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Abstract 

The lack of effective process planning and scheduling solutions for the sustainable management of 

machining shop floors, whose manufacturing activities are usually characterized by high variety and low 

volume, has been crippling the implementation of sustainability in companies. To address the issue, an 

innovative and systematic approach for milling process planning and scheduling optimization has been 

developed and presented in this paper. This approach consists of a process stage and a system stage, 

augmented with intelligent mechanisms for enhancing the adaptability and responsiveness to job dynamics 

in machining shop floors. In the process stage, key operational parameters for milling a part are optimized 

adaptively to meet multiple objectives/constraints, i.e., energy efficiency of the milling process and 

productivity as objectives and surface quality as a constraint. In the consecutive system stage, to achieve 

higher energy efficiency and shorter makespan in the entire shop floor, sequencing/set-up planning of 

machining features/operations and scheduling for producing multiple parts on different machines are 

optimized. Artificial Neural Networks are used for establishing the complex non-linear relationships 

between the key process parameters and measured datasets of energy consumption and surface quality. 

Several intelligent algorithms, including Pattern Search, Genetic Algorithm and Simulated Annealing, are 

applied and benchmarked to identify optimal solutions. Experimental tests indicate that the approach is 

effective and configurable to meet multiple objectives and technical constraints for sustainable process 

planning and scheduling. The approach, validated through industrial case studies provided by a European 

machining company, demonstrates significant potential of applicability in practice.  

 

Keywords: Sustainable manufacturing, Computer Numerical Control machining, Process planning, 

Process scheduling, Intelligent algorithm, Machining feature 
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1. Introduction 

Paramount demands for new products have increasingly incurred more manufacturing activities. In order to 

balance the multi-faceted dimensions of economic growth and environmental protection, a series of 

regulations and guidelines on lifecycle energy/carbon-related management have been developed in recent 

years for product design and manufacturing enterprises to embrace “Competitive Sustainable Development” 

(Jovane et al., 2008) and shoulder “Extended Producer Responsibilities (EPR)” (Mayers, 2007). For 

instance, the lifecycle carbon labeling scheme, outlined by the ISO 14040: 2006, ISO 14044: 2006 and 

Publicly Available Specification 2050 (PAS 2050), has been introduced with a bid to stimulate energy 

efficiency improvement and carbon emission reduction during product lifecycle. Among the various stages 

of product lifecycle, manufacturing processes are energy intensive making the stage one of the primary 

energy consumption and carbon footprint generation sources. Manufacturing processes in factories, in 

which motors, compressors and machine systems need to be powered, and adequate heating, ventilation 

and air conditioning equipment need to be maintained, contribute to over 24% of total European energy 

consumption (O’Driscoll and O’Donnell, 2013). Therefore, the effective implementation of manufacturing 

sustainability is prevalent. The roadmap research of intelligent manufacturing towards 2020, conducted by 

an international consortium consisting of researchers from Europe, Japan, Korea and the United States has 

summarized that the energy efficiency indicators of manufacturing on a national or sectional level have 

been defined, but sustainable process management solutions for single companies have not been effectively 

implemented, and the research is highly imperative (EU FP7 project IMS2020 (Bunse et al., 2011)). 

Machining such as milling is one of the important manufacturing processes. Co-operations between 

machining companies and their customers are more project-specific, customer-centric and flexible, the 

jobs/orders are likely to be diversified and many of them are urgent. As thus, there are many uncertainties 

and adjustment requirements in shop floors as part of the day-to-day operation planning in companies 

(Tolio et al., 2011). However, effective process planning and scheduling solutions, which are adaptive to 

dynamics in both the machining process and machine system levels, and multiple criteria like sustainability, 

product quality and productivity are systematically incorporated in the solutions, are lacking. 

In order to address the above issue, an innovative approach of sustainable process planning and scheduling 

for machining multiple parts using multiple Computer Numerical Control (CNC) machines has been 

developed. The approach focuses on the milling process, and addresses dynamics in machining processes 

from the following two aspects: (1) it optimizes the key milling parameters of individual machines for 

producing individual parts to meet constraint-based multiple objectives, in terms of energy efficiency, 

surface quality and productivity; and (2) based on the optimized milling process parameters, an optimized 

solution of process sequencing, setting-up and scheduling for machining multiple parts using multiple 

candidate machines in a shop floor is achieved by considering the criteria of energy consumption and 

makespan of the machine system. 

The innovations of the approach are summarized below: 
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• The approach provides a systematic, adaptive and efficient means to optimize machining companies’ 

multi-objectives such as sustainability, productivity and makespan, and to meet technical constraints 

such as the required surface quality and precedence constraints among machining features/operations; 

• Machining feature-based sustainable process planning and scheduling is highly desirable as machining 

features have been used as essential building blocks in modern Computer Aided Manufacturing (CAM) 

software. This approach supports intelligent decision making processes for feature-based sustainable 

process planning and scheduling, and based on that a practical way is paved for the approach to be 

integrated into modern feature-based CAM systems. 

The rest of the paper is organized as follows. In Section 2, a literature survey on sustainable machining 

processes especially milling processes is given. In Section 3, the system framework of the research is 

presented. In Section 4, the constraint-based multi-objective optimization of key milling process parameters 

are presented. Based on the optimized parameters of individual machines for individual parts, the multi-

objective optimization process of a machine system in a dynamic shop floor is described in Section 5. In 

Section 6, case studies and experimental tests are described. Finally the research is concluded in Section 7.  

 

2. Related Work 

In the past decades, research on manufacturing process planning and scheduling has been extensively 

conducted, and comprehensive surveys can be found from (Wang and Shen, 2010). This paper focuses on 

energy efficient process planning and scheduling, and the related state-of-the-art research is summarized 

below. 

  

2.1  Energy consumption modeling based on key machining parameters 

The European Machine Tool Builder Association indicates that the machine tool industry has shown strong 

interests on developing energy efficient manufacturing systems. To support the industry to achieve 

sustainability, a self-regulatory initiative for identification of measurements for energy performance and 

resource efficiency of machine tool systems has been proposed by the Association (Duflou et al., 2012). 

Aiming at implementing the initiative effectively, researchers have been actively investigating the energy 

consumption profile of machine tool systems during execution and identifying the key process parameters 

that affect the consumption profile. Based on that, optimization strategies are applied for process and 

system improvement in terms of energy saving. 

Abele et al. summarized the total energy demand of a machine tool system during production as: 𝐸𝑡𝑜𝑡𝑎𝑙 =

𝐸𝑡ℎ + 𝐸𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 + 𝐸𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑦, where 𝐸𝑡ℎ is the active energy theoretically needed to obtain the physical 

process effect, 𝐸𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 and 𝐸𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑦 stand for the additional energy demands of the machine tool (e.g., 
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energy to cover efficiency losses, or energy for machine functions such as central control) and peripherals 

(e.g., cutting fluid pump) respectively (Abele et al., 2005). Among the energy consumption of a machine 

tool system, the unit energy consumption demand of a machining process is remaining a challenging 

research issue. Gutowski et al. (2006) classified related energy consumption of manufacturing into the 

following categories: 

• Fixed energy: energy demand of all activated machine components ensuring the operational readiness of 

the machine; 

• Operational energy: energy demand to distinctively operate components enabling the cutting as 

performed in air-cuts; 

• Tool tip energy: energy demand at tool tip to remove the workpiece material; 

• Unproductive energy: energy converted to heat mainly due to friction during the material removal. 

