phases. The analysis scripts get input
data from the main table of the research database generated in the ETL process.

6.2.5 Ensuring traceability

Workflow of ML model development is depicted in Figure 13.

Figure 13. ML model development workflow.

Traceability of the actions carried out during the product development is an important requirement for
medical software as discussed in Section 4.6. In the case of ML based applications, traceability
requirements do not apply only to software code, but also to the used data sets. The objective is to ensure
that all analysis results (e.g. tuned model parameters, weights, coefficients and performance measures)
are well-documented and reproducible. The traceability solution shall ensure that for any candidate model,
current versions of the executed analysis scripts are saved and can be restored later if needed.
Furthermore, the traceability solution shall ensure that complete information is available for recreating the
used input data sets.

Traditional version control software (e.g. Git, CVS, Mercurial) are best suited for source code control, but
not optimized for data version control. Especially, large data file size causes problems for traditional source
control systems. There are existing solutions, such as Data Version Control (DVC)1 and DataLad2,
particularly designed for data version management (see sections 6.2.6 and 6.4.3). A common approach in
such systems is to use a traditional version control (e.g. Git-based) to manage metadata information (e.g.
file location, hash) of data files stored in the local or remote file system.

Existing data version control software can be used to manage different versions of the raw data files used
in the workflow of Figure 13. However, there is need for additional methods to ensure traceability of the
research database building process as well as the usage of the database data in ML model development.
In order to fulfil this need we developed and tested a new Git-based practice.

The practice is based on logging detailed information about the ETL and analysis processes. In the typical
workflow (Figure 13) the ETL scripts are executed once in the beginning to create the research database.
After this, the research database is used iteratively during a longer period by different versions of the

1 https://dvc.org/
2 https://www.datalad.org/

https://dvc.org/
https://www.datalad.org/

 RESEARCH REPORT VTT-R-01079-22

36 (53)

analysis scripts. In reality the research database may need to be modified or re-created several times
during the ML model development activity. Consequently, also the ETL scripts need to be modified and
re-executed. This is the case for example, when the research database is updated by new data. Therefore,
for each analysis run and candidate model, information for restoring the research database state shall be
saved along with the analysis results. An important feature of the solution is that no personal information
is logged so that the logs can be downloaded from the secure environment to be archived without privacy
risks. Furthermore, structured logging is used to enable easy automatic processing of log data. It is
important to note that the research database is not needed to stored permanently for traceability. It can
always be recreated based on the ETL scripts in Git, the logged information and the original data files.

The specific actions carried out by the ETL and analysis scripts to ensure traceability are listed in Table 1.
Each execution of the ETL scripts produces a specific read-only directory (identified by a unique ETL_ID)
where the structured log of the ETL execution is stored. Similarly, each execution of the analysis scripts
produces a specific read-only directory (identified by a unique ANA_ID) where structured log of the analysis
is stored. Additionally, this directory contains the analysis results.

 RESEARCH REPORT VTT-R-01079-22

37 (53)

Table 1.Actions automatically performed by ETL and analysis scripts to ensure traceability

Phase Action Objective

ETL Create unique ETL execution ID
(ETL_ID) and store it in the research
database.

Identifies the current execution of the ETL
scripts. Storage of the ETL_ID in the
database enables the analysis scripts to
access it and store it along with the analysis
results for traceability.

ETL Commit ETL script files to Git. Get
CommitID_1. Store CommitID_1 in
log.

Version control of ETL scripts. CommitID_1
enables the current version of ETL scripts to
be retrieved afterwards.

ETL Create a new database and populate
it with pre-processed data. Log
information about the ETL process
(selected options, raw data files,
software environment etc.)

Raw data is converted to a form appropriate
for later analysis. Exact information of the
ETL process is documented and can be
accessed later.

ETL Create triggers Database triggers are created to insert
information about any changes made to the
database after the ETL process was
terminated.

ETL Store log in a read-only directory
tagged with the ETL_ID.

Detailed information about the ETL
execution can be accessed afterwards
based on the ETL_ID.

Analysis Create unique analysis execution ID
(ANA_ID).

Identifies the execution of the analysis
scripts.

Analysis Commit analysis script files to Git. Get
CommitID_2. Store CommitID_2 in
log.

Version control of analysis scripts.
CommitID_2 enables the current version of
analysis scripts to be retrieved afterwards.

Analysis Get ETL_ID from the database and
store it in log.

Based on the stored ETL_ID all information
of the ETL process relevant to the current
database version can be accessed. The
ETL_ID enables this version of the research
database to be recreated later if needed.

Analysis Read the history table from database
and store information if the database
has been changed in log.

Enables to reveal if changes have been
made to the database after ETL scripts
were executed.

Analysis Log information about model
development (selected algorithms and
used data sets for
training/validation/testing etc.)

Collect detailed documentation of model
development and testing process.

Analysis Store log data and model
performance results in read-only
directory tagged with ANA_ID.

Detailed information about the analysis
execution can be accessed afterwards
based on the ANA_ID.

