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Designing optimal computer systems for improved performance and energy

efficiency requires architects and designers to have a deep understanding of the end-

user workloads. However, many end-users (e.g., large corporations, banks, defense

organizations, national labs, etc.) are apprehensive to share their applications with

designers due to the confidential nature of software code and data. In addition,

emerging applications pose significant challenges to early design space exploration

due to their long-running nature and the highly complex nature of their software

stack that can not be supported on many early performance models.

The above challenges can be overcome by using a proxy benchmark. A

miniaturized proxy benchmark can be used as a substitute of the original workload

to perform early computer performance evaluation. The process of generating a

proxy benchmark consists of extracting a set of key statistics to summarize the be-

havior of end-user applications through profiling and using the collected statistics
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to synthesize a representative proxy benchmark. Using such proxy benchmarks can

help designers to understand the behavior of end-user’s workloads in a reasonable

time without the users having to disclose sensitive information about their work-

loads.

Prior proxy benchmarking schemes leverage micro-architecture indepen-

dent metrics, derived from detailed simulation tools, to generate proxy benchmarks.

However, many emerging workloads do not work reliably with many profiling or

simulation tools, in which case it becomes impossible to apply prior proxy gen-

eration techniques to generate proxy benchmarks for such complex applications.

Furthermore, these techniques model instruction pipeline-level locality in great de-

tail, but abstract out memory locality modeling using simple stride-based models.

This results in poor cloning accuracy especially for emerging applications, which

have larger memory footprints and complex access patterns. A few detailed cache

and memory locality modeling techniques have also been proposed in literature.

However, these techniques either model limited locality metrics and suffer from

poor cloning accuracy or are fairly accurate, but at the expense of significant meta-

data overhead. Finally, none of the prior proxy benchmarking techniques model

both core and memory locality with high accuracy. As a result, they are not useful

for studying system-level performance behavior. Keeping the above key limitations

and shortcomings of prior work in mind, this dissertation presents several tech-

niques that expand the frontiers of workload proxy benchmarking, thereby enabling

computer designers to gain a better and faster understanding of end-user application

behavior without compromising the privileged nature of software or data.
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This dissertation first presents a core-level proxy benchmark generation

methodology that leverages performance metrics derived from hardware perfor-

mance counter measurements to create miniature proxy benchmarks targeting emerg-

ing big-data applications. The presented performance counter based characteriza-

tion and associated extrapolation into generic parameters for proxy generation en-

ables faster analysis (runs almost at native hardware speeds, unlike prior workload

cloning proposals) and proxy generation for emerging applications that do not work

with simulators or profiling tools. The generated proxy benchmarks are representa-

tive of the performance of the real-world big-data applications, including operating

system and run-time effects, and yet converge to results quickly without needing

any complex software stack support.

Next, to improve upon the accuracy and efficiency of prior memory proxy

benchmarking techniques, this dissertation presents a novel memory locality mod-

eling technique that leverages localized pattern detection to create miniature mem-

ory proxy benchmarks. The presented technique models memory reference local-

ity by decomposing an application’s memory accesses into a set of independent

streams (localized by using address region based localization property), tracking

fine-grained patterns within the localized streams and, finally, chaining or interleav-

ing accesses from different localized memory streams to create an ordered proxy

memory access sequence. This dissertation further extends the workload cloning

approach to Graphics Processing Units (GPUs) and presents a novel proxy gener-

ation methodology to model the inherent memory access locality of GPU applica-

tions, while also accounting for the GPU’s parallel execution model. The generated
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memory proxy benchmarks help to enable fast and efficient design space explo-

ration of futuristic memory hierarchies.

Finally, this dissertation presents a novel technique to integrate accurate core

and memory locality models to create system-level proxy benchmarks targeting

emerging applications. This is a new capability that can facilitate efficient overall

system (core, cache and memory subsystem) design-space exploration. This disser-

tation further presents a novel methodology that exploits the synthetic benchmark

generation framework to create hypothetical workloads with performance behavior

that does not currently exist. Such proxies can be generated to cover anticipated

code trends and can represent futuristic workloads before the workloads even exist.
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Chapter 1

Introduction

Computer system design and research heavily relies on software simulation

techniques to measure the performance of design alternatives and evaluate different

design trade-offs. A processor simulator typically applies a workload and/or its

input data-set to a model of the target processor’s architecture and simulates the

execution of individual instructions of the workload on the processor model, while

recording its effect on various components of the underlying architecture.

Processor simulation tools range from microarchitectural-level performance

simulators (e.g., Gem5 [13], Marssx86 [77]) to detailed register-transfer-level (RTL)

models. RTL simulators simulate a very precise model of a processor that are suf-

ficiently detailed to be manufactured. Modeling at such detailed abstraction levels

ensures higher simulation accuracy, but it comes at the expense of significantly slow

simulation speeds. On the other hand, performance simulators are generally higher-

level and more versatile, and they can estimate program performance and statis-

tics (e.g., number of branch mispredictions, various types of cache misses, TLB

misses) with reasonably good accuracy at higher simulation speeds. Performance

simulators can be further categorized into execution-driven simulators that execute

a complete program binary (with or without an input data-set) on a performance

1



model and trace-driven simulators that execute a trace containing partial informa-

tion about individual instructions and addresses. Different types of performance

simulation models have been developed for solving different research and design

problems, each model with its own simulation speed and accuracy trade-offs. Such

models play a key role in performing design space exploration, evaluating new ar-

chitectural ideas and identifying the performance bottlenecks of various designs by

enabling architects to simulate representative target workloads.

The choice of workloads to simulate on a processor model depends on the

class of applications that the architecture targets or the different features of the ar-

chitecture that the designer wants to stress using the applications. Identifying the

right set of workloads to simulate on a performance model is a very challenging

problem. Small hand-written micro-kernels can be used to represent commonly-

used algorithms in real-world applications, but such micro-benchmarks are often

not comprehensive enough to be representative of the real target applications. A

set of standard benchmarks are typically used for performing computer design

space exploration. For example, Standard Performance Evaluation Corporation

(SPEC) creates the popular SPEC CPU benchmarks (e.g., SPEC CPU2000 [92],

SPEC CPU2006 [93], SPEC CPU2017 [94]), which represent the most commonly

used general-purpose CPU applications and are widely used by computer architec-

ture researchers and designers. The growth in complexity and popularity of data-

management applications, fueled by the big-data revolution, has led to creation of

a number of big-data benchmark suites such as the Cloudsuite [26], BigDataBench

[31], Yahoo! Cloud Serving (YCSB) [18] and TPC-H [100] benchmarks. More

2



recently, graphics processing units (GPUs) have emerged as a popular computation

platform for applications beyond graphics. Programmers exploit these massively

parallel architectures in diverse domains (e.g., linear algebra and bio-informatics).

This has led to several general-purpose GPU benchmark suite offerings such as

Rodinia [17], Parboil [96], etc. Given the growing diversity and complexity of

the applications that are run on modern-day systems, it is important to evaluate

the architectural implications and performance/power efficiency of future computer

designs when targeting such emerging applications and architectures.

Unfortunately, detailed performance evaluation and benchmarking of com-

puter systems is a very challenging task. The growing complexity of modern work-

loads and computer systems pose even bigger challenges. For example, the slow

speed of simulation models, the long-running nature of workloads, the complexity

of software stacks of emerging workloads and confidentiality concerns regarding

sharing end-user applications/data significantly limit the efficiency of early design

space exploration studies. This dissertation focuses on developing techniques that

can address the above challenges and help computer designers to have a better un-

derstanding of end-user workloads. The techniques rely on proxy benchmarking,

i.e., replicating the performance behavior of end-user applications using miniatur-

ized proxy benchmarks. The proxy benchmarks do not have complex software stack

dependencies and can be used for computer design space exploration without com-

promising the privileged nature of software, while significantly reducing the simu-

lation times. The presented proxy benchmarking techniques can improve the early

design space exploration efficiency of emerging applications and architectures.
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1.1 Problem Description

Data handling and management has become an integral component of all

businesses, big or small. Every major industrial sector, be it health-care, scientific-

computing, retail, telecommunication or social networking generates large amounts

of data every day. This has led to an unprecedented increase in the demand for

efficient data handling systems and applications. While traditional data manage-

ment systems were based on structured-query language (SQL) based relational

databases, a new group of databases popularly known as NoSQL databases have

recently emerged as competitive alternatives owing to their flexibility and scalabil-

ity properties [37, 27, 18, 14]. Recent years have thus, seen a big surge in several

such emerging application domains e.g., database applications, machine learning,

business analytics etc. Big-data processing needs also challenge the capabilities

of traditional computing systems to process the large amounts of data efficiently in

terms of both performance and power. Thus, computer designers need to re-evaluate

their design principles to target such emerging applications [26, 31, 67, 70]. How-

ever, it is very challenging to study the performance and power behavior of complex

emerging applications by running them on early performance models. The follow-

ing paragraphs summarize the key challenges and considerations affecting early

design-space exploration efficiency.

The first challenge is that it is very difficult (and often impossible) to run

many emerging applications on detailed performance models owing to the complex

application software stacks and significantly long run times of such applications.

Figure 1.1 shows the software stack of a typical web-serving engine, consisting of
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Figure 1.1: Software Stack of a Typical Web-serving Engine

layers of complicated software levels interacting together to form the backbone of

the engine. Running similar applications requires handling the complex software

layers, back-end databases, third-party libraries, etc., which are quite challenging

to support on most early performance models. Typically, a set of standard bench-

marks [93, 92, 95, 100, 99] are used for performing computer performance evalua-

tion. Benchmarks such as SPEC CPU2006 [93] and Linpack [36] are comparatively

simpler targets for performance evaluation and are widely used by the computer ar-

chitecture research community. Figure 1.2 compares the performance correlation

between three emerging database applications (YCSB benchmarks running with

Cassandra [16] and MongoDB [56] databases and TPC-H benchmarks running

with MySQL [58] database) with three widely popular benchmark suites (SPEC

CPU2006 [93], SPECjbb2013 [95] and Linpack [36]) across six key performance

metrics: L1 data cache (L1D) misses per kilo instructions (MPKI), L1 instruction

cache MPKI (L1I), last-level cache (LLC) MPKI and translation look-aside buffer
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Figure 1.2: Kiviat Plots Comparing Performance of Emerging Big-data Applica-
tions with Standard Benchmarks

(TLB) MPKI, fraction of kernel instructions executed (%Ker) and branch mispre-

diction rate (BrMis). The plots clearly illustrate that significant diversity exists in

the performance and bottlenecks of the emerging applications and standard bench-

marks [70, 67, 104]. On the other hand, the recently proposed big-data benchmarks

(e.g., Cloudsuite and BigDataBench) suffer from a problem similar to those of the

real-world applications; they rely on the ability of early performance models to

support complex software stacks with back-end databases.

The next challenge affecting design space exploration is that simulation

speeds are orders of magnitude slower than native execution. This severely limits

the efficiency of extensive design space exploration studies. To complicate matters
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further, most emerging applications have significantly long run times. For example,

the average dynamic instruction counts of the YCSB benchmarks (with back-end

Cassandra database) and the SPEC CPU2017 benchmarks are in the range of tens

of trillions of instructions. Simulating even one such benchmark for a single de-

sign point can easily take anywhere between several days to several weeks to fin-

ish. Evaluating the entire design search space of a single architecture, on multiple

benchmarks, will require up to thousands of simulation hours. That is equivalent to

several months or even years of simulation on a single processor. Simulating large-

scale processors running such complex applications is well beyond the capabilities

of even the fastest and fanciest simulators, even on today’s fast machines.

Finally, it is difficult to get access to many end-user applications due to con-

fidentiality concerns regarding sharing software code or data. For example, such

software may include weapons simulation, proprietary market trading algorithms,

trade secrets or other sensitive data. Thus, on one hand, designers need in-depth

insights into end-user workload behavior, and on the other hand, end users can-

not reveal any significant information about their code to the designers due to the

proprietary or confidential nature of their software/data.

1.1.1 Limitations of Prior Research Work

A lot of research has been done to address the above challenges affecting

efficient design space exploration of future computer designs. Benchmark sampling

techniques such as simulation points [87] and SMARTS [108] have been proposed

to reduce simulation time requirements of a benchmark. Such techniques analyze
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phase-level redundancies within a single workload’s execution and identify work-

load sub-sections to represent the overall execution behavior of the entire work-

load. By doing so, these techniques can address the long simulation time problem.

However, they still suffer from the challenge of supporting complex application

software-stacks on early performance models and they do not address the issue of

proprietary end-user applications. Also, they rely on the capability of simulators to

fast-forward execution until the interval of interest. Other techniques such as bench-

mark subsetting [79] have been proposed to identify a subset of benchmarks from a

benchmark suite that can represent the performance behavior of all the benchmarks

within the suite. However, the subset results are still whole programs and are still

too big, complex and proprietary to be directly used with performance models.

A promising alternative to address the above challenges is proxy bench-

marking. Proxy benchmarking is the process of extracting statistics that summarize

the behavior of the end-user workloads through profiling and then using the statis-

tics to synthesize a miniaturized representation of the proprietary workloads (called

a “proxy” or “clone”). The proxy workloads can be used as miniaturized sub-

stitutes of the original workloads to perform early computer system performance

evaluation, helping designers to understand the behavior of users’ workloads in a

reasonable time and without the users having to disclose sensitive information about

the original workload.

Prior proxy generation proposals [42, 29, 43] utilize an extensive set of

micro-architecture independent metrics that are derived from detailed functional

simulators or profilers to synthesize the proxy benchmarks. Unfortunately, such
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metrics are often very difficult to extract for many emerging applications that can

not be supported on early simulation models or profilers. For example, several

big-data workloads (e.g., Java-based Cassandra) do not work reliably with many

detailed simulation models (e.g., gem5) or profiling tools (e.g., Pin [54], Valgrind).

In such cases, it becomes impossible to apply prior proxy benchmark generation

techniques to generate proxy benchmarks for such emerging applications.

Furthermore, prior proxy generation techniques capture core-level locality

metrics in detail, but abstract out memory locality modeling using very simple dom-

inant stride-based models. As a result, these schemes suffer poor cloning accuracy

in replicating performance behavior of applications with complex memory access

patterns. For example, Figure 1.3 shows the L1 miss rate cloning error of proxies

generated using the single dominant stride (SDS) approach (the most commonly

used statistic in literature for modeling memory locality patterns in proxies), for a

set of data-serving (YCSB) and data-analytics (TPC-H) benchmarks run against a

back-end MySQL database. Figure 1.3’s x-axis corresponds to different L1 cache

0

10

20

30

40

50

60

L
1
 M

is
s
 r

a
ti
o
 e

rr
o
r

L1 Cache Configurations

Figure 1.3: L1 Miss-ratio Cloning Error of SDS Proxies for Various L1 Cache
Configurations.

9



configurations, where the cache size and associativity is varied between 16-64KB

and 2-8 ways, respectively. It can be observed that the SDS proxies show significant

errors in replicating the miss ratio versus the original applications (measured as the

absolute difference in miss ratios) at several data points, reaching as high as 33%

cloning error. This shows that the SDS approach is not suitable for modeling com-

plex memory access patterns of big-data applications. Most big-data applications

are highly data-intensive and their overall system-level performance is significantly

impacted by the performance of the cache and memory hierarchy [26, 67]. As a

result, prior performance cloning techniques are not very accurate at studying the

overall performance of emerging big-data applications.

Several detailed cache and memory cloning techniques [7, 5] have also been

proposed in the literature. WEST [7] models temporal locality of applications using

per cache-set LRU stack distance distributions based on a baseline cache hierarchy.

However, WEST does not model spatial locality behavior, making it inadequate for

evaluating microarchitectural structures that exploit spatial locality e.g., prefetch-

ers or the memory system (see Table 1.1 for the cloning error of WEST proxies

for over 7000 different prefetcher-enabled last-level cache and TLB configurations

across 39 big-data and SPEC CPU benchmarks). Spatio-temporal memory (STM)

[5] cloning technique overcomes this limitation and models spatial locality by cap-

Table 1.1: Error between WEST Proxies and Original Applications in terms of
Cache and TLB Miss-rates.

LLC miss rates TLB miss rates
Average Error 19% (avg) 9.3% (avg)
Maximum Error 44% (max) 22% (max)
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turing global stride-based correlations in the memory reference stream. However,

the global stride transitions of many benchmarks cannot be captured even by us-

ing a stride history depth as long as ∼80-100 [5]. Thus, STM has to maintain

long histories in order to capture the dominant global stride transitions, which re-

sults in significantly higher meta-data storage overhead. Limiting the stride history

depth can reduce storage overhead, but at the expense of significantly poor cloning

accuracy. For example, limiting the history length to 40 causes STM proxies to

experience up to 24% and 32% error in replicating the TLB miss rate and memory

footprint of many big-data applications. Thus, the state-of-the-art memory behav-

ior cloning proposals either model limited locality metrics (e.g., WEST) and suffer

from poor cloning accuracy or are fairly accurate, but at the expense of significant

meta-data overhead. Additionally, none of these techniques are suitable for model-

ing the memory access behavior of emerging architectures such as GPUs.

Finally, the above prior proxy generation techniques either model the in-

struction pipeline-level locality or the memory access locality in detail. However,

none of them jointly model both core and memory reference behavior with high ac-

curacy. As a result, they are not suitable for studying system-level performance of

emerging applications. This dissertation explores techniques and methods that ex-

pand the frontiers of workload proxy benchmark synthesis through more accurate

and efficient modeling of core and memory locality behavior of emerging appli-

cations and architectures. The proposed techniques can help computer designers

to have a better and faster understanding of end-user workload behavior without

compromising the privileged nature of software or data.
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1.2 Overview of Proposed Research
1.2.1 Core-level Proxy Generation using Performance Counter Based Char-

acterization

While prior system-level proxy benchmarking proposals [11, 43, 29] uti-

lize micro-architecture independent metrics derived from detailed functional sim-

ulators for proxy generation, such metrics are often very difficult to generate for

many emerging applications. However, it is possible to characterize these work-

loads based on performance counters. To enable proxy benchmark synthesis for

complex, emerging applications that do not work with many simulation models or

profiling tools, this dissertation first presents a core-level proxy benchmark synthe-

sis methodology, PerfProx [69, 71], which leverages performance metrics derived

from hardware performance counter measurements to create miniature system-level

proxy benchmarks. First, the key drivers of big-data application performance (larger

code footprints, operating system effects, and other run-time effects, etc.) are iden-

tified. Such effects are often not highly significant in traditional desktop or general-

purpose applications and thus, are not modeled by prior workload cloning propos-

als. Then, PerfProx captures the identified performance metrics using hardware

performance counters and stochastically models them to create miniaturized proxy

benchmarks. The proxy benchmarks replicate the performance behavior of real-

world cloud applications, including operating system and run time effects, and yet

converge quickly without needing any complex software stack support. Several big-

data workloads do not work reliably with many profiling tools, thus performance-

counter based characterization and associated extrapolation into generic parameters

for the code generator enables fast (runs almost at native hardware speeds, unlike
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prior workload cloning proposals) and efficient proxy generation for such bench-

marks with reasonable accuracy.

1.2.2 Memory Locality Modeling using Hierarchical Pattern Detection

Prior state-of-the-art memory locality modeling proposals [5] create mem-

ory proxies by extracting patterns within the global stream of memory references.

However, the global memory access streams of applications are shaped by a number

of different factors - data-dependent control-flow, high-level algorithms that access

different data-structures in the program, data-structure access interleaving, memory

layout of data-structures determined by the compiler/runtime and the machine’s

execution model (out-of-order versus in-order execution, memory address reorder-

ing, etc.). As a result, distilling the inherent patterns in the global memory access

streams into a small set of statistics is very challenging.

This dissertation argues that memory access locality can be more accurately

and succinctly captured by learning patterns at a localized granularity for many ap-

plications. With localization, memory addresses are ideally grouped according to

some inherent property of programs and data accesses (e.g., code-based, address-

region based, time-based), which make the resulting localized streams more pre-

dictable. For example, code-based localization exploits the fact that different mem-

ory instructions or PCs perform different functions versus other memory instruc-

tions, which get executed around the same time. This dissertation presents a novel

class of memory proxy generation techniques [74] that exploit pattern detection

and modeling at localized granularity to accurately replicate application cache and
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memory behavior of different applications.

The first memory access locality modeling technique (HALO) exploits address-

region localization based pattern tracking to create miniature memory access prox-

ies. HALO discovers patterns by first decomposing an application’s memory ac-

cesses into a set of independent streams that are constrained to a smaller region of

memory and then capturing fine-grained access patterns within localized regions

using repeating stride transitions. This allows the representation of complex work-

loads through the composition of a set of smaller and simpler building blocks. Ad-

ditionally, different programs have different locality behavior. HALO exploits this

observation to achieve higher meta-data storage efficiency by capturing multi-level

stride transitions, which are tailored to an application’s locality patterns. However,

modeling locality within individual streams alone is not sufficient to recreate the

original application’s memory behavior. There must be a mechanism to combine

accesses from these decomposed streams to synthesize an ordered proxy sequence.

HALO models this by tracking how accesses to the localized streams are interleaved

with respect to each other by using coarse-grained temporal locality tracking. By

accurately modeling the spatial locality, temporal locality and memory footprint of

application, HALO proxies can replicate the cache and memory performance of

applications even with complex memory access patterns.