Series of research work were carried out to detail the energy profile for the aforementioned categories. A 

summary of the work is given in Table 1. Mori et al. (2011) developed an empirical model, in which 

several processes are considered such as positioning and acceleration of the spindle, tool changes, 

machining, and stop of the spindle. Newman et al. (2012) developed empirical models to establish the 

relationship between cutting parameters, such as depth of cut, feedrate and number of cuts, and power 

consumption. Two case studies of finish cutting and semi-finish cutting of Aluminum were used to verify 

the models. In Hu et al. (2012)’s work, a torque sensor was mounted onto the cutter and active power 

consumed by a machining process was calculated, while the total input power to the machine tool system 

was measured by a power sensor. Based on experimental data, an empirical model was established to 

estimate the total power and active power for machining, which are used to support the on-line monitoring 

system. The Taguchi method was introduced to analyze the relationship among cutting parameters, energy 

consumption, and surface roughness in order to determine the suitable cutting parameters leading to the 

minimum energy consumption and the best surface roughness (Camposeco-Negrete, 2013). A Grey 

Relationship Analysis method was developed for establishing relationships among Material Removal Rate 

(MRR), machining power and surface roughness minimization, the Response Surface Methodology (RSM) 

and the Taguchi method were used for factor effect analysis (Yan and Li, 2013). Winter et al. (2014) 

investigated the energy performance of a grinding process. The Sensitivity Analysis method was applied to 

illustrate how cutting parameters, including cutting depth, cutting speed and dressing speed affect the 

energy consumption in order to achieve multi-objective optimization. 
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Table 1: Energy consumption models for machine tool systems. 
 

Works 
Input variables Optimization objectives Research analysis methods 

Depth 
of cut 

Spindle 
speed 

Cutting 
speed 

Width 
of cut 

Chip 
load 

M- 
features 

Cutting 
power 

Surface 
roughness 

Processing 
time 

Other 

Mori et al., 2011  x x x   x    Empirical models for case 
studies of cutting condition 
changes and deep hole drilling 

Avram and 
Xirouchakis, 
2011 

x x x x  x x    Empirical models for usage 
stages of machining 

Kong et al., 2011 x x x x  x x  x  Empirical models for start-up, 
idle and usage stages of 
machining 

Newman et al., 
2012 

 x x  x  x  x  Empirical models and two 
case studies on semi-finish 
and finishing machining 

Hu et al., 2012 x x x    x    Least Square Method (LSM) 
for machining 

Balogun and 
Mativenga, 2013 

x x x x   x    Empirical models for start-up, 
idle and usage stages of 
machining 

Camposeco-
Negrete, 2013 

x x x    x x   Orthogonal array, signal to 
noise (S/N) ratio and analysis 
of variance (ANOVA)  

Yan and Li, 2013 x x x x   x x   Grey Relationship Analysis, 
Response Surface 
Methodology (RSM) and the 
Taguchi method 

Wang et al., 2013 x x x x   x    Empirical models for 
machining shop floor 

Dai et al., 2013 x x x x    x   A hybrid Genetic Algorithm 
for sustainable machining 
optimization 

Winter et al., 
2014 

x  x    x x  x Sensitivity Analysis method 

Aramcharoen 
and Mativenga, 
2014 

     x x  x x Assessment of alternative 
tool-paths, identified major 
opportunities for energy 
reduction 

 

2.2 Energy consumption modeling based on Specific Energy Consumption 

The method of the above research is to design and conduct experimental tests to reveal the underlying 

relationship between the energy performance of a machine tool system and key cutting parameters, 

qualitatively and quantitatively. Another group of research focuses on developing empirical models based 

on MRR and Specific Energy Consumption (SEC) to model and estimate the unit process energy 

consumption of a machining process. The related work is summarized in Table 2. The most representative 

model was developed by Gutowski et al. (2006). The specific energy requirements for manufacturing 

processes, i.e., SEC, were modeled as a function of MRR in an energy framework. SEC is defined as the 

energy consumption in cutting 1 cm3 material. However, in the model, the specifications for the fixed 

power P0 and the constant k were not given. To improve this model, researchers developed enhanced 

energy consumption models. For instance, Li and Kara (2011) used an empirical modeling approach to 

develop a unit process energy consumption model to characterize the relationship between SEC and 

machining parameters, and the coefficients in the model were decided through experimental tests. 
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Furthermore, the empirical approach was applied to turning, milling and grinding processes on different 

machine tools, Kara and Li (2011) focused on turning process while Li et al. (2012) focused on grinding 

process. Similarly, a case study of a micromachining center was developed by Diaz et al. (2011) to model 

the SEC in cutting. This model further confirms the relationship between the energy consumption and MRR. 

In addition, Li et al. (2013) adopted a hybrid modeling method based on thermal equilibrium and empirical 

modeling to characterize the relationship between process variables and energy consumption for milling 

processes and experimental tests were conducted to identify the energy-related coefficients for a specific 

machine. Yan and Li (2013) developed the Grey Relational Analysis method to model the relationship 

between multi-objectives (including energy consumption, production rate and cutting quality) and key 

machining parameters (including spindle speed, feedrate, depth of cut and width of cut). Meanwhile, the 

Taguchi method was applied to analyze the influence of machining parameters on the multi-objectives in a 

qualitative way in order to identify a trade-off among the energy consumption, production rate and cutting 

quality based on different combinations of machining parameters. 

Table 2: SEC-based energy models for machining processes. 
Works Model or methods 
Gutowski et 
al., 2006 

𝑆𝐸𝐶 = 𝑃0/𝐺 + 𝑘 
Where P0 is the fixed power and k is a constant with units of kJ/cm3, v is the rate of material 
processing in cm3/sec. 
 
𝑆𝐸𝐶 = 𝐶0 + 𝐶1/𝑀𝑀𝑀 
Where the coefficients C0 and C1 are different among different machine tools and needed to be 
experimentally determined; MRR is the material removal rate. 
 
𝑆𝐸𝐶 = 𝑘/𝑀𝑀𝑀 + 𝑏 
Where the constant k is related to the unit of power and b represents the steady-state specific 
energy. 
 
𝑆𝐸𝐶 = 𝑘0 + 𝑘1 ∙ 𝑖/𝑀𝑀𝑀 + 𝑘2/𝑀𝑀𝑀 
Where k0 is the specific energy requirement in cutting operations, k1 is the specific coefficient of 
spindle motor, k2 is the constant coefficient of machine tools and equals the sum of standby power 
and the spindle motor’s specific coefficient; n is the spindle speed in rounds/second. 

 
 
Kara and Li, 
2011 

 
 
Diaz et al., 
2011 

 
 
Li et al., 
2013 

 

2.3  Energy consumption modeling based on CNC codes 

The set of CNC codes can describe an entire machining process and the working process of the related 

accessory equipment, and therefore, the entire energy profile can be modeled and estimated. Based on the 

tool paths from CNC codes (e.g., G-code), the energy consumption assessment for the spindle axis, feed 

axis and load/unload cycle were formulated (Avram and Xirouchakis, 2011). Based on an established 

energy consumption model from tool paths, a Web-based system was developed for environmental 

sustainability monitoring and evaluation (Kong et al., 2011). In the system, tool path generation strategies 

for different machining features were modeled in terms of energy consumption. Based on CNC codes, an 

energy assessment framework for machining workshop was built up (He et al., 2012). The energy 

consumption framework consists of four layers, i.e., workshop layer, task layer, manufacturing unit layer 
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and machine tool layer. In each layer, major elements affecting energy consumption were considered. In 

the machine tool layer, machining tasks are executed and the primary energy consumption comes from a 

machining workshop. In the manufacturing unit layer, the layout and sequence of a set of machine tool 

systems are designed. The task layer and workshop layer are mainly for particular task’s planning and 

scheduling, and the venue for the manufacturing tasks to take place, in which electricity, heating, 

ventilation and air-conditioning equipment are the major energy consumption units. In the machine tool 

system, cutting force, cutting velocity, cutting depth and feedrate were used as inputs to establish an 

empirical model for energy consumption estimation during machining. Some calculation processes in these 

works are summarized in Table 3. 