 RESEARCH REPORT VTT-R-01079-22

38 (53)

6.2.6 Data version control tools

There exists few other solutions for the data version control challenge. Two interesting open source
solutions are DVC1 and DataLad2. Both software are solving the same problem, but with different angle.
Table 2 underlines the principal similarities and differences of them:

Table 2 Comparison of DataLad and DVC

Property DataLad DVC

License MIT Apache 2.0

Target All-purpose version control

solution for data and code

Version control system for

machine learning

Backend Git, Git-annex Git

Developed and maintained by DataLad community Company (Iterative3) with

supporting community

User interface Command line Command line, VS code plugin,

python library, Studio by

Iterative.ai (proprietary software)

Collects user statistics No Yes, possible to opt out

Workflow management Special run and rerun

commands to record and (re)run

commands. Option to define

analyses on containers for

reproducibility.

Has system for ML code

pipeline management with

experiments functionality for

evaluation and retraining of the

models.

Supports external version

control services like Github or

Gitlab.

Yes Yes

Requires Git commands in

addition to its own commands

No, Git is run under the hood by

DataLad commands.

Yes, DVC prepares files for Git

but basic Git commands are

required to manage version

control.

Both tools are using hashes to manage large data files with Git. The basic principle is that data is stored
in separated location and the associated Git repository contains only information about data but not data
itself. DVC has its own implementation for the large data management and DataLad uses Git-annex4 - a
Git extension to manage large files.

DataLad in principle tracks every action ran with the data, especially when analytics are applied within
“datalad run” commands. Each action gets its own record at Git history and are thus possible to trace back
afterwards. With DVC user must run the Git commands separately to maintain the version control of the
task. DVC manages the data related action on its own side when the code and metadata is version
controlled at Git by user activity.

1 https://dvc.org/
2 https://www.datalad.org/
3 https://iterative.ai/
4 https://git-annex.branchable.com/

https://dvc.org/
https://www.datalad.org/
https://git-annex.branchable.com/

 RESEARCH REPORT VTT-R-01079-22

39 (53)

When comparing DataLad to the ETL process described in 6.2.4 it has very similar functionality, but it
works with files instead of ETL scripts and database tables. Similarly to the ETL based approach DataLad
stores unique identifier for every action under the DataLad managed project. The main difference is that
all of the actions are stored in Git history. This makes possible to follow the project activity through Git log
for any files processed at the project.

There is a good comparison of DataLad and DVC available at DataLad handbook1. DataLad and DVC are
fully focused on data stored in files and do not support version control of data stored in a database.
Therefore, they cannot provide a direct alternative for managing the research database through the ETL
process as described above. They could be used in parallel or in conjunction with the ETL process to
manage the raw data files and machine learning models. DVC has some special functionality which may
make it more useful for machine learning project but DataLad is simpler to use after the run processes are
defined as separated Git commands are not needed.

6.3 DevOps tools supporting ML based health monitoring solution

6.3.1 General

Remote health monitoring refers to the follow-up of various types of health conditions outside hospital
settings, e.g. at home. Remote health monitoring is typically based on a medical device including a sensor,
associated control electronics and embedded software responsible for sending the measurement data to
a back-end server. Continuous integration and deployment of the embedded software require special
arrangements compared to software applications. In particular, connection between the development
environment and the device needs to be provided. The software may also include AI/ML models which
need to be trained and tested. This adds complexity to the SW development environment and process.

6.3.2 Tools

Our main focus has been in tools for requirements and issues management, application building with the
CI/CD, and testing. We have chosen the widely used GitLab, Jenkins and Jira systems as reference
systems.

GitLab

Git is an open-source distributed version control management system. It is used by a broad range of
different types of projects. The change tracking feature enables monitoring of the progress also for the
non-technical project members. GitLab2 is an extension for Git and it adds tools and features to make it a
complete DevOps platform. GitLab is available as a self-managed or as a cloud based version.

In our use case, GitLab was used as a code and data repository for a health monitoring application and
the associated ML model. We used the self-managed installation which is distributed under MIT license.
When using self-managed version we can freely and without cost make different configurations with
unrestricted access. For production use the GitLab SaaS version may be more suitable.

We run GitLab on a Docker container. Instructions for downloading and starting the self-managed GitLab
Docker image can be found from the GitLab web site3.

1 https://handbook.datalad.org/en/latest/beyond_basics/101-168-dvc.html
2 https://about.gitlab.com/
3 https://docs.gitlab.com/ee/install/docker.html

https://handbook.datalad.org/en/latest/beyond_basics/101-168-dvc.html
https://about.gitlab.com/
https://docs.gitlab.com/ee/install/docker.html

 RESEARCH REPORT VTT-R-01079-22

40 (53)

Jenkins

Jenkins1 is an open-source (MIT license) environment that has a large set of CI/CD tools and features to
automate tasks related to building, test, deployment, integration, and release of the software. One of the
Jenkins’ strengths is that its automation pipeline script is considered to be well structured and easily
understandable and hence it is easy to set up. One powerful feature of Jenkins is its large plugin library
which enables the use of 3rd party tools if needed, e.g., in the testing phase. The use of 3rd party plugins
is also considered to be a weakness in Jenkins ecosystem, because of the vulnerabilities in plugin’s
maintenance and further development.

Jenkins is implemented in Java and it can be installed as a standalone Java application on any machine
that includes Java Runtime Environment (JRE). Besides Java WAR package, Jenkins is also distributed
as native packages, installers, and Docker images. In our experiment we use Java application version of
Jenkins run in a Windows 10 PC.