However, this approach is not sufficient to model the cache and memory

access behavior of emerging architectures such as GPUs. GPUs leverage large

amounts of parallel hardware combined with light-weight context switching among

thousands of threads to hide the impact of long memory latencies. To model the
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memory locality of GPU applications, it is important to model the effects of thread-

level parallelism on the cache and memory hierarchy. This dissertation extends

workload cloning techniques to GPUs and presents G-MAP [76], a novel method-

ology and framework to statistically model the inherent memory access locality

and parallelism of GPU applications to create miniaturized GPU memory proxies.

G-MAP exploits code-based correlations to model cache and memory locality be-

havior of GPU applications, while also accounting for GPU’s parallel execution

model.

1.2.3 System-level Proxy Benchmark Synthesis

Finally, the above techniques (and the prior work in proxy generation) can

accurately model either the compute-instruction behavior or the memory access

behavior. However, none of the prior cloning studies accurately model the joint

performance of both core and memory subsystems and their complex interactions.

In reality, the processor core configuration and the application together determine

processor core performance, which in turn affects the timing of requests received

in the memory system. At the same time, memory performance has a feedback

loop with processor performance, which in turn affects the timing of other memory

requests and, the overall performance of the application. As a result, the prior work-

load cloning proposals can not be used for studying overall system-level application

performance. However, it would be useful to have easy-to-use and representative

benchmarks to study overall system-level performance of emerging applications.

This dissertation presents a novel system-level proxy generation and model-
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ing methodology (CAMP) that accurately models both core performance and mem-

ory locality to create miniature proxy benchmarks [73]. To model the processor core

performance, the proposed technique captures and models dependencies between

instructions (instruction-level parallelism), instruction types, control-flow behavior,

etc. An improved memory locality profiling approach is added that accurately cap-

tures both the spatial and temporal locality of applications. However, most big-data

applications typically do not have a single dominant stride/offset based access pat-

tern. Thus, it is quite difficult to control the different dynamic execution instances of

the low-level, static load/store instructions in the proxy benchmark to reproduce the

complex memory access patterns of the original applications using synthetic data-

structure accesses in the proxy code. To overcome this challenge, this dissertation

introduces a novel proxy modeling and replay methodology that integrates the core

and memory locality models to create accurate system-level proxy benchmarks.

1.2.4 Synthetic Workloads to Cover Workload Performance Spectrum

Traditionally machines for tomorrow are built using benchmarks of today,

which are workloads of yesterday. It is desirable to have benchmarks that model

futuristic workloads so that future systems can be designed and tuned to work well

for such workloads. This dissertation proposes a synthetic benchmark generation

methodology, Genesys that systematically tweaks the program characteristics, used

as an input to the proxy generation framework, to produce new hypothetical work-

loads with performance behavior that does not currently exist. Also, the set of

programs included in a standard benchmark suite is limited and the benchmarks of-
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ten fill only certain data-points in the workload spectrum (most of the spectrum is

not represented). Genesys proxies can be generated to cover anticipated code trends

and can represent futuristic workloads before the workloads even exist.

1.3 Thesis Statement

Hierarchically capturing both spatial and temporal locality in the application

memory streams using inter-region and intra-region access patterns improves the

accuracy of modeling memory access behavior of complex emerging applications.

Accurately capturing memory access locality and modeling other important features

(e.g., system activity) creates more accurate and representative proxy benchmarks.

Execution-related metrics can be used for generating proxies of emerging applica-

tions, which do not work with conventional profiling tools.

1.4 Thesis Contributions

This dissertation makes several contributions to accurate memory locality

and core performance modeling of emerging applications and architectures. The

key contributions of this dissertation are summarized as follows.

• To simplify benchmarking of big-data data-serving and data-analytics work-

loads on early performance models, this dissertation propose to generate

miniature, representative proxy benchmarks that do not need any complex

software-stack or back-end database support.

• This dissertation presents a core-level proxy benchmark generation method-
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ology, which enables fast and efficient proxy generation for emerging big-

data applications using performance metrics derived primarily from hardware

performance counters. The proxy benchmarks are representative of the per-

formance of the emerging, real-world applications and yet converge to re-

sults quickly and do not need any complex software stack support. The pre-

sented approach is evaluated using three modern, real-world SQL and NoSQL

databases (Cassandra, MongoDB and MySQL) running the data-serving and

data-analytics applications on different hardware platforms and with different

cache/TLB configurations. The proxy benchmarks closely mimic the perfor-

mance of the original database applications, while significantly reducing the

instruction counts.

• To enable fast and efficient design space exploration of futuristic memory

hierarchies, this dissertation next proposes a hierarchical memory access lo-

cality modeling technique that identifies patterns in the original memory ref-

erence stream by isolating the global memory references into several local-

ized streams and further zooming into each local stream capturing multi-

granularity spatial locality patterns. The interleaving degree between local-

ized stream accesses is modeled by leveraging coarse-grained reuse locality

patterns. The presented technique is evaluated using over 20,000 different

memory system configurations and it achieves over 98.3%, 95.6%, 99.3%

and 96% accuracy in performance behavior of replicating prefetcher-enabled

L1 & L2 caches, TLB and DRAM performance, respectively. It also outper-

forms the state-of-the-art memory cloning schemes, WEST and STM, while
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using ∼39X less meta-data storage than STM.

• To enable efficient GPU memory system exploration, this dissertation presents

a novel methodology and framework that statistically models the GPU mem-

ory access stream locality by exploiting the synergy in code-localized access

patterns (within and across threads) to create miniature memory access prox-

ies. To account for the parallel execution model of GPUs, a fine-grained, co-

ordinated scheduling policy is also adopted to ensure appropriate parallelism

at the thread-level and cache/memory-level. Extensive evaluation using 18

benchmarks from Rodinia [17], CUDA SDK [62] and Ispass09 [6] bench-

mark suites shows that the presented technique can mimic the performance

of the original GPU workloads with over 90% accuracy across over 5000

L1-cache, L2-cache, prefetcher and DRAM memory configurations.

• The next proposal focuses on synthesizing accurate and representative system-

level proxy benchmarks for emerging applications, by modeling both core-

performance and memory locality accurately along with modeling the feed-

back loop between the core and memory performance. Core performance is

modeled by capturing metrics such as instruction-level parallelism, control-

flow behavior, etc. An improved memory locality profiling approach is added

that captures both the spatial and temporal locality of applications. Finally, a

novel proxy generation and replay methodology is introduced that integrates

the core and memory locality models together to create accurate system-level

proxy benchmarks. Using extensive evaluation on a set of big-data database
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applications, it is demonstrated that the proxies can mimic the original ap-

plication’s overall performance behavior fairly accurately with an average

cloning error of 11%. This is a new capability that can enable accurate over-

all system (core and memory subsystem) design exploration.

• Finally, this dissertation proposes a technique to exploit the synthetic work-

load generator framework to produce hypothetical workloads before the work-

loads even exist in order to densely cover the workload performance spec-

trum. It achieves this by systematically tweaking statistics used as an input

to the synthetic workload generator in a systematic manner to produce new

hypothetical workloads with performance behavior that does not currently

exist.

1.5 Thesis Organization

This dissertation is organized as follows. Chapter 2 provides background

about prior proxy benchmark generation and other simulation time reduction tech-

niques. Chapter 3 presents the evaluation framework used in this dissertation and

explains the set of benchmarks that were used. Chapter 4 presents details of the

proxy generation framework that exploits performance-counter based characteriza-

tion to generate miniature proxy benchmarks for big-data applications. Chapter 5

presents the hierarchical memory locality modeling approach for generating minia-

ture proxy benchmarks targeting CPU applications. Chapter 6 extends the hier-

archical memory locality modeling approach for GPU architectures while adding

accountability of GPU’s parallel execution model. Chapter 7 presents a unique
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methodology to combine an accurate memory locality modeling framework with

core behavior modeling methodology to create proxy benchmarks which model

both core & memory behavior as well as the feedback loop between the two. Chap-

ter 8 presents a methodology to create hypothetical benchmarks by systematically

tweaking the workload statistics used as inputs to the proxy generation framework.

Chapter 9 concludes this dissertation with a summary of the contributions of the

dissertation and suggestions for future research opportunities.
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Chapter 2

Related Work

This chapter provides an overview of the state-of-the-art research underly-

ing this dissertation. Broadly, the prior workload cloning proposals can be cate-

gorized into techniques that capture detailed cache and memory level behavior of

applications and techniques that model detailed core-level performance behavior.

The following sections first discuss the respective proxy benchmarking proposals

and then highlight a few other simulation time reduction techniques.

2.1 Schemes for Modeling Cache and Memory Performance

The memory reference stream of an application is affected by several fac-

tors: high-level algorithms that access different data-structures in the program,

memory layout of data-structures determined by the compiler or runtime, program’s

unique control-flow, machine’s execution model (out-of-order versus in-order exe-

cution, memory address reordering). As a result, distilling the inherent locality

patterns in the memory access streams into a small set of statistics is a very chal-

lenging problem. A common approach to capture memory behavior is to start from

a model of reference locality. The principle of locality asserts that, whenever a

memory address is referenced, the address itself (temporal locality) or addresses
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near it (spatial locality) are likely to be referenced again soon [90]. Most prior

workload cloning approaches exploit some form of these two kinds of locality to

model memory access patterns.

Reuse distance is an effective model of temporal locality [55, 64, 20, 7, 107].

It is calculated as the number of unique elements accessed between successive ac-

cesses to the same element. Figure 2.1a shows an example of reuse distance com-

putation for the sequence of accesses shown in the figure at cacheline granularity (∞

represents access to a new cacheline). The captured reuse distance distribution can

be used to synthesize a trace clone (e.g., {7, 12, 1, 7, 12, 1, 32, 0, 100, 32, 0, 100

...}), which has the same reuse behavior. However, the synthesized trace sequence

does not model the spatial locality behavior of the original sequence and cannot be

used for evaluating prefetchers, DRAM, memory footprint. Another approach to

model memory access locality is to capture spatial/temporal locality patterns using

address or stride transition graphs. An address transition graph records every unique

memory address as a node, and each edge connects an address to its successors (see

Figure 2.1b). We can observe that while some cache-blocks have a single follower

(e.g., 0), others have multiple followers (e.g., 2). The transitions recorded in the

graph can be followed to generate a proxy trace. However, the space requirement

for saving this graph is often prohibitive. Using stride transition graphs allows us

to capture similar patterns in a more compact form (see Figure 2.1c). Nonetheless,

longer stride history length correlations need to be exploited for achieving higher

accuracy, which makes the storage requirements for capturing global stride transi-

tions also significant.
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Figure 2.1: Common Memory Access Locality Modeling Approaches

WEST [7] is a state-of-the-art data cache performance cloning framework.

Based on a baseline L1/L2 cache hierarchy configuration, WEST captures temporal

locality patterns using per cache-set LRU stack distance distribution for every level

of the profiled cache hierarchy. Each cache-set’s stack distance distribution cap-

tures the percentage of memory references to the corresponding LRU stack position.

WEST also tracks other statistics such as access distribution across different sets,

per-set read-write distribution to every stack position. To generate a memory proxy,

WEST stochastically samples the stack distance statistics and generates accesses to

the chosen cache sets and ways one-by-one. However, WEST’s statistics are tightly

tied to the profiled cache configuration. Thus, significant deviation between the

profiled and test configurations (e.g., cacheline size) leads to poor cloning accu-

racy. Furthermore, WEST does not model spatial locality patterns, and thus WEST

proxies are inadequate to study effects of microarchitectural structures that exploit

spatial locality (e.g., prefetchers [68, 45, 91]). Finally, the meta-data overhead of

capturing WEST’s statistics is proportional to the size of profiled cache hierarchy.

Although it is manageable for L1/L2 caches (relatively smaller size), the overhead

is high for typically-sized last-level or DRAM caches.
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Spatio-Temporal Memory (STM) [5] is another state-of-the-art workload

cloning proposal that captures an application’s spatial and temporal locality behav-

ior to create memory proxies. STM tracks temporal locality using per cache-set

LRU stack distance distribution of a baseline L1 cache (like WEST). For the refer-

ences that miss in the profiled L1 cache, STM captures their spatial locality patterns

by learning global stride transitions (strides following a history of past M strides) in

a global stride history table. Since STM captures stride transitions over the global

memory sequence, it has to maintain long stride histories to accurately capture dom-

inant patterns. Past research has shown that a history length of as long as ∼ 100 is

insufficient to capture the access locality of many SPEC CPU2006 benchmarks

(e.g., h264ref, wrf, etc.) [5]. Maintaining long history based stride tables signif-

icantly increases STM’s meta-data storage overhead, which is a key limitation of

STM in terms of portability. Limiting the history length can reduce the meta-data

overhead, but it increases aliasing in the stride history table resulting in poor cloning

accuracy. Furthermore, STM’s reliance on a per-set LRU stack distance profile for

capturing tight temporal locality patterns causes performance inaccuracies when the

target L1 configurations differ from the baseline assumption.

Bell et al. [11], Joshi et al. [43] and Ganesan et al. [29] create workload

clones by modeling instruction-level behavior, while modeling memory patterns

using a single dominant stride for every load and store instruction. Because of

this simplified assumption, these approaches suffer from poor cloning accuracy, es-

pecially when modeling complex access patterns of emerging big-data workloads.

MEMST [8] clones DRAM performance by modeling statistics such as bank con-
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flict behavior, row buffer hit ratio, etc. and is tightly tied to the profiled DRAM

parameters. Metoo [106] generates workload clones by replicating memory traffic

timing behavior, but the memory addresses are based on WEST’s methodology.

While the above approaches model performance of some elements of the

memory hierarchy, the proposed cloning techniques are the first to capture enough

spatial and temporal features to model the performance of multi-level caches, prefetch-

ers, TLB and main memory. Also, the state-of-the-art techniques can model mem-

ory access locality of CPU applications, but no such solutions exist for cloning

GPU memory access patterns. This dissertation also proposes a novel framework

to model memory access locality of GPU applications.

2.2 Schemes for Modeling Core-level Performance

Oskin et al. [65] and Eeckhout et al. [22] introduced the idea of statisti-

cal simulation. The approach used in statistical simulation is to generate a short

synthetic trace from a statistical profile of workload attributes such as basic-block

distribution, branch misprediction rate, data/instruction cache miss rates, instruction

mix, dependency distance and then simulate the synthetic trace using a statistical

simulator. Eeckhout et al. [23] improved statistical simulation by profiling work-

load attributes at a basic block granularity using statistical flow graphs. Bell et al.

[11] improved upon the statistical framework proposed by Eeckhout et al. [22] by

profiling applications at runtime and extracting several execution-related metrics to

automatically create proxy workloads. Joshi et al. [43, 42] and Ganesan et al. [29]

cloned proprietary applications into synthetic proxies for single core systems by ex-
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tracting micro-architecture independent attributes only. Ganesan et al. [30] added

support for generating proxy workloads for multi-threaded applications.

Prior synthetic generator proposals leverage detailed micro-architectural sim-

ulators to perform detailed workload characterization. Also, most prior workload

cloning studies have focused on general-purpose applications like SPEC CPU2000

[92], SPEC CPU2006 [93] or embedded benchmarks like Implantbench [40]. How-

ever, many emerging applications cannot be reliably run and profiled on detailed

micro-architectural simulators till completion. Techniques presented in this dis-

sertation enable fast and accurate proxy generation for such complex, emerging

workloads by monitoring their complete execution characteristics (with complex

software stacks) on real systems using hardware performance counters.

2.3 Techniques for Modeling GPU Workload Performance

Early design space exploration of GPU architectures is traditionally done us-

ing detailed, cycle-accurate simulators [6, 80]. Although accurate, simulator speeds

are often very slow, which limits efficiency of extensive design space exploration.

A few researchers have also proposed analytical models to estimate GPU cache

performance. To model L1 cache miss rate, Tang et al. [97] applied reuse distance

theory on a single thread-block on a single core by arguing that there is limited

reuse across different thread-blocks. Nugteren et al. [61] proposed another GPU

L1 cache model. They collected per-warp memory traces and emulated inter-warp

parallelism using round-robin scheduling policy before applying an extended reuse

distance model (considering cache latencies, MSHRs, etc.). Although such models
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are fast, their scope is limited to L1 cache performance modeling. In contrast, this

dissertation presents a novel performance cloning framework (G-MAP) that can al-

low extensive exploration of different levels of the GPU memory hierarchy. Other

GPU analytical modeling proposals [35, 89] focus on core performance, while us-

ing simple abstractions to model memory performance.

Yu et al. [109] proposed a GPU application cloning technique by replicating

the instruction mix, control-flow, divergence behavior. Deniz et al. [19] proposed

another GPU benchmark synthesis framework by replicating GPU application fea-

tures such as the instruction throughput, compute resource utilization. Both these

studies focus primarily on mimicking instruction-level characteristics, while they

capture memory access patterns using abstract and simple models.

2.4 Other Techniques for Reducing Simulation Time

To address the simulation time problem, well-known sampling techniques

like simulation points [87] and SMARTS [108] are widely used. Such techniques

leverage the observation a program’s dynamic behavior is composed of repeated oc-

currence of several shorter-duration phases. These techniques try to identify such

unique fine-grained phases (called simulation points or simpoints), which can be

used to represent the entire execution behavior of the program at a considerably re-

duced simulation time. To identify the dominant phases, the Simpoint tool [87, 33]

divides up the entire execution of an application into fixed-length intervals. It uses

a signature to represent the activity during each execution interval called a “ba-

sic block vector” [86], which is nothing but a sequence of basic block addresses
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executed during that interval. Then, the K-means clustering algorithm is used to

compare the basic-block vectors of different execution intervals and identify domi-

nant clusters. For each cluster, a representative simulation point is chosen that has

the minimum distance from the centroid of the cluster. The simulation point is also

given a weight according to the number of execution-intervals grouped into the cor-

responding cluster. The weights of different simulation points are normalized such

that they sum up to unity. However, using such techniques for big-data applications

requires supporting complete application software stacks on simulation frameworks

and fast-forwarding support.

Other techniques such as benchmark subsetting [79] have been proposed to

identify subsets of programs belonging to a benchmark suite, that are representative

of the overall performance of the entire suite. However, such techniques still face

the challenge that the results are still whole programs, which are very complex and

long-running to be simulated on early performance simulators.
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Chapter 3

Methodology

To evaluate the effectiveness of the proxy benchmarking schemes proposed

in this dissertation, a combination of techniques involving measurements on real

hardware systems and simulations is used. The simulators used in this disserta-

tion include MacSim [47], an x86 CPU-system simulator, CMP$im [38], a cache-

hierarchy simulator and Ramulator [48], a detailed memory system simulator. GPU

performance evaluation is performed using GPGPU-Sim [6], a widely popular GPGPU

performance simulator. Measurements of different performance and power charac-

teristics on real hardware systems are performed by reading performance or power

counters using the Linux Perf [53] and RAPL [41] tools. Characterization and pro-

filing of different CPU and GPU applications for extracting the workload-specific

statistics, which are used to feed the proxy generators, is done primarily using

heavily-modified Pin instrumentation tools [54] and CUDA-sim simulation infras-

tructure [6]. In terms of workloads, this dissertation uses a variety of real-world

big-data applications (e.g., SQL and NoSQL based data-serving applications rep-

resented by the Yahoo Cloud Serving Benchmarks [18], data-analytics applications

represented by the TPC-H benchmarks [100], graph analytics benchmarks [26]) and

general-purpose benchmarks (such as SPEC CPU2006 [93] and SPEC CPU2017

[94]). For the GPU proxy benchmarking techniques, popular GPU benchmarks
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from the Rodinia [17], NVIDIA SDK [60] and GPGPU-sim ISPASS-2009 [6] bench-

mark suites are evaluated. The remainder of this chapter presents an overview of

each tool and also a description of the different workloads/benchmark suites used

to evaluate the proposed schemes.

3.1 Details of Profiling and Simulation Infrastructure
3.1.1 Profiling and Measurement Infrastructure on Real Machines

This dissertation validates the cloning accuracy of the system-level proxy

benchmarks against the original applications on real systems by monitoring hard-

ware performance counters. The interface for reading hardware performance coun-

ters involves accessing special CPU registers, which are called Model Specific Reg-

isters or MSRs as per the x86 terminology. Broadly, the MSRs can be categorized

into two types. The first type of MSRs are called configuration registers and they

are often used for starting or stopping the counters, setting up the interrupts for de-

tecting overflows, choosing the events to monitor. The second type of MSRs are

called counting registers which hold the counts of the chosen events. In general,

somewhere between 2 to 8 counting registers are available on most contemporary

computer systems. Accessing the configuration registers usually requires special

privileged (ring 0, supervisor) instructions. Accessing counting registers may also

require extra permissions. Linux’s perf tool [53] provides a easy-to-use interface to

access the processor performance counters. Similarly, power measurement on real

systems is performed using the RAPL tools [41]. Intel’s Pin tool [54] is used for

performing micro-architecture independent workload characterization. Pin is a dy-
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namic binary instrumentation tool and it can dynamically instrument the compiled

binary files.

3.1.2 Simulation Infrastructure

3.1.2.1 System Performance Simulation

This dissertation uses MacSim, a cycle-level architecture simulator, to sim-

ulate the system-level performance of different applications on x86-based CPUs.