Table 3: CNC-based energy models for machining processes. 
Focus Model and methods 
Avram and 
Xirouchakis, 
2011 

𝐸 = 𝐸𝑎𝑠 + 𝐸𝑟𝑢𝑛 + 𝐸𝑐𝑢𝑡+𝐸𝑑𝑠 = ∫ 𝑃𝑎𝑠𝑑𝐹
𝑡1
𝑡0 + ∫ 𝑃𝑟𝑢𝑛𝑑𝐹

𝑡3
𝑡1 + ∫ 𝑃𝑐𝑢𝑡𝑑𝐹 + ∫ 𝑃𝑑𝑠𝑑𝐹

𝑡4
𝑡3

𝑡3
𝑡2  , where 𝐸𝑎𝑠 

and 𝑃𝑎𝑠  are the energy and power requirements for spindle respectively, 𝐸𝑟𝑢𝑛 and 𝑃𝑟𝑢𝑛 are the 
energy and power requirements for the motors before engaging the material cutting, 𝐸𝑐𝑢𝑡 and 
𝑃𝑐𝑢𝑡 are the energy and power requirements for the material cutting, and 𝐸𝑑𝑠 and 𝑃𝑑𝑠 are the 
energy and power requirements on spindle unloading; 𝐹0, 𝐹1, 𝐹2, 𝐹3, 𝐹4 are the time spent on 
the above stages respectively. 
 
𝐸 = 𝑃𝑎𝑣𝑔 ∗ ∆𝐹 = (𝑃𝑐𝑢𝑡 + 𝑃𝑎𝑖𝑟) ∙ ∆𝐹, where 𝑃𝑎𝑣𝑔 is the average power demand and composed 
of a cutting power 𝑃𝑐𝑢𝑡 and air cutting power 𝑃𝑎𝑖𝑟; ∆𝐹 is the processing time. 
 
𝐸𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔 = 𝐸𝑐𝑜𝑛𝑠𝑡 + 𝐸𝑟𝑢𝑛−𝑡𝑖𝑚𝑒 + 𝐸𝑐𝑢𝑡 , and 𝐸𝑐𝑢𝑡 = 𝐾𝑐𝑢𝑡 ∙ 𝑤 ∙ 𝑏 ∙ 𝑀𝑝 ∙ 𝐺𝑓

1−𝑝 ∙ 𝑖𝑝 , where 
𝐸𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔 , 𝐸𝑟𝑢𝑛−𝑡𝑖𝑚𝑒  and 𝐸𝑐𝑢𝑡  represent the total energy of machining process, constant 
energy consumed by the functions that are not directly related to the machining, run-time 
energy consumed by a spindle, machine axes and tool changer, and energy consumed by the 
material removal action of a machine tool, respectively. 𝐺𝑓  is the feedrate, 𝑖 is the spindle 
speed, 𝑤 is the width of cut, 𝑀 is the number of flutes of a cutter, 𝑝 and 𝐾𝑐𝑢𝑡 are empirically 
determined fitting constants. 
 
𝐸 = 𝑃1 ∗ (𝑇1 + 𝑇2) + 𝑃2 ∙ 𝑇2 + 𝑃3 ∙ 𝑇3, where𝑃1, 𝑃2 and 𝑃3 are constant, corresponding to the 
power demand of cutting, positioning the work and accelerating/decelerating the spindle to a 
specified speed, 𝑇1, 𝑇2 and 𝑇3 are the corresponding times. 
 
𝐸 = 𝐸𝑠𝑝𝑖𝑛𝑑𝑙𝑒 + 𝐸𝑓𝑒𝑒𝑑 + 𝐸𝑡𝑜𝑜𝑙 + 𝐸𝑐𝑜𝑜𝑙 + 𝐸𝑓𝑖𝑥 , where 𝐸𝑠𝑝𝑖𝑛𝑑𝑙𝑒 , 𝐸𝑓𝑒𝑒𝑑 , 𝐸𝑡𝑜𝑜𝑙 , 𝐸𝑐𝑜𝑜𝑙  and 𝐸𝑓𝑖𝑥 
represent the energy consumed by spindle, feed, tool, cool and fix. 
 
𝐸 = 𝑃/𝑓ℎ𝐷, where 𝐸 and 𝑃 are the energy and power requirements for the milling process 
respectively, 𝑓, ℎ and 𝐷 stand for feedrate, depth of cut and diameter of cutter respectively. 
 
𝐸 = 𝑃𝑏 ∙ 𝐹𝑏 + (𝑃𝑏 + 𝑃𝑟) ∙ 𝐹𝑟 + 𝑃𝑎𝑖𝑟 ∙ 𝐹𝑎𝑖𝑟 + (𝑃𝑏 + 𝑃𝑟 + 𝑃𝑐𝑜𝑜𝑙 + 𝑘 ∙ 𝐺) ∙ 𝐹𝑐 , where 𝑃𝑏 , 𝑃𝑟 , 𝑃𝑐𝑜𝑜𝑙 
and 𝑃𝑎𝑖𝑟 represent the basic and ready state powers, coolant pumping power requirements and 
the average power requirements for a non-cutting approach and retract moves over the 
component respectively, 𝐹𝑏, 𝐹𝑟, and 𝐹𝑐 are the basic, ready and cutting times respectively, 𝐹𝑎𝑖𝑟 
represents the total time duration of the non-cutting moves; 𝑘  with units of kJ/cm3 is the 
specific cutting energy, 𝐺 in cm3/s is the rate of material processing. 

Diaz et al., 
2011 
 
Kong et al., 
2011 

 
 
 
 
 
 
Mori et al., 
2011 
 
 
He et al., 2012 
 
 
Newman et al., 
2012 

 
 

 Balogun and 
Mativenga, 
2013 

 

Though a large amount of research works have been reported as above, the following research issues are 

highly expected for further investigation: 
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• Modern machining software packages have adopted machining features as essential building blocks, and 

the energy consumption assessment associated with machining features and the process parameters will 

be more effective to support decision making in sustainable process planning and scheduling. Research 

on machining feature-based sustainable process planning was still preliminary, , further research is 

imperative to understand the characteristics of energy consumption influenced by machining 

features/operations and key process parameters;  

• Many of the above research works are still preliminary and energy efficiency has not been 

systematically addressed in process planning and scheduling in a dynamic shop floor. It is critical to 

develop systematic, adaptive and efficient approaches to address multiple performance criteria and 

technical constraints such as productivity, surface quality, makespan and precedence constraints among 

machining features/operations from both the process level and the system level. 

 

3. System Framework 

Some essential considerations in process planning and scheduling are (Li et al., 2006):  

• Generating optimized process parameters of a part machined on a machine to meet desired functional 

specifications and achieve good manufacturability; 

• Determining the machining feature/operation sequence, set-up plan and schedule according to 

performance criteria and precedence constraints. Process sequencing means a set of machining 

features/operations will be sequenced according to some performance criteria such as productivity and 

quality and constrained by some technical or geometrical precedence constraints among machining 

features/operations. A set-up can be generally defined as a group of features/operations that are 

manufactured on a single machine using the same fixture. The scheduling task is to assign the parts and 

their machining features/operations to specific machines to be executed in different time slots, targeting 

at good shop floor performance, such as the shortest makespan and the total lowest energy consumption 

in the shop floor. 

In a dynamic machining situation, a part can be manufactured using different process parameters and on 

different candidate machine systems, which generate different process plans and schedules. In summary, a 

group of alternative process plans and schedules can be generated using three strategies: machine tool 

flexibility, process sequencing and setting-up flexibility, and schedule flexibility (Li and McMahon, 2007). 

Machine tool flexibility refers to the possibility of performing a feature/operation on alternative machine 

tool systems. Process sequencing and setting-up flexibility corresponds to the possibility of changing the 

sequence and set-up in which the features/operations are performed. Meanwhile, for a group of parts, 

alternative schedules can be created based on scheduling flexibility, which relates to the possibility of 

arranging different schedules to manufacture the features/operations of the parts to achieve the shortest 

makespan, lowest energy consumption and/or better performance for other shop floor indicators.  
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A Gantt chart has been popularly used to represent a schedule of a group of parts, as illustrated in Figure 1. 