Jira

Jira Software2 is an issue tracking and project management tool developed by Atlassian. Software teams
can use this tool for requirements, issues, and tasks management, as well as bug tracking and workflow
approvals. This tool is widely used also among non-technical teams for operations such as change
requests and general task management. Jira has also support for Kanban and Scrum agile frameworks.

Jira is not an open-source application. For the cloud based version the licences are available from free
basic version (up to 10 users) to large scale premium version which costs USD 1525 per year (up to 10
users). The Jira Software Data Center is also available as a self-managed enterprise version. In this
document we use the free trial version of the self-managed Jira Software Data Center. The Docker image
of the Jira is freely available3

. The self-managed version is currently a discontinued product, but our setup

can be directly extended to the cloud-based versions.

6.3.3 Reference system

We took a remote heart rate monitoring system as a reference. The reference system depicted in Figure
14 encompasses a Windows application (SensorData gateway) connected by Bluetooth to an Arduino
Nano 33 BLE Sense microcontroller device to collect heart rate and photoplethysmography (PPG) data.
The collected data is used to create a user-specific ML model to determine heart rate from the PPG data.
The model is based on convolutional neural network (CNN) algorithm implemented in Python using
Tensorflow machine learning tools and libraries. The created ML model is integrated into the software, that
is uploaded to the microcontroller based device and used to calculate heart rate from the PPG data in real-
time.

1 https://www.jenkins.io/
2 https://www.atlassian.com/software/jira
3 https://hub.docker.com/r/atlassian/jira-software

https://www.jenkins.io/
https://www.atlassian.com/software/jira
https://hub.docker.com/r/atlassian/jira-software

 RESEARCH REPORT VTT-R-01079-22

41 (53)

Figure 14.Architecture of the reference system

In this reference system the focus is in collecting sensor data and sending that data to the ML model
generation process. The SensorData Gateway uses GitLab HTTP API to start a ML model creation pipeline
in GitLab. The ML model creation pipeline script downloads sensor data (csv-files) from MySQL database,
executes model creation Python script, and uploads the created ML model into the database. When the
ML model is ready, the SensorData Gateway downloads the ML model from the database and saves it
locally to be used in the Arduino application development process. The Arduino application development
is started by the SensorData Gateway by using Arduino command line interface (Arduino-cli). The Arduino-
cli is also used for the deployment of the Arduino application with USB cable from the PC to Arduino
device.

The reference development system depends on the SensorData Gateway to start the development and
deployment processes. The device application code resides in the local computer, so that changes to the
software code are not available to other project members. In addition, changes to the device application
code are not automatically compiled, tested and deployed.

6.3.4 Integrated system

In order to address the shortcomings of the reference system we have set up an experimental system for
continuous integration and deployment (Figure 15). The functionalities are shortly described in the
following subsections.

 RESEARCH REPORT VTT-R-01079-22

42 (53)

Figure 15. Architecture for continuous integration and deployment.

6.3.5 Requirements and issues management

Jira is used for requirements and issues management. In Jira we create an own project for each
component of the application. Machine Learning model creation project defines the requirements for the
ML model needed by the application. Business logic project takes care of data processing needed to fulfil
the application purpose and also functionalities such as database access, user management and external
communications. We also keep the compliance requirements from regulatory bodies in a separate project.

Integration between GitLab and Jira enables importing of issues and requirements managed in Jira to be
available for developers in GitLab. Integration can take place in two ways: Basic Jira Integration or Jira
Development Panel. These integrations can be used separately, but it is recommended, that both of them
are enabled.

Basic Jira Integration can be defined in the GitLab’s side either at instance-level1 (only self-managed
GitLab version) by administrator or by a project owner at a specific project level. If the instance-level
integration is used, it provides default values for configuring the integrations between GitLab and Jira and
it is applied to each of the projects in the GitLab’s instance that don’t yet have integration configured. The
default values can be overwritten in the project’s settings. If the integration takes place at the project level,
then all the values are set separately for each project. Each GitLab project can also be configured to
integrate with all the projects defined in the Jira instance. In that case a GitLab project is not needed to be
associated with any particular Jira project.

Jira Development panel integration enables referencing Jira issues in GitLab and it presents commits,
branches, and merge requests with links towards GitLab. This integration makes it possible to use Smart
Commits2, i.e., when in the GitLab the Jira issue’s ID is put in the commit message or comment, then these
are made visible also in Jira’s side in the Development Panel. Jira’s issue transition can also set with a
workflow state name with the Jira issue ID.

