
Siveroni, I., Zisman, A. & Spanoudakis, G. (2010). A UML-based static verification framework for

security. Requirements Engineering, 15(1), 95 - 118. doi: 10.1007/s00766-009-0091-y

<http://dx.doi.org/10.1007/s00766-009-0091-y>

City Research Online

Original citation: Siveroni, I., Zisman, A. & Spanoudakis, G. (2010). A UML-based static verification

framework for security. Requirements Engineering, 15(1), 95 - 118. doi: 10.1007/s00766-009-0091-y

<http://dx.doi.org/10.1007/s00766-009-0091-y>

Permanent City Research Online URL: http://openaccess.city.ac.uk/634/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. Users may download and/ or print

one copy of any article(s) in City Research Online to facilitate their private study or for non-

commercial research. Users may not engage in further distribution of the material or use it for any

profit-making activities or any commercial gain. All material in City Research Online is checked for

eligibility for copyright before being made available in the live archive. URLs from City Research

Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised to

check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/2707945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk
http://www.city.ac.uk/

Requirements Engineering manuscript No.
(will be inserted by the editor)

Igor Siveroni · Andrea Zisman · George Spanoudakis

A UML-based Static Verification Framework for Security

the date of receipt and acceptance should be inserted later

Abstract Secure software engineering is a new research
area that has been proposed to address security issues
during the development of software systems. This new
area of research advocates that security characteristics
should be considered from the early stages of the soft-
ware development life cycle and should not be added as
another layer in the system on an ad-hoc basis after the
system is built. In this paper we describe a UML-based
Static Verification Framework (USVF) to support the
design and verification of secure software systems in early
stages of the software development life-cycle taking into
consideration security and general requirements of the
software system. USVF performs static verification on
UML models consisting of UML class and state machine
diagrams extended by an action language. We present an
operational semantics of UML models, define a property
specification language designed to reason about tempo-
ral and general properties of UML state machines us-
ing the semantic domains of the former, and implement
the model checking process by translating models and
properties into Promela, the input language of the SPIN
model checker. We show that the methodology can be
applied to the verification of security properties by rep-
resenting the main aspects of security, namely availabil-
ity, integrity and confidentiality, in the USVF property
specification language.

Keywords UML · Model Checking · SPIN

1 Introduction

Secure software engineering is a new research area that
has been proposed to address security issues during the
development of software systems [25]. This new area of
research advocates that security characteristics should
be considered from the early stages of the software de-
velopment life cycle and should not be added as another

Department of Computing, City University London
Northampton Square, London EC1V, UK
E-mail: {siveroni,A.Zisman,G.Spanoudakis}@soi.city.ac.uk

layer in the system on an ad-hoc basis after the system
is built. More specifically, security software engineering
attempts to fulfill the lack (a) in existing approaches,
techniques, and methodologies in the area of software
engineering to provide support for the analysis and de-
sign of security requirements and properties, and (b) in
existing approaches for security engineering which con-
centrate on security issues and consider limited aspects
of the software system as a whole.

In the last few years, various approaches to support
formal verification techniques for security protocols [1,
10,23] have been proposed. However, existing formal ver-
ification techniques for security are (i) limited, as they
focus on the verification of mainly interaction protocol
designs, (ii) cannot guarantee security properties of pro-
tocol implementations, (iii) do not consider the system
as a whole, and (iv) use disjoint security and system
design models that are typically expressed in different
languages [34]. As suggested in [2,5,26], security should
be considered from the early stages and through all the
stages of software development. Therefore, it is neces-
sary to develop verification approaches supporting the
specification and analysis of security aspects during early
stages of the development life-cycle, and in a way that
takes into account the entire system design rather than as
a separate layer added to the system as an afterthought
in the form of security protocols.

In this paper we describe a UML-based Static Ver-
ification Framework (USVF) to support the design and
verification of secure software systems in early stages of
the software development life-cycle taking into consider-
ation security and general requirements of the software
system. The development of USVF has been driven by
requirements and scenarios identified by industrial part-
ners in the areas of media and security in an European
project called PEPERS focusing on mobile security [32].
USVF uses UML models represented as class and state
machine diagrams, and a specific action language based
on guards and effects to allow designers of the software
system to express extra behaviour specifications. The
framework incorporates a property language that allows

2 I. Siveroni, A. Zisman and G. Spanoudakis

Table 1 System Requirements

Requirements
R1 Manager starts process by assigning roles and task

to logged-in peers
R2 A Peer can adopt a Journalist or Photographer role
R3 Functionality should be provided to allow Peers to

exchange messages between each other
R4 All Peers should report completion of task to

the Manager
R5 A Peer cannot change roles
R6 Roles and tasks should always (and only) be

assigned by the Manager
R7 Peers should not exchange information, unless au-

thorised, during the execution of the assigned task

the user to specify properties that need to be satisfied by
the system in linear temporal logic. The main novelty
of the property language of USVF arises from the en-
hancement of the basic underlying linear temporal logic
with object oriented modelling constructs, namely at-
tributes, events and actions. The properties that can be
expressed in this language refer to events and actions
affecting the state of system objects and the reason-
ing underpinning the checks for the satisfaction of the
properties takes into account behavioural system mod-
els expressed as state machines. This reasoning is based
on model checking that is performed using SPIN after
translating the properties and the model of a system into
PROMELA (i.e. , the specification language of SPIN).
Furthermore, USVF translates the results of simulation
runs and model checks performed by SPIN into execu-
tion traces of the UML state machines to make them
legible for system developers.

The main contribution of this paper is the definition
of the property specification language that deals directly
with UML models and can be used to express - explicitly
in UML - properties about the execution of UML mod-
els and state machines. The property language of USVF
enables the specification of the basic security properties
of confidentiality, integrity and availability. More gener-
ally, however, it can express properties concerned with
the order of execution of transitions, invocation of ac-
tions, and their effects onto the state of the system.
Considerable amount of research (section 6) has been
dedicated to the development of formal operational se-
mantics of UML and the verification of UML models us-
ing model checking techniques. However, less effort has
been dedicated to the development of property specifi-
cation methodologies suited to model checking of UML
(both syntax and semantics). An initial verification prop-
erty language, µ-UCTL, that considers the semantics of
UML has been proposed in [9]. USVF, however, provides
a property specification language with a richer object
oriented syntax and corresponding operational seman-
tics enabling the expression of a richer set of predicates
involving object fields, class fields and action events.

The work presented in this paper has two goals: (1)
to bridge the gap between UML semantics and property

specification of UML models, and (2) to show that the
methodology can be applied to the verification of security
properties. In order to achieve the first goal, we define a
property specification language designed to reason about
temporal and general properties of UML state machines
using the semantic domains of the former, and imple-
ment the model checking process by translating models
and properties into Promela, the input language of the
SPIN model checker. Finally, we show that the developed
framework can be applied to the verification of security
properties by demonstrating how the basic security prop-
erties, namely availability, integrity and confidentiality,
can be expressed in the USVF property specification lan-
guage.

1.1 Static Verification Framework (USVF) Overview

The general architecture of USVF is shown in Figure 1.
As shown in the figure, USVF consists the following
components: Design Model Constructor, Property Edi-
tor, Verifiers, Translator, and Results Visualization. The
components and the interactions between them can be
seen in Figure 1.

The Design Model Constructor component is respon-
sible for the construction of abstract design models of the
system. We use UML models [28] for the specification of
the structural and behavioural elements of the systems
to be verified. We integrate an existing UML case tool
to assist with the construction of such design models.

The Property Editor allows the user to build the
properties to the verified by the USVF. These properties
are specified using an extended and user-friendly ver-
sion of linear temporal logic (LTL) [6] tailored to reason
about objects and state machines.

We have chosen to use model checking as our main
verification technique and, in particular, the Verifiers

Verifiers
(SPIN Model Checker)

�
 �	Results

�
 �	Promela Model
�
 �	Buchi Automaton

Translators

�
 �	UML Model
�
 �	Property

Design Model
Constructor

Property
Editor

Result
Visualisation
Component

?

? ?

6

6

6

? ?

? ?

Fig. 1 UML Static Verification Framework

UML Model Checking 3

Peer
peer: Peer
manager: Manager
share: Boolean
role: Integer
getRole(r: Integer, s: Boolean,

p: Peer, m: Manager)
sendMsg(m:String)

Manager
peer1: Peer
peer2: Peer
share: Boolean
J: Integer = 1
P: Integer = 2
endTask(p:Peer)

Fig. 2 Example: UML Class Diagram

component uses SPIN [12], a generic model checking tool
that has been applied to the verification of several con-
trol and software systems. SPIN’s specification language,
Promela, is similar to C and supports message pass-
ing channels, essential for the modeling of distributed
systems. Furthermore, SPIN uses an on-the-fly model
checker thus avoiding the need to construct a global
state graph and, consequently, the state-explosion prob-
lem. The mix of flexibility and efficiency, together with
its ability to specify properties as LTL formulas and au-
tomata, makes SPIN an ideal target system.

In order to present the results of the verification pro-
cess, the framework contains a Result Visualization Com-
ponent that shows the parts of the design models in-
volved in a property violation. This is achieved by dis-
playing a step-by-step execution trace of simulations and
error trails.

Finally, the framework contains Translators to sup-
port the mappings from UML design models into Promela
models, and from properties expressed in the extended
LTL property language into the specification language
used by the verifiers.

1.2 Motivating Example

In order to illustrate the key concepts of our approach,
let’s consider an example of a peer-to-peer system de-
signed to support the exchange tasks and data between
journalists and photographers working in a media com-
pany. This example has been extracted (and adapted)
from scenarios specified by the industrial partners of the
PEPERS project [32].

Our example is composed of two peers running on
mobile devices of journalists and a peer system used by
their manager. The journalists and the manager in the
scenario participate in the news coverage of an event.
Once an event has been identified, the manager starts
the news coverage process by assigning specific event cov-
erage roles (e.g. reporting journalists, photographer) to
each of the peers currently logged-in and sending them
information related to the event. Peers can be assigned
one of two roles, journalist or photographer.

After logging into a peer group, a peer should wait
for the manager to send the event coverage role and in-
formation related to the task to be performed. After this
information has been sent by the manager the peer can

proceed with actions related to event coverage. Table 1
shows a list of requirements for this system, including
requirements related to security.

For example, role assignment should always be per-
formed by the manager and peers cannot modify their
roles once they have been assigned. Furthermore, in order
to ensure independent coverage of the event, the jour-
nalist and photographer covering the event should not
exchange information about the event during the execu-
tion of the assigned task unless previous authorisation
has been granted.

Security properties address three very important as-
pects of system behaviour[33], namely, confidentiality, in-
tegrity and availability:

– Confidentiality, also known as secrecy or privacy, en-
sures that data is only made available to authorised
parties (R6, R7).

– Integrity ensures that data can only be modified by
authorised parties or only in authorised ways (R5).

– Availability ensures that data and functionality are
available to authorised parties at appropriate times.
It’s opposite is sometimes called denial of service (R4).

In the rest of this paper, we will show how USVF
can be used to support the specification and checking of
the satisfiability of the above types of security properties
and in reference to a design model of the above system
that is expressed in UML. Figure 2 shows classes in the
design of this system that represent peers and Figure 3
the state machines defining the behaviour of these peers.

Before doing this, however, we present the general
architecture of USVF to enable an understanding of the
overall context of its functionalities.

1.3 Outline

The rest of this paper is structured as follows. Section 2
defines the structure of UML models considered by USVF
and formalises operational semantics of state machines.
Section 3 presents the syntax of the property specifica-
tion language in USVF and the semantics of UML model
checking. Section 4 describes how to translate UML mod-
els and properties into Promela models and SPIN LTL,
respectively. Section 5 presents implementation aspects.
Section 6 compares the framework with related work in
the field. Finally, Section 7 discusses the contributions
and limitations of the framework, and possibilities for
future work.

2 UML Models and Semantics

2.1 Model Definition

The structure of the UML models considered in this pa-
per is defined in Figure 4. These models are graphically

4 I. Siveroni, A. Zisman and G. Spanoudakis

Peer

x
P0

tkPf�� ��Branch
�� ��Photo

�� ��Write

�� ��P2
�� ��P3

�� ��Join
�� ��End

�� ��Msg

-

getRole / peer=p; manager=m;
role=r; share=s

-
[role=Manager.P]

?

[role=Manager.J]
?

�
�

��	
-

sendMsg/

?