MacSim models the architectural behavior of modern-day processors, including

detailed pipeline stages (in-order and out-of-order) and the memory system compo-

nents including caches, networks-on-chip, and memory controllers. MacSim can be

used to simulate both homogeneous and heterogeneous ISA multicore simulations.

To simulate x86 systems, MacSim uses a Pin tool as an instruction emulator, which

feeds x86 instructions into the back-end simulation engine.

3.1.2.2 Memory Timing Simulation

This dissertation uses Ramulator, a memory system timing simulator, to

evaluate the memory system performance in detail. Ramulator models the timing

of the memory system quite accurately and supports a wide variety of commer-

cial, as well as academic, DRAM standards such as DDR3/4, LPDDR3/4, GDDR5,

WIO1/2, HBM, SALP, ALDRAM, TL-DRAM, RowClone, etc. Also, Ramulator

is implemented in an efficient such that it decouples the work needed to interact

with or query the core algorithm from the work needed to update its internal state-

machines. As a result, integrating Ramulator with a processor simulation model
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does not slow down the processor simulation much. Ramulator comes with a sim-

ple memory controller module, which exposes an API for sending and receiving

requests to and from the memory system. It supports two modes of operations:

one mode for standalone usage and another for integrated usage with a proces-

sor/cache simulator. This dissertation uses Ramulator in both standalone and inte-

grated modes in order to enable different experimental studies.

3.1.2.3 Cache Hierarchy Simulation

This dissertation uses CMP$im, a cache-hierarchy performance simulator

to evaluate the proposed memory proxy benchmarking techniques across different

cache hierarchy and prefetcher configurations. CMP$im uses Pin to serve as the

functional model that provides CMP$im with memory addresses and other related

information. CMP$im is quite configurable and can gather detailed cache perfor-

mance statistics for single-core and multi-core configurations. CMP$im enables

different types of cache-hierarchy studies where users can vary the cache parame-

ters (e.g., cache size, associativity, cache line size), cache allocation policies, cache

replacement policies, and write policies. The number of levels in the cache hier-

archy is also configurable, along with the specification of an inclusion/exclusion

and cache-sharing (applicable for chip multi-processors) policy. This dissertation

augments the CMP$im infrastructure with different prefetcher modules in order to

study the impact of prefetchers on cache performance. It also interfaces CMP$im

with a detailed memory system simulator to evaluate the performance of the under-

lying memory system.
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3.1.2.4 GPU Performance Simulation

To evaluate the cloning accuracy of the GPU proxies, this dissertation uses

GPGPU-Sim [6], a detailed general-purpose GPU (GPGPU) simulator that models

the compute architecture of modern NVIDIA GPUs. GPGPU-Sim executes ap-

plications compiled to PTX (NVIDIA’s intermediate instruction-set) or disassem-

bled native GPU machine code. GPGPU-Sim is a functional-first simulator; it first

functionally executes all instructions and then feeds them into the timing simulator.

GPGPU-Sim models the functional and timing components of the compute pipeline

e.g., the thread scheduling logic, highly-banked register file, special function units.

GPU applications can access different types of memories. For example, global

memory is the main data-store where most data resides. The global memory data

is cached in the on-chip multi-level cache hierarchy. Other GPU-specific memory

types include constant memory (used for handling GPU read-only data), scratchpad

memory (a software-managed on-chip cache used mostly for saving spilled reg-

isters), texture cache (graphics-specific cache), parameter cache (for storing com-

pute kernel parameters) and instruction cache (for storing kernel’s instructions).

GPGPU-Sim includes models for all the different types of GPU memory as well as

the on-chip caches and the DRAM memory system. GPGPU-Sim consumes mostly

unmodified GPGPU source code that is linked to GPGPU-Sim’s custom GPGPU

runtime library. The modified runtime library intercepts all GPGPU-specific func-

tion calls and emulates their effects. When a compute kernel is launched, the

GPGPU-Sim runtime library initializes the simulator and executes the kernel in

timing simulation. The main simulation loop continues executing until the kernel
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has completed before returning control from the runtime library call.

3.2 Workload Description
3.2.1 Databases

This dissertation uses three modern, real-world databases (Cassandra, Mon-

doDB and MySQL) for evaluating the effectiveness of the proxy benchmark gener-

ation techniques.

3.2.1.1 Cassandra

Apache Cassandra [16] is a popular, Java-based column-family style NoSQL

database. It is incrementally scalable, eventually consistent, and has no single point

of failure. Every node in the Cassandra cluster knows of and has the key for at

least one other node and any node can service a request. The node structure can

be visualized as a ring/web of interconnected nodes. Cassandra is semi-structured;

i.e., its data may share some of the same fields or columns, but not all of them. In

this way Cassandra is slightly more organized than MongoDB, but still not as rigid

as MySQL.

3.2.1.2 MongoDB

MongoDB [56] is an open-source, C++ based document-style NoSQL database.

It is designed for speed and scalability. It has a flexible schema (allows objects to

not have fixed schema/type) and can store large documents such as binaries, images

and audio files. Documents are stored as binary JSON objects and may be orga-
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nized into collections. Within a collection each document has a primary key, and an

index can be created for each query-able field. MongoDB’s data is searched using

keys and meta-data information.

3.2.1.3 MySQL

MySQL [58] is one of the world’s most popular open-source relational

database management system. It enables the cost-effective delivery of reliable,

high-performance and scalable web-based and embedded database applications.

MySQL is designed to work on data whose fields are pre-defined and finite in num-

ber. Given this regular layout, MySQL can organize and search through data in

multiple dimensions. This is both its strength and limitation, as it can’t use the

same strategy on less structured data.

3.2.2 Data-serving Benchmarks

This dissertation uses the Yahoo! Cloud Serving Benchmark (YCSB)[18] to

represent the data-serving applications. YCSB is a standard benchmarking frame-

work that is used to evaluate different cloud systems. YCSB’s framework consists

of a workload generating client and a set of standard ‘core’ workloads (see Table

3.1), which cover the most important operations performed against a typical data-

serving database. The test database is generated using the YCSB framework and

has over 10 million records (total size is ≥ 12GB). The data-set size is chosen so

that the data fits into the memory of the server nodes, which is the recommended

operational setup for scale-out applications for better performance [57]. Every test
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run performs 1 million operations against the database.

Table 3.1: Yahoo! Cloud Serving Benchmark (YCSB) Core Workloads

Workload Operations 
Record 

Selection 
Application Example 

A - Update 

heavy 

Read: 50%, 

Update: 50% 
Zipfian 

Session store recording recent actions 

in a user session 

B - Read 

heavy 

Read: 95%, 

Update: 5% 
Zipfian 

Photo tagging; add a tag is an update, 

but most operations are to read tags 

C - Read 

only 
Read: 100% Zipfian 

User profile cache, where profiles are 

constructed elsewhere (e.g, Hadoop) 

D - Read 

latest 

Read: 95%, 

Insert: 5% 
Latest 

User status updates; people want to 

read the latest status 
 

3.2.3 Data-analytics Benchmarks

This dissertation uses TPC-H benchmarks [100] to represent the data-analytics

class of applications. TPC-H models a decision-support system environment for

commercial order processing engines. It consists of a set of queries that interact

with the server system to perform different business-like analyses. Similar to Bar-

roso et al. [10], the experiments use a data-set size (∼10GB) to analyze the be-

havior of an in-memory database. The dbgen and qgen tools (provided on TPC’s

website) are used to create/populate the database and generate the queries. Five dif-

ferent queries are evaluated from the TPC-H benchmark suite on MySQL database.

Query details are shown in Table 3.2.

3.2.4 SPEC CPU2006 and SPEC CPU2017 Benchmarks

SPEC CPU2006and SPEC CPU2017 are a popular set of standard bench-

marks that are widely used in the evaluation of the CPU performance. SPEC

CPU2006 suite consists of 29 benchmarks, including integer and floating point
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Table 3.2: TPC-H Benchmark Description

 

Sl. Benchmark Name Description 

1 TPC-H Query 1 (Q1) 
Pricing summary report query involving sequential 

table scan. 

2 TPC-H Query 3 (Q3) 
Shipping priority query, involves hash-join,nested 

loop join 

3 TPC-H Query 6 (Q6) Forecasting revenue change query using sort 

4 TPC-H Query 14 (Q14) Business Promotion Effect Query using join 

5 TPC-H Query 19 (Q19) Discounted revenue query using nested loop join 

suites, ranging from CPU-intensive to memory-bound applications. SPEC CPU2006

workloads do not use extensive system I/O traffic and are single threaded. In order

to use this suite on multi-core platforms, multi-programmed workloads are formed

by running individual instances of the CPU2006 benchmarks on each core. SPEC

CPU2017 suite consists of 43 benchmarks, including speed and rate sub-suites of

floating-point and integer benchmarks. The rate benchmarks in the CPU2017 suite

are multi-programmed workloads.

Unlike its predecessor, the SPEC CPU2017 suite is divided into four cate-

gories: speed integer (SPECspeed INT), rate integer (SPECrate INT), speed floating

point (SPECspeed FP) and rate floating point (SPECrate FP). The SPECspeed INT,

SPECspeed FP and SPECrate INT groups consist of 10 benchmarks each, while

the SPECrate FP group consists of 13 benchmarks. The CPU2017 benchmarks are

written in C, C++ and Fortran languages. Compared to the CPU2006 FP bench-

marks, the CPU2017 FP benchmarks have∼10X higher dynamic instruction count.
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This steep increase in instruction counts further exacerbates the problem of bench-

mark simulation time on most state-of-the-art simulators.

3.2.5 Other Benchmarks

Memcached - Today’s web applications are very latency-sensitive with strict

quality-of-service (QoS) requirements. As these applications are highly data-intensive

and have very big data footprints, they spend a significant fraction of their execu-

tion time servicing requests to the memory system. Disks or hard-drives are too

slow to meet the QoS requirements of modern-day applications. As a result, most

server systems use dedicated caching servers to cache data in their DRAM. Mem-

cached benchmark [26] relies on one such widely-popular data-caching platform

and simulates a Twitter caching server using a real Twitter dataset.

Graph Analytics - In contrast to the data-analytics benchmark that oper-

ates on textual data, the graph analytics benchmark [26] analyzes large scale graphs.

Graph analytics is becoming increasing popular due to the growing popularity of so-

cial networks such as Facebook and Twitter. The Graph Analytics benchmark [26]

uses the GraphLab machine learning and data mining software to run the TunkRank

algorithm, which recursively computes the influence of Twitter users based on the

number of their followers.

3.2.6 GPU Benchmarks

Rodinia - The Rodinia benchmarks [17] are designed to evaluate heteroge-

neous computing infrastructures. As they are based on OpenMP and CUDA, they
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can target both GPU architectures as well as multi-core CPU architectures. The

Rodinia suite is structured to span a range of parallelism and compute patterns, pro-

viding researchers with various feature options to identify architectural bottlenecks

and to fine tune hardware designs.

Parboil - The Parboil benchmarks [96] are a set of throughput computing

applications useful for studying the performance of throughput computing architec-

tures and compilers. The benchmarks include throughput computing applications

in many different scientific and commercial fields including image processing, bio-

molecular simulation, fluid dynamics, and astronomy.
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Chapter 4

PerfProx: Core-level Proxy Benchmarks for
Emerging Workloads using Performance Counter

Based Characterization

Prior proxy benchmark generation techniques [11, 43, 29] use micro-architecture

independent metrics derived from detailed functional simulators for proxy genera-

tion. Such metrics are often very difficult to generate for many emerging applica-

tions. Several big-data workloads (e.g., Java-based Cassandra) do not work reliably

with many detailed simulation models (e.g., gem5) or profiling tools (e.g., Pin [54],

Valgrind, etc.). To overcome the challenges in simulating such complex emerg-

ing applications, this chapter proposes a proxy synthesis methodology, “PerfProx”

[71, 69], which uses performance metrics derived primarily from hardware per-

formance counter measurements to synthesize miniature proxy benchmarks. The

generated proxy benchmarks are representative of the performance of original ap-

plications and yet, converge to results quickly without any complex software-stack

support. Several big-data workloads do not work reliably with many profiling tools,

but performance-counter based characterization and associated extrapolation into

generic parameters that the code generator can enable fast and efficient proxy gen-

eration for such benchmarks.
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4.1 PerfProx’s Methodology

In this section, the proxy generation methodology of PerfProx is described.

Figure 4.1 shows PerfProx’s overall framework. PerfProx first characterizes the

database applications running on real hardware and extracts their key performance

metrics (step A©). During the workload characterization step, PerfProx captures

low-level dynamic runtime characteristics of the program (like statistical simula-

tion), continuously building accurate instruction-locality, memory access and branch-

ing models. Based on the extracted performance features, PerfProx builds a workload-

specific profile for each database application that uniquely summarizes the appli-

cation’s runtime behavior over its entire execution time (step B©). Synthesizing

using statistics rather than the original application source code effectively hides the

functional meaning of the code/data, which addresses any proprietariness or con-
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Figure 4.1: PerfProx’s Proxy Generation Methodology
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fidentiality concerns about sharing end-user workloads. Finally, PerfProx’s work-

load synthesizer uses the captured workload-specific profiles to generate the proxy

benchmarks, which have similar features as the original application (step C©).

If the workload-specific profile represents the execution behavior of the

original application accurately, then the proxy benchmark created using the same

set of features should also replicate the performance of the original applications

with similar accuracy. The proxy benchmark is synthesized as a C-based program,

with low-level instructions instantiated as asm statements. When compiled and ex-

ecuted, the proxy benchmark mimics the dynamic performance characteristics of

the database application and it can be easily run on early performance/functional

simulators, etc. with significantly reduced runtimes. The following paragraphs will

describe the workload characterization methodology and the proxy synthesis algo-

rithm in detail.

4.1.1 Workload Characterization using Performance Counters

As discussed, PerfProx monitors the runtime behavior of an application and

produces a set of workload characteristics representing its low-level dynamic execu-

tion characteristics. PerfProx captures the execution characteristics of database ap-

plications primarily using hardware performance counters running on real hardware

systems. It then transforms the performance counter data using analytical models

to derive features representing the workload-specific profile. The workload-specific

profile serves as an input to the workload synthesis algorithm, which generates rep-

resentative proxy benchmarks that closely resemble the performance of the original
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applications. Many emerging big-data workloads do not work reliably with many

profiling tools, and thus performance-counter based characterization and associated

extrapolation enables fast and accurate analysis and proxy generation for such ap-

plications. For database applications that can work with fast program profilers (e.g.,

Pin), PerfProx further augments its memory access modeling methodology by cap-

turing micro-architecture independent patterns from the original memory access

streams. The key performance features captured by the PerfProx’s workload char-

acterization model are described in the following sections. The abstract workload-

specific profile generated based on the following features is shown in Table 4.1.

a. Instruction Mix The instruction mix (IMIX) of a program measures the rel-

ative frequency of various operations performed by the program. PerfProx mea-

sures the instruction mix of the database applications using hardware performance

counters. PerfProx specifically measures the fraction of integer arithmetic, integer

multiplication, integer division, floating-point operations, SIMD operations, loads,

stores and control instructions in the dynamic instruction stream of the program.

The detailed instruction mix categorization is shown in Table 4.1. PerfProx com-

putes the target proxy IMIX based on the fraction of individual instruction types in

the original application. This target IMIX fraction is used to populate correspond-

ing instructions into the static basic blocks of the proxy benchmark.

b. Instruction Count and Basic Block Characteristics PerfProx uses the database

application’s instruction cache (icache) miss rate to derive an initial estimate of the
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Table 4.1: PerfProx’s Workload-specific Profile

Metric Category Metrics Description/Range

Instruction-mix

1. Load, 2. Store, 3. Integer 4. INT 

MUL, 5. INT DIV,

6. FP, 7. SIMD, 

8. Control instructions

Fraction of each instruction category measured using hardware 

performance counters

Instruction Footprint 9. Instruction count
Derived from target instruction cache miss rate and default 

cache configuration assumption

Control-flow 

Predictability

10 . Branch transition probability
Derived from target branch misprediction rate (Ranges 

between 0-100%)

11. Average basic block size
Derived from actual application’s total instruction count and 

control instruction count

12. Number of basic blocks Derived from metrics 9 and 11

Instruction-level 

Parallelism
13. Instruction dependency distance 1, 4, 8, 16, 32, 64, 128, 256 dependency distance bins

Memory Access Model

14. Stride value per static load/store

0, 1, 2, 4, 8, 12, 16, 20, 24, 28, 32, 64, 128, 256  byte buckets 

based on target L1/L2 cache miss rate or characterization of 

application’s local and global strides. 

15. Data footprint (number of iterations 

before resetting to beginning of data 

arrays)

Based on target application data footprint

16. Memory stream concurrency factor Bins representing upto 100 different data arrays

System Activity 17.  System call ratio Derived from target fraction of user vs kernel instructions

number of instructions to instantiate in the proxy benchmark. The instruction cache

miss rate metric is easily measurable on most computers using the hardware per-

formance counters that count the number of instruction cache misses and accesses.

An initial estimate of the number of static instructions to instantiate in the proxy

benchmark is made to achieve the desired icache miss rate based on the assumption

of a default instruction cache size/configuration (64KB, 64B line-size, 2-way set-

associative). The final static instruction count of the proxy benchmark is tuned to

achieve the target icache miss rate on the profiled hardware system. PerfProx also

measures the average basic block size of the database application based on its total

dynamic instruction count and fraction of control instructions. Both these metrics

are measured using hardware performance counters on the profiled system. The
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number of static basic blocks to instantiate in the proxy benchmark is derived as a

ratio of the final instruction count estimate and the target basic block size.

c. Control Flow Behavior Another important metric that affects application per-

formance significantly is its control flow performance. PerfProx estimates the over-

all branch predictability of an application in a directly correlated fashion based on

the application’s branch misprediction rate (measured using hardware performance

counters). To model a target branch predictability into the proxy benchmark dur-

ing proxy generation, PerfProx estimates the fraction of control instructions in the

proxy benchmark that will have a particular predictability behavior. For example,

assuming a 2-bit saturating counter based predictor, 100% and 50% branch pre-

dictability can be modeled using a branch instruction which is mostly not-taken

and a branch instruction which alternates between the taken and not-taken paths

respectively. Similarly, a very hard-to-predict branch can be modeled to switch

between the taken and not-taken paths in a random fashion.

d. Memory-access Model Although PerfProx’s primary objective is to develop

a fast and light-weight methodology to model application performance, it is crucial

for PerfProx to model the cache and memory performance accurately. The principle

of data locality and its impact on cache and memory performance is widely recog-

nized. PerfProx models the data memory accesses using simple, strided stream-

classes over fixed-size data arrays. PerfProx leverages a methodology to infer the

memory stream strides based on the data cache miss rates of the original appli-
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cation (similar approach as [11, 25]). It employs a pre-computed table that holds

the correlation between L1/L2 cache hit rates and the corresponding stride values.

Particular memory access strides are determined, using the target L1/L2 hit rate

information along with this table, by first matching the L1 hit rate of the memory

operation, followed by the L2 hit rate. For example, memory accesses with 100%

hit-rate can be modeled using a stride of zero (assuming 64B cacheline size). Stride

values are optimized to achieve the highest correlation of proxies in terms of tar-

get cache performance. Although approximate, such a mechanism to model strides

based on the cache miss rates enables fast and efficient memory pattern modeling

of complex workloads, which are otherwise difficult to simulate on detailed perfor-

mance simulators. This technique was used to estimate memory access strides for

database applications (e.g., JAVA-based Cassandra) that often can not reliably run

to completion using program profilers.

Despite its advantages, the simple memory access model based on cache

miss rates is dependent on the profiled cache/memory hierarchy. Although it is pos-

sible to measure cache miss rates corresponding to different cache sizes/configurations

in a single run, a better solution for improving the fidelity of the generated proxies

would be to exploit micro-architecture independent features to model the mem-

ory access locality. Thus to improve upon its memory access locality modeling

technique, PerfProx proposes to analyze detailed access patterns in the global and

local memory access streams of the database applications. More specifically, mem-

ory access behavior is modeled by finding fine-grained stride-based correlations

on (a) per-instruction (local-stride profile) and (b) global memory reference stream
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(global-stride profile) granularity. The collected stride information is categorized

into bins, where each bin corresponds to a stride between -256 to +256 for global

strides and 0 to 218 for local strides. During proxy generation, every proxy mem-

ory instruction is assigned a memory address that satisfies both the target local

and global stride distribution of the original application. This methodology can

also model irregular memory access behavior by controlling the degree of spatial

locality in memory streams and randomly using large stride bins. For database ap-

plications (e.g., MySQL applications) that can work with fast program profilers, the

local and global memory strides were measured at a byte-size granularity over the

entire execution period.

Furthermore, it has been shown by several prior research studies that database

applications tend to have higher TLB misses (often as frequent as cache misses)

[67, 26], which has a significant impact on their performance. As discussed before,

PerfProx models the data memory accesses using simple strided stream classes over

fixed-size data arrays. In order to model the effects of TLB performance, Perf-

Prox controls the degree of concurrency in its active memory access streams; i.e.,

it controls the number of unique memory streams actively accessed by the proxy

application within a fixed window of instructions. Individual load/store instruc-

tions are assigned to different active data streams based on this concurrency factor.

