33 research outputs found

    Research of Asynchronous SAR ADC Based on Hopfield Network

    Get PDF

    Palmo : a novel pulsed based signal processing technique for programmable mixed-signal VLSI

    Get PDF
    In this thesis a new signal processing technique is presented. This technique exploits the use of pulses as the signalling mechanism. This Palmo 1 signalling method applied to signal processing is novel, combining the advantages of both digital and analogue techniques. Pulsed signals are robust, inherently low-power, easily regenerated, and easily distributed across and between chips. The Palmo cells used to perform analogue operations on the pulsed signals are compact, fast, simple and programmable

    Study and design of an interface for remote audio processing

    Get PDF
    This project focused on the study and design of an interface for remote audio processing, with the objective of acquiring by filtering, biasing, and amplifying an analog signal before digitizing it by means of two MCP3208 ADCs to achieve a 24-bit resolution signal. The resulting digital signal was then transmitted to a Raspberry Pi using SPI protocol, where it was processed by a Flask server that could be accessed from both local and remote networks. The design of the PCB was a critical component of the project, as it had to accommodate various components and ensure accurate signal acquisition and transmission. The PCB design was created using KiCad software, which allowed for the precise placement and routing of all components. A major challenge in the design of the interface was to ensure that the analog signal was not distorted during acquisition and amplification. This was achieved through careful selection of amplifier components and using high-pass and low-pass filters to remove any unwanted noise. Once the analog signal was acquired and digitized, the resulting digital signal was transmitted to the Raspberry Pi using SPI protocol. The Raspberry Pi acted as the host for a Flask server, which could be accessed from local and remote networks using a web browser. The Flask server allowed for the processing of the digital signal and provided a user interface for controlling the gain and filtering parameters of the analog signal. This enabled the user to adjust the signal parameters to suit their specific requirements, making the interface highly flexible and adaptable to a variety of audio processing applications. The final interface was capable of remote audio processing, making it highly useful in scenarios where the audio signal needed to be acquired and processed in a location separate from the user. For example, it could be used in a recording studio, where the audio signal from the microphone could be remotely processed using the interface. The gain and filtering parameters could be adjusted in real-time, allowing the sound engineer to fine-tune the audio signal to produce the desired recording. In conclusion, the project demonstrated the feasibility and potential benefits of using a remote audio processing system for various applications. The design of the PCB, selection of components, and use of the Flask server enabled the creation of an interface that was highly flexible, accurate, and adaptable to a variety of audio processing requirements. Overall, the project represents a significant step forward in the field of remote audio processing, with the potential to benefit many different applications in the future

    Analogue filter networks: developments in theory, design and analyses

    Get PDF
    Not availabl

    The CMS experiment at the CERN LHC

    Get PDF
    The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and leadlead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 1034 cm-2s-1 (1027 cm-2s-1). At the core of the CMS detector sits a high-magnetic field and large-bore superconducting solenoid surrounding an all-silicon pixel and strip tracker, a lead-tungstate scintillating-crystals electromagnetic calorimeter, and a brass-scintillator sampling hadron calorimeter. The iron yoke of the flux-return is instrumented with four stations of muon detectors covering most of the 4π solid angle. Forward sampling calorimeters extend the pseudorapidity coverage to high values (|η| ≤ 5) assuring very good hermeticity. The overall dimensions of the CMS detector are a length of 21.6 m, a diameter of 14.6 m and a total weight of 12500 t

    TIME: A Millimeter-Wavelength Grating Spectrometer Array for [CII] / CO Intensity Mapping

    Get PDF
    In this thesis I review the design, fabrication, and initial engineering deployment of the TIME (Tomographic Ionized-carbon Mapping Experiment) instrument. TIME seeks to make a first detection of the clustering amplitude of the power spectrum of redshifted [CII] emission from the Epoch of Reionization (z = 5-9). [CII], the 157.7 µm fine-structure line of singly ionized carbon, traces star formation on large scales, providing a new method for constraining the contribution of star formation to the Reionization process. [CII] intensity mapping complements traditional galaxy surveys by using spatially-broad beams to integrate signal from the many faint sources thought to be responsible for the bulk of the integrated emission from galaxies. TIME covers the 200-300 GHz atmospheric window, which also enables the study of lower-redshift CO emission (z = 0.5-2), a tracer of molecular gas in the period following the peak of cosmic star formation. The full TIME instrument consists of 32 single-polarization grating spectrometers with a resolution R ~ 100. Each spectrometer consists of an input feedhorn coupled to parallel plate waveguide with a curved diffraction grating, which focuses the diffracted light onto an output arc populated by 60 transition-edge sensor (TES) bolometers at 250 mK. The 1920 total detectors couple to the output of the parallel plate waveguide with a direct-absorbing micro-mesh and are organized into buttable arrays covering 4 spatial by either 12 (HF) or 8 (LF) spectral pixels. A partial TIME instrument was field tested in early 2019 on the ARO APA 12m dish at Kitt Peak. We intend to return to Kitt Peak in late 2020 to begin initial science observations.</p

    The 1992 4th NASA SERC Symposium on VLSI Design

    Get PDF
    Papers from the fourth annual NASA Symposium on VLSI Design, co-sponsored by the IEEE, are presented. Each year this symposium is organized by the NASA Space Engineering Research Center (SERC) at the University of Idaho and is held in conjunction with a quarterly meeting of the NASA Data System Technology Working Group (DSTWG). One task of the DSTWG is to develop new electronic technologies that will meet next generation electronic data system needs. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The NASA SERC is proud to offer, at its fourth symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories, the electronics industry, and universities. These speakers share insights into next generation advances that will serve as a basis for future VLSI design

    Topical Workshop on Electronics for Particle Physics

    Get PDF
    corecore