[share=true] [share=false]

-endWrite

/if (share=true) call peer.sendMsg(’A’);

-

/call manager.endTask(this);

6
/call peer.sendMsg(’B’);

6
sendMsg/

Manager

tkRf

xR0
�� ��R1

�� ��R2
�� ��R3

-
/call peer1.getRole(Manager.J,share,peer2,this)

?�
endTask

�final

endTask

/call peer2.getRole(Manager.P,share,peer1,this)

Fig. 3 Peer/Manager State Machines

represented by two types of UML diagrams: class dia-
grams, which define the structure of the model, and state
chart diagrams, which specify the behaviour of each of
the defined classes. A valid UML model, made of a single
class diagram and a single state chart diagram per class,
must be a correctly typed element of Model.

The UML subset used by the USVF is expressive
enough to allow the user to model standard object-oriented
elements such as classes, objects with static and non-
static fields (attributes), as well as complex object be-
haviour (including state updates, iterations, conditional
transitions, and hierarchical state machine diagrams.)
The subset of UML assumed by USVF allows also the
specification of interactions between state machines via
message-passing.

Formally, a model U is made of a set of class and
object declarations. Class declarations (c) correspond to
the classes defined by the class diagram while object dec-
larations bind object names (o) to class names (c) and
provide a set of field initialisations.

A class c is composed of a class’ name c, field (at-
tribute) declarations, method (operation) declarations,
and a single state machine µ. The type of a field can be
a basic UML type (Integer, Boolean or String) or a ref-
erence type, i.e. , another class defined in the diagram.
Fields can be static or non-static, as indicated by the
value of a boolean flag static. In addition, static fields
can be assigned default values. An operation m is defined
by its name (m) and list of parameter declarations xi : τi

denoting the parameter’s name and type, respectively.
The class diagram of Figure 2 consists of two classes:

Peer and Manager. Peer declares the fields peer, manager,
share and role of type Peer, Manager, Boolean and Integer,
respectively, and two operations, getRole and sendMsg.
The operation getRole declares parameters r, s and p,
of types Integer, Boolean and Peer, respectively, whereas
sendMsg requires a single parameter, m of type String.
Static fields are represented by over-lining the field’s
name and can optionally be assigned a default value.
For example, the integer static fields J and P in class
Manager are initialised with values 1 an 2, respectively.

The state machine µ of a class is composed of an ini-
tial state (s0), a final state (sf), and two finite sets of

U ∈ Model = P(Class)× P(ObjectD)
U ::= (c∗,O∗)

c ∈ Class = Cname× P(Field)× P(Method)× SM
O ∈ ObjectD = Oname× Cname×Action⊥

O ::= o : c { a };
f ∈ Field = Static× Fname× Type× Constant⊥

m ∈ Method = Mname× (Var× Type)∗

m ::= m(x1 : τ1, . . . , xn : τn)
τ ∈ Type = Primitive ∪ Reference
Primitive = {Integer, Boolean, String}
Reference = Class

µ ∈ SM = State× State× P(State)× P(Trans)
µ ::= (s0, sf , S, T)

s ∈ State = Simple ∪ SComposite ∪OComposite
s ::= s | [s, R] | [s, R1 × . . .×Rn] n > 1

R ∈ Region = Rname× P(State)
R ::= (rg, S)

tr ∈ Trigger = Method
t ∈ Trans = Tname× states(µ)× states(µ)

×Trigger⊥ ×Guard×Action⊥
t ::= (t̄, s1, s2, tr, g, a)

g ∈ Guard g ::= not g | g and g | g or g | true | false | b
b ∈ BPred b ::= e1 opb e2 | tm(n)
a ∈ Action a ::= call x.m(e1, . . . , en) | r = e | a1; a2 |

if (b) a1 else a2

e ∈ AExp e ::= e1 opa e2 | n | r
r ∈ VarRef r ::= x | f | r.f | c.f | this

where x ∈ Var, n ∈ Integer

Fig. 4 UML Model and Action Language

states and transitions. A state s (s ∈ State) can be sim-
ple or composite. A composite state is made of substates
grouped into regions. A composite state can be simple
(SComposite), if it contains a single region, or orthogo-
nal (OComposite), if it’s subdivided into more than one
region. All states and regions are labelled.

Figure 3 shows the state chart diagrams associated
to the Peer and Manager classes of our example. The
state machine diagram of class Peer is composed of the
initial state P0, final state Pf and eight intermediate
states. Initial states are represented by a full circle, fi-

UML Model Checking 5

nal states by two concentric circles whereas intermediate
states e.g. Branch, are represented by an oval surround-
ing the state’s name. All state machines must have an
initial and final state.

A transition (t̄, s1, s2, tr, g, a) is composed by its name
t̄, source state s1 and target state s2. A transition is
graphically represented by an arrow joining its source
and target states, together (optional) with a label indi-
cating the transition’s name. Additionally, a transition
may carry annotations of the form tr [b]/a to indicate
the presence of trigger (tr), guard (g) and effect (a) el-
ements. A trigger defines the event i.e. , an operation
in the restricted form of UML that we assume in this
paper, that triggers the execution of the transition. The
guard defines the condition that must be satisfied in or-
der for the transition to be executed. The effect specifies
the action that is executed together with the change of
state defined by the transition.

Guards and actions are left unspecified by UML in
order to allow the user to adopt the notation that best
suits the problem in hand. In USVF we fill this gap by
adopting a specific notation for specifying guards and
actions. This notation is introduced in the bottom part
of Figure 4 (see last 5 definitions).

In particular, both guard expressions and actions con-
tain references r to UML elements declared in the class
diagram such as non-static fields (f and r.f), static fields
(c.f) and operation parameter names x. The special vari-
able this denotes the current object (also referred as self)
e.g. f is equivalent to writing this.f . A guard g is a
boolean expression that combines classic logical opera-
tors and constants with boolean predicates b, including
the special timeout predicate tm(n) used to control the
amount time spent by the machine in a particular tran-
sition. A transition annotated with a guard will only be
executed if the guard is true. For example, a state ma-
chine of class Peer will only change from state Photo to
P3 if the value of field share is false.

An action a can be a sequence of actions, an assign-
ment, a call action or a conditional. Actions are executed
every time the associated transition is triggered. For ex-
ample, the transition that joins states R0 and R1 in the
state machine of class Manager does not contain a trigger
or guard and, therefore, is executed always regardless of
the local state of the machine. The change of state, from
R0 to R1, is accompanied by the execution of the call ac-
tion associated to the transition, which sends a getRole
message to the object stored by peer1. The message con-
tains as parameters the values of static field J, non-static
fields share and peer2, and the reference to self, this.

Now let’s consider the transition joining states P0
and Branch in the state machine of class Peer. The tran-
sition contains the trigger geRole and, therefore, will only
be executed when the state machine receives a message
containing the getRole operation. When this happens,
the values included in the message are bound to the for-
mal parameters of getRole i.e. r, s, p and m, and the

action associated to the transition is executed together
with the change of state from P0 to Branch. In this case,
the action is a sequence of assignments that updates the
state machine’s fields e.g. manager=m updates the value
of manager to the value mapped to m sent in the message.

A model is completed, or closed, by adding a set of
object declarations to the class and state machine dia-
grams. An object declaration o : c { a }; indicates that
the system will be instantiated with an object o of class
c. Given the absence of object constructors, the action
a is used to initialise the fields of the object. If a field
is left uninitialised, the system assigns the default value
specified in the class diagram or the default value asso-
ciated to its type, in that order. In our example, we need
to instantiate one Manager object and two Peer objects
with initial values that satisfy certain constraints.

Peer a1;
Peer a2;
Manager manager {

peer1=a1; peer2=a2; share=false; };
The object initialisation shown above is used to in-

stantiate a “valid” initial configuration (section 2.3.4) of
the model. The manager object must know in advance,
as specified by the system, the locations of the other two
objects. Therefore, the values of a1 and a2 must be as-
signed to the fields peer1 and peer2 right after object cre-
ation. The system also requires another input, namely,
the value of the share field, which indicates if the peers
can exchange information during the execution of their
tasks. The USVF does not support a way of making these
constraints explicit.

2.2 States and State Hierarchy

The definition of composite states (Figure 4) is, essen-
tially, a tree structure with nodes made of composite
states and regions (composite states branch into regions
and regions branch into substates) and leafs made of sim-
ple states.

The set S in µ = (s0, sf , S, T) contains only the states
present at the top level of the state machine, each defin-
ing a separate tree of states. In order to work with a
single well-formed tree, we complete the tree structure
induced by state machine µ by introducing a fresh root
state that branches to all top-level states.

Definition 1 (State Machine Tree)
Given state machine µ = (s0, sf , S, T) and operations
substates, parent and parentR, the state machine tree of
µ is generated by adding the special sroot element such
that:

substates(root) = S ∪ {s0, sf}
substates(s) = φ, s ∈ Simple

substates([s, (rg, S)]) = S
substates([s,R∗]) =

⋃
(rname,S)∈R∗ S

parent(s) = s′, s ∈ substates(s′)
parentR(s) = R, s ∈ R ∧ R ∈ parent(s)

6 I. Siveroni, A. Zisman and G. Spanoudakis

where operators substates, parent and parentR extract
a state’s substates, parent state (superstate) and parent
region, respectively.

All states in a state machine tree are reachable from root .
Thus, the complete sets of states in µ can be obtained
by traversing the whole tree (starting from root) and
collecting all the visited states.

Definition 2 (Substates of a State Machine) The
complete set of states of state machine µ = (s0, sf , S, T)
is defined by:

states(µ) = {s0, sf} ∪ states(root)
states(s) =

⋃
s∈substates(s) ∪{s}

Definition 3 (State and Transition Ordering) The
tree structure in state machine µ defines the partial order
(states(µ),�µ,⊥) where ⊥ = root and �µ is defined as
follows:

s �µ s′ ⇔ s′ ∈ states(s)

where ≺µ is the non-reflexive version of �µ. We extend
the order relation to transitions. Let s and s′ be the
source states of transitions t and t ′, respectively. We
write t � t ′ if and only if s � s′.

The definition above entails the following:

– root � s, for all s ∈ states(µ).
– For all states s′ ∈ tpath(s), root � s′ � s.
– A state s is reachable from s′ if and only if s′ � s.
– The greatest lower bound of a set of states S (uS)

defines the point where all paths tpath(s), s ∈ S, join.

States are uniquelly identified by their fully qualified
names (QSname). The fully qualified name of s - name(s)
- has two parts: a prefix, made of the concatenation of
the names of the states and regions needed to traverse
in order to get from root to s ı.e. in tpath(s), and the
state’s name s.

name : State → QSname
name(s) = prefix (s)s
prefix (root) = ε

prefix (s) =
{

prefix (s′).s′ s′ ∈ SComposite
prefix (s′).s′.rg′ s′ ∈ OComposite

where s′ = parent(s) ∧ (rg′,−) = parentR(s)

Region names are required only when accesing a substate
in a composite ortogonal state whereas region names in-
side simple composite states are omitted.

2.3 UML Semantics

In this section, we define the operational semantics of
UML models used in USVF. More specifically, we define
the execution of UML models as a two-level operational
semantics. Execution of the UML models considered in
this paper is determined by two behavioural components:

v ∈ Value = PrimVal ∪ObjRef
PrimVal = Int ∪ Bool ∪ String

ô ∈ ObjRef = Oname ∪ {null}
o ∈ Object = Class× (Fname → Value)
H ∈ Heap = (ObjRef → Object) ∪

(Cname× Fname ∪Globals → Value)

e ∈ Exp = Guard ∪AExp
ρ ∈ LEnv = Var → Value
σ ∈ Env = Heap×Object× LEnv σ ::= 〈H , ô, ρ〉

⇓ ∈ Env × Exp → Value σ, e ⇓ v

Fig. 5 Values and Expression Evaluation

state machines and actions. The top-level semantics de-
fines the execution of state machines and the interaction
between the objects of the model. The low-level or action
semantics defines the execution of the actions associated
to machine transitions.

To define this semantics, in Section 2.3.1, we intro-
duce the set of values used by our semantics and de-
fine how expressions are evaluated. We continue in sec-
tion 2.3.2 by defining the semantics of action execution.
Finally, in section 2.3.4, we introduce the concepts of
state machine and model configurations and provide the
rules that define the execution of UML models.

