
Deterministic Scheduling of Real-Time Tasks on Heterogeneous
Multicore Platforms

©2021

Waqar Ali

Submitted to the graduate degree program in Department of Electrical Engineering and Computer
Science and the Graduate Faculty of the University of Kansas in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

Committee members

Dr. Heechul Yun, Chairperson

Dr. Prasad Kulkarni

Dr. Esam Eldin Mohamed Aly

Dr. Drew Davidson

Dr. Shawn Keshmiri

Date defended: December 15, 2020

The Program Committee for Waqar Ali certifies
that this is the approved version of the following dissertation :

Deterministic Scheduling of Real-Time Tasks on Heterogeneous Multicore Platforms

Dr. Heechul Yun, Chairperson

Date approved: December 15, 2020

ii

Abstract

In recent years, the problem of real-time scheduling has increasingly become more important as

well as more complicated. The former is due to the proliferation of safety critical systems into

our day-to-day life; such as autonomous vehicles, fueled by the recent advances in artificial intel-

ligence. The latter is caused by the increasing demand for high performance which is driving the

adoption of highly integrated complex heterogeneous system-on-chip (SoC) processors to deliver

the performance while meeting strict size, weight, power (SWaP) and cost constraints. Motivated

by these trends, this dissertation tackles the following main question: how can we guarantee pre-

dictable real-time execution on heterogeneous multicore SoCs while preserving high utilization?

The fundamental problem in preserving the determinism of the real-time system realized on

a heterogeneous multicore SoC is ensuring that the worst-case execution time (WCET) of each

task, measured in isolation, will stay within a reasonable bound during the actual execution of the

system. The primary challenge in achieving this goal—tightly bounding task WCETs—is that the

execution time of a task can be highly non-deterministic, often varying significantly depending

on which tasks are co-scheduled and how they contend on various shared hardware resources

in the memory hierarchy. The particular scheduling requirements (e.g., non-preemption) of the

different computing resources (e.g., integrated GPU) in the heterogeneous SoC and the possible

cross-contention among their workloads can also exacerbate this problem.

In light of these considerations, this dissertation presents new real-time scheduling techniques

for predictable and efficient scheduling of mixed criticality workloads on heterogeneous SoCs. The

contributions of this dissertation include the following: 1) A novel CPU-GPU scheduling frame-

work that ensures predictable execution of critical GPU kernels on integrated CPU-GPU platforms.

2) A novel gang scheduling framework which guarantees deterministic execution of parallel real-

time tasks on the multicore CPU cluster of a heterogeneous SoC. 3) Optimal and heuristic algo-

iii

rithms for gang formation that increase real-time schedulability under the RT-Gang framework

and their extension to incorporate scheduling on accelerators in a heterogeneous SoC. 4) Concrete

evaluation results using simulated tasksets as well as real-world workloads that demonstrate the

analytical and practical benefits of the proposed techniques.

iv

To my parents, my wife and my daughter

v

Acknowledgements

I am thankful to a number of people for helping me get through the doctoral program at

the University of Kansas. First and foremost, I want to thank my mentor Dr. Heechul

Yun for diligently advising me throughout the course of my PhD program. I would not

have reached this point in my pursuit of knowledge—had it not been for your guid-

ance. I also want to sincerely thank the members of my Ph.D. program committee; Dr.

Prasad Kulkarni, Dr. Drew Davidson, Dr. Esam Eldin Mohamed Aly and Dr. Shawn

Keshmiri, for bearing with me in the scheduling of my Ph.D. exams in these trying

times. Special thanks are due to the EECS graduate program coordinator Joy Grisafe-

Gross and her predecossor Pam Shadoin for always being there for me whenever I

needed guidance with respect to a particular milestone of the KU doctoral program.

I would like to express my thanks and appreciation to all the current and former

students, Farzad Farshchi, Prathap Kumar Valsan, Prasanth Vivekanandan Veerapan

Chattir, Jacob Michael Fustos, Michael Garrett Bechtel and Ahmet Soyyigit, in the

Computer Systems Lab (CSL) at ITTC, KU. Specially, I want to thank Michael for

first creating the DeepPicar test-bed and then meticulously conducting the RT-Gang

case-study with DeepPicar that I have used extensively in my work, as well as in the

writing of this dissertation. Also, I want to thank Ahmet for taking up my work with

the RT-Gang framework and keeping it going into the future. I hope that this work is

fruitful to you as it has been for me.

I am specially indebted to Dr. Rodolfo Pellizzoni, from University of Waterloo, for

helping me with a particularly difficult problem in my research. Without your input,

vi

a major portion of this dissertation would be missing or would not have reached the

level of quality that it has in its current form.

Finally, I am indubitably thankful to my wife, for following me all the way around the

world and for never doubting me through the ups and downs of my student life. This

would not have been possible without you.

vii

Contents

1 Introduction 1

1.1 The Performance Isolation Challenge . 2

1.2 The Nuances of Heterogeneous Computing . 3

1.3 Thesis Statement . 4

1.4 Contributions . 5

1.4.1 Safe Real-Time Execution on the Integrated GPU 5

1.4.2 Deterministic Real-Time Task Scheduling on Multicore CPUs 5

1.4.3 Virtual Gang Scheduling of Parallel Real-Time Tasks 6

1.5 Organization . 7

2 Background and Prior Work 8

2.1 Real-Time Task Models . 8

2.1.1 Task Models for Multicore Systems . 9

2.2 Response Time Analysis . 12

2.2.1 Priority based Scheduling Policies . 13

2.2.2 The Multicore Scheduling Problem . 13

2.3 Performance Isolation in Multicore Platforms . 15

2.3.1 The Shared Cache Hierarchy . 16

2.3.2 Bandwidth and Main-Memory . 18

2.3.3 Performance Isolation on Integrated GPUs 20

2.4 Summary . 21

3 Real-Time Execution on Integrated CPU-GPU SoC Platforms 23

viii

3.1 Introduction . 23

3.2 System Model . 26

3.2.1 Task Model . 26

3.2.2 CPU Scheduling . 27

3.3 BWLOCK++ . 28

3.3.1 Overview . 28

3.3.2 Automatic Instrumentation of GPU Applications 29

3.3.3 Throttle Fair CPU Scheduler (TFS) . 32

3.4 Implementation . 39

3.4.1 BWLOCK++ System Call . 40

3.4.2 Per-Core Memory Bandwidth Regulator 40

3.5 Evaluation . 41

3.5.1 Setup . 42

3.5.2 Effect of Memory Bandwidth Contention 42

3.5.3 Determining Memory Bandwidth Threshold 44

3.5.4 Effect of BWLOCK++ . 45

3.5.5 Throughput improvement with TFS . 46

3.5.6 Overhead due to BWLOCK++ . 47

3.6 Schedulability Analysis . 47

3.7 Discussion . 48

3.8 Conclusion . 49

4 Real-Time Gang Scheduling on Multicore CPUs 50

4.1 Introduction . 50

4.2 Case-Study: Non-Determinism in Multicores . 52

4.3 Design Overview . 54

4.3.1 One-Gang-at-a-Time Policy . 55

4.3.2 Safe Best-Effort Task Co-Scheduling . 56

ix

4.4 Illustrative Example . 57

4.5 Implementation . 60

4.5.1 Gang Lock Acquisition . 60

4.5.2 Gang Lock Release . 61

4.5.3 Gang Preemption . 62

4.5.4 Main Gang Scheduling Algorithm . 62

4.5.5 Memory Bandwidth Throttling of Best-Effort Tasks 64

4.6 Evaluation . 64

4.6.1 Synthetic Workload . 65

4.6.2 DNN Workload . 67

4.6.3 Overhead . 69

4.7 Discussion . 70

4.8 Conclusion . 71

5 Virtual Gang Scheduling of Parallel Real-Time Tasks 72

5.1 Requirements for Virtual Gang Scheduling . 73

5.1.1 Need of Synchronization . 74

5.1.2 Gang Formation Problem . 75

5.2 System Model . 76

5.2.1 Virtual Gangs and Scheduler . 77

5.2.2 Interference Model . 77

5.3 The RTG-Sync Framework . 78

5.3.1 Middleware . 79

5.3.2 Kernel Modification . 80

5.4 Virtual Gang Formation . 81

5.4.1 Optimal Virtual Gang Formation via SMT 81

5.4.2 Virtual Gang Formation Heuristic . 83

5.5 Schedulability Analysis . 85

x

5.5.1 Simulation Study . 86

5.5.2 Schedulability Results . 88

5.5.3 SMT and Heuristic Gang Formation Runtime 90

5.6 Evaluation . 91

5.6.1 Setup . 91

5.6.2 Case-Study . 92

5.6.3 Overhead . 95

5.7 Discussion . 95

5.8 Conclusion . 96

6 Extensions and Future Directions 97

6.1 Summary of Contributions . 97

6.2 The Accelerator Scheduling Problem . 99

6.2.1 Hardware Level Scheduling in the Accelerator 99

6.2.2 Performance Isolation between Accelerators and CPU Workloads 100

6.3 Virtual Gang Scheduling with Accelerator using Tasks 102

6.3.1 System Model . 102

6.3.2 Virtual Gang Formation . 105

6.4 Implementation Changes in the RTG-Sync Framework 108

6.4.1 Gang Scheduling Data-Structure . 110

6.4.2 Non-Preemption System Call . 111

6.4.3 Gang Preemption Protocol . 112

6.5 Future Work . 113

7 Conclusion 115

xi

List of Figures

2.1 A Prototypical Periodic Real-Time Task . 9

2.2 Fork-Join and DAG Models of Parallel Tasks . 10

2.3 A Typical Rigid Real-Time Gang Task . 12

2.4 Block diagram of NVIDIA’s Jetson TX2 Board 16

3.1 Slowdown of a GPU Benchmark in a Heterogeneous System 24

3.2 BWLOCK++ System Architecture . 28

3.3 Phases of GPU Application under CUDA Runtime 30

3.4 Illustrative Example: Schedule under CFS . 35

3.5 Illustrative Example: Ideal Schedule with Zero Throttling 36

3.6 Illustrative Example: Schedule under TFS with ρ = 3 37

3.7 Virtual Runtime Progression under TFS . 38

3.8 Slowdown of GPU Benchmarks under Memory Bandwidth Contention 43

3.9 Determining the Budget for Best-Effort Tasks under BWLOCK++ 44

3.10 BWLOCK++ Evaluation Results . 45

3.11 Effect of TFS in Improving System Throughput 46

4.1 Case-Study Illustrating Shared Resource Contention in Multicores 53

4.2 Illustration of Scheduling under RT-Gang . 55

4.3 Illustrative Example (a): Ideal Schedule without Interference 58

4.4 Illustrative Example (b): Practical Schedule with and without RT-Gang 59

4.5 RT-Gang Demonstration with Synthetic Workload in Linux 66

4.6 Performance Evaluation of RT-Gang on Jetson TX2 68

4.7 Performance Evaluation of RT-Gang on Raspberry Pi 3 69

xii

5.1 Need of Synchronization in Virtual Gang Scheduling 74

5.2 Illustration of the Virtual Gang Formation Problem 75

5.3 System Level Architecture of RTG-Sync Framework 79

5.4 Schedulability under RTG-Sync with Precedence Constraints 89

5.5 Schedulability under RTG-Sync of Independent Tasks 90

5.6 Virtual Gang Formation Run-time Comparison 91

5.7 CDF of DNN Workload under RTG-Sync . 93

5.8 Kernel Traces Demonstrating RTG-Sync Scheduling in Linux 94

6.1 Example Taskset to Illustrate the New RTG-Sync Task Model 104

6.2 Problematic Nested Locking of a Virtual Gang under Non-Preemptive Protocol . . 109

6.3 Desired Locking Behavior of a Virtual Gang . 110

xiii

List of Tables

3.1 Automatic Instrumentation of CUDA APIs under BWLOCK++ 31

3.2 Illustrative Taskset for TFS Demonstration . 34

3.3 Timing Characteristics of Selected GPU Benchmarks 42

4.1 Taskset Parameters for Illustrating RT-Gang Scheduling Policy 57

4.2 DNN Taskset for RT-Gang Evaluation . 67

4.3 RT-Gang Overhead in Linux . 70

5.1 Taskset for RTG-Sync Evaluation . 92

6.1 Sample Taskset Parameters to Illustrate the New RTG-Sync Task Model 105

6.2 Sample Taskset Parameters to Illustrate the Need of Implementation Changes in

the RTG-Sync Framework . 108

xiv

List of Algorithms

1 BWLOCK++ System Call . 39

2 Memory Bandwidth Regulator . 41

3 RT-Gang Lock Acquisition Protocol . 61

4 RT-Gang Lock Release Protocol . 61

5 Gang Preemption Protocol under RT-Gang . 62

6 RT-Gang Scheduling Algorithm . 63

7 Virtual Gang Formation Heuristic . 84

8 Updated Virtual Gang Formation Heuristic . 107

9 Non-Preemption System Call . 111

10 Updated Gang Preemption Protocol . 112

xv

Chapter 1

Introduction

With the recent advances in the field of artificial intelligence, a new class of real-time applications

has emerged which simultaneously demands high performance as well as high safety, predictabil-

ity, and determinism. Examples of such applications, among others, include autonomous driving

cars, unmanned aerial vehicles and robotics. To meet the performance demand of these applica-

tions, modern commercial-of-the-shelf (COTS) multicore platforms integrate a variety of comput-

ing resources in a small form factor system-on-a-chip (SoC). Hence, these days, it is common to

come across embedded computing platforms which, in addition to the multicore CPU cluster, con-

tain one or more GPUs as well as special deep learning accelerators and FPGAs. An example of

such a platform is NVIDIA’s Jetson TX2 [1] board which contains a multicore CPU cluster and

an integrated GPU in a single SoC. Due to the varied nature of the computing resources present

in such platforms, they are termed as heterogeneous computing platforms and their architecture is

called heterogeneous system architecture (HSA).

Although heterogeneous computing platforms offer plenty of raw performance, guaranteeing

predictable execution timing of real-time tasks on these platforms is extremely challenging. The

primary goal of this dissertation is to investigate the nature of the aforementioned challenges and

propose a practically viable solution that can enable efficient usage of these platforms in safety

critical real-time applications. We begin by briefly describing the aforementioned challenges in

the following.

1

1.1 The Performance Isolation Challenge

The performance isolation challenge, in using heterogeneous multicore platforms for real-time

use-cases, refers to the difficulty in ensuring that the runtime performance of a real-time task will

not get affected—or the effect will be within a measurable bound—by the execution of corunning

tasks in the system. Due to the size, weight, power (SWaP) and cost constraints inherent from their

target use-cases, heterogeneous computing platforms contain a memory subsystem that is com-

monly shared among all the computing elements integrated into the SoC. However, the memory

subsystem is often optimized for average performance and in the worst-case, can exhibit extremely

poor bottleneck behaviors [2, 3, 4]. For this reason, the runtime performance of applications which

are executing simultaneously in such a system, is dependent on how they collectively make use

of the shared memory subsystem. This makes it difficult to reliably, and without excessive pes-

simism, determine the worst-case execution time of the real-time applications which make use of

a heterogeneous computing platform; that is instrumental in performing a schedulability test of the

system as explained below.

For a critical real-time system, determining the worst-case execution time (WCET) of critical

tasks is important and often required for certification [5, 6]. In unicore based systems, the standard

method is a two-step approach: (1) obtain the WCET of each task independently from the rest

of the system either by using static analysis tools or experimental measurements; (2) perform

schedulability analysis based on the obtained WCETs. Applying this approach to heterogeneous

multicore SoCs, however, is problematic because of the interference among corunning tasks in the

shared memory hierarchy, as mentioned above.

To tackle this problem without requiring modifications to the underlying hardware architecture

of the COTS multicore platform, a common approach adopted in a plethora of real-time literature

is to partition the most common shared resources in the memory subsystem, such as the last level

cache (LLC), the main memory bandwidth and the DRAM etc. However, there is a fundamental

limitation of the partitioning based solutions; not all shared resources can be partitioned through

software only approaches. Due to intellectual property related issues, the vendors of the COTS

2

multicore platforms do not disclose all the implementation details of their respective platforms.

As a result, the users of these platforms have to treat most of the memory subsystem as a black-

box. To safely use such a platform in realizing hard real-time systems, it is imperative to consider

all the possible ways in which the tasks in the system can interfere with each other through the

shared memory subsystem. This makes the execution of the real-time tasks coupled with each

other through the scheduling policy and the underlying hardware architecture of the heterogeneous

multicore platform. This coupling can necessitate extremely pessimistic estimation of the interfer-

ence aware WCET, e.g., up-to 300x of the solo WCET [4], of real-time tasks which can, in turn,

severely reduce the overall schedulability of the system. For this reason, in the use-cases where

hard real-time guarantees are a must (e.g., avionics), it is recommended to disable all but one core

of a multicore processor [6], which obviously defeats the purpose of using a multicore platform in

the first place.

1.2 The Nuances of Heterogeneous Computing

In a heterogeneous computing platform, the presence of an accelerator such as an integrated GPU

introduces a new facet of complications to the real-time scheduling problem. First of all, the

method of using the accelerator can be different from the well-understood CPU usage model. For

example, in the case of traditional GPU scheduling, an application running on the CPU acts as a

master and drives all the computations on the GPU by copying data between CPU and GPU mem-

ories (in the case of discrete GPUs) and triggering computations on the GPU as needed. Moreover,

due to the often data driven nature of the computation on the accelerators, the computation may

have to be performed non-preemptively; as opposed to the conventional CPU scheduling in which a

high priority task, barring any locking protocol [7] related requirements, can preempt a low priority

task at any time, to take control of the CPU. These nuances necessitate the use of specialized task

models which are usually significantly more complicated than the historical periodic task model

for CPU only tasksets1.

1An overview of relevant real-time task models is provided in Section 2.

3

The presence of an accelerator also complicates the performance isolation challenge which

is already quite difficult to tackle. In a typical heterogeneous platform, the main memory bus

and the main memory itself is shared among all the computing resources i.e., multicore CPU

cluster and the accelerators. Due to the limited bandwidth and capacity of the main memory, it

becomes possible for workloads running on accelerators to contend for the main memory with

those running on the CPU cluster and vice-versa e.g., our work [8] shows that real-time workloads

running on the accelerator (i.e., integrated GPU) in NVIDIA’s Jetson TX2 platform can suffer up-to

3.3x slowdown due to co-executing memory intensive CPU tasks. However, ensuring performance

isolation in this case is even more difficult (as compared to the multicore CPU only case) because of

the particular scheduling requirements of different accelerators (e.g., non-preemption) may make

it difficult or even impossible to apply traditional performance isolation techniques to solve this

problem. We discuss the accelerator scheduling problem in depth in Sec. 6.2 of this dissertation.

1.3 Thesis Statement

Motivated by the aforementioned discussion, we present the following thesis statement which

forms the basis of this dissertation:

The problem of deterministic scheduling of real-time tasks on heterogeneous com-

puting platforms demands a novel scheduling framework which can eliminate shared

resource interference by design. Such a framework must also allow deterministic us-

age of the accelerators, such as the integrated GPU, in the heterogeneous computing

platforms and must be accompanied with an applicable task model, system model

and an easy to use schedulability test that can cater to the diverse range of real-time

applications that can run on these platforms. Moreover, to be of practical use, the

implementation of such a framework must be light-weight and easily portable to the

commodity operating systems.

4

1.4 Contributions

In the following, we summarize the main contributions of this research.

1.4.1 Safe Real-Time Execution on the Integrated GPU

We present the BWLOCK++ framework which provides a mechanism to automatically protect

real-time GPU kernels in a heterogeneous SoC while minimizing the throughput impact to CPU

tasks. This is done by adopting a restrictive scheduling scheme which allows execution of real-

time tasks only on a single core in the multicore CPU cluster and using a bandwidth throttling

technique to limit the interference from best-effort CPU tasks to the real-time GPU kernel. We

make the following contributions in this work: 1) We apply memory bandwidth throttling tech-

nique to the problem of protecting GPU accelerated real-time tasks from memory intensive CPU

tasks on integrated CPU-GPU architecture. 2) We identify a negative feedback effect of memory

bandwidth throttling when used with Linux’s CFS [9] scheduler. We propose a throttling-aware

CPU scheduling algorithm, which we call Throttle Fair Scheduler (TFS), to mitigate the problem.

3) We introduce an automatic GPU kernel instrumentation method that eliminates the need of man-

ual programmer intervention to protect GPU kernels. 4) We implement the proposed framework

on a real platform, NVIDIA Jetson TX2, and present detailed evaluation results showing practical

benefits of the framework. 5) We show how the proposed framework can be integrated into the

existing CPU focused real-time schedulability analysis framework.

1.4.2 Deterministic Real-Time Task Scheduling on Multicore CPUs

We present RT-Gang: a novel real-time gang scheduling framework that enforces a one-gang-at-a-

time policy. Our goal, in designing RT-Gang, is to enable analyzable and practical parallel real-time

task scheduling on multicore platforms. We make the following contributions in this work: 1) A

novel gang scheduling algorithm which enables predictable execution on multicore platforms while

also providing simpler analysis. 2) Integration of memory bandwidth throttling technique into the

5

gang scheduler to allow safe co-execution of best-effort CPU tasks. 3) Implementation of our

framework on top of the commodity Linux kernel and thorough evaluation on two representative

embedded multicore platforms that shows dramatic improvement in the overall predictability of

the system under RT-Gang and very low over-head.

1.4.3 Virtual Gang Scheduling of Parallel Real-Time Tasks

We present the RTG-Sync framework which allows static grouping of real-time tasks into discrete

scheduling entities—called virtual gangs—for scheduling under the one-gang-at-a-time policy of

RT-Gang. Our goal, in this case, is to improve the real-time schedulability under the RT-Gang

framework when real-time tasks are not perfectly parallelized while preserving the analysis sim-

plicity and runtime determinism proffered by RT-Gang. We make the following contributions in

this work: 1) We consider the scheduling of real-time gang tasks with precedence constraints and

present the virtual gang abstraction to group certain tasks for co-execution as discrete schedulable

units. 2) We present optimal and greedy algorithms for forming virtual gangs from a set of real-

time tasks and show how to perform schedulability analysis of a set of virtual gangs using unicore

response time analysis. 3) We conduct thorough schedulability study using simulated tasksets and

compare the results under our approach against state-of-the-art multicore real-time task schedul-

ing techniques. The results show significant improvement in schedulability under our approach as

compared to the competition. 4) We further investigate the requirements of supporting the virtual

gang abstraction in a practical system and show that synchronous release of the virtual gang mem-

bers is necessary to gain practical benefits from virtual gangs. 5) We extend the implementation of

the RT-Gang framework to support the virtual gang abstraction and create a middleware framework

to enforce the synchronous release of the virtual gang member tasks. 6) We evaluate the extended

RT-Gang framework—called RTG-Sync—on the Jetson TX2 platform with a realistic case-study

and demonstrate the practical benefits of our approach. Our work is the first one which enables

schedulability analysis of real-time gang tasks that are bound by precedence constraints.

6

1.5 Organization

The rest of this dissertation is organized as follows. We present necessary background and a sum-

mary of related prior work in Chapter 2. We describe the BWLOCK++ framework and its design,

implementation and evaluation results in Chapter 3. In Chapter 4, we present the RT-Gang frame-

work and demonstrate, with an illustrative example as well as a real-world case-study using an

autonomous driving test-bed, the benefits of the one-gang-at-a-time scheduling policy in improv-

ing the determinism of a real-time system realized on a multicore CPU based platform. We also

concretely describe the implementation details of the RT-Gang framework inside the Linux ker-

nel and present the evaluation results on two representative embedded multicore platforms. We

begin Chapter 5 by elucidating the need of virtual gang scheduling for improving the real-time

schedulability under the RT-Gang framework. We then expressly discuss the practical require-

ments of virtual gang scheduling with illustrative examples and describe the design of RTG-Sync

framework and how it fulfills the said requirements. We also present the virtual gang formation al-

gorithms and present analytical schedulability results from a simulation study as well as empirical

evaluation results showcasing the benefits of the virtual gang scheduling in improving the schedu-

lability of an RT-Gang managed real-time system. We provide a summary of our contributions,

discuss the limitations of our techniques, the extensions we have already implemented to amelio-

rate some of those limitations and the possible directions of future research based on our work in

Chapter 6. Finally, we conclude our discussion in Chapter 7.

7

Chapter 2

Background and Prior Work

In this chapter, we present prior work, in real-time scheduling theory and its practical applications,

performance isolation and real-time scheduling on GPU.

2.1 Real-Time Task Models

Liu and Layland’s Recurrent Task Model: It can be said that the modern research into real-

time systems began with Liu and Layland’s seminal work [10] in which, among other things, they

presented the recurrent real-time task model. As per this model, a real-time task (τ) comprises

an infinite sequence of jobs (J1,J2, · · · ,Ji, · · ·), each of which is characterized by the time it takes

to complete its execution on a target hardware platform. The task itself is characterized by its

maximum execution time C, period T and deadline D. The maximum execution time, also called

the worst-case execution time (WCET), is equal to the longest duration any job of the task can

take to complete its execution on a target hardware platform. The value of the period describes

the separation between any two consecutive jobs of the task and the deadline quantifies the time

interval, measured from the instant when a job arrives, during which the job should finish its

execution; for the task to be deemed schedulable. The task is considered a hard real-time task if it

must always meet its deadline; for the timing correctness of the system. If the task can tolerate the

deadline misses to some extent, then it is called a soft real-time task. In this dissertation, when we

refer to a real-time task, we mean a hard real-time task unless explicitly stated otherwise.

In Liu and Layland’s original proposal, the value of the period is fixed, in the sense that the

jobs of the real-time task are released exactly T time-units apart and the resulting task model is

8

0 5 10 15 Time

Job Release Job DeadlineTask Job Completion

Period (T)

WCET (C)

Deadline (D)

τ1

Figure 2.1: Activation diagram of a periodic real-time task

called the periodic task model. In a later relaxation of this model, the value T delineates the

minimum separation between any two jobs of the task and the task model is called the sporadic

task model [11]. Moreover, based on the relationship between the period and the deadline, the task

model is further classified as implicit deadline or constrained deadline. In the former, for each job

of the task, the deadline is equal to the period whereas for the latter, the deadline must be less than

or equal to the period value. An activation diagram showing a prototypical constrained deadline

periodic real-time task, with a WCET of 2, a deadline of 4 and a period of 5, is shown in Figure 2.1.

Despite several decades that have passed since the time it was presented, Liu and Layland’s

work is still relevant today and almost every major work in real-time scheduling theory makes use

of their presented task model, in one form or another, based on some specific use-case. In that

sense, their work is a canon in the subject area.

2.1.1 Task Models for Multicore Systems

The classical periodic task model applies to systems that contain a single processing element e.g.,

a unicore CPU based platform. By virtue of that, in such a system, each job of the real-time task

must execute entirely on the single processing entity. In a modern embedded computing system,

there can be multiple processing elements, such as a multicore CPU cluster, an integrated GPU

and additional purpose built accelerators, all integrated into a compact System-on-a-Chip (SoC)

9

join fork join
(τ1,1) (τ1,2) (τ1,3)

(a) A fork-join task

τ1,1

τ1,2

τ1,3

τ1,5

τ1,4 τ1,6

(b) A DAG task

Figure 2.2: Parallel real-time task models

configuration. Consequently, real-time applications which make use of these platforms can have

diverse computing requirements which cannot be expressed adequately using the classical periodic

task model. In this section, we discuss three representative task models, from real-time scheduling

literature, that can be used to express real-time workloads that make use of a multicore CPU based

computing platforms. Importantly, we describe the real-time gang task model in detail which is

used extensively throughout this dissertation.

2.1.1.1 The Fork-Join Model

In the fork-join model of parallel real-time tasks [12, 13, 14, 15, 16], the execution of each job of

a real-time task consists of a sequence of serial and parallel execution phases. In the serial (join)

phase, the job requires only a single CPU core to execute whereas in the parallel (fork) phase, the

job can execute simultaneously on multiple CPU cores. The different phases of execution of a

fork-join task have a linear precedence relationship among them: phase (i+1) can begin execution

only after phase (i) has completed. Figure 2.2a shows an illustration of a task that can be expressed

using the fork-join model. Despite its simplicity, the fork-join model is quite popular and supported

by a number of parallel programming frameworks [17, 18, 19].

10

2.1.1.2 The DAG Model

In the DAG model [20, 21, 13], each job of the periodic real-time task is represented as a directed

acyclic graph (DAG). The nodes of the DAG represent the execution phases of the job and the

edges represent the precedence constraint relationship among the execution phases. Each execution

phase is itself sequential i.e., it executes entirely on a single CPU core. Figure 2.2b shows an

illustration of a task that can be expressed using the DAG model. In essence, the DAG model is a

generalization of the fork-join model and it is suitable to express real-time workloads which have

more complicated relationship among the phases of execution that cannot be expressed using the

linear scheme of the fork-join model.

2.1.1.3 The Gang Model

In the gang model of parallel real-time tasks [22, 23, 24, 25], each job of the task is characterized

by the number of cores m it needs to execute; in addition to its execution demand c and the period

p value as per the classical periodic task model. Based on the nature of the core requirement

parameter m, the gang task model is further divided into a number of categories which are described

in the following.