In the Gantt chart, the order in which the parts and their operations are carried out is laid out and the 

dependencies of the tasks are managed. The X-axis of the Gantt chart represents time. Each row in the Y-

axis represents a machine and the specific arrangement of the operations of the parts on the machine. A 

machine is comprised of a number of time slots, which can be further classified into idle time slots, 

preparation time slots for machining operations (further including the set-up time and/or the tool change 

time), and machining time slots of operations. 

 

Figure 1: A Gantt chart for scheduling parts and their machining features/operations. 

 

Based on the above, in this research, a two stage optimization approach is proposed, detailed below 

(illustrated in Figure 2): 
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Figure 2: Two stages of sustainable process planning and scheduling optimization. 
 

(1) The first stage is to optimize the key parameters of a milling process for a part in a single machine to 

achieve a better energy efficiency and productivity while the surface quality requirement is met. These 

performance indicators in machining, i.e., energy efficiency for production, surface quality and 

productivity, are incorporated into a constraint-based multiple objective optimization problem, while 

critical process parameters affecting the performance indicators, including spindle speed, cutting speed, 

depth of cut and width of cut, are taken into account as variables to support the above optimization 

modeling and processing. The relationships between the variables and the energy efficiency/surface 

quality could be highly nonlinear. As thus, Artificial Neural Networks (ANNs) are employed in order 

Part i 

Objective: The process parameters for machining operations of a part are optimized to achieve the best 
energy efficiency 𝐸 and productivity 𝑃 while the requirement of surface quality 𝑆 𝑖s met. 

  

Part 1 

Part 2 

… … 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹1.1 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹1.2 

… … 

𝑀𝑀𝑀ℎ𝑖𝑖𝑖 𝑇𝑇𝑇𝑇1 

𝑀𝑀𝑀ℎ𝑖𝑖𝑖 𝑇𝑇𝑇𝑇2 

… … 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹2.1 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹2.2 

… … 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹2.𝑛2 

… … 

Stage Two: Optimization of process sequence, set-up and schedule for sustainability 

   

Part level Feature/operation level Machine Tool level 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹1.𝑛1 

  

Stage One: Determination of process parameters for sustainability 

 , 

Objective: Sequencing, setting-up and scheduling for multiple parts with multiple machines to achieve 
the best combination of energy efficiency and makespan. 

Spindle 
speed 𝑛  Cutting 

speed 𝑐  

Depth of 
cut 𝑎𝑝  Width of 

cut 𝑎𝑒   

 

Process parameters 

  

𝑀𝑀𝑀ℎ𝑖𝑖𝑖 𝑇𝑇𝑇𝑇1 

𝑀𝑀𝑀ℎ𝑖𝑖𝑖 𝑇𝑇𝑇𝑇2 

… … 

  

  

(𝑛, 𝑐,𝑎𝑝,𝑎𝑒) for minimized 
𝐸 and 𝑃 while 𝑆 is met 

(𝑛, 𝑐,𝑎𝑝,𝑎𝑒) for minimized 
𝐸 and 𝑃 while 𝑆 is met 

(𝑛, 𝑐,𝑎𝑝,𝑎𝑒) for minimized 
𝐸 and 𝑃 while 𝑆 is met 

Sequence, set-up 
and schedule for 
minimised energy 
efficiency and 
makespan 
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to present the nonlinear relationship among the variables and performance indicators adaptively and 

effectively. Intelligent algorithms are applied to identify optimized process parameters for individual 

parts on individual machines; 

(2) Based on the above optimized results of individual machines for individual parts, the second stage of 

the approach is to identify optimized process sequence, set-up and schedule with multiple machines 

for manufacturing multiple parts. In this research, the energy efficiency and makespan of a machine 

system are integrated as multiple optimization objectives, and precedence constraints among 

features/operations are considered. Intelligent algorithms are then applied to determine an optimized 

process plan and schedule. In order to effectively generate a comprehensive search space to support 

the optimization processes, the aforementioned three strategies, i.e., machine tool flexibility, process 

sequencing and setting-up flexibility and scheduling flexibility, are used for the generation of 

alternative process plans and schedules as a feasible search space to support the above optimization 

process. 

 

4. Process Parameter Identification for Sustainability 

Key parameters in milling, such as spindle speed, cutting speed, depth of cut and width of cut, affect the 

performance of a milling process, such as energy consumption, surface quality and productivity. In the 

following, based on the relationship between the key process parameters and the performance of a milling 

process, a normalization process and an optimization process have been developed to ensure good 

machining process in terms of energy efficiency, surface quality and productivity. 

 

4.1 Process of parameter identification 

Milling, which is a primary process in machining, is considered in this research. The energy performance, 

surface quality and productivity of a machining process can be evaluated using three indicators, i.e., Energy 

consumption (𝐸), Surface roughness (𝑆) and Machining Removal Rate (𝑀𝑀𝑀). These indicators interlace 

each other, and a better performance of one indicator could need tradeoff of the other indicators (Yan and 

Li, 2013). On the other hand, key parameters of a milling process including spindle speed (𝑖), cutting speed 

(𝑀), depth of cut (𝐹𝑝) and width of cut (𝐹𝑒) affect these performance indicators significantly. 

Given the Surface roughness 𝑆 is pre-decided by users as a constraint, optimization of Energy consumption 

𝐸  and Machining Removal Rate 𝑀𝑀𝑀   are modeled as a constraint-based multi-objective optimization 

problem, and the four process parameters (𝑖, 𝑀, 𝐹𝑝, 𝐹𝑒) are considered as variables in the optimization 

problem. The target is to obtain optimized multi-objectives 𝐸 and 𝑀𝑀𝑀 while the pre-set  𝑆 (denoted as µ) 

as a constraint is met. Upon the completion of optimization, the values of (𝑖, 𝑀, 𝐹𝑝, 𝐹𝑒 ) within their 

working ranges, which meet the above optimized objectives and constraint, are identified. In the process, 
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ANNs have been constructed for representing the relationships between (𝑖, 𝑀, 𝐹𝑝, 𝐹𝑒) and 𝑆, and between 

(𝑖 , 𝑀 , 𝐹𝑝 , 𝐹𝑒 ) and 𝐸 , respectively. The Grey Relationship Analysis approach has been employed to 

normalize 𝐸  and 𝑀𝑀𝑀   in the formation of a multiple-objective target function. Several optimization 

algorithms have been applied for identifying the optimal values of the indictors and process parameters. 

The process is illustrated in Figure 3, and the details are explained below. 

 

4.2 Representation of Energy consumption (𝑬), Surface roughness (𝑺) and Machining Removal Rate 

(𝑴𝑹𝑹), and their grey relational analysis processes 

In order to develop an optimization model of a machining process, spindle speed (𝑖), cutting speed (𝑀), 

depth of cut (𝐹𝑝) and width of cut (𝐹𝑒) are used to represent Energy consumption (𝐸), Surface roughness (𝑆) 

and Machining Removal Rate (𝑀𝑀𝑀). In this research, the units for spindle speed, cutting speed, depth of 

cut and width of cut, Energy consumption, Surface roughness and Machining Removal Rate are 

rounds/minute (RPM), mm/minute, mm, mm, kilo-Joules (KJs), µm, and mm3/minute, respectively. 

