243 research outputs found

    System Level Performance Evaluation of Distributed Embedded Systems

    Get PDF
    In order to evaluate the feasibility of the distributed embedded systems in different application domains at an early phase, the System Level Performance Evaluation (SLPE) must provide reliable estimates of the nonfunctional properties of the system such as end-to-end delays and packet losses rate. The values of these non-functional properties depend not only on the application layer of the OSI model but also on the technologies residing at the MAC, transport and Physical layers. Therefore, the system level performance evaluation methodology must provide functionally accurate models of the protocols and technologies operating at these layers. After conducting a state of the art survey, it was found that the existing approaches for SLPE are either specialized for a particular domain of systems or apply a particular model of computation (MOC) for modeling the communication and synchronization between the different components of a distributed application. Therefore, these approaches abstract the functionalities of the data-link, Transport and MAC layers by the highly abstract message passing methods employed by the different models of computation. On the other hand, network simulators such as OMNeT++, ns-2 and Opnet do not provide the models for platform components of devices such as processors and memories and totally abstract the application processing by delays obtained via traffic generators. Therefore the system designer is not able to determine the potential impact of an application in terms of utilization of the platform used by the device. Hence, for a system level performance evaluation approach to estimate both the platform utilization and the non-functional properties which are a consequence of the lower layers of OSI models (such as end-to-end delays), it must provide the tools for automatic workload extraction of application workload models at various levels of refinement and functionally correct models of lower layers of OSI model (Transport MAC and Physical layers). Since ABSOLUT is not restricted to a particular domain and also does not depend on any MOC, therefore it was selected for the extension to a system level performance evaluation approach for distributed embedded systems. The models of data-link and Transport layer protocols and automatic workload generation of system calls was not available in ABSOLUT performance evaluation methodology. The, thesis describes the design and modelling of these OSI model layers and automatic workload generation tool for system calls. The tools and models integrated to ABSOLUT methodology were used in a number of case studies. The accuracy of the protocols was compared to network simulators and real systems. The results were 88% accurate for user space code of the application layer and provide an improvement of over 50% as compared to manual models for external libraries and system calls. The ABSOLUT physical layer models were found to be 99.8% accurate when compared to analytical models. The MAC and transport layer models were found to be 70-80% accurate when compared with the same scenarios simulated by ns-2 and OMNeT++ simulators. The bit error rates, frame error probability and packet loss rates show close correlation with the analytical methods .i.e., over 99%, 92% and 80% respectively. Therefore the results of ABSOLUT framework for application layer outperform the results of performance evaluation approaches which employ virtual systems and at the same time provide as accurate estimates of the end-to-end delays and packet loss rate as network simulators. The results of the network simulators also vary in absolute values but they follow the same trend. Therefore, the extensions made to ABSOLUT allow the system designer to identify the potential bottlenecks in the system at different OSI model layers and evaluate the non-functional properties with a high level of accuracy. Also, if the system designer wants to focus entirely on the application layer, different models of computations can be easily instantiated on top of extended ABSOLUT framework to achieve higher simulation speeds as described in the thesis

    Automatic Non-functional Testing of Code Generators Families

    Get PDF
    International audienceThe intensive use of generative programming techniques provides an elegant engineering solution to deal with the heterogeneity of platforms and technological stacks. The use of domain-specific languages for example, leads to the creation of numerous code generators that automatically translate highlevel system specifications into multi-target executable code. Producing correct and efficient code generator is complex and error-prone. Although software designers provide generally high-level test suites to verify the functional outcome of generated code, it remains challenging and tedious to verify the behavior of produced code in terms of non-functional properties. This paper describes a practical approach based on a runtime monitoring infrastructure to automatically check the potential inefficient code generators. This infrastructure, based on system containers as execution platforms, allows code-generator developers to evaluate the generated code performance. We evaluate our approach by analyzing the performance of Haxe, a popular high-level programming language that involves a set of cross-platform code generators. Experimental results show that our approach is able to detect some performance inconsistencies that reveal real issues in Haxe code generators

    An architectural journey into RISC architectures for HPC workloads

    Get PDF
    The thesis evaluates the current state-of-the-art of RISC architectures in HPC. Studying the performance, power, and energy to solution in heterogeneous SoCs. For the evaluation 2 arm platforms (CPU+GPU, CPU+FPGA), 1 RISC-V platform and 1 Open Source RISC-V core running in an FPGA have been tested

    METHODOLOGY AND ANALYSIS FOR EFFICIENT CUSTOM ARCHITECTURE DESIGN USING MACHINE LEARNING

    Get PDF
    Machine learning algorithms especially Deep Neural Networks (DNNs) have revolutionized the arena of computing in the last decade. DNNs along the with the computational advancements also bring an unprecedented appetite for compute and parallel processing. Computer architects have risen to challenge by creating novel custom architectures called accelerators. However, given the ongoing rapid advancements in algorithmic development accelerators architects are playing catch- up to churn out optimized designs each time new algorithmic changes are published. It is also worth noting that the accelerator design cycle is expensive. It requires multiple iteration of design space optimization and expert knowledge of both digital design as well as domain knowledge of the workload itself. It is therefore imperative to build scalable and flexible architectures which are adaptive to work well for a variety of workloads. Moreover, it is also important to develop relevant tools and design methodologies which lower the overheads incurred at design time such that subsequent design iterations are fast and sustainable. This thesis takes a three-pronged approach to address these problems and push the frontiers for DNN accelerator design process. First, the thesis presents the description of a now popular cycle accurate DNN accelerator simulator. This simulator is built with the goal of obtaining detailed metrics as fast as possible. A detailed analytical model is also presented in this thesis which enables the designer to understand the interactions of the workload and architecture parameters. The information from the model can be directly used to prune the design search space to achieve faster convergence. Second, the thesis details a couple of flexible yet scalable DNN accelerator architectures. Finally, this thesis describes the use of machine learning to capture the design space of DNN accelerators and train a model to predict optimum configurations when queried with workload parameters and design constraints. The novelty of this piece of work is that it systematically lays out the formulation of traditional design optimization into a machine learning problem and describes the quality and components of a model which works well across various architecture design tasks.Ph.D

    Composite Enclaves: Towards Disaggregated Trusted Execution

    Get PDF
    The ever-rising computation demand is forcing the move from the CPU to heterogeneous specialized hardware, which is readily available across modern datacenters through disaggregated infrastructure. On the other hand, trusted execution environments (TEEs), one of the most promising recent developments in hardware security, can only protect code confined in the CPU, limiting TEEs' potential and applicability to a handful of applications. We observe that the TEEs' hardware trusted computing base (TCB) is fixed at design time, which in practice leads to using untrusted software to employ peripherals in TEEs. Based on this observation, we propose \emph{composite enclaves} with a configurable hardware and software TCB, allowing enclaves access to multiple computing and IO resources. Finally, we present two case studies of composite enclaves: i) an FPGA platform based on RISC-V Keystone connected to emulated peripherals and sensors, and ii) a large-scale accelerator. These case studies showcase a flexible but small TCB (2.5 KLoC for IO peripherals and drivers), with a low-performance overhead (only around 220 additional cycles for a context switch), thus demonstrating the feasibility of our approach and showing that it can work with a wide range of specialized hardware
    • …
    corecore