1 https://docs.gitlab.com/ee/user/admin_area/settings/project_integration_management.html#manage-instance-
level-default-settings-for-a-project-integration
2 https://support.atlassian.com/jira-software-cloud/docs/process-issues-with-smart-commits/

https://docs.gitlab.com/ee/user/admin_area/settings/project_integration_management.html%23manage-instance-level-default-settings-for-a-project-integration
https://docs.gitlab.com/ee/user/admin_area/settings/project_integration_management.html%23manage-instance-level-default-settings-for-a-project-integration
https://support.atlassian.com/jira-software-cloud/docs/process-issues-with-smart-commits/

 RESEARCH REPORT VTT-R-01079-22

43 (53)

6.3.6 Continuous integration and deployment

Continuous integration and deployment (CI/CD) is based on integration between GitLab and Jenkins.
Jenkins uses the GitLab API for retrieving source code files from GitLab to be compiled, built and deployed
to the target device (Arduino). After uploading, unit tests are executed. GitLab’s push mechanism is used
to trigger automatic execution of this process, for example after a Git commit operation. The process also
includes the necessary conversions of the test outputs into JUnit format for graphical output in Jenkings
UI. In the end of the process the generated build files and test results are stored in GitLab.

6.4 Development of ML based machine vision for medical purposes

6.4.1 General

Machine vision applications are widely used in the healthcare sector and have a plethora of uses, ranging
from improving the patient experience up to guiding or driving clinical procedures. These applications are
increasingly relying on latest advancements in machine learning and deep learning algorithms because of
the unarguably better performance in terms of accuracy, robustness, processing time, etc [27]–[29].
However, a pre-requisite of these modern techniques is to have large enough datasets that allow
researchers and developers to train, validate and test the developed models. This shifts the paradigm from
a code-oriented development to a data-driven development, which has a significant impact on the tools
used for MDR and IVDR compliance.

The FDA whitepaper on AI/ML in Medical Devices1 has a clear emphasis on data. Data is part of various
steps in the total product lifecycle (TPLC) and has multiple instances (training/validation/testing, live data,
re-training data, etc.). It becomes clear that we need specific tools for efficient data handling since the
quality of the data can significantly influence an AI/ML system. Based on the QMS standard ISO 13485
(Article 4.2.5) control of all records is required, which implies the versioning and documentation of training,
validation, and testing datasets.

In the case of machine vision applications, data is usually recorded in the form of images, and it is
organized in folders. Images occupy a large amount of storage space and considering the needs of ML
models for large amounts of data, the storage space can easily become a problem. Therefore, efficient
organization and tracking of image data is a complex task. Traditional version control tools, such as Git
cannot directly handle these huge amounts of data, since they were originally developed for lightweight
files that store software source-code.

Therefore, a holistic system capable of capturing the version history of data, source code and analysis
outputs is a highly desired feature for any medical device software. By providing a snapshot of all
dependencies and a documented history of all changes, an AI/ML system is closer to full compliance with
the ISO 13485.

6.4.2 Image enhancement using AI for endoscopic imaging

To showcase the benefits and potential challenges of having a fully tracked system, we will present one
use case from the FOSDIGUM project2, where we research AI-based image enhancement techniques for

1 https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-Learning-
Discussion-Paper.pdf

2 https://www.ipt.fraunhofer.de/en/projects/fosdigum.html

https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-Learning-Discussion-Paper.pdf
https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-Learning-Discussion-Paper.pdf
https://www.ipt.fraunhofer.de/en/projects/fosdigum.html

 RESEARCH REPORT VTT-R-01079-22

44 (53)

endoscopic imaging. The main goal of this use case is to deliver the best possible image quality to
surgeons, helping them in endoscopic procedures. We start by analysing still images, which can be
captured by surgeons for documenting purposes. The processing time requirement in this case is not strict
and the use-case allow for offline computation. However, the end-goal would be to optimize the algorithm
and use it as a live video enhancement, which require real-time computation capability. The research work
for this use case has been carried out during VTT’s researcher visit to endoscope manufacturer Karl Storz
in Germany and Switzerland.

There are various aspects that affect the quality of an image, such as sensor noise, compression artefacts,
illumination conditions, motion blur and many others. Because there are multiple algorithms that are
tackling these problems independently (or even jointly in some cases), experimenting with all the blocks
that form the imaging pipeline can soon become a problem from the data management and tracking point
of view. Figure 16 depicts a generic pipeline for image enhancement. In the experimentation phase, the
building blocks can also change their position in the pipeline and exhaustive testing is needed in order to
find the winning combination.

Figure 16 General pipeline for image enhancement.

These blocks can be internally implemented using different ML models; hence it is necessary to keep track
of not only the original data, but also of the training/validation/testing data needed for each model.
According to FDA’s risk classification of medical devices, we have classified endoscopic imaging as being
part of the treat or diagnose class, meaning that there is a high level of risk that we need to address. This
further encourages us to adopt a robust and complete tracking system for our image enhancement
pipeline. While adding more and more intelligence to the imaging pipeline, it needs to be ensured that the
output image that the surgeon analyses is identical to the real-world situation.

To address data management and tracking, we have turned out attention to data version control software
like DVC and DataLad. We considered the DVC to be most relevant for this use case.

6.4.3 DVC and Gitlab in supporting image data control

DVC is an open-source version control system for ML projects which enables data versioning, ML workflow
automation and experiment management through a seamless integration with Git. An intuitive
representation for DVC is “Git for data”. While DVC is technically not a version control system, it creates
the needed artefacts to enable data version control via Git (see also Section 6.2.6).

In Figure 17, we present the architecture we used to demonstrate the advantages of DVC. We use two
computers to simulate a team of researchers/developers working on the same project. The goal of the
system is to have the computers synchronized with regard to the source code and data, and have a data
version control mechanism.