Rigid Gang: In the rigid gang model, the number of cores required to execute the gang are de-

termined off-line and they stay the same for all of the jobs of the gang throughout its execution.

Figure 2.3 shows the activation diagram of an implicit deadline periodic rigid gang task.

Moldable Gang: If the number of cores required to execute a gang are determined on-line, on a per

job basis, by the scheduler but once determined, the core requirement stays the same throughout

the job’s execution, then the resulting model is called the moldable gang model.

Malleable Gang: If the number of cores required to execute the gang can change during the

execution of the job, then such a gang task model is called the malleable gang model.

Bundled Gang: The bundled gang model, introduced recently [25], is a generalization of the rigid

gang model. As per this model, the execution of each job of a rigid gang task is sub-divided into

11

0 5 10 15 Time

Job ReleaseTask Job Completion

τ1
th

re
ad

2

th
re

ad
1{

Figure 2.3: Activation diagram of an implicit deadline rigid gang task

multiple execution segments—or bundles—each of which can have a distinct core requirement,

determined off-line, that can be different from one bundle to another. The bundles are bound by

a linear precedence requirement i.e., bundle (i+1) cannot start before bundle (i) has finished its

execution.

For the purpose of this dissertation, the rigid gang model is most relevant and will be discussed

in more detail, in the context of real-time gang scheduling, in Chapter 4 and Chapter 5.

2.2 Response Time Analysis

In real-time scheduling, it is of utmost importance to know a-priori whether a real-time task will

meet its deadlines in a particular use-case. A large body of literature in real-time scheduling

theory revolves around devising offline analytical tests that, given a set of tasks parameterized as

per a suitable task model, can be used to determine whether each task in the taskset will be able

to meet its deadline. The process of analytically determining the schedulability of a real-time

taskset is called response-time analysis [26, 27, 28]; for the reason that the tests involved in this

procedure determine the response-time of the real-time tasks which is defined as the time interval

since the arrival of a job of a task to the time that the job completes its execution. Integral to

the response-time analysis is the scheduling policy of the target system which determines which

task(s) to execute on the available computing resources from a group of tasks that are ready to

12

execute, based on the notion of priority. In the following, we discuss most widely used priority

based scheduling policies from real-time scheduling literature that are relevant to the discussion

presented in the later chapters of this dissertation.

2.2.1 Priority based Scheduling Policies

Priority based scheduling of real-time tasks can be broadly divided into two categories, based

on how the priority of each job of a given task is determined. In fixed priority scheduling, the

priority of each job of the task is statically determined offline and does not change throughout the

task’s execution. An example of fixed priority scheduling is rate-monotonic (RM) policy [28], in

which, a task with a smaller period is given a higher static priority value. In contrast, in dynamic

priority scheduling, the priority of each job of the task is determined online dynamically before

the job starts executing. An example of such scheduling scheme is earliest deadline first (EDF)

policy [10] in which, as the name implies, a job with the closest deadline is given the highest

scheduling priority.

In comparing different policies for scheduling real-time tasks, the notion of feasibility and

optimality are of vital importance. A taskset is said to be feasible under a specific scheduling

policy if it can be analytically proven that all tasks in the taskset will always be able to meet

their deadlines if scheduled according to that policy. A scheduling policy, for a specific priority

assignment scheme, is considered optimal if it can schedule all feasible tasksets under that scheme.

An optimal scheduling scheme is highly desirable in scheduling hard real-time tasks. For single-

core based platforms, it has been proven that rate-monotonic policy is optimal for fixed priority

scheduling and EDF policy is optimal for dynamic priority scheduling [10]. For platforms with

multiple cores, the problem is considerably more complicated as explained in the next section.

2.2.2 The Multicore Scheduling Problem

In a multicore system, a significant source of complication to the real-time task scheduling problem

arises because of the presence of multiple computing cores that can be used to run a ready task.

13

Moreover, the task models used to describe multicore workloads can be considerably more intricate

and hence conceptually difficult to handle than the classical sequential periodic tasks, as described

in the earlier sections of this chapter. Based on the scope of problem, the multicore scheduling is

divided into three types; each of which is briefly discussed in the following.

2.2.2.1 Global Scheduling

In global scheduling [29, 15, 30], real-time tasks are opportunistically scheduled on the first avail-

able core in a multicore platform. If no such core is available, then the lowest priority task running

in the platform is preempted in favor of the highest priority ready task, if the priority of the lat-

ter is greater than the former. From implementation point of view, global scheduling requires a

single ready-queue to keep all the ready tasks in the system and it can select tasks from the ready-

queue based on their assigned priority value; as per a fixed priority or dynamic priority assignment

scheme. Although conceptually simple, global scheduling is usually avoided in commodity operat-

ing systems due to the runtime overheads e.g., cache management and synchronization, associated

with this policy in multicore platforms.

2.2.2.2 Partitioned Scheduling

Contrary to the global scheduling paradigm, in partitioned scheme [31, 32], the scheduling prob-

lem is divided into two parts. In the first (offline) part, the tasks are statically assigned to the

different cores available in the target hardware platform. In the second (online) part, each core

in the target platform executes the task present in its ready-queue using an appropriate priority

assignment scheme, just like a unicore system. From the implementation and analysis point of

view, partitioned scheduling is straight forward because in a partition scheduled system, each core

can operate locally on the tasks in its ready-queue without considering the other cores and the

schedulability of the tasks in a core’s ready-queue can be determined using well-known unicore

response-time analysis techniques. However, partitioned scheduling has its own caveats due to

its offline task-to-core mapping phase which requires solving a bin-packing like problem that is

14

known to be NP-hard in the strong sense [33].

2.2.2.3 Clustered Scheduling

This scheme is a generalization of the global and partitioned scheduling policies. In clustered

scheduling [34, 35], the multicore platform is divided into clusters of computing cores. Tasks are

statically partitioned among the clusters and inside the clusters, the assigned tasks are scheduled

using the global policy. Based on the size of the clusters, this scheduling policy transforms into

partitioned scheduling if the number of clusters is equal to the number of cores in the target plat-

form and it becomes equivalent to global scheduling when there is only one cluster containing all

the cores.

Each of the scheduling policy described above, when coupled with an appropriate task model

and a priority assignment scheme, has a known response-time analysis formula for determining the

schedulability of a given set of real-time tasks and each such combination has an associated set of

trade-offs which make it more suitable for a particular real-time scheduling use-case than others.

Common to all these scheduling schemes, is the fundamental characteristic that any real-time task

can conceptually get co-scheduled with any other real-time task present in the system; there is

no inherent restriction that limits the possible co-scheduling of particular real-time tasks across

different cores of a multicore platform. In the following section, we will elaborate why this can be

problematic and from there, we will motivate the need for a novel interference-aware scheduling

policy that is one of the main contributions of this dissertation.

2.3 Performance Isolation in Multicore Platforms

The type of multicore platforms that we focus on in this dissertation can be characterized as shared-

memory based multicore platforms, due to the reason that in the architecture of these platforms,

the memory hierarchy is shared to varying extent among all the computing resources. An example

15

Core

1

L1 D-Cache

2-way, 32KB

L1 I-Cache

3-way, 48KB

Core

2

L1 D-Cache

2-way, 32KB

L1 I-Cache

3-way, 48KB

Core

3

L1 D-Cache

2-way, 32KB

L1 I-Cache

3-way, 48KB

Core

4

L1 D-Cache

2-way, 32KB

L1 I-Cache

3-way, 48KB

L2 (Last Level Cache)

16-way, 2MB

iGPU

256-Cores (NVIDIA Pascal™)

Main Memory (DDR4 DRAM, 128-Bit)

8GB @ 59.7-GBps

Figure 2.4: Illustration of the shared memory subsystem in NVIDIA’s Jetson TX-2 heterogeneous
computing board

of such a platform is NVIDIA’s Jetson TX-21 board [1], which contains a quad-core CPU complex

and an integrated GPU, as shown in Figure 2.4. Due to the size, weight, power (SWaP) and

cost constraints, in these platforms, the hardware resources are at a premium and there is a strong

desire to utilize all these resources to their fullest potential. Unfortunately, this results in a memory

subsystem that is geared to optimize the most common use-cases and usually cannot provide any

determinism guarantees in situations when the system is heavily loaded due to hardware level

interference among co-scheduled applications. In the following, we describe the most important

and well-studied sources of this shared resource interference in the use of shared-memory based

multicore platforms in real-time systems; along with the state-of-the-art techniques proposed in

prior works to mitigate the respective problems that arise from such interference.

2.3.1 The Shared Cache Hierarchy

In modern computer architecture, a processor cache is a fast memory block that provides handy and

quick access to the most frequently accessed memory items [36, 37]. Caches are usually structured

in levels in the form of a hierarchy; with the level closest to the processor containing caches that are

the fastest, relatively smallest and local to the processor and the caches in subsequent levels being

1Technically, the TX-2 board contains 6 CPU cores (2 Denver + 4 Cortex A57). However, we only use the Cortex
A57 cores when scheduling real-time tasks on TX-2 and the block diagram also reflects the same.

16

increasingly larger in size, slower in speed and shared to a certain extent among multiple processing

cores in the SoC. For example, in Figure 2.4, the multicore CPU cluster in TX-2 contains a 32-KB

core local data cache, a 48-KB core local instruction cache and a 2-MB L2 cache that is shared

among all the four cores. From a performance isolation point-of-view, the shared last level cache

(L2 in the case of TX-2) is important because a cache miss in the LLC requires a data item to be

fetched from main memory which is an order of magnitude slower than the cache hierarchy [38].

Unfortunately, since the LLC has limited space and it is shared among all the CPU cores, it is

possible for tasks executing on one core to evict the data cached in the LLC of a task executing

in another core. When the task whose data items got evicted, tries to access that data again, it

will incur cache misses and its execution time will get adversely affected because of that. This

is one source of interference that can arise because of how the LLC is utilized simultaneously by

co-executing tasks in a multicore platform.

Apart from conflict misses, co-executing task in a multicore platforms can interfere with each

other in more ways based on how they utilize the shared LLC. One such interference arises due

to a limited resource inside one type of LLC common in modern COTS multicore platforms—

a non-blocking cache—which comes into play when there are multiple outstanding LLC misses

that need to be serviced from the main memory. These structures are called miss-status holding

registers (MSHRs) and they are usually limited in number. It has been shown [3] that interference

due to MSHRs can cause up-to 21x slowdown of real-time tasks.

Yet another source of interference due to the shared LLC arises due to the limited capacity of

the write-back buffers inside the cache. Like MSHRs, write-back buffers are used in a write-back

cache to keep track of outstanding memory write requests. When a write-back buffer fills up, it can

cause lock-up of the LLC and can adversely delay all the cache requests—even those for whom

the data is already present in the LLC i.e., cache hits. Interference due to write-back buffer can be

extremely severe; it has been shown [4] to cause more than 300x slowdown to the performance of

real-time tasks in a well-known and widely used COTS multicore platform.

Mitigating LLC Interference: Due to the importance and severity of the interference that can

17

arise due to the shared LLC in a multicore system, both software [39, 40, 41, 42, 43, 44, 45, 46, 47,

48] and hardware based techniques [49, 50, 51, 52] have been extensively studied in prior works

to mitigate the extent of this problem. Most such techniques employ some form of LLC space

partitioning, through purely software based mechanisms or with software / hardware co-design,

to isolate the data of co-executing tasks inside the LLC. Among software based techniques, page-

coloring is a well-known mechanism to enforce LLC space partitioning and has been shown to be

effective in a number of existing studies [53, 40, 47, 48]. In hardware based techniques, the lock-

down by line feature in the older generation ARM architecture based CPUs [50] and the recently

introduced cache allocation technology (CAT) feature [51] in the Intel architecture are noteworthy.

Existing work that makes use of the former to address LLC interference includes [54] whereas

for the latter, [55] is a framework that makes use of Intel CAT to ensure quality-of-service (QoS)

among real-time tasks. The authors of [3], who first identified the MSHR contention problem, also

proposed a hardware based solution to mitigate it and demonstrated its effectiveness in a cycle

accurate full-system simulator. Similarly, the authors of [4] proposed a rate-limiting approach

using hardware performance monitoring counter (PMCs) to mitigate the interference due to write-

back buffers inside the LLC.

2.3.2 Bandwidth and Main-Memory

After the shared cache hierarchy, modern COTS multicore platforms contain a large main memory

that is connected with the last level cache through a high speed memory bus. In addition to the

CPU cores in the embedded multicore platforms, the main memory is usually shared among all

the computing resources present on the chip. For example, in the NVIDIA’s Jetson TX-2 board

shown in Figure 2.4, the main memory is used by all the cores in the CPU cluster as well as the

integrated GPU. This introduces another facet of challenge in deterministically using this resource

in real-time scheduling ; in addition to the co-executing CPU applications, interference at the level

of main memory can happen among the workloads running on the accelerators such as integrated

GPU and those running on the CPU cores. The authors of [56] demonstrate the performance

18

deterioration of the workloads running on the CPU from the interfering memory traffic of the GPU

using workloads in NVIDIA Jetson boards. In [57] and [8], the converse effect—the interference

on the performance of real-time GPU applications due to CPU side memory traffic—is shown.

Due to these challenges, deterministically utilizing the main memory for real-time applications in

modern multicore SoCs can be extremely arduous.

Mitigating Memory Level Interference: Similar to the solutions for mitigating shared LLC in-

terference, proposed approaches to address main memory level interference also fall into software

based and hardware based techniques. In the software based approaches, page-coloring has been

shown to be effective [48, 58, 59, 54] in enforcing space partitioning of the main memory banks

among co-executing applications; albeit the fact that this method is only applicable if certain ar-

chitectural details of the main memory are known or can be inferred through reverse engineering.

Moreover, space partitioning cannot ameliorate the interference that can arise due to the limited

bandwidth of the main memory bus. To address the latter, a fundamental approach used in a num-

ber of prior works is memory bandwidth throttling [2, 60, 54] which uses hardware performance

monitoring counters (PMCs) to limit the memory usage quota of co-executing applications. Al-

though effective to a certain extent, memory bandwidth throttling has two fundamental limitations.

First, it is difficult to analyze the impact of throttling on the execution of real-time tasks; an anal-

ysis [61, 62] that takes the effect into account is bound to be severely pessimistic. For this reason,

a throttling based mechanism is commonly used to isolate the performance of real-time tasks from

lower criticality best-effort tasks only. Second, a software based throttling mechanism requires

the system designer to have the ability to enact preemption of an offending workload; irrespective

of where it is executing. Although preemption of CPU using workloads is straight forward, the

same is not true for accelerators such as GPU where preempting a currently executing workload

can incur unacceptable overheads and hence software based preemption control is traditionally

not made part of the GPU’s programming model. In such a case, memory bandwidth throttling is

not possible to ensure performance isolation among applications that are simultaneously using the

main memory.

19

In the hardware based solutions to the memory level performance isolation challenge, the deter-

ministic memory abstraction [63] is notable in which, the authors design a new memory abstraction

for expressing the criticality of memory requests. To enforce deterministic access to the critical

memory areas, they propose fundamental changes to the OS and the hardware. Although effective,

the deterministic memory solution is not applicable to COTS multicore platforms in which, mak-

ing changes to the hardware after it has been designed and shipped, is not feasible. Recently, Intel

introduced the memory bandwidth allocation (MBA) technology [64] to enforce quality-of-service

measure in accessing the main memory on Intel platforms where this feature is available [65]. At

the time of this writing, we are not aware of an authoritative work that makes use of MBA to

effectively address the main memory level performance isolation.

2.3.3 Performance Isolation on Integrated GPUs

Integrated GPU based platforms have recently gained much attention in the real-time systems

community. In [66, 67], the authors investigate the suitability of NVIDIA’s Tegra X1 platform

for use in safety critical real-time systems. With careful reverse engineering, they have identified

undisclosed scheduling policies that determine how concurrent GPU kernels are scheduled on the

platform. In SiGAMMA [56], the authors present a novel mechanism to preempt the GPU kernel

using a high-priority spinning GPU kernel to protect critical real-time CPU applications. Their

work is orthogonal to ours (in Chapter 3) as it solves the problem of protecting CPU tasks from

GPU tasks while our work solves the problem of protecting GPU tasks from CPU tasks.

More recently, GPUGuard [68] and HePREM [69] have been presented to provide a mechanism

for deterministically arbitrating memory access requests between CPU cores and GPU in hetero-

geneous platforms containing integrated GPUs. They extend the PREM execution model [70], in

which a (CPU) task is assumed to have distinct computation and memory phases, to model GPU

tasks. The fundamental approach, in these works, to provide deterministic memory access to real-

time GPU kernels, is to ensure that only a single PREM memory phase is in execution at any

given time. Although this approach can provide strong isolation guarantees, the drawback is that it

20

may require significant restructuring of application source code to be compatible with the PREM

model.

2.4 Summary

In addition to the most widely studied sources of interference in real-time scheduling literature and

presented in this chapter, there can be other hardware structures which can cause runtime coupling

among simultaneously executing tasks in a shared-memory based multicore platform such as the

translation look-aside buffer (TLB) [71], the main memory controller, the hardware prefetchers

etc. Unfortunately, there is no comprehensive list of all the hardware resources that can potentially

become sources of shared resource interference in modern COTS multicore platforms; due to the

proprietary and often closed-source nature of the underlying hardware architecture. This means

that even in a meticulously designed use-case where all the known sources of hardware level shared

resource interference are fully partitioned—a requirement that is almost impossible to meet due to

the aforementioned challenges—all the possible co-schedules of hard real-time tasks have to be

thoroughly investigated; to make sure that a previously unknown hardware resource suddenly does

not become a bottleneck in a particular situation.

Unfortunately, in any multicore scheduling policy presented in real-time literature so far and

available in a commodity operating system, there are numerous ways in which real-time tasks can

potentially get co-scheduled. Hence even after rigorously testing a multicore system scheduled

under an optimal multicore scheduling policy, a system designer can not be sure that the timing

guarantees will be met 100% of the time in the actual deployment of the system. This fact makes

it imperative to turn off all but one cores in a multicore system deployed in an extremely safety

critical use-case (e.g., avionics); to meet with safety certification guidelines [5] which makes it all

but futile to use a multicore platform in the first place; a phenomenon that has been termed as the

one-out-of-m [72] core problem in existing real-time literature. This realization has motivated us to

design a novel interference-aware scheduling policy for hard real-time systems that can guarantee

determinism—even at the potential cost of a possible CPU utilization loss—in the presence of

21

shared hardware resource interference on COTS multicore platforms which will be discussed in

the subsequent chapters of this dissertation.

22

Chapter 3

Real-Time Execution on Integrated CPU-GPU SoC Platforms1

Heterogeneous SoC based multicore platforms, containing an integrated GPU in addition to the

multicore CPUs, have become the go-to choice for running high performance embedded work-

loads these days. In this chapter, the challenges inherent in deterministically using these SoCs

for realizing real-time systems are discussed in detail. A restrictive scheduling and software level

throttling framework, called BWLOCK++, is described which can guarantee deterministic execu-

tion on the integrated GPU in a heterogeneous SoC. The implementation of the framework, on top

of the commodity Linux kernel, is explained and its evaluation results are elucidated on NVIDIA’s

Jetson TX2 platform which is an exemplar of heterogeneous embedded computing platforms.

3.1 Introduction

As mentioned in the Chapter 1, heterogeneous computing platforms contain one or more accelera-

tors in addition to the CPU; to speed up the processing of specialized workloads. A characteristic

1The following publication inspired the performance isolation technique presented in this chapter:
[60] Heechul Yun, Waqar Ali, Santosh Gondi and Siddhartha Biswas (2017). BWLOCK: A Dynamic Memory Ac-
cess Control Framework for Soft Real-Time Applications on Multicore Platforms. IEEE Transactions on Computers
(TC), Vol: 66, Issue: 7, pages 1247–1252

Contents of this chapter have previously appeared in the following publications:
[73] Waqar Ali and Heechul Yun (2017). Work-In-Progress: Protecting Real-Time GPU Applications on Integrated
CPU-GPU SoC Platforms. Proceedings of the IEEE International Conference on Real-Time and Embedded Technol-
ogy and Applications Symposium Work-In-Progress (RTAS-WIP)
[8] Waqar Ali and Heechul Yun (2018). Protecting Real-Time GPU Kernels on Integrated CPU-GPU SoC Platforms.
In Proceedings of the 30th Euromicro Conference on Real-Time Systems (ECRTS), pages 19:1–19:22

The following work was inspired by the framework presented in this chapter:
[74] Homa Aghilinasab, Waqar Ali, Heechul Yun, Rodolfo Pellizzoni (2020). Dynamic Memory Bandwidth
Allocation for Real-Time GPU-Based SoC Platforms. In Proceedings of the ACM/IEEE International Conference on
Embedded Software (EMSOFT), pages 3348–3360

23

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

0.
0

1.
0

2.
0

3.
0

4.
0

Corun-3 Corun-2 Corun-1 Solo

3.3x

2.7x

1.5x

Figure 3.1: Performance of histo benchmark on NVIDIA Jetson TX2 with CPU corunners

of many such workloads—e.g., robotics and artificial intelligence—is their data-parallel nature and

it has been shown [66] that graphical processing units (GPUs) are tremendously efficient in pro-

cessing this type of workloads. Consequently, a number of heterogeneous embedded computing

platforms (e.g., NVIDIA’s Jetson [75] series) these days integrate a GPU alongside the multicore

CPU cluster to accelerate the processing of data-parallel applications. The integration of CPU

and GPU into a single SoC with a certain level of resource sharing in the memory hierarchy is

attractive for the target embedded use-cases where size, weight, power (SWaP) and cost is at a

premium. However, this also makes it more challenging to guarantee deterministic execution on

heterogeneous computing platforms which is a must for safety critical real-time systems.

The challenge in deterministically using heterogeneous SoCs for real-time applications arises

due to contention in the shared hardware resources (e.g., memory bandwidth) which can signifi-

cantly alter the applications’ timing characteristics. On an integrated CPU-GPU platform, such as

NVIDIA Jetson TX2, the CPU cores and the GPU typically share a single main memory subsys-

tem. This allows memory intensive batch jobs running on the CPU cores to significantly interfere

with the execution of critical real-time GPU tasks (e.g., vision based navigation and obstacle de-

tection) running in parallel due to memory bandwidth contention.

24

To illustrate the significance of the problem stated above, we evaluate the effect of co-scheduling

memory bandwidth intensive synthetic CPU benchmarks on the performance of a GPU benchmark

histo from the parboil benchmark suite [76] on the NVIDIA Jetson TX2 platform (See Table 3.3

in Section 3.5 for the detailed time breakdown of histo.)

We first run the benchmark alone and record the solo execution statistics. We then repeat the

experiment with an increasing number of interfering memory intensive benchmarks on the idle

CPU cores to observe their impact on the performance of the histo benchmark. As can be seen

in the Figure 3.1, co-scheduling the memory intensive tasks on the idle CPU cores significantly

increase the execution time of the GPU benchmark—an up-to 3.3× increase—despite the fact that

the benchmark has exclusive access to the GPU. The main cause of the problem is that, in the Jetson

TX2 platform, both CPU and GPU share the main memory and its limited memory bandwidth

becomes a bottleneck. As a result, even though the platform offers plenty of raw performance, no

real-time execution guarantees can be provided if the system is left on its own.

Our solution to the problem just described is a software framework called BWLOCK++ which

is designed to mitigate the memory bandwidth contention problem in heterogeneous system archi-

tecture based embedded computing platforms. More specifically, we focus on protecting real-time

GPU tasks from the interference of non-critical but memory intensive CPU tasks. BWLOCK++

dynamically instruments GPU tasks at run-time and inserts a memory bandwidth lock while critical

GPU kernels are being executed on the GPU. When the bandwidth lock is being held by the GPU,

the OS throttles the maximum memory bandwidth usage of the CPU cores to a certain threshold

value to protect the GPU kernels. The threshold value is determined on a per GPU task basis and

may vary depending on the GPU task’s sensitivity to memory bandwidth contention. Throttling

CPU cores inevitably negatively affects the CPU throughput. To minimize the throughput impact,

we propose a throttling-aware CPU scheduling algorithm, which we call Throttle Fair Scheduler

(TFS). TFS favors CPU intensive tasks over memory intensive ones while the GPU is busy execut-

ing critical tasks in order to minimize CPU throttling. Our evaluation shows that BWLOCK++ can

provide good performance isolation for bandwidth intensive GPU tasks in the presence of memory

25

intensive CPU tasks. Furthermore, the TFS scheduling algorithm reduces the CPU throughput loss

by up to 75%. We further show how BLWOCK++ can be incorporated in existing CPU focused

response time analysis frameworks to analyze schedulability of real-time tasksets, utilizing both

CPU and GPU. Finally, we discuss the limitations of our approach, its existing as well as possible

extensions and how it can incorporate heterogeneous SoCs containing accelerators other than the

integrated GPU.

3.2 System Model

Although the design philosophy of BWLOCK++ is applicable to any heterogeneous computing

platform that contains a single on-chip accelerator; in order to have a concrete discussion about

the design and implementation of the framework in this chapter, we primarily limit our discussion

to heterogeneous SoCs containing an integrated GPU as an accelerator. Hence we assume an

integrated CPU-GPU architecture based platform, which is composed of multiple CPU cores and

a single GPU that share the same main memory subsystem. We consider independent periodic

real-time tasks with implicit deadlines and best-effort tasks with no real-time constraints.

3.2.1 Task Model

In our system, we assume that each real-time task is composed of at least one CPU execution

segment and zero or more GPU execution segments. We assume that GPU execution is non-

preemptible and we do not allow concurrent execution of multiple GPU kernels from different tasks

at the same time. Simultaneously co-scheduling multiple kernels is called GPU co-scheduling,

which has been avoided in most prior real-time GPU management approaches [77, 78, 79] as

well due to unpredictable timing. According to [66], preventing GPU co-scheduling does not

necessarily hurt—if not improve—performance because concurrent GPU kernels from different

tasks are executed in a time-multiplexed manner rather than being executed in parallel. 2

2Another recent study [80] finds that GPU kernels can only be executed in parallel if they are submitted from a
single address space. In this work, we assume that a task has its own address space, whose GPU kernels are thus

26

Executing GPU kernels typically requires copying considerable amount of data between the

CPU and the GPU. In particular, synchronous copy directly contributes to the task’s execution

time, while asynchronous copy can overlap with GPU kernel execution. Therefore, we model

synchronous copy separately. Lastly, we assume that a task is single-threaded with respect to the

CPU. With these assumptions, we can model a real-time task as follows:

τi := (Ci,Gm
i ,G

e
i ,Pi)

where:

• Ci is the cumulative WCET of CPU-only execution

• Gm
i is the cumulative WCET of synchronous memory operations between CPU and GPU

• Ge
i is the cumulative WCET of GPU kernels

• Pi is the period

Note that the goal of BWLOCK++ is to reduce Gm
i and Ge

i under the presence of memory

intensive best-effort tasks running in parallel.

3.2.2 CPU Scheduling

We assume that a fixed-priority preemptive real-time scheduler is used for scheduling real-time

tasks and a virtual run-time based fair sharing scheduler (e.g., Linux’s Completely Fair Scheduler

(CFS) [9]) is used for best-effort tasks. For simplicity, we assume a single dedicated real-time

core schedules all real-time tasks, while any core can schedule best-effort tasks. Because GPU

kernels are executed serially on the GPU, as mentioned above, for GPU intensive real-time tasks,

which we focus on in this work, this assumption does not significantly under-utilize the system,

especially when there are enough co-scheduled best-effort tasks, while it enables simpler analysis.

time-multiplexed with other tasks’ GPU kernels at the GPU-level.

27

Jetson TX2

Core1

RT

Shared DRAM

Shared Memory Controller

RT GPU
App

NRT CPU
App

NRT CPU
App

Dynamic Linker

OS

NRT CPU
App

GPU coresCore2

PMC

Core3

PMC

Core4

PMC

B/W
Regulator

B/W
Regulator

B/W
Regulator

CUDA API Wrappers

CPU Scheduler

NVIDIA
Driver

NVIDIA CUDA Runtime APIs

Best-Effort Core Best-Effort CoreReal-Time Core Best-Effort Core

Figure 3.2: BWLOCK++ System Architecture

3.3 BWLOCK++

In this section, we provide an overview of BWLOCK++ and discuss its design details.

3.3.1 Overview

BWLOCK++ is a software framework to protect GPU applications on integrated CPU-GPU archi-

tecture based SoC platforms. We focus on the problem of the shared memory bandwidth contention

between GPU kernels and CPU tasks in integrated CPU-GPU architectures. More specifically, we

focus on protecting GPU execution intervals of real-time GPU tasks from the interference of non-

critical but memory intensive CPU tasks.

In BWLOCK++, we exploit the fact that each GPU kernel is executed via explicit programming

interfaces from a corresponding host CPU program. In other words, we can precisely determine

when the GPU kernel starts and finishes by instrumenting these functions.

To avoid memory bandwidth contention from the CPU, we notify the OS before a GPU ap-

plication launches a GPU kernel and after the kernel completes with the help of a system call.