2.3.1 Values and Expressions

Our execution model deals with two types of values,
primitive values and object references (Figure 5). Primi-
tive values correspond to primitive types and, therefore,
can be integers, boolean constants {0, 1}, and strings.
Object references ô denote locations pointing to objects
(o) in the heap H . The heap or global store is a mapping
from static fields to values, and object references to ob-
jects. An object is a mapping from (non-static) fields and
time variables (timer) to values instantiated by functions
new , defined as follows:

new(H , c) = (H [ô 7→ o], ô) where
c = (c, f∗,−,−) ∧ ô = c ∧
o = {(f̄ , v) | (0, f̄ , τ, v) ∈ f∗}∪

{(f̄ , default(τ)) | (0, f̄ , τ,⊥) ∈ f∗}

where

default(τ) =

null τ ∈ Reference
ε τ = String
0 τ ∈ {Integer,Boolean}

Function new assigns new location ô to newly allocated
object o. Fields are initialised to default values. In par-
ticular, fields of reference type are set to the special null
reference. Similarly, the mapping of static fields of a class
is initialised as follows:

static(c) = {(c, f̄ , v) | (1, f̄ , τ, v) ∈ f∗}∪
{(c, f̄ , default(τ)) | (1, f̄ , τ,⊥) ∈ f∗}
where c = (c, f∗,−,−)

UML Model Checking 7

msg ∈ Message ε ∈ Event q, iq , oq ∈ Q α ∈ P(Event)

msg ::= o1, o2, m(v1, . . . , vn)
ε ::= send(msg) | recv(msg) | msg(msg) |

write(o, c, f) | trans(o, t)
q ::= msg∗

α,q−→ ∈ Env ×Action⊥ × P(Event)×Q× Env

γ ∈ SMConf = Object× SM× Ŝtate×Q×Q
Γ ∈ Conf = Heap× P(SMConf)

ŝ ∈ Ŝtate = P(Simple)
α−→ ∈ Model× Conf × P(Event)× Conf

Γ ::= 〈H , {γ1, . . . , γn}〉 σ, a
α,q−→ σ′

γ ::= 〈o, µ, s, iq , oq〉 〈H , {γ1, . . . , γn}〉
α−→ Γ ′

Fig. 6 UML Model - Semantic Domains

An environment σ = 〈H , ô, ρ〉 keeps track of all the
variable bindings valid at a particular program point,
including global variables and static fields stored in H
and the non-static fields of the current object ô. The
local environment ρ contains the binding generated by
the execution of a transition e.g. parameters contained
in the trigger. Environment look-up, denoted by L(σ, r),
where σ = 〈H , ô, ρ〉 is performed as follows:

L(σ, c.f) = H (c.f) L(σ, f) = H (ô)(f)
L(σ, x.f) = L(σ, x)(f) L(σ, x) = ρ(x)
L(σ, this) = ô

Boolean (g ∈ Guard) and arithmetical (e ∈ AExp)
expressions evaluate to values. Expression evaluation is
denoted by σ, e ⇓ v, where the evaluation function ⇓
takes expression e and environment σ and returns value
v.

Let σ, gi ⇓ vi and σ, ei ⇓ vi. The evaluation of boolean
expressions is defined as follows:

σ, true ⇓ 1 σ, (not g) ⇓ (¬v)
σ, false ⇓ 0 σ, (g1 and g2) ⇓ (v1 ∧ v2)
σ, null ⇓ null σ, (g1 or g2) ⇓ (v1 ∨ v2)
σ, (e1 opb e2) ⇓ ‖opb‖(v1, v2)

where ‖opb‖ is the predicate associated to operator opb .
Similarly, evaluation of arithmetical expressions is de-
fined by:

σ, n ⇓ n σ, r ⇓ L(σ, r) σ, (e1 opa e2) ⇓ ‖opa‖(v1, v2)

Our semantics is equipped with a set of time vari-
ables (timers) used to keep track of the number of steps
executed by the model. We define a global clock tm and
a set timers tm(o, s) - one for each state in every ob-
ject declared in the model - together with the following
operations:

tm ∈ Globals, tm(o, s) ∈ Globals,∀o, s ∈ U
H
√

= H [tm 7→ x], x = H (tm) + 1
H
√

o,s∗ = H [tm 7→ x][tm(o, s) 7→ x]s∈s,

where H
√

increments the global clock by one and H
√

o,s∗

increments the clock and sets the timers of each state in
s∗ to the new clock value.

The tms(n) guard checks if the time elapsed since
state s was entered is greater or equal then n:

〈H , ô, ρ〉, tms(n) ⇓ (H (tm)−H (tm(name, s))) ≥ n

where s is the source state of the transition labelled by
tm(n)

2.3.2 Action Semantics and Events

Figure 6 defines the semantic domains and runtime
structures involved in the execution of UML models.
More specifically, it defines the domain of the execution
relations

α,q−→ and α−→ used to model the execution of
actions (low-level semantics) and UML state machines
(top-level semantics), respectively.

State machine actions (Section 2.1, Figure 4) modify
an object’s state (fields) and generate events captured
by the top-level semantics. An action is executed when
the transition associated with it is scheduled by the top-
level semantics. Action execution generates two kinds of
events:
– send(o1, o2,m(v1, . . . , vn)), generated by the execu-

tion of a call action.
– write(o, c, f), generated by the execution of an assign-

ment. It reports the modification of field f on object
o of class c.
The rest of the events i.e recv, msg and trans; are

generated by the top-level semantics as explained in sec-
tion 2.3.4.

Definition 4 (Action Semantics) Action execution
is defined as the smallest relation −→ that satisfies the
rules in Figure 7. We write σ, a

α,q−→ σ′ to denote the exe-
cution of action a under environment σ, where α denotes
the set of generated events, q the queue of messages to
be sent, and σ′ reflects the changes made to σ after the
execution of a.

Rule (7.1) shows the execution of the empty action ⊥,
used to express the absence of an action in a transition.
Rule (7.2) implements sequencing, that is, the composi-
tion of the execution of actions a1 and a2.

Message passing, defined by rule (7.3), is started by
the execution of action call r .m(e1, . . . , en). The execu-
tion of call creates a message containing the current ob-
ject’s location ô, the target ô′ obtained from reference r ,
the method’s name and the evaluated arguments. The
message, (ô, ô′,m(v1, . . . , vn)), is used to generate a new
send event and placed into the action’s message queue.

Rules (7.4) and (7.5) implement variable assignment.
They contemplate two cases: the first case updates the
value of static fields and local variables while the second
case deals with field update. Field update modifies the
heap by updating the target object and generates a write
event indicating the field modified by the action.

8 I. Siveroni, A. Zisman and G. Spanoudakis

(7.1) 〈H, ô, ρ〉,⊥ φ,ε−→ 〈H, ô, ρ〉

(7.2) 〈H , ô, ρ〉, a1
α1,q1−→ 〈H1, ô, ρ1〉

〈H1, ô, ρ1〉, a2
α2,q2−→ 〈H ′, ô, ρ′〉

α = α1 ∪ α2 ∧ q = q1 ::q2

〈H, ô, ρ〉, a1; a2
α,q−→ 〈H ′, ô, ρ′〉

(7.3) ô′ = L(〈H, ô, ρ〉, r)
i = 1, . . . , n : 〈H, ô, ρ〉, ei ⇓ vi

msg = (ô, ô′, m(v1, . . . , vn))
α = {send(msg)}

〈H, ô, ρ〉, call r .m(e1, . . . , en)
α,msg−→ 〈H, ô, ρ〉

(7.4) 〈H, ô, ρ〉, e ⇓ v

(H ′, ρ′) =
{

(H , ρ[x 7→ v]) r = x
(H [c.f 7→ v]) r = c.f

〈H, ô, ρ〉, r = e
φ,ε−→ 〈H ′, ô, ρ′〉

(7.5) 〈H, ô, ρ〉, e ⇓ v

ô′ =
{L(〈H , ô, ρ〉, x) r = x.f

ô r = f
α = {write(ô′, f)}

H ′ = H [ô′ 7→ H (ô′)[f 7→ v]]

〈H, ô, ρ〉, r = e
α,ε−→ 〈H ′, ô, ρ〉

Fig. 7 Action Semantics

2.3.3 State Trees and Tree Rewrite

One of the main consequences of having composite states
is that, at any point during execution of the model,
state machines may have more than one active (current)
state. Not only does the existence of orthogonal compos-
ite states spawn a set of concurrent active states. Given
leaf state s, the set of all states in tpath(s) also become
active i.e. a transition leaving any superstate of s can
potentially be fired.

Thus, the set of active states form also a tree struc-
ture ŝ ∈ Ŝtate. We call ŝ a state tree and represent it by
listing all its leaf states. In this way, tree trimming and
extension can be implemented with set operations.

State trees are initialised by the start function:

start(s) = {s}, s ∈ Simple
start([s,R]) = {initialR} (SComposite)

start([s,R∗]) = {initialR | R ∈ R∗} (OComposite)

State trees are transformed by the execution of transi-
tions. Such transformation, state tree rewrite, is defined
by ŝ

t
; ŝ′.

Definition 5 (State Tree Rewrite) Given state tree
ŝ = {s1, . . . , sn} and transition t = (s, s′,−,−,−), we
define ŝ

t
; ŝ′ (ŝ is transformed into ŝ′ by applying t) as

follows:

ŝ
t
; ŝ′ ⇔ t = (−, s, s′,−,−)
ŝ = S ∪ S′ ∧ ŝ′ = S′ ∪ start(s′)
sx = s u s′

S = {sl ∈ ŝ | sl ∈ sx}

2.3.4 UML Operational Semantics

The operational semantics of UML models is defined as
a small step semantics [39] on program configurations.
A program configuration Γ = 〈H , {γ1, . . . , γn}〉 repre-
sents the state of execution, at any given time, of a UML
model. It is made of the heap H and the set of machine
configurations keeping runtime information for each of
the objects declared in the model. A machine configura-
tion γ = 〈ô, µ, ŝ, iq , oq〉 is made of the object’s location
ô, the state machine µ declared for the object’s class,
the machine’s current state s, and the input and output
queues, iq and oq , respectively.

Definition 6 (Initial Program Configuration) Let
U = (c∗,O∗). An initial program configuration of model
U is the configuration obtained after the initialisation
of all the objects declared in O∗. We say that Γ is an
initial configuration of U = (c∗,O∗), and write U `I Γ ,
if initialisation takes place as follows:

(c∗,O∗) `I 〈H , {γ1, . . . , γn}〉 ⇔
H = Hn ∧ O∗ = {O1, . . . ,On} ∧
i ∈ {1, . . . , n} :

γi = 〈ôi, µi, start(si), ε, ε〉 ∧ ci = (−,−,−, µi)
Oi = oi : ci { ai };
〈Hi−1, ôi, ρ〉, ai

φ,ε−→ 〈Hi, ôi, ρ〉
where

ρ = [oi 7→ ôi]i∈{1,...,n} ∧ H0 = H ′
m

c∗ = {ci, . . . , cm}
j ∈ {1, . . . ,m} : (H ′

j , ôj) = new(Hj−1, cj)
H ′

0 = (
⋃

cj∈c∗ static(cj)) ∪Globals(U)

In other words, initialisation takes place in the following
order:

– All static fields and global variables (clock and timers)
are initialised and placed in the initial heap H ′

0.
– All objects declared in O∗ are allocated and initialised

with default values (new function defined in 2.3.1),
generating heap H ′

m and local environment ρ..
– All initalisation actions ai are executed, resulting in

final heap H = Hn.
– A state machine configuration γi is generated per de-

clared object Oi, where start(si) is the initial state
tree of µi.

– The resulting heap is paired with the set of machine
configurations i.e. 〈H , {γ1, . . . , γn}〉.

State machine execution is driven by transition exe-
cution. We say that a transition is enabled if its source

UML Model Checking 9

(8.1) γ1 = 〈o1, µ1, ŝ1, iq1,msg :oq1〉 ∧ γ2 = 〈o2, µ2, ŝ2, iq2, oq2〉
msg = (−, or, m(−)) ∧ (or = o2) ∧ α = {(msg msg)}

γ′1 = 〈o1, µ1, ŝ1, iq1, oq1〉 ∧ γ′2 = 〈o2, µ2, ŝ2, iq2, oq2 :msg〉
U ` 〈H , {γ1, γ2} ∪ γ∗〉 α−→ 〈H , {γ′1, γ′2} ∪ γ∗〉

√

(8.2) t ∈ enabled(H , γ) ∧ γ = 〈o, µ, ŝ, iq , oq〉 ∧ t = (−,−,⊥, g, a) ∧ ŝ
t

; ŝ′

〈H, o,⊥〉, a α′,q−→ 〈H ′, o,⊥〉 ∧ α = α′ ∪ {trans(o, t)} ∧ γ′ = 〈o, µ, ŝ′, iq , oq ::q〉
U ` 〈H , {γ} ∪ γ∗〉 α−→ 〈H ′, {γ′} ∪ γ∗〉

√
o

(8.3) t ∈ enabled(H , γ) ∧ γ = 〈o, µ, ŝ,msg : iq , oq〉 ∧ t = (−,−, m, g, a)
msg = (−, o, m(v1, . . . , vn)) ∧ M = m(x1, . . . , xn) ∧ ρ = [xi 7→ vi]

ŝ
t

; ŝ′ ∧ 〈H, o, ρ〉, a α′,q−→ 〈H ′, o,−〉 ∧ α = α′ ∪ {recv(msg), trans(ô, t)}
U ` 〈H , {γ} ∪ γ∗〉 α−→ 〈H ′, {〈o, µ, ŝ′, iq , oq ::q〉} ∪ γ∗〉

√
o

(8.4) enabled(H , γ) = φ ∧ hasTriggers(H , γ) 6= φ ∧ γ = 〈o, µ, ŝ,msg : iq , oq〉
U ` 〈H , {γ} ∪ γ∗〉 φ−→ 〈H , {〈o, µ, ŝ, iq , oq〉} ∪ γ∗〉

√

(8.5) ∀γ ∈ γ∗.(enabled(H , γ) = φ ∧ γ = 〈−,−,−, iq , ε〉)
U ` 〈H , γ∗〉 φ−→ 〈H , γ∗〉

√

Fig. 8 UML Operational Semantics

state is part of the current state of the machine config-
uration and its firing conditions are satisfied. Only one
enabled transition will be executed at the time.