 

Figure 3: Optimization of milling indicators and process parameters. 
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The 𝑀𝑀𝑀 for a milling process can be calculated below: 

𝑀𝑀𝑀 = 𝑀 ∙ 𝐹𝑝 ∙ 𝐹𝑒         (1) 

The relationship between the process parameters and Energy consumption (𝐸) or Surface roughness (𝑆) is 

highly nonlinear and an analytical solution is not easy to extract. In this research, the representation of  𝐸 or  

𝑆 between the measured data set of (𝑖, 𝑀, 𝐹𝑝, 𝐹𝑒) is constructed using a Multi-Layer Feed-Forward (MLFF) 

ANNs trained using a Back-Propagation (BP) algorithm (shown in Figure 4). ANNs offer several valuable 

characteristics: (1) The ability to capture and represent complicated input/output relationships; (2) no prior 

knowledge about the input and output mapping is required for the model development. Unknown 

relationships are inferred from the data provided for training. Therefore, with ANNs, the fitting function is 

represented by the networks and does not have to be explicitly defined; and (3) the ability for 

generalization, meaning they can respond correctly to new data that have not been used for the ANNs 

model development (Li et al., 2006). 

The Grey Relational Analysis process (Tzeng et al., 2009) consists of two steps. The first step is the 

normalization of the original sequences in the range between zero and one, and the second step is to 

calculate the grey relational coefficient to express the relationship between the ideal and actual normalized 

experimental results. Details are described below. 

 

 

 

 

 

 

Figure 4: Multi-Layer Feed-Forward ANNs for Energy Consumption and Roughness representation. 

 

(1) Normalization: 

Since the final optimization is to find the minimal value of objective function which is the sum of the grey 

relational coefficients of 𝐸 and MRR, and the expectancy of energy consumption  𝐸  is the smaller the 
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𝑚𝑎𝑥(𝐸𝑖)−𝑚𝑖𝑛 (𝐸𝑖)

 (2) 

where 𝐸𝑖(𝑖 = 1,2, … ,𝑖) is the energy value of a sample in an experimental set, and 𝑖 is the number of the 

experimental set; On the contrast, the expectancy of productivity  𝑀𝑀𝑀  is the larger the better. The original 

𝑀𝑀𝑀 should be normalized as: 
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𝑍′′𝑖 = 𝑚𝑎𝑥(𝑀𝑅𝑅𝑖)−𝑀𝑅𝑅𝑖
𝑚𝑎𝑥(𝑀𝑅𝑅𝑖)−𝑚𝑖𝑛 (𝑀𝑅𝑅𝑖)

 (3) 

where 𝑀𝑀𝑀𝑖  (𝑖 = 1,2, … ,𝑖) are the MRR values of a sample in an experimental set, and 𝑖 is the number of 

the experimental set. 

(2) Calculation of the grey relational coefficients for 𝐸 and 𝑀𝑀𝑀: 

𝐺𝑀𝐶𝑗 = ∆𝑚𝑖𝑛 +𝑤∙∆𝑚𝑎𝑥
∆𝑗+𝑤∙∆𝑚𝑎𝑥

 (4) 

where ∆𝑗= ‖𝑍0−𝑍𝑗� ,∆𝑚𝑖𝑛= min1≤𝑗≤𝑛 ∆𝑗 , ∆𝑚𝑖𝑛= max1≤𝑗≤𝑛 ∆𝑗, and  𝑤 ∈ [0 1] . Usually 𝑤 = 0.5 

is used. 

 

4.3 Optimization process 

The optimization objective is modeled using the grey relational coefficients as below: 

�
𝑀𝑖𝑖(𝑤1 ∙ 𝐺𝑀𝐶𝐸 + 𝑤2 ∙ 𝐺𝑀𝐶𝑀𝑅𝑅), 𝑆 ≤ 𝜇

𝑀𝑖𝑖(𝑤1 ∙ 𝐺𝑀𝐶𝐸 + 𝑤2 ∙ 𝐺𝑀𝐶𝑀𝑅𝑅 + (𝑠/𝜇 − 1) × 100), 𝑆 > 𝜇    𝑤1 + 𝑤2 = 1 (5) 

The constraint: 𝑆 ≤ 𝜇 (𝜇  the user defined surface roughness) is modeled in the objective 

function as a penalty  

Bounds: the upper and lower bounds of input variables �𝑖, 𝑀,𝐹𝑝,𝐹𝑒� are limited by the 

maximum and minimum values of the measurement samples 

𝑀𝑀𝑀 = 𝑓1(𝑀 ∙ 𝐹𝑝 ∙ 𝐹𝑒), 𝐸 = 𝑓2(𝑖, 𝑀,𝐹𝑝,𝐹𝑒) and 𝑆 = 𝑓3(𝑖, 𝑀,𝐹𝑝,𝐹𝑒) 

𝑤1  and  𝑤2  are the user defined weights for Energy consumption and Productivity respectively. For 

instance, if only Energy consumption is concerned, then set 𝑤1 = 1 and 𝑤2 = 0. Usually both indicators 

are taken into account by setting balanced weights with 𝑤1 = 0.5 and 𝑤2 = 0.5. A set of optimization 

algorithms, including Pattern Search, Genetic Algorithm and Simulated Annealing algorithm, are applied to 

this problem. Optimization results show that the Pattern Search method exhibits a better computational 

efficiency and a more reliable optimization performance for this case. Thus, the Pattern Search method is 

introduced herewith. Pattern Search belongs to direct search for solving optimization problems that does 

not require the gradient of the objective function. It would iterate from search, polling and 

expanding/contracting processes until the optimal result is found. The detailed procedure is: 

1. Choose an initial vector point x0 and define the pattern vectors. For a problem with four input variables, 

there are total eight pattern vectors as: 𝐺1 = [1 0 0 0] ⋯𝐺4 = [0  0 0 1], 𝐺5 = [−1 0 0 0]⋯𝐺8 =

[0 0 0 − 1]; 
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2. Search for a mesh point xi around x0 that has a less objective function compared to x0. The search mesh 

is generated as 𝑥𝑖 = 𝑥0 + ∆𝑖 , where ∆𝑖= ∆𝑀 ∙ 𝐺𝑖 , ∆𝑀 is the current mesh size, the upper and lower 

bounds for each variables are to be checked; 

3. If a better solution x is found, the poll is successful, update the vector point x0 = x and increase the mesh 

size: ∆𝑀 = 2 ∙ ∆𝑀, otherwise,  keep the original x0 and reduce the mesh size: ∆𝑀 = 0.5 ∙ ∆𝑀; 

4. Check if any of the stop conditions (the mesh size is less than mesh tolerance or the difference between 

the function value at the previous best point and at the current best point is less than the value 

of  function tolerance) is met, if yes, stop the optimization. Otherwise, go to Step 2.  

 

5. Sustainable Optimization for Machining Systems 

There are alternative sequences and set-ups between machining features/operations, and a group of 

machines available as candidate resources for scheduling. In the following, the energy consumption 

modeling for features/operations in a manufacturing system is built, followed by an optimization process 

for the model. During the processes, the sequences of machining features/operations are constrained by 

some technical or geometrical requirements of parts, which are handled in the optimization process by 

introducing a penalty function (Li et al., 2006). 

 

5.1 Energy consumption modeling 

For a machine, its energy power profile is illustrated in Figure 5, which consists of startup phases, 

idle/change phases, working phases (operation), and shutdown phases. Hence, the energy consumption of a 

machine can be separated into the corresponding four segments. 