Apart from acquiring the bandwidth lock on the task’s behalf, this system call also implements

28

the non-preemptive locking protocol [81] to prevent preemption of the GPU using task. While the

bandwidth lock is being held by the GPU task, the OS regulates memory bandwidth consumption

of the best-effort CPU cores to minimize bandwidth contention with the GPU kernel. Concretely,

each best-effort core is periodically given a certain amount of memory bandwidth budget. If the

core uses up its given budget for the specified period, the (non-RT) CPU tasks running on that

core are throttled. In this way, the GPU kernel suffers minimal memory bandwidth interference

from the best-effort CPU cores. However, throttling CPU cores can significantly lower the overall

system throughput. To minimize the negative throughput impact, we propose a new CPU schedul-

ing algorithm, which we call the Throttle Fair Scheduler (TFS), to minimize the duration of CPU

throttling without affecting memory bandwidth guarantees for real-time GPU applications.

Figure 3.2 shows the overall architecture of the BWLOCK++ framework on an integrated CPU-

GPU architecture (NVIDIA Jetson TX2 platform). BWLOCK++ is comprised of three major

components: (1) Dynamic run-time library for instrumenting GPU applications; (2) the Throttle

Fair Scheduler; (3) Per-core B/W regulator . Working together, they protect real-time GPU kernels

and minimize CPU throughput reduction. We will explain each component in the following.

3.3.2 Automatic Instrumentation of GPU Applications

To eliminate manual programming efforts, we automatically instrument the program binary at the

dynamic linker level. We exploit the fact that the execution of a GPU application using a GPU

runtime library such as NVIDIA CUDA typically follows fairly predictable patterns. Figure 3.3

shows the execution timeline of a typical synchronous GPU application that uses the CUDA API.

In order to protect the runtime performance of a GPU application from co-running memory

intensive CPU applications, we need to ensure that the GPU application automatically holds the

memory bandwidth lock while a GPU kernel is executing on the GPU or performing a mem-

ory copy operation between CPU and GPU. Upon the completion of the execution of the kernel

or memory copy operation, the GPU application again shall automatically release the bandwidth

lock. This is done by instrumenting a small subset of CUDA API functions that are invoked when

29

CPU GPU

cudaMalloc(...)

cudaMemcpy(...)

cudaMemcpy(...)

kernel<<<...>>>(...)

cudaFree(...)

cudaLaunch	()

cudaSynchronize	()

Figure 3.3: Phases of GPU Application under CUDA Runtime

launching or synchronizing with a GPU kernel or while performing a memory copy operation.

These APIs are documented in Table 3.1. More specifically, we write wrappers for these func-

tions of interest which request/release bandwidth lock on behalf of the GPU application before

calling the actual CUDA library functions. We compile these functions as a shared library and use

Linux’ LD_PRELOAD mechanism [82] to force the GPU application to use those wrapper functions

whenever the CUDA functions are called. In this way, we automatically throttle CPU cores’ band-

width usage whenever real-time GPU kernels are being executed so that the GPU kernels’ memory

bandwidth can be guaranteed.

A complication to the automatic GPU kernel instrumentation arises when the application uses

CUDA streams to launch multiple GPU kernels in succession in multiple streams and then waits

for those kernels to complete. In this case, the bandwidth lock acquired by a GPU kernel launched

in one stream can potentially be released when synchronizing with a kernel launched in another

stream. In our framework, this situation is averted by keeping track of active streams and asso-

ciating bandwidth lock with individual streams instead of the entire application whenever stream

based CUDA APIs are invoked. A stream is considered active if:

• A kernel or memory copy operation is launched in that stream

30

API Action Description

cudaConfigureCall Update active streams Specify the launch parameters
for the CUDA kernel

cudaMemcpy Acquire BWLOCK++ (Be-
fore) Release BWLOCK++
(After)

Perform synchronous memory
copy between CPU and GPU

cudaMemcpyAsync Acquire BWLOCK++ and
update active streams

Perform asynchronous memory
copy between CPU and GPU

cudaLaunch Acquire BWLOCK++ Launch a GPU kernel

cudaDeviceSynchronize
cudaThreadSynchronize

Release BWLOCK++ and
clear active streams

Block the calling CPU thread
until all the previously requested
tasks in a specific GPU device
have completed

cudaStreamSynchronize Update active streams and
release BWLOCK++ if
there are no active streams

Block the calling CPU thread
until all the previously requested
tasks in a specific CUDA stream
have completed

Table 3.1: CUDA APIs instrumented via LD_PRELOAD for BWLOCK++

• The stream has not been explicitly (using cudaStreamSynchronize) or implicitly (using

cudaDeviceSynchronize or cudaThreadSynchronize) synchronized with

Our framework ensures that a GPU application continues holding the bandwidth lock as long

as it has one or more active streams.

The obvious drawback of throttling CPU cores is that the CPU throughput may be affected

especially if some of the tasks on the CPU cores are memory bandwidth intensive. In the follow-

ing sub-section, we discuss the impact of throttling on CPU throughput and present a new CPU

scheduling algorithm that minimizes throughput reduction.

31

3.3.3 Throttle Fair CPU Scheduler (TFS)

As described earlier in this section, BWLOCK++ uses a throttling based approach to enforce mem-

ory bandwidth limit of CPU cores at a regular interval. Although effective in protecting critical

GPU applications in the presence of memory intensive CPU applications, this approach runs into

the risk of severely under-utilizing the system’s CPU capacity; especially in cases when there are

multiple best-effort CPU applications with different memory characteristics running on the best-

effort CPU cores. In the throttling based design, once a core exceeds its memory bandwidth quota

and gets throttled, that core cannot be used for the remainder of the period. Let us denote the

regulation period as T (i.e., T = 1ms) and the time instant at which an offending core exceeds

its bandwidth budget as t. Then the wasted time due to throttling can be described as δ = T − t.

The value of δ is a direct quantifier of the wasted system throughput. Since the regulation pe-

riod T is fixed, δ is entirely dependent on the instant t at which throttling comes into effect i.e.,

the smaller the value of t (i.e., throttled earlier in the period) the larger the penalty to the overall

system throughput. The value of t, on the other hand, depends on the rate at which a core con-

sumes its allocated memory budget and that in turn depends on the memory characteristics of the

application executing on that core. To maximize the overall system throughput, the value of

δ should be minimized—that is if throttling never occurs, t ≥ T ⇒ δ = 0, or occurs late in the

period, throughput reduction will be less. This is the design goal of the Throttle Fair Scheduler.

3.3.3.1 Negative Feedback Effect of Throttling on CFS

In a system where multiple best-effort tasks are available—with different memory bandwidth us-

age characteristics—to utilize the slack intervals left by real-time tasks, one way to reduce CPU

throttling is to schedule less memory bandwidth demanding tasks on the best-effort CPU cores

during the regulated intervals i.e., while the GPU is holding the bandwidth lock. Assuming that

each best-effort CPU core has a mix of memory bandwidth intensive and CPU intensive tasks,

then scheduling the CPU intensive tasks while the GPU is holding the lock would reduce CPU

throttling or at least delay the instant at which throttling occurs, which in turn would improve CPU

32

throughput. Unfortunately, Linux’s default scheduler CFS [9] actually aggravates the possibility

of early and frequent throttling when used with BWLOCK++’s throttling mechanism.

The CFS algorithm tries to allocate fair amount of CPU time among tasks by using each task’s

weighted virtual runtime (i.e., weighted execution time) as the scheduling metric. Concretely, a

task τi’s virtual runtime Vi is defined as :

Vi =
Ei

Wi
(3.1)

where Ei is the actual runtime and Wi is the weight of the task. At each scheduling instant, the

CFS algorithm simply picks the task with the smallest virtual runtime.

The problem with memory bandwidth throttling under CFS arises because the virtual run-time

of a memory intensive task, which gets frequently throttled, increases more slowly than the virtual

run-time of a compute intensive task which does not get throttled. Due to this, the virtual runtime

based arbitration of CFS tends to schedule the memory intensive tasks more than the CPU intensive

tasks while bandwidth regulation is in place.

3.3.3.2 TFS Approach

In order to reduce the throttling overhead while keeping the undesirable scheduling of memory

intensive tasks quantifiable, TFS modifies the throttled task’s virtual runtime to take the task’s

throttled duration into account. Specifically, at each regulation period, if there exists a throttled

task, we scale the throttled duration of the task by a factor, which we call TFS punishment factor

(ρ), and add it to its virtual runtime.

Under TFS, a throttled task τi’s virtual runtime V new
i at the end of jth regulation period is

expressed as:

V new
i =V old

i +δ
j

i ×ρ (3.2)

where δ
j

i is the throttled duration of τi in the jth sampling period.

33

The more memory intensive a task, the more likely it is that it will get throttled in each regula-

tion period for a longer duration of time (i.e., higher δi). By adding the throttled time back to the

task’s virtual runtime, we make sure that the memory intensive tasks are not favored by the sched-

uler. Furthermore, by adjusting the TFS punishment factor ρ , we can further penalize memory

intensive tasks in favor of CPU intensive ones. This in turn reduces the amount of throttled time

and improves overall CPU utilization. On the other hand, the memory intensive tasks will still be

scheduled (albeit less frequently so) according to the adjusted virtual runtime.

Scheduling of tasks under TFS is fair with respect to the adjusted virtual runtime metric but

it can be considered unfair with respect to the CFS’s original virtual runtime. A task τi’s “lost”

virtual runtime ∆T FS
i (due to TFS’s inflation) over J regulation periods can be quantified as follows:

∆
T FS
i =

J

∑
j=0

δ
j

i ×ρ. (3.3)

3.3.3.3 Illustrative Example

In the following, we elucidate the misbehavior of the CFS algorithm under throttling and the benefit

of our TFS extension with a concrete illustrative example.

Let us consider a small integrated CPU-GPU system, which consists of two CPU cores and a

GPU. We further assume, according to our system model, that Core-1 is a real-time core, which

may use the GPU, and Core-2 is a best-effort core, which doesn’t use the GPU.

Table 3.2 shows a taskset to be scheduled on the system. The taskset is composed of a GPU

using real-time task, which needs to be protected by our framework for the entire duration of its

Task Compute Time (C) Period (P) Description

τRT 4 15 Real-time task
τMEM 4 N/A Memory intensive best-effort task
τCPU 4 N/A CPU intensive best-effort task

Table 3.2: Taskset for Example

34

0 2.5 5.0 7.5 Time

Task

10

Job Release Job Completion Throttling

1 1 1 1 1 2 3 3 3 4

0 0.33 0.67 1 2 2 2 3 4 4

v CPU
runtime

v MEM
runtime

τRT

τCPU
BE

τMEM
BE

{
{Real-Time

CPU Core

Best-Effort

CPU Core

Figure 3.4: Example schedule under CFS with 1-msec scheduling tick

execution; and two best-effort tasks (of equal CFS priority), one of which is CPU intensive and the

other is memory intensive.

Figure 3.4 shows how the scheduling would work when CFS is used to schedule best-effort

tasks τCPU and τMEM on the best-effort core with its memory bandwidth is throttled by our kernel-

level bandwidth regulator. Note that in this example, both OS scheduler tick timer interval and the

bandwidth regulator interval are assumed to be 1-msec. At time 0, τCPU is first scheduled. Because

τCPU is CPU bound, it doesn’t suffer throttling. At time 1, the CFS schedules τMEM as its virtual

runtime 0 is smaller than τCPU ’s virtual runtime 1-msec. Shortly after τMEM is scheduled, however,

it gets throttled at time 1.33 as it has used the best-effort core’s allowed memory bandwidth budget

for the regulation interval. When the budget is replenished at time instant 2, at the beginning of the

new regulation interval, τMEM’s virtual runtime is 0.33-msec whereas for τCPU , it is 1-msec. So,

the CFS picks τMEM (smaller of the two) again, which gets throttled again. This pattern continues

until τMEM’s virtual runtime finally catches up with τCPU at time instant 4 by which point the best-

effort core has been throttled 66% of the duration between time instants 1 and 4. As can be seen

in this example, CFS favors memory intensive tasks as their virtual runtimes increase more slowly

than CPU intensive ones when memory bandwidth throttling is used.

Figure 3.5 shows a hypothetical schedule in which the execution of τMEM is delayed in favor of

35

0 2.5 5.0 7.5 Time

Task

10

1 2 3 4 4 4 4 4 4 4

0 0 0 0 1 2 3 4 4 4

v CPU
runtime

v MEM
runtime

τRT

τCPU
BE

τMEM
BE

{
{Real-Time

CPU Core

Best-Effort

CPU Core

Job Release Job Completion

Figure 3.5: Example schedule with zero throttling

τCPU while τRT is running (thus, memory bandwidth regulation is in place.) In this case, because

τCPU never exhausts the memory bandwidth budget, throttling does not take place. As a result, the

best-effort core gets fully utilized and thus is able to achieve high throughput. While this is ideal

behavior from maximizing throughput, it is not ideal for τMEM as it can suffer starvation.

Figure 3.6 shows the schedule under TFS (with a TFS punishment factor ρ = 3). The TFS

works identical to CFS until at time 2, when the BWLOCK++’s periodic timer is called. At this

point, τMEM’s virtual runtime (V MEM) is 0.33-msec. However, because it has been throttled for

0.67-msec during the regulation period (δ = 0.67), according to Equation 3.2, TFS increases the

task’s virtual runtime to 2.34-msec (V MEM + δ × ρ = 0.33+ 0.67× 3 = 2.34). Because of the

increased virtual runtime, the TFS scheduler then picks τCPU as its virtual runtime is now smaller

than that of τMEM (1 < 2.34). Later, when τCPU ’s virtual runtime becomes 3-msec at time instant

4, the TFS scheduler can finally re-schedule τMEM. In this manner, TFS favors CPU intensive tasks

over memory-intensive ones, while preventing starvation of the latter. Note that TFS works at each

regulation period (i.e., 1-msec) independently and thus automatically adapts to the task’s changing

behavior. For example, if a task is memory intensive only for a brief period of time, the task will be

throttled only for the memory intensive duration, and the throttled time will be added back to the

task’s virtual runtime at each 1-msec regulation period. Furthermore, even for a period when a task

36

1 1 2 3 3 4 4 4 4 4

0 2.34 2.34 2.34 3.34 3.34 4.34 5.34 6 6

0 0.33 0.33 0.33 1.33 1.33 2.33 3.33 4 4
(TFS-3x)

0 2.5 5.0 7.5 Time

Task

10

Job Release Job Completion Throttling

v CPU
runtime

v MEM
runtime

τRT

τCPU
BE

τMEM
BE

{
{Real-Time

CPU Core

Best-Effort

CPU Core

(Actual)
v MEM

runtime

Figure 3.6: Example schedule under TFS with ρ = 3

is throttled, the task always makes small progress as allowed by the memory bandwidth budget for

the period. Therefore, no task suffers complete starvation for an extended period of time.

3.3.3.4 Effects of TFS using Synthetic Tasks

We experimentally validate the effect of TFS in better scheduling best-effort tasks on a real system.

In this experiment, we use two synthetic tasks: one is CPU intensive and the other is memory-

intensive. We use bandwidth benchmark from the IsolBench suite [83] for both of these tasks. The

bandwidth benchmark creates a contiguous array in memory of a specific size (i.e., the working-set

size) and then sequentially accesses it for a configurable number of iterations and duration. Based

on the size of the array, the benchmark can be used to overload different levels of the memory

hierarchy in the underlying hardware platform. In order to make bandwidth memory intensive,

we configure its working-set size to be twice the size of LLC on our platform. Similarly, to make

bandwidth compute (CPU) intensive, we make its working set size one half the size of L1 data

cache in our platform. We assign these two best-effort tasks to the same best-effort core, which is

regulated with a 100-MB/s memory bandwidth budget.

Figure 3.7 shows the virtual runtime progression over 1000 sampling periods of the two tasks

37

Memory	Intensive	Process

Compute	Intensive	Process

600

Vi
rt
ua

l	R
un

tim
e	
(m

se
c)

Period

800

1000

400

200

400200 600 800 10000

(a) CFS

Memory	Intensive	Process

Compute	Intensive	Process

600

Vi
rt
ua

l	R
un

tim
e	
(m

se
c)

Period

800

1000

400

200

400200 600 800 10000

(b) TFS

Memory	Intensive	Process

Compute	Intensive	Process

600

Vi
rt
ua

l	R
un

tim
e	
(m

se
c)

Period

800

1000

400

200

400200 600 800 10000

(c) TFS-3x

Intense Mild
Process

0

200

400

600

800

1000

758

242

(d) CFS

Intense Mild
Process

0

200

400

600

800

1000

515
485

(e) TFS

Intense Mild
Process

0

200

400

600

800

1000

356

644

(f) TFS-3x

Figure 3.7: Virtual runtime progress (top) of two synthetic tasks and the number of periods during
which the two tasks are scheduled (bottom). One is cpu-intensive (Mild) and the other is memory-
intensive (Intense).

under three scheduler configurations: CFS, TFS (ρ = 1), and TFS-3x (ρ = 3). In CFS, the memory

intensive process gets preferred by the CFS scheduler at each scheduling instance, because its

virtual run-time progresses more slowly. In TFS and TFS-3X, however, as memory-intensive

task’s virtual runtime increases proportionally to the time it gets throttled, CPU-intensive task

is scheduled more frequently.

This can be seen more clearly in the bottom part of the Figure 3.7, which shows the number of

periods utilized by each task on the CPU core, over the course of one thousand sampling periods.

38

Algorithm 1: BWLOCK++ System Call
1 syscall sys_bwlock(bw_val)
2 if smp_processor_id () == RT_CORE_ID ∧ rt_task (current) then
3 rt_core_data := get_rt_core_data ()
4 rt_core_data→ current_task := current
5 if bw_val ≥ 1 then
6 /* Task is acquiring bwlock */
7 current→ bwlock_val := 1
8 current→ bw_old_priority := current→ rt_priority
9 current→ rt_priority := MAX_USER_RT_PRIO - 1

10 else
11 /* Task is releasing bwlock */
12 current→ bwlock_val := 0
13 current→ rt_priority := current→ bw_old_priority
14 end
15 end
16 return;

Under CFS, out of all the sampling periods, 75% are utilized by the memory intensive process and

only 25% are utilized by the compute intensive process. With TFS, the two tasks get to run in

roughly the same number of sampling periods whereas in TFS-3x, the CPU intensive task gets to

run more than the memory intensive task.

3.4 Implementation

In this section, we describe the implementation details of BWLOCK++.

We add a new system call sys_bwlock to the Linux kernel v4.4.38. The system call serves two

purposes. 1) It acquires or releases the memory bandwidth lock on behalf of the currently running

task on the real-time core; and 2) it implements the non-preemptive priority protocol, which boosts

the calling task’s priority to the system’s ceiling priority, to prevent preemption. We introduce

two new integer fields, bwlock_val, bw_old_priority, into the task control block: bwlock_val

stores the current status of the memory bandwidth lock and bw_old_priority keeps track of the

original real-time priority of the task while it is holding the bandwidth lock.

39

3.4.1 BWLOCK++ System Call

Algorithm 1 shows the implementation of the system call. To acquire the memory bandwidth lock,

the system call must be invoked from the real-time system core and the task currently scheduled on

the real-time core must have a real-time priority (line 2). At the time of acquisition of bandwidth

lock, the priority of the calling task, which is tracked by the globally accessible current pointer

in the Linux kernel, is raised to the maximum allowed real-time priority value (the ceiling priority)

for any user-space task to prevent preemption (line 7). The real-time priority value of the the

task is restored to its original priority value when the bandwidth lock is released (line 10). In this

manner, the system call updates the state of the currently scheduled real-time task on the real-time

system core, which is then used by the memory bandwidth regulator on best-effort cores to enforce

memory usage thresholds, as explained in the following subsection.

3.4.2 Per-Core Memory Bandwidth Regulator

The per-core memory bandwidth regulator is composed of a periodic timer interrupt handler and a

performance monitoring counter (PMC) overflow interrupt handler. Algorithm 2 shows the imple-

mentation of the memory bandwidth regulator.

The periodic timer interrupt handler is invoked at a regular interval (currently every 1-msec)

using a high resolution timer on each best-effort core. The timer handler begins a new bandwidth

lock regulation period and performs the following operations:

• Unthrottle the core if it was throttled in the last regulation period (line 4)

• Scale the virtual runtime of the task currently scheduled on the core based on the throttling

time in the last period and the TFS punishment factor (lines 5, 6)

• Determine the new memory usage budget based on the bandwidth lock status of the task

currently scheduled on the real-time system core (lines 9-14)

• Program the performance monitoring counter on the core based on the new memory usage

40

Algorithm 2: Memory Bandwidth Regulator
1 procedure periodic_interrupt_handler(core_data)
2 /* Unthrottle the core if it was previously throttled */
3 if core_is_throttled (core_data→ core_id) == TRUE then
4 unthrottle_core (core_data→ core_id)
5 record_throttling_end_time (core_data→ current_task)
6 scale_virtual_runtime (core_data→ current_task)
7 end

8 /* Update the core’s budget based on the current rt task */
9 rt_core_data := get_rt_core_data ()

10 if rt_core_data→ current_task→ bwlock_val == 1 then
11 core_data→ new_budget := rt_core_data→ throttle_budget
12 else
13 core_data→ new_budget := MAX_BANDWIDTH_BUDGET
14 end

15 /* Reprogram the PMC overflow interrupt */
16 program_pmc (core_data→ new_budget)
17 return;

18 procedure pmc_overflow_handler(core_data)
19 record_throttling_start_time (core_data→ current_task)
20 throttle_core (core_data→ core_id)
21 return;

budget for the current regulation period (line 16). We use the L2D_CACHE_REFILL event for

measuring the memory bandwidth traffic in the ARM Cortex-A57 processor core

The PMC overflow interrupt occurs when the core at hand exceeds its memory usage budget

in the current regulation period. The interrupt handler prevents further memory transactions from

this core by scheduling a high priority idle kernel thread on it for the remainder of the regulation

period (lines 18-21).

3.5 Evaluation

In this section, we present the experimental evaluation results of BWLOCK++.

41

Benchmark Dataset
Copy Timing Breakdown (msec)
(KBytes) Kernel (Ge) Copy (Gm) Compute (C) Total (E)

histo Large 5226 83409 18 0 83428
sad Large 709655 152 654 53 861
bfs 1M 62453 174 72 0 246
spmv Large 30138 69 51 10 131
stencil Default 196608 749 129 9 888
lbm Long 379200 43717 358 2004 46080

Table 3.3: GPU execution time breakdown of selected benchmarks

3.5.1 Setup

We evaluate BWLOCK++ on NVIDIA Jetson TX2 platform. We use the Linux kernel version

4.4.38, which is patched with the changes required to support BWLOCK++. The CUDA runtime

library version installed on the platform is 8.0. In all our experiments, we place the platform in

maximum performance mode by maximizing GPU and memory clock frequencies and disabling

the dynamic frequency scaling of CPU cores. We also shutdown the graphical user interface and

disable the network manager to avoid run to run variation in the experiments.

As per our system model, we designate the Core-0 in our system as real-time core. The remain-

ing cores execute best-effort tasks only. All the tasks are statically assigned to their respective cores

during the experiment. While NVIDIA Jetson TX2 platform contains two CPU islands, a quad-

core Cortex-A57 and a dual-core Denver, we only use the Cortex-A57 island for our evaluation

and leave the Denver island off because we were unable to find publicly available documentation

regarding the Denver cores’ hardware performance counters, which is needed to implement throt-

tling. In order to evaluate BWLOCK++, we use six benchmarks from parboil suite which are listed

as memory bandwidth sensitive in [76].

3.5.2 Effect of Memory Bandwidth Contention

In this experiment, we investigate the effect of memory bandwidth contention due to co-scheduled

memory intensive CPU applications on the evaluated GPU kernels.

42

Pe
rc

en
ta

ge
 S

lo
w

do
w

n

0.0

50
.0

10
0.0

15
0.0

20
0.0

25
0.0

histo sad bfs spmv stencil lbm

230%

167%

118%

45%
40%

30%

Figure 3.8: Slowdown of the total execution time of GPU benchmarks due to three Bandwidth
corunners.

First, we measure the execution time of each GPU benchmark in isolation. From this exper-

iment, we record the GPU kernel execution time (Ge), memory copy time for GPU kernels (Gm)

and CPU compute time (C) for each benchmark. The data collected is shown in Table 3.3. We then

repeat the experiment after co-scheduling three instances of a memory intensive CPU application

as co-runners. We use the bandwidth benchmark [3] for this purpose. The sequential write access

pattern of bandwidth can cause worst-case interference on several multicore platforms [84]. The

results of this experiment are shown in Figure 3.8 and they demonstrate how much the total execu-

tion time of GPU benchmarks (E = Ge+Gm+C) suffers from memory bandwidth contention due

to the co-scheduled CPU applications.

From Figure 3.8, it can be seen that the worst case slowdown, in case of histo benchmark, is

more than 250%. Similarly, for SAD benchmark, the worst case slowdown is more than 150%. For

all other benchmarks, the slowdown is non-zero and can be significant in affecting the real-time

performance. These results clearly show the danger of uncontrolled memory bandwidth sharing

in an integrated CPU-GPU architecture as GPU kernels may potentially suffer severe interference

from co-scheduled CPU applications. In the following experiment, we investigate how this prob-

lem can be addressed by using BWLOCK++.

43

Pe
rc

en
ta

ge
 S

lo
w

do
w

n

0.0

50
.0

10
0.0

15
0.0

20
0.0

25
0.0

Corun Bandwidth Threshold (MB/s)

co
ru

n
10

24 51
2

25
6

12
8 64 32 16 8 4 1

230%

80%

40%

25%
21% 19% 18% 18%… … …

Figure 3.9: Effect of corun bandwidth threshold on the execution time of histo benchmark.

3.5.3 Determining Memory Bandwidth Threshold

In order to apply BWLOCK++, we first need to determine safe memory budget that can be given to

the best-effort CPU cores in the presence of GPU applications. However, an appropriate threshold

value may vary depending on the characteristics of individual GPU applications. If the threshold

value is set too high, then it may not be able to protect the performance of the GPU application.

On the other hand, if the threshold value is set too low, then the CPU applications will be throttled

more often and that would result in significant CPU capacity loss.

We calculate the safe memory budget for best-effort CPU cores by observing the trend of

slowdown of the total execution time of GPU application as the allowed memory usage threshold

of CPU co-runners is varied. We start with a threshold value of 1-GB/s for each best-effort CPU

core. We then continue reducing the threshold value for best-effort cores by half and measure the

impact of this reduction on the slowdown of execution time (E) of the benchmark.

Figure 3.9 shows this trend for the execution time of histo benchmark from the parboil suite.

From the figure, it can be seen that after 64-MBps threshold value for best-effort CPU cores, further

reduction of threshold value does not yield significant improvement in reducing the slowdown of

44

histo sad bfs spmv stencil lbm
0.0

0.5

1.0

1.5

2.0

2.5
N

o
rm

a
li
ze

d
 E

x
e
c
u

ti
o
n

 T
im

e

Up-to 3.3X Up-to 2.7X
Corun BW-Locked-Auto Solo

Figure 3.10: BWLOCK++ Evaluation Results

benchmark. Hence, for histo benchmark, we select 64-MBps as the threshold value for the best-

effort CPU cores. In a similar fashion, we plot this trend for all the selected benchmarks and

determine the value of corun threshold for the best-effort CPU cores.

3.5.4 Effect of BWLOCK++

In this experiment, we evaluate the performance of BWLOCK++. Specifically, we record the corun

execution of GPU benchmarks with the automatic instrumentation of BWLOCK++. We call this

scenario BW-Locked-Auto. We compare the performance under BW-Locked-Auto against the Solo

and Corun execution of the GPU benchmarks which represent the measured execution times in

isolation and together with three co-scheduled memory intensive CPU applications, respectively.

To get the data-points for BW-Locked-Auto, we configure BWLOCK++ according to the al-

lowed memory usage threshold of the benchmark at hand and use our dynamic GPU kernel in-

strumentation mechanism to launch the benchmark in the presence of three bandwidth benchmark

instances (write memory access pattern) as CPU co-runners. The results of this experiment are

plotted in Figure 3.10. In this figure, we plot the total execution time of each benchmark for the

above mentioned scenarios. All the time values are normalized with respect to the total execution

45

histo sad bfs spmv stencil lbm
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li
ze

d
 S

y
s
te

m
 T

h
ro

tt
le

 T
im

e
CFS TFS-1 TFS-3

Figure 3.11: Comparison of total system throttle time under different scheduling schemes

time (Esolo =Csolo+Ge
solo+Gm

solo) of the benchmark in isolation. As can be seen, execution under

BW-Locked-Auto incurs significantly less slowdown of the total execution time of GPU bench-

marks due to reduction of both GPU kernel execution and memory copy operation times.

3.5.5 Throughput improvement with TFS

As explained in Section 3.3.3, throttling under CFS results in significant system throughput re-

duction. In order to illustrate this, we conduct an experiment in which the GPU benchmarks are

executed with six CPU co-runners. Each CPU core, apart from the one executing the GPU bench-

mark, has a memory intensive application and a compute intensive application scheduled on it.