We separate transitions into two groups, completion
(no trigger) and triggered transitions. Transition firing
conditions are checked by the completion(H, γ, s) and
triggered(H, γ, s), which return the set of enabled com-
pletion and triggered transitions, respectively, leaving
source state s.
A completion transition is enabled if its guard evaluates
to true:

completion(H , 〈o, µ, ŝ, iq , oq〉, s) =
{t ∈ trans(µ). t = (s,−,⊥, g,−) ∧ 〈H, o,⊥〉, g ⇓ 1 }

Triggered transitions are enabled only if the required
trigger (operation) is found at the front of the object’s
input queue and its guard evaluates to true:

triggered(H , 〈o, µ, ŝ,msg : iq , oq〉, s) = {t ∈ trans(µ).
t = (s,−,m, g,−) ∧ msg = (−, o, m(v1, . . . , vn)) ∧
M = m(x1, . . . , xn) ∧ ρ = [xi 7→ vi] ∧
〈H, o, ρ〉, g ⇓ 1 }

Given current (leaf) state s, a transition is enabled if
its firing conditions are satisfied and s is reachable (sub-
state) from the transition’s source state s′ i.e. s′ � s. It
may be the case that the set of enabled transitions con-
tains conflicting transitions, that is, transitions t and t ′
where the source state of one of them is a substate of the
other e.g. t ≺ t ′. If that is the case then transtions with
higher order (states deeper in the tree) should be given
priority e.g. t ′. Furthermore, completion states should
be given priority against triggered transitions when cal-
culating the set of enabled transitions leaving the same
state.

The set enabled(H, γ, s) of enabled transitions asso-
ciated to a current single state s is defined as follows:

enabled(H, γ, s) =φ s = root
enabledL(H, γ, s) enabledL(H, γ, s) 6= φ
enabled(H, γ, parent(s)) otherwise

enabledL(H, γ, s) ={
completion(H, γ, s) completion(H, γ, s) 6= φ
triggered(H, γ, s) otherwise

Finally, the set of enabled transitions associated to a
state machine configuration γ = 〈o, µ, ŝ, iq , oq〉 is defined
as follows:

enabled(H, γ) =
⋃
s∈ŝ

enabled(H, γ, s)

We are now ready to define the operational semantics of
state machines.

Definition 7 (UML Small Step Semantics) Let−→
be the smallest relation that satisfies the rules in Fig-
ure 8. We write U ` Γ

α−→ Γ ′ to denote the execution
of one computational step from program configuration Γ
to Γ ′. The change of configuration may generate a set of
runtime events, denoted by α.

The rules in Figure 8 are mainly concerned with mes-
sage passing and the execution of transitions. Message
passing is realised in three steps. First, the sender exe-
cutes a call action which places the message in the sender’s
output queue. Second, when the message reaches the
front of the queue, the scheduler removes it and places
it at the back of the receiver’s input queue. Third, the
message is removed from the top of the receiver’s input

10 I. Siveroni, A. Zisman and G. Spanoudakis

queue when, and if, there are only triggered transitions
to execute.

Rule (8.1) describes the role of the scheduler. It re-
moves the message from the output queue of o1 in state
machine configuration γ1, matches the recipient identity
with o2 and places the message in the recipient’s input
queue. This step generates event msg(msg).

Rule (8.2) describes the execution of completion tran-
sitions. The execution of this rule generates a trans event,
together with the events α′ generated by the execution
of the action a attached to the transition.

Rule (8.3) describes the execution of a triggered tran-
sition in state machine configuration γ. If the message
msg in front of the input queue of γ matches the trig-
ger of the transition (and the guard evaluates to true),
the associated action is executed and the state machine
configuration changes its current state. Note that the
evaluation of the guard and the execution of the action
(and the evaluation of the guard, performed by enabled)
uses the values passed as arguments in the message by
creating a new local environment ρ = [xi 7→ vi]. This
rule generates recv and trans events, as well as the ones
generated by the action a associated to the transition.

If there no enabled transitions but there are triggered
transitions (with source state in ŝ’s path) waiting for
messages then rule (8.4) is executed. This means that
deferred events are not considered i.e. events that do not
trigger any transitions are discarded. In rule (8.4), if no
enabled transitions t can be found and hasTriggers(H , γ)
is not empty, message msg is removed from the front of
the input queue of state machine configuration γ.

If any of the conditions required by the rules above
are satisfied i.e. no transitions are enabled and all output
queues are empty, then rule (8.5) is fired.

All the rules increment the global clock tm by one by
executing the

√
operation on the resulting configuration.

If there is a change of state - rules (8.2)-(8.3) - the timers
of the new states are set to the new clock value:

〈H , γ∗〉
√

= 〈H
√

, γ∗〉
〈H , γ∗〉

√
o = 〈H

√
o,ŝ〉 where 〈o, µ, ŝ,−,−〉 ∈ γ∗

2.3.5 The Example

Let’s go back to the model defined by the class and state
chart diagrams shown in Figures 2 and 3. The model
defines two classes, Peer and Manager. A Manager ob-
ject requires as input two peer objects, which must be
assigned to fields peer1 and peer2. Therefore, a correct
instantiation of the model should contain a Manager ob-
ject and two Peer objects with the correct initialisations.
As noted in section 2.1 we complete our model by writ-
ing:

Peer a1;
Peer a2;
Manager manager {

peer1=a1; peer2=a2; share=false; };

After all initialisations and object allocations are fin-
ished, the program configuration contains three state
machine configurations, all set to the machines’ initial
states. We now describe the steps taken by each of the
objects.

A Peer object always starts by blocking on its initial
state, waiting for the arrival of message getRole. Execu-
tion will proceed only when a getRole message reaches
the front of the input queue. When this happens, the ar-
guments sent with the message are assigned to variables
p, m, r and s, respectively, and the action peer=p; ... is
executed. Once the information regarding the assigned
task (manager,role, shared and peer) is stored in the re-
spective fields, a peer branches depending on its role.
If the value of field shared is true, the Journalist object
sends a sendMsg operation to its sibling and the Photog-
rapher object blocks and waits for the sendMsg operation
to reach the front of the input queue. Once the message
is dequeued, the Photographer proceeds to state Join.
If the value of shared is false, both peers go straight to
state Join. At this point, a peer reports the completion of
the assigned task by sending an endTask message to the
manager, sends a sendMsg to its sibling peer and waits
until the a similar message arrives from its sibling peer.

The Manager object executes four transitions. The
first transition contains an action which, when executed,
sends a getRole message to peer1 containing the peer’s
role (Manager.J), information indicating if the peers can
communicate during the execution of the assigned task
(shared), the location of its sibling (peer2) and its own
location (this). The second transition does the same for
peer2 and role Manager.P. Finally, the manager waits
for the arrival of two endTask messages from the peers
indicating the completion of the news coverage event.

In this example, the internal execution of each state
machine is deterministic. However, the execution of the
whole system is not. Transition execution and message
passing can interleave thus generating several execution
traces or paths. The following section formalises the no-
tion of execution path and defines a language used to
verify properties against all possible execution traces. We
will find that, for our example, not all execution traces
fit the intended behaviour.

3 Property Specification and Verification

3.1 The USVF Property Specification Language

LTL is a popular formalism well suited not only for the
verification of general system requirements, but also for
the specification of security properties. However, in order
to be useful in the context of UML models, LTL has to
be able to explicitly reason about transition execution,
states, class values and messages. In the following we
introduce the USVF property specification languageas

UML Model Checking 11

Φ ::= op1 Φ | Φ op2 Φ | P
op1 = {not, next, always, eventually}
op2 = {until, and, or, implies}

P ::= P b | P e[L]
P b ::= b | state(r , s)
P e ::= trans(r , t̄) | write(r , f̄) |

send(r1, r2, m) | recv(r1, r2, m) | msg(r1, r2, m)
L ::= .and{g} | .implies{g}
where b ∈ BPred, g ∈ Guard, s ∈ QSname

Fig. 9 Property Specification Language

an extension of LTL that tackles these problems and in
Section 3.4 we formally define its semantics.

LTL reasons about the validity of predicates over all
execution traces of a model. The syntax of the formulae
Φ used to specify properties of the execution of UML
models is defined by the grammar shown in Figure 9.
According to this grammar, a formula Φ in the USVF
property specification language is made of binary and
unary temporal and logical operators applied recursively
on local predicates P . The LTL operators used by USVF
are always, eventually and until. For example, we can write

P1 always (o1.value < 100)
P2 eventually (o2.balance >= Account.Limit)
P3 (o3.balance < 500) until (o3.overdraft=true)

where P1 is true if the field value of object o1 is less
than 100 on every execution state, P2 is true if the field
balance of object o2 becomes, at some point, equal to the
value of static field Account.Limit, and P3 is true if the
value of field balance in object o3 does not exceed 500 in
the states previous to field overdraft becoming true.

A predicate P can either be state predicate P b, which
expresses properties about the state of the system (e.g.
objects, static and non-static fields), and a machine pred-
icate P e, which expresses properties about the effects
and events generated by the execution of state machines
(e.g. actions, transitions and message passing). In P b,
we re-use the set of predicates b used in the specification
of UML models (Figure 4) and add the predicate state
where state(o,s) checks if the current state of object o is
s.

P e can be one of the special predicates send, recv,
msg, write and trans specific to UML state machines:

– send(o1,o2,m) checks if object o1 has made a call to
operation m in object o2.

– recv(o1,o2,m) checks if object o2 has received i.e. re-
moved from the input queue, a message from o1 con-
taining operation m.

– msg(o1,o2,o3) checks if the message has been sent by
the scheduler.

– write(o,f) checks if field f has been modified in object
o.

– trans(o,t) checks if transition t has been executed in
object o.

For example, given the following formulas:
P4 eventually state(o1,S2)
P5 always (send(o1,o2,getValue) implies

(eventually send(o2, o1, receiveValue))
P6 always (state(o2,R1) implies (o1.result > 100))
P7 always state(o1,initial) implies

eventually trans(o2,R2)
P4 checks if the state machine of o1 eventually reaches
state S2, P5 checks that all calls to getValue are matched
by a call to receiveValue, P6 is true if the value of result
in object o1 is always greater than 100 every time o2
reaches state R1, and P7 will check that transition R2 in
o2 is always executed after (at some point in the future)
o1 reaches state initial.

Of particular interest is the special (optional) scope
construct L added to the machine predicates P e. By
writing send(o1,o2,m).and{ x < 2 } the user can reason
about the arguments of operations. Assuming x is de-
clared as argument of m, the predicate above will be
true if there is a call of m from o1 to o2 and the value of
x is less than 2. Furthermore, the scope construct brings
the active object related to the predicate into scope. For
example, all fields of object o are within the scope of L
in state(o,s) and thus, can write state(o,s).and{ f < 5 }
where f is a field of f .

The scope construct also allows the user to access
the values of special system variables linked to the oc-
currence of certain events. These variables are SENDER,
RECEIVER and METHOD, available for predicates send,
recv, msg. For example, if we want to check that no calls
are made to any method in object o from objects o1 or
o2 we can write:

always msg(*,o,*).implies{SENDER != o1 and
SENDER != o2}

3.2 Specification of Security Properties

Availability, integrity and confidentiality are, essentially,
special cases of liveness and safety properties. By extend-
ing LTL to handle explicitly UML elements we provide
a basic framework to specify security properties of UML
models. Schneider [36] provides a precise characterisation
of the class of enforceable security properties, specified
by security automata. The set of constructs provided the
USVF specification language allows for the specification
of such class of properties. For example, the property
stating that the first call from o1 to o2 must be Read
followed by no calls to Send can be specified by writing:

call(o1,o2,*).implies{METHOD != Read} until
(call(o1,o2,Read) and
(always call(o1,o2,*).and{METHOD != Send}))

Furthermore, attacker models can be specified by con-
structing state machines that implement malicious be-
haviour. For example, an impersonation attack can be

12 I. Siveroni, A. Zisman and G. Spanoudakis

implemented by placing a state machine that: (1) sim-
ulates the behaviour of the intended recipient - using
the recipient’s state machine - (2) sends part of the mes-
sages to the original recipient and (3) introduces new be-
haviour. A denial of service attack can be implemented
by creating a state machine that reads the messages from
a particular sender and either drops messages or inun-
dates the original sender with reply messages.