 RESEARCH REPORT VTT-R-01079-22

45 (53)

Figure 17 System architecture for image data control with DVC.

DVC offers the option for maintaining data in a safe remote data repository (Google Drive, Amazon S3,
etc.). In our case, we have set up a third computer as a data repository, which we can access via SSH. A
Gitlab instance server works as the synchronizer between the two main workstations. DVC versions the
data by generating a .dvc file, containing the corresponding hashes for all data files that are tracked. When
the .dvc file is created, the actual data folder will be added to the .gitignore file, and only the .dvc file will
be pushed on the remote Gitlab repository. Therefore, the Gitlab repository will remain light, but data will
be correctly tracked.

Let us analyse the following scenario: On computer #1, new data is added. The following protocol will be
followed:

• Run dvc status to check what has changed.

• Run dvc add to track changes in the new dataset. This will modify the contents of data.dvc file.
This way, also Git will know that there has been a change.

• Add in a new git commit the data.dvc file and push it to the remote repository. Push with dvc push
the newly added data to the data repository. This step is very important, so that other users not
only download the new hashes from the Gitlab instance but can also pull the new data from the
data repository.

• On computer #2, we will first pull the latest version from Gitlab.

• By running dvc checkout, DVC will notify that indeed the data has changed, but we do not
physically have the new data. So, to fix this we pull the new data with dvc pull. Then, we run dvc
checkout to switch to the new version of the dataset.

This is a brief exemplification of data versioning. The same protocol can be followed for any operations on
the data: modification, addition, removal. Moreover, each software version will have its corresponding data
version, meaning that we can replicate the system on any new workstation. Another great feature of DVC
is that we can go through older commits and checkout the exact data version that was used in that commit,
which not only ensures reproducibility, but also removes the need to create redundant copy of the datasets
with small modifications.

Previously, we have presented in Figure 16 a generic pipeline for image enhancement and pointed out
that in practice, one needs to analyse a variety of pipelines, and in particular analyse and keep track of
the intermediate outputs. DVC offers a feature for creating data pipelines, which captures how data

 RESEARCH REPORT VTT-R-01079-22

46 (53)

changes in the pipeline and helps in recreating and sharing the workflows. Training, validation and testing
datasets can be captured as data dependencies and included as stages in the pipelines. This means that
any change in a dataset involved in the pipeline would trigger a re-run of the pipeline. In addition, the
researchers can have a visual representation of all the dependencies and how the data flows from one
module to another, while keeping track of any parameter change.

Figure 18.Experiments view created with DVC.

Figure 18 presents the Experiments view created with the DVC extension in Visual Studio Code. The view
shows one row per each experiment carried out during the ML model development process. The
Experiments view enables access to all values in the params.yaml, including for example the
hyperparameters of each experiment. Along with the value of the parameters, the commit ID of each
source code file is recorded (TXI.py, swinir_inference.py). Moreover, metrics (e.g. AUC, accuracy, etc.)
can also be recorded for each experiment.

 RESEARCH REPORT VTT-R-01079-22

47 (53)

7. Conclusions

The objective of the AHMED project was to present best practices for applying agile software and DevOps
approaches in medical device software development. Different perspectives were represented in the
heterogeneous project consortium. The partners included (1) companies providing medical software based
products for customers (Atostek, Bittium, Mylab, Solita), (2) healthcare service providers developing
software primarily for inhouse use (Terveystalo), (3) companies providing software development tools
(Taipuva Consulting) and (4) organisations carrying out research targeting at future medical software
(VTT) or at new software development processes and tools (University of Helsinki). The AHMED project
enabled partners to exchange experiences and knowledge related to regulated medical software and the
specific challenges of AI/ML and data usage. The co-operation was smooth and open. All partners
considered that the sharing of experiences and knowledge was highly beneficial and helped them in
adopting new processes and tools to improve their MDR compliance.

This report summarizes the experiences and best practices of the project partners in MDD to MDR
transition, AI/ML compliant RegOps lifecycle development, software development tools, personal health
data usage and ML model development in the research context.

Transition from MDD to MDR requires significant efforts and resources from software providers. According
to the new MDR regulation a large number of health related applications now fall in the MDR class IIa
category and require certification by a notified body. A remarkable difficulty is caused by the fact that
notified bodies lack resources and cannot respond to the high demand of certification services. Because
of this, significant delays in bringing products to markets may result. Bittium, Terveystalo and Mylab
upgraded their quality systems to match MDR requirements during the AHMED project. The experiences
show that it takes at least one year to transit from a MDD based quality system to MDR compliance. Co-
operation and exchange of experiences with other companies was considered very beneficial in this
process. Also, early interaction with the notified body was considered important especially for
understanding the specific requirements related to the use of AI/ML. The continuous documentation
paradigm was seen essential in fulfilling the regulatory requirements efficiently.