 

Figure 5: Different phases of energy consumption of operations in a machine. 
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The energy consumption during the idle phase can be formulated as: 

𝐸(𝑀𝑖)𝑖𝑑𝑙𝑒 = 𝑃𝑖𝑑𝑙𝑒(𝑀𝑖) ∙ 𝑇𝑖𝑑𝑙𝑒(𝑀𝑖)  (6) 

where 𝐸(𝑀𝑖)𝑖𝑑𝑙𝑒 stands for the energy consumption of the idle phase of the 𝑖𝑡ℎ machine; 𝑃𝑖𝑑𝑙𝑒(𝑀𝑖) is the 

power demand of the 𝑖𝑡ℎ machine during the idle phase, which is the sum of the power demand of all the 

components in the machine and usually a constant value for the particular machine; 𝑇𝑖𝑑𝑙𝑒(𝑀𝑖)  stands for 

the total idle time of the 𝑖𝑡ℎ machine, which can be represented as: 

𝑇𝑖𝑑𝑙𝑒(𝑀𝑖) =  ∑ 𝑇𝑗,𝑗+1
𝑛
𝑗=1 (𝑂𝑗,𝑖 ,𝑀𝑖)        (7) 

where 𝑖  stands for the number of the operations denoted as 𝑂𝑗,𝑖  to be executed on the 𝑖𝑡ℎ  machine; 

𝑇𝑗,𝑗+1(𝑂𝑗,𝑖 ,𝑀𝑖) stands for the idle time between the 𝑗𝑡ℎ and (𝑗 + 1)𝑡ℎ operations to be executed on the  𝑖𝑡ℎ 

machine. 𝑇𝑗,𝑗+1(𝑂𝑗,𝑖 ,𝑀𝑖)  can be obtained using the following pseudo codes. 

If  𝑇𝑗.𝑒𝑛𝑑(𝑂𝑗,𝑖 ,𝑀𝑖) <𝑇𝑗+1.𝑠𝑡𝑎𝑟𝑡(𝑂𝑗+1,𝑖 ,𝑀𝑖) then    

// The 𝑗𝑡ℎ operation ends before the (𝑗 + 1)𝑡ℎ operation 

// Operation and the machine will be idle 

𝑇𝑗,𝑗+1(𝑂𝑗,𝑖 ,𝑀𝑖) = 𝑇𝑗+1.𝑠𝑡𝑎𝑟𝑡(𝑂𝑗+1,𝑖 ,𝑀𝑖) − 𝑇𝑗.𝑒𝑛𝑑(𝑂𝑗,𝑖 ,𝑀𝑖) 

Else    // There is no waiting 

𝑇𝑗,𝑗+1(𝑂𝑗,𝑖 ,𝑀𝑖) = 0 

Endif 

Here, 𝑇𝑗.𝑒𝑛𝑑(𝑂𝑗,𝑖 ,𝑀𝑖) and 𝑇𝑗+1.𝑠𝑡𝑎𝑟𝑡(𝑂𝑗+1,𝑖 ,𝑀𝑖) stand for the end time of the 𝑗𝑡ℎ operation and the start time 

of the  (𝑗 + 1)𝑡ℎ operation respectively. 

The energy consumption during the working phase can be represented as: 

𝐸(𝑀𝑖).𝑤𝑜𝑟𝑘𝑖𝑛𝑔 = ∑ 𝐸𝑗(𝑂𝑗,𝑖 ,𝑀𝑖).𝑤𝑜𝑟𝑘𝑖𝑛𝑔
𝑛
𝑗=1        (8) 

where 𝐸(𝑂𝑗,𝑖 ,𝑀𝑖).𝑤𝑜𝑟𝑘𝑖𝑛𝑔 stands for the energy consumption of the working phase for the 𝑖𝑡ℎ machine; 𝑖 

stands for the number of the operations denoted as 𝑂𝑗,𝑖  to be executed on the 𝑖𝑡ℎ  machine; 

𝐸𝑗(𝑂𝑗,𝑖 ,𝑀𝑖).𝑤𝑜𝑟𝑘𝑖𝑛𝑔 stands for the energy consumption of the 𝑗𝑡ℎ operation on the 𝑖𝑡ℎ machine. 

The energy consumption of the tool change phase can be computed as: 

𝐸(𝑀𝑖).𝑡𝑜𝑜𝑙_ 𝑐ℎ𝑎𝑛𝑔𝑒 = 𝑃𝑖𝑑𝑙𝑒(𝑀𝑖) ∙ 𝑇𝑡𝑜𝑜𝑙_ 𝑐ℎ𝑎𝑛𝑔𝑒(𝑀𝑖)      (9) 

where 𝐸(𝑀𝑖).𝑡𝑜𝑜𝑙_𝑐ℎ𝑎𝑛𝑔𝑒  represents the energy consumed during the tool change phase; 𝑃𝑖𝑑𝑙𝑒 is the idle 

power needed during the machine waiting phase for this tool change on the 𝑖𝑡ℎ machine; 𝑇𝑡𝑜𝑜𝑙_ 𝑐ℎ𝑎𝑛𝑔𝑒(𝑀𝑖)  

stands for the total tool change time on the 𝑖𝑡ℎ machine in total, which can be represented as: 
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𝑇𝑡𝑜𝑜𝑙 _𝑐ℎ𝑎𝑛𝑔𝑒(𝑀𝑖) =  ∑ 𝑇𝑡𝑜𝑜𝑙 𝑐ℎ𝑎𝑛𝑔𝑒(𝑂𝑗,𝑖 ,𝑀𝑖)𝑚
𝑗=1       (10) 

where 𝑀 stands for the number of the tool changes on the 𝑖𝑡ℎ machine; 𝑇𝑡𝑜𝑜𝑙 𝑐ℎ𝑎𝑛𝑔𝑒(𝑂𝑗,𝑖 ,𝑀𝑖) stands for the 

tool change time for an operation (𝑂𝑗,𝑖). 

The energy consumption of the set-up phase can be computed as: 

𝐸(𝑀𝑖).𝑠𝑒𝑡−𝑢𝑝 = 𝑃𝑖𝑑𝑙𝑒(𝑀𝑖) ∙ 𝑇𝑠𝑒𝑡−𝑢𝑝(𝑀𝑖)       (11) 

where 𝐸(𝑀𝑖).𝑠𝑒𝑡−𝑢𝑝 represents the energy consumed during the set-up phase; 𝑃𝑖𝑑𝑙𝑒(𝑀𝑖) is the idle power 

needed during the machine waiting phase for this set-up; 𝑇𝑠𝑒𝑡−𝑢𝑝(𝑀𝑖)  stands for the total set-up time on 

the 𝑖𝑡ℎ machine, which can be represented as: 

𝑇𝑠𝑒𝑡−𝑢𝑝(𝑀𝑖) =  ∑ 𝑇𝑠𝑒𝑡−𝑢𝑝(𝑂𝑗,𝑖 ,𝑀𝑖)
𝑝
𝑗=1         (12) 

where 𝑝 stands for the number of the set-up on the 𝑖𝑡ℎ machine; 𝑇𝑠𝑒𝑡𝑢𝑝(𝑂𝑗,𝑖 ,𝑀𝑖) stands for the set-up time 

for an operation (𝑂𝑗,𝑖) on the 𝑖𝑡ℎ machine. 

Based on the energy consumption of the above phases, the total energy consumption of a machine can be 

represented below: 

𝐸(𝑀𝑖) = 𝐸(𝑀𝑖)𝑖𝑑𝑙𝑒 + 𝐸(𝑀𝑖).𝑤𝑜𝑟𝑘𝑖𝑛𝑔 + 𝐸(𝑀𝑖).𝑡𝑜𝑜𝑙_ 𝑐ℎ𝑎𝑛𝑔𝑒 + 𝐸(𝑀𝑖).𝑠𝑒𝑡−𝑢𝑝   (13) 

where 𝐸(𝑀𝑖) stands for the total energy consumption of the 𝑖𝑡ℎ machine. 