3.3 The Example

The USVF property specification language can be used
to express desired properties that should be checked for
the example system introduced earlier in the paper. For
example, verification of:

eventually state(a1,Branch)
gets us back true. We also get a positive answer when
we check for:

always (state(a1,Branch) implies
always a1.role=Manager.J)

which means that, after the object reaches the state
Branch, the role field always contains the intended value.
However, if we check:

eventually state(a2,Pf)
we get back an error. This means that at least one exe-
cution path does not satisfy the property. After close in-
spection of the counter-example reported by the model
checker we find out that the object with role Journal-
ist may get the sendMsg message before getRole arrives.
The semantics instructs the state machine to consume
the message and wait for getRole, which eventually ar-
rives. The initial message is lost and the machine will get
stuck at state Msg.

We solve the problem by adding a synchronisation
variable count implemented as an static field of Peer.
The variable is initialised to 0 and incremented by 1
when getRole is processed. We must also strenghten the
guards leaving Branch. For example, the transition cor-
responding to the Photographer role should be guarded
as follows:

[role=Manager.P and Peer.count=2]
Continuing with our example, we may want to check

that all getRole invocations pass as argument the value
of the Manager’s field share:

always send(a1,a2,getRole).implies{ s = share }
Similar checks can be performed to ensure that R1

from Table 1 (”the Manager starts the process by as-
signing roles and task to logged-in peers”) is satisfied.
Requirement R2 i.e. ”A peer can adopt a Journalist or
Photographer role”, can be verified with the following
formula for a1:

always (state(a1,Branch) implies
(always (a1.role= Manager.J or a1.role=Manager.P))

Note, however, that including only the second half of the
formula will give us an error since roles are assigned at
state Branch. Requirement R3 is easily verified by first

checking (in the class diagram) that the sendMsg opera-
tion satisfies the required signature and that the opera-
tion is actually invoked e.g. eventually msg(*,a1,sendMsg).

We now proceed to show how the requirements listed
in Table 1 related to the security properties defined in
section 1.2, namely availability, integrity and confiden-
tiality, can be specified using the property specification
language.

Availability, which deals with the readiness of a sys-
tem to provide timely data and functionality, can be
specified in several ways. For example, a state from the
state machine diagram can be specified as a ready state
which must eventually be reached by the system. Also,
availability of operations can be specified by forcing an
answer after an operation request. This is the case of re-
quirement R4 where we want to make sure that all task
assignments are matched by a endTask response:

always (send(manager,a2,getRole) implies
(eventually recv(a2,manager,multiply)))

Integrity is concerned with the unauthorised modifi-
cation of an object’s state. Integrity can be verified by
ensuring that a particular sequence of operations or ac-
tions does or does not take place - as in [36] - or by
verifying that write operations are not performed in a
particular object during a specific situation. For exam-
ple, if we want to check that the value of the role field
does not change after state Branch - requirement R5 - we
should write:

always (state(a1,Branch) implies
(always (not write(a1,role))))

Confidentiality (R6 and R7) is concerned with ensur-
ing authorised access to data in a system. Requirement
R6 stipulates that all role assignments should come from
Manager. Thus, R6 for peer a1 can be specified as follows:

always recv(*,a1,getRole).implies{SENDER=manager}
The final requirement, R7, requires that all commu-

nication between the peers during the execution of the
task must be authorised. Such, authorisation is deter-
mined by the value of field share. Then, we can check for
the occurrence of invocations to getRole. However, if we
write:

always (send(a1,a2,sendMsg)
implies (manager.share=true))

we will get an error since the peers do exchange mes-
sages after the completion of the assigned task. The cor-
rect way of specifying the property is to restrict the check
to the states between Branch and End:

always (state(a1,Branch) implies
((send(a1,a2,sendMsg) implies

(manager.share=true))
until state(a1,End)))

3.4 Verification by Model Checking

The USVF Property Specification Language is an LTL-
based language that deals with UML elements defined by

UML Model Checking 13

class and state machine diagrams. In a system of tempo-
ral logic, various temporal logic operators or modalities
are provided to describe and reason about how the truth
values of assertions vary with time. In our system, we
want to reason about the execution of UML models as
defined by the semantics presented in Section 2. In this
section, we start by building the notion of UML execu-
tion trace using the definition of the execution relation
(Definition 7) and use it to specify the semantics of the
USVF Property Specification Language.

We represent the execution of a UML model with
the set of all possible execution paths generated from
all possible initial configurations. An execution path Λ
is a sequence of states λ made of pairs (Γ, α). Let Λ =
(λ0, λ1, λ2, . . .). We write Path(U,Λ) if Λ is a valid exe-
cution path of U :

Path(U,Λ) ⇔ λ0 = (Γ0, α0) ∧ U `I Γ0

∀i > 0. U ` Γi−1
α−→ Γi

that is, if the first state corresponds to an initial config-
uration of U and each pair of adjacent states correspond
to a computational step.

Definition 8 (Execution Paths of a Model)
We define Paths(U) = {Λ | Path(U,Λ)} as the set of all
execution traces of model U .

Let Λ = (λ0, λ1, λ2, . . .). The following path opera-
tions will be useful:

Λ(i) = λi Λi = (λi, λi+1, λi+2, . . .) Λ = Λ(0) :Λ1

Note that our execution traces contain information
about the local state of machine configurations as well
as the events generated by execution steps. Therefore,
we need to define a property specification language that
takes advantage of this information. We have defined
such a language in section 3.1. We now define the se-
mantics of a formula Φ with respect to execution path
Λ. We write Λ |= Φ if formula Φ is true of execution path
Λ. |= is defined inductively on the structure of Φ:

Λ |= not Φ ⇔ ¬(Λ |= Φ)
Λ |= Φ1 and Φ2 ⇔ (Λ |= Φ1) ∧ (Λ |= Φ2)
Λ |= Φ1 or Φ2 ⇔ (Λ |= Φ1) ∨ (Λ |= Φ2)
Λ |= next Φ ⇔ Λ1 |= Φ
Λ |= Φ1 until Φ2 ⇔ ∃i ≥ 0. (Λi |= Φ2 ∧

∀0 ≤ j < i.Λj |= Φ1)
Λ |= P ⇔ Λ(0) |= P

We also introduce the usual abbreviations:

true ≡ Φ or (not Φ)
false ≡ Φ and (not Φ)

Φ1 implies Φ2 ≡ (not Φ1) or Φ2

eventually Φ ≡ true until Φ
always Φ ≡ not (eventually not Φ)

We have divided the definition into two parts. The first
part, presented above, deals with the usual temporal

logic modalities and reasons about the truth of prop-
erties over time. The second part only deals with indi-
vidual states, as suggested by the definition of Λ |= P :
P is true of the execution path Λ if and only if P is true
of its initial state Λ(0). We proceed by defining λ |= P .
We start with boolean predicates:

(〈H , γ∗〉, α) |= b ⇔ 〈H ,⊥, ρ0〉, b ⇓ 1

where ρ0 = [oi 7→ ôi], for all objects oi declared in the
model. Note that b is evaluated with an environment
containing no current object. This is because the predi-
cate is stated at the top level and the only way to access
the value of fields is by using objects names, that is, the
names used at the top level object declaration. Thus, we
create an environment ρ0 with such bindings. We can
write:

(always a1.total < 12) and
(eventually a2.role = Manager.receiver)

Let σ = 〈H ,⊥, ρ0〉. Current states and transitions can
be referred by:

(〈H , γ∗〉, α) |= state(r ,name(s)) ⇔ σ, r ⇓ ô ∧
∃γ ∈ γ∗, s′. γ = 〈ô,−, ŝ,−,−〉 ∧ s′ ∈ ŝ ∧ s � s′

(〈H , γ∗〉, α) |= trans(r , t̄) ⇔ σ, r ⇓ ô ∧ trans(ô, t̄) ∈ α

For example, the formula eventually state(a2,Branch) is
true if, at some point in time, object a2 reaches state
Branch. We now define the predicates that deal with mes-
sage passing:

(Γ, α) |= c(r1, r2,m) ⇔ σ, r1 ⇓ o1 ∧ σ, r2 ⇓ o2

c(o1, o2,m(−)) ∈ α
where c ∈ {send, recv,msg}

Note that the arguments of the message are not used
by the definition. This is because the scoping rules do
not offer a way of binding a method parameter with the
value sent by the message. Parameters are, therefore,
inaccessible. We solve this by adding the special optional
construct L that allows us to evaluate boolean expression
with extra local information such us method parameters
and a ’current’ object. The definition of send is extended
in the following way:

(Γ, α) |= send(r1, r2,m).and{g} ⇔
σ, r1 ⇓ ô1 ∧ σ, r2 ⇓ ô2

send(o1, o2,m(v1, . . . , vn)) ∈ α
ρ = ρ0[xi 7→ vi][SENDER 7→ o1]

[RECEIVER 7→ o2][METHOD 7→ m]
σ′ = 〈H , ô1, ρ〉 ∧ σ′, g ⇓ 1

where c ∈ {send, recv,msg}

Note that the environment σ′ contains an object refer-
ence - the sender’s - and the mapping of parameters to
arguments as well as the system variables containing the

14 I. Siveroni, A. Zisman and G. Spanoudakis

values of the sender, receiver and operation name. Simi-
larly, we extend the definition of state:

(Γ, α) |= state(r ,name(s)).and{g} ⇔
∃γ ∈ γ∗, s′. (γ = 〈ô,−, ŝ,−,−〉 ∧

s′ ∈ ŝ ∧ s � s′) ⇒ 〈H , ô, ρ0〉, g ⇓ 1

We apply similar extensions to the other predicates.

Definition 9 (Model Checking UML Models)
We write U |= Φ if Φ is true at all valid execution paths
of U , that is:

(U |= Φ) ⇔ ∀Λ ∈ Paths(U). U |= Λ

4 Translators and Visualisation

We have implemented the operational semantics and ver-
ification of UML models (as defined in this paper) as a
translation into Promela, the specification language used
by the Spin [12] Model Checker. Our translation takes
as input a model U and a formula Φ, and generates a file
made of two parts: the specification of the UML model
written in Promela, and the Buchi automaton that im-
plements the Spin LTL formula to be verified. The latter
is known as a never clause.

The translation of UML models and properties is
closely related. On the one hand, the translation of UML
models into Promela must implement the UML opera-
tional semantics and provide the infrastructure to facil-
itate the verification (and translation of) of properties
that reason about state machines, including the provi-
sion of variables to keep track of UML elements such
as states, transitions and the events described in section
2.3. On the other hand, property translation must take
into account the generated Promela model since it gen-
erates Spin LTL formulas that refer to the new Promela
variables.

4.1 Translating UML models into SPIN

Promela models are constructed from three basic types
of objects: processes, data objects and message chan-
nels. Processes, instantiations of proctype declarations,
are used to define behaviour. Given a UML model, the
translator generates a proctype declaration per class and
instantiates one process per object, including field initial-
isations. Class fields and operation parameters are im-
plemented as data objects; the transformation declares
static and non-static fields as global variables and global
arrays of structures, respectively, while method argu-
ments are declared as local variables inside the body of
the process type declaration of the owning class. Promela
message channels are used to model the exchange of data
between processes. We use channels to model the input
and output queues of state machines, essential parts in
the implementation of triggers and method invocation.

/* Communication/Message Passing */
mtype = { A0, A1, A2 };
#define QSIZE 2
#define NUMCHAN 3
chan inQ[NUMCHAN] = [QSIZE] of <Msg>;
chan outQ[NUMCHAN] = [QSIZE] of <Msg>;
/* State machines - model checking */
#define NUMOBJECTS 3
byte current[NUMOBJECTS], transition[NUMOBJECTS];
/* Object declarations */
#define a1 0
#define a2 1
#define manager 2
/* Static fields Class RoleMng */
byte RoleMng_J=1,RoleMng_P=2;
/* Static fields Class Peer */
byte Peer_count;
/* Event variables */
bool _oCall=0;
byte _oSender,_oReceiver,_oTrigger;
byte _out0,_out1,_out2,_out3;

where <Msg> = {mtype,byte,byte,byte,byte,byte,byte}

Fig. 10 Peer/Manager Promela Declarations

Promela models generated by our translation have
the following structure:

<U2P> ::= <GlobalDec>
<ClassDec>+
<CommProcDec>
<InitProcess>

The <GlobalDec> section declares all global variables
and constants used for communication, state machine ex-
ecution, object identification, model checking as well as
the list of static fields of all classes. The translator gener-
ates a <ClassDec> per class and a special proctype decla-
ration for Comm that implements message traffic between
objects. Finally, the code generated for <initProcess>
instantiates all the objects (processes) that take part of
the execution of the system.