For both of these applications, we use the bandwidth benchmark with different working set sizes.

In order to make bandwidth memory intensive, we configure its working set size to be twice the

size of LLC on our evaluation platform. Similarly for compute intensive case, we configure the

working set size of bandwidth to be half of the L1-data cache size. We record the total system

throttle time statistics with BWLOCK++ for all the GPU benchmarks. The total system throttle

time is the sum of throttle time across all system cores. We then repeat the experiment with our

46

Throttle Fair Scheduling scheme. In TFS-1, we configure the TFS punishment factor as one for the

memory intensive threads and in TFS-3, we set this factor to three. We plot the normalized total

system throttle time for all the scheduling schemes and present them in Figure 3.11. It can be seen

that TFS results in significantly less system throttling (On average, 39% less with TFS-1 and 62%

less with TFS-3) as compared to CFS.

3.5.6 Overhead due to BWLOCK++

The overhead incurred by real-time GPU applications due to BWLOCK++ comes from the follow-

ing sources:

• LD_PRELOAD overhead for CUDA API instrumentation

• Overhead due to BWLOCK++ system call

The overhead due to LD_PRELOAD is negligible since we cache CUDA API symbols for all the

instrumented functions inside our shared library; after searching for them only once through the

dynamic linker. We calculate the overhead incurred due to BWLOCK++ system call by executing

the system call one million times and taking the average value. In NVIDIA Jetson TX2, the average

overhead due to each BWLOCK++ system call is 1.84-usec. Finally, we experimentally determine

the overhead value for all the evaluated benchmarks by running the benchmark in isolation with

and without BWLOCK++. Our experiment shows that for all the evaluated benchmarks, the total

overhead due to BWLOCK++ is less than 1% of the total solo execution time of the benchmark.

3.6 Schedulability Analysis

As we limit the scheduling of real-time tasks on a single real-time core, our system can be analyzed

using the classical unicore based response time analysis for preemptive fixed priority scheduling

with blocking [26], because we model each GPU execution segment as a critical section, which is

47

protected by acquiring and releasing the bandwidth lock. The bandwidth lock serializes GPU exe-

cution and regulates memory bandwidth consumption of co-scheduled best-effort CPU tasks. The

bandwidth lock implements the non-preemptive locking protocol [81], which boosts the priority of

the lock holding task (i.e., the task executing a GPU kernel) to the ceiling priority of the system,

which is the highest possible real-time priority, so as to prevent preemption. With this constraint,

a real-time task τi’s response time is expressed as:

Rn+1
i = Ei +Bi + ∑

∀ j∈hp(i)

⌈
Rn

i
Pj

⌉
E j (3.4)

where hp(i) represents the set of higher priority tasks than τi and Bi is the longest GPU kernel or

copy duration—protected by the memory bandwidth lock—of one of the lower priority tasks.

The benefit of BWLOCK++ lies in the reduction of worst-case GPU kernel execution and GPU

memory copy interval of real-time tasks (which would in turn reduce Ei and Bi terms in Equa-

tion 3.4). As shown in Section 3.5.2, without BWLOCK++, GPU execution of a task can suffer

severe slowdown (up-to 230% in our evaluation), which results in pessimistic WCET estimation

for GPU kernel and copy execution times, reducing schedulability of the system. BWLOCK++

helps reduce pessimism of GPU execution time estimation and thus improves schedulability.

3.7 Discussion

Due to the choices and assumption inherent in its design, BWLOCK++ has the following limita-

tions. First, we assume that all real-time tasks are scheduled on a single dedicated real-time core

while the rest of the cores only schedule best-effort tasks. In addition, we assume only real-time

tasks can utilize the GPU while best-effort tasks cannot. While restrictive, recall that scheduling

multiple GPU using real-time tasks on a single dedicated real-time core does not necessarily re-

duce GPU utilization because multiple GPU kernels from different tasks (processes) are serialized

at the GPU hardware anyway [66] as we already discussed in Section 3.2. Also, due to the capacity

limitation of embedded GPUs, it is expected that a few GPU using real-time task can easily achieve

48

high GPU utilization in practice. We claim that our approach is practically useful for situations

where a small number of GPU accelerated tasks are critical, for example, a vision-based automatic

braking system.

Second, we assume that GPU applications are given a priori and they can be profiled in advance

so that we can determine proper memory bandwidth threshold values. If this assumption cannot be

satisfied, an alternative solution is to use a single threshold value for all GPU applications, which

eliminates the need of profiling. But the downside is that it may lower the CPU throughput because

the memory bandwidth threshold must be conservatively set to cover all types of GPU applications.

3.8 Conclusion

In this chapter, we presented BWLOCK++, a software based mechanism for protecting the per-

formance of GPU kernels on platforms with integrated CPU-GPU architectures. BWLOCK++

automatically instruments GPU applications at run-time and inserts a memory bandwidth lock,

which throttles memory bandwidth usage of the CPU cores to protect performance of GPU ker-

nels. We identified a side effect of memory bandwidth throttling on the performance of Linux

default scheduler CFS, which results in the reduction of overall system throughput. In order to

solve the problem, we proposed a modification to CFS, which we call Throttle Fair Scheduling

(TFS) algorithm. Our evaluation results have shown that BWLOCK++ effectively protects the per-

formance of GPU kernels from memory intensive CPU co-runners. Also, the results showed that

TFS improves system throughput, compared to CFS, while protecting critical GPU kernels.

49

Chapter 4

Real-Time Gang Scheduling on Multicore CPUs1

In this chapter, we present RT-Gang: a novel real-time gang scheduling framework that enforces a

one-gang-at-a-time policy. We find that, in a multicore platform, co-scheduling multiple parallel

real-time tasks would require highly pessimistic worst-case execution time (WCET) and schedu-

lability analysis—even when there are enough cores—due to contention in shared hardware re-

sources such as cache and DRAM controller.

In RT-Gang, all threads of a parallel real-time task form a real-time gang and the scheduler

globally enforces the one-gang-at-a-time scheduling policy to guarantee tight and accurate task

WCET. To minimize under-utilization, we integrate a state-of-the-art memory bandwidth throttling

framework to allow safe execution of best-effort tasks. Specifically, any idle cores, if exist, are used

to schedule best-effort tasks but their maximum memory bandwidth usages are strictly throttled to

tightly bound interference to real-time gang tasks.

We implement RT-Gang in the Linux kernel and evaluate it on two representative embedded

multicore platforms using both synthetic and real-world DNN workloads. The results show that

RT-Gang dramatically improves system predictability while incurring negligible runtime overhead.

4.1 Introduction

In a safety-critical real-time system, the use of high-performance multicore platforms is challeng-

ing because shared hardware resources, such as cache and memory controllers, can cause extremely

1Contents of this chapter have previously appeared in the following publication:
[85] Waqar Ali and Heechul Yun (2019). RT-Gang: Real-Time Gang Scheduling Framework for Safety-Critical
Systems. In Proceedings of the 25th IEEE International Conference on Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 143–155

50

high timing variations [86, 3]. The timing unpredictability is a serious problem in both automo-

tive and aviation industries. For example, Bosch, a major automotive supplier, recently announced

“predictability on high-performance platforms” as a major industrial challenge for which the in-

dustry is actively seeking solutions from the research community [87]. In aviation, the problem

was dubbed as “one-out-of-m” problem [72] because the current industry practice is to disable

all but one core as recommended by the Federal Aviation Administration (FAA) for certification,

which requires evidence of bounded interference [6].

Prior efforts to address the timing predictability problem have been largely based on two fun-

damental ideas: (1) designing simpler time-predictable architectures and (2) partitioning shared

resources. Unfortunately, simpler architectures tend to trade-off too much performance in favor of

predictability, which we can no longer afford. Partitioning shared resources improves predictability

but cannot guarantee tight worst-case timing in high-performance multicore architectures because

there are too many important but unpartitionable shared resources [3]. Moreover, not only par-

titioning generally reduces efficiency and maximum achievable performance, but also it is very

difficult to partition properly for parallel tasks, while many emerging real-time workloads, such as

deep neural network (DNN) [88, 89], are highly parallel.

Motivated by these trends, we present RT-Gang: a novel real-time gang scheduling framework

that can efficiently and predictably utilize modern high-performance multicore architectures for

safety-critical real-time systems. We focus on supporting emerging parallel real-time workloads,

such as DNN-based real-time sensing and control tasks [88, 89]. Our key observation is that, from

the worst-case execution time (WCET) standpoint, scheduling one parallel real-time task at a time

is better than co-scheduling multiple parallel real-time tasks, because the latter case must assume

highly pessimistic WCETs on multicore architecture (see Section 4.2).

In RT-Gang, all threads of a parallel real-time task form a real-time gang and the scheduler

globally enforces a one-gang-at-a-time scheduling policy to guarantee tight and accurate task

WCET. Assuming all real-time tasks are parallelized and each parallel task can fully take ad-

vantage of all the available computing resources on the platform, this one-gang-at-a-time approach

51

essentially renders parallel real-time task scheduling on multicore into the well-understood single-

core real-time scheduling problem [90]. The most significant benefit of this transformation is that

we no longer need to worry about shared resource interference because all scheduled threads are

part of a single real-time task and that resource sharing is constructive rather than destructive.

Assuming the WCET of a parallel real-time task is estimated in isolation, RT-Gang guarantees

that the WCET will be respected regardless of other tasks on the system. Furthermore, we can

apply well-understood single-core based real-time task scheduling policies and analysis method-

ologies [28, 91, 26] without making strong assumptions on the underlying multicore architectures.

Assuming all real-time tasks are perfectly parallelized is, however, unrealistic. Many real-

time tasks are difficult or impossible to parallelize. Also, parallelized code often does not scale

well. Therefore, our one-gang-at-a-time policy can significantly under-utilize computing resources

when imperfectly parallelized or single-threaded real-time tasks are scheduled one-at-a-time. We

mitigate this problem by allowing co-scheduling of best-effort tasks on any of the available idle

system cores but with a condition that the cores are strictly regulated by a memory bandwidth

throttling mechanism [60]. Each real-time gang defines its tolerable maximum memory bandwidth,

which is then strictly enforced by the throttling mechanism to ensure bounded interference to the

real-time gang task.

We implement RT-Gang in Linux kernel and evaluate it on two representative embedded mul-

ticore platforms, NVIDIA Jetson TX-2 and Raspberry Pi 3, using both synthetic and real-world

workloads. The results show that RT-Gang dramatically improves system predictability while

the measured overhead is negligible. In the following, we begin our discussion by describing a

case-study to illustrate the severity of the shared-resource contention problem in COTS multicore

platforms; to motivate the need of the restrictive scheduling of RT-Gang framework.

4.2 Case-Study: Non-Determinism in Multicores

In this section, we provide evidence that shows why scheduling one real-time gang at a time can

be better from the perspective of task WCETs through a case-study.

52

 0

 20

 40

 60

 80

 100

1 2 3 4

20
Hz

30
Hz

A
v
g

.
p

ro
ce

ss
in

g
 t

im
e

 (
m

s)

#of cores

46.30

30.95
25.66 22.86

(a) Effect of DNN parallelization

 0

 2

 4

 6

 8

 10

 12

DNN (Core 0,1) BwWrite (Core 2,3)

N
o
rm

a
liz

e
d

 E
xe

cu
ti

o
n

 T
im

e Solo
Corun

(b) Effect of co-scheduling

Figure 4.1: (a) Average control loop execution time vs. # of CPU cores; (b) performance impact
of co-scheduling (DNN on Core 0,1; BwWrite, a memory benchmark [3], on Core 2,3)

We use a deep neural network (DNN) based real-time control task of DeepPicar [92] as our

workload. The control loop uses a single DNN to produce the car’s steering angle control output

from raw images of the car’s front-facing camera in real-time. Importantly, its DNN architecture

is the same as the one used in NVIDIA’s real self-driving car called DAVE-2 [88].

Note that DNN processing is highly compute and data intensive, which is thus often paral-

lelized to improve performance. Figure 4.1a shows the average execution times of the control loop

while varying the number of CPU cores used on a quad-core embedded platform (Raspberry Pi

3). It can be seen that as we assign more cores for DNN processing, the performance improves—

from 46.30-msec on a single core to 22.86-msec on four cores. If the real-time requirement is

30-Hz, one might want to parallelize the DNN using two cores, while co-scheduling other tasks

on the other two remaining cores. Figure 4.1b shows the timing impact of such co-scheduling,

where the DNN control task and a memory intensive task are scheduled first in isolation (Solo) and

then together (Corun). The interesting, and troubling, observation is that the two tasks experience

dramatically different timing impact: the DNN control task suffers 10.33x slowdown, while the

memory benchmark suffers only 1.05x slowdown.

For safety-critical real-time systems, this means that extremely pessimistic task WCETs must be

assumed to be safe. The potential timing impact of interference highly depends on task’s memory

access patterns and the underlying hardware. For example, we observed more than 100x slowdown

53

(two orders of magnitudes) using a linked-list iteration task on the same computing platform used

above, even after we partition core as well as the shared cache among the tasks. Similar degrees

of timing impacts of interference have been reported in recent empirical studies on contemporary

embedded multicore platforms [84, 3, 86, 92, 4].

When a task’s WCET has to be assumed 10x or 100x of its solo execution time, we can see

why in aviation industry, it makes sense to disable all but one core [72] and why this practice is

recommended by the certification authorities [6, 5]. However, disabling cores obviously defeats

the purpose of using multicore platforms in the first place—the need of more performance.

In our DNN control-task case-study above, a better approach is to use all four cores just for the

parallelized DNN processing task—without co-scheduling—which would result in quicker com-

pletion of the control task. More importantly, because there would be no other competing co-

scheduled tasks, there’s no need to pessimistically estimate the task’s WCET. This, in turn, will

achieve better overall schedulability. In this sense, from the WCET standpoint, scheduling fully

parallelized tasks one-at-a-time might be better than co-scheduling multiple of them at the same

time. Generally applying this approach, however, has two major issues. First, not all real-time

tasks can be easily parallelized. Second, parallelization often does not scale due to synchroniza-

tion and other overheads. Therefore, the danger is that some cores may be under-utilized under the

one-at-a-time scheduling policy.

In summary, we have made a case why, from the WCET standpoint, scheduling one parallel

real-time task at a time can be better than co-scheduling multiple parallel tasks simultaneously,

although possible under-utilization of the computing resources is a concern.

4.3 Design Overview

In this section, we describe the overall design of the RT-Gang framework.

54

0 2.5 5.0 Time

Cores

Job Release

Job Completion

Preemption Point

Idle / Best-Effort Tasks

Real-Time Tasks

Priority

τ1 τ2 τ3

τ1 < τ2 < τ3

τ1 τ2 τ3 τ2 τ1

τ1 τ2 τ3 τ1

Core-1

Core-2

Core-3

Core-4

Figure 4.2: Illustration of the one-gang-at-a-time scheduling policy of RT-Gang

4.3.1 One-Gang-at-a-Time Policy

RT-Gang is based on a simple idea: schedule one real-time task—parallel or not—at a time. When

a real-time task is released, all of its threads, called a gang, shall be scheduled all at once—if

the task is the highest priority one—or not at all—if the task’s priority is lower than the currently

scheduled real-time task—even if that leaves some cores idle. In other words, we implement a

version of gang scheduler, but unlike prior gang scheduler designs [22, 23, 24], we do not allow

co-scheduling of other real-time tasks even when there are idle cores. We do allow, however, co-

scheduling of best-effort tasks with strictly imposed limits on their allowed memory access rates

by integrating an existing memory bandwidth throttling mechanism [60, 8].

In our approach, each real-time task declares its maximum allowed interfering memory traffic

from the best-effort tasks on different cores, which is then enforced by the OS at runtime for the

cores that schedule best-effort tasks, if such cores exist. In this way, the parallel real-time task—

i.e., a real-time gang—is guaranteed to be able to use all available computing resources and the

maximum interference is strictly limited to a certain threshold value, determined by the task itself

in advance. If the real-time gang needs maximum isolation, it can set its interference threshold

value to be zero, preventing any co-scheduling of best-effort tasks.

Figure 4.2 shows an example schedule under RT-Gang framework. In this example, three real-

55

time tasks τ1, τ2, and τ3 (in increasing priority) are scheduled. The task τ1 has four threads, while

τ2 and τ3 have three threads and one thread, respectively.

At first, τ1 is scheduled. When τ2 is released, it preempts τ1 because it has higher priority.

Note that even if Core 3 and 4 are idle at the time, τ1 cannot use the cores. When τ3, a single-

threaded task, becomes ready, all cores except Core 3 become idle to guarantee that τ3 is the only

real-time task in the entire system. In this way, our real-time gang scheduler strictly enforces the

one real-time gang at a time policy.

Note that the solid white rectangles are slack-durations during which best-effort tasks can

be scheduled, using a general purpose scheduler, such as Linux’s Completely Fair Scheduler

(CFS) [93], but they will be throttled based on each real-time task’s declared tolerable threshold

value.

RT-Gang’s design approach offers several major benefits. First, by scheduling one real-time

gang at a time, we no longer need to worry about interference from other real-time tasks. Possible

interference from best-effort tasks is strictly regulated by the threshold value determined by the

task itself. Thus, we can obtain accurate WCET of a real-time task (e.g., measure the timing while

injecting the threshold amount of memory traffic). Also, as shown in [61], we can obtain better

analytic memory interference bounds when we control the amount of competing memory traffic.

In other words, we no longer need to deal with highly pessimistic 10x or 100x WCETs. An equally

desirable aspect of this approach is that it renders the problem of scheduling parallel real-time tasks

on multicore as the simple, well-understood classical real-time scheduling problem on single-core

systems [28, 91]. Thus, we can directly apply classical single-core analysis methods [26].

4.3.2 Safe Best-Effort Task Co-Scheduling

Because our real-time gang scheduling approach strictly disallows concurrent real-time tasks,

which are not part of the currently scheduled real-time gang, it is possible that some cores may

be idle. As we discussed earlier, we allow scheduling of best-effort tasks on those idle cores with a

condition that their interference is strictly bounded by integrating a memory bandwidth throttling

56

mechanism as found in [60].

The throttling mechanism in [60] uses per-core hardware performance counters to bound the

maximum number of memory transactions within a given time interval (e.g., 1-msec period) to a

certain programmable threshold (budget). When the core reaches the programmed threshold, the

hardware counter generates an overflow interrupt, which is then handled by the OS to stop the core

until the next time period begins.

Assuming that the currently scheduled real-time gang is actively using k cores out of m cores

(k ≤ m), there are m− k idle cores on which we can schedule best-effort tasks—i.e., those that do

not have hard real-time requirements. The best-effort tasks scheduled on the idle cores are given

strict limits in terms of their memory bandwidth usage so that their impact to the real-time gang

is bounded. The bandwidth limit of the best-effort tasks is determined by the currently scheduled

real-time gang in the system. When the real-time gang is being scheduled on k cores, all the m− k

cores are throttled according to the bandwidth threshold of the gang.

4.4 Illustrative Example

In this section, we provide an illustrative example to compare scheduling under one-gang-at-a-time

policy with a traditional co-scheduling approach on a multicore platform.

Task WCET (C) Period (P) # of Threads

τRT
1 2 10 2

τRT
2 4 10 2

τBE
3 ∞ N/A 4

Table 4.1: Taskset parameters of the illustrative example

We assume that our multicore platform has four homogeneous CPU cores. We want to schedule

a parallel taskset, shown in Table 4.1, in the system. τRT
1 and τRT

2 are real-time tasks. τBE
3 is a best-

effort task, which is scheduled under the CFS scheduler of Linux. For the sake of simplicity, we

assume that all threads of a task have the same compute time and are released simultaneously at the

57

0 2.5 5.0 7.5 Time10

Cores

Core-1

Core-2

Core-3

Core-4

1 2 3 4 6 7 8 90 5 10 Time

τBE
3

τBE
3

τBE
3

τBE
3

τRT
1

τRT
1

τRT
2

τRT
2

(τRT
1 , τRT

2) (τRT
1 , τRT

2)

τRT
1 τRT

2

Figure 4.3: Example schedule of a co-scheduling scheme (w/o interference)

start of the period. We assume that all threads are statically pinned to specific CPU cores and they

do not migrate during their execution. The OS scheduler tick interval is assumed to be 1-msec.

Figure 4.3 shows the scheduling timeline under a traditional co-scheduling approach. For this

figure, we assume that tasks on different cores do not suffer interference due to contention in shared

hardware resources. Under co-scheduling, τRT
1 completes its execution at 2-msec. This leaves 8-

msec slack duration on the two cores on which this task was executing. Similarly, τRT
2 leaves a

slack duration of 6-msec on its cores. Considering the system as a whole, the total slack duration

in this schedule is 28-msec which can be used to schedule the best-effort task τBE
3 .

Figure 4.4a shows the scheduling timeline under the one-gang-at-a-time policy of RT-Gang.

Under this schedule, τRT
1 gets to run first. While τRT

1 is executing, τRT
2 is blocked. Once τRT

1

finishes its execution at 2-msec mark, τRT
2 starts executing and completes at 6-msec mark. Under

this scheme, the total slack duration left in the system is again 28-msec, assuming that τBE
3 is not

throttled (i.e., its memory bandwidth usage is less than the allowed threshold).

Now we consider the case where the real-time tasks can destructively interfere with each other

due to resource contention. Borrowing from the DNN case-study introduced in previous subsec-

tion, we assume that the execution time of τRT
1 increases 10x, when it is co-scheduled with τRT

2 .

τRT
2 , on the other hand, stays unaffected under co-scheduling. Figure 4.3 shows the scheduling

58

0 2.5 5.0 7.5 Time10

Cores

Core-1

Core-2

Core-3

Core-4

1 2 3 4 6 7 8 90 5 10 Time

τBE
3

τBE
3

τBE
3

τBE
3

τRT
1

τRT
1

τRT
2

τRT
2

(τRT
1 , τRT

2) (τRT
1 , τRT

2)

τRT
1 τRT

2

τBE
3

τBE
3

(a) Example schedule under one-gang-at-a-time policy

0 2.5 5.0 7.5 Time10

Cores

Core-1

Core-2

Core-3

Core-4

1 2 3 4 6 7 8 90 5 10 Time

τBE
3

τBE
3

τBE
3

τBE
3

τRT
1

τRT
1

τRT
2

τRT
2

(τRT
1 , τRT

2) (τRT
1 , τRT

2)

τRT
1τRT

2

(b) Example schedule of a co-scheduling scheme (with interference)

Figure 4.4

timeline for this case under co-scheduling scheme. As can be seen from the figure, while τRT
2 is

executing, the progress of τRT
1 would be slowed due to interference. At 4-msec mark when τRT

2

finishes its execution, τRT
1 has only made 20% progress and it still has 1.6-msec of its original

compute time left. For this reason, τRT
1 completes its execution at 5.6-msec. In this case, the total

slack duration for best-effort tasks is 20.8-msec.

Under one-gang-at-a-time policy of RT-Gang, the scheduling timeline of the real-time tasks

remains the same as the one shown in Figure 4.3 because τRT
1 and τRT

2 can never run at the same

59

time. In other words, regardless of task and hardware characteristics, real-time tasks’ execution

times would remain the same. The slack duration remains unchanged as well, which can be uti-

lized for scheduling best-effort tasks although they are strictly regulated with a memory bandwidth

throttling mechanism, shown as the “locked” duration in Figure 4.4a.

4.5 Implementation

Data-Structure 1 RT-Gang in Linux
struct glock

spinlock_t lock;
bool held_flag;
bitmask locked_cores;
bitmask blocked_cores;
task_struct_t* leader;
task_struct_t* gthreads[NR_CPUS];

The implementation of RT-Gang, in Linux, revolves around the data-structure struct glock

shown in Listing 1. This data-structure is used for the following main purposes:

• Quickly check whether the gang scheduling lock is currently being held (held_flag)

• Track the cores, which are currently running real-time thread using a bitmask (locked_cores)

• Track the blocked cores, which have real-time tasks in their queues but cannot execute them

due to the gang scheduling policy (blocked_cores)

To simplify the implementation complexity, we assume that each real-time gang in our system

has a distinct real-time priority value. In the following sections, we explain the main parts of the

algorithm in detail and then describe the entire algorithm.

4.5.1 Gang Lock Acquisition

Before a real-time task can get scheduled, it needs to acquire the gang scheduling lock. Algorithm 3

shows the pseudo-code of the lock acquisition function. In this function, the gang-scheduling lock

60

Algorithm 3: RT-Gang Lock Acquisition Protocol
1 function acquire_gang_lock(task_struct_t ∗next)
2 glock→held_flag = true;
3 set_bit (this_cpu, glock→locked_cores);
4 glock→gthreads [this_cpu] = next;
5 glock→leader = next;
6 return

is marked as held by setting the flag in the global glock data-structure. The CPU core on which

this function is invoked, is marked “locked” by setting its bit inside the locked_cores bitmask.

The task that acquires the gang lock is marked as the gang-leader and its task pointer is tracked

inside an array, which is later used at the time of lock release.

4.5.2 Gang Lock Release

This function is called to release the gang-scheduling lock on behalf of a task which is going out of

schedule. The pseudo-code of this function is shown in Algorithm 4. Upon entering this function,

it is checked whether the thread going out of execution is part of the currently executing gang.

If this condition is true, the current CPU core is marked as unlocked, by clearing its bit from the

locked_cores bitmask.

Algorithm 4: RT-Gang Lock Release Protocol
1 function try_glock_release(task_struct_t ∗prev)
2 for_each_locked_core (cpu, glock→locked_cores)
3 if (gthreads [cpu] == prev) then
4 clear_bit (cpu, glock→locked_cores);
5 gthreads [cpu] = null;
6 if (mask_is_zero (glock→locked_cores)) then
7 glock→held_flag = false;
8 reschedule_cpus (glock→blocked_cores);
9 clear_mask (glock→blocked_cores);

10 end
11 end
12 return

The next condition checked in this function is to make sure if all of the threads belonging to

61

current gang have finished their execution, which would imply that the gang-lock is now free. This

is done by checking if the locked_cores bitmask is zero. If this is the case, the gang-scheduling

lock is marked free and rescheduling inter-processor interrupt (IPI) is sent to the CPU cores, which

have blocked real-time tasks in their ready queues by using the blocked_cores bitmask.

4.5.3 Gang Preemption

The purpose of this function is to preempt all threads, which are part of the currently running

gang, so that a new higher priority gang may start its execution. The pseudo-code of this func-

tion is shown in Algorithm 5. In this function, the locked_cores bitmask is traversed to send

rescheduling IPIs to all the cores, which are currently marked as locked. Once this is done, the

locked_cores bitmask is cleared and the threads being tracked in the gthreads array are re-

moved.

Algorithm 5: Gang Preemption Protocol under RT-Gang
1 function do_gang_preemption()
2 for_each_locked_core (cpu, glock→locked_cores)
3 gthreads [cpu] = null;
4 reschedule_cpus (glock→locked_cores);

clear_mask (glock→locked_cores);
5 return

4.5.4 Main Gang Scheduling Algorithm

The gang-scheduling algorithm resides in the critical path of the main scheduler entry point func-

tion (__schedule) in Linux and it works by modifying the task selection heuristics of the real-time

scheduling class. Algorithm 6 shows the main scheduling function of RT-Gang. The algorithm

starts by checking whether gang-scheduling lock is currently being held by any real-time task. If

that is the case, the algorithm tries to release the gang-scheduling lock on behalf of the prev task

which is going out of schedule (Line-11).

62

Algorithm 6: RT-Gang Scheduling Algorithm
1 function __schedule(task_struct_t ∗prev)
2 for_each_sched_class (class)
3 next = class→pick_next_task (prev);
4 if (next) then
5 context_switch (prev, next);
6 end
7 return

8 function ∗pick_next_task_rt(task_struct_t ∗prev)
9 spin_lock (glock→lock);

10 if (glock→held_flag) then
11 try_glock_release (prev);
12 end
13 next = rt_queue [this_cpu]→next_task;
14 if (glock→held_flag == false) then
15 acquire_gang_lock (next);
16 else if (next→prio > glock→leader→prio) then
17 do_gang_preemption ();
18 acquire_gang_lock (next);
19 else
20 set_bit (this_cpu, glock→blocked_cores);
21 next = null;
22 end
23 spin_unlock (glock→lock);
24 return next

If the gang-scheduling lock is currently free, the algorithm acquires the lock on the current

core on behalf of the next real-time task (Line-15). If, on the other hand, the lock is not free,

it is checked whether this task has a higher priority than the gang in execution (Line-16). If that

is the case, the currently executing gang is preempted (Line-17) and the gang-scheduling lock is

acquired on behalf of the next task (Line-18).

If all of the above conditions fail—i.e., the gang-scheduling lock is not free and the next real-

time task has lower priority, then the next task is deemed ineligible for scheduling. In this case, the

current CPU core is marked as blocked by setting its bit in the blocked_cores bitmask (Line-20)

and the next task pointer is set to null so that no real-time task is returned to the scheduler by the

real-time scheduling class. Finally, the spinlock is released (Line-23) and control is returned to the

63

scheduler (Line-24); to either schedule the next real-time task (if any) or go to the next scheduling

class (CFS) to pick a best-effort task.