For a company, RegOps framework can be seen as a way to meet requirements of large global customer
companies and to create development partnerships. In the RegOps framework, AI/ML development
practices deserve specific attention. AI/ML applications are problematic from the regulatory perspective as
they may need to be updated when new data comes available. Unfortunately, the MDR does not explicitly
address AI/ML based medical software. Furthermore, there is also lack of guidance documentation and
harmonized standards addressing the use of AI/ML in regulated applications. Solita’s approach has been
to further develop their existing RegOps model based on the general idea of the AI system lifecycle model
presented in the draft version of ISO/IEC DIS 5338:2022 standard. The model addresses specific AI-
related aspects relevant from the regulatory perspective, especially highlighting that the AI-enabled
technology needs to be justified and proven safe, clinically effective, and secure. The RegOps model pays
attention to managing the inherent complexity and change dynamics of AI-based systems. The model also
outlines the importance of data management practices and their alignment with regulatory requirements.

Software tools are available for all relevant parts of the RegOps cycle, including: project planning and
management, documentation, software development, integration, testing, deployment and
operations/monitoring. Traceability and continuous documentation are especially important features in the
context of regulated medical software development. Tools should support the workflow ensuring, for
example, that all regulatory documents are created. Typically several tools need to be integrated to support
the RegOps cycle. A workflow automation demonstration involving integration of Polarion application
lifecycle management tool with GitHub version control was carried out by Taipuva and University of
Helsinki. Integration of ALM and version control tools enable, for example, syncing documentation with
software changes. The integration also allowed the analysis of different change management scenarios.
The analysis showed that integration and concept mapping between the tools needs to be carefully
designed to support smooth co-operation of the different user groups. Specific tools for ML development
were also considered. The Model Cards metadata tool (Google Research) was tested and observed to be

 RESEARCH REPORT VTT-R-01079-22

48 (53)

useful in supporting both engineering and regulatory needs. Also a reusable approach for supporting tool
validation was developed and demonstrated in the framework of the AHMED project.

Usage of personal data is typically involved in medical AI/ML based applications. Access to personal data
is highly regulated and subject to several preconditions depending on the type and amount of data
requested. Atostek has applied the permission to use pseudonymized patient record data from the Kanta
national electronic health record system. The identified use cases for data are: automated medical risk
calculation and summarisation of data for medical professionals. The data permit has been currently
granted by Findata and preparation of data for use is ongoing. Valuable experience of the data application
process has already been gained and included in this report. For example, it is important to understand
that individual-level data is only available for scientific research purpose, which implies the need to justify
the study by presenting valid research questions and to publish the results of the study. The individual-
level data can only be processed in a closed processing environment (Kapseli) with no direct connections
outside. This reduces privacy risks, but also complicates the data analysis activity. All this, together with
the long application process needs to be considered when planning data exploitation under the Finnish
legislation on the secondary use health and social data.

Research institutes and universities are frequently carrying out research activities, which may later lead to
components of regulated software. It is highly important to carry out the early research in a way compatible
with regulation. VTT carried out three use cases highlighting the usage of customized and off-the-shelf
tools in ensuring regulation compliant research project execution, e.g. collection and management of
traceability data. The first use case demonstrates a solution for maintaining traceability when processing
personal data in a closed secure processing environment (Findata/Kapseli). The presented approach is
based on controlled ETL process and logging of anonymous data during research database generation
and data analysis. The second use case involves a setup of tools for supporting AI/ML based health
monitoring application development. The setup demonstrates requirements and issues management
based on Jira/GitLab integration and continuous integration and deployment based on GitLab/Jenkins
integration. The third use case demonstrates image data management in a medical image enhancement
pipeline. The demonstration uses DVC for traceability of the AI/ML model development process. The
approach enables linking each experiment with the used data sets, software version and obtained model
performance results.

 RESEARCH REPORT VTT-R-01079-22

49 (53)

References

[1] M. Gokarna and R. Singh, “DevOps: A Historical Review and Future Works,” Proc. - IEEE 2021
Int. Conf. Comput. Commun. Intell. Syst. ICCCIS 2021, pp. 366–371, Feb. 2021, doi:
10.1109/ICCCIS51004.2021.9397235.

[2] T. Melvin and M. Torre, “New medical device regulations: the regulator’s view,” EFORT open
Rev., vol. 4, no. 6, pp. 351–356, Jun. 2019, doi: 10.1302/2058-5241.4.180061.

[3] L. Keutzer and U. S. H. Simonsson, “Medical Device Apps: An Introduction to Regulatory Affairs
for Developers,” JMIR mHealth uHealth, vol. 8, no. 6, Jun. 2020, doi: 10.2196/17567.

[4] J. Feng et al., “Discussion on ‘Approval policies for modifications to machine learning-based
software as a medical device: A study of bio-creep’ by Jean Feng, Scott Emerson, and Noah
Simon,” Biometrics, vol. 77, no. 1, pp. 45–48, Mar. 2021, doi: 10.1111/BIOM.13381.

[5] U. J. Muehlematter, P. Daniore, and K. N. Vokinger, “Approval of artificial intelligence and
machine learning-based medical devices in the USA and Europe (2015–20): a comparative
analysis,” Lancet Digit. Heal., vol. 3, no. 3, pp. e195–e203, Mar. 2021, doi: 10.1016/S2589-
7500(20)30292-2.

[6] S. V. G. Subrahmanya et al., “The role of data science in healthcare advancements: applications,
benefits, and future prospects,” Irish Journal of Medical Science. 2021, doi: 10.1007/s11845-021-
02730-z.