We show in Figure 10 parts of the <GlobalDec> sec-
tion of the Promela model generated for the example. All
global declarations start by defining the structures and
constants needed for message passing (section 4.1.1). The
NUMOBJECTS constant denotes the number of objects de-
clared in the model, and the current and transition
arrays store the values of the current state and last ex-
ecuted transition of each state machine. Each object is
assigned a unique id e.g. a2 is identified by 1, used to
index the global arrays holding object information. Each
static field is denoted by a global variable composed of
the class and field name e.g. Manager_J. Finally, The
event variables section declares variables used solely for
model checking.

A UML class is translated into a global array dec-
laration of a structure that stores the non-static fields
of the class, and a Promela process that implements the
behaviour defined by its state machine. We show below
the top level declarations generated for class Peer:

UML Model Checking 15

typedef Peer_Fields {byte peer,manager,share,role;};
Peer_Fields fPeer[2];
/* Class number 1 */
proctype Peer(byte pNum, ocID) { atomic {

<Class-Body>
}}

The global array fPeer holds the values of the fields
of class Peer. We have declared two objects of that class
and, thus, the array has size 2. The Peer process takes
two arguments: pNum and ocID. Argument pNum is used
to index global arrays with information common to all
objects e.g. current, transition and message channels,
while index ocID is used to access the fPeer array (section
4.1.2). The values of these indexes are assigned during
object instantiation.

init { atomic {
run Peer(0,0);
run Peer(1,1);
fManager[0].peer1=a1;
fManager[0].peer2=a2;
fManager[0].share=false;
run Manager(2,0);
run Comm(3)

}}

The object initialisation code <InitProcess> gener-
ated for our example is shown above. All declared objects
are instantiated by executing the run Promela construct
on the respective proctype. Each instantiation is pre-
ceded by the explicit field initialisations specified in the
model. For example, manager is instantiated with a call
to run Manager(2,0), preceded by assignments to fields
peer1 and peer2 i.e. fManager[0].peer1=a1;.

4.1.1 Message passing and Communication

Communication between processes is performed using
channels. The communication model used by our trans-
formation uses two channels per object, one for incom-
ing messages and another for outgoing messages. Object
channels are stored in global arrays inQ and outQ, of type
chan, and size NUMCHAN (see declarations in Figure 10).
All messages have the same structure, <operation, sender,
receiver, p0,. . .,pn>, with p1,. . .,pn carrying the values
passed as arguments to the method call. The special
Promela datatype mtype is used to define tokens A0, A1
and A2 which denote operations getRole, sendMsg and
endTask, respectively. The maximum number of param-
eters in our example is four and, thus, messages are of
type

{mtype, byte, byte, byte, byte, bye, byte}

Message passing is implemented by writing into the
sending object’s output queue while incoming messages
(triggers) are read from the receiving object’s incoming
queue. For example, the Spin code generated for sending
and receiving messages , respectively, is:

outQ[pNum]!trigger(sender,receiver,_out1,..._out4);
inQ[pNum]?trigger(sender,receiver,prm0,...,prm3);

The traffic of messages between objects is implemented
by a separate process, Comm. This is an approach similar
to the one used in [13]. The current implementation of
Comm defines the process as an infinite loop that, at each
iteration, removes a message from the output queue of
one of the objects of the model and places it, untouched,
in the input queue of the matching receiver. If all output
queues are empty, the communication process blocks. If
more than one input queue has a pending message, Comm
picks one of them non-deterministically.

The implementation of the Comm process for our ex-
ample is:

proctype Comm(byte pNum) {
byte trigger,receiver,sender, prm0,prm1;
end3: atomic {
if
:: outQ[0]?trigger(sender,receiver,prm0,...,prm3) ->

inQ[receiver]!trigger(sender,prm0,...,prm3);
// repeat for outQ[1] and outQ[2]
fi;
goto end3;
}}

By following this approach we provide an alterna-
tive - at the implemenation level - to the attack models
suggested in Section 3.2. Several types of attacks to the
communication channels can be modelled e.g. messages
can be dropped, modified or replicated; by manipulat-
ing and creating different version of the code that im-
plements Comm, as shown with the Dolev-Yao attacker
implemented in [15].

4.1.2 Promela implementation of UML classes

A UML class is translated into a Promela process that
implements the behaviour defined by its state machine,
and updates the variables used for model checking. In
this section we describe the implementation of UML classes
in SPIN by showing the main parts of the code generated
for the Peer class, listed in Figure 11.

On initialisation, a new process (object) receives two
values as arguments. The first argument, pNum, is used to
access global data structures that store information com-
mon to all objects such as channels and state machine
variables e.g. current[pNum] contains the value of the
current state. The second argument, ocID, indexes the
global array of structures containing the non-static fields
of the class e.g. fPeer[ocID].role denotes the value of
field role of the object.

Local declarations - top part of the generated proctype
- include local variables used to represent formal pa-
rameters e.g. variables r and p from method getRole,
and variables used for message passing. An object (pro-
cess) starts execution by setting the current variable
to the value of the state machine’s initial state, and

16 I. Siveroni, A. Zisman and G. Spanoudakis

proctype Peer(byte pNum, ocID) { atomic { /* Class Peer */
byte txt,m,r,p,s; /* Formal Parameters - local variables */
bool msgUnread=false;
byte trigger,receiver,sender,prm0,prm1,prm2; /* Message passing */
current[pNum] = 0; transition[pNum]=0;

printf("<t start c=Peer o=%d s=%d >\n",pNum,current[pNum]); /* Trace */
numStarted++; (numStarted>=3); /* <Synchronise> */
} /* end atomic */

LMAIN0: /*** Main Loop ***/
atomic {
msgUnread=false; _oCall=false;
if /* Part 1: Completion Transitions */
:: (current[pNum] == 2) -> /* Branch state */

/* Branch->Send, Branch->Receive */
:: (current[pNum] == 3) -> /* Write state */

/* send: Write -> End */
:: (current[pNum] == 4) -> /* Photo state */

if
:: (fPeer[ocID].share == true) -> /* Photo -> P2 */

current[pNum]=5; transition[pNum]=5;
:: (fPeer[ocID].share == false) -> /* Photo- > P3 */

current[pNum]=6; transition[pNum]=7;
fi

:: /* Code for P3 -> Join Join -> End, End -> Msg */
:: else -> goto LCOMPLETED0;
fi;
goto LMAIN0; /* execute completion transitions first */
LCOMPLETED0: /* check for final state */
if
:: (current[pNum] == 1) -> goto LFINAL0;
:: else -> skip;
fi;
inQ[pNum]?trigger(sender,receiver,prm0,prm1,prm2,prm3); / * Part 2: Read */
if /* Parameter passing */
:: (trigger == A0) -> { r = prm0; s = prm1; p = prm2; m = prm3 }
:: (trigger == A1) -> { txt = prm0; }
}
:: else -> skip;
fi;

if /* Part 3: Triggered Transtions */
:: (current[pNum] == 0) -> /* Initial state */

if
:: (trigger == A0) ->

fPeer[ocId].manager = m; fPeer[ocId].peer = p;
fPeer[ocID].share = s; fPeer[ocID].role = r;
Peer_count = Peer_count + 1;
current[pNum]=2; transition[pNum]=2;

:: else -> msgUnread=true; transition[pNum]=1;
fi

:: (current[pNum] == 5) -> /* P1 state */
if
:: (trigger == A1) ->

current[pNum]=6; transition[pNum]=6;
:: else -> msgUnread=true; transition[pNum]=1;
fi

:: (current[pNum] == 9) ->
/* Code for transition Msg -> Pf */
fi;

goto LMAIN0;
LFINAL0: skip;
} }

Fig. 11 Promela implementation of class Peer

UML Model Checking 17

blocks until the remaining objects have finished initial-
ization. The printf statement generates trace informa-
tion used by the result visualisation module described in
section 4.3; we have removed all trace statements from
the code shown in Figure 11.

The semantics of state machines is implemented by
a loop (LMAIN0) that executes until the final state is
reached. The main loop is made of three parts: (1) com-
pletion transitions, (2) read and (3) triggered transi-
tions. Transition execution, effects included, must be per-
formed atomically. This is achieved by inserting the spe-
cial Promela atomic statement around the loops that
implement the state machine. This is of particular im-
portance because it defines the places where verifica-
tion takes place; model checking is performed (never au-
tomata) after the execution of every atomic statement.
Atomicity is broken when a process blocks (message wait-
ing) or when the code jumps out of the scope of the
atomic region. We use this fact and introduce back jumps
to LMAIN0 outside the atomic area in order to make
sure that checks are performed by the verifier after the
execution of each transition.

The first part of the main loop implements the ex-
ecution of transitions that do not contain triggers i.e.
completion transitions. This is itself an inner loop that
executes until no completion transition is found. Non-
deterministic choice is applied if more then one transition
is available. The translator maps states, transition and
operation names to constants. For example, the branches
corresponding to the Branch and Write states refer to
states 1 and 2, respectively. Transition execution updates
the values of current and transition.

The inner loop ends with a check against the final
state (state 4 in our model). If the current state is not
final, the process reads on its input channel (part 2) and
blocks if the queue is empty. When a message arrives, the
process unblocks and assigns the values of the message’s
arguments to the formal parameters variables. The last
part of the loop, a conditional that branches depending
on the value of the current state and trigger, implements
the execution of triggered transitions. If the incoming
message does not match any of the available triggers,
the message is dropped and the value of msgUnread is
set to true.

Translation of actions is almost straightforward with
the exception of the call statement. For example, the code
that implements the execution of the action associated
to the transition that joins states End and Msg is:

/* call peer.sendMsg(’’B’’); */
_oTrigger = A1;
_oSender = pNum; _oReceiver = fPeer[ocID].peer;
_oCall=1; _out0=1; /* ’’B’’ mapped to constant */
outQ[pNum]!_oTrigger(_oSender,_oReceiver,...,_out3);
current[pNum]=4; transition[pNum]=8;

which requires assignments to the message parameters
and model checking variables, and a write to the object’s
output channel.

If the model contains instances of the tm guard, the
translator does the following:

– Marks all source states of transitions that contain tm.
– Generates declarations for a single global clock vari-

able (tmGlobal) and one local timer variable (tmLocal)
for each class with marked states.

– Generates code that:
– Sets the local (class) timer to the global clock

value whenever a transition reaching a marked
state is executed.

– Increments the global clock after each loop itera-
tion (inside a class process).

– Increments the global clock if the program blocks.
This is done by checking for timeout inside the
Comm process:
:: timeout -> // added to Comm
if
:: (numFinished>=NUMOBJECTS) ->
goto LCOMMEND

:: else ->
tmGlobal++;

fi
fi;

4.2 Translating properties into Spin LTL

Properties written in the property language defined in
Section 3.4 must be translated into the LTL version used
by Spin. In order to do this, the property translation
phase must use the symbol tables used by the model
translation phase and refer to the global variables and
arrays declared in the generated Promela model. Let’s
consider the following property:

always (state(a1,Branch) implies
(always a1.role=Manager.J))

The translator generates the following code:

#define pp0 (current[0]==2)
#define pp1 (fPeer[0].role==Manager_J)
!([]((pp0) -> ([](pp1)))) // Spin LTL

Spin LTL formulas can only deal with boolean vari-
ables e.g. predicates like (x > 2) are not valid. There-
fore, the transformation has to generate special #define
declarations that name all boolean expressions and plug
the new definitions inside the generated Spin formula. In
the example above, pp0 and pp1 encode the state pred-
icate and the field comparison, respectively. Note that
operators are translated into their LTL counterparts e.g.
[], <>, U. The transformed formulas are written using
the variables and values used by the generated Promela
model e.g. state Branch is denoted by 2, local fields are
accesed using the fPeer array, static variables are ref-
erenced by the global variable declared in the Promela
model, and the global array current is used to check the
value of the current state.

Similarly, the translator takes as input the property

18 I. Siveroni, A. Zisman and G. Spanoudakis

always send(manager,a2,getRole).implies
{ role = Manager.P }

and generates:

#define pp0 ((_oCall==1) && (_oSender==2) &&
(_oReceiver==1) && (_oTrigger==A0))

#define pp1 (_out0 == Manager_P)
!([]((pp0) -> (pp1)))

The generated formula is then transformed into a
Büchi automata (never clause) using one of SPIN utili-
ties and both, definitions and never clause, are appended
to the model to form the never file.

