934 research outputs found

    Time-varying partitioning for predictive control design: density-games approach

    Get PDF
    The design of distributed optimization-based controllers for large-scale systems (LSSs) implies every time new challenges. The fact that LSSs are generally located throughout large geographical areas makes dicult the recollection of measurements and their transmission. In this regard, the communication network that is required for a centralized control approach might have high associated economic costs. Furthermore, the computation of a large amount of data implies a high computational burden to manage, process and use them in order to make decisions over the system operation. A plausible solution to mitigate the aforementioned issues associated with the control of LSSs consists in dividing this type of systems into smaller sub-systems able to be handled by independent local controllers. This paper studies two fundamental components of the design of distributed optimization-based controllers for LSSs, i.e., the system partitioning and distributed optimization algorithms. The design of distributed model predictive control (DMPC) strategies with a system partitioning and by using density-dependent population games (DDPG) is presented.Peer ReviewedPostprint (author's final draft

    Weak Interactions Based System Partitioning Using Integer Linear Programming

    Get PDF
    The partitioning of a system model will condition the structure of the controller as well as its design. In order to partition a system model, one has to know what states and inputs to group together to define subsystem models. For a given partitioning, the total magnitude of the interactions between subsystem models is evaluated. Therefore, the partitioning problem seeking for weak interactions can be posed as a minimization problem. Initially, the problem is formulated as a non-linear integer minimization that is then relaxed into a linear integer programming problem. It is shown within this paper that cuts can be applied to the initial search space in order to find the least interacting partitioning; only composed of controllable subsystems. Two examples are given to demonstrate the methodology

    A survey of energy saving techniques for mobile computers

    Get PDF
    Portable products such as pagers, cordless and digital cellular telephones, personal audio equipment, and laptop computers are increasingly being used. Because these applications are battery powered, reducing power consumption is vital. In this report we first give a survey of techniques for accomplishing energy reduction on the hardware level such as: low voltage components, use of sleep or idle modes, dynamic control of the processor clock frequency, clocking regions, and disabling unused peripherals. System- design techniques include minimizing external accesses, minimizing logic state transitions, and system partitioning using application-specific coprocessors. Then we review energy reduction techniques in the design of operating systems, including communication protocols, caching, scheduling and QoS management. Finally, we give an overview of policies to optimize the code of the application for energy consumption and make it aware of power management functions. Applications play a critical role in the user's experience of a power-managed system. Therefore, the application and the operating system must allow a user to control the power management. Remarkably, it appears that some energy preserving techniques not only lead to a reduced energy consumption, but also to more performance

    Towards the Model-Driven Engineering of Secure yet Safe Embedded Systems

    Full text link
    We introduce SysML-Sec, a SysML-based Model-Driven Engineering environment aimed at fostering the collaboration between system designers and security experts at all methodological stages of the development of an embedded system. A central issue in the design of an embedded system is the definition of the hardware/software partitioning of the architecture of the system, which should take place as early as possible. SysML-Sec aims to extend the relevance of this analysis through the integration of security requirements and threats. In particular, we propose an agile methodology whose aim is to assess early on the impact of the security requirements and of the security mechanisms designed to satisfy them over the safety of the system. Security concerns are captured in a component-centric manner through existing SysML diagrams with only minimal extensions. After the requirements captured are derived into security and cryptographic mechanisms, security properties can be formally verified over this design. To perform the latter, model transformation techniques are implemented in the SysML-Sec toolchain in order to derive a ProVerif specification from the SysML models. An automotive firmware flashing procedure serves as a guiding example throughout our presentation.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    A scheme for parameterizing cirrus cloud ice water content in general circulation models

    Get PDF
    Clouds strongly influence th earth's energy budget. They control th amount of solar radiative energy absorbed by the climate system, partitioning the energy between the atmosphere and the earth's surface. They also control the loss of energy to space by their effect on thermal emission. Cirrus and altostratus are the most frequent cloud types, having an annual average global coverage of 35 and 40 percent, respectively. Cirrus is composed almost entirely of ice crystals and the same is frequently true of the upper portions of altostratus since they are often formed by the thickening of cirrostratus and by the spreading of the middle or upper portions of thunderstorms. Thus, since ice clouds cover such a large portion of the earth's surface, they almost certainly have an important effect on climate. With this recognition, researchers developing climate models are seeking largely unavailable methods for specifying the conditions for ice cloud formation, and quantifying the spatial distribution of ice water content, IWC, a necessary step in deriving their radiative characteristics since radiative properties are apparently related to IWC. A method is developed for specifying IWC in climate models, based on theory and measurements in cirrus during FIRE and other experiments

    Membranes fabricated with a deep single corrugation for package stress reduction and residual stress relief

    Get PDF
    Thin square membranes including a deep circular corrugation are realized and tested for application in a strain-based pressure sensor. Package-induced stresses are reduced and relief of the residual stress is obtained, resulting in a large pressure sensitivity and a reduced temperature sensitivity. Finite element method simulations were carried out, showing that the pressure-deflection behaviour of the structure is close to that of a circular membrane with clamped edge but free radial motion
    • 

    corecore