Therefore, if there are 𝑖 machines to be used in the process planning and scheduling, the overall energy 

consumed by all the machines to machine all the parts is: 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐸(𝑀𝑖)𝑛
𝑖=1           (14) 

Makespan means the maximum interval time spent to machine all the parts. It can be defined in the 

following:  

𝑀𝐹𝑘𝐹𝑠𝑝𝐹𝑖 = 𝑀𝐹𝑥(𝑇(𝑀𝑖))         (15) 

where 𝑇(𝑀𝑖) is the time interval between the stop time of the 𝑖𝑡ℎ machine and the start time of the entire 

job. It includes the start time and utilization time of the 𝑖𝑡ℎ machine, which includes idle, working, tool 

change and set-up phases. That is, 𝑇(𝑀𝑖) can be represented as: 

𝑇(𝑀𝑖) = 𝑇𝑠𝑡𝑎𝑟𝑡(𝑀𝑖) + 𝑇𝑖𝑑𝑙𝑒(𝑀𝑖) + 𝑇𝑤𝑜𝑟𝑘𝑖𝑛𝑔(𝑀𝑖) + 𝑇𝑡𝑜𝑜𝑙_ 𝑐ℎ𝑎𝑛𝑔𝑒(𝑀𝑖) + 𝑇𝑠𝑒𝑡−𝑢𝑝(𝑀𝑖)  (16) 

 

5.3 Optimization process 

As the two different objective functions, i.e., total energy and makespan, can have very different 

magnitudes, normalization of the two objective functions is required prior to the optimization of the weight 
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summed objective function. Unlike the optimization of milling parameters in terms of energy consumption 

𝐸  and productivity 𝑀𝑀𝑀  described in Section 4.2, which maximum and minimum values are already 

known, the maximum and minimum values of these two objective functions are unknown before 

optimization. In this case, a suitable normalization schema that normalizes the objective functions by the 

differences of objective functions in the Nadir and Utopia points is employed (Mausser, 2006). The Utopia 

point 𝑀𝑖𝑈 provides the lower bound of the 𝑖𝑡ℎ objective function and can be obtained by minimizing the 𝑖𝑡ℎ  

objective function individually, i.e., 

𝑀𝑖𝑈 = 𝑓𝑖�𝑥𝑖� = 𝑀𝑖𝑖{𝑓𝑖(𝑥)} (17) 

The upper bound is then obtained from the Nadir point  𝑀𝑖𝑁 , which is defined as 

𝑀𝑖𝑁 = 𝑓𝑖�𝑥𝑘� = 𝑀𝐹𝑥1≪𝑗≤𝐼�𝑓𝑖(𝑥𝑗)� (18) 

where 𝐼 is the total number of objective functions. 

This normalization schema may be computationally expensive when the problem dimension is very large. 

For this research, the time spent on this calculation is acceptable as the number of optimization parameters 

is not very large. Hence, the energy consumption and timespan are to be normalized individually as: 

�
𝑁𝐸 = (𝐸𝑡𝑜𝑡𝑎𝑙 − 𝑀1𝑈) (𝑀1𝑁 − 𝑀1𝑈)⁄

𝑁𝑇 = (𝑀𝐹𝑘𝐹𝑠𝑝𝐹𝑖 − 𝑀2𝑈) (𝑀2𝑁 − 𝑀2𝑈)⁄
 (19) 

The objective function is calculated as weighted sum of the two objectives: 

 Objective: 𝑀𝑖𝑖(𝑤1 ∙ 𝑁𝐸 + 𝑤2 ∙ 𝑁𝑇),    𝑤1 + 𝑤2 = 1  (20) 

Unlike the optimization stage of the process parameters in Section 4.3, the Pattern Search method is not 

suitable for this type of problem as all the variables need to be optimized are discrete values. The 

performances of the Genetic Algorithm and Simulated Annealing algorithm are then compared and the 

Simulated Annealing algorithm is proven to be more reliable in finding the global optimum. As thus, the 

Simulated Annealing algorithm is employed here. 

The geometric and manufacturing interactions between machining features/operations as well as the 

technological requirements in parts are considered to generate some precedence constraints between the 

machining features/operations. The definitions and classifications of precedence constraints between 

machining features/operations can be found in (Li et al., 2006). A penalty function for handling the 

precedence constraints is used in the optimization process.  

 

6. Case Studies 

Two parts shown in Figure 6, provided by a Medium-size manufacturing company from an EU sponsored 

CAPP-4-SMEs project consortium (http://www.capp-4-smes.eu/), have been used to validate the developed 
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approach. Both parts are imported as STEP files and a developed machining feature recognition processor 

has been applied to extract machining features (Li et al., 2006). The relevant specifications of the features 

in each part are listed in Table 4 and Table 5 respectively. The assumptions for process planning and 

scheduling include: 

• Parts are independent, and part preemption is not allowed; 

• A penalty function is applied to the optimization process to ensure that the sequence of the operations 

generated for each part complies with precedence constraints; 

• All parts and machines are available at time zero simultaneously; 

• Each operation can be performed on multiple machines, and each machine can only execute an 

operation each time; 

• Machines are continuously available for production; 

• If a machine is broken down, or a new part is inserted, the algorithm can re-start and generate new 

process plans and a schedule efficiently; 

• The time for a set-up is assumed to be identical and independent of specific operations. For the milling 

operations on each machine, the cutter will be kept the same. From a milling operation to a drilling 

operation, a tool change will be made. The time for a machine change or a tool change are also assumed 

to be identical and independent of specific operations; 

• This research is only for milling process parameter optimization at this moment. For the drilling 

features/operations in the parts, the energy consumption for the drilling process of each 

feature/operation is estimated and proportional to the volume of the feature. 

 
(a) Part 1 and its recognized machining features 
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(b) Part 2 and its recognized machining features 

Figure 6: Feature lists of test parts with Part 1 having 14 features and Part 2 having 29 features. 

 

Table 4: The specifications of feature operations in Part 1. 

Features Volume(mm3) 
1- BlindPocket 70,800 
2-ClosedSlot 1,360 
3 –ThruPocket 3,590 
4-ThruSlot 1,536 
5- ThruSlot 1,408 
6- ClosedSide 6,984 
7/8/9/10 -BlindHole 28.5 
11/12-SunkHole 154.3 
13-Face 8,375 
14-Face 8,375 
 

Table 5: The specifications of feature operations in Part 2. 

Features Volume(mm3) 

1- BlindPocket 798 
2-ClosedSlot 420 
3- ClosedSlot 2,190 
4 -BlindPocket 16,200 
5-Step 15,000 
6/7- ThruSlot 86.6 
8/9- BlindHole 67 
10/11/12/13 -BlindHole 23.75 
14/15/-BlindHole 196.25 
16/17-ThruHole 196.25 
18/19/20/21/22-Face 2,850/1,080/4,350/710/2,850 
23/24/28-Face 300/219.5/986 
25/26/27/29-Face 40 
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Three CNC machines have been used as the candidate machines for this research validation. The first 

machine is the Hurco vertical machine center used in (Yan and Li, 2013), and other machines are two Haas 

vertical machine centers VF-4 and VF-7. 

 

6.1 Monitoring system deployment 

A wireless sensor network system for monitoring three-phase electricity consumption and a Cloud-enabled 

data server to record and share data over the Internet have been developed and deployed in a shop floor. 

Energy information measured from machines and transmitted as IPv6 packets to the data server using a 

wireless transport protocol 6LoWPAN. The sample rate of energy measurement is at 100 samples per 

second. The above system is illustrated in Figure 7. The hardware photos and software interfaces are shown 

in Figure 8. Surface roughness is measured off-line. 

  

6.2 Optimization of milling process parameters 

As described in Section 4.1, in order to optimize the milling parameters, ANNs are constructed to represent 

the relationships between the key milling parameters (𝑖, 𝑀, 𝐹𝑝, 𝐹𝑒) and the measured Surface roughness 𝑆, 

and between (𝑖, 𝑀, 𝐹𝑝, 𝐹𝑒) and measured Energy consumption 𝐸. To save space, only the measured data set 

from the Hurco vertical machine center is used here to illustrate the optimization procedure of milling 

process parameters. The lower and upper bounds and intervals of the milling parameters set for 

optimization are shown in Table 6. To train the ANNs properly, the measured dataset is divided into three 

groups: 4 data as validation dataset, 4 data as test dataset and the remaining 19 data as test dataset. 3-layer 

ANNs with 6 hidden neurons are constructed to approximate the measured energy consumption as is shown 

in Figure 9. The mean Squared Root Error between the measured and predicted energy consumption values 

is 1.39 KJs, and the maximum error in percentage is 9.82% which occurs in the test set. Similarly, 3-layer 

ANNs with 10 hidden neurons are employed to represent the Surface roughness. The comparison of the 

predicted and measured Surface roughness is depicted in Figure 10, with a mean squared root error of 

0.018 µm and a maximum error of 6.85%. 
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Figure 7: The deployment diagram of the energy monitoring system. 
 