4.3 Results Visualisation

SPIN provides its imulation and model checking results
as text, and in reference to the PROMELA-level speci-
fication. This form is unsuitable for software developers
as it makes it difficult for them to identify the parts of
models involved in the reasoning path that demonstrates
property violations. To address this limitation, the trans-
lated Promela model contains a series of printf state-
ments that generate a trace used later by the SVF. The
output of these statements is mixed with the usual Spin
messages. The following steps are needed:

– Parse the Spin output and identify the SVF trace
messages.

– Parse the messages and translate any Spin specific
representation to the corresponding UML model ele-
ment. For example, state 2 must be transformed into
R1.

– Send the transformed output to the user.

The partial output of an execution trace of our sam-
ple model is shown in Figure 12. The lines on the right
column, with text marked <t message>, are generated
by the printf instructions added during the code genera-
tion phase e.g. the printf line in Figure 11. These lines
are extracted from the output text and all references
(states, transitions) are resolved in order to get a final
output, shown on the left column, using the following
syntax:

– START o:<Class> state=S indicates that execution
of object o has started in state S.

– TRANS o:<Class> S1->S2 indicates that the transi-
tion that goes from state S1 to state S2 in object o
has been executed.

– OUT: o1->o2 m(<args>) indicates that message
m(<args>) has been sent from object o1 to object o2.

– IN: o2<-o1 m(<args>) indicates that message
m(<args>) sent by object o1 has been received by
object o2

4.4 Extension to models with composite states

Sections 4.1 and 4.2 describe the translations from UML
models and properties into Promela processes and never
claims that implement the semantics of the execution
and model checking of flat state machines i.e. machines
with single states. In order to model check state machines
that contain composite states the USVF must do the
following:

– Applies a flattening algorithm to the initial state ma-
chine.

– Generates extra Promela data structures to imple-
ment the state predicate.

The flattening algorithm takes as input state ma-
chine µ = (s0, sf , S, T) and generates a flat state ma-
chine (s0, sf , fStates(µ), fTrans(µ)), where fStates(µ) is
the set of all possible state trees in µ and fTrans(µ) is
the set of new transitions generated from T by taking
into considerations the new set of flat states.

The flattening algorithm generates a set of states
fStates(µ) by traversing the state tree and collecting the
leave (single) states from simple composite states and
performing set product on the flattened states of paral-
lel state machines. The flattening of states is described
below:

fStates : SM → Ŝtate
fStates(µ) = fStates(root)
fStates(s) = {s}, s ∈ Simple

fStates([s,R]) = fStates(R)
fStates([s,R∗]) =

∏
Ri∈R∗ Ri

fStates(R) = {fStates(s) | s ∈ S, R = (rg, S)}

The new set of transitions fTrans(µ) is calculated
such that:

(t̄, ŝ, ŝ′, tr, g, a) ∈ fTrans(µ) ⇔ ŝ, ŝ′ ∈ fStates(µ)
(t̄, sI , sF , tr, g, a) ∈ T
s′I � sI ∧ s′I ∈ ŝ

ŝ
t
; ŝ′

For every transition t in µ with source state sI we gener-
ate a new transition t′ for each state ŝ such that s′I ∈ ŝ
and s′I � sI . In other words, the flattening algorithm
“copies” t to all flattened substates of SI .

The presence of composite states requires the gner-
ation of an extra structure in order to implement the
state predicate for states other then simple (leaf) states.
The verification of state(r, s) - where s ∈ Simple - is im-
plemented by comparing the current state number with
the id of s. However, if s is a composite state, state(r, s)
should evaluate to true if the current state number matches
any of s’s substates id’s. We implement this case by gen-
erating a boolean array per occurrence of a state(r, s)
with the following specifications:

– The array must be global and of size equal to the
total number of flat states in order to be indexed by
state id’s.

UML Model Checking 19

Trace Result SPIN output
--------------------------------- ---------------------------------
START a1:Peer state=P0 <t start c=Peer o=0 s=0 >
START a2:Peer state=P0 <t start c=Peer o=1 s=0 >

START manager:Manager state=R0 <t start c=Manager o=2 s=0 >
OUT:manager->a1 getRole(1,1) <t send s=2 r=0 m=getRole(1,1) >
TRANS manager:Manager R0->R1 <t trans c=Manager o=2 s=1 >
TRANS manager:Manager R1->R2 <t trans c=Manager o=2 s=3 >
OUT:manager->a2 getRole(2,0) <t send s=2 r=1 m=getRole(2,0) >
TRANS manager:Manager R2->Rf <t trans c=Manager o=2 s=2 >

IN:a1<-manager getRole(1,1) <t recv s=2 r=0 m=getRole(1,1) >
TRANS a1:Peer P0->Branch <t trans c=Peer o=0 s=1 >
IN:a2<-manager getRole(2,0) <t recv s=2 r=1 m=getRole(2,0) >
TRANS a2:Peer P0->Branch <t trans c=Peer o=1 s=1 >
TRANS a1:Peer Branch->Photo <t trans c=Peer o=0 s=2 >
TRANS a2:Peer Branch->Write <t trans c=Peer o=1 s=3 >

Fig. 12 Partil trace display and SPIN ouput

– All elements of the array are set to false, except those
elements corresponding to states ŝ such that there
exists s′ ∈ ŝ and s′ � s.

– state(r, s) is implemented by accesing the array with
the current state number.

The boolean arrays are generated for every predicate and
inserted to the Promela code together with the never
claim.

5 Implementation

5.1 Implementation

The USVF is packaged as an Eclipse plug-in that runs
along the Papyrus UML [31] graphical modeler. The op-
erational semantics UML models is implemented as a
translation into Promela, the specification language used
by the Spin [12] Model Checker. The translation of both
models and properties is integrated with a UML graph-
ical editor (Papyrus), a property editor and a result vi-
sualisation component that interact with Spin and the
user [37]. Model simulation and verification is performed
by Spin.

The USVF and its graphical user interface are im-
plemented in Java and SWT, the GUI toolkit used by
the Eclipse platform. All parsers were generated using
JavaCC.

The Design Model Constructor is responsible for the
creation of UML models, the generation of the internal
model representation and basic model validation. Pa-
pyrus UML is the Graphical UML editor chosen to run
along the USVF. Papyrus has the required functionality
that will allow the user to build UML class and state
machine diagrams, including provision for the definition
of transition guards, effects and actions.

The core functionality for model construction is pro-
vided by the Papyrus UML plug-in. The main output of
this component is the XMI representation of the model,
saved as a .uml file, which is later read and parsed. Inter-
nal representation generation is divided into three steps:

(1) Parsing of the XML model file generated by Papyrus
(.uml) and parsing of the guard and effects in transitions.
The latter requires a separate parser, (2) Construction
of internal representation of UML model with most ref-
erences between objects still missing, (3) Resolution of
all internal references and generation of complete inter-
nal representation, and (4) Soundness check e.g. minimal
number of classes, states, etc.

In essence, internal representation generation performs
type checking on the original model. If successful, the
translated model shall execute without runtime type er-
rors.

The USVF performs verification of Papyrus UML
models against properties specified in the property spec-
ification language defined in section 3.4. The USVF gets
this input from the user, parses it and translates it to its
internal representation. An important part of this pro-
cess is the resolution of formula elements to elements in
the UML model internal representation, effectively type
checking the property formula against the loaded model.

The implementation of the model and property trans-
lators is described in section 4. The outputs of both
translators are put together into a single file, the never
file, which is used as input by the model checker.

The USVF uses Spin to model check system and secu-
rity properties against the UML models generated with
Papyrus UML. Spin models are written in Promela, a
special language similar to C. Spin can perform simu-
lations directly on Promela files. Verification is a more
complicated process and takes three steps. Given a Promela
file, Spin generates a C file with the code that implements
the verifier for that particular model. The C program is
compiled into a pan file. The pan file is executed.

The USVF provides an interface to Spin implemented
as a wrapper class. This wrapper class makes all the
necessary system calls to Spin, the gcc compiler and the
compiled verifier. Through the wrapper class, USVF uses
the Spin model checker to:

– Simulate Promela models.

20 I. Siveroni, A. Zisman and G. Spanoudakis

– Call the Spin never clause generator which transforms
LTL formulas into never clauses.

– Generate a verifier executable given a Promela model
containing the property to be verified (never clause).

– Execute the verifier.
– Execute a simulation on the trail generated by the

verifier in case the verification fails.

6 Related Work

6.1 Secure Software Engineering and Modelling
Languages

The area of secure software engineering has produced
solutions that aim to help system designers address se-
curity issues during the whole development life-cycle of
software systems. In particular, UMLsec [14,16] and Se-
cureUML [22] tackle this problem by introducing secu-
rity requirements and constraints in the design phase via
annotations on UML models.

UMLsec and SecureUML are based on UML - pro-
files i.e. , a set of stereotypes, tagged values and con-
straints - for modelling security properties. Each of these
approaches focuses on specific types of properties. More
specifically, SecureUML focuses on role-based access con-
trol (RBAC) and supports the specification of authori-
sation constraints. It combines the simplicity of using
UML’s graphical notation as the basis for expressing
RBAC, with the power of dynamic authorisation con-
straints, i.e. , contraints based on the state of the sys-
tem e.g. field and parameter values. In [22], Lodderstedt
et.al. show how SecureUML specifications can be used to
generate security infrastructures that implement RBAC.

UMLsec provides a series of stereotypes used to model
security-related characteristics of system components (com-
munication links, roles, guarded elements) as well as se-
curity requirements of systems (secrecy, integrity, infor-
mation flow, fair exchange, RBAC). In [15,16], Jürjens
et.al. show how UMLsec annotations can be used to au-
tomantically evaluate UML specifications for vulnerabil-
ities using a formal semantics of a simplified fragment of
UML and model checking techniques. In particular, they
address privacy by model checking an automatically gen-
erated Promela model with cryptography operators and
that includes a Dolev-Yao attacker.

Current research efforts in the area of secure software
engineering include the integration of security method-
ologies and specification techniques. For example, in [27]
Mouratidis et.al. merge the high-level concepts and mod-
elling activities of the secure Tropos methodology with
UMLsec models. The approach of USVF - unlike UMLsec
and SecureUML - is not based on the introduction of
a special purpose profile. Instead, in USVF we intro-
duce a generic property language that can be used to
express not only basic security properties but also more
generic liveness and safety property as we explained in

Section 3.1. In principle, methodologies like UMLsec and
SecureUML can be integrated to USVF by using the
property specification language of the latter framework
as an intermediate language between the security prop-
erties specified by the aforementioned profiles and the
model checker. Furthermore, USVF complements UMLsec
and SecureUML by enabling the specification of a wide
range of verification properties (and their association
with UML model elements) that can not be inferred or
generated from the UML tags and stereotypes used in
UMLSec and SecureUML. For example, properties such
as the availability of a paritcular service (liveness) under
a particular set of conditions, or the constraints on e.g.
the values of fields, at specific points during the execu-
tion of a model need to be specified by the designer using
a language such as the USVF property specification lan-
guage.

6.2 UML Semantics and Model Checking

The need to develop a more precise specification of UML
has been a concern [7] since its inception and adoption
as standard notation for object-oriented analysis and de-
sign by the Object Management Group (OMG). As a re-
sult, several formalisations have been proposed for the
behavioural part of UML and, in particular, the for-
mal specification of the semantics of state machine di-
agrams [29,3,13].

Most of the work on formalisation of UML state ma-
chines has been in the context of automated formal verifi-
cation of systems and, in particular, model checking [17,
30,35,20]. A good number of these specifications have
been used as input to translations into Spin.

The automatic verification of UMLsec models, de-
scribed in [16,15], is the most thorough work on model
checking security requirements of UML models using Spin.
The Spin translation used in this paper (for flat state ma-
chines) resembles the one defined in [16]. Both, USVF
and UMLsec, consider non-hierarchical state machines,
treat completion and triggered transitions separately (in
the main loop), and define a separate process for mes-
sage exchange. The latter is used to model intruders
in conjunction with a cryptographic action language. In
UMLsec, model checking is instructed by a series of an-
notations based on stereotypes, which are transformed
directly into SPIN LTL. Our main contribution with re-
spect to the UMLsec translation is that our framework
allows the user to explicitly write properties, using the
property specification language, and that the transfor-
mation generates special code to model check the predi-
cates specified by the specification language e.g. special
SPIN variables are defined for keeping track of field up-
dates, sending and reading of messages.

Jussila et.al. [17], like us, model UML classes as
SPIN processes and define a separate action language.
However, they do not provide a UML-based specification

UML Model Checking 21

language; the user is limited to entering checks in SPIN
LTL. The Hugo project [35] on the other hand uses a
Spin translation to verify collaboration diagrams against
UML state machines but they do not support the veri-
fication of user-defined temporal properties against the
model as in USVF.

