42,517 research outputs found

    Realizing live sequence charts in SystemVerilog.

    Get PDF
    The design of an embedded control system starts with an investigation of properties and behaviors of the process evolving within its environment, and an analysis of the requirement for its safety performance. In early stages, system requirements are often specified as scenarios of behavior using sequence charts for different use cases. This specification must be precise, intuitive and expressive enough to capture different aspects of embedded control systems. As a rather rich and useful extension to the classical message sequence charts, live sequence charts (LSC), which provide a rich collection of constructs for specifying both possible and mandatory behaviors, are very suitable for designing an embedded control system. However, it is not a trivial task to realize a high-level design model in executable program codes effectively and correctly. This paper tackles the challenging task by providing a mapping algorithm to automatically synthesize SystemVerilog programs from given LSC specifications

    A Framework for Smart Distribution of Bio-signal Processing Units in M-Health

    Get PDF
    This paper introduces the Bio-Signal Processing Unit (BSPU) as a functional component that hosts (part of ) the bio-signal information processing algorithms that are needed for an m-health application. With our approach, the BSPUs can be dynamically assigned to available nodes between the bio-signal source and the application to optimize the use of computation and communication resources. The main contributions of this paper are: (1) it presents the supporting architecture (e.g. components and interfaces) and the mechanism (sequence of interactions) for BSPU distribution; (2) it proposes a coordination mechanism to ensure the correctness of the BSPU distribution; (3) it elaborates the design of smooth transition during BSPU distribution in order to minimize the disturbance to the m-health streaming application

    Using computer vision in security applications

    Get PDF
    In this paper we present projects developed in the Computer Vision Laboratory, which address the issue of safety. First, we present the Internet Video Server (IVS) monitoring system [5] that sends live video stream over the Internet and enables remote camera control. Its extension GlobalView [1,6], which incorporates intuitive user interface for remote camera control, is based on panoramic image. Then we describe our method for automatic face detection [3] based on color segmentation and feature extraction. Finally, we introduce our SecurityAgent system [4] for automatic surveillance of observed location

    An LLVM Instrumentation Plug-in for Score-P

    Full text link
    Reducing application runtime, scaling parallel applications to higher numbers of processes/threads, and porting applications to new hardware architectures are tasks necessary in the software development process. Therefore, developers have to investigate and understand application runtime behavior. Tools such as monitoring infrastructures that capture performance relevant data during application execution assist in this task. The measured data forms the basis for identifying bottlenecks and optimizing the code. Monitoring infrastructures need mechanisms to record application activities in order to conduct measurements. Automatic instrumentation of the source code is the preferred method in most application scenarios. We introduce a plug-in for the LLVM infrastructure that enables automatic source code instrumentation at compile-time. In contrast to available instrumentation mechanisms in LLVM/Clang, our plug-in can selectively include/exclude individual application functions. This enables developers to fine-tune the measurement to the required level of detail while avoiding large runtime overheads due to excessive instrumentation.Comment: 8 page

    Aspect-Oriented Programming for Test Control

    Get PDF
    Distributed and multithreaded systems are usually much more complex to analyze or test due to the nondeterminism involved. A possible approach to testing nondeterministic systems is to direct the execution of the program under test to take a certain path for each test, so that a unique output can be observed. Considering specification-based testing, we assume that a test case is given together with a test constraint for directing the internal nondeterministic choices. To instruct the program under test to execute according to a given test constraint, the program under test needs to communicate with the tester. In this thesis, we propose to use the features in Aspect-Oriented Programs to realize such communication. This solution does not require the availability of the source code of the program under test. We provide an automated translation from a test constraint to a set of aspects using AspectJ

    GiViP: A Visual Profiler for Distributed Graph Processing Systems

    Full text link
    Analyzing large-scale graphs provides valuable insights in different application scenarios. While many graph processing systems working on top of distributed infrastructures have been proposed to deal with big graphs, the tasks of profiling and debugging their massive computations remain time consuming and error-prone. This paper presents GiViP, a visual profiler for distributed graph processing systems based on a Pregel-like computation model. GiViP captures the huge amount of messages exchanged throughout a computation and provides an interactive user interface for the visual analysis of the collected data. We show how to take advantage of GiViP to detect anomalies related to the computation and to the infrastructure, such as slow computing units and anomalous message patterns.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    UML models consistency management: guidelines for software quality manager

    No full text
    Unified Modeling Language (UML) has become the de-facto standard to design today’s large-size object-oriented systems. However, focusing on multiple UML diagrams is a main cause of breaching the consistency problem, which ultimately reduces the overall software model’s quality. Consistency management techniques are widely used to ensure the model consistency by correct model-to-model and model-to-code transformation. Consistency management becomes a promising area of research especially for model-driven architecture. In this paper, we extensively review UML consistency management techniques. The proposed techniques have been classified based on the parameters identified from the research literature. Moreover, we performed a qualitative comparison of consistency management techniques in order to identify current research trends, challenges and research gaps in this field of study. Based on the results, we concluded that researchers have not provided more attention on exploring inter-model and semantic consistency problems. Furthermore, state-of-the-art consistency management techniques mostly focus only on three UML diagrams (i.e., class, sequence and state chart) and the remaining UML diagrams have been overlooked. Consequently, due to this incomplete body of knowledge, researchers are unable to take full advantage of overlooked UML diagrams, which may be otherwise useful to handle the consistency management challenge in an efficient manner
    corecore