4.5.5 Memory Bandwidth Throttling of Best-Effort Tasks

We incorporated the memory bandwidth throttling mechanism of BWLOCK++, as described in

Section 3.4, with certain modifications, into RT-Gang to allow safe co-scheduling of best-effort

tasks while a real-time gang is executing. We update the BWLOCK++ system call (Section 3.4.1)

such that instead of providing a binary value to start/stop throttling, the caller provides the accept-

able memory threshold value for the real-time gang in execution. This value is stored in the task

structure of the RT-Gang leader as an integer. We also modify the framework such that in every

regulated interval, the memory bandwidth threshold value of the executing gang is automatically

enforced on all CPU cores executing best-effort tasks. In this manner, we ensure that the real-time

gang is protected from unbounded interference from best-effort tasks.

4.6 Evaluation

We evaluate RT-Gang on two embedded platforms: Raspberry Pi 3 and NVIDIA Jetson TX2.

Raspberry Pi 3 is equipped with a Cortex-A53 based quad-core CPU, which is representative of an

energy efficient low-cost embedded multicore processor, while NVIDIA Jetson TX2 is equipped

with a six-core heterogeneous CPU (4X Cortex-A57 and 2X Denver 2), which is representative of

a high-end embedded processor.

On both platforms, we use Linux 4.4 kernel and implement RT-Gang by modifying its real-time

scheduler (kernel/sched/rt.c). Our modification is about 500 lines of architecture neutral C

code. In all our experiments, we place the platform in the maximum performance mode and disable

the dynamic frequency scaling of CPU cores. We also shutdown the graphical user interface and

disable networking to minimize run to run variation in the experiments.

2We do not use the Denver complex in our experiments due to its lack of hardware counter support needed to
implement throttling mechanism [8]

64

4.6.1 Synthetic Workload

In this experiment, we show the benefits of RT-Gang using a synthetic taskset on Raspberry Pi

3. The taskset is composed of two periodic multi-threaded real-time tasks (τ1 and τ2) and two

single-threaded best-effort tasks (τBE
mem and τBE

cpu). Using this taskset, we explore task execution

time impacts to the real-time tasks and throughput impacts to the best-effort tasks.

We use a modified version of the bandwidth benchmark—referred to as BwRead due to its

memory read access pattern—from the IsolBench [3] benchmark suite to construct the taskset 3.

Concretely, τ1 creates two threads and is configured to use three quarters of the last-level cache

size (384KB out of 512KB L2 cache of the Pi 3) as its working-set (which is shared between the

two threads). It is periodically released at a 20-msec interval and each job takes about 3.5-msec in

isolation. Similarly, τ2 is also a dual-threaded periodic real-time task with the same working-set

size (384KB), but differs in its period (30-msec) and job execution times (6.5-msec in isolation).

We set the priority of τ1 higher than that of τ2, and schedule τ1 on Core 0,1 and τ2 on Core 2,3

(pinned using CPUSET utility).

Note that τ1 and τ2 are scheduled by SCHED_FIFO real-time scheduler with and without RT-

Gang enabled 4. On the other hand, τBE
mem and τBE

cpu are both single-threaded best-effort tasks, which

are scheduled by the CFS scheduler [93]; they differ in that τBE
mem’s working-set size is two times

bigger than the L2 cache size, while τBE
cpu’s working-set is smaller than the core’s private L1 cache

size. Thus, τBE
mem may cause interference to co-scheduled real-time tasks (if any) on different cores,

due to contention in the shared L2 cache, while τBE
cpu may not. We collect the execution traces of

the taskset without and with RT-Gang for a duration of 10 seconds using the trace-cmd utility and

the KernelShark [94] tool in Linux.

Figure 4.5 shows the execution traces. In inset (a), during the first 20-msec duration, τ1 and τ2

were overlapped with each other, which resulted in significant job execution time increase for both

tasks because their working-sets could not fit into the shared L2 cache simultaneously. During the

3Our additions include support for multi-threaded and periodic task invocation. The code can be found in the
IsolBench repository [83].

4RT-Gang can be enabled or disabled at runtime via: /sys/kernel/debug/sched_features

65

CPU 0

CPU 1

CPU 2

CPU 3

20-msec
!" !# !$%$&' !()*&' +,ℎ./,,01

(a) without RT-Gang (Baseline Linux)

CPU 0

CPU 1

CPU 2

CPU 3

(b) with RT-Gang

Figure 4.5: Task execution traces. τ1(C1 = 3.5,P1 = 20), τ2(C2 = 6.5,P2 = 30): parallel RT tasks
(2 threads / task); τBE

mem, τBE
cpu: memory and cpu intensive best-effort tasks respectively; kthrottle:

injected kernel thread for throttling

next 20-msec duration, although τ1 and τ2 did not overlap, τ1 was overlapped with the two best-

effort tasks, τBE
mem and τBE

cpu, which also resulted in a significant increase in τ1’s job execution time

(albeit to a lesser degree). In inset (b), on the other hand, RT-Gang almost completely eliminates

job execution time variance. In the first 20-msec duration, τ1 is overlapped with the two best-effort

tasks. However, τBE
mem (the memory intensive one) was throttled most of the time, which protected

the execution time of τ1. At around 40-msec in the timeline, τ1 preempted τ2, the real-time task.

In place of τ2, two best-effort tasks were scheduled, of which τBE
mem was again throttled as per τ1’s

specified memory bandwidth threshold setting.

Note that in RT-Gang, the execution times of τ1 is deterministic. Furthermore, τ2 is also highly

predictable as we only need to consider the preemption by the higher priority τ1, according to

the classic response time analysis (RTA)[26]. Furthermore, because the two real-time tasks do

not experience significant execution time increases, there are more “slacks” left for the best-effort

tasks—compared to without using RT-Gang in inset (a)—which improves throughput.

66

4.6.2 DNN Workload

To establish the practicality of RT-Gang for real-world safety critical applications, we used the

DNN workload introduced in Section 4.2 and executed it under different configurations on Rasp-

berry Pi 3 and NVIDIA Jetson TX2, with and without RT-Gang. The Cortex-A53 cores in Rasp-

berry Pi 3 are much less capable than the four Cortex-A57 cores in Jetson TX2 platform. More-

over, the memory system in Raspberry Pi 3 offers significantly less bandwidth than the one in

Jetson TX2. Consequently, co-scheduled workloads in Raspberry Pi 3 are much more prone to the

negative effects of resource contention. By evaluating RT-Gang on these two disparate platforms,

we demonstrate its applicability to the range of embedded devices available today.

Task WCET (C ms) Period (P ms) # Threads
Common

τBE
cutcp ∞ N/A 4

τBE
lbm ∞ N/A 4

Jetson TX2
τRT

bww 40.0 100.0 4
τRT

dnn(2) 10.7 24.0 2
τRT

dnn(3) 8.8 19.0 3
τRT

dnn(4) 7.6 17.0 4
Raspberry Pi 3

τRT
bww 47.0 100.0 4

τRT
dnn(2) 34.0 78.0 2

τRT
dnn(3) 27.90 65.0 3

τRT
dnn(4) 24.81 56.0 4

Table 4.2: Taskset parameters for the DNN experiment.

The taskset parameters for this experiment are shown in Table 4.2. First, we use a multi-

threaded DNN application as the high priority periodic real-time task (τRT
dnn(c) where c denotes the

number of cores used). The period of DNN inference operation is selected to keep the per-core

utilization of DNN threads close to 45%. Second, as a lower priority real-time task, we use a

periodic multi-threaded BwWrite benchmark (τRT
bww). The working set size of BwWrite was chosen

to be twice the size of LLC in each platform so as to stress memory subsystem (due to cache

67

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
DNN Inference Time (msec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Solo Co-Sched RT-Gang

(a) DNN (2 Core)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
DNN Inference Time (msec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Solo Co-Sched RT-Gang

(b) DNN (3 Cores)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
DNN Inference Time (msec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Solo Co-Sched RT-Gang

(c) DNN (4 Cores)

Figure 4.6: Performance of DNN inference loop on Jetson TX2 with RT-Gang

misses). The compute time (C) of BwWrite is selected to keep its per-core utilization less than

50% in all experiments. Lastly, we use two benchmarks from Parboil suite [76], lbm (τBE
lbm) and

cutcp, (τBE
cutcp)) as best-effort tasks, which represent memory and CPU intensive parallel OpenMP

applications respectively.

Drawing from taskset example shown in Section 4.6.1, LBM represents a memory intensive

application that can potentially interfere with the execution of high priority DNN task. Cutcp,

on the other hand, represents a compute intensive application which is innocuous to the DNN

inferencing operation. We use OpenMP versions of these benchmarks so that they may utilize any

slack duration left on any system cores. We vary the thread count (= # of assigned CPU cores)

of the DNN task while keeping the thread count of τRT
bww and the best-effort tasks (τBE

lbm and τBE
cutcp)

fixed at four. For the experiment, we first measure the performance of τRT
dnn(c) in isolation, then

co-scheduled with the rest of the taskset on baseline Linux, and finally using RT-Gang.

Figure 4.7 shows the cumulative distribution function (CDF) of the per-frame DNN inference

time in each configuration (Solo: alone in isolation, Co-Sched: co-scheduled under baseline Linux,

RT-Gang: co-scheduled under RT-Gang enabled Linux). Note first that execution times of the

DNN task vary significantly under the co-scheduling scheme (Co-Sched). On Raspberry Pi 3, the

WCET across all configurations is more than 2x of its solo WCET. On TX2, the co-scheduling

graphs again show deteriorated performance, albeit to a lesser extent than Raspberry Pi 3.

Under RT-Gang, on the other hand, the execution times of the DNN workload are highly de-

terministic and match closely with its solo execution times in all tested configurations on both

68

0 20 40 60 80 100
DNN Inference Time (msec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Solo Co-Sched RT-Gang

(a) DNN (2 Core)

0 20 40 60 80 100
DNN Inference Time (msec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Solo Co-Sched RT-Gang

(b) DNN (3 Cores)

0 20 40 60 80 100
DNN Inference Time (msec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Solo Co-Sched RT-Gang

(c) DNN (3 Cores)

Figure 4.7: Performance of DNN inference loop on Raspberry Pi 3 with RT-Gang

platforms. On Raspberry Pi 3, however, although DNN’s performance is deterministic (i.e., low

variance), noticeable performance constant increase is observed under RT-Gang when compared

to the solo execution of the DNN task. We believe that this is caused by Cache Related Preemption

Delay (CRPD) [95], as the memory system of Raspberry Pi 3 is significantly less powerful than

that of Jetson TX2.

Note that taking CRPD into analysis is well known in the context of single-core processors, but

its applications have been difficult in multicore due to cache contention among the co-scheduled

tasks on different cores, as shown in the CDF plots of Co-Sched. The determinism that RT-Gang

brings thus would make CRPD analysis valid on multicore processors again, enabling effective

timing analysis.

4.6.3 Overhead

There are two main sources of overhead in our implementation of RT-Gang: 1) The serialization

overhead associated with the critical section of our gang scheduling algorithm in selecting next

real-time task. 2) The overhead involved in sending cross-core interrupts (IPIs) and acquiring

ready-queue locks for gang preemption.

The serialization overhead of RT-Gang is only incurred during the selection of real-time tasks

due to the use of a spinlock. However, the length of the critical section of RT-Gang is small—

comparable to existing spinlocks used in the various parts of the Linux kernel scheduler. On the

other hand, the overhead associated with gang-preemption due to the IPIs can pose a scalability

69

problem as the number of necessary IPIs can be as many as all the rest of the cores.

In order to estimate both these overheads, we conducted an experiment on the NVIDIA Jetson

TX2 platform in which a high priority real-time gang preempts a multi-threaded low priority real-

time gang, a fixed number of times (100000), with and without RT-Gang. We also varied the

number of threads of the low priority gang to see the effect of gang size on the gang preemption

overhead. The result from this experiment is shown in Table 4.3.

Scenario Context Switch Cost (usec)

1-Thread-Lowprio (Linux) 6.81
1-Thread-Lowprio (RT-Gang) 7.19
2-Thread-Lowprio (RT-Gang) 7.37
3-Thread-Lowprio (RT-Gang) 7.55
4-Thread-Lowprio (RT-Gang) 7.72

Table 4.3: RT-Gang Overhead in Linux

As can been seen from the table, RT-Gang adds very small overhead to the overall cost of a

context-switch under Linux; considering the fact that for a well-designed system, a context-switch

is not supposed to happen too frequently. The findings from this experiment also match the results

seen during evaluation with DNN workloads; in which, we saw that the performance of these

workloads remain completely unaffected under RT-Gang.

4.7 Discussion

In this section, we briefly discuss potential use-cases of RT-Gang. We believe that our simple

design and practical implementation leveraging existing real-time scheduler in Linux offer broader

practical use-cases in many application domains that concern timing predictability and need to run

parallelized multi-thread applications. Time critical parallel real-time applications in automotive

and aviation domains (e.g., perception and control applications in a self-driving car) are our main

target use-cases. Also, barrier based scientific applications in high-performance computing (HPC)

can potentially benefit from using RT-Gang as they are sensitive to thread imbalance, and thus

motivated original gang scheduling research [96] in the first place. Although we mainly used

70

embedded multicore processors (typically having 4-8 cores) in our description throughout this

chapter, we recently were able to apply our RT-Gang kernel patch on a 12 hardware thread (6 core)

x86 PC, successfully performing gang scheduling across the 12 hardware threads.

4.8 Conclusion

In this chapter, we presented RT-Gang: a novel real-time gang scheduling framework for pre-

dictable and efficient parallel real-time scheduling on multicore. RT-Gang implements a novel

gang scheduling policy that eliminates inter-task interference by enforcing an invariant that only

one (parallel) real-time task (gang) can be scheduled at any given time. This enables tighter task

WCET estimation and simpler schedulability analysis. RT-Gang also provides additional mecha-

nisms, namely best-effort task throttling, which can help maximize system utilization while provid-

ing strong time predictability to real-time tasks. We implemented RT-Gang in Linux and evaluated

it on two embedded multicore platforms. The evaluation results show the predictability and effi-

ciency benefits of RT-Gang.

71

Chapter 5

Virtual Gang Scheduling of Parallel Real-Time Tasks1

In Chapter 4, we presented the RT-Gang framework, which implements a restrictive form of gang

scheduling policy for parallel real-time tasks, to address this problem of shared resource con-

tention, by scheduling only one real-time gang task at a time, even if there are enough cores left

to accommodate other real-time tasks. This design philosophy of RT-Gang, although solves the

problem of shared-resource contention among different real-time tasks, constrains the overall real-

time schedulability of the system. Given that parallelization of a task often does not scale well,

and more cores are being integrated in modern multicore processors, it is unlikely to be a general

solution for many systems.

In this chapter, we introduce the notion of virtual gang—a group of real-time tasks which are

treated by the scheduler as a single schedulable entity; just like a real-gang—to mitigate this short-

coming of RT-Gang framework. We rigorously examine the requirements for virtual-gang creation

and life-cycle management in a modern operating system and show that synchronous release of all

member tasks of a virtual-gang is required for it to be modeled as a single real-time gang. To fulfill

this requirement, we design a light-weight intra-gang synchronization framework integrated with

OS level page-coloring and memory bandwidth throttling techniques and implement it on top of

Linux kernel to provide an end-to-end performance isolation stack for real-time tasks on multicore

platforms. We also describe optimal and heuristic algorithms for forming virtual gangs from a

given set of real-time tasks. We call the modified RT-Gang framework, equipped with the virtual

gang abstraction, the RTG-Sync framework.

1Contents of this chapter will appear in the following publication:
[97] Waqar Ali, Rodolfo Pellizzoni and Heechul Yun (2021). Virtual Gang based Scheduling of Parallel Real-Time
Tasks. In Proceedings of the 25th IEEE International Conference on Design, Automation and Test in Europe (DATE)

72

RTG-Sync provides the following guarantees to the members of each virtual gang task: (1) all

member tasks are statically determined and do not change over time; (2) no other real-time tasks

can be co-scheduled; (3) best-effort tasks can be co-scheduled on any idle cores, but with the fol-

lowing restrictions: (i) their usage of LLC is limited to a static partition via page-coloring so that

they do not pollute the working-sets of real-time tasks; (ii) their maximum memory bandwidth us-

ages are strictly regulated to a certain threshold value set by the virtual gang task. These properties

greatly simplify the process of determining task WCETs, because once a virtual gang is created,

other tasks that do not belong to the virtual gang cannot interfere with the member tasks, regard-

less of the OS scheduling policy, and the effect of shared hardware resource contention is strictly

bounded. In short, RTG-Sync enables compositional timing analysis on multicore platforms2.

We present evaluation results of RTG-Sync both analytically, with generated task sets against

state-of-the-art approaches in a simulation, and empirically with a case-study involving real-world

workloads on a real embedded multicore platform. The results from simulation show that schedu-

lability of real-time tasks under RTG-Sync, outperforms state-of-the-art multicore schedulability

results in terms of total number of task sets deemed schedulable when shared-resource interfer-

ence is considered. Even in the absence of interference, the RTG-Sync framework performs better

than the state-of-the-art approaches for highly parallel task sets. This observation and the results

from the case-study lead us to conclude that our approach provides simple but powerful compo-

sitional analysis framework, achieves better analytic schedulability, especially when the effect of

interference is considered, and is a practical solution for multicore platforms.

5.1 Requirements for Virtual Gang Scheduling

In this section, we describe the requirements for virtual gang scheduling—synchronous release of

gang members and the gang formation problem—and the challenges involved in the process.

2Timing analysis of a real-time system is compositional if analysis of a component can be carried out independently
of other components.

73

0 2 10

Cores

4 6 8

1 3 5 7 9

τ1 τ2 τ3 τ4

(τ1, τ2, τ3, τ4)

Core-1

Core-2

Core-3

Core-4

τ1

τ2

τ3

τ4

0 2 10 Time4 6 8

1 3 5 7 9

τ1 τ2τ3 τ4

τ3

τ1

τ2

τ3

τ4

Time

τ1 τ2 τ4(τ1, τ2, τ3, τ4) τ3

(a) Synchronized (b) Unsynchronized

Virtual Gang Job Release Job Completion

Figure 5.1: Example virtual gang schedules with and w/o synchronization

5.1.1 Need of Synchronization

The first major requirement for virtual gang scheduling is that all member tasks must have equal

period and that they must be released synchronously. For the same period requirement, if the

selected member tasks of a virtual gang do not share the same period, then the consolidated gang

task will not be effectively modeled as a single periodic task from the analysis point of view.

Therefore, a virtual gang can only be created when all of its member tasks have a common period.

For the synchronous release requirement, consider a taskset τ = {τ1,τ2,τ3,τ4} comprising 4

single-threaded tasks, where their WCETs are 1, 2, 3, 4 ms respectively and all of them have the

same period of 10-msec, and suppose it is scheduled on a quad-core platform under the one-gang-

at-a-time policy. Assuming that these are the only tasks that share the same period in our system

and there is no inter-task interference, an intuitive grouping of these tasks into a virtual-gang would

be to run them at the same time across all four cores in the system. This results in the execution

timeline shown in Figure 5.1(a). In this scheme, the virtual gang completes in just 4-msec, after

which other real-time tasks can be scheduled.

However, the execution of the taskset in the virtual gang scheme assumes that the jobs of the

74

0 2 10

Cores

Virtual Gang Job Release Job Completion

4 6 8

1 3 5 7 9
v1 v2

v1 = (τ2, τ3, τ4, τ5)

Core-1

Core-2

Core-3

Core-4

τ5

τ2

τ3

τ4

0 2 10 Time4 6 8

1 3 5 7 9

v1 v2

τ1

τ2

τ3

τ4

Time

(a) Best-Case (b) Worst-Case

τ1

v2 = (τ1)
v1 = (τ2, τ3, τ4, τ5)
v2 = (τ1)

τ5

v1 = (τ1, τ2, τ3, τ5)
v2 = (τ4)

v1 = (τ1, τ2, τ3, τ5)
v2 = (τ4)

Figure 5.2: Example schedules under different gang formations.

members are perfectly aligned. If this is not the case, then the virtual gang task’s execution time

will be increased, as shown in Figure 5.1(b), and in the worst-case, it can be as bad as the sequential

execution of the tasks under one-gang-at-a-time policy without using virtual gang at all.

5.1.2 Gang Formation Problem

Another major challenge, when creating virtual gangs, is to decide which tasks to group together

for concurrent execution.

In the example taskset used in Section 5.1.2, if we add one more task τ5 = (h : 1,C : 3,P : 10),

then the taskset will have to be split into at least two virtual gangs since all five tasks in the

taskset cannot execute simultaneously in our target quad-core system. Hence the problem is to

find an optimal grouping of tasks into virtual gangs such that the execution time of the taskset is

minimized. For the simple taskset considered here, it can be seen, with a little trial and error, that

a virtual gang comprising τ2, τ3, τ4, τ5 and another one comprising just τ1 will achieve this goal,

resulting in the execution timeline shown in the inset (a) of Figure 5.2.

However if the tasks in a virtual gang are not carefully selected, the execution time of the

75

taskset can increase significantly. In the example taskset, a virtual gang comprising τ1, τ2, τ3, τ5

and the other one comprising τ4 leads to an execution time of 7 time units as compared to 5 time

units in the previous case; as can be seen in inset (b) of Figure 5.2.

Given a taskset, the problem of selecting the tasks which should be run together as virtual

gangs so that the execution time of the entire taskset is minimized, is non-trivial. The problem is

further complicated by the fact that the tasks in a virtual gang can interfere with each other when

run concurrently due to shared hardware resource contention, which may require some degree of

pessimism in estimating the virtual gang’s WCET. Another complication is the possible precedence

relationship among the tasks in the taskset, commonly found among the real-time tasks in practical

real-world applications, which can constrain the creation of virtual gangs.

Without taking the synchronization and gang formation problems into account, a strategy to

improve system utilization via virtual gangs under RT-Gang may not lead to the desired results and

may actually deteriorate the system’s performance and real-time schedulability.

5.2 System Model

Before describing the design and implementation of the RTG-Sync framework, we present a new

system and task model that is suitable for tackling the considered real-time scheduling problems.

We consider a multicore processor based platform π , which contains m unit-speed CPU cores.

We consider a system comprising a set Γ of n periodic, rigid gang real-time tasks with implicit

deadlines: Γ = {τ1,τ2, ...,τn}. Each task τi = (ci,hi,ri,Ti) is characterized by its WCET ci in

isolation, the number of cores hi≤m needed to execute, the shared resource demand factor ri in the

range [0,1], and the period Ti. The system also comprises a set of k DAGs {G1,G2, ...,Gk}. Each

DAG Gi = (vi,ei,Ti) expresses a set of precedence constraints among tasks. The node set vi ⊆ Γ

consists of a subset of the tasks in Γ; we assume that all tasks in vi must have the same period Ti,

and no task in Γ can belong to the node set of more than one DAG. The edge set ei : vi×vi consists

of ordered pairs of the form (τp,τq) describing the precedence constraints among the tasks in vi:

formally, this means that the j-th job of τp must finish before the j-th job of τq can start executing.

76

5.2.1 Virtual Gangs and Scheduler

We assume that the number of distinct periods q within Γ is small relative to n. In other words,

multiple tasks may share the same period, which is common in practice (e.g., [98]). All tasks that

share the same period T forms a candidate-set ∆T = {∀τi ∈ Γ | Ti = T}. A virtual gang wl is a

subset of the tasks within the candidate-set ∆T that are statically grouped together as a schedulable

unit. Each virtual gang wl = (Cl,Hl,Rl,Tl) is characterized by its WCET Cl , the core requirement

Hl and the resource demand Rl; the latter two are equal to the sum of the respective parameters of

all of its member tasks.

For the virtual gangs of ∆T , there must exist a linear ordering between them such that all

precedence constraints {G1,G2, ...,Gk} are satisfied. The virtual gangs of all candidate sets are

scheduled according to a preemptive fixed-priority gang scheduling scheme, which schedules one

virtual gang at a time on π , subject to the linear ordering of each candidate set. We require all

tasks in a candidate-set to be synchronously released and all member tasks of a virtual gang to be

scheduled in parallel under the gang scheduler.

5.2.2 Interference Model

As noted earlier, the member tasks of a virtual gang are scheduled simultaneously on π . As such,

they can suffer from interference on shared hardware resources (e.g., cache, memory bandwidth).

In general, it is difficult to precisely model the impact of interference on a COTS hardware plat-

form. For analysis purpose, we use a simple interference model in which the impact of interference

to a virtual gang wl is incorporated in its WCET Cl by scaling the length of its longest constituent

task as follows: Cl = max∀τk∈wl{ck}×max(Rl,1); intuitively, we assume that wl suffers no inter-

ference until the resource is over-utilized, after which we apply a linear scaling.

We note that this simple interference model is based on our experimental evaluation on two

real embedded platforms (a NVIDIA Jetson Nano and a Raspberry Pi 4) using a set of synthetic

benchmarks where they compete for memory bandwidth of the evaluated platforms. We do not,

however, claim the general correctness of the interference model. If a different interference model

77

exists for a given hardware platform, it can be used instead. Furthermore, we stress that regardless

of the used interference model and its accuracy, it stands to reason that the static nature of vir-

tual gangs enables low timing variability, effective shared resource partitioning (e.g, [2, 48]), and

accurate WCET estimations.

5.3 The RTG-Sync Framework

RTG-Sync is a software framework to enable virtual-gang based parallel real-time task schedul-

ing on multicore platforms. As explained in the Section 5.1, synchronization between the mem-

bers of each virtual gang is a key requirement for effective virtual gang based scheduling. For a

typical multi-threaded process (task), synchronization between the threads of the process can be

achieved by using a barrier mechanism available in the parallel programming library it uses (e.g.,

OpenMP [18] barrier). However, such a barrier mechanism is tied to the particular parallel pro-

gramming framework, which is used by the particular parallel task, and is not designed to be used

by disparate tasks for system-level scheduling.

RTG-Sync provides a cross-process synchronization mechanism, by utilizing existing OS-level

inter-process communication (IPC) mechanisms. In addition, it provides APIs to manage virtual

gangs and their membership. Furthermore, it integrates shared cache partitioning and memory

bandwidth throttling mechanisms to bound the impact of interference in hardware resources.

Figure 5.3 shows the high level architecture of RTG-Sync. The user-level component of RTG-

Sync provides a specially designed system-wide barrier to each virtual gang so that all its member

tasks can be synchronously released and scheduled by the kernel-level gang scheduler simultane-

ously. At the kernel-level, the modifications we have implemented ensure that the virtual gang

execution is protected from interference by best-effort tasks through partitioning of LLC via page-

coloring and memory level bandwidth throttling framework. In the figure, τ1 (on Core-1 and 2) and

τ2 (on Core-3) are periodic real-time tasks of a virtual gang under RTG-Sync. In the configuration

shown in Figure 5.3, the LLC has eight distinct partitions (colors), of which four are given to τ1,

two are given to τ2, and the rest are reserved for best-effort tasks by RTG-Sync. The LLC parti-

78

Core-1 Core-2

RTG-Sync Middleware (Daemon, Client, User-Library)

Core-4Core-3

PMC PMC PMC PMC

Main Memory

OS (RT-Gang, Page-Coloring, Bandwidth Throttling Framwork)

τ1 τ2 Best Effort

LLC

Library Call Library Call

System Call System Call

Virtual Gang

Figure 5.3: High level architecture of RTG-Sync framework with a sample partitioning setup.
In this figure, τ1 and τ2 are real-time tasks and the resources allocated to them via RTG-Sync
framework are color-coded. Note that this is just one possible partitioning of resources under
RTG-Sync; the framework is highly configurable.

tioning scheme can be changed or disabled completely as needed. In addition to the coloring based

LLC partitioning, RTG-Sync additionally throttles the maximum memory bandwidth of Core-4,

which can schedule best-effort tasks, to the virtual gang determined bandwidth thresholds so that

the interference impact of best-effort tasks to the virtual-gang is bounded.

5.3.1 Middleware

RTG-Sync middleware consists of a server daemon and a client program. The primary service

provided by the server is creating virtual gangs and initializing their associated resources. The

server receives the number of processes, which need to be run as a single virtual gang, and creates a

new memory mapped file in a predefined location, which is used for creating a system-wide barrier.

When creating a virtual gang, we also specify the maximum memory bandwidth thresholds and

LLC partitions (colors) for the best-effort cores (i.e., the cores that are not used to schedule the

gang member tasks and thus can schedule any best-effort tasks). These parameters are enforced

79

by the kernel-level mechanisms (Section 5.3.2) in order to bound the impact of co-scheduled best-

effort tasks, if exist, to the virtual gang. A unique ID value is generated for each virtual gang,

which is then used by the member tasks. Each member task shall make RTG-Sync user-library

calls, to map the barrier file into its own address space and synchronize with other virtual gang

members through the barrier.