Some of the work related to formal specification of
semantics of UML has been dedicated to provide a com-
plete formalisation of complex aspects of state machines
such as hierarchical state machines and history states.
For example, Latella et.al. [21] model UML state ma-
chine diagrams as extended hierarchical automata us-
ing Kripke structures. Our goal has been to formalise
a simple, though expressive, subset of UML in such a
style that faciliates the definition of UML model checking
i.e. small step semantics with labeled transitions. Along
those lines, our UML semantic specification resembles
the work presented in [3]. In particular, starting from a
precise textual syntax definition, they develop a concise
structured operational semantics for UML-Statecharts
based on labeled transition systems. Our approach to
the modelling of composite states follows the lines of the
work of Gnesi et.al. [8] and Kuske [19] who use the con-
cepts of trees and term-rewriting. We simplify the latter
by representing state trees with the set of the tree’s sim-
ple substates (leaves).

In [40], Xie et.al. transform models expressed in xUML,
an executable subset of UML, into S/R models that can
be verified by the COSPAN model checker. COSPAN is
an ω-automata-based model checker that takes as input
models and queries formulated in S/R (in their work,
models are defined as synchronous parallel composition
of processes). One of the most attractive points men-
tioned is the use of static partial order reduction for
model optimisation. However, no details of the approach
are included. Similarly, no syntax for the property spec-
ification language is included which, from the examples
given, seems to be limited to conditions about machine
states.

In [24], Moller et.al. describe how CSP-OZ, a for-
mal method combining the process algebra CSP with
the specification language Object-Z, can be integrated
into an object-oriented software engineering process em-
ploying UML as a modelling language and Java as an im-
plementation language. Their methodology considers the
use of runtime checking tools to supervise the adherence
of the final Java implementation to generate JML con-
tracts. However, unlike in USVF, the types of properties
considered are not temporal. More specifically, the static
verification part of their approach deals with JML-style
annotations while the dynamic verification part checks
local assertions and invariants.

The most advanced work in UML model checking is
the one developed by Gnesi et.al. [9,4]. In [9], they define
a logic based on µ-ACTL, a state/event-based temporal
logic similar to the one in USVF that uses a doubly la-
beled transition system as semantics domain. They also

implement an on-the-fly model checker and report appli-
cation of the framework to different application domains
such as verification of protocols for service-oriented sys-
tems [4]. However, the property language of USVF is
able to express a richer set of predicates involving object
fields, class fields and action events, aided by the opera-
tional semantics exposure of more action-related events
and richer syntax.

7 Conclusions and Future Work

In this paper we have presented USVF, a framework that
allows software developers to build and verify UML mod-
els against properties specified in a general-purpose prop-
erty language. We propose the specification and verifica-
tion of security and general system properties, as well as
the use of formal verification techniques, from the early
stages of software development.

We have defined the syntax and semantics of a prop-
erty specification language for UML model checking. In
order to do this we have defined the operational se-
mantics of UML models, provided a property specifica-
tion language based on LTL and UML elements, and ex-
pressed the semantics of UML properties in terms of the
runtime domains used by the operational semantics. This
approach allows us get into the details of UML model
execution thus increasing the type of properties to be
verified.

USVF was evaluated in terms of usability, perfor-
mance, and expressiveness of the property language by
the industrial partners in the PEPERS [32] project. The
results of this evaluation were positive. The partners
were particularly satisfied with expressiveness of the spec-
ification language and the integration of the model check-
ing phase with the model creation tool (Papyrus). They
also highlighted the fact that in order to have a com-
plete framework to support development and analysis of
security aspects of the system, it is necessary to include
a way of handling cryptographic primitives. This can be
achieved by extending the action language of USVF.

The achievements, and limitations, presented in this
paper set up the basis for interesting future work. As
mentioned in section 2.1, the UML subset used by the
USVF includes the basic features necessary to model
communicating state machines. However, in order to im-
prove the usability of USVF, the UML models consid-
ered in this paper should be extended to include fea-
tures such as synchronous operation invocation, as well
as concepts related to distributed computing e.g. ports.
Furthermore, USVF does not have, besides object dec-
larations, a pre-determined way of initialisating objects.
The use of constructors and component diagrams - that
include, for example, constraints in the number of objects
and initialisation conditions - would be an important ad-
dition to the framework.

22 I. Siveroni, A. Zisman and G. Spanoudakis

The area of UML model checking offers interesting
topics of further research. In particular, we would like
the investigate other approaches to the translation of hi-
erarchical state machines to Promela, besides flattening,
and their effect in model checking. We would also like
to explore the possibility of the application of program
analysis techniques, such as slicing [11], for the genera-
tion of more efficient models i.e. models optimised for
model checking of formulas given as input.

Further work also includes the addition inclusion of
UML stereotypes for the specification of security require-
ments and properties for domain specific applications
such as service-oriented systems.

Finally, the formal verification of design models should
be complemented with further verification steps in order
to cover the complete software development process [24].
These steps include the static verification of implemen-
tations (where the models become specifications) and
the use of dynamic verification techniques [38,18] such
as non-intrusive runtime monitoring. In particular, we
would like to explore the relationship with latter with
the static verification of UML models.

References

1. Abadi, M., Blanchet, B., Fournet, C.: Just fast keying
in the pi calculus. In: 13th European Symposium on
Programming (ESOP04, pp. 340–354. Springer (2004)

2. Anderson, R.J.: Security Engineering: A Guide to Build-
ing Dependable Distributed Systems. Wiley Publishing
(2008)

3. von der Beeck, M.: A structured operational semantics
for uml-statecharts. Software and System Modeling 1(2),
130–141 (2002)

4. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.:
An action/state-based model-checking approach for the
analysis of communication protocols for service-oriented
applications. In: FMICS, pp. 133–148 (2007)

5. Devanbu, P.T.: Software engineering for security: a
roadmap. In: The future of Software Engineering, pp.
227–239. ACM Press (2000)

6. Emerson, E.: Temporal and modal logic. In: J.V.
Leeuwen (ed.) Handbook of Theoretical Computer Sci-
ence, Volume B: Formal Models and Semantics. MIT
Press (1990)

7. Evans, A., Bruel, J.M., France, R., Lano, K., Rumpe,
B.: Making UML precise. In: L. Andrade, A. Moreira,
A. Deshpande, S. Kent (eds.) Proceedings of the OOP-
SLA’98 Workshop on Formalizing UML. Why? How?
(1998). URL citeseer.ist.psu.edu/evans98making.html

8. Gnesi, S., Latella, D., Massink, M.: Modular semantics
for a UML statechart diagrams kernel and its extension to
multicharts and branching time model-checking. Journal
of Logic and Algebraic Programming 51(1), 43–75 (2002)

9. Gnesi, S., Mazzanti, F.: On the fly model checking of
communicating UML state machines. In: ACIS. IEEE
(2004)

10. Gritzalis, S., Spinellis, D., Georgiadis, P.: Security proto-
cols over open networks and distributed systems: Formal
methods for their analysis, design, and verification. Com-
puter Communications 22, 70–7 (1999)

11. Hatcliff, J., Dwyer, M., Zheng, H.: Slicing software for
model construction. Higher-order and symbolic compu-
tation 13(4), 315–353 (2000)

12. Holzmann, G.J.: The SPIN Model Checker: Primer and
Reference Manual. Addison-Wesley (2003)

13. Jürjens, J.: A UML statecharts semantics with message-
passing. In: Applied Computing 2002, pp. 1009–1013.
Madrid (2002). Proceedings of the 2002 ACM Sympo-
sium of Applied Computing

14. Jürjens, J.: Secure Systems Development with UML.
Springer-Verlag, Berlin Heidelberg New York (2004)

15. Jürjens, J., Shabalin, P.: Automated verification of
UMLsec models for security requirements. In: T. Baar,
A. Strohmeier, A. Moreira, S.J. Mellor (eds.) UML 2004
- The Unified Modeling Language. Model Languages
and Applications. 7th International Conference, Lisbon,
Portugal, October 11-15, 2004, Proceedings, LNCS, vol.
3273, pp. 365–379. Springer (2004)

16. Jürjens, J., Shabalin, P.: Tools for secure systems devel-
opment with UML. International Journal on Software
Tools for Technology Transfer 9(5), 527–544 (2007)

17. Jussila, T., Dubrovin, J., Junttila, T., Latvala, T., Por-
res, I.: Model Checking Dynamic and Hierarchical UML
State Machines. In: D. Hearnden, J.G. S, B. Baudry,
N. Rapin (eds.) MoDeVa: Model Development, Valida-
tion and Verification. University of Queensland, Le Com-
missariat l’Energie Atomique - CEA (2006)

18. Kloukinas, C., Spanoudakis, G.: A pattern-driven frame-
work for monitoring security and dependability. In:
TrustBus, pp. 210–218 (2007)

19. Kuske, S.: A formal semantics of UML state machines
based on structured graph transformation. In: UML
2001: Proceedings of the 4th International Conference on
The Unified Modeling Language, Modeling Languages,
Concepts, and Tools, pp. 241–256. Springer-Verlag, Lon-
don, UK (2001)

20. Latella, D., Majzik, I., Massink, M.: Automatic verifica-
tion of a behavioural subset of uml statechart diagrams
using the spin model-checker. Formal Asp. Comput.
11(6), 637–664 (1999)

21. Latella, D., Majzik, I., Massink, M.: Towards a formal
operational semantics of uml statechart diagrams. In:
Proceedings of the IFIP TC6/WG6.1 Third International
Conference on Formal Methods for Open Object-Based
Distributed Systems (FMOODS), p. 465. Kluwer, B.V.,
Deventer, The Netherlands, The Netherlands (1999)

22. Lodderstedt, T., Basin, D.A., Doser, J.: Secureuml: A
uml-based modeling language for model-driven security.
In: UML ’02: Proceedings of the 5th International Con-
ference on The Unified Modeling Language, pp. 426–441.
Springer-Verlag, London, UK (2002)

23. Meadows, C.: Formal verification of cryptographic pro-
tocols: A survey. In: ASIACRYPT, pp. 135–150 (1994)

24. Möller, M., Olderog, E.R., Rasch, H., Wehrheim, H.:
Integrating a formal method into a software engi-
neering process with UML and Java. Formal As-
pects of Computing 20(2), 161–204 (2008). DOI
http://dx.doi.org/10.1007/s00165-007-0042-7

25. Mouratidis, H., Giorgini, P.: Integrating Security and
Software Engineering: Advances and Future Vision. IGI
Global (2006)

26. Mouratidis, H., Giorgini, P., Manson, G.: When security
meets software engineering: a case of modelling secure
information systems. Information Systems 30(8), 609–
629 (2005)

27. Mouratidis, H., Jürjens, J., Fox, J.: Towards a com-
prehensive framework for secure systems development.
Advanced Information Systems Engineering pp. 48–62
(2006)

28. Object Management Group. http://www.uml.org
29. Paltor, I., Lilius, J.: Formalising uml state machines for

model checking. In: R.B. France, B. Rumpe (eds.) UML
1999, Lecture Notes in Computer Science, vol. 1723, pp.
430–445. Springer (1999)

UML Model Checking 23

30. Paltor, I.P., Lilius, J.: vUML: A tool for verifying UML
models. In: R.J. Hall, E. Tyugu (eds.) Proc. of the 14th
IEEE International Conference on Automated Software
Engineering, ASE’99. IEEE (1999)

31. Papyrus UML. http://www.papyrusuml.org
32. PEPERS project. http://www.pepers.org
33. Pfleeger, C.P., Pfleeger, S.L.: Security in Computing.

Prentice Hall PTR, Upper Saddle River, NJ, USA (2006)
34. R, J.K., Mathur, A.P.: Software engineering for secure

software - state of the art: A survey. Tech. rep., Purdue
University (2005)

35. Schäfer, T., Knapp, A., Merz, S.: Model checking UML
state machines and collaborations. Electronic Notes in
Theoretical Computer Science 55(3), 13 pages (2001)

36. Schneider, F.: Enforceable security policies. ACM Trans-
actions on Information and Systems Security 3(1) (2000)

37. Siveroni, I., Spanoudakis, G., Zisman, A.: Property spec-
ification and static verification of UML models. In: Proc.
3rd International Conference on Availability, Reliabil-
ity and Security (ARES 2008). IEEE Computer Society,
Barcelona (2008)

38. Spanoudakis, G., Kloukinas, C., Androutsopoulos, K.:
Towards security monitoring patterns. In: SAC, pp.
1518–1525 (2007)

39. Wynskel, G.: The Formal Semantic of Programming Lan-
guages. MIT Press (1993)

40. Xie, F., Levin, V., Browne, J.C.: Model checking for an
executable subset of uml. Automated Software Engineer-
ing, ASE 2001 p. 333 (2001)