[7] WHO, “Ethics and Governance of Artificial Intelligence for Health: WHO guidance,” World Heal.
Organ., pp. 1–148, 2021, Accessed: Feb. 25, 2022. [Online]. Available:
http://apps.who.int/bookorders.

[8] T. Lysaght, H. Y. Lim, V. Xafis, and K. Y. Ngiam, “AI-Assisted Decision-making in Healthcare,”
Asian Bioeth. Rev. 2019 113, vol. 11, no. 3, pp. 299–314, Sep. 2019, doi: 10.1007/S41649-019-
00096-0.

[9] B. Babic, S. Gerke, T. Evgeniou, and I. Glenn Cohen, “Algorithms on regulatory lockdown in
medicine,” Science (80-.)., vol. 366, no. 6470, pp. 1202–1204, Dec. 2019, doi:
10.1126/SCIENCE.AAY9547/ASSET/A4D80998-FB54-4CED-8458-
D86F7F05BBB5/ASSETS/GRAPHIC/366_1202_F1.JPEG.

[10] S. Gilbert, M. Fenech, M. Hirsch, S. Upadhyay, A. Biasiucci, and J. Starlinger, “Algorithm Change
Protocols in the Regulation of Adaptive Machine Learning–Based Medical Devices,” J. Med.
Internet Res., vol. 23, no. 10, Oct. 2021, doi: 10.2196/30545.

[11] S. Gilbert, M. Fenech, A. Idris, and E. Türk, “Periodic Manual Algorithm Updates and
Generalizability: A Developer’s Response. Comment on ‘Evaluation of Four Artificial Intelligence–
Assisted Self-Diagnosis Apps on Three Diagnoses: Two-Year Follow-Up Study,’” J Med Internet
Res 2021;23(6)e26514 https//www.jmir.org/2021/6/e26514, vol. 23, no. 6, p. e26514, Jun. 2021,
doi: 10.2196/26514.

[12] T. Granlund, · V. Stirbu, and · T. Mikkonen, “Towards Regulatory-Compliant MLOps: Oravizio’s
Journey from a Machine Learning Experiment to a Deployed Certified Medical Product,” SN
Comput. Sci. 2021 25, vol. 2, no. 5, pp. 1–14, Jun. 2021, doi: 10.1007/S42979-021-00726-1.

[13] J. Lähteenmäki, J. Pajula, and E. Antikainen, “Development of medical applications based on AI
models and register data – regulatory considerations,” in Proceedings of the 18th Scandinavian
Conference on Health Informatics, 2022, pp. 141–146, [Online]. Available:
https://ecp.ep.liu.se/index.php/shi.

 RESEARCH REPORT VTT-R-01079-22

50 (53)

[14] “EUR-Lex - 52021PC0206 - EN - EUR-Lex.” https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=CELEX%3A52021PC0206 (accessed Feb. 28, 2022).

[15] V. Jormanainen and J. Reponen, “CAF and CAMM analyses on the first 10 years of national
Kanta services in Finland,” Finnish J. eHealth eWelfare, vol. 12, no. 4, pp. 302–315–302–315,
Dec. 2020, doi: 10.23996/FJHW.98548.

[16] T. Granlund, T. Mikkonen, and V. Stirbu, “On Medical Device Software CE Compliance and
Conformity Assessment,” Proc. - 2020 IEEE Int. Conf. Softw. Archit. Companion, ICSA-C 2020,
pp. 185–191, Mar. 2020, doi: 10.1109/ICSA-C50368.2020.00040.

[17] T. Granlund, J. Vedenpaa, V. Stirbu, and T. Mikkonen, “On Medical Device Cybersecurity
Compliance in EU,” Proc. - 2021 IEEE/ACM 3rd Int. Work. Softw. Eng. Heal. SEH 2021, pp. 20–
23, Jun. 2021, doi: 10.1109/SEH52539.2021.00011.

[18] V. Stirbu and T. Mikkonen, “Introducing Traceability in GitHub for Medical Software Development,”
Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
vol. 13126 LNCS, pp. 152–164, Oct. 2021, doi: 10.48550/arxiv.2110.13034.

[19] V. Stirbu, M. Raatikainen, J. Rontynen, V. Sokolov, T. Lehtonen, and T. Mikkonen, “Toward
Multiconcern Software Development With Everything as Code,” IEEE Softw., vol. 39, no. 04, pp.
27–33, Jul. 2022, doi: 10.1109/MS.2022.3167481.

[20] T. Granlund, V. Stirbu, T. Mikkonen, C. Pautasso, and O. Zimmermann, “Medical Software Needs
Calm Compliance,” IEEE Softw., vol. 39, no. 1, pp. 19–28, 2022, doi: 10.1109/MS.2021.3117292.

[21] M. K. Higashi et al., “Association Between CYP2C9 Genetic Variants and Anticoagulation-Related
Outcomes During Warfarin Therapy,” JAMA, vol. 287, no. 13, p. 1690, Apr. 2002, doi:
10.1001/jama.287.13.1690.

[22] V. Stirbu, T. Granlund, and T. Mikkonen, “Continuous Design Control for Machine Learning in
Certified Medical Systems,” Softw. Qual. J., Sep. 2022, doi: 10.1007/s11219-022-09601-5.