The API call to register a process as a virtual gang member takes the virtual gang ID value

issued by the RTG-Sync server along with the shared-resource requirement information for the

calling process. Currently, each gang member task can specifies a portion of the LLC space, in

terms of colors, the task is allowed to use. Internally, RTG-Sync makes a system-call to record

the passed in parameters into the calling process’s task-structure in the kernel. Furthermore, it

maps the system-wide barrier registered against the passed in virtual gang id into the calling pro-

cess’ address-space. Once a process is registered as part of a virtual gang, the call to synchronize

gang members is simple. It takes the barrier pointer returned by the aforementioned API call and

uses it to synchronize on the barrier. This call must be made by all member tasks at the start of

their periodic execution. As soon as the waiter count for the barrier is reached, the member tasks

are unblocked simultaneously; leading to desired alignment of their periodic execution. Because

RTG-Sync requires all member tasks of a virtual gang to share the same period, no additional

synchronization is necessary after they are simultaneously released at the beginning.

5.3.2 Kernel Modification

RTG-Sync uses the RT-Gang framework [85] to provide gang scheduling inside the Linux kernel.

We have made several changes to the RT-Gang framework. First, to support virtual gangs, we have

modified Linux’s task_struct to include the virtual gang ID and created related system calls to

register/destroy virtual gangs. The RT-Gang’s gang scheduler is then modified to utilize the stored

virtual gang ids in making scheduling decisions.

Second, we have integrated PALLOC [48], which is a page-coloring framework, into RTG-

Sync and modified it to allocate pages to a task based on the LLC color-map information stored

80

in the task’s process control block (i.e., task_struct). We use PALLOC to perform two-level

partitioning of the LLC. The first level statically partition’s the LLC into two regions which are

assigned to real-time tasks and best-effort tasks via Linux’s Cgroups. The second level of partition-

ing is used to divide LLC between member tasks of a virtual gang as per the resource requirement

information stored in the task’s control-block.

Lastly, we have extended RT-Gang’s memory bandwidth throttling framework to support sep-

arate read and write throttling capabilities [4]. This can be used to improve performance of the

best-effort tasks without impacting the virtual gang’s real-time performance.

5.4 Virtual Gang Formation

Problem Statement: For a given candidate-set ∆T of N tasks with the same period T and a given

multicore platform with m unit-speed CPU cores with a known interference model, we want to

partition the N tasks into a set of virtual gangs such that the total completion time of the virtual

gangs is minimized, while respecting all the precedence constraints among the original tasks. In

the following, we first describe a satisfiability modulo theories (SMT) based optimal algorithm and

then explain a heuristic solution.

5.4.1 Optimal Virtual Gang Formation via SMT

In the SMT based solution for virtual gang formation, we write the constraints for our optimization

problem in a form that can be understood by an SMT solver; based on the candidate-set. The

resulting SMT script is then fed to the SMT solver which declares the problem as either satisfiable

or unsatisfiable. For a satisfiable problem, we also obtain a model for the input parameters that

satisfies the constraints of the problem. We use quantifier free linear integer arithmetic logic (QF-

LIA) of SMT. In the following, we describe the parameters of our problem and the constraints for

a feasible solution.

Parameters: For each task τi in the considered candidate-set ∆T , we use the variable xi to denote

81

the index of the virtual gang that τi is assigned to in a feasible solution. Note that for a candidate-set

with N tasks, at-most N virtual gangs can be formed. We assume that the virtual gangs are indexed

in the linear order in which they are required to execute. Consistent with our system model, we

use the variable Ci to denote the length (WCET) and the variable Ri to denote the resource demand

of each virtual gang. The parameters xi, Ci and Ri are subject to the following constraints:

Constraint 1 ∀τi ∈ ∆T : 1≤ xi ≤ N

The value of each xi must be between 1 and N; because we can have at-most N virtual gangs.

Constraint 2 ∀ j = 1...N : ∑∀τi∈∆T |xi= j hi ≤ m

The combined core demand of all the tasks assigned to each virtual gang must not exceed the total

number of cores m.

Constraint 3 ∀Gp | Tp = T,∀(τi,τ j) ∈ ep : xi < x j

If τi has a precedence constraint with τ j, the virtual gang xi containing τi must execute before the

virtual gang x j.

Constraint 4 ∀ j = 1...N : R j ≥ ∑∀τi∈∆T |xi= j ri

The combined resource demand R j of the j-th virtual gang must be greater than or equal to the

sum of the resource demands of its constituent tasks.

Constraint 5 ∀ j = 1...N,∀τi ∈ ∆T | xi = j : C j ≥ ci∧C j ≥ ci×R j

The length C j of the j-th virtual gang must be greater than or equal to the length of each of its

constituent tasks, as well as the length of each constituent task multiplied by the combined resource

demand R j. In essence, this means that C j must be at least equal to the length of the longest

constituent task multiplied by max(1,R j); the above formulation ensures that the constraints are

expressed in linear arithmetic by removing the max.

82

Constraint 6 ∑
N
j=1C j = C

Finally, the combined length of all virtual gangs must be equal to a specified value C whose

minimum possible assignment needs to be found.

Since we use quantifier free logic, in our SMT formulation, we remove the universal quantifier

(∀) by repeating each constraint for every task τi, index j and/or edge (τi,τ j) in the corresponding

constraint formula. To find the virtual gang combination with minimum collective length, we

conduct binary search on the combined gang length value C; starting with the maximum possible

length equal to the sum of the length of all the tasks in the candidate-set i.e., Cinit = ∑∀τi∈∆T ci. In

each step of the binary search, the SMT script is re-run with a new value of C; to check if a model

of input parameters (xi, R j and C j) can be found which satisfies the constraints. If a satisfiable

solution is found, the maximum combined gang length is reduced (search down); otherwise it is

increased (search up). The process is repeated until the maximum combined gang length cannot

be changed any further; in which case, the last solution, that was found satisfiable, is taken as the

optimal solution. Note that a satisfiable solution can be found for any value of C equal to or greater

than the optimal because Constraint 5 requires the values of C j to be greater than or equal, rather

than exactly equal, to the adjusted length of the longest constituent task. This allows the SMT

solver to find feasible solutions quicker. The values of xi in the optimal solution are used to create

a new taskset of virtual gangs by combining the tasks in the candidate-set.

5.4.2 Virtual Gang Formation Heuristic

Due to the combinatorial nature of the optimization problem of virtual gang formation, the time

required for obtaining the optimal solution via SMT quickly becomes intractable with increasing

candidate-set size; as can be seen in Sec 5.5.3. For this reason, we design a fast running heuristic

for virtual gang formation, which is shown in Algorithm 7.

At the high-level, the algorithm tries to group tasks with similar WCET values so long as their

combined shared resource utilization is not too high; to make the virtual gang’s WCET as small as

83

Algorithm 7: Virtual Gang Formation Heuristic
1 Input: Candidate Set (∆T), Number of Cores (m)
2 Output: Taskset comprising virtual gangs
3 function gang_formation(∆T , m)
4 pq = sort_tasks_by_wcet(∆T)
5 virtualGangs = ()
6 while not_empty(pq) do
7 τi = pq.pop()
8 fi = f amily(τi)
9 partners = ()

10 for τ j ∈ pq do
11 if τi.h+ τ j.h≤ m ∧ τ j 6∈ fi then
12 partners← partners∪

{
τ j
}

13 end
14 end
15 pqi = score_partners(partners)
16 while not_empty(pqi) do
17 τp = pqi.pop()
18 τi = merge(τi,τp)
19 pq.remove(τp)
20 update_partners(τi, pqi)

21 end
22 virtualGangs← virtualGangs∪{τi}
23 end
24 return virtualGangs

possible while fully utilizing the cores. The first step in the heuristic is to create a priority queue of

the tasks in the candidate-set by sorting the tasks based on their WCETs (line-4), using the intuition

that in a virtual gang, the longest running task subsumes the WCET of its corunning tasks. The

next step is to remove the longest task τi from the front of the queue and identify all tasks τ j which

can be paired with τi; under the following constraints: 1) The combined core demand of τi and τ j

must be less than m. 2) τi and τ j must not be related by precedence constraints (lines-10:12).

To check for precedence constraints, we introduce the notion of the f amily of a node τi in our

DAG which comprises all nodes τk that are connected with τi in an ancestor or descendant relation-

ship i.e., f amily(τi) = {τk | τk ∈ ancestor(τi)∨ τk ∈ descendant(τi)}. With this, the precedence

constraint check between τi and τ j becomes τ j 6∈ f amily(τi) i.e., τ j cannot be paired with τi if it is

84

a member of τi’s family.

In the list of potential corunners of τi, we score each task τp based on the net advantage that

can be obtained by pairing it with τi using the following idea. The advantage obtained by pairing

τp with τi is equal to the length of τp since it is the shorter running task in the potential virtual

gang. The disadvantage of this pairing is the potential increase in the length of τi if τi.r+τp.r > 1.

The net advantage is then equal to the difference between these two values; which we use to score

all the potential partners of τi (line-13).

Once all the partners are scored, we keep removing the partner with the currently highest

score from the partner list and merge it with τi to create a virtual gang; until no more pairing is

possible (lines-15:16). In each step, we keep track of the precedence constraint in the DAG from

forming virtual gang (since merging tasks can change the precedence constraint relationships in

the DAG) and update the partner list to remove any tasks that can no longer be paired due to the

new precedence constraint requirements (line-18). A task that is paired off is removed from the

priority queue as well. Once a virtual gang is finalized, we put it in a separate list and start the

process again by selecting the next τi from priority queue until the queue is empty. The final virtual

gangs and the transformed DAGs of the candidate-set are returned once the heuristic finishes.

5.5 Schedulability Analysis

The schedulability analysis of a taskset comprising virtual gangs {w1,w2, · · · ,wl} under the rate-

monotonic priority assignment scheme [26] can be done by performing fixed point iteration on the

response time equation:

Rk+1
i =Ci + ∑

∀w j∈hp(wi)

⌈Rk
i

Tj

⌉
C j, (5.1)

where: Rk
i is the response-time of wi at the k-th iteration; Ci is the sum of the WCET of wi itself

and all the virtual gangs with the same period which come before wi in the linear execution order;

85

and hp(wi) represents the set of all virtual gangs which have higher priority than wi (i.e., smaller

period). The taskset is deemed schedulable if for each wi, the final response time Ri is less than

the period Ti
3.

In the following, we compare schedulability results with virtual gang formation with other

parallel real-time task scheduling approaches with synthetically generated tasksets.

5.5.1 Simulation Study

Taskset Generation: For the real-time taskset generation, we first uniformly select a period Ti in

the range [10,1500]. For each Ti, N tasks τi, j, where N is randomly picked from the interval [2,m],

are generated by selecting a WCET ci, j in the range [T/10,T/5], a resource demand factor ri, j in

the interval [0,1] and a parallelism level hi, j. The utilization ui, j of each ti, j is then calculated using

the relation: ui, j = (ci, j× hi, j)/Ti. If ui, j is less than the remaining utilization for the taskset, ci, j

is adjusted so that τi, j fills the remaining utilization. Otherwise, taskset generation continues until

the desired level of utilization is reached. We generate 1000 tasksets for each data point.

Precedence Constraints: Once a taskset is generated, we model precedence constraint by adding

edges among tasks, which have the same period Ti, based on an edge probability value P(e) which

represents the average chance of an outgoing edge from one task to another. To simplify the

creation of a DAG without explicitly checking for a cycle, we assume that an edge can only exist

between τi, j and τi,k if j < k; hence, task τi,N has no outgoing edges. Under this scheme, the tasks

with smaller index values have potentially more neighbors, to have an edge with, than the tasks

with larger index values. To have a balanced edge generation scheme, we divide P(e) value by

the number of potential neighbors of a task ; except for the last task τi,N which does not have any

neighbors e.g., for N = 8 and τi,1, the number of potential neighbors of τi,1 is N− 1 = 7 and τi,1

has P(e)/7 chance of having an edge with each of these neighbors.

Taskset Types: Similarly to [25], we consider three types of tasksets in our simulation, based on

the allowed level of parallelization hi, j for the tasks in the taskset. For a lightly-parallel taskset,

3Note that technically, it suffices to check the last virtual gang in the linear order for each period.

86

hi, j is uniformly selected in the range [1,d0.3×me]. For a heavily-parallel taskset, the value of hi, j

is picked from the range [d0.3×me,m]. Finally, for mixed taskset, hi, j is selected randomly from

the interval [1,m].

Scheduling Policies: We conduct two separate experiments to understand the impact of virtual

gang formation on system schedulability. In the first experiment, we consider precedence con-

straints among tasks using an edge probability P(e) = 0.25. Due to the absence of an existing

schedulability analysis for gang tasks that can handle precedence constraints to the best of our

knowledge, we only compare schedulability with virtual gangs in this experiment against RT-

Gang 4. Concretely, we consider three scheduling scenarios in this experiment. Under the RT-Gang

scheme, the unicore response time analysis using Equation 5.1 is applied to calculate schedulabil-

ity of the taskset under the one-gang-at-a-time scheduling. For Virtual Gang (SMT), we first form

virtual gangs from the given taskset using the optimal SMT algorithm and then use Equation 5.1

to calculate schedulability of the new taskset comprising the virtual gangs. Under Virtual Gang

(Heuristic), we use the heuristic from Sec 5.4.2 to form virtual gangs and then calculate the schedu-

lability results.

In the second experiment, we assume that there are no precedence constraints among the tasks

i.e., P(e)= 0 which allows us to consider more multicore scheduling policies for comparing against

virtual-gang scheduling. In this case, for each taskset type, we calculate schedulability results

under four scheduling policies. We retain the RT-Gang and virtual-gang (SMT) schemes from

the first experiment. In addition, we consider Gang-FTP policy and use the analysis in [25] to

calculate schedulability of the taskset under gang fixed-priority scheduling 5. We also consider

the Threaded scheme which models the scheduling of parallel tasks under vanilla Linux real-time

scheduler, where the hi, j threads of each task τi, j are independently scheduled. In this case, we

assess schedulability based on the state-of-the-art analysis for fixed-priority scheduling of DAG

4Since RT-Gang implements one-gang-at-a-time scheduling policy, its analysis does not need to be changed if there
are precedence constraints among same period tasks. For a schedulable taskset under RT-Gang, a feasible schedule
can be found by applying topological sort on the DAGs of the candidate-sets.

5Although the analysis in [25] uses a bundled gang model, it is still applicable here since bundled model generalizes
rigid gang model.

87

tasks in [30]; here τi, j is simply modeled as a DAG of hi, j nodes with the same execution time.

Interference Model: For each scheduling policy considered in the second experiment, we calcu-

late schedulability with and without taking the interference between corunning tasks into account.

In virtual gang scheduling, the gang formation algorithms already incorporate the interference

model described in Sec 5.2.2 in creating virtual gangs. For Gang-FTP, for each τi, j, we enumerate

all possible sets of co-running tasks based on the remaining number of cores m− hi, j, and pick

the set with the maximal combined resource demand Ri, j which we then use to scale the execution

time ci, j of τi, j by multiplying it with max(1,Ri, j). For Threaded, we assume that each indepen-

dently scheduled thread of τi, j has a resource demand of ri, j/hi, j, and pick the m−1 other threads

(either of the same or different task) with maximal demands. While the described procedure for

Gang-FTP and Threaded can be pessimistic, we are not aware of any better mechanism to safely

account for the effect of resource interference under such scheduling policies. Furthermore, we

point out that results for Threaded can still be optimistic, since we do not account for the extra

synchronization overheads that could be incurred when scheduling threads independently rather

than as a gang.

Finally, in creating plots without interference, we set the resource demand of each task to zero

and redo all our calculations (e.g., SMT virtual gang formation) before calculating schedulability.

Concerning other schedulability analyses for the rigid gang model, we do not employ [23, 24] be-

cause they assume Gang EDF rather than FTP; nor we compare against [99] as it requires creating

static execution patterns over a hyper-period which significantly complicates the runtime.

Priority Assignment: We consider the rate-monotonic based priority assignment scheme: prio(τi)>

prio(τ j) if Ti < Tj. For tasks with the same period, we assign priorities based on task’s WCET:

prio(τi, j)> prio(τi,k) if ci, j < ci,k.

5.5.2 Schedulability Results

Figure 5.4 shows the schedulability plots for the first experiment with P(e) = 0.25 from our sim-

ulation for 8 cores (m = 8). For all taskset types, virtual gang formation provides noticeable

88

1 2 3 4 5 6 7 8

Utilizations

0

200

400

600

800

1000
S

c
h

e
d

u
la

b
le

 T
a
s
k
s
e
ts

Virtual-Gang (SMT)

Virtual-Gang (Greedy)

RT-Gang

(a) Lightly Parallel

1 2 3 4 5 6 7 8

Utilizations

0

200

400

600

800

1000

S
c
h

e
d

u
la

b
le

 T
a
s
k
s
e
ts

(b) Mixed

1 2 3 4 5 6 7 8

Utilizations

0

200

400

600

800

1000

S
c
h

e
d

u
la

b
le

 T
a
s
k
s
e
ts

(c) Heavily Parallel

Figure 5.4: Schedulability plots for tasksets with precedence constraints (P(e) = 0.25) on 8 cores

improvement in schedulability as compared to RT-Gang. Moreover, the virtual gang formation

heuristic does a good job in giving comparable performance to the optimal SMT algorithm; in

terms of total number of schedulable tasksets under both schemes. It can also be seen from this

figure that the difference in the performance between the heuristic and the optimal virtual gang

formation decreases as the parallelization level of the tasksets increases. This is expected since for

lightly parallel tasksets, there are much greater possibilities for virtual gang formation which can

be missed by the greedy local optimization criteria of the heuristic.

When the tasksets comprise independent tasks (i.e., P(e) = 0), Fig 5.5 shows the schedulabil-

ity results for the considered scheduling policies of the second experiment. For lightly parallel

tasksets, the Threaded and Virtual Gang schemes give the best schedulability results, followed

closely by the Gang-FTP policy, if interference model is not used (dashed lines). However, when

interference is considered (solid lines), the schedulability under Threaded and Gang FTP policies

deteriorates rapidly as compared to the Virtual Gang scheme. This is due to the fact that under

the Virtual Gang scheme, only the tasks of the same virtual gang can possibly interfere with each

other, while a lot more tasks must be considered in Gang-FTP and Threaded. As expected, RT-

Gang suffers the most for lightly parallel tasks as it under-utilizes the cores.

For mixed and heavily parallel tasksets, the Virtual Gang scheme outperforms the rest regard-

less whether interference is considered or not. For these taskset types, RT-Gang performs consider-

ably better as well since a single parallel task can utilize more cores in the platform, though it still

89

1 2 3 4 5 6 7 8

Utilizations

0

200

400

600

800

1000
S

c
h

e
d

u
la

b
le

 T
a
s
k
s
e
ts

Virtual-Gang (No Interf.)

Virtual-Gang

RT-Gang

Threaded (No Interf.)

Threaded

Gang FTP (No Interf.)

Gang FTP

(a) Lightly Parallel

1 2 3 4 5 6 7 8

Utilizations

0

200

400

600

800

1000

S
c
h

e
d

u
la

b
le

 T
a
s
k
s
e
ts

(b) Mixed

1 2 3 4 5 6 7 8

Utilizations

0

200

400

600

800

1000

S
c
h

e
d

u
la

b
le

 T
a
s
k
s
e
ts

(c) Heavily Parallel

Figure 5.5: Schedulability plots for tasksets containing independent tasks (P(e) = 0) on 8 cores.
Dashed lines are used when interference is not considered. For RT-Gang, because only one task
can be scheduled at a time, interference cannot occur by design (thus no dashed lines)

lags behind Virtual Gang scheme. On the other hand, Gang-FTP and Threaded are significantly

worse than the Virtual Gang scheme and the RT-Gang for both mixed and heavily parallel tasksets.

This can be attributed to the analysis pessimism needed to handle carry-in jobs in their schedu-

lability tests [25, 30], which becomes more pronounced as the parallelism of the tasks increases.

Because both Virtual Gang and RT-Gang can use exact unicore-based fixed-priority schedulability

techniques, they do not suffer from such analysis pessimism.

Finally, in all cases, interference impact becomes less prominent as the parallelization of

the taskset increases. This is because with highly parallel tasks, the opportunity of getting co-

scheduled with other resource intensive tasks decreases, leading to improved schedulability.

In summary, our simulation results show that the Virtual Gang scheme significantly outper-

forms the rest when interference is considered, and is competitive even when interference is not

considered.

5.5.3 SMT and Heuristic Gang Formation Runtime

In this experiment, we compare the time required to form virtual gangs from a given candidate-

set using the SMT and the heuristic algorithms. We use the Z3 SMT solver [100]. We vary the

candidate-set size (N) from 4 tasks up-to 9 tasks and measure the time taken by each algorithm in

generating virtual gangs. For each N, we generate 75 candidate-sets and process them through the

90

4 5 6 7 8 9
Candidate Set Size (N)

10 4

10 3

10 2

10 1

100

101

102

103

104

Ru
nt

im
e

(s
ec

on
ds

)

8hrs:10mins:2secsSMT

Heuristic

Figure 5.6: Comparison of SMT and heuristic virtual gang formation runtime. In each box, the
orange line represents the median value. The box represents the interquartile range (Q2-Q3). The
lower and upper whiskers mark the 5 percentile and the 95 percentile values respectively.

gang formation algorithms. We retain all the other simulation parameters from the first experiment

in the previous section. We plot the time taken by each algorithm for all the candidate-sets in

Fig 5.6. It can be seen that the runtime of obtaining the optimal solution via SMT increases with

an exponential trend and quickly becomes unmanageable. The runtime of the heuristic, on the

other hand, remains relatively stable (within 10-msec) for all candidate-set sizes.

5.6 Evaluation

In this section, we describe the evaluation results of RTG-Sync on a real multicore platform.

5.6.1 Setup

We use NVIDIA’s Jetson TX-2 [1] board for our evaluation experiments with RTG-Sync. The

Jetson TX-2 board has a heterogeneous multicore cluster comprising six CPU cores (4 Cortex-

A57 + 2 Denver6). On the software side, we use the Linux kernel version 4.4 and patch it with

the modified version of RT-Gang [101] to enable real-time gang scheduling at the kernel level

6We do not use the Denver cores because of their lack of support for necessary hardware performance counters to
implement the throttling mechanism.

91

along with best-effort task throttling and page-coloring frameworks, adding ∼3000 lines to the

architecture neutral part of the Linux kernel. In all our experiments, we put our evaluation platform

in maximum performance mode which involves statically maximizing the CPU and memory bus

clock frequencies and disabling the dynamic frequency scaling governor. We also turn off the GUI

and networking components and lower the run-level of the system (5→ 3) to keep the background

system services to a minimum.

5.6.2 Case-Study

In this case-study, we demonstrate the effectiveness of using virtual gangs to improve system

utilization, compared to the “one-gang-at-a-time” scheduling and Linux’s default scheduler.

Task WCET (ms) Period (ms) # of Threads Priority

τRT
BWT 50.0 100.0 4 5

τRT
DNN−1 8.2 50.0 2 10

τRT
DNN−2 8.2 50.0 2 10

τBE
cutcp ∞ N/A 2 N/A

τBE
lbm ∞ N/A 2 N/A

Table 5.1: Taskset parameters for case-study

The taskset for the case-study is shown in Table 5.1. It consists of three real-time tasks and

two best-effort ones. For real-time tasks, we use the DNN workload from DeepPicar [92] as two

of the real-time tasks τRT
DNN−1 and τRT

DNN−2. Both DNN tasks use two threads each and have the

same period of 50 ms. We use the synthetic bandwidth-rt benchmark as the third real-time task

τRT
BWT , which uses 4 threads and has a period of 100 ms. τRT

BWT is designed to be oblivious to shared

resource interference but it creates significant shared hardware resource contention to DNN tasks

under co-scheduling. As per the RMS priority assignment, we assign higher real-time priority to

DNN tasks than the bandwidth-rt task.

For best-effort tasks, we use two benchmarks from the Parboil benchmark suite [76]. Among

the best-effort tasks, τBE
lbm is significantly more memory intensive than τBE

cutcp. Both best-effort tasks

92

6 8 10 12 14 16
DNN Job Duration (msec)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

 = 8.5 = 9.0
 = 11.3

RT-Gang RTG-Sync Linux

Figure 5.7: Distribution of job duration for τRT
DNN−1

use two threads each and are pinned to disjoint CPU cores.

We evaluate the performance of this taskset on Jetson TX-2 under three scenarios. The Linux

scenario represents the scheduling of the taskset under the vanilla Linux kernel. In RT-Gang

scheme, the real-time tasks are gang scheduled with the one-gang-at-a-time policy. Finally, un-

der RTG-Sync, we create a virtual gang, which is comprised of the two real-time DNN tasks. We

assign 3/4th of the LLC to the virtual gang (two DNN tasks) and the rest 1/4th of the cache to the

best-effort tasks. We do not, however, apply partitioning between the DNN tasks as sharing the

cache space is beneficial in this case.

Figure 5.7 shows the cumulative distribution function of the job execution times of τRT
DNN−1

under the three compared schemes. Note that this task has the highest real-time priority in our

case-study. In this figure, the performance of τRT
DNN−1 remains highly deterministic under both RT-

Gang and RTG-Sync. In both cases, the observed WCET of τRT
DNN−1 stays within 10% of its solo

WCET—i.e., measured WCET in isolation—from Table 5.1. However, under the baseline Linux

kernel (denoted as Linux), the job execution times of τRT
DNN−1 vary significantly, with the observed

WCET approaching 2X of the solo WCET.

The difference among the observed performance of τRT
DNN−1 under the three scenarios can be

better explained by analyzing the execution trace of the taskset in one hyper-period of 100 ms,

93

𝜏𝐷𝑁𝑁−1
𝑅𝑇 𝜏𝐷𝑁𝑁−2

𝑅𝑇 𝜏𝐵𝑊𝑇
𝑅𝑇 𝜏𝑙𝑏𝑚

𝐵𝐸 𝑘𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝜏𝑐𝑢𝑡𝑐𝑝
𝐵𝐸

11.3−msec

11.2−msec 9.7−msec

𝟏𝟎𝟎 −𝐦𝐬𝐞𝐜

CPU-0

CPU-1

CPU-2

CPU-3

(a) Linux Default
8.4−msec

CPU-0

CPU-1

CPU-2

CPU-3

8.4−msec

8.3−msec

8.4−msec

(b) RT-Gang
8.9−msec

CPU-0

CPU-1

CPU-2

CPU-3

8.8−msec

(c) RTG-Sync

Figure 5.8: Annotated KernelShark trace snapshots of case-study scenarios for one hyper period

which is shown in Figure 5.8. Inset 5.8a displays the execution timeline under vanilla Linux. It

can be seen that the DNN tasks suffer from two main sources of interference in this scenario.

Whenever the execution of the DNN tasks overlaps with the execution of τRT
BWT , the execution time

of the task increases. The execution time also increases when the DNN tasks get co-scheduled

with best-effort tasks. Note that the system is not regulated in any way in this scenario. Therefore,

the effect of shared resource interference is difficult to predict, as evidenced in the CDF plot of

Figure 5.7, which shows highly variable timing behavior. Under RT-Gang, on the other hand, the

execution of DNN tasks is almost completely deterministic. Due to the restrictive one-gang-at-

a-time scheduling policy, co-scheduling of DNN tasks with τRT
BWT is not possible. Moreover, the

shared resource interference from the best-effort tasks is strictly regulated due to LLC partitioning

and the kernel level throttling framework.

However, under RT-Gang, each DNN task executes as a separate gang by itself, which means

94

that two system cores are left unusable for real-time tasks while the DNN tasks are executing

because of the one-gang-at-a-time policy. This reduces the share of total system utilization of the

multicore platform, which can be used by other real-time tasks. Although the idle cores are utilized

by best-effort tasks, the strict regulation imposed by DNN tasks means that the best-effort tasks

are mostly throttled when they are co-scheduled with DNN tasks. Under RTG-Sync, both of these

problems are solved by pairing τRT
DNN−1 and τRT

DNN−2 into a single virtual gang. In this case, the

system is fully utilizable by real-time tasks. The execution of virtual DNN gang is completely

deterministic due to the synchronization framework of RTG-Sync. Moreover, since there is no co-

scheduling of best-effort tasks with real-time tasks, the throttling framework does not get activated

and any slack duration left by real-time tasks can be utilized completely by best-effort tasks without

imposing throttling.

5.6.3 Overhead

The runtime overhead due to RTG-Sync can be broken down into two parts. First is the overhead

due to synchronization. This overhead is incurred only once during the setup phase of the real-time

tasks which are members of the same virtual gang and it does not contribute to the WCETs of the

periodic jobs. Second, the kernel level overhead is incurred due to the simultaneous scheduling

of real-time tasks by the gang-scheduler. Since we use the RT-Gang framework for this purpose,

the kernel level overhead is the same as reported in [85], which showed negligible overhead on a

quad-core platform.

5.7 Discussion

One limitation of our virtual-gang based approach is that, to create a virtual gang task, all member

tasks of the virtual gang must share the same period. If each and every task in the real-time taskset

has a different period value, a virtual gang can have only one real-time task as its member and no

schedulability gain can be achieved with our approach. In practice, however, it is common that

95

a small number of periods are shared by multiple real-time tasks [102]. As such, we believe our

approach can be applied in such applications and provide tangible schedulability benefits.

