247 research outputs found

    Escalonar sistemas de tempo-real de alta críticalidade

    Get PDF
    Cyclic executives are used to schedule safety-critical real-time systems because of their determinism, simplicity, and efficiency. One major challenge of the cyclic executive model is to produce the cyclic scheduling timetable. This problem is related to the bin-packing problem [34] and is NP-Hard in the strong sense. Unnecessary context switches within the scheduling table can introduce significant overhead; in IMA (Integrated Modular Avionics), cache-related overheads can increase task execution times up to 33% [18]. Developed in the context of the Software Engineering Master’s Degree at ISEP, the Polytechnic Institute of Engineering in Porto Portugal, this thesis contains two contributions to the scheduling literature. The first is a precise and exact approach to computing the slack of a job set that is schedule policy independent. The method introduces several operations to update and maintain the slack at runtime, ensuring the slack of all jobs is valid and coherent. The second contribution is the definition of a state-of-the-art preemptive scheduling algorithm focused on minimizing the number of system preemptions for real-time safety-critical applications within a reasonable amount of time. Both contributions have been implemented and extensively tested in scala. Experimental results suggest our scheduling algorithm has similar non-preemptive schedulability ratio than Chain Window RM [69], yet lower ratio in high utilizations than Chain Window EDF [69] and BB-Moore [68]. For ask sets that failed to be scheduled non-preemptively, 98-99% of all jobs are scheduled without preemptions. Considering the fact that our scheduler is preemptive, being able to compete with non-preemptive schedulers is an excellent result indeed. In terms of execution time, our proposal is multiple orders of magnitude faster than the aforementioned algorithms. Both contributions of this work are planned to be presented at future conferences such as RTSS@Work and RTAS

    The virtual time machine

    Get PDF
    Journal ArticleExisting multiprocessors and multicomputers require the programmer or compiler to perform data dependence analysis at compile time. We propose a parallel computer that performs this task at runtime. In particular, the Virtual Time Machine (VTM) detects violations of data dependence constraints as they occur, and automatically recovers from them. A sophisticated memory system that is addressed using both a spatial and a temporal coordinate is used to efficiently implement this mechanism. Initially targeted for discrete event simulation applications, many of the ideas used in the machine architecture have direct application in the more general realm of parallel computation. The long term goal of this work is to develop a general purpose parallel computer that will support a wide range of parallel programming paradigms. This paper outlines the motivations behind the V TM architecture, the underlying computation model, a proposed implementation, and initial performance results. A recurring theme that pervades the entire paper is our contention that existing shared memory and message-base machines do not pay adequate attention to the dimension of time. We argue that this architectural deficiency is the underlying reason behind many difficult problems in parallel computation today

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 1: Army fault tolerant architecture overview

    Get PDF
    Digital computing systems needed for Army programs such as the Computer-Aided Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM) vehicles may be characterized by high computational throughput and input/output bandwidth, hard real-time response, high reliability and availability, and maintainability, testability, and producibility requirements. In addition, such a system should be affordable to produce, procure, maintain, and upgrade. To address these needs, the Army Fault Tolerant Architecture (AFTA) is being designed and constructed under a three-year program comprised of a conceptual study, detailed design and fabrication, and demonstration and validation phases. Described here are the results of the conceptual study phase of the AFTA development. Given here is an introduction to the AFTA program, its objectives, and key elements of its technical approach. A format is designed for representing mission requirements in a manner suitable for first order AFTA sizing and analysis, followed by a discussion of the current state of mission requirements acquisition for the targeted Army missions. An overview is given of AFTA's architectural theory of operation