[23] T. Granlund, A. Kopponen, V. Stirbu, L. Myllyaho, and T. Mikkonen, “MLOps Challenges in Multi-
Organization Setup: Experiences from Two Real-World Cases,” 2021 IEEE/ACM 1st Work. AI
Eng. - Softw. Eng. AI, pp. 82–88, May 2021, doi: 10.1109/WAIN52551.2021.00019.

[24] V. Stirbu, T. Granlund, J. Helen, and T. Mikkonen, “Extending SOUP to ML Models When
DesigningCertified Medical Systems,” Proc. - 2021 IEEE/ACM 3rd Int. Work. Softw. Eng. Heal.
SEH 2021, pp. 32–35, Mar. 2021, doi: 10.48550/arxiv.2103.09510.

[25] V. Männikkö, A. Kopponen, T. Mikkonen, K. Förger, and M. Torhola, “Strengthening Well-Being
Based on National Health Records: Citizen Digital Twins with Personal Risk Assessment,” SSRN
Electron. J., Aug. 2022, doi: 10.2139/SSRN.4181368.

[26] J. Lähteenmäki et al., “Integrating data from multiple Finnish biobanks and national health-care
registers for retrospective studies: Practical experiences,” Scand. J. Public Health, p.
140349482110044, Apr. 2021, doi: 10.1177/14034948211004421.

[27] H. E. Kim et al., “Changes in cancer detection and false-positive recall in mammography using
artificial intelligence: a retrospective, multireader study,” Lancet Digit. Heal., vol. 2, no. 3, pp.
e138–e148, Mar. 2020, doi: 10.1016/S2589-7500(20)30003-0.

[28] A. Rodriguez-Ruiz et al., “Stand-Alone Artificial Intelligence for Breast Cancer Detection in
Mammography: Comparison With 101 Radiologists,” JNCI J. Natl. Cancer Inst., vol. 111, no. 9,
pp. 916–922, Sep. 2019, doi: 10.1093/JNCI/DJY222.

 RESEARCH REPORT VTT-R-01079-22

51 (53)

[29] C. Hassan et al., “Performance of artificial intelligence in colonoscopy for adenoma and polyp
detection: a systematic review and meta-analysis,” Gastrointest. Endosc., vol. 93, no. 1, pp. 77-
85.e6, Jan. 2021, doi: 10.1016/J.GIE.2020.06.059.

 RESEARCH REPORT VTT-R-01079-22

52 (53)

Annex 1: Terms and Acronyms

Term / acronym Description

AI Artificial intelligence

AI/ML Artificial intelligence or machine learning. In many cases, the
categorization between AI and ML is not relevant and it is more
appropriate to refer to the two technologies together.

ALM Application lifecycle management

API Application programming interface

AUC Area under curve. In machine learning a measure of the ability of a
classifier to distinguish between classes.

CD Continuous deployment

CE mark CE mark on a product means that the manufacturer or importer affirms the
good's conformity with European health, safety, and environmental
protection standards.

CI Continuous integration

CSV Comma-separated value. A text file format used for storing tabular data.

DevOps Set of practices that combines software development (Dev) and IT
operations (Ops). It aims to shorten the systems development life cycle
and provide continuous delivery with high software quality.

DL Deep learning

DVC Data Version Control. Version control software for machine learning
models, data sets and intermediate files.

ETL Extract Transform Load. A process where data is extracted from its original
source, transformed to a suitable form and loaded into an output data
container where it is ready to be used.

FDA Food and Drug Administration

GDPR General Data Protection Regulation

IVD In vitro diagnostic medical device

IVDR In Vitro Diagnostic Medical Devices Regulation. Regulation (2017/746) by
EU on placing in vitro diagnostic medical devices on the market.

JUnit XML based format for storing software test data

MD Medical device

MDD Medical Device Directive. Former regulation (93/42/EEC) by EU
concerning medical devices (Currently replaced by MDR and IVDR)

MDCG Medical Device Coordination Group

 RESEARCH REPORT VTT-R-01079-22

53 (53)

MDR Medical Device Regulation. Regulation (2017/745) by EU on placing
medical devices on the market.

Medical Device Software Software that is intended to be used, alone or in combination, for a
purpose as specified in the MDR or IVDR. In this report also referred
shortly as “Medical software”.

ML Machine learning

MLOps Machine Learning Operations. Set of practices that aims to deploy and
maintain AI/ML models in production reliably and efficiently.

Notified Body A notified body is an organisation designated by an EU country to assess
the conformity of certain products before being placed on the market.
These bodies carry out tasks related to conformity assessment procedures
set out in the applicable legislation, when a third party is required.

QMS Quality management system

RegOps Regulatory Operations. Combination of cultural philosophies, practices,
and tools that increases an organization's ability to ensure compliance of
applications and services against regulatory standards at high velocity.

REST Representational state transfer

SaaS Software as a service

SAFe Scaled Agile Framework

SaMD Software as a Medical Device

SOP Standard Operating Procedure

SSH Secure shell protocol

TPLC Total product lifecycle

V&V Verification & Validation. The process of checking that a software system
meets specifications and requirements so that it fulfils its intended
purpose.