5.8 Conclusion

In this chapter, we introduced a virtual gang based parallel real-time task scheduling approach

for multicore platforms. Our approach is based on the notion of virtual gang, a group of parallel

real-time tasks that are statically linked and scheduled together as a single scheduling entity. We

presented an intra-gang synchronization framework and virtual gang formation algorithms that

enable strong temporal isolation and high real-time schedulability in scheduling parallel real-time

tasks on COTS multicore platforms. We evaluated our approach both analytically and empirically

on a real embedded multicore platform using real-world workloads. Our evaluation results showed

the effectiveness and practicality of our approach.

96

Chapter 6

Extensions and Future Directions

In this chapter, we discuss possible extensions of the techniques presented in this dissertation. We

begin by summarizing our contributions till now and describing their limitations. We then discuss

possible ways to ameliorate some of those limitations.

6.1 Summary of Contributions

In the previous chapters of this dissertation, we presented three scheduling frameworks that solve

part of the real-time scheduling problem on heterogeneous multicore platforms. We first presented

the BWLOCK++ framework in Chapter 3 which enables deterministic scheduling of real-time

tasks on an accelerator, such as the integrated GPU, in the heterogeneous SoC. Due to the nuances

of accelerator use, which will be discussed in more detail in this chapter, BWLOCK++ uses a re-

strictive system model in which real-time tasks are constrained to use a single-core of the multicore

platform. Although this restriction makes BWLOCK++ effective in enabling deterministic use of

an accelerator by real-time tasks, it is very limiting for those real-time tasks that do not require

use of the accelerator. For such tasks, the single-core scheduling requirement of BWLOCK++ can

severely reduce the real-time schedulability of the system realized on the heterogeneous SoC.

We next presented the RT-Gang framework in Chapter 4. The RT-Gang framework enables

deterministic scheduling of real-time tasks on the multicore CPU cluster of a heterogeneous SoC.

The one-gang-at-a-time scheduling policy of RT-Gang breaks the possibly unrestricted coupling

between all the real-time tasks in the system and enables tight estimation of WCET that can be

relatively easily enforced at runtime through OS level shared hardware resource partitioning tech-

97

niques. This results in a system that can provide high real-time schedulability for highly parallel

CPU using real-time tasks through non-pessimistic schedulability analysis that is also easy to un-

derstand. We implemented the RT-Gang framework on top of the open-source Linux kernel and

showed, with real-world benchmarks, that our framework is useful and practical in enabling deter-

ministic real-time scheduling on multicore CPUs.

A primary limitation of the RT-Gang framework is that it severely reduces the schedulability

of the system when real-time tasks are not sufficiently parallelizable. In Chapter 5, we presented

the RTG-Sync framework which extends RT-Gang by employing virtual gang scheduling on top

of the one-gang-at-a-time scheduling policy. A virtual gang is a group of real-time tasks which,

although not the threads of the same process as in a real gang, are treated as a single schedulable

entity and all its member tasks are synchronously released and simultaneously scheduled under

the one-gang-at-a-time scheduling policy. The virtual gang scheduling is a compromise—between

the strictly one real gang task scheduling of RT-Gang and the unrestricted scheduling of all the

real-time tasks in a globally scheduled system1—it limits the coupling among the real-time tasks

to only those tasks which are members of the same virtual gang. Moreover, due to the synchronous

release of the gang members, the said coupling is very limited; there is only one co-schedule of the

member tasks that is easy to verify and evaluate on a target hardware platform.

In the form it is presented in Chapter 5, the RTG-Sync framework does not cater to real-

time tasks that require the use of an accelerator for part of their execution. In the following,

we will discuss the challenges involved in handling accelerator using real-time tasks under the

RTG-Sync framework. We will then present a new system model and task model for the RTG-

Sync framework that is suitable for the modified real-time scheduling problem and discuss the

theoretical and practical extensions to the framework for resolving the said problem.

1Please see Sec. 2.2.2.1 for a discussion on global scheduling

98

6.2 The Accelerator Scheduling Problem

There are two main challenges in integrating the scheduling on accelerators into the RTG-Sync

framework: 1) how to handle the proprietary hardware level scheduling implemented in an ac-

celerator (e.g., integrated GPU) into the virtual gang scheduling of RTG-Sync? 2) how to tackle

possible interference to the real-time CPU tasks from co-executing tasks on the accelerators? In

the following, we discuss both these challenges in detail.

6.2.1 Hardware Level Scheduling in the Accelerator

An accelerator in a heterogeneous SoC can come equipped with a hardware level scheduler that

controls, among other things, which workloads to execute on the accelerator at any given time

and whether simultaneous use of the accelerator is allowed by multiple workloads and if so, then

how to arbitrate the division of resources (e.g., registers, computing cores, caches etc.) present

inside the accelerator among the co-executing workloads. Since these aspects of hardware level

scheduling impact the timing characteristics of the real-time workloads utilizing the accelerator, it

is of utmost importance for the real-time system designers to know these details. Unfortunately,

there is reluctance from the vendors of the heterogeneous SoCs to disclose the details of the internal

scheduling policies of the hardware e.g., this is the case for the integrated GPUs present in all the

heterogeneous SoCs from NVIDIA in the Jetson family. Although efforts have been made in the

real-time community to reverse engineer these hidden details [80, 103], the available information

is too limited and can easily get out-dated when a new generation of SoCs comes into the market.

In addition to the above, an accelerator e.g., iGPU, may not allow software controlled preemption

of an executing workload i.e., a workload must run to completion once it starts executing on the

accelerator. For this reason, it is a common practice in real-time systems to treat the accelerator as

a non-preemptible resource that must be accessed sequentially by real-time workloads.

There are a number of pros and cons associated with treating an accelerator as a non-preemptible

resource. On one hand, it uncouples the timing behavior of the workloads that want to use the ac-

99

celerator from each other since only one workload can be running on the accelerator at any given

time. On the other hand, it can potentially result in under-utilization of the accelerator if the indi-

vidual workloads cannot utilize the accelerator to the fullest extent possible. Another complication

arises due to the fact that the programming model of the accelerator may not, by default, allow

non-preemptive use of the accelerator e.g., in the CUDA programming model of the NVIDIA iG-

PUs, kernels launched concurrently are time-multiplexed on the GPU. To enforce non-preemptive

accelerator use, modifications may be needed in the OS kernel or in the accelerator programming

model to make the concurrent workloads use the GPU sequentially. Despite these cons, in our

opinion, assuming the non-preemptibility of the accelerator workloads will be the accepted prac-

tice in the foreseeable future until official programming models e.g., CUDA streamline support for

software controlled preemption for their respective accelerators and disclose the implementation

details of the hardware level scheduler.

6.2.2 Performance Isolation between Accelerators and CPU Workloads

As discussed in Chapter 2, the memory hierarchy in the embedded heterogeneous computing plat-

forms is shared among all the on-chip computing resources; including CPU cluster and the ac-

celerators. This sharing can create coupling between co-executing workloads on CPUs and the

accelerators i.e., workloads on CPU can change the execution time of the real-time accelerator

applications by creating too much memory traffic that can bottleneck the underlying memory sub-

system and vice-versa. Our BWLOCK++ framework solves this problem by restrictive scheduling

and bandwidth throttling. The restrictive scheduling of BWLOCK++ constrains all the real-time

tasks to use a single core of the CPU cluster and use the accelerator2 non-preemptively and only by

real-time tasks. Due to this, only one real-time task can be in execution at any given time and there

can be no coupling between real-time CPU and accelerator workloads. The throttling framework

of BWLOCK++ allows best-effort CPU tasks to utilize the remaining CPU cores as long as their

2Although in Chapter 3, we describe BWLOCK++ for heterogeneous systems that have integrated GPU as the
accelerator, the design principles of BWLOCK++ are general and can be applied to any heterogeneous system that
contains a single accelerator that must be used non-preemptively.

100

memory traffic stays within a safe threshold that is acceptable to the executing real-time task.

As explained earlier, BWLOCK++ limits real-time schedulability due to the restrictions it im-

poses on the target system. These restrictions are:

1. The accelerator must be used non-preemptively.

2. Only one real-time task can be in execution, in the entire system, at any given time.

3. Best-effort tasks are not allowed to use the accelerator.

In the following, we discuss the implications of relaxing each of these restrictions in detail.

The first restriction is fundamental to accelerator scheduling for the reason described in Sec. 6.2.1.

If preemptive execution on the accelerator is made possible, in the manner CPU scheduling is

preemptive, then most of the problems associated with real-time scheduling on accelerators—

including the second and third restrictions enumerated above—would become trivial. However,

we do not consider this scenario since it is beyond our control.

For the second restriction, if multiple real-time tasks are allowed to execute concurrently in

the system, then it is possible for simultaneously executing real-time tasks on the CPU and the

accelerator to interfere with each other. This, in turn, would re-introduce the uncontrolled coupling

problem among all real-time tasks in the system that makes the WCET estimation and response-

time analysis pessimistic. Hence it is unwise to relax this restriction unless there is an alternative

scheduling scheme, such as RTG-Sync, in place to ameliorate this problem.

For the third restriction, allowing best-effort tasks to utilize the accelerator may be useful if

real-time tasks do not make adequate use of the accelerator. However, this introduces two com-

plications: 1) The blocking time for real-time tasks in Eq. 3.4 would have to include possible

blocking from best-effort tasks. 2) The best-effort tasks executing on the accelerator may interfere

with real-time tasks on the CPU cores. The first complication is fundamental—it is not possible

to circumvent it unless accelerator scheduling is made preemptive. The second complication can

conceptually be resolved by using memory bandwidth regulation techniques to throttle accelerator

using best-effort tasks; similar to how we regulate best-effort tasks on the CPU cores. However,

101

such a regulation mechanism requires periodic monitoring of certain hardware performance coun-

ters that can indicate, on a periodic basis with an acceptable time granularity (e.g., 1-msec), the

memory traffic generated by accelerator using tasks. Given the secrecy surrounding the implemen-

tation details of the accelerators, such information is hard to come-by. In addition to this, a more

cardinal problem is that the regulation mechanism such as [2] requires the ability to idle an offend-

ing computing resource if it exceeds its given budget by immediately scheduling a high priority

thread on it for the remainder of the regulation interval. This, in turn, requires the ability to enact

quick preemption of the currently executing workload which is not possible for accelerators.

In light of the above discussion, the only restriction of BWLOCK++ that can be relaxed, to a

certain extent, is allowing multiple real-time tasks to execute in the system in a controlled manner.

In fact, this was our prime motivation when designing the RT-Gang and the RTG-Sync frameworks.

As stated in Sec. 6.1, RTG-Sync enables deterministic scheduling of real-time tasks on multicore

CPUs; by grouping tasks into virtual gangs and scheduling virtual gangs one-at-a-time on all cores

of the CPU cluster. In the following, we discuss the RTG-Sync extension to include accelerator

using tasks into its design and the implementation changes required to support this extension in a

practical system.

6.3 Virtual Gang Scheduling with Accelerator using Tasks

In this section, we describe a new system model and task model that can enable the inclusion of

accelerator using real-time tasks into the virtual gang scheduling scheme of RTG-Sync framework.

6.3.1 System Model

We consider a multicore processor based platform π , which contains m unit-speed CPU cores and

k accelerators (A1,A2, · · · ,Ak). We assume that each accelerator must be used in a non-preemptive

manner i.e., once a task starts executing on the accelerator Ai, it must run to completion before

the next task, that also needs to use Ai, is allowed to access it. Moreover, only real-time tasks

102

are allowed to use the accelerators. We consider a system comprising a set Γ of n periodic, rigid

gang real-time tasks with implicit deadlines: Γ = {τ1,τ2, · · · ,τn}. Each task τi = (ci,bi,κi,ri,Ti)

is characterized by its WCET ci in isolation, its maximum blocking time while bi, its demand of

the on-chip computing resources κi, the shared resource demand factor ri in the range [0,1], and

the period Ti. The WCET ci of the task describes the total execution time of the task; including

possible execution on any of the accelerators in the SoC. The maximum blocking time bi is equal

to the longest duration for which the task uses any of the accelerators that it requires to complete

its execution; this is the longest duration for which the task can potentially delay the execution

of higher priority tasks in the system. The compute demand factor κi = (hi,ai,1,ai,2, · · · ,ai,k) is a

tuple of values. The hi in κi denotes the number of cores required to run τi and hi ≤ m; as per the

rigid gang model. The subsequent values ai, j ∈ (0,1) in κi denote whether the task needs to use the

jth accelerator A j for its execution; ai, j = 1 if the task needs the jth accelerator for its execution and

ai, j = 0 otherwise. The resource demand factor ri describes the maximum instantaneous demand

of the task τi at any point during its execution for a critical hardware resource in the shared memory

subsystem e.g., the main memory bandwidth.

The system also comprises a set of k DAGs {G1,G2, ...,Gk}. Each DAG Gi = (vi,ei,Ti) ex-

presses a set of precedence constraints among tasks. The node set vi ⊆ Γ consists of a subset of the

tasks in Γ; we assume that all tasks in vi must have the same period Ti, and no task in Γ can belong

to the node set of more than one DAG. The edge set ei : vi×vi consists of ordered pairs of the form

(τp,τq) describing the precedence constraints among the tasks in vi: formally, this means that the

jth job of τp must finish before the jth job of τq can start executing.

Example: Consider the block diagram, shown in Figure 6.1, of a non-trivial real-time taskset with

precedence constraints that needs to be executed on a heterogeneous computing platform which has

8 CPU cores (m = 8) and three accelerators: an integrated GPU (A0) and two custom-built deep

learning accelerators (A1,A2). A taskset like this can be found in a self-driving application suite

such as [98]. When expressed in the form of our task model, the taskset comprises a single DAG

G1 = (v1,e1,T1). The period of the DAG is T1 = 100-msec because of the 10-Hz frequency of the

103

Vision
Detection

τ1

LiDAR
Detection

τ2

Fusion

τ3

Ground Filter

τ4

Costmap
Generator

τ5

Grid Filter

τ6

GPS Tracker

τ7

NDT Matching

τ8

A* Object
Avoidance

τ9

Velocity Setter

τ10

Camera

10Hz

LiDAR

10Hz

GPS

10Hz

Sensor Task

Precedence Constraint

Input Data

Figure 6.1: Block diagram of an example taskset that can be specified by the new task model.

data coming from the input sensor nodes. The node-set comprises 10 tasks v1 = (τ1,τ2, · · · ,τ10)

that are part of the DAG. The edge-set e1 describing the precedence constraints of the DAG is the

following:

e1 = ((τ1,τ3),(τ2,τ3),(τ3,τ5),(τ4,τ5),(τ5,τ9),(τ6,τ8),(τ7,τ8),(τ8,τ9),(τ9,τ10))

Table 6.1 shows the parameters of each task in the taskset. From this table, it can be seen that

the tasks in the example taskset have varied demand for the on-chip compute resources and have di-

verse execution requirements. For example, the vision detector task τ1 = (13,5,(2,1,0,0),90,100)

can be characterized as a light utilization task, with a total execution time of 13-msec, that needs 2

CPU cores and the GPU for its execution with a 5-msec of max. blocking time. However, this task

has high demand for the shared memory subsystem—it may slowdown the execution time of its

co-executing tasks—as its resource demand factor is 0.9. In contrast, the task τ9 that runs the A*

object avoidance algorithm can be characterized as a heavy utilization task with an 80-msec total

104

Name Task
WCET Blocking Time Compute Demand Resource
(c-msec) (b-msec) (κ = (h,a0,a1,a2)) Demand (r)

Vision Detector τ1 13 5 (2, 1, 0, 0) 0.9
LiDAR Detector τ2 70 20 (2, 0, 1, 0) 0.75
Fusion τ3 2 0 (4, 0, 1, 0) 0.1
Ground Filter τ4 75 30 (1, 1, 0, 0) 0.3
Costmap Generator τ5 35 10 (2, 0, 0, 1) 0.6
Grid Filter τ6 28 0 (6, 0, 0, 0) 0.95
GPS Tracker τ7 5 0 (1, 0, 0, 0) 0.05
NDT Matching τ8 3 1 (1, 1, 0, 0) 0.2
A* Object Avoidance τ9 80 50 (4, 0, 1, 0) 0.7
Velocity Setter τ10 10 0 (3, 0, 0, 0) 0.4

Table 6.1: Taskset parameters for the example illustrating the new task model. Period of the taskset
is 100-msec. In the compute demand tuple κ = (h,a0,a1,a2), h denotes the number of cores used
by the task, a0 denotes whether the task needs the integrated GPU to run and a1,a2 denote the same
for DLA-1 and DLA-2 respectively. For example, τ5, with κ = (2,0,0,1), needs 2-cores and the
DLA-2 for its execution.

execution time and 50-msec max. blocking time.

6.3.2 Virtual Gang Formation

Given the new system model, we rephrase the virtual gang formation problem from Sec. 5.4 and

then discuss the changes needed in the gang formation algorithms to tackle the new problem.

Problem Statement: For a given candidate-set ∆T of N tasks with the same period T and a given

multicore platform with m unit-speed CPU cores, k accelerators (A1,A2, · · · ,Ak) and a known

interference model, we want to partition the N tasks into a set of virtual gangs such that the total

completion time of the virtual gangs is minimized, while respecting all the precedence constraints

among the original tasks.

6.3.2.1 Changes in the Gang Formation Algorithms

The SMT based algorithm for virtual gang formation is described in the form of constraints that

must be satisfied by any feasible grouping of tasks in the candidate-set into a set of virtual gangs.

The constraints of the original algorithm can be seen in Sec. 5.4.1; in this section, we only discuss

105

the changes required in the original parameters and constraints to handle the modified virtual gang

formation problem. In the new problem, it is possible for tasks in the candidate-set to require an

accelerator for a portion of their execution in a non-preemptive (blocking) manner. Hence we add

a new parameter B j to the virtual gang formation problem which denotes the maximum blocking

time of the j-th virtual gang.

If the original SMT based algorithm is used to form virtual gangs, then it is possible to obtain

gang combinations in which multiple tasks require the use of the same accelerator in the SoC. How-

ever, we want to avoid this situation because of the complications related to accelerator scheduling;

as discussed earlier in this chapter. This results in an additional constraint in the SMT based virtual

gang formation algorithm as stated in the following:

Constraint 7 ∀ j = 1...N,∀l = 1...k : ∑∀τi∈∆T |xi= j ai,l ≤ 1

For all tasks assigned to the same virtual gang, the accelerator required by each task must be

different from the accelerator required by every other task in the virtual gang. In other words, no

two tasks in the same virtual gang should require execution on the same accelerator in the SoC.

Under this constraint, for the taskset in example in Sec. 6.3.1, τ1 with κ1 = (h1 = 2,a1,0 =

1,a1,1 = 0,a1,2 = 0) can potentially be paired with τ2 that has κ2 =(h2 = 2,a2,0 = 0,a2,1 = 1,a2,2 =

0) but it cannot be paired with τ4 that has κ4 = (h4 = 1,a4,0 = 1,a4,1 = 0,a4,2 = 0) since that would

make ∑i∈(1,4) ai,0 = 2� 1; violating the Constraint 7. In other words, the constraint would disallow

pairing of τ1 and τ4 into the same virtual gang because both these tasks require integrated GPU for

their execution.

Since tasks in the candidate-set can use the accelerators in a non-preemptive manner which can

result in blocking of the higher priority tasks, when these tasks are combined into virtual gangs,

the question arises as to the blocking time of the virtual gang that contains multiple accelerator

using tasks. Due to Constraint 7, this question is easy to answer from a conceptual perspective:

the maximum blocking time of a virtual gang is equal to maximum blocking time of any of its

constituent tasks. This is specified by the following constraint:

106

Algorithm 8: Updated Virtual Gang Formation Heuristic
1 Input: Candidate Set (∆T), Number of Cores (m)
2 Output: Taskset comprising virtual gangs
3 function gang_formation(∆T , m)
4 pq = sort_tasks_by_wcet(∆T)
5 virtualGangs = ()
6 while not_empty(pq) do
7 τi = pq.pop()
8 fi = f amily(τi)
9 partners = ()

10 for τ j ∈ pq do
11 if τi.h+ τ j.h≤ m ∧ τ j 6∈ fi ∧ ∀ l ∈ (1,2, · · · ,k) ai,l = 1 ⇐⇒ a j,l 6= 1 then
12 partners← partners∪

{
τ j
}

13 end
14 end
15 pqi = score_partners(partners)
16 while not_empty(pqi) do
17 τp = pqi.pop()
18 τi = merge(τi,τp)
19 pq.remove(τp)
20 update_partners(τi, pqi)

21 end
22 virtualGangs← virtualGangs∪{τi}
23 end
24 return virtualGangs

Constraint 8 ∀ j = 1...N,∀τi ∈ ∆T | xi = j : B j ≥ bi

The maximum blocking time B j of the j-th virtual gang must be greater than or equal to the

maximum blocking time of each of its constituent tasks; the above formulation ensures that the

constraints are expressed in linear arithmetic by removing the max. Although this constraint is

easy to understand, it requires additional implementation consideration to ensure that the blocking

time of the virtual gang does not exceed the calculated value in the actual system. We will discuss

these changes later on in this chapter.

Similar to the modified SMT based algorithm, the gang formation heuristic 5.4.2 needs to be

modified to tackle the new problem. The updated heuristic is shown in Algorithm 8. Compared

to before, the only change in the algorithm is in line-11 in which all possible partners τ j of a task

107

τi are checked. The check is modified such that τ j is cleared for pairing with τi only if both these

tasks use a disjoint set of accelerators.

6.4 Implementation Changes in the RTG-Sync Framework

In order to support virtual gang scheduling with accelerator using tasks, we need to make certain

implementation changes in the RTG-Sync framework, to ensure that the maximum blocking time

of a gang does not exceed the longest blocking duration of any of its constituent tasks; as per the

Constraint 8 described in the previous section. In the following, we first illustrate the need of this

implementation change with the help of an example and then explain the non-preemptive locking

protocol that we have integrated into the RTG-Sync framework to address this issue.

Task
WCET Blocking Time Compute Demand Resource Period
(c-msec) (b-msec) (κ = (h,a0,a1) Demand (r) (T -msec)

τ1 20 8 (1, 1, 0, 0) 40 100
τ2 22 7 (1, 0, 1, 0) 30 100
τ3 8 0 (1, 0, 0, 0) 50 50

Table 6.2: Taskset parameters for the example illustrating the calculation of virtual gang blocking
time under RTG-Sync.

Example: Consider the simple taskset shown in Table 6.2; comprising three single-threaded tasks.

As per the RMS priority assignment policy [26], τ1 and τ2 have the same priority whereas τ3 has

higher priority than both these tasks. In this taskset, a single virtual gang v is formed by pairing

τ1 and τ2. The blocking time of this virtual gang, as per the Constraint 8 of SMT gang formation

algorithm, should be Bv = max(8,7) = 8 i.e., in the worst-case, a higher priority task can expect to

be blocked a maximum of 8-msec by this virtual gang.

Figure 6.2 shows an example scheduling timeline of this taskset. In this timeline, the virtual

gang comprising (τ1,τ2) starts executing at t = 0. At t = 4, τ2 starts its non-preemptive execution

(e.g., on an accelerator). At t = 6, the higher priority task τ3 arrives but it cannot start its exe-

cution due to the non-preemptive section of τ2. Hence it gets blocked. At t = 10, τ3 begins its

108

0 10 20 30 Time

Task

τ1

τ2

τ3

v{

Virtual Gang Blocking

Job Release Job Completion

Non-Preemptive

Section

Figure 6.2: Scheduling diagram illustrating a problematic locking behavior, of the virtual gang
from the taskset in Table 6.2, for executing non-preemptive sections. In this case, the blocking
time experienced by the higher priority task τ3 is 12-msec; which is greater than the expected
value of 8-msec (the maximum blocking time among the constituent tasks of the virtual gang).

non-preemptive execution (e.g., on a different accelerator than τ2’s) because there is no existing

mechanism in the RTG-Sync framework which prevents it from doing that. At t = 11, τ2 com-

pletes its non-preemptive execution; however, τ3 cannot get scheduled since τ1 has already started

its non-preemptive section. At t = 18, τ1 finishes its non-preemptive section at which time, τ3 gets

unblocked and preempts the virtual gang of τ1 and τ2. τ3 completes its execution at t = 26. Then

τ1 and τ2 get unblocked and are able to complete their execution at t = 28 and t = 30 respectively.

In this example, the blocking time experienced by the higher priority task τ3 due to the virtual

gang v = (τ1,τ2) is 12-msec which is greater than the maximum blocking time Bv = 8-msec of the

virtual gang.

The desired locking behavior of the virtual gang, for the taskset in Table 6.2, can be seen in

Figure 6.3. In this figure, at t = 10, τ1 is not allowed to begin its non-preemptive section because

a higher priority task τ3 has arrived and it is waiting for the current non-preemptive section of

τ2 to finish. At t = 11, when τ2 completes its non-preemptive execution, τ3 gets unblocked and

immediately preempts τ2; to start its own execution. At t = 19, τ3 finishes at execution, at which

time, the virtual gang v= (τ1,τ2) resumes execution. In this case, the blocking time of τ3 is 5-msec

which is within the analytically computed maximum value of Bv = 8-msec.

109

0 10 20 30 Time

Task

τ1

τ2

τ3

v{

Virtual Gang Blocking

Job Release Job Completion

Non-Preemptive

Section

Figure 6.3: Scheduling diagram illustrating the desired locking behavior for the taskset in Ta-
ble 6.2. In this case, the virtual gang member τ1 is not allowed to execute the non-preemptive
section at t = 10 since the higher priority task τ3 is already waiting for the virtual gang to finish its
current non-preemptive section of τ2.

Having established the desired behavior of the member tasks of a virtual gang for executing

non-preemptive sections, in the following, we discuss the changes that we have made to the RTG-

Sync framework to elicit this behavior.

6.4.1 Gang Scheduling Data-Structure

Data-Structure 2 Modified Gang Lock Data-Structure
struct glock

spinlock_t lock;
bool held_flag;
bool hp_waiting;
int no_preempt;
bitmask locked_cores;
bitmask blocked_cores;
task_struct_t* leader;
task_struct_t* gthreads[NR_CPUS];

In order to track the currently executing non-preemptive sections by the virtual gang and any

high priority blocked tasks that are waiting to for those sections to complete, we add two new

fields to our kernel level gang lock data-structure. hp_waiting is a binary flag: if it is set to

110

Algorithm 9: Non-Preemption System Call
1 syscall sys_npp_lock(val)
2 if val ∈ (0,1) ∧ RT _Task(current) then
3 spin_lock(glock→ lock)
4 if val == 0∧glock→ no_preempt > 0 then
5 /* Task is finishing a non-preemptive section. */
6 glock→ no_preempt −= 1
7 if glock→ no_preempt == 0∧glock→ hp_waiting == True then
8 /* Execute the waiting high priority task. */
9 glock→ hp_waiting = False

10 resched_cpus(glock→ blocked_cores)
11 clear_mask(glock→ blocked_cores)
12 else if val == 1∧glock→ hp_waiting == False then
13 /* Allow task to enter non-preemptive section. */
14 glock→ no_preempt += 1
15 else
16 /* The action being attempted is not allowed.
17 Return an appropriate status code to the caller. */
18 end
19 end
20 end
21 return

true, then it means a higher priority task has arrived but cannot begin its execution due to the non-

preemptive segment of the executing gang task. no_preempt is an integer value: it indicates how

many non-preemptive segments are currently being executed by the scheduled gang task. If it is

zero, then it means the scheduled gang task is not executing any non-preemptive sections and it can

be preempted in favor of higher priority tasks. We will now describe how these values are updated

and used by our gang scheduling algorithm.

6.4.2 Non-Preemption System Call

We add a new system call to the Linux kernel to let a real-time task inform the kernel level gang

scheduler when it wants to starts executing a non-preemptive section of code (e.g., accelerator

execution segment). The pseudo-code of this system call is shown in Algorithm 9. The call receives

a single integer value val from the caller which can be either 0 or 1. If the caller is informing the

111

Algorithm 10: Updated Gang Preemption Protocol
1 function do_gang_preemption()
2 if glock→ no_preempt > 0 then
3 /* Preemption is not allowed. */
4 set_bit(this_cpu,glock→ blocked_cores)
5 glock→ hp_waiting = True
6 else
7 /* Perform gang preemption. */
8 for_each_locked_core (cpu,glock→ locked_cores)
9 gthreads[cpu] = null

10 reschedule_cpus(glock→ locked_cores)
11 clear_mask(glock→ locked_cores)
12 end
13 return

kernel about the end of non-preemptive execution, then the no_preempt field of the gang lock

data-structure is decremented (line-6). After the subtraction, if no_preempt value is 0 and a high

priority task is waiting i.e., hp_waiting is true (line-7), then a rescheduling interrupt is sent to all

the cores that have tasks blocked on them; so that the highest priority blocked real-time task may

immediately start its execution (lines-9:11).

If the caller is informing the kernel about starting a non-preemptive section i.e., val = 1, then

it is checked whether a high priority task is currently waiting for an on-going non-preemptive

section to finish. If a high priority task is not waiting, then the caller is allowed to begin its non-

preemptive execution and the no_preempt filed in the gang lock data-structure is incremented

to reflect that (line-14). If the caller is attempting an action that does not fall in the categories

described above, then an appropriate status is returned (line-15); without making any changes to

the gang scheduling data-structure.