The proxy data footprint is also scaled according to the target data-set size of the

database application.
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e. Instruction-level Parallelism Instruction-level parallelism (ILP) is an impor-

tant determinant of application performance. Tight producer-consumer chains can

limit performance due to serialization effects. PerfProx models the original appli-

cation’s ILP based on its inter-instruction dependency distance, which is defined as

the number of dynamic instructions between the production(write) and consump-

tion(read) of a register/memory operand. PerfProx classifies the instruction depen-

dency distance into 8 bins, where each bin represents the percentage of instructions

having that particular dependency relation. As it is not possible to measure the

application’s exact dependency distance using performance counters alone, Perf-

Prox adopts an approximate model to measure the same. It makes an initial esti-

mate of the application’s inter-instruction dependency using the dependency-related

stall events of the original application. Most micro-architectures support measuring

some form of reservation-station stalls, re-order buffer stalls, or data-dependency

stalls, etc. Depending on the ratio of the dependency related stalls to overall execu-

tion cycles, ranging from very low (≤2%) to high(≥30%), PerfProx approximately

extrapolates the inter-instruction dependencies into the 8 bins (see Table 4.1), where

each bin represents a certain inter-instruction dependency distance. The final de-

pendency distance estimate is tuned to achieve the target stall ratio on the profiled

system. Nonetheless, profiling the original applications to measure the exact multi-

granularity instruction dependency distance statistics (if possible) can lead to more

accurate modeling of instruction-level parallelism effects. During proxy benchmark

generation, the register/memory operands of the instructions are assigned a depen-

dency distance to satisfy the metrics collected from the original application.
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f. System Activity Prior research [67, 26] has shown that the emerging database

applications spend a significant fraction of their execution time executing operating

system (OS) code, which has a significant impact on their overall performance. To

model the performance impact of high system activity, PerfProx measures the sys-

tem activity in the original applications using the STRACE tool and the fraction of

executed user-mode and kernel instructions using hardware performance counters.

During proxy generation, PerfProx inserts corresponding desired fraction of system

calls into the basic blocks in the proxy benchmark to achieve the desired level of

system activity.

4.1.2 Synthetic Proxy Benchmark Generation

Algorithm 1 PerfProx’s Workload Synthesis Algorithm
1: Input: Table 4.1 metrics, target instruction & basic block count;
2: Output: Proxy benchmark sequence, B[]
3: Determine number of static basic blocks B to instantiate in proxy benchmark.
4: while b < B do
5: Sample a random basic block.
6: Estimate basic block size I to satisfy mean & std. dev of target basic block size.
7: for i < I do
8: Assign instruction type based on target IMIX probability.
9: Assign dependency relation based on target dependency distance distribution.

10: For load/store instructions, assign the memory access stream and local stride.
11: Inject system-calls based on target system-call frequency.
12: Insert x86 test operation with chosen modulo operand.
13: Assign last instruction to be conditional branch instruction.
14: end for
15: end while
16: Assign architectural register operands to satisfy dependency relations of step 9.
17: return B[]
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In this section, the workload synthesis algorithm (see Figure 4.1) is dis-

cussed in detail. The workload synthesis algorithm takes as an input the workload-

specific profile captured during the workload characterization phase (see Table 4.1

for a list of the captured metrics). The proxy benchmark generation steps are listed

in Algorithm 1. PerfProx first estimates the total number of static basic blocks to

instantiate in the proxy benchmark. It then chooses a random number in the interval

[0, 1] to select a basic block based on its access frequency. The size of the basic

block (in terms of number of instructions) is chosen to satisfy the mean and stan-

dard deviation of the target basic block size (line 6). The IMIX statistics are used to

populate the basic block with appropriate instruction types (line 8), while ensuring

that the last instruction of every basic block is a conditional branch instruction (line

13). Every instruction is assigned a dependency distance (i.e., a previous instruc-

tion that generates its data operand) to satisfy the dependency distance criterion.

The memory instructions are assigned a stride and memory access stream based

on the memory model described before. System calls are injected (or not) into the

basic block based on the target system-call frequency. Finally, an X86 test opera-

tion is inserted before the branch instruction to set the condition codes that affect

the conditional branch outcome. The test instruction’s operand is chosen to control

the branch transition rate in order to satisfy the target transition rate of every basic

block. These steps are repeated till the target number of static basic blocks are gen-

erated. Finally, architectural register operands are assigned to each instruction to

satisfy the dependencies in step 9 (line 16).

The proxy synthesizer generates C-language based proxy benchmarks with
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embedded X86-based assembly instructions using the asm construct. The gener-

ated sequence of instructions is nested under a two-level loop where the inner loop

iterations controls the dynamic data footprint and the outer loop iterations control

the number of dynamic instructions in the proxy benchmark. The nested looping

structure is not the major determinant of the application performance as the static

footprint of the proxy benchmarks is significant. As an example, the proxy bench-

mark of YCSB workload with MongoDB consists of over 40K static basic blocks.

The outer loop iterations reset each data-stream access to the first element of the

memory array (for re-walking). The code is encompassed inside a main header and

the malloc library call is used to statically allocate memory for the data streams.

Using the volatile directive for each asm statement prevents the compiler from op-

timizing out the program machine instructions.

4.1.3 Discussion

PerfProx’s workload characterization methodology has several advantages.

One of its key benefits is speed. As PerfProx derives key workload metrics from

hardware performance counters using simple models, PerfProx can run at the speed

of native hardware. Thus, PerfProx makes it possible to monitor complex, long-

running applications over their entire execution time, which is often impossible on

slower, detailed performance models. Also, many database applications (e.g., Cas-

sandra) are difficult to run reliably using performance simulators as they are based

on higher level programming languages such as JAVA and typically require deep

software stack support. PerfProx provides an easy and reliable methodology to
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evaluate such applications and generate corresponding proxy benchmarks. For ap-

plications that can work with fast program profilers (e.g., Pin), PerfProx also aug-

ments its memory access modeling methodology by capturing micro-architecture

independent patterns from the original memory access streams to improve fidelity

of the generated proxies. Nonetheless, the reliance on some micro-architecture de-

pendent features for proxy generation can degrade the performance correlation of

the PerfProx proxies on systems that deviate significantly from the target system

(which was used for performance counter based profiling and proxy generation).

It must be noted that the data-set and query information manifest them-

selves into the final workload characteristics obtained from the dynamic statistical

profiling of the application. Separate proxy benchmarks need to be generated for

representing different input data-sets and database application queries; however, the

fast proxy benchmark synthesis methodology makes this feasible. Also, the gen-

erated proxies do not capture features that are not modeled (e.g., value prediction)

during the workload characterization step. Also, PerfProx models the behavior of

in-memory databases and thus, does not model I/O effects. This is not an inherent

limitation of the approach as support could be added by monitoring/modeling I/O

(beyond the scope of this paper). PerfProx also does not model context-switches

and applications are pinned to cores during execution.

4.2 Evaluation

This section discusses the experimental setup followed by a detailed evalu-

ation of PerfProx’s performance cloning accuracy.
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4.2.1 Experimental Setup

PerfProx is evaluated using three NoSQL and SQL databases: Cassandra

(version 0.1.7), MongoDB (version 2.6.5) and MySQL(version 5.1.15). MongoDB

is setup to run one mongod instance per server node. MongoDB’s config server

and router node are setup on the server node, and it was verified that the router

node and config server processes are light-weight and are not bottlenecks in the

performance tests. Cassandra database is setup and run using Java Oracle JDK

version 1.7, with a JVM heap size of 8GB. Yahoo! Cloud Serving Benchmarks

(YCSB)[18] are used to represent the data-serving applications using Cassandra,

MongoDB and MySQL databases. TPC-H benchmarks [100] are used to represent

the data-analytics applications.

Characterization and generation of proxy benchmarks for databases run-

ning YCSB and TPC-H workloads is performed on servers based on the system-A

configuration, as described in Table 4.2. The performance of PerfProx proxies is

validated on systems A and B, as shown in the table.

Table 4.2: Systems used for Evaluating PerfProx’s Cloning Accuracy

Configuration System-A System-B 

Core 
Architecture 

64-bit processor, Core micro-
architecture 

64-bit processor, 
Ivy-bridge micro-architecture 

Core 
Frequency 

2 GHz 2.50 GHz 

Cache 
Configuration 

Private L1 caches (64 KB I and D 
caches), 12 MB L2 cache 

Three levels of caches, 1.5MB 
L2, 15MB L3 cache 

Memory 16 GB DRAM 64 GB DRAM 

 

The proxy benchmarks are compiled using gcc with the -O0 optimization
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flag to avoid compiler optimizations that remove dead-code or alter the inserted

code in other ways. In order to profile the original applications and evaluate the

microarchitectural performance of the actual applications and corresponding proxy

benchmarks, Linux’s perf tool [53] is used to provide an interface to the processor

performance counters. Intel’s PIN tool [54] is also used for workload characteriza-

tion.

4.2.2 Results and Analysis

This section extensively evaluates the proxy benchmarks to see how well

they can replicate the behavior of the original database applications in terms of key

performance metrics across different systems. In the following sections, YCSB

benchmarks are represented as DB-WLx, where DB is the original database name

and x is the YCSB workload (A-D). Also, database and proxy benchmark results

are represented as Actual (A) and Proxy (P) respectively. Apart from comparing the

percentage error between different performance metrics of the proxy and database

applications, the Pearson’s correlation coefficient (ρ) is also reported. Pearson’s

correlation coefficient indicates how well the proxy benchmarks track the trends

in the actual database applications, with 1 indicating a perfect correlation, and 0

indicating no correlation.

4.2.2.1 Performance Validation of Proxy Benchmarks

Figure 4.2 compares the instructions per cycle (IPC) of Cassandra, MySQL

and MongoDB databases running the YCSB and TPC-H benchmarks along with
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their corresponding proxies on system-A. It can be observed that the IPC of the

proxy benchmarks closely follows the IPC of the original applications, with a high

correlation between the two (ρ = 0.99). The mean error between the proxy IPC and

actual application IPC is 6.1% approximately (10.7% max) across all workloads.

Considering the data-serving applications only, the average error in IPC between

the proxy and the actual applications is 5.1%. MongoDB experiences worse errors

as compared to Cassandra and MySQL. Performance of MongoDB-based applica-

tions are impacted by their cache and TLB performance [67]. Because of PerfProx’s

simple memory access locality modeling technique, PerfProx proxies experience

higher deviation in terms of the cache and TLB performance with respect to the

original applications, which results in the higher overall performance modeling er-

ror. The data-analytics applications have an average error of 6.5% between the

proxy and actual applications.

Figure 4.3a compares the branch prediction rates of the original and their

corresponding proxy benchmarks. It can be observed that the error between the
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Figure 4.2: IPC of Real Databases and Proxy Applications on System-A
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branch prediction rates of the proxy benchmarks and the actual applications is small

(average error = 1.5%, ρ = 0.99). This shows that PerfProx’s methodology of cap-

turing and mimicking branch transition rates is effective at achieving the target

branch prediction rates fairly accurately. Figures 4.3b and 4.3c compare the L1

cache and last-level cache (LLC) hit rates respectively for Cassandra, MySQL and

MongoDB databases running the YCSB and TPC-H benchmarks with their corre-

sponding proxies (normalized with respect to the cache hit rate of Cassandra run-

ning YCSB WLA benchmark). The average error in mimicking L1 and LLC Cache
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hit rate is 6.1% and 3.1% respectively. In terms of TLB behavior (Figure 4.3d), the

average error between the proxy and original applications is higher as compared

to other performance metrics. Nonetheless, the trend in TLB performance is cap-

tured to a reasonable degree across the different workloads (ρ = 0.83). Similarly, in

terms of system activity (Figure 4.3e), the fraction of user to system instructions in

the proxy benchmarks closely follows the original applications, with a correlation

(ρ) of 0.967.

4.2.2.2 Proxy Cross-platform Validation

Next, the performance correlation of proxy benchmarks generated from

system-A is validated on the system-B micro-architecture (see Table 4.2b).

Figure 4.4a shows the IPC of the proxy versus actual applications on system-

B for Cassandra-based applications (normalized with respect to actual Cas-WLA).

The proxy benchmarks experience an average error of ∼19.4% in replicating the

IPC of the original applications across the different YCSB workloads. As Perf-

Prox’s workload features are derived using microarchitecture-dependent character-

ization (e.g., cache miss rates etc) based on a target system, the performance cor-

relation of the proxies on similar machines is higher. However, when tested on

machines with very different configurations, the performance correlation of proxies

degrades. The original and proxy workloads are also compared using several other

key metrics, e.g., L2 misses per kilo instructions (MPKI), LLC MPKI and branch

prediction rate (see Figures 4.4b, 4.4c and 4.4d). It can be observed that, although

the L2 and LLC MPKI of the proxy benchmarks follow the performance trends of
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Figure 4.4: Proxies from System-A Validated on System-B: (a) IPC, (b) L2 MPKI,
(c) LLC MPKI, (d) Branch Prediction Rate

the original applications, the degree of correlation is lower because of the depen-

dence of the profiled cache performance metrics on the profiled cache hierarchy.

Figure 4.4e compares the IPC of the proxy benchmarks versus the original

TPC-H applications on system-B. The TPC-H proxy and original workloads are

also compared across several other key metrics: L2 MPKI (average error = ∼0.78

MPKI), LLC MPKI (average error =∼1 MPKI) and branch prediction rate (average

error = 0.25%) in Figures 4.4f, 4.4g and 4.4h respectively. The L1 cache and TLB

performance (not shown here due to space considerations) also have similar cor-

relations between the original and proxy applications. Memory locality modeling

using stride-based patterns leads to accurate capture of application spatial locality,
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thereby improving the cache performance correlation between the proxy and ac-

tual applications. However, the assumed stride model fails to capture long-distance

reuse locality of accesses, which manifests as slightly worse errors in modeling

LLC locality. On the other hand, the cache miss rate based memory locality mod-

eling technique captures reuse probability at lower level caches as well, leading to

slightly better performance correlation. Future work will focus on incorporating

longer-distance reuse locality patterns into the memory access model.

Finally, Figure 4.4i shows the IPC of the proxy benchmarks versus the origi-

nal applications on system-B for MongoDB-based applications. Although the aver-

age error between the IPC of proxy benchmarks and the original database queries on

system-B is high, the proxy benchmarks still capture the IPC trends of the original

application pretty well (average correlation =∼0.93). The proxy and original work-

loads are also compared across several other key metrics: L2 MPKI, LLC MPKI

(average error = ∼3 MPKI) and branch prediction rate (average error = 2.3%) as

shown in Figures 4.4j, 4.4k and 4.4l respectively.

4.2.2.3 Proxy performance sensitivity analysis on different cache/TLB con-
figurations

This section discusses the performance sensitivity of the proxy benchmarks

to different cache and TLB configurations and aims to evaluate the effectiveness of

PerfProx’s memory access modeling methodology to capture and mimic the inher-

ent memory access patterns in a workload.

First, a data-analytics application represented by the TPC-H Q19 bench-
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mark is analyzed to evaluate its performance sensitivity. TPC-H Q19 is chosen be-

cause Q19’s proxy experienced the highest error in replicating cache performance

among the 5 TPC-H queries on system-A. A PIN-based cache simulator is used to

measure the cache performance of the proxy and the original TPC-H queries across

20 different cache configurations, where the cache size and associativity are varied

between 16-256KB and 1-32 respectively. Figure 4.5 shows the cache MPKI of the

original TPC-H Q19 and its proxy for the different configurations. The cache MPKI

of the proxy benchmark follows the original application with an average deviation

of 0.5 MPKI and a high correlation of 0.89 across the different configurations.

Next, the cache performance sensitivity of data-serving applications is eval-

uated using the YCSB workload with MongoDB database. For testing different

cache configurations, the cache size is changed between 16 to 256KB and associa-

tivity is changed between 1-16. Similarly, the different TLB configurations corre-

spond to different TLB sizes (32-256 entries) and associativity (2-8). Figure 4.6
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shows the cache and TLB MPKI sensitivity of the proxy and database applica-

tion. It can be observed that the cache MPKI of the proxy benchmark follows the

original application closely across different cache configurations, with an average

deviation of ∼2 MPKI. Similarly, the TLB MPKI of the proxy benchmarks follows

the original application with a mean error of 2.2 MPKI. The proxies’ cache and

TLB performance as compared to the actual applications have correlations of 0.88

and 0.97.

and the actual applications have a correlation of 0.88 and 0.97 with respect

to cache and TLB performance respectively.
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Figure 4.7: Comparing Power Consumption of Proxy versus Actual Applications

4.2.2.4 Energy-efficiency Analysis

Figure 4.7 shows the average power consumption (in watts) of the individual

databases running the data-serving and data-analytics applications and their corre-

sponding proxy benchmarks (normalized with respect to the actual YCSB bench-

marks running on Cassandra). Power is measured using Intel’s RAPL counters on

system-B. There is a high degree of correlation between the average power con-

sumption of the proxy and actual applications (ρ = 0.97). The power consump-

tion of an application is often highly correlated with its performance behavior [28].

Since the proxy benchmarks mimic the performance behavior of the original ap-

plications closely in terms of IMIX, instruction dependencies, cache/memory be-

havior, they closely mimic the power characteristics of the actual applications as

well.
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4.2.3 Comparison with standard benchmarking suites

In this section, database applications are compared against three standard

benchmark suites, SPEC CPU2006 [93], SPECjbb2013 [95] and Linpack [36].

The kiviat plots shown in Figure 4.8a show the performance trends of the orig-

inal database applications and their corresponding proxy benchmarks, while the

kiviat plots in Figure 4.8b shows performance metrics corresponding to the stan-

dard benchmarks across several key metrics. Specifically, the kiviat plots are based

on selected raw performance metrics: L1D, L1I, LLC, I/D TLB MPKI, %kernel

instructions executed (Ker), branch misprediction rate (BrMis), normalized by their

maximum observed values on system-A.

Modern database applications suffer from several bottlenecks which limit

their overall performance on contemporary hardware systems. The plots illustrate

significant diversity in the performance and bottlenecks of different database appli-

cations and standard benchmarks. For example, SPECjbb stresses a different set of

system components (branch misprediction rate and LLC cache misses) than Mon-

goDB applications. Even with a comparable data-set size (over 10GB), Linpack

does not encounter similar memory subsystem issues as the database applications,

demonstrating that the Linpack program’s behavior is different from databases even

when the data-set is big. The plots also show how closely the generated proxy

benchmarks resemble performance trends of the original workloads. Thus, the

proxy benchmarks can be used for effective performance validation, while being

very simple targets for performance evaluation. Improving the memory and in-

struction locality models can further improve their fidelity.
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Figure 4.8: Kiviat Diagrams Comparing Performance of Original Database Appli-
cations, Proxy Benchmarks and a Set of Standard Benchmarks

4.2.3.1 Degree of Miniaturization

A key advantage of the proxy benchmarks is that they are miniaturized (have

fewer instructions) as compared to the original applications. This significantly re-

duces the simulation time of the proxy benchmarks on simulation frameworks. The

average instruction-count of the generated proxy benchmarks is ∼2 billion (∼520

times smaller than original database applications). Thus, the proxy-benchmarks can

be run to completion on simulators in a reasonable time.
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4.3 Summary

To simplify the benchmarking of emerging big-data applications, this chap-

ter presented a novel methodology (PerfProx) to create representative system-level

proxy benchmarks. PerfProx generates proxies by monitoring and extrapolating

database application performance primarily using hardware performance counters.

PerfProx proxies enable fast and efficient performance evaluation of emerging work-

loads without needing back-end database or complex software stack support. Perf-

Prox is evaluated using three popular and modern databases, Cassandra, MySQL

and MongoDB for both data-serving and data-analytics applications running across

different hardware platforms and multiple cache/TLB configurations. The proxy

benchmarks mimic the performance (IPC) of the original applications with 94.9%

(average) accuracy for data-serving applications and 93.5% (average) accuracy for

data-analytics applications, while significantly reducing the instruction counts com-

pared to the original applications’.
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Chapter 5

HALO: A Hierarchical Memory Access Locality
Modeling Technique For Memory System Exploration

Memory system performance is a fundamental performance and energy bot-

tleneck in all computing systems. Optimal design of memory system hierarchy re-

quires an in-depth understanding of target end-user workload demands and exten-

sive design-space exploration. To enable fast and efficient memory system design

space exploration, this chapter presents a novel spatio-temporal model of end-user

memory access streams, which can be used to explore memory-system trade-offs.

Memory access streams of applications are shaped by several different factors -

high-level algorithms that access different data-structures in the program, memory

layout of data-structures determined by the compiler/runtime, program’s unique

control-flow, machine’s execution model (out-of-order versus in-order execution,

memory address reordering), etc. As a result, distilling the inherent patterns in the

memory access streams into a small set of statistics is a very challenging problem.

As discussed in Chapter 2, prior memory locality modeling proposals [7, 5]

mimic cache and memory behavior by tracking temporal or spatial locality patterns

within the global memory reference streams. For example, WEST models only

temporal locality patterns using per-set stack distance distributions and is thus, in-
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adequate to evaluate microarchitectural structures that exploit spatial locality (e.g.

prefetchers). STM models spatial locality by capturing global stride-based corre-

lations in the memory reference stream. However, it has to maintain significantly

long stride history-base tables to capture the dominant stride transitions, which re-

sults in significantly higher meta-data storage overhead. Limiting the stride history

depth reduces storage overhead, but results in poor cloning accuracy.

The global access statistics are often not effective in capturing memory ref-

erence behavior because accesses to different structures are often interleaved, which

mask the patterns within each individual stream. This can be illustrated with an ex-

ample shown in Figure 5.1a. This simple program adds two array data-structures

(a[64] and b[64]), leading to a memory reference and stride pattern sequence shown

in Figure 5.1b (assuming, 1 array entry = 1 byte = 1 cache-block). It can be ob-

served that the global stride patterns are non-repetitive. Still, capturing the global

stride sequence is feasible even with a 1-length global stride history table (see Fig-

ure 5.1e), but it would require saving every individual stride transition, which is

almost equivalent to saving the entire memory trace. However, it can also be ob-

served that accesses to the individual data-structures have significant regularity (+1

and -1 strides, respectively, see Figure 5.1d), which is not otherwise discernible

by looking at the global memory sequence alone. Although simple, this example

shows how many simple access patterns cannot be effectively captured by using

global stride patterns. More data-structures with a greater degree of interleaving

is likely to cause greater aliasing in the stride tables (with limited global history),

leading to poor cloning accuracy.
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Figure 5.1: Global versus Local Memory Access Pattern Tracking.

In this dissertation, a Hierarchical memory Access LOcality modeling tech-

nique, “HALO”, is presented that can statistically capture the spatial locality, tem-

poral locality and memory footprint of applications, while incurring less meta-data

storage overhead (which is an important consideration for portability). HALO

leverages the observation that different data-structures have different locality prop-

erties and their access patterns can be detected more easily by analyzing localized

access patterns. Thus, HALO discovers patterns by first decomposing memory ref-

erences into localized address regions and then identifying access patterns within

69



individual regions using repeating stride transitions. In this example, HALO local-

izes addresses into two regions (R0 & R1) and learns stride transitions within the

localized regions as shown in Figures 5.1c & 5.1d, respectively (a memory region

= 64 cache-blocks). However, capturing intra-region locality patterns alone is not

sufficient to recreate the original memory access behavior in the proxy benchmark.

What is equally important is to capture how accesses to these individual regions are

interleaved with respect to each other. HALO models the interleaving information

by exploiting coarse-grained temporal locality patterns and uses it to synthesize an

ordered proxy reference sequence from individual localized stream accesses (see

Figure 5.1f).

5.1 HALO’s Methodology

Figure 5.2 shows an overview of HALO’s memory locality modeling frame-

work. During the profiling phase 1©, HALO characterizes the application’s inherent

memory access patterns to create a statistical workload-specific profile 2©. HALO

discovers memory access patterns by decomposing the original references into dif-

ferent regions (“region localization” A©) and capturing fine-grained access patterns

within individual regions using repeating stride transitions (“intra-region stride lo-

cality” C©). In particular, HALO captures multi-level stride transition probability

distributions, which are tailored to the locality behavior of different applications,

to achieve higher cloning accuracy and meta-data storage efficiency. HALO further

captures how accesses to these individual localized regions are interleaved with

respect to each other by tracking coarse-grained temporal locality patterns (“inter-
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Figure 5.2: HALO’s Memory Locality Cloning Methodology.

region reuse locality” B©). During the proxy synthesis phase 3©, HALO adopts a

systematic methodology to create a miniature memory access clone of the original

application based on the captured workload-specific profile that can then be used

to drive cache hierarchy, TLB and memory system performance exploration. To do

so, HALO first generates proxy accesses within localized memory regions by lever-

aging the collected intra-region stride statistics (“intra-region access generation”

D©) and then interleaves accesses from the localized streams using the captured

reuse locality statistics (“inter-region interleaving reconstruction” E©) to create

an ordered proxy reference sequence.

5.1.1 Region Localization

During the region localization step, HALO divides the address space into

fixed-size segments called regions and assigns the original memory references to

different regions based on the higher-order bits of the addresses. The key idea be-

hind region localization is that, for most applications, similar data-structures (with
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similar access patterns) are often laid out in continuous address segments. Ac-

cesses to such regions or data-structures often have different patterns as compared

to other regions or data-structures that are accessed together. Detecting patterns

within a single global access stream is usually not effective or has higher storage

overhead because effects such as data-dependent control flow, program complexity,

data-structure access pattern differences, data layout, etc. lead to increased entropy

in the global reference patterns. In contrast, using localized pattern detection can

lead to more accurate representation of access patterns. Localized pattern correla-

tion is also leveraged by many prefetchers [49, 59, 68, 45, 105] to make prefetch

predictions. HALO considers each memory region to be a contiguous 4KB segment

in the memory space.

5.1.2 Intra-region Stride Locality Tracking

After localizing the original memory accesses into different regions, HALO

captures fine-grained access patterns within individual regions using intra-region

stride probability distributions. However, what stride history length can efficiently

capture dominant intra-region stride locality behavior across different applications?

Figure 5.3 shows the cumulative fraction of intra-region stride transitions

(y-axis) that can be captured using increasing history-length based stride transition

tables (x-axis) without having any aliasing effects for 8 applications. It can be ob-

served that applications have diverse locality behavior. For example, for the bwaves

benchmark with highly-strided access patterns, more than 98% of the intra-region

stride transitions can be summarized using a history length of 3. Similarly, both
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Figure 5.3: Fraction of Original Reference Patterns Captured Using Increasing
History-length Based Stride Tables.

cactusADM and zeusmp benchmarks operate on a 3D array/grid and have fairly

strided access patterns. However, while cactusADM iterates over the grid points

in one dimension, zeusmp iterates over data points in all three dimensions. Thus,

most dominant intra-region access patterns of cactusADM can be summarized us-

ing a history length of 2, but zeusmp requires slightly longer stride history length

(∼ 4−6). On the other hand, for benchmarks such as graph analytics, which con-

sists of many complex indirect references, using a local history length of 10 also

suffers from aliasing effects in a few memory regions. Choosing a long history-

length to account for locality of worst-case benchmarks would increase meta-data

storage overhead for other benchmarks without providing any significant accuracy

benefit, while reducing the history length would cause aliasing in the stride tables,

73



Reg
ID

Last 
access

Past
LMAX

strides

0 12 5, 1

1

:

18
Reg ID

New intra-region 
stride = 6

-

1  6

5, 1  6

New address

Region History Table Cascaded Stride Tables

New stride 
transitions

Nnext

Cascaded Stride Tables (CSTs)

1-History 
Local 
Stride

NS0 f0 NS1 f1

0 1 100%

1 2 50% 6 50%

2 5 100%

5 1 100%

6 3 100%

2-History 
Local 
Stride

NS0 f0 NS1 f1

0,1 2 100%

5,1 6 100%

LMAX

Longer history can lead to 
accurate pattern capture

3 3 4 6 11 12 18 21 …Original access sequence

0 1 2 5 1 6 3Intra-region stride sequence

1-History 
Local Stride

NS0 f0 NS1 f1

0 1 100%

1 2 50% 6 50%

2 5 100%

5 1 100%

6 3 100%

2-History 
Local 
Stride

NS0 f0

0,1 2 100%

5,1 6 100%

1,2 5 100%

2,5 1 100%

1,6 3 100%

Already profiled addresses New addresses

Intra-region stride sequence : 0, 1, 2, 5, 1, 6, 3 

Nnext

(a) Intra-region stride profiling structures (b) How CSTs are used during profiling and proxy generation

Figure 5.4: Intra-region Locality Profiling using Cascaded Stride Tables (CSTs).

leading to poor accuracy. In any case, it should be noted that the localized patterns

can be captured using much shorter history lengths as compared to global memory

patterns. For example, in the h264ref benchmark (see Figure 5.3), most intra-region

stride transitions can be captured using a local history length of 8, while even a his-

tory length of ∼100 is not enough to capture the dominant global stride transitions

[5].

In order to leverage the diverse program locality to achieve improved cloning

accuracy and meta-data storage efficiency, HALO proposes tailoring the stride his-

tory length based on the application’s locality needs. HALO achieves this by using

a set of cascaded stride tables (CSTs) to capture the intra-region stride transitions.

Each stride table tracks a longer stride history length and associates specific intra-

region stride histories with the next possible strides to the same region. Figure 5.4a

shows an example to demonstrate the working of the CST structures. Before mov-

ing forward, let us first clarify a few notations: CSTi is used to refer to a stride

table tracking i-length stride history, LMAX refers to the maximum cascading degree
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(LMAX = 2 in this example), and (NS0, f0) refers to next-stride value and its proba-

bility of occurrence. In the original stride sequence shown in Figure 5.4a, stride {1}

is followed by strides {2} or {6}with equal probability, which causes aliasing in the

CST1 table. Using only 1-history transitions for proxy synthesis can lead to a differ-

ent stride interleaving in the proxy versus the original application because of such

pattern aliasing. The aliasing effects can, however, be eliminated in this example

by capturing 2-history stride transitions in the CST2 table. Using the CST2 table can

accurately model the stride following {1}with 100% accuracy depending on its pre-

ceding stride ({0} or {5}). Capturing other 2-history stride transitions in the CST2

table (e.g., {2, 5}→ {1}) is not necessary as the same patterns can be captured us-

ing 1-history transitions ({5}→ {1}). Thus, using CSTs enables locality-specific

access pattern capture; shorter history tables can efficiently capture simple/regular

patterns, while more complex patterns are tracked using longer history-based stride

transitions. Conceptually, using multiple cascaded tables to track histories of vary-

ing lengths is similar to the state-of-the-art TAGE branch predictor [84] or variable

length delta prefetcher [88].

Figure 5.4b shows the profiling structures used for capturing the multi-level

stride transitions. During a profiling interval, HALO keeps track of accesses to

different regions using the region history table (RHT). Each RHT entry tracks the

number of region accesses, past LMAX intra-region strides within the region, etc.

To profile a memory access, RHT is indexed using the address’s region index and

a new stride is computed based on the region’s last seen address. The CST ta-

bles are updated based on the new stride and the history of last LMAX strides to the
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region. Unfortunately, during the profiling interval, it is not known as to which his-

tory length can capture the current stride transition with least aliasing (as the entire

application reference stream has not been profiled yet). Thus, during a profiling

interval, HALO updates all the stride tables using the accumulated stride history

of the corresponding region, where each cascaded table tracking history length Li

is updated using the accumulated last Li intra-region strides, ∀i≤ LMAX . For ex-

ample, when address 18 (region R0) is profiled, both CST tables are updated using

the accumulated stride history and the new stride ({1}→ {6} and {5, 1}→ {6}

respectively).

At the end of the profiling interval, HALO analyzes the complexity of stride

transitions captured in the CSTs (starting from the longest-history one) and iden-

tifies the minimum history length (L
′
MAX ) that can capture the respective access

patterns with least aliasing. To do so, HALO scans the CST tables (starting from

the longest-history one) one-by-one and invalidates those stride pattern entries that

can be captured using a shorter length history table with similar accuracy. If all the

next stride probabilities in a CSTk table exceed a threshold of δ , then L
′
MAX is set to

be k for that application. In this example, at the end of the profiling interval, HALO

post-processes the CST2 table and invalidates the last three entries ({1, 2}→ {5},

. . ., {1, 6}→ {3}) as the same patterns are captured in the CST1 table. Also, the

{1}→ {2, 6} entry in the CST1 table is invalidated as 2-history pattern needs to be

captured to remove aliasing effects. Figure 5.4a shows the final state of the CST

tables after post-processing. The final post-processed state of the CST probability

distribution tables is saved for proxy generation. During post-processing, adja-
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cent regions with similar intra-region stride patterns can be identified and merged

to form larger regions. Since individual CST tables contain a maximum of a few

tens to hundreds of entries for most applications, the time overhead to manage the

cascaded tables is not significant.

5.1.3 Inter-region Reuse Locality

As discussed earlier, capturing intra-region locality metrics alone is not suf-

ficient to recreate the original memory access locality. HALO further captures how

accesses to the individual regions are interleaved with respect to each other. To

understand why, let us re-visit the example program in Figure 5.1. This program

makes repeated accesses to the two arrays in an interleaved manner. However, dur-

ing proxy generation, if the cloning framework generates accesses to the two arrays

in a sequential manner (all accesses to R0 finish before R1 is accessed), the proxy

program’s locality will be very different from the original program. HALO captures

the degree of interleaving between accesses to individual memory regions by moni-

toring coarse-grained temporal locality patterns using the region reuse distribution

Access A[0] B[N] A[1] B[N-1] A[2] B[N-2] A[3] B[N-3] A[4]

Address 0 128 1 127 2 126 3 125 4

Region 
Address

0 1 0 1 0 1 0 1 0

∏ Metric ∞ ∞ 1 1 1 1 1 1 1

Figure 5.5: Inter-region Reuse Locality (Π Metric) Tracking.
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(Π) metric. The Π distribution captures the number of unique region accesses be-

tween successive accesses to the same region. Figure 5.5 shows an example of Π

metric computation for the program discussed in Figure 5.1. The last row shows the

computed Π metric (∞ represents a newly-accessed region). During proxy genera-

tion phase, the Π profile is used to reconstruct an ordered proxy memory reference

sequence from individual region streams.

Modeling the Π statistics also gives HALO the ability to accurately con-

trol the memory footprint of the generated proxy (corresponding to the ∞ counts

in the Π-profile). Synthesizing proxies using global stride transitions alone expe-

riences up to 195%, 91% and 55% error in replicating the memory footprint of

original benchmarks using a stride history length of 10, 30 and 60 respectively due

to aliasing in the stride transition tables. Higher error in replicating the applica-

tion memory footprint translates into higher TLB, cache and DRAM performance

errors. On the other hand, by tracking stride transitions at a localized granularity,

HALO helps to reduce the error rates by reducing aliasing effects. Nonetheless,

modeling inter-region reuse locality enables HALO proxies to achieve over 99%

accuracy in replicating the desired memory footprint and TLB miss rate of the orig-

inal applications.

5.1.4 Proxy Generation Algorithm

Table 5.1 summarizes the key statistics that HALO captures to model the

memory behavior of applications. These statistical profiles are used to generate

HALO’s memory locality proxies. Algorithm 2 shows HALO’s proxy generation
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Table 5.1: Profiled Statistics for HALO Proxy Generation

Statistic Description
CST = {CST1, . . . ,CSTLMAX} Set of cascaded stride tables with

increasing history length
LMAX Maximum cascading degree
CSTi Stride pattern table keeping stride

transition counts from past i intra-region
strides to next stride

Nnext Number of possible next
intra-region strides

ΠRD|Count Region reuse distance histogram
RDMAX Maximum region reuse distance bin
ρrw Fraction of write accesses
Ratemem Rate of memory reference generation

algorithm. The inputs to the algorithm are the statistics shown in Table 5.1. The out-

put is the memory proxy characterized by a tuple {(ADDRi, RWi)}, where ADDRi

refers to the ith proxy address and RWi denotes the access type. Before proxy gen-

eration, miniaturization is applied by scaling down the collected statistical input

profiles by the desired scaling factor, Tmin. Care should be exercised when choosing

an appropriate scaling factor because scaling beyond a certain limit will cause inac-

curacies in modeling the memory reference patterns in the proxy due to the law of

large numbers. Algorithm 2 assumes the existence of a data-structure (RegInfo) to

track the LRU history of distinct region references. The last nth accessed region can

be obtained by using the function Get Region(n), while the RegInfo data-structure

can be updated as new regions get accessed using the Update Region() function.
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Algorithm 2 HALO’s Proxy Generation Algorithm
1: Input: Table 5.1 Statistical Profiles.
2: Output: Trace T [] = {(ADDR1, RW1), . . . , (ADDRN , RWN)};
3: for i = 1, . . . ,N do
4: Sample πi from Π

5: if πi < RDMAX then
6: Regi = RegInfo.Get Region(πi);
7: else
8: Sample Regi uniformly in the address space;
9: end if

10: (R, LAST ADDR, LAST ST R) = RHT[Regi];
11: j = LMAX ;
12: while j > 0 do
13: f = CSTj.find(LAST ST R[LMAX − j : LMAX ])
14: if f == True then
15: Sample stride Si from CSTj;
16: break;
17: end if
18: j = j - 1;
19: end while
20: Sample RWi from ρrw;
21: ADDRi = LAST ADDR + Si;
22: LAST ST R.push back(Si);
23: LAST ADDR = ADDRi;
24: RHT[Regi].UpdateState(LAST ADDR, LAST ST R);
25: RegInfo.Update Region(Regi);
26: end for
27: return Trace[]

To generate the ith memory address, the Π profile is sampled to obtain a re-

gion reuse distance value (line 4). The corresponding region is obtained by invoking

the Get Region() function. If the chosen reuse distance is greater than RDMAX (cor-

responding to ∞ reuse distance), a new region is chosen by uniformly sampling the

address space. After obtaining the region index, the RHT table is looked up to find
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the last accessed address and stride history of the chosen region. Then, the CSTs

are searched one-by-one (lines 12-19), starting from the longest history-length ta-

ble, by using a partial hash of the accumulated stride history. A new stride is chosen

based on the longest history match in the CSTs. This ensures that the next stride as-

signment is done using the most accurate profiled information. Next, the ith address

is computed (line 21) using the last accessed address (LAST ADDR) of the region

and the chosen stride value (Si). Finally, the RHT entry and RegInfo data-structure

are updated based on the generated address (lines 22-25). This process is repeated

until the target number of references N is generated.

5.1.5 Execution Phase Consideration

Most applications exhibit different locality behavior during different execu-

tion phases. For example, a program can have a large footprint or be prefetcher-

friendly during a certain phase, but access a very small data segment or become

prefetcher-unfriendly during other phases. Modeling such changes in program lo-

cality can lead to higher correlation between the proxy and original workloads. To

account for phase behavior, HALO divides the original access sequence into fixed

size intervals and tracks an independent intra-region stride and inter-region reuse

profile per profiled interval period. The RegInfo data-structure (used for tracking

region reuse) is not cleared between phases. HALO uses the per-interval stride and

reuse profile information to generate a proxy sequence for the corresponding inter-

val. The interval length is empirically chosen to be 100,000 memory references.

Section 5.2.2 will discuss the sensitivity of cloning accuracy to changes in phase
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lengths.

5.1.6 Multi-programmed Workload Performance

When applications are co-scheduled on a CMP, memory access streams

from different applications compete for the shared cache space. To model the cache-

sharing behavior of co-scheduled workloads, HALO uses another statistic - the rate

at which memory references are generated per application (Ratemem). This metric

accounts for the fraction of memory instructions over total instructions, instruction

level parallelism and relative speed of the processor cores. As HALO proxies do

not produce instruction streams other than memory references, HALO controls the

distance between successive memory references based on this rate metric.

5.2 Evaluation

This section discusses the experimental setup followed by a detailed evalu-

ation of HALO’s performance cloning accuracy.

5.2.1 Experimental Setup

Evaluation is performed using 39 benchmarks from different application

classes: (a) 26 SPEC CPU2006 benchmarks [93] using “ref” input set (all bench-

marks except perl, sjeng and dealII due to compilation issues), (b) 6 benchmarks

from the newly introduced SPEC CPU2017 [94] suite (leela, exchange2, imagick,

pop2, roms and nab of SPECspeed category), (c) 3 TPC-H [100] queries (Q3, Q6,

Q14) using MySQL [58] database, (d) a data serving workload (WC) based on
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Yahoo! Cloud Serving Benchmark [18] framework (12GB) from Cloudsuite [26],

(e) graph analytics tunkrank (Graph) application based on Graphlab [2] framework

from Cloudsuite and connected components (CC) application using GraphChi [1]

framework, and (f) data-caching benchmark based on Memcached [3] from Cloud-

suite.

The benchmarks are profiled using a Pin-based [54] detailed simulator. The

system configuration used for collecting the statistics is shown in Table 5.2. For

CPU2006 benchmarks, a representative region, consisting of 250 million instruc-

tions, is identified using the simpoint [87] methodology. For the other benchmarks,

a representative region is identified by fast-forwarding the benchmark execution by

10 billion instructions, and then profiling the execution of next 250 million instruc-

tions. Representative regions consisting of 250 million instructions are chosen to

make the simulation runs for validation manageable. It should be noted that the

HALO only uses a statistical profile as input for proxy generation, which is inde-

pendent of the execution length. To extensively evaluate HALO’s cloning accuracy

across different cache and prefetcher configurations, a validated trace-driven cache

Table 5.2: HALO’s Profiled System Configuration

Component Configuration
CPU X86 64 processor, atomic mode 4 GHz

Single-core and multi-programmed runs
L1 cache 32KB, 2-way Icache; 64KB, 2-way Dcache

64B block size, LRU
L2 cache 4MB, 8-way, LRU, Shared
Main memory 4GB DDR3, 12.8 GB/sec
OS Ubuntu 14.04
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simulator is used. The simulator is validated by comparing its miss rates with the

standard cache modules provided by the gem5 [13] simulator. For evaluation and

testing of DRAM memory performance, the Ramulator [48] memory system simu-

lator is used. The generated HALO proxies consist of 10-15M memory references.

HALO’s results are compared against the state-of-the-art WEST and STM propos-

als.

5.2.2 Results and Analysis

In this section, HALO’s cloning effectiveness is evaluated in replicating

cache, prefetcher, TLB and DRAM performance of applications over 20,000 dif-

ferent configurations. Two metrics are used for performance validation: error be-

tween original and proxy performance metrics and Pearson’s correlation coefficient.

Pearson’s correlation coefficient indicates how well the proxy benchmarks track

the trends in the original applications, with 1 indicating perfect correlation, and

0 indicating no correlation. During design-space exploration, computer architects

consider relative performance ranking (e.g., evaluating which configuration has a

lower miss rate). Considered together, the average cloning error and correlation

degree shows how closely the proxy workloads perform with respect to the original

workloads across different configurations.

Instructions per cycle - First, the proposed methodology is evaluated

by measuring the performance of the original and proxy workloads across over

∼ 6,600 different configurations, generated by varying the size, associativity and

line-size of the L1/L2 caches and the L2 stream prefetcher. Figure 5.6 shows the
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Figure 5.6: Instructions per Cycle Error of WEST, STM and HALO Proxies versus
the Original Applications.

error between instructions per cycle (IPC) of the original and proxy workloads.

Overall, the average error in replicating the original workload IPC for WEST, STM

and HALO proxies is 14%, 5.4% and 3.9% respectively. Higher cloning accuracy

of HALO proxies over both WEST and STM proxies is a result of more accurate

modeling of cache, prefetcher and memory system performance. A detailed anal-

ysis of the performance implications of the individual metrics is presented in the

following paragraphs. Please note that IPC is used here as a metric to validate

the proposed memory model across a range of memory hierarchy configurations,

but is not indicative of processor-side performance (as HALO does not model non-

memory instructions).

L2 cache and prefetcher configurations - Next, HALO’s effectiveness is
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Figure 5.7: L2 Miss-rate Errors of WEST, STM & HALO Proxies across L2 Cache
and Prefetcher Configurations.

tested in replicating L2 cache performance by varying the L2 cache and prefetcher

configurations simultaneously. In particular, 35 different L2 cache configurations

are run per benchmark by varying the cache size between 1MB-16MB, associativity

between 2-32 and line size between 32/64/128. For each cache configuration, the L2

stream prefetcher configurations are also varied by changing the number of stream

buffers between 8-64 and changing the prefetch degree between no-prefetching

/1/2/4/8, resulting in a total of 260 different configurations per benchmark. Figure

5.7 shows the L2 miss rate error between the original and proxy benchmarks (av-

eraged across different configurations). The average errors in replicating L2 cache

miss rates for WEST, STM and HALO proxies are 18.9%, 6% and 4.4% respec-

tively. The correlation coefficients are 77.9%, 97.5% and 98.5% for WEST, STM

and HALO respectively.

As WEST does not model spatial locality, it suffers from high errors, espe-
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cially when prefetchers are enabled for prefetch-friendly benchmarks (e.g., bwaves,

libquantum). Also, WEST captures stack distance distributions at a cacheline gran-

ularity, and thus, suffers from high cloning errors when cache line-size changes,

cache size increases, etc. Because it models spatial locality patterns, STM performs

better than WEST. However, for many benchmarks, like leela, h264ref, exchange2,

povray, STM experiences high aliasing in its global stride transition tables, lead-

ing to poor cloning accuracy of STM proxies. Also, STM captures global stride

transitions at a cacheline granularity. Thus, STM proxies do not capture spatial lo-

cality within cachelines and perform poorly when cacheline size is varied for some

benchmarks (e.g., zeusmp).

Overall, HALO outperforms both WEST and STM. HALO performs well

even for benchmarks, like leela, h264ref, povray by using a local history depth of

8; the dominant access patterns of these benchmarks cannot be captured by STM

even when using a global stride history depth of 80. This clearly shows the effec-

tiveness of HALO’s localized pattern detection methodology. By leveraging multi-

granularity stride transitions, HALO not only performs well for benchmarks like

libquantum, which have regular strided patterns, but also for benchmarks like gcc

and sphinx3, which make a lot of irregular data-structure accesses, or bzip2, which

has a significant fraction of control-flow dependent loads. HALO experiences high

cloning errors with calculix and gobmk benchmarks (14.5% and 11% respectively),

but the high L2 miss rate errors occurs systematically for configurations with very

few L1 cache misses; the average L2 MPKI error is ≤0.01, which causes insignif-

icant impact on IPC (≤ 1% and 3% for calculix and gobmk respectively) as shown
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Figure 5.8: L1 Miss-rate Errors of WEST, STM and HALO Proxies across L1
Cache and Prefetcher Configurations.

in Figure 5.6. With a stride history depth of 8, benchmarks like TPC-H Q3 (com-

plex join operation across three database tables) and mcf (operates on an array of

pointers data-structure) experience ∼10-11% error with a stride history depth of 8

due to aliasing; increasing local history depth to 14 reduces errors to ∼5.8%, but

increases profile sizes.

L1 cache and prefetcher configurations - Next, HALO’s L1 performance

cloning accuracy is evaluated across 40 different L1 cache configurations per bench-

mark (varying the cache size from 4KB-128KB, associativity from 2-16 and cache

line-size between 32B-128B). For each cache configuration, the L1 stream prefetcher

configurations are also changed by modifying the stream detection window between

8/16/32 and the prefetch degree between no-prefetching/1/2/4/8, resulting in 264

configurations per benchmark. Results showing the L1 cache miss rate errors are

shown in Figure 5.8. Overall, the average L1 cache miss rate error between orig-

inal and proxy workloads is 4.5%, 2.4% and 1.8% for WEST, STM and HALO
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respectively.

STM captures temporal locality using per-set LRU stack distance distribu-

tions for a 16 KB, 2-way L1 cache, however it does not track any statistics related to

access distribution or ordering across cache sets. As a result, for benchmarks such

as bwaves, libquantum, STM proxies produce different conflict behavior across

cache sets when L1 test configurations differ from the baseline configuration, re-

sulting in higher cloning errors. Owing to LRU-stack based modeling of temporal

locality behavior, WEST experiences higher errors when test configurations (es-

pecially, cacheline size) deviate from the baseline configuration. WEST’s perfor-

mance degrades further when prefetching is enabled due to not modeling spatial

locality behavior. Overall, HALO outperforms both WEST and STM by exploiting

higher predictability in localized memory access streams even with shorter history

lengths. HALO experiences higher L1 performance modeling error for hmmer and

GemsFDTD benchmarks (∼7%) as HALO does not model inter-region spatial lo-

cality, which leads to cloning inaccuracies, especially with prefetching.

TLB and page size configurations - The next set of experiments test the

TLB performance cloning accuracy of WEST, STM and HALO proxies (see Figure

5.9). For these experiment,s the number of TLB entries is varied between 8-128 and

page size between 1KB-16KB (total 25 configurations per benchmark). Overall,

WEST, STM and HALO have 9.2%, 2.4% and 0.7% error in replicating TLB miss

rates of original applications. WEST generates a random memory address for any

references that miss in the L2 cache. This causes higher deviation in the memory

footprint and fraction of active pages (during any interval) between WEST proxies
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Figure 5.9: TLB Miss-rate Errors of WEST, STM and HALO Proxies across Dif-
ferent TLB & Page-size Configurations.

and original applications. STM is more accurate in replicating TLB behavior than

WEST; however, aliasing in STM’s global stride tables also causes the memory

footprint and TLB performance of STM proxies to deviate from original applica-

tions. In contrast, by leveraging coarse-grained reuse locality to model inter-region

interleaving, HALO can accurately model TLB performance across most bench-

marks except GemsFDTD. HALO proxies are generated using a base region size

of 4KB. In GemsFDTD, increasing the page size affects the inter-region access in-

terleaving order, which results in higher TLB errors. For most other benchmarks,

changing the TLB or page size configuration has minimal impact on HALO’s ac-

curacy. Overall, HALO outperforms both WEST and STM, achieving an average

accuracy of 99.3%.

Phase-level cache performance modeling - As discussed previously, HALO

models memory access locality at a phase granularity to accurately capture fine-
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Figure 5.10: Example Showing Phase-level Cache Performance Modeling for (a)
GemsFDTD and (b) Graph Analytics

grained locality changes. Figure 5.10 compares the phase-wise L2 cache miss

rates of the original and HALO workloads for the Graph-analytics and GemsFDTD

benchmarks. Every corresponding phase of the original and proxy workload is

aligned after accounting for miniaturization. It can be observed that the cache miss

rate of Graph analytics workload varies between ∼70-100% between the different

phases and the HALO proxy follows the original application’s trends very closely

with an average error of 1.6%. Similarly, although GemsFDTD experiences slightly

higher average error, the HALO proxy still captures the relative trends across dif-

ferent execution phases quite accurately. HALO has similar phase-level cloning

accuracy across other benchmarks as well.

DRAM Performance - The next set of experiments validate the effective-

ness of HALO proxies to be used for design exploration of memory subsystem in

lieu of the original workloads. For this study, the Ramulator [48] memory system

simulator is used in combination with the cache simulation model. Over 25 different
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Figure 5.11: Comparing DRAM Performance of HALO and Original Applications
across Different DRAM Configurations.

DRAM configurations per benchmark are run by changing the DRAM bus width (4-

16 bytes), bus frequency (800MHz-1GHz) and DRAM address mapping schemes

(RoBaRaCoCh/ChRaBaRoCo) by swizzling the address decoding bits, while simul-

taneously varying the L2 cache size and associativity. The original and proxy work-

loads are compared across three key memory system performance metrics: DRAM

row buffer hit rate, average memory controller queue size and average read/write

latency (see Figure 5.11). By accurately capturing the spatial and temporal locality

of applications, HALO proxies perform closely with respect to the original appli-

cation, achieving an average error rate of 2.3%, 0.7 and 4% for DRAM row buffer

hit rate, average queue length and average read/write latency respectively.
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Figure 5.12: Multi-programmed Performance Error of HALO Proxies for (a) 2-core
and (b) 4-core Workload Mixes

Multi-programmed workloads - The next set of experiments show how

accurately HALO proxies, which are generated for benchmarks running in stand-

alone mode, can replicate shared cache behavior when co-scheduled with other

applications. Applications are first categorized according to their L2 miss rates and

then, 18 different benchmark mixes are randomly chosen to be co-scheduled in a 2-

core and 4-core setup. 40 different shared L2 cache configurations are evaluated per

mix by varying the cache-size, associativity, line-size and replacement policy of the

last-level cache. Overall, the average error in shared L2 cache miss rate between

HALO and the original multi-programmed workloads is 4% and 4.9% for 2-core

and 4-core configurations, respectively (see Figure 5.12).

Meta-data overhead - Meta-data overhead impacts portability of the proxy

generation process. Meta-data profiles can be on the order of tera-bytes, if not

captured efficiently, and proxy synthesis can be difficult when large profiles have

to be processed. The profiles need to saved and transferred to designers in order

to replay and synthesize proxies. Figure 5.13 compares the meta-data overhead
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Figure 5.13: Meta-data Size of HALO versus STM (Note Y-axis in Log-scale).

of STM and HALO proxies across the 39 benchmarks. It can be observed that,

by exploiting higher predictability in localized memory access streams combined

with an application-locality-specific multi-level stride capture mechanism, HALO

achieves, on average, a ∼39X reduction in meta-data storage size as compared to

STM, while also outperforming STM across all the evaluated performance metrics.

HALO’s meta-data is also up to 29X smaller than gzip-compressed trace sizes.

WEST does not capture spatial locality; as a result, it suffers from significantly

higher cloning errors. Also, WEST’s statistics are directly proportional to the pro-

filed cache configuration, and as a result the size overhead of WEST’s statistics

becomes significantly higher for larger caches (e.g., meta-data overhead exceeds

2.5GBs per application for modeling a modern-day 16GB DRAM cache).

5.2.3 Sensitivity Studies

In this section, the sensitivity of HALO’s performance to changes in several

different parameters is studied by measuring the correlation between the proxy and

original workloads across different L1 cache and prefetcher configurations. First,
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HALO’s sensitivity to the region size is evaluated by varying it from 1KB - 16KB

(see Figure 5.14a)). The Dyn data-point corresponds to choosing the best region

ize for each application statically. As region size increases, average correlation

slightly drops because of higher entropy in larger region patterns, which is difficult

to capture using the same history depth without increasing aliasing. Smaller region

sizes lead to accurate intra-region pattern capture, but reducing the region size be-

low 1KB resulted in reduced performance correlation, especially with prefetching,

because of not modeling inter-region spatial locality. Figure 5.14b shows HALO’s

performance sensitivity to the profiling interval size. As the interval size reduces,

correlation improves because of accurate capture of phase-level performance pat-

terns. However, having a very small profiling interval increases the profile size

correspondingly. It can be observed that a profiling interval of 100,000 memory

references provided the best balance of accuracy and meta-data overhead. Next, the

impact of trace miniaturization factor on cloning accuracy is evaluated (see Figure

5.14c). As HALO relies on statistical convergence to generate the proxies, the scal-

ing factor depends on the original number of accesses because of the law of large

numbers. It can be observed that the performance correlation holds well with 10

million memory references.

5.3 Summary

This chapter presented a novel memory locality modeling framework, HALO,

that accurately models the spatial and temporal locality of applications to cre-

ate miniature memory access proxies. HALO isolates global memory references
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Figure 5.14: Impact of Changing the (a) Region Size, (b) Profiling Interval Period,
(c) Trace Length on Profiling Accuracy.

into individual localized regions and captures intra-region access patterns using

fine-grained spatial locality patterns. To achieve greater meta-data storage effi-

ciency, HALO captures multi-level stride patterns tailored to the application’s lo-

cality behavior. HALO synthesizes memory access streams from individual, local-

ized stream accesses by modeling the degree of interleaving between accesses to

different regions using coarse-grained temporal locality metrics. HALO achieves

over 98.3%, 95.6%, 99.3% and 96% accuracy in replicating the performance of

prefetcher-enabled L1 & L2 caches, TLB and DRAM performance, respectively

across over 20,000 different cache, prefetcher, TLB, page-size and DRAM config-

urations. HALO also outperforms the state-of-the-art workload cloning proposal in

terms of cloning accuracy across all the evaluated metrics, while using ∼39X less

meta-data storage.
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Chapter 6

G-MAP: Statistical Pattern Based Modeling of GPU
Memory Access Streams

In the past decade, GPUs have emerged as a popular computation platform

for applications beyond graphics. Programmers exploit these massively parallel ar-

chitectures in a variety of domains (e.g., linear algebra and bio-informatics). GPUs

leverage large amounts of parallel hardware combined with light-weight context

switching among thousands of threads to hide the impact of long memory latencies

and improve performance. However, many recent studies [35, 52] have shown that

GPU performance is still limited by the long off-chip memory latencies. Hence,

on-chip caches have been adopted in mainstream GPUs [63] to reduce the memory

access latency and the off-chip memory traffic. However, GPU cache performance

is often sub-optimal due to limited per-thread cache capacity, limited number of

MSHRs, etc. Thus, optimizing the performance of GPU applications requires eval-

uating new memory hierarchy designs.

Early design space exploration of GPUs is traditionally done using detailed

cycle-accurate simulators [6, 80]. Although accurate, simulators are often very

slow, which severely limits the efficiency of extensive design-space exploration

[109]. Recently, a few researchers have also proposed analytical models [61, 97] to

97



estimate GPU cache performance. Although analytical models are fast, their scope

is often limited (model limited degree of parallelism [61], applicable for L1 caches

[61, 97], etc.). Furthermore, effective modeling techniques require access to either

the application source code or memory traces, which are often inaccessible due to

their proprietary nature. While several memory locality modeling techniques have

been proposed for CPU applications [5, 7, 42, 11] to address such challenges, no

such suitable solutions exist for cloning GPU memory access patterns.

To bridge this gap, this chapter proposes G-MAP [76], a novel methodology

and framework that statistically models the regularity in code-localized memory

access patterns of GPU applications and models the parallelism in GPU’s execu-

tion model to create miniaturized GPU Memory Access Proxies. G-MAP proxies

closely mimic the performance of original applications and enable extensive GPU

memory system design space exploration. The following sections first present a

brief background on the baseline GPU architecture and then a detailed description

of G-MAP’s methodology.

6.1 GPU Background

GPUs consist of a collection of data-parallel SIMD cores (streaming multi-

processors (SMs) in NVIDIA GPUs or compute units in AMD GPUs) as shown in

Figure 6.1a. Each SM fetches and decodes a group of threads (warps in NVIDIA

GPUs or wavefronts in AMD GPUs) then executes them in lockstep, following a

single instruction multiple thread (SIMT) model. GPUs support multiple types of

on-chip caches to utilize memory bandwidth efficiently. Each SM has private L1
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Figure 6.1: (a) GPGPU Architecture (b) GPU Application Model

data cache, texture cache, constant cache and shared memory. Global memory is

partitioned and all SMs are connected to the memory modules by an interconnec-

tion network. Each memory controller consists of a shared L2 cache slice and the

DRAM partition.

Figure 6.1b shows the GPU software execution model. A GPU application

consists of several kernels. Each kernel is comprised of a grid of scalar threads

and each thread has a unique identifier which is used to divide up work among

the threads. Within a grid, threads are split into groups of threads called thread-

blocks (TB) or concurrent thread arrays (CTA). Threads are distributed to SMs at

the granularity of entire threadblocks and multiple threadblocks can be assigned to

a SM (if resources permit). Threads in a threadblock are further sub-grouped into

warps (a warp is the smallest execution unit sharing the same program counter).

In our baseline system, a warp consists of 32 threads. For memory instructions, a

memory request can be generated by each thread and up to 32 requests are merged
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when these requests access the same cache line(s). Thus, only one or two memory

requests are generated per warp if requests in a warp are highly coalesced.

6.2 G-MAP’s Methodology

Figure 6.2 shows an overview of G-MAP’s proxy generation framework.

During the profiling phase 1©, G-MAP characterizes the GPU application’s inher-

ent locality and parallelism patterns (e.g., thread hierarchy, spatial locality and tem-

poral locality) to create a workload-specific statistical profile 2©. Details of the

different profiles captured by G-MAP will be discussed later in this section. During

the clone generation and modeling phase 3©, G-MAP adopts a systematic method-

ology to create a locality- and parallelism-aware clone of the application based on
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Figure 6.2: G-MAP’s Framework
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the workload-specific profile, which can be used to drive GPU cache & memory

performance exploration.

G-MAP exploits three key features of GPU execution to model memory

access behavior using a set of statistical profiles. First, although GPU’s execu-

tion model supports running thousands of threads, we observed that the dynamic

memory execution paths executed by most threads can be summarized using a

small set of dominant profiles. Second, most GPGPU memory operations access

memory locations by exploiting a linear transformation based on the index (tid) of

the thread accessing memory. This leads to high degree of regularity in how con-

secutive threads access different memory locations (inter-thread locality) for the

same instruction and how individual threads access memory locations during suc-

cessive iterations of the same instructions (intra-thread locality). G-MAP exploits

this predictability in both inter- and intra-thread locality to create a memory access

trace per thread, ordered based on the thread’s dynamic memory execution profile.

Third, synthesizing ordered per-thread memory traces alone (without accounting for

GPU’s parallel execution model) is not sufficient to replicate the cache/memory per-

formance. To account for the parallelism, G-MAP leverages per-core warp queues

and a coordinated scheduling policy to generate ordered per-core memory access

sequences from the set of ordered per-thread accesses.

G-MAP maintains the same grid and TB dimensions as the original appli-

cation. It follows Fermi’s [63] execution model to group threads into threadblocks

& warps based on section G.1 of CUDA programming guide [62]. G-MAP also

implements a memory coalescing model to combine memory requests based on
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section G.4.2 of CUDA programming guide [62]. Coalescing is modeled before

applying the memory locality analysis, as it significantly reduces the computational

and memory complexity of the G-MAP model. In the following sections, the pro-

files collected by G-MAP are first described, followed by the performance cloning

algorithm.

6.2.1 Dynamic Memory Execution Profile

A GPU kernel typically executes thousands of threads. Owing to the CUDA

or OpenCL execution model, every thread within a kernel executes the same se-

quence of instructions (computation & memory) in the absence of control path di-

vergence. G-MAP leverages this observation to capture a single dynamic memory

instruction profile (denoted as the π profile) for a base thread, as a representation of

the sequence of dynamic memory instructions executed by all threads. For example,
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Figure 6.4: Example Showing Intra-thread and Inter-thread Strides with Two Warps
Adding Elements of Two Arrays

in Figure 6.3a, all 4 threads follow the same path leading to a single dominant π pro-

file. Of course, this assumption is valid only in the absence of control-flow related

divergence effects, which can cause individual threads to execute different paths.

Section 6.2.4 discusses how G-MAP accounts for such diverging effects. Neverthe-

less, the CUDA programming guide recommends writing programs with minimal

control-flow divergence, as divergence negatively impacts warp occupancies and

performance. The π profile is used for synthesizing an “ordered” per-thread proxy

memory address sequence. G-MAP also exploits code-localization (for every static

instruction in the π profile) to capture memory access patterns, as we will discuss

next.

6.2.2 Inter-thread Memory Access Locality

As work distribution in a kernel is primarily done using the tid in most

GPU applications, GPU memory operations are often a linear function of the tid

of the thread accessing memory. Since adjacent threads differ by an index of 1,

offset between addresses accessed by adjacent threads is often fixed. For example,
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Figure 6.4 shows such a kernel with two warps adding two arrays (a,b) under the

SIMT model. Here, each warp is composed of 8 threads. We can observe how the

consecutive threads access different elements of the two arrays in a regular manner

with an inter-thread stride of 1.

Table 6.1 shows the dominant memory instructions, their frequency, the

most dominant PC-localized inter-warp stride (after coalescing requests from threads

within each warp) and stride frequency (columns 2-5) across 10 GPGPU applica-

tions (benchmark details are provided later). We can observe that, across most

applications, there exists significant inter-thread memory access regularity for the

dominant instructions. G-MAP captures this synergy in memory access patterns

across threads in the form of a per-static instruction, inter-thread stride distribution.

Later, during proxy generation, G-MAP exploits this information to generate the

base addresses of every static instruction executed by each thread, starting from an

initial estimate of the base addresses accessed by the base thread. Choice of the ini-

tial base addresses can help to create obfuscated proxy memory access sequences

for proprietariness.

6.2.3 Intra-thread Memory Access Locality

Most GPU applications also exhibit regularity in how individual threads

access different memory locations during successive iterations of the same instruc-

tions (e.g., in a loop). Considering the same example in Figure 6.4, using its unique

tid, each thread accesses some elements of the two arrays (e.g., t0 accesses the 0th,

16th and so on array elements, and other threads follow a similar trend). In all, a
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Table 6.1: GPGPU Application Memory Access Patterns

Application Mem PC %Mem Freq
Inter-warp Intra-Warp

Dom. Stride %Stride Dom. Stride Reuse

Heartwall
0x900 81% 128 51.9% 64

High0x4a0 5% 128 51.9% -128
0x4a8 3.8% 128 51.9% 1024

BP
0x3F8 19.4% 128 75% 128

Med0x408 19.4% 128 64.1% -128
0x478 19.4% 128 67.1% 128

kmeans 0xe8 ∼100% 4352 78.2% -128 High

SRAD
0x250 31.2% 16384 78% -8192

Low0x230 31.2% 16384 75% -8192
0x350 31.2% 16384 80% -8192

SP
0xd8 48% 128 88% 4096

Low
0xe0 48% 128 88% 4096

CP
0x208 25% 2048 78.2% -1024

Med0x218 25% 2048 78.2% -1024
0x220 25% 2048 78.2% -1024

BLK
0xF0 20% 128 77.6% 245760

Low0xF8 20% 128 77.6% 245760
0x100 20% 128 77.6% 245760

LUL
0x1c85 4% 352 26% -128

Low0x1ca8 4% 352 26% -128
0x1cc8 4% 352 26% -128

LIB
0x1c68 46% 128 57% 19200

High0x1ce0 46% 128 57% 19200
0x1b40 4% 128 57% 19200

FWT
0x458 12% 128 88.6% –

Med0x460 12% 128 88.6% 19200
0x478 12% 128 88.6% 19200

thread with tid m accesses m+( j ∗Total Threads) elements of an array (where j

represents the currently processed section of data) with an intra-thread stride of 16.

G-MAP exploits this regularity in intra-thread memory access patterns to

clone the dynamic memory trace of each thread (memory access ordering is based
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Figure 6.5: Reuse Distance Computation Example

on the π profile). G-MAP specifically leverages two key intra-thread locality met-

rics: (a) PC-localized stride distribution and (b) reuse distance. G-MAP captures

the distribution of dominant intra-thread strides per PC. Reuse distance is an effec-

tive model of temporal locality [55, 61, 97]. It is defined as the number of distinct

data elements accessed between the current and the previous access to the same

data element. G-MAP tracks intra-thread reuse in the form of LRU stack distance

distribution [55] (see Figure 6.5 for a reuse distance computation example). Table

6.1 shows the most dominant PC-localized intra-thread stride (after coalescing) and

reuse frequency (low, medium, and high reuse implies ≤30%, 30 - 70% and ≥70%

reuse, respectively) across a set of GPU applications (columns 6-7). To synthesize

the per-thread proxy sequence, G-MAP generates a memory address for each dy-

namic memory instruction by first trying to satisfy any dominant intra-thread reuse

distance (sampled from the reuse histogram) using an appropriate intra-thread stride

value (if possible), followed by sampling a stride value from the intra-thread stride

histogram.
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6.2.4 Control-flow Divergence

So far, the discussion has assumed that all threads within a kernel execute

the same sequence of memory operations, which is represented as the π profile.

Even in the presence of control flow divergence, it is observed that for most ap-

plications, the dynamic memory execution profiles of individual threads can still

be summarized using a small set of dominant profiles and their corresponding fre-

quencies (see Figure 6.3b for an example kernel with two unique π profiles). To

do so, G-MAP clusters the dynamic memory instruction profiles based upon their

inherent similarity. For a given pair of memory instruction profiles πi and π j, their

similarity is defined as the total number of identical entries in sequence. Two pro-

files belong to the same cluster if their similarity is above a certain threshold, T h

(T h is empirically chosen as 0.9 in this study).

6.2.5 Scheduling Policy

Prior research has shown that the order of execution of threads (a.k.a schedul-

ing policy) affects memory hierarchy performance. G-MAP follows Fermi’s exe-

cution model to determine how threads execute together on a single core. G-MAP

assigns threadblocks to cores in a round-robin (RR) fashion until they are full; new

TBs get scheduled when the running TBs finish execution. Threads within each

TB are sub-grouped into warps and threads within a warp are scheduled simultane-

ously. To account for GPU’s parallel execution model, G-MAP leverages the idea of

a per-core warp queue. Initially, the queue is filled with all active warps (from one

or more TBs) ordered by the warp identifier (tid / warp size). In the simplest form,
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so long as the queue is not empty, a warp is selected based on RR policy and a sin-

gle memory request is processed per thread. As a warp finishes a memory request,

it is delayed in proportion to the request’s latency. This is equivalent to the popular

loose round robin (LRR) warp scheduling policy adopted in GPUs. Since G-MAP

does not model the detailed GPU core, it captures the effect of other scheduling

policies using a simple metric, SchedPsel f , which is defined as the probability of

scheduling the same warp consecutively. Although approximate, it can estimate

cache & memory performance across different scheduling policies with sufficient

accuracy. G-MAP models TB-level synchronization by capturing synchronization

information in the π profiles and using that information to control the scheduling

policy (if needed).

6.2.6 Proxy Generation and Modeling

This section will discuss how G-MAP leverages the measured statistical

features to generate memory clones for evaluating GPU memory hierarchy perfor-

mance. Formally, the collected features can be characterized by a 5-tuple (Π,Q,B,PS,PR).

Π = {π1,π2, . . . ,πM} denotes the set of M dominant dynamic memory instruction

profiles. Q is a probability measure on Π. B = {b(1),b(2), . . . ,b(N)} denotes the

base addresses of all N static instructions corresponding to the π profiles.

PS = {(P
(1)
E ,P(1)

A ), . . . ,(P(N)
E ,P(N)

A )}

contains a set of distributions (P(i)
E ,P(i)

A ) for each unique static instruction i. Here

P(i)
E and P(i)

A denote the distribution of inter-thread stride and intra-thread stride
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Algorithm 3 Trace Generation for Thread t

1: Input: πi,B,PS,P
(i)
R ;

2: Output: Tt[]: Memory access for each instruction in πi

3: Initialize: B’ = B;
4: for jth instruction in πi do
5: k = πi[ j];
6: if instruction k is being generated for the first time then
7: Sample offset from inter-thread stride distribution P(k)

E ;
8: Tt [ j] = b(k) + offset;
9: b(k) = b′(k) = Tt [ j];

10: else
11: Sample reuse from reuse distance distribution P(i)

R ;
12: if Tt [ j−1− reuse]−Tt [ j−1] ∈ supp(P(k)

A ) then
13: Tt [ j] = Tt [ j−1− reuse];
14: else
15: Sample stride from intra-thread stride distribution P(k)

A ;
16: Tt [ j] = b′(k)+ stride;
17: b′(k) = Tt [ j];
18: end if
19: end if
20: end for
21: return Tt[]

histograms, respectively. Finally, PR = {P(1)
R , . . . ,P(M)

R } denotes the collection of

reuse distance distribution for each dominant memory instruction profile π .

Algorithm 4 describes G-MAP’s proxy generation steps. First, G-MAP as-

signs a π profile to each executing thread (line 5). Next, G-MAP generates a trace

for each executing thread, which is ordered based on the memory execution se-

quence provided in the π profile (Algorithm 3). To generate the per-thread memory

trace, G-MAP uses the inter-thread stride distribution to assign base addresses for

the first execution instances of every memory instruction executed by the thread

(lines 6-10, Algorithm 3). For successive dynamic executions of the memory in-
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Algorithm 4 Proxy Generation using G-MAP Framework
1: Input: Π,Q,B,P, Total number of memory request J;
2: Output: T [][]: Memory access sequence
3: Determine the number of threads K based on the original application.
4: for each thread t = 1, . . . ,K do
5: Sample πi from Π with respect to Q.
6: Generate Trace Tt using πi, B, PS and P(i)

R . [Algorithm 3]
7: end for
8: For each thread t assign its corresponding warp w and core c
9: Perform memory coalescing for all threads in each warp.

10: Let Tw denote the warp-level trace after coalescing for warp w.
11: For each core c, maintain a warp queue WQc containing corresponding active warps.
12: while j < J do
13: for c = 1, . . . ,MAX CORE do
14: Choose a warp w from WQc based upon scheduling policy.
15: T [c][ j] = Tw.get next access(); j = j+1
16: end for
17: end while
18: return T[][]

structions, G-MAP assigns memory addresses using the intra-thread stride and

reuse locality information as discussed before (lines 11-18, Algorithm 3). Then,

G-MAP groups individual threads into TBs and warps based on Fermi’s execution

model. G-MAP coalesces memory requests of threads within a warp (lines 9-10) to

create coalesced warp-level traces. To model the parallel execution model of GPUs,

G-MAP exploits per-core warp queues. The queue is initially filled with all active

warps ordered by the warp identifier (line 11). To create a unified per-core memory

access trace from the ordered per-warp traces (lines 12-17), G-MAP schedules a

ready warp from the warp queue and generates an access to the memory hierarchy

simulation model for the selected warp’s next address (line 15). Finally, the warp

queue is updated based on the warp queue maintenance policy discussed in Section
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6.2.5. Miniaturization is performed by scaling down the number of proxy accesses

(J), the intra-thread statistics and the inter-thread statistics by the desired scaling

factor.

6.3 Evaluation

This section discusses the experimental setup followed by a detailed evalu-

ation of G-MAP’s performance cloning accuracy.

6.3.1 Experimental Setup

For profiling and validation, the CUDA-sim (heavily modified for profil-

ing) and GPGPU-Sim v3.2.2 [6] simulation frameworks are used. In order to as-

sess the efficacy of the proposed methodology across a wide variety of real-world

GPU applications, 18 benchmarks, from popular GPGPU benchmark suites like

Rodinia [17], NVIDIA SDK [60] and GPGPU-sim ISPASS-2009 [6], are evalu-

ated. Each benchmark is profiled until completion or for 1 billion instructions,

whichever comes first. It should be noted that profiling is a one-time cost and

G-MAP receives only a statistical profile as input (independent of the execution

Table 6.2: Profiled System Configuration used for Collecting G-MAP Profiles

Component Configuration
Core Config 15 SMs, 1400MHz, Max. 1024 Threads, 32684 Registers
L1 Cache 16KB 4-way, 128B line size, 1-cycle hit latency
L2 Cache 1MB, 8 banks, 128B line size, 8-way
Features Memory coalescing enabled, 64 MSHRs/core, LRR sched.
DRAM GDDR3, 8 Channels, 1 Rank/Channel, 8 Banks/Rank, 924 MHz,

tRCD-tCAS-tRP-tRAS: 11-11-11-28, FR-FCFS sched. policy
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length). The 1 billion instruction interval is chosen only to keep the evaluation

runs manageable. The system configuration used for collecting G-MAP profiles is

shown in Table 6.2. G-MAP proxies are generated with a scaling factor of ∼4-

5. For proxy cache and memory performance modeling, a validated SIMT-aware

multi-core, multi-level cache, and memory simulator is used. The cache simulator

is based on CMP$im [38]. Memory system performance is modeled using Ramu-

lator [48], a detailed memory system simulator. G-MAP proxies are validated for

modeling the performance of L1 data cache, L2 cache and the global memory sys-

tem. Although G-MAP proxies are not used to evaluate the performance of shared

memory or texture caches in the following experiments, G-MAP’s methodology is

generic enough to capture and replicate patterns in accesses to these caches as well.

6.3.2 Results and Analysis

This section evaluates G-MAP’s accuracy in predicting various metrics, in-

cluding the L1/L2 cache miss rates, prefetcher effectiveness and DRAM perfor-

mance metrics across∼290 different configurations per benchmark (over 5000 val-

idation points in all). Specifically, two metrics are used for validation: the per-

centage error between original and proxy performance metrics and Pearson’s cor-

relation coefficient. Pearson’s correlation coefficient indicates how well the proxies

track the performance trends of the original applications (1 = perfect correlation,

0 = no correlation). For design space exploration, computer architects care about

relative performance ranking; they care about comparing two configurations to see

which one performs better. These two metrics together yield how closely the prox-
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ies perform with respect to the original workloads across a range of configurations.

L1 cache configurations - First, the effectiveness of G-MAP proxies is

evaluated in replicating the L1 cache performance of the original applications. For

this experiment, 30 different L1 configurations (varying cache size from 8 - 128KB,

associativity from 1 - 16 and line-size from 32 - 128B, while keeping the L2 fixed at

1 MB, 8-way), are evaluated per benchmark, resulting in over 540 validation points

across all benchmarks. The results are shown in Figure 6.6a. It can be observed

that the average error between the proxy and original applications is 5.1%. Over-

all, G-MAP’s methodology of capturing both inter- and intra-thread memory access

locality leads to high accuracy across most benchmarks. For applications, such as

Kmeans and heartwall, which have significant reuse locality, G-MAP’s methodol-

ogy of capturing and replaying reuse distance patterns leads to over 97% accuracy

in mimicking L1 miss rates. Hotspot experiences the highest error because it does

not have significantly dominant intra-/inter-thread stride patterns or reuse locality.

Overall, the average correlation between the proxies and original applications is

0.91.

L2 cache configurations - Next, the effectiveness of G-MAP’s method-

ology in matching the L2 cache performance of the original applications is tested

(see Figure 6.6b). Here, 30 different L2 cache configurations are run per benchmark

(varying the cache size from 128KB - 4MB, associativity from 1 - 16 and line-size

between 64 - 128B, while keeping the L1 configuration fixed at 16KB, 4-way), re-

sulting in over 540 validation points across all benchmarks. Overall, the average

error in replicating L2 cache miss rate error is 7.1% and the average correlation is
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Figure 6.6: Evaluating Cache, Prefetcher and Scheduling Policy Configurations
using G-MAP Proxies: Error in Miss-rates

0.91.

L1 cache and prefetcher configurations - Regular access patterns enable

prediction of future addresses, making prefetching a viable option [51, 66]. The

next set of experiments test the accuracy of the memory proxies in estimating the

impact of adding a state-of-the-art L1 prefetcher [51] across 72 different configu-

rations per benchmark (varying the prefetch degree, prefetcher configurations and

L1 cache configurations), resulting in over 1296 validation points. The evaluation

results are shown in Figure 6.6c, sorted according to the original application cache

miss rates. Overall, the average error in replicating L1 prefetcher performance is

6.3% and the average correlation is 0.9. It can be observed that the scalarProd and

srad applications have regular access patterns, but they are still largely insensitive
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to L1 cache prefetching due to larger footprints and lower temporal locality. The

hotspot application is also insensitive to prefetching because of non-dominant ac-

cess patterns and low temporal locality. In contrast, the kmeans and nw applications

benefit from prefetching.

L2 cache and prefetcher configurations - Next, the performance of the

G-MAP proxies is compared against the original applications across different L2

prefetcher configurations. A stream prefetcher is added to the L2 cache and ∼96

configurations are run per benchmark (varying the stream window between 8/16/32,

the prefetch degree between 1/2/4/8 and the L2 cache configurations), resulting in

1728 validation points in all. Overall, the average error in replicating L2 cache

miss rate error across different cache and prefetcher configurations is 8.9% and the

average correlation is 0.88 (see Figure 6.6d).

DRAM performance - Next, the effectiveness of the memory proxies is

evaluated to enable design-space exploration of the memory system in lieu of the

original applications. The detailed memory system, Ramulator [48], is used to

evaluate 11 different GDDR5 configurations (changing the bus width, channel par-

allelism, DRAM addressing scheme - RoBaRaCoCh or ChRaBaRoCo) per bench-

mark (total 198 configurations). The memory performance of the original and

proxy applications are compared over three key metrics: DRAM row buffer local-

ity (RBL), average memory controller queue length and average read/write latency.

Figure 6.7 shows the original versus clone performance values (each value is nor-

malized with respect to the AES application’s performance metrics) across the 18

benchmarks. Overall the average error in RBL, average queue length and average
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Figure 6.7: DRAM Performance Evaluation using G-MAP Proxies

read-write latency are 9.95%, 8.64% and 12.6%, respectively (average correlation

= 0.85).

Scheduling policy impact - The next set of experiments test the effec-

tiveness of G-MAP’s methodology in replicating cache and memory performance

across two scheduling policies, Greedy-then-oldest (GTO) and LRR (see Figure

6.6e). As discussed before, G-MAP does not model the GPU cores and it adopts an

approximate policy to schedule threads. Nevertheless, the average error in replicat-

ing L1 cache miss rate is 8% (5.1% for LRR and 10.9% for GTO policy).

Impact of trace miniaturization - Since G-MAP relies on statistical con-

vergence to replicate memory access patterns, it is important to have sufficient num-
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ber of samples in the original application to replicate the different probability values

due to the law of large numbers. Figure 6.8 shows the impact of higher degree of

trace miniaturization on the performance cloning accuracy (left axis) and speedup

of memory simulation using the reduced clone over the full trace (right-axis). It

can be observed that, as the trace size is reduced, the simulation speed increases al-

most linearly, while the performance cloning accuracy starts dropping after a certain

point. At 8x trace size reduction, the accuracy drops to∼90%, while the simulation

speed improves by ∼8x. The degree of miniaturization on real-world applications

can be higher since the number of samples in the real-world application memory

traces is often very large.

6.4 Summary

This chapter presented G-MAP, a novel methodology to statistically model

the memory access behavior of GPU applications by leveraging the synergy in

code-localized access patterns within and across threads. G-MAP also accounts for

GPU’s parallel execution model by adopting a fine-grained, coordinated schedul-

ing policy to ensure appropriate degree of parallelism at the thread-level and the
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cache/memory-level. Extensive evaluations using over 5000 different cache, mem-

ory and prefetcher configurations and 18 different GPGPU benchmarks are per-

formed to show that G-MAP proxies can replicate the cache/memory performance

of the original GPU applications with over 90% accuracy, while significantly re-

ducing the simulation time and storage requirements.
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Chapter 7

CAMP: Accurate Modeling of Core and Memory
Locality for Proxy Generation of Big-data

Applications

Prior system-level proxy generation proposals [42, 29, 69] model core-level

locality metrics in detail, but abstract out memory locality modeling using very

simple dominant stride-based models. This results in poor cloning accuracy of the

proxy benchmarks, especially in applications with complex memory access pat-

terns [7, 5]. Most big-data applications are highly data-intensive and their overall

system-level performance is significantly impacted by the performance of the cache

and memory hierarchy [26, 67, 104]. As a result, prior system-level performance

cloning techniques are not very effective or accurate at studying the overall perfor-

mance of big-data applications. A few detailed cache and memory cloning tech-

niques [7, 5] have also been proposed in literature. For example, STM [5] tracks

long history-based stride transitions in the global memory reference sequence of ap-

plications to generate miniature memory clones. Such techniques generate only a

memory access trace, which can be used for cache/memory hierarchy design space

exploration, but do not model any core or instruction locality behavior.

In reality, the processor core configuration and the application together de-

termine processor performance, which affect the timing of requests received in the
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memory system. At the same time, memory performance has a feedback loop with

processor performance, which in turn affects timing of other memory requests and

overall behavior of the application. None of the prior cloning studies accurately

model the joint performance of both core and memory subsystems and their com-

plex interactions. As such, there is need for system-level proxy benchmarking tech-

niques that can model both core and memory performance accurately.

This chapter focuses on synthesizing accurate and representative proxy bench-

marks to study system-level (core and memory) performance of emerging appli-

cations. This chapter introduces CAMP, a novel proxy generation and modeling

methodology that accurately models both Core performance And Memory local-

ity to create miniature Proxy benchmarks. CAMP proxies do not need any com-

plex software-stack support and have shorter execution times [73]. To model the

core performance, CAMP adopts existing methods for generating proxy instruc-

tion streams by capturing and modeling the dependencies between instructions

(instruction-level parallelism), instruction types, control-flow behavior, etc. CAMP

also adds an improved memory locality profiling approach that captures both the

spatial and temporal locality of applications. However, most big-data applica-

tions typically do not have a single dominant stride/offset based access pattern

[67, 70, 104]; thus, it is quite challenging to control the different dynamic execu-

tion instances of the low-level, static load/store instructions in the proxy benchmark

to reproduce the complex memory access patterns of the original applications us-

ing synthetic data-structure accesses in the proxy code. To address this challenge,

CAMP introduces a novel proxy generation and modeling/replay methodology that
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Figure 7.1: CAMP’s Profiling and Proxy Generation Framework

integrates the core and memory locality models to create accurate system-level

proxy benchmarks. This approach enables CAMP proxies to mimic the original

application’s core as well as memory performance behavior and capture the perfor-

mance feedback loop between core and memory subsystem well. For a variety of

real-world database applications, CAMP achieves an average cloning accuracy of

over 89%. This novel proxy benchmarking capability can facilitate evaluation of

overall system (core, cache and memory subsystem) design-space exploration.