    Deterministic Scheduling of Real-Time Tasks on Heterogeneous Multicore Platforms

    Get PDF
    In recent years, the problem of real-time scheduling has increasingly become more important as well as more complicated. The former is due to the proliferation of safety critical systems into our day-to-day life; such as autonomous vehicles, fueled by the recent advances in artificial intelligence. The latter is caused by the increasing demand for high performance which is driving the adoption of highly integrated complex heterogeneous system-on-chip (SoC) processors to deliver the performance while meeting strict size, weight, power (SWaP) and cost constraints. Motivated by these trends, this dissertation tackles the following main question: how can we guarantee predictable real-time execution on heterogeneous multicore SoCs while preserving high utilization? The fundamental problem in preserving the determinism of the real-time system realized on a heterogeneous multicore SoC is ensuring that the worst-case execution time (WCET) of each task, measured in isolation, will stay within a reasonable bound during the actual execution of the system. The primary challenge in achieving this goal---tightly bounding task WCETs---is that the execution time of a task can be highly non-deterministic, often varying significantly depending on which tasks are co-scheduled and how they contend on various shared hardware resources in the memory hierarchy. The particular scheduling requirements (e.g., non-preemption) of the different computing resources (e.g., integrated GPU) in the heterogeneous SoC and the possible cross-contention among their workloads can also exacerbate this problem. In light of these considerations, this dissertation presents new real-time scheduling techniques for predictable and efficient scheduling of mixed criticality workloads on heterogeneous SoCs. The contributions of this dissertation include the following: 1) A novel CPU-GPU scheduling framework that ensures predictable execution of critical GPU kernels on integrated CPU-GPU platforms. 2) A novel gang scheduling framework which guarantees deterministic execution of parallel real-time tasks on the multicore CPU cluster of a heterogeneous SoC. 3) Optimal and heuristic algorithms for gang formation that increase real-time schedulability under the RT-Gang framework and their extension to incorporate scheduling on accelerators in a heterogeneous SoC. 4) Concrete evaluation results using simulated tasksets as well as real-world workloads that demonstrate the analytical and practical benefits of the proposed techniques

    08071 Abstracts Collection -- Scheduling

    Get PDF
    From 10.02. to 15.02., the Dagstuhl Seminar 08071 ``Scheduling\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Memory-Aware Scheduling for Fixed Priority Hard Real-Time Computing Systems

    Get PDF
    As a major component of a computing system, memory has been a key performance and power consumption bottleneck in computer system design. While processor speeds have been kept rising dramatically, the overall computing performance improvement of the entire system is limited by how fast the memory can feed instructions/data to processing units (i.e. so-called memory wall problem). The increasing transistor density and surging access demands from a rapidly growing number of processing cores also significantly elevated the power consumption of the memory system. In addition, the interference of memory access from different applications and processing cores significantly degrade the computation predictability, which is essential to ensure timing specifications in real-time system design. The recent IC technologies (such as 3D-IC technology) and emerging data-intensive real-time applications (such as Virtual Reality/Augmented Reality, Artificial Intelligence, Internet of Things) further amplify these challenges. We believe that it is not simply desirable but necessary to adopt a joint CPU/Memory resource management framework to deal with these grave challenges. In this dissertation, we focus on studying how to schedule fixed-priority hard real-time tasks with memory impacts taken into considerations. We target on the fixed-priority real-time scheduling scheme since this is one of the most commonly used strategies for practical real-time applications. Specifically, we first develop an approach that takes into consideration not only the execution time variations with cache allocations but also the task period relationship, showing a significant improvement in the feasibility of the system. We further study the problem of how to guarantee timing constraints for hard real-time systems under CPU and memory thermal constraints. We first study the problem under an architecture model with a single core and its main memory individually packaged. We develop a thermal model that can capture the thermal interaction between the processor and memory, and incorporate the periodic resource sever model into our scheduling framework to guarantee both the timing and thermal constraints. We further extend our research to the multi-core architectures with processing cores and memory devices integrated into a single 3D platform. To our best knowledge, this is the first research that can guarantee hard deadline constraints for real-time tasks under temperature constraints for both processing cores and memory devices. Extensive simulation results demonstrate that our proposed scheduling can improve significantly the feasibility of hard real-time systems under thermal constraints

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability
    • …
    corecore