 

Figure 8: The energy monitoring system and surface roughness testing. 
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Table 6: The bounds of the milling parameters for optimization. 

Milling parameters 𝒏 (r/min) 𝒄 (mm/min) 𝒂𝒑 (mm) 𝒂𝒆 (mm) 
Lower bound 1000 200 0.2 5 
Upper bound 2000 300 0.4 15 

Interval 500 50 0.1 5 
 

 

Figure 9: Comparison of the measured and ANNs-predicted energy consumption. 

 

 

Figure 10: Comparison of the measured and ANNs-predicted surface roughness. 

 

The ANNs-predicted energy consumption and calculated MRR are then pre-processed into grey relational 

coefficients to form the sum-weighted objective function for optimization. The constraint on surface 

roughness is accounted into the objective function as a penalty function when the ANNs-predicted surface 

roughness is greater than the value of the user defined surface roughness. 
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Three optimization algorithms, i.e., Pattern Search, Genetic Algorithm and Simulated Annealing algorithm, 

have been tested with the requirement of Surface roughness 𝑆 set at 2.5µm. The optimization processes and 

results are shown in Figure 11 and Table 7. It is observed that Pattern Search is the most stable and 

efficient among the three algorithms.  

 
Figure 11: Comparison of three optimization processes. 

 

Table 7: Result comparison of the three optimization algorithms.  

Algorithms Average time (s) Best solutions (3 trials with S ≤2.5 µm) 
Pattern Search 9.23 0.3377 0.3377 0.3377 

Genetic Algorithm 24.25 0.3376 0.3406 0.3410 
Simulated Annealing 152.84 0.3364 0.3392 0.3409 

 

Surface roughness is not considered as an optimization objective directly in this work. Instead it is used as 

a constraint which can provide the flexibility to users to set the desirable surface roughness depending upon 

the process requirement of roughing, semi-finish and finish during process planning. As thus, the optimized 

results of process parameters will be different according to the various requirements of surface roughness 

in process planning. The intermediate processes and optimized results for three roughness requirements are 

illustrated in Figure 12 and Table 8. As expected, the greater energy consumption and the lower MRR are 

needed when the requirement on surface roughness is tighter (with a lower value of surface roughness). 
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Figure 12: Intermediate results of Pattern Search. 

 

Table 8: Optimized process parameters for different constraints on surface roughness. 

𝑹𝒂(µm) 𝒏 (r/min) 𝒄 (mm/min) 𝒂𝒑 (mm) 𝒂𝒆 (mm) 𝑴𝑹𝑹 (mm3) 𝑬 (kJ) 
2.5 1103.0 300.0 0.3938 15.0 1771.9 84.276 
2.0 1000.0 205.64 0.4000 15.0 1234.0 105.690 
1.5 1113.5 200.0 0.3938 15.0 1181.3 116.180 

 

6.3 Optimization of process sequencing, setting-up and scheduling 

The optimized milling parameters of individual machines according to the roughness requirement are then 

recorded and the optimized MRR and energy consumption for individual machines are fed into the 

optimization of process planning and scheduling as inputs. The machining times of individual 

features/operations on various machines are calculated using the optimized MRR. The working SEC for 

individual machines can be obtained using the optimized energy consumption. As mentioned in Section 5.3, 

the most suitable optimization method for this application is the Simulated Annealing algorithm, thus 

optimization results using the algorithm are shown in Figures 13 - 15. The optimization progress for energy 

consumption and makespan is shown in Figure 13(a) and the energy consumption at different stages of 
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machining and on different machining features/operations is shown in Figure 13(b) and Figure 14 

respectively. The optimization results only for energy consumption are shown in Figure 15. For the 

optimization of energy consumption and makespan, the total energy consumption is 11537 KJs, makespan 

is 53.97 minutes and all machines are involved in the jobs; On the contrast, for the optimization of energy 

consumption only, the total energy consumption is reduced to 8742 KJs while makespan is increased to 

76.4 minutes and the 1st machine is not be scheduled due to its high SEC and idle consumption compared to 

the other two machines. The optimization algorithm can also address the dynamics of process planning and 

scheduling. Table 9 shows the results with different selections of machines and optimization objectives. 

Compared with the results for the two optimization objectives, there is always a tradeoff between the 

energy consumption and makespan when scheduling multiple operations over multiple machines. The 

optimal energy consumption is achieved when makespan is not taken into account. By the comparison of 

the results with different combinations of machines, it is noted that the more selections of machines will 

always ensure a shorter makespan, but not necessarily lead to less energy consumption.  

  

(a) Optimization process    (b) Energy consumption at different stages 

Figure 13: Optimization of machine systems in terms of energy consumption/makespan. 

 
Figure 14: Energy consumption for machining features of the two parts. 
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 (a) Optimization of process planning and scheduling              (b) Energy consumption at different stages 

Figure 15: Optimization of process planning and scheduling in terms of energy consumption. 

 

Table 9: Optimization results under different conditions and objectives. 
Optimization objective Available machines  Energy (KJs) Makespan (minutes) 

 
Energy&Makespan 

All  11537 53.97 
2&3 11376 67.59 
 1&3 12368 65.43 
1&2 12497 66.84 

 
Energy 

All 8742 76.40 
2&3 8742 76.40 
1&3 9453 75.58 
1&2  10012 78.36 

 

7. Conclusions 

It is critical for companies to develop and deploy process planning and scheduling optimization adaptive to 

dynamics inherent in modern machining processes in order to implement manufacturing sustainability in 

terms of energy consumption, product quality and productivity. This research presents a systematic 

approach for sustainable process planning and scheduling optimization with built-in intelligent mechanisms 

for better adaptability and responsiveness to manufacturing dynamics. Multiple criteria such as energy 

consumption, surface quality, productivity and makespan are considered concurrently to realize constraint-

based multi-objective optimization. In the approach, ANNs are used to leverage the robustness and 

extensibility characteristics to a large amount of measured process data to establish the complex non-linear 

relationships between key process parameters and multiple objectives. Intelligent algorithms, including 

Pattern Search, Genetic Algorithm and Simulated Annealing algorithm, are applied and benchmarked to 

identify optimized solutions. The developed approach, verified through industrial case studies, shows 

significant application potential. 

The contributions of the approach are summarized below: 

• A systematic, adaptive and efficient approach has been developed to address the different levels of a 

dynamic machining shop floor to meet the multiple performance criteria such as sustainability, 
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productivity, surface quality and makespan. The models developed in this research are extensible to 

include more performance criteria to address companies’ specific requirements;   

• Investigations on the characteristics of energy consumption influenced by key process parameters, 

machining feature/operation-based process plan, and schedules on machine systems. Intelligent and 

robust decision making processes for process planning and scheduling have been effectively developed. 

The above work paves a way for the approach to be integrated into modern feature-based CAM systems 

to facilitate the sustainable management of shop floors in companies. 

 

Further investigations and improvements of the research are ongoing, mainly from the following aspects: 

• In a shop floor, air conditioning, ventilation and compressed air equipment and related networks, could 

consume energy significantly. The issue will be investigated in the future research; 

• Machining operations deduced from machining features need to be further refined to support the 

sustainability decision making in more detail; 

• Full-scale industrial pilot runs of the system in machining companies in UK, Sweden, Spain and 

Germany for demonstration to the entire European industries are under preparation according to the 

arrangements of the projects. 
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