7.1 CAMP’s Methodology

Figure 7.1 shows an overview of CAMP’s core and memory locality mod-

eling framework. During the profiling phase 1©, CAMP characterizes the inherent

instruction (e.g., instruction-level parallelism, instruction mix) and memory access

locality patterns (e.g., spatial & temporal locality of memory accesses) of big-data

applications to create a statistical workload-specific profile 2©. During the proxy

generation and modeling phase 3©, CAMP adopts a systematic methodology to cre-

ate a miniaturized clone of the big-data application based on the workload-specific

profile, which can be used to drive CPU core, cache & memory performance ex-
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ploration. Next, CAMP’s workload characterization methodology is discussed, fol-

lowed by the proxy generation and modeling algorithm.

7.1.1 Workload Profiling

CAMP’s profiling infrastructure (see 1© in Figure 7.1) is implemented over

the micro-architectural processor simulator, MacSim [47]. The profiler modules

are developed separately from the simulator’s original code as stand-alone modules.

To characterize the original big-data application and extract the workload-specific

statistics (details in Table 7.1), profiling probes are inserted into the simulation in-

frastructure at two points - one before the decode stage of the processor pipeline to

collect the “instruction locality profile” and another before the data cache access

ports to collect the “memory access locality profile”. Next, the different character-

istics collected corresponding to the instruction and memory locality profiles will

be discussed.

7.1.1.1 Instruction Locality Parameters

Following are the different instruction locality features captured by CAMP

(see Table 7.1 for a profile summary).

a. Basic-block features and instruction footprint - CAMP identifies the

number of dominant static basic blocks in the original big-data application, which

constitute a fixed threshold (empirically, set to 90% in our case) of the big-data

application’s total dynamic basic-block count. The number of basic blocks in-

stantiated in the proxy benchmark is set to the number of dominant basic blocks
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Table 7.1: CAMP’s Profiled Statistics

Statistic Description
fimix Instruction mix distribution (e.g., #loads, #branches)
Pδ1,δ2,...,δ128 Dependency distance distribution (1,2, . . . ,≤ 128)
PBrTr Branch transition frequency distribution (0-100%)
fsys Fraction of system activity
B Number of basic blocks in the proxy
Bsize Average basic block size
SSDi j Stack distance probability at the ith set and

jth stack position
SHT{s1,s2,...,si}−>nstrs Stride pattern table keeping stride transition

counts from past i strides to next strides (nstrs)
Si Fraction of accesses to the ith set
Wc Probability of write to clean block
Wd Probability of write to dirty block
ρw Fraction of write accesses

identified in the original application. A lower threshold value can lead to a higher

degree of miniaturization, but comes at the expense of a loss in cloning accuracy.

Next, CAMP tracks the average basic block size of the dominant basic blocks and

transition probabilities between pairs of basic blocks. Average basic block size is

an important metric because it determines the average number of instructions that

can be executed in the program sequence without executing any control instruc-

tions. This can affect performance significantly depending on the branch predictor

performance.

b. Instruction mix - The next set of metrics captured by CAMP is the in-

struction mix of the original application. The instruction mix (IMIX) of a program

measures the relative frequency of various operations performed by the program
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and is an important determinant of an application’s performance. For example, an

integer division operation often takes more cycles to execute than simpler arith-

metic instructions. The fraction of floating-point and integer instructions influences

a program’s execution time. CAMP measures the IMIX of the big-data applications,

specifically in terms of the fraction of integer arithmetic, integer multiplication, in-

teger division, floating-point operations, SIMD operations, loads, stores and control

instructions in the dynamic instruction stream of the program. The captured IMIX

statistics are used to populate corresponding instructions into the static basic blocks

in the proxy benchmark.

c. Control-flow behavior - Another important metric that affects big-data

application performance is its control flow behavior. Difficult-to-predict control in-

structions and irregular branch behavior lead to poor branch predictor performance,

which causes higher number of wrong-path executions, pipeline flushes and de-

grades overall performance. Prior research work [43, 11, 29] has shown that an

application’s branch misprediction rate is highly correlated with the transition fre-

quency of the branch instructions [34]. Branch transition rate measures how often

a branch transitions between its taken and not-taken paths and is an indicator of the

overall predictability the branch instructions. CAMP captures the transition rate of

the branch instructions in the big-data applications and bins them into eight buckets,

where each bucket represents the fraction of control instructions having a transition

rate ranging from 0-100%. To model a certain branch transition rate in the proxy

benchmark, each branch instruction is assigned a transition frequency to satisfy the

overall target branch transition rate.
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d. Instruction-level parallelism - Next, CAMP captures the instruction-

level parallelism (ILP) of the original big-data applications. Tight producer-consumer

based dependency chains can significantly affect application performance due to se-

rialization effects. CAMP models an application’s ILP based on its inter-instruction

dependency distance, which is defined as the number of dynamic instructions be-

tween the production (write) and consumption (read) of a register/memory operand.

Figure 7.2 shows a simple dependency distance computation for an example pro-

gram fragment, with a true read-after-write dependency between the first and fourth

instructions. CAMP classifies the instruction dependency distance into eight bins

(1,2,≤ 4,≤ 8, . . . ,≤ 128), where each bin represents the percentage of instructions

having that particular dependency relation. During proxy benchmark generation,

an instruction’s register or memory operands are assigned a dependency distance to

satisfy the dependency metrics collected from the original application.

ADD R1, R3,R4

MUL R5,R3,R2

ADD R5,R3,R6

LD R4, (R1)

SUB R8,R2,R1

Read After Write 

Dependency Distance = 3

Figure 7.2: Dependency Distance Computation Example

e. System activity - Many emerging, big-data applications spend a sig-

nificant fraction of their execution time executing operating system code [26, 67].

To model the impact of high system activity, CAMP tracks the fraction of exe-
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cuted user-mode and kernel instructions in the big-data applications during profil-

ing. Next, CAMP adds the target fraction of system calls into the proxy benchmark

during proxy generation.

7.1.1.2 Memory Locality Parameters

As discussed, prior system-level proxy benchmarking techniques use a very

simple model to capture memory access locality. They model locality of individual

load/store instructions in the original application based on a single dominant stride

value. Although such an approach can work for small loop-based programs (e.g.,

array-based accesses), the memory instructions in most big-data applications have

quite random, complex access patterns which cannot be captured by a single stride

alone [26]. For example, join operations using hash tables, key-value stores and

complex structures such b-trees do not lend themselves well to dominant strides as

a representative model [67]. This section will discuss how CAMP addresses the

need for a more representative memory model.

Different requests in the cache and memory subsystem are generated for the

following reasons: (a) memory read-write requests are caused by actual load/store

instructions in an application, (b) speculative prefetch requests are typically gener-

ated by a hardware prefetching engine and (c) write-back requests are generated by

the upper level caches (e.g., write-back caches) and sent to the lower levels of the

cache/memory hierarchy. While the first type of requests are generated by execu-

tion of instructions on the processor, the other two depend on the architecture (e.g.,

cache write-policy, prefetcher configuration).
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To accurately model the read requests generated by memory instructions run

by the core (type (a)), CAMP captures the per cache-set stack distance distribution

(SSD) profile [55] for a baseline L1 cache configuration (16KB, 2-way). The SSD

profile captures the fraction of memory references to the different LRU stack po-

sitions (stack position 0 represents the most recently used block, stack position 1

represents the second most recently used block, etc.) within every cache set of the

baseline L1 cache. For example, SSDi j represents the probability for an access to

fall in the ith set at the jth LRU stack position. Using SSDs helps to capture the tem-

poral locality of memory access streams. For the accesses that miss in the L1 cache,

their spatial locality patterns are captured by learning global stride transitions in a

stride history table (SHT). A stride is defined as the difference between addresses

of two consecutive memory accesses, which miss in the profiled L1 cache. Each

SHT entry records a history of past consecutive stride values (length is based the

history depth), and the next strides that followed the stride history in the past, and

each next stride’s frequency of occurrence. CAMP also collects another statistic,

fSD, which records the fraction of memory accesses that hit in the SSD table. Fig-

ure 7.3 illustrates a simplified view of these profiling structures. Note that these

statistics are the only ones that are similar to the statistics used in STM [5] and all

the remaining statistics are unique to CAMP. Additionally, it should be noted that

although CAMP leverages STM’s cloning technique for memory locality modeling,

any other memory locality modeling technique (such as HALO or WEST) can be

used instead of STM to generate the proxy memory address traces. CAMP’s nov-

elty lies in how to integrate a core and memory locality model together to create
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Figure 7.3: STM-based Memory Locality Profiling

more accurate system-level proxy benchmarks.

Apart from tracking the per-set SSD profiles (like STM), it is equally impor-

tant to capture the distribution of memory accesses across sets. Not capturing access

distribution across sets leads to different conflict behavior between cache sets when

L1 test configurations differ from the baseline, resulting in cloning errors. So, in ad-

dition to tracking per-set SSD profiles, CAMP also captures the fraction of accesses

(Si) that are generated to every set of the baseline L1 cache. Together, the above

profiles provide sufficient temporal and spatial locality information to replicate the

behavior of processor memory requests and prefetch requests.

However, STM’s statistics are not sufficient to deal with write-back request

traffic in the memory system. STM collects a statistic, ρw, which records the frac-

tion of accesses in the original application that are writes. However, the number

of write-backs is not determined by the number/fraction of write accesses. Rather,

it is dependent on the number of dirty cachelines in the cache hierarchy and this
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is not captured by STM’s write statistics. Figure 7.4 shows an example scenario,

which leads to different number of write-back requests in STM versus the original

application. In the original program, 50% of the accesses are stores, but the stores

happen to the same cache block, resulting in one dirty block in the cache. As STM

does not know about the distribution of stores to clean or dirty cachelines, it can

generate two writes to different blocks, resulting in two dirty blocks and two future

write-back requests. In order to capture this effect, CAMP records the number of

writes to clean and dirty blocks. When a clean block receives a write request, it

becomes dirty and subsequent read/write operations on the same block do not im-

pact its dirty status. Based on the counts aggregated during the profiling phase, two

probabilities are computed, Wc and Wd , which represent the probability of writing to

a clean or dirty block, respectively. During proxy synthesis, the request type (load

or store) is selected based on the clean or dirty state of the generated address and

the conditional probabilities (Wc and Wd).

Original Program: 1 write-back
st A

st A

ld B

ld C

C B

MRU LRU

- -

MRU LRU
Original State of Cache

STM: 2 write-backs
st G

ld G

st I

ld J

J I

STM’s write statistics:
- 50% writes, 50% reads

MRU LRU

CAMP: 1 write-back
st G

st G

ld I

ld J

J I

CAMP’s write statistics:
- 50% writes, 50% reads
- 100% Wd, 0% Wc

MRU LRU

Figure 7.4: Profiling for Write-back Requests
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7.1.2 Proxy Generation and Modeling

In this section, a detailed description of CAMP’s proxy generation process

(See 3© in Figure 7.1) will be provided. Table 7.1 summarizes the captured locality

metrics.

Algorithm 5 shows how the “memory proxy generator” leverages the mem-

ory locality profiles to create a dynamic memory access trace (DynMem). First, the

number of memory addresses accessed in the proxy (N) is estimated after applying

the desired degree of miniaturization. For each memory access, CAMP chooses

whether it will generate a proxy address using the SSD or the SHT profiles depend-

Algorithm 5 CAMP’s Dynamic Memory Proxy Generation Algorithm
1: Output: DynMem[] = {(ADDR1, RW1), . . . , (ADDRN , RWN)};
2: for n = 1, . . . ,N do
3: Sample fn ∈ {0, . . . ,100};
4: if fn ¡ fSD then
5: Use Si to choose set and SSDi j to choose stack distance position;
6: Choose ADDRn based on chosen set and stack position;
7: else
8: Sample stride Sn from SHT based on LAST ST R;
9: ADDRn = LAST ADDR + Sn;

10: LAST ST R.push back(Sn); LAST ADDR = ADDRn;
11: end if
12: if ADDRn ∈ DirtyBlocks then
13: Sample Wd and ρw to assign RWn;
14: else
15: Sample Wc and (1-ρw) to assign RWn;
16: end if
17: DirtyBlocks.add(ADDRn) if RWn = Write;
18: end for
19: return DynMem[]
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ing upon the fSD probability. If the SSD profile is used, CAMP picks the address

located at a set and way chosen using the SSDi j and Si profiles (line 6). If the SHT

profile is used, then the next address is chosen based on the stride transitions saved

for the current stride history (LAST ST R, lines 8-9). To make a load/store assign-

ment, CAMP checks if the chosen address block is dirty or clean. Accordingly, it

uses Wd or Wc (and ρw) to determine if the instruction should be a load or store

(lines 12-17). This process is repeated till the target number of memory accesses

are generated. The resultant trace forms the DynMem proxy trace.

Next, the “instruction proxy generator” leverages the instruction locality

metrics to create an instruction proxy (see Algorithm 6). First, CAMP populates

each basic block in the proxy with an appropriate number (satisfying the mean

and standard deviation of the target Bsize) and type (satisfying fimix) of instructions.

Algorithm 6 CAMP’s Instruction Proxy Synthesis Algorithm
1: Output: Instruction proxy, B[]
2: while b < B do
3: Sample a random basic block based on its access frequency.
4: Find basic-block size I to satisfy mean & std. dev of target Bsize;
5: for i < I do
6: Assign instruction type based on target fimix;
7: Assign dependency relation based on target Pδ distribution;
8: For memory ins., assign a 0 stride to base array;
9: Inject system-calls based on target fsys;

10: Insert x86 test operation with chosen modulo operand.
11: Assign last instruction to be conditional branch instruction.
12: end for
13: end while
14: Assign architectural register operands to satisfy dependency relations of step 7.
15: return B[]
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The last instruction of every basic block is instantiated as a conditional branch in-

struction. Next, each instruction is assigned a dependency distance (i.e., a prior

instruction that generates its operands) to satisfy the dependency distance criterion

(line 8). As the memory instructions in most big-data applications typically do not

have a fixed stride/offset, it is very challenging to control the different dynamic ex-

ecution instances of the low-level, static load/store instructions in the instruction

proxy in order to dynamically produce the same dynamic memory access sequence

produced by Algorithm 5 (DynMem). To achieve this, all the memory instructions

in the instruction proxy are temporarily assigned to have a zero stride with respect

to a baseline array. After instruction proxy generation completes, a binary instru-

mentation engine is used to integrate the DynMem trace into the instruction proxy

(details will be discussed in the next paragraph). Next, system calls are injected (or

not) into the basic block based on the target system-call frequency (line 10). An x86

test operation is inserted before every branch to set the condition codes that control

the branch’s outcome. The test instruction’s operand is chosen to control the tran-

sition frequency of the branch instruction (line 11) to achieve the target transition

rate of every basic block. The above steps are repeated till the target number of

basic blocks (B) are generated. Finally, architectural registers are assigned to each

instruction to satisfy the identified dependencies. The instruction proxy generator

generates C-language based proxies with embedded x86-based assembly instruc-

tions using the asm construct. The proxy instructions are nested under a two-level

loop where the loop iterations control the number of dynamic instructions.

After the static instruction proxy program is created, a binary instrumen-
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PC1: add r1, r3, r4
PC2: ld r4, 0(r0)
PC3: br PC1

1. Inst. address = PC1;  Opcode = add; Src regs = r1, r3; Dest. reg = r4
2. Inst. address = PC2; Opcode = ld; Src regs = r0, load address = 0; Dest. reg = r4
3. Inst. address = PC3;  Opcode = br; branch_target = PC1; branch taken = true
4. Inst. address = PC1;  Opcode = add; Src regs = r1, r3; Dest. reg = r4
5. Inst. address = PC2; Opcode = ld; Src regs = r0, load address = 0; Dest. reg = r4

:

2
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(a) Instruction proxy (b) Dynamic instruction proxy stream (DynInst)

Figure 7.5: DynInst Format

tation tool (e.g., PIN) is used to generate a dynamic instruction stream (DynInst)

of the same. An example format of DynInst is shown in Figure 7.5. Next, a dy-

namic binary instrumentation engine is implemented for integrating the DynMem

and DynInst profiles to create the unified CAMP proxies, capturing both instruc-

tion and memory access behavior of the original big-data applications. For ev-

ery dynamic execution instance of load/store instruction in the DynInst sequence,

the instrumentation engine overrides the temporary address assigned to the instruc-

tion during the instruction proxy generation time with the next address from the

DynMem sequence in a serialized fashion. The instrumented instruction and mem-

ory stream forms the CAMP proxy. To evaluate the CAMP proxies on simulators, a

replay engine is implemented that interfaces with the trace reading logic of the ar-

chitectural performance or power simulator and feeds the simulator with the unified

CAMP dynamic instruction and memory sequences. Most architectural simulators

(e.g., SniperSim [15], MacSim [47], Ramulator [48]) support well-defined dynamic

trace driven execution modes and CAMP proxies could be easily integrated into

such frameworks by modifying the replay engine.
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7.2 Evaluation

This section discusses the experimental setup followed by a detailed evalu-

ation of CAMP’s performance cloning accuracy.

7.2.1 Experimental Setup

For profiling and validation, a detailed architecture simulator, MacSim [47]

is used. CAMP is evaluated using a set of big-data data-serving (Yahoo! Cloud

Serving Benchmark (YCSB)[18]) and data-analytics applications (TPC-H bench-

marks [100]). The standard benchmarks provided with YCSB framework are run.

These benchmarks cover the most important operations (read, write, insert and

scan) performed against a typical data-serving database. TPC-H models a decision-

support system for order-processing engines, with queries performing different business-

like analyses. CAMP is evaluated using 5 TPC-H benchmark queries. Both the

TPC-H and YCSB benchmarks interact with a back-end MySQL database. The

test databases are chosen to have a total size of ∼10-12GB so that the data fits

into memory of the server nodes, which is the recommended operational setup for

scale-out applications for better performance [57]. Each benchmark is executed by

Table 7.2: Profiled System Configuration used for Collecting CAMP Profiles

Component Configuration
CPU x86 64 processor, atomic mode, 4 GHz
L1 Cache 32KB, 2 way Icache; 64KB, 2 way Dcache; 64B block size, LRU
L2 Cache 256KB, 4-way, LRU
DRAM 16GB DDR3, 12.8 GB/sec
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first fast-forwarding to skip the initialization stage and then, cloning one particular

phase of the application consisting of 1 billion instructions (to capture other phases,

other 1 billion instruction windows can be chosen). It should be noted that profiling

is a one-time cost and CAMP receives only a statistical profile as input (indepen-

dent of the execution length). The system configuration used for collecting CAMP

profiles is shown in Table 7.2.

7.2.2 Results and Analysis

This section evaluates CAMP’s accuracy in predicting various performance

metrics across different core, pipeline, branch predictor, cache and memory config-

urations.

Core configurations - First, the effectiveness of CAMP proxies in repli-

cating overall performance of the database applications is evaluated. For this ex-

periment, 8 different core configurations are run per benchmark by changing the

pipeline width between 2-8, re-order buffer size between 128-512 and issue rate

between 2-4. Figure 7.6a shows the results. It can be observed that the average

error between the proxy and original applications is ∼11%. The highest error is

experienced by the TPCH-Q14 benchmark as it suffers from aliasing effects in the

stride history table due to complex join-based access patterns, leading to higher

L1/L2 cache and memory performance cloning errors. Increasing the stride history

length can improve memory performance cloning accuracy, but comes at the ex-

pense of higher metadata overhead. Overall, CAMP’s methodology of capturing

different instruction and memory access locality metrics leads to small error rates
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Figure 7.6: Evaluating Core, Branch Predictor, Cache, Prefetcher and DRAM Con-
figurations using CAMP Proxies

across most benchmarks (including complex queries in TPC-H and YCSB bench-

marks). Overall, the proxies replicate the overall performance behavior with 0.94

correlation.

Branch predictor configurations - The next set of experiments evaluate

the effectiveness of CAMP proxies in replicating behavior of original applications

across different branch predictor configurations. In particular, two different branch

predictors (gshare and tournament) are tested and the predictor’s branch history

depth is also varied between 8 - 18. Figure 7.6b shows the average error in branch

misprediction rate between the original and proxy applications. It can be observed

that the average error is less than 1% (correlation = 0.93). This shows that CAMP’s
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methodology of using branch transition rates to track predictability of control in-

structions is fairly accurate at modeling application behavior across different branch

predictor configurations.

L1 cache and prefetcher configurations - Next, CAMP’s cloning effec-

tiveness is validated across different L1 cache and prefetcher configurations. In

particular, 6 different L1 cache configurations are evaluated per benchmark (vary-

ing the cache size from 16KB-64KB and the associativity from 2-8). For each cache

configuration, the L1 stream prefetcher configuration is also varied by