6.4.3 Gang Preemption Protocol

We make a minor change to the gang preemption protocol mentioned in Algorithm 5 to enforce the

new locking behavior. The updated algorithm is shown in Algorithm 10. In this algorithm, during

the gang preemption call, we first check whether the scheduled gang is executing a non-preemptive

112

segment (line-2); using the no_preempt value in the gang lock data-structure. If this is the case,

then the preemption request is denied. Instead, the hp_waiting flag is set to indicate that a higher

priority task is currently blocked due to the non-preemptive execution of the scheduled gang. The

blocked_cores mask is also updated to reflect the same (lines-4:5). If a non-preemptive section is

not currently being executed i.e., no_preempt == 0; then the gang preemption request is allowed

as before (lines:8-11).

6.5 Future Work

There are multiple directions in which the work presented in this dissertation can be extended in

the future. One of the limitations of our novel gang scheduling techniques is their applicability

to sporadic tasks. Although we admit that we have focused our discussion on periodic tasks, we

do not see a conceptual or implementation barrier in extending our techniques to the more gen-

eral sporadic task model; although it will require careful consideration of the nuances associated

with analyzing sporadic task systems. Extending our gang scheduling techniques so that our anal-

ysis methodologies can be used to analyze sporadic task systems can be an immediately useful

extension of our work.

A limitation of our virtual gang formation technique presented in Sec. 5.43 is that we only

pick tasks that have the same period to form virtual gangs. A relaxation of this limitation can

be to allow virtual gang formation among tasks that have harmonic periods. According to our

understanding, before this relaxation is allowed, it will have to be carefully analyzed whether the

optimization criterion, used in the current virtual gang formation algorithms, stays valid when tasks

in the candidate-set do not have the same period. Moreover, the schedulability analysis of virtual

gang tasks will have to be revisited for this case.

Yet another extension can be to devise the blocking aware schedulability analysis of the ex-

tended RTG-Sync framework presented in this chapter. It may be assumed that the blocking-aware

response-time analysis of a set of virtual gangs {w1,w2, · · · ,wl}, parameterized according to our

3The same limitation applies to the extension proposed in Sec. 6.3.2.

113

new task model from Sec. 6.3.1, under the rate-monotonic priority assignment scheme [26], can

be done using the following iterative relationship:

Rk+1
i =Ci + max

∀w j∈l p(wi)
Bi + ∑

∀w j∈hp(wi)

⌈Rk
i

Tj

⌉
C j (6.1)

where Rk
i is the response-time of wi at the k-th iteration; Ci is the sum of the WCET of wi

itself and all the virtual gangs with the same period which come before wi in the linear execution

order; l p(wi) represents the set of all virtual gangs which have lower priority than wi and hp(wi)

represents the set of all virtual gangs which have higher priority than wi (i.e., smaller period).

However, this analysis can hold only if the non-preemptive execution segments of the member

tasks of a virtual gang do not partially overlap with each other; as in Figure 6.2. If the non-

preemptive sections partially overlap, then the shape of the virtual gang can change when one

of its non-preemptive sections is delayed due to a waiting high priority task. This can cause the

normal and non-preemptive sections of the virtual gang to get overlapped differently than their

empirically evaluated form under which the virtual gang was parameterized. This situation can be

seen in Figure 6.3. One way to enforce this behavior i.e., no partial overlap of the non-preemptive

sections of a virtual gang, is to use a synchronization scheme—similar to the one in Sec. 5.3 that is

used for synchronous release of virtual gang member tasks—to align the non-preemptive sections

of a virtual gang. This would allow the non-preemptive sections of the virtual gang to be fully

contained within each other which would in turn cause the shape of the virtual gang to stay the

same irrespective of the activation pattern of the high priority tasks. Updating the implementation

of the RTG-Sync framework to include this feature can also be a useful extension of our work.

114

Chapter 7

Conclusion

In this dissertation, we analyzed the problem of ensuring deterministic execution of hard real-time

tasks on heterogeneous multicore platforms. We first established the importance and complexity

of the problem by discussing the effects of shared hardware resource interference which creates a

coupling among all the real-time tasks in the system—through the OS level scheduling policy—

that increases pessimism in the estimation of the worst-case execution time of the real-time tasks.

We also explained how the presence of accelerators (e.g., integrated GPU), in the heterogeneous

SoC, exacerbates this problem.

We presented three frameworks in this dissertation to address this non-determinism problem:

1) A novel CPU-GPU scheduling framework, called BWLOCK++, that ensures predictable exe-

cution of critical GPU kernels on integrated CPU-GPU platforms. 2) A novel gang scheduling

framework, called RT-Gang, which guarantees deterministic execution of parallel real-time tasks

on the multicore CPU cluster of a heterogeneous SoC. 3) The RTG-Sync framework which intro-

duces the notion of virtual gangs, along with algorithms for virtual gang formation, that increases

real-time schedulability under the RT-Gang framework. We also described extensions to these

algorithms to incorporate scheduling on accelerators in a heterogeneous SoC. Throughout our dis-

cussion, we presented concrete evaluation results using simulated tasksets as well as real-world

workloads that demonstrate the analytical and practical benefits of the proposed techniques.

We believe that our presented techniques introduce a new direction in tackling the problem of

non-deterministic execution of real-time tasks due to interference in the shared hardware resources

in the heterogeneous SoCs. We have also identified future directions for extending our work; to

make our techniques more generally applicable to well-known real-time task models. Using our

115

techniques, the designers of real-time systems have a way to circumvent the one-out-of-m core

problem without sacrificing the determinism of the overall system. We consider this the main

achievement of our work.

116

References

[1] “Jetson TX2 Module.” https://developer.nvidia.com/embedded/jetson-tx2.

[2] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memguard: Memory bandwidth

reservation system for efficient performance isolation in multi-core platforms,” in Real-Time

and Embedded Technology and Applications Symposium (RTAS), 2013.

[3] P. K. Valsan, H. Yun, and F. Farshchi, “Taming non-blocking caches to improve isolation

in multicore real-time systems,” in Real-Time and Embedded Technology and Applications

Symposium (RTAS), 2016.

[4] M. G. Bechtel and H. Yun, “Denial-of-service attacks on shared cache in multicore: Analy-

sis and prevention,” in Real-Time and Embedded Technology and Applications Symposium

(RTAS), 2019.

[5] Certification Authorities Software Team, “CAST-32: Multi-core Processors (Rev 0),” tech.

rep., Federal Aviation Administration (FAA), May 2014.

[6] Certification Authorities Software Team, “CAST-32A: Multi-core Processors,” tech. rep.,

Federal Aviation Administration (FAA), November 2016.

[7] L. Sha, R. R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols: An approach to

real-time synchronization,” IEEE Transactions on computers, vol. 39, no. 9, pp. 1175–1185,

1990.

[8] W. Ali and H. Yun, “Protecting Real-Time GPU Kernels on Integrated CPU-GPU SoC Plat-

forms,” in Euromicro Conference on Real-Time Systems (ECRTS), 2018.

117

https://developer.nvidia.com/embedded/jetson-tx2

[9] I. Molnar, “Modular scheduler core and completely fair scheduler.” https://lwn.net/

Articles/230501.

[10] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard-

Real-Time Environment,” Journal of the ACM, vol. 20, no. 1, p. 46–61, 1973.

[11] A. K. Mok, Fundamental Design Problems of Distributed Systems for the Hard Real-Time

Environment. PhD thesis, Massachusetts Institute of Technology, 1983.

[12] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel real-time tasks on multi-

core processors,” in Real-Time Systems Symposium (RTSS), pp. 259–268, IEEE, 2010.

[13] A. Saifullah, J. Li, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time scheduling for

generalized parallel task models,” Real-Time Systems, vol. 49, no. 4, pp. 404–435, 2013.

[14] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic, “Techniques optimizing the number

of processors to schedule multi-threaded tasks,” in Euromicro Conference on Real-Time

Systems (ECRTS), pp. 321–330, IEEE, 2012.

[15] H. S. Chwa, J. Lee, K.-M. Phan, A. Easwaran, and I. Shin, “Global edf schedulability

analysis for synchronous parallel tasks on multicore platforms,” in Euromicro Conference

on Real-Time Systems (ECRTS), pp. 25–34, IEEE, 2013.

[16] P. Axer, S. Quinton, M. Neukirchner, R. Ernst, B. Döbel, and H. Härtig, “Response-time

analysis of parallel fork-join workloads with real-time constraints,” in 2013 25th Euromicro

Conference on Real-Time Systems, pp. 215–224, IEEE, 2013.

[17] D. Lea, “A java fork/join framework,” in Proceedings of the ACM 2000 conference on Java

Grande, pp. 36–43, 2000.

[18] L. Dagum and R. Menon, “Openmp: An industry-standard api for shared-memory program-

ming,” Computing in Science & Engineering, no. 1, pp. 46–55, 1998.

118

https://lwn.net/Articles/230501
https://lwn.net/Articles/230501

[19] M. Ojail, R. David, Y. Lhuillier, and A. Guerre, “Artm: A lightweight fork-join framework

for many-core embedded systems,” in 2013 Design, Automation & Test in Europe Confer-

ence & Exhibition (DATE), pp. 1510–1515, IEEE, 2013.

[20] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and A. Wiese, “A generalized

parallel task model for recurrent real-time processes,” in Real-Time Systems Symposium

(RTSS), pp. 63–72, IEEE, 2012.

[21] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill, “Parallel real-time schedul-

ing of DAGs,” Parallel and Distributed Systems, IEEE Transactions on, vol. 25, no. 12,

pp. 3242–3252, 2014.

[22] J. Goossens and V. Berten, “Gang FTP scheduling of periodic and parallel rigid real-time

tasks,” in International Conference on Real-Time Networks and Systems (RTNS), pp. 189–

196, 2010.

[23] S. Kato and Y. Ishikawa, “Gang EDF scheduling of parallel task systems,” in Real-Time

Systems Symposium (RTSS), pp. 459–468, IEEE, 2009.

[24] Z. Dong and C. Liu, “Analysis Techniques for Supporting Hard Real-Time Sporadic Gang

Task Systems,” in Real-Time Systems Symposium (RTSS), pp. 128–138, 2017.

[25] S. Wasly and R. Pellizzoni, “Bundled scheduling of parallel real-time tasks,” in Real-Time

and Embedded Technology and Applications Symposium (RTAS), pp. 130–142, IEEE, 2019.

[26] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings, “Applying new schedul-

ing theory to static priority preemptive scheduling,” Software Engineering Journal, vol. 8,

no. 5, pp. 284–292, 1993.

[27] S. Baruah and A. Burns, “Sustainable Scheduling Analysis,” in RTSS, pp. 159–168, 2006.

119

[28] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algorithm: exact char-

acterization and average case behavior,” in Real-Time Systems Symposium (RTSS), pp. 166–

171, 1989.

[29] B. Andersson, S. Baruah, and J. Jonsson, “Static-Priority Scheduling on Multiprocessors,”

in RTSS, pp. 193–202, 2001.

[30] J. Fonseca, G. Nelissen, and V. Nélis, “Improved response time analysis of sporadic dag

tasks for global fp scheduling,” in International Conference on Real-Time Networks and

Systems (RTNS), p. 28–37, 2017.

[31] S. K. Dhall and C. L. Liu, “On a Real-Time Scheduling Problem,” Operations Research,

vol. 26, no. 1, p. 127–140, 1978.

[32] S. Baruah, “Task partitioning upon heterogeneous multiprocessor platforms,” in Real-Time

Applications Symposium (RTAS), pp. 536–543, IEEE, 2004.

[33] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman & amp; Co., 1979.

[34] J. M. Calandrino, J. H. Anderson, and D. P. Baumberger, “A Hybrid Real-Time Scheduling

Approach for Large-Scale Multicore Platforms,” in ECRTS, pp. 247–258, 2007.

[35] T. P. Baker and S. K. Baruah, “Schedulability Analysis of Multiprocessor Sporadic Task

Systems,” Handbook of Real-Time and Embedded Systems, pp. 3–1, 2007.

[36] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach. El-

sevier, 2011.

[37] D. Thiebaut and H. S. Stone, “Footprints in the Cache,” ACM Transactions on Computer

Systems (TOCS), vol. 5, no. 4, pp. 305–329, 1987.

[38] J.-L. Baer, Microprocessor Architecture: From Simple Pipelines to Chip Multiprocessors.

Cambridge University Press, 2009.

120

[39] F. Mueller, “Compiler Support for Software-Based Cache Partitioning,” ACM Sigplan No-

tices, vol. 30, no. 11, pp. 125–133, 1995.

[40] J. Liedtke, H. Hartig, and M. Hohmuth, “OS-Controlled Cache Predictability for Real-

Time Systems,” in IEEE Real-Time and Embedded Technology and Applications Symposium

(RTAS), pp. 213–224, 1997.

[41] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan, “Gaining insights into mul-

ticore cache partitioning: Bridging the gap between simulation and real systems,” in IEEE

International Symposium on High Performance Computer Architecture (HPCA), pp. 367–

378, 2008.

[42] X. Zhang, S. Dwarkadas, and K. Shen, “Towards practical page coloring-based multicore

cache management,” in Proceedings of the 4th ACM European Conference on Computer

Systems, EuroSys ’09, pp. 89–102, 2009.

[43] L. Soares, D. Tam, and M. Stumm, “Reducing the harmful effects of last-level cache pol-

luters with an os-level, software-only pollute buffer,” in IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO), pp. 258–269, 2008.

[44] X. Ding, K. Wang, and X. Zhang, “Srm-buffer: An os buffer management technique to pre-

vent last level cache from thrashing in multicores,” in Proceedings of the Sixth Conference

on Computer Systems, EuroSys, pp. 243–256, 2011.

[45] B. C. Ward, J. L. Herman, C. J. Kenna, and J. H. Anderson, “Making shared caches

more predictable on multicore platforms,” in Euromicro Conference on Real-Time Systems

(ECRTS), pp. 157–167, 2013.

[46] H. Kim, A. Kandhalu, and R. Rajkumar, “A coordinated approach for practical os-level

cache management in multi-core real-time systems,” in Euromicro Conference on Real-Time

Systems (ECRTS), pp. 80–89, 2013.

121

[47] Y. Ye, R. West, Z. Cheng, and Y. Li, “Coloris: A dynamic cache partitioning system us-

ing page coloring,” in International Conference on Parallel Architecture and Compilation

Techniques (PACT), pp. 381–392, 2014.

[48] H. Yun, R. Mancuso, Z. Wu, and R. Pellizzoni, “PALLOC: DRAM bank-aware memory

allocator for performance isolation on multicore platforms,” in IEEE Real-Time and Em-

bedded Technology and Applications Symposium (RTAS), pp. 155–166, 2014.

[49] D. B. Kirk, “SMART (Strategic Memory Allocation for Real-Time) Cache Design,” in

RTSS, pp. 229–230, IEEE, 1989.

[50] I. V. Devereux, “Management of caches in a data processing apparatus,” 2003. US Patent

6,671,779.

[51] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal, and R. Iyer, “Cache

qos: From concept to reality in the intel® xeon® processor e5-2600 v3 product family,” in

2016 IEEE International Symposium on High Performance Computer Architecture (HPCA),

pp. 657–668, IEEE, 2016.

[52] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni, “Real-time

cache management framework for multi-core architectures,” in IEEE Real-Time and Em-

bedded Technology and Applications Symposium (RTAS), pp. 45–54, 2013.

[53] D. M. Durham, R. L. Sahita, D. C. Larson, and R. S. Yavatkar, “Page coloring to associate

memory pages with programs,” July 12 2016. US Patent 9,390,031.

[54] N. Kim, J. Erickson, and J. H. Anderson, “Mixed-criticality on multicore (mc2): A status

report,” in Proceedings of the 10th Annual Workshop on Operating Systems Platforms for

Embedded Real-Time Applications, pp. 45–50, 2014.

122

[55] H. Zhu and M. Erez, “Dirigent: Enforcing QoS for Latency-Critical Tasks on Shared Multi-

core Systems,” in Proceedings of the Twenty-First International Conference on Architectural

Support for Programming Languages and Operating Systems, pp. 33–47, 2016.

[56] N. Capodieci, R. Cavicchioli, P. Valente, and M. Bertogna, “Sigamma: Server based gpu

arbitration mechanism for memory accesses,” in International Conference on Real-Time

Networks and Systems (RTNS), 2017.

[57] B. Forsberg, A. Marongiu, and L. Benini, “Gpuguard: Towards supporting a predictable

execution model for heterogeneous soc,” in Design, Automation & Test in Europe (DATE),

(3001 Leuven, Belgium, Belgium), pp. 318–321, European Design and Automation Asso-

ciation, 2017.

[58] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu, “A software memory partition ap-

proach for eliminating bank-level interference in multicore systems,” in International Con-

ference on Parallel Architectures and Compilation Techniques (PACT), pp. 367–375, 2012.

[59] N. Suzuki, H. Kim, D. d. Niz, B. Andersson, L. Wrage, M. Klein, and R. Rajkumar, “Co-

ordinated bank and cache coloring for temporal protection of memory accesses,” in IEEE

International Conference on Computational Science and Engineering (CSE), pp. 685–692,

2013.

[60] H. Yun, W. Ali, S. Gondi, and S. Biswas, “BWLOCK: A Dynamic Memory Access Control

Framework for Soft Real-Time Applications on Multicore Platforms,” IEEE Transactions

on Computers (TC), vol. PP, no. 99, pp. 1–1, 2016.

[61] R. Pellizzoni and H. Yun, “Memory servers for multicore systems,” in IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS), pp. 1–12, 2016.

[62] A. Agrawal, R. Mancuso, R. Pellizzoni, and G. Fohler, “Analysis of dynamic memory band-

width regulation in multi-core real-time systems,” in 2018 IEEE Real-Time Systems Sympo-

sium (RTSS), pp. 230–241, IEEE, 2018.

123

[63] F. Farshchi, P. K. Valsan, R. Mancuso, and H. Yun, “Deterministic Memory Abstraction and

Supporting Multicore System Architecture,” arXiv preprint arXiv:1707.05260, 2017.

[64] Intel, “Improving real-time performance by utilizing cache alloca-

tion technology.” https://software.intel.com/en-us/articles/

introduction-to-cache-allocation-technology.

[65] Y. Xiang, C. Ye, X. Wang, Y. Luo, and Z. Wang, “Emba: Efficient memory bandwidth

allocation to improve performance on intel commodity processor,” in Proceedings of the

48th International Conference on Parallel Processing, pp. 1–12, 2019.

[66] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D. Smith, A. C. Berg, and

S. Wang, “An evaluation of the NVIDIA TX1 for supporting real-time computer-vision

workloads,” in Real-Time and Embedded Technology and Applications Symposium (RTAS),

2017.

[67] N. Otterness, M. Yang, S. Rust, and E. Park, “Inferring the scheduling policies of an em-

bedded cuda gpu,” in Workshop on Operating Systems Platforms for Embedded Real Time

Systems Applications (OSPERT), 2017.

[68] B. Forsberg, A. Marongiu, and L. Benini, “Gpuguard: Towards supporting a predictable

execution model for heterogeneous soc,” in Design, Automation & Test in Europe (DATE),

2017.

[69] B. Forsberg, L. Benini, and A. Marongiu, “HePREM: Enabling predictable GPU execution

on heterogeneous SoC,” in Design, Automation & Test in Europe Conference & Exhibition

(DATE), 2018, pp. 539–544, IEEE, 2018.

[70] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley, “A pre-

dictable execution model for cots-based embedded systems,” in Real-Time and Embedded

Technology and Applications Symposium (RTAS), 2011.

124

https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology

[71] S. A. Panchamukhi and F. Mueller, “Providing task isolation via tlb coloring,” in IEEE Real-

Time and Embedded Technology and Applications Symposium (RTAS), pp. 3–13, 2015.

[72] N. Kim, B. C. Ward, M. Chisholm, J. H. Anderson, and F. D. Smith, “Attacking the one-out-

of-m multicore problem by combining hardware management with mixed-criticality provi-

sioning,” Real-Time Systems, vol. 53, no. 5, pp. 709–759, 2017.

[73] W. Ali and H. Yun, “Work-in-progress: Protecting real-time gpu applications on integrated

cpu-gpu soc platforms,” in 2017 IEEE Real-Time and Embedded Technology and Applica-

tions Symposium (RTAS), pp. 141–144, IEEE, 2017.

[74] H. Aghilinasab, W. Ali, H. Yun, and R. Pellizzoni, “Dynamic memory bandwidth allocation

for real-time gpu-based soc platforms,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 39, no. 11, pp. 3348–3360, 2020.

[75] “Nvidia jetson platforms.” https://developer.nvidia.com/embedded-computing.

[76] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari, G. D. Liu,

and W. mei W. Hwu, “Parboil: A revised benchmark suite for scientific and commercial

throughput computing,” tech. rep., University of Illinois at Urbana-Champaign, 2012.

[77] S. Kato, M. McThrow, C. Maltzahn, and B. Scott, “Gdev: First-class gpu resource manage-

ment in the operating system,” in USENIX Annual Technical Conference (ATC), 2012.

[78] G. A. Elliott, B. C. Ward, and J. H. Anderson, “Gpusync: A framework for real-time gpu

management,” in IEEE Real-Time Systems Symposium (RTSS), 2013.

[79] H. Kim, P. Patel, S. Wang, and R. R. Rajkumar, “A server based approach for predictable

gpu access control,” in Embedded and Real-Time Computing Systems and Applications

(RTCSA), 2017.

[80] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith, “Gpu scheduling on the

nvidia tx2: Hidden details revealed,” in IEEE Real-Time Systems Symposium (RTSS), 2017.

125

https://developer.nvidia.com/embedded-computing

[81] G. C. Buttazzo, Hard real-time computing systems: predictable scheduling algorithms and

applications, vol. 24. Springer Science & Business Media, 2011.

[82] G. K. Hartman, “Modifying a dynamic library without changing the source code | linux

journal.” http://www.linuxjournal.com/article/7795.

[83] “IsolBench code repository.” https://github.com/CSL-KU/IsolBench.

[84] P. K. Valsan, H. Yun, and F. Farshchi, “Addressing isolation challenges of non-blocking

caches for multicore real-time systems,” Real-Time Systems, vol. 53, no. 5, pp. 673–708,

2017.

[85] W. Ali and H. Yun, “Rt-gang: Real-time gang scheduling framework for safety-critical sys-

tems,” in Real-Time and Embedded Technology and Applications Symposium (RTAS), 2019.

[86] H. Yun and P. K. Valsan, “Evaluating the isolation effect of cache partitioning on cots mul-

ticore platforms,” in Workshop on Operating Systems Platforms for Embedded Real-Time

Applications (OSPERT), 2015.

[87] A. Hamann, “Industrial challenges: Moving from classical to high performance real-time

systems,” in International Workshop on Analysis Tools and Methodologies for Embedded

and Real-time Systems (WATERS), July 2018.

[88] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,

M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to End Learning

for Self-Driving Cars,” CoRR, vol. abs/1604.07316, 2016.

[89] NVIDIA, “NVIDIA BB8 Self-Driving Car.” https://blogs.nvidia.com/blog/2017/

01/04/bb8-ces/, 2017.

[90] L. Sha, T. Abdelzaher, K.-E. AArzen, A. Cervin, T. Baker, A. Burns, G. Buttazzo, M. Cac-

camo, J. Lehoczky, and A. K. Mok, “Real time scheduling theory: A historical perspective,”

Real-Time Systems, vol. 28, no. 2-3, pp. 101–155, 2004.

126

http://www.linuxjournal.com/article/7795
https://github.com/CSL-KU/IsolBench
https://blogs.nvidia.com/blog/2017/01/04/bb8-ces/
https://blogs.nvidia.com/blog/2017/01/04/bb8-ces/

[91] B. Sprunt, Aperiodic Task Scheduling for Real-time Systems. PhD thesis, Carnegie Mellon

University, 1990. AAI9107570.

[92] M. G. Bechtel, E. McEllhiney, and H. Yun, “DeepPicar: A Low-cost Deep Neural Network-

based Autonomous Car,” in Embedded and Real-Time Computing Systems and Applications

(RTCSA), 2018.

[93] I. Molnar, “Cfs scheduler.” https://www.kernel.org/doc/Documentation/

scheduler/sched-design-CFS.txt.

[94] S. Rostedt, “Using KernelShark to analyze the real-time scheduler,” Linux Weekly News

(LWN), 2011.

[95] C.-G. Lee, H. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park, M. Lee, and C. S.

Kim, “Analysis of cache-related preemption delay in fixed-priority preemptive scheduling,”

IEEE transactions on computers, vol. 47, no. 6, pp. 700–713, 1998.

[96] D. G. Feitelson and L. Rudolph, “Gang scheduling performance benefits for fine-grain syn-

chronization,” Journal of Parallel and distributed Computing, vol. 16, no. 4, pp. 306–318,

1992.

[97] H. Y. Waqar Ali, Rodolfo Pellizzoni, “Virtual Gang Scheduling of Parallel Real-Time

Tasks,” in Design, Automation & Test in Europe (DATE), European Design and Automa-

tion Association, 2021.

[98] S. Kato et al., “An Open Approach to Autonomous Vehicles,” IEEE Micro, vol. 35, no. 6,

pp. 60–68, 2015.

[99] J. Goossens and P. Richard, “Optimal scheduling of periodic gang tasks,” Leibniz Transac-

tions on Embedded Systems (LITES), vol. 3, no. 1, pp. 04:1–04:18, 2016.

[100] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in TACAS, 2008.

127

https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt

[101] “RT-Gang code repository.” https://github.com/CSL-KU/RT-Gang.

[102] WATERS, “WATERS 2018 Challenge RESSAC Use-Case.” https://github.com/

AdaCore/RESSAC_Use_Case, 2018.

[103] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith, “GPU Scheduling on the

NVIDIA TX2: Hidden Details Revealed,” in IEEE Real-Time Systems Symposium (RTSS),

2017.

128

https://github.com/CSL-KU/RT-Gang
https://github.com/AdaCore/RESSAC_Use_Case
https://github.com/AdaCore/RESSAC_Use_Case

	Introduction
	The Performance Isolation Challenge
	The Nuances of Heterogeneous Computing
	Thesis Statement
	Contributions
	Safe Real-Time Execution on the Integrated GPU
	Deterministic Real-Time Task Scheduling on Multicore CPUs
	Virtual Gang Scheduling of Parallel Real-Time Tasks

	Organization

	Background and Prior Work
	Real-Time Task Models
	Task Models for Multicore Systems

	Response Time Analysis
	Priority based Scheduling Policies
	The Multicore Scheduling Problem

	Performance Isolation in Multicore Platforms
	The Shared Cache Hierarchy
	Bandwidth and Main-Memory
	Performance Isolation on Integrated GPUs

	Summary

	Real-Time Execution on Integrated CPU-GPU SoC Platforms
	Introduction
	System Model
	Task Model
	CPU Scheduling

	BWLOCK++
	Overview
	Automatic Instrumentation of GPU Applications
	Throttle Fair CPU Scheduler (TFS)

	Implementation
	BWLOCK++ System Call
	Per-Core Memory Bandwidth Regulator

	Evaluation
	Setup
	Effect of Memory Bandwidth Contention
	Determining Memory Bandwidth Threshold
	Effect of BWLOCK++
	Throughput improvement with TFS
	Overhead due to BWLOCK++

	Schedulability Analysis
	Discussion
	Conclusion

	Real-Time Gang Scheduling on Multicore CPUs
	Introduction
	Case-Study: Non-Determinism in Multicores
	Design Overview
	One-Gang-at-a-Time Policy
	Safe Best-Effort Task Co-Scheduling

	Illustrative Example
	Implementation
	Gang Lock Acquisition
	Gang Lock Release
	Gang Preemption
	Main Gang Scheduling Algorithm
	Memory Bandwidth Throttling of Best-Effort Tasks

	Evaluation
	Synthetic Workload
	DNN Workload
	Overhead

	Discussion
	Conclusion

	Virtual Gang Scheduling of Parallel Real-Time Tasks
	Requirements for Virtual Gang Scheduling
	Need of Synchronization
	Gang Formation Problem

	System Model
	Virtual Gangs and Scheduler
	Interference Model

	The RTG-Sync Framework
	Middleware
	Kernel Modification

	Virtual Gang Formation
	Optimal Virtual Gang Formation via SMT
	Virtual Gang Formation Heuristic

	Schedulability Analysis
	Simulation Study
	Schedulability Results
	SMT and Heuristic Gang Formation Runtime

	Evaluation
	Setup
	Case-Study
	Overhead

	Discussion
	Conclusion

	Extensions and Future Directions
	Summary of Contributions
	The Accelerator Scheduling Problem
	Hardware Level Scheduling in the Accelerator
	Performance Isolation between Accelerators and CPU Workloads

	Virtual Gang Scheduling with Accelerator using Tasks
	System Model
	Virtual Gang Formation

	Implementation Changes in the RTG-Sync Framework
	Gang Scheduling Data-Structure
	Non-Preemption System Call
	Gang Preemption Protocol

	Future Work

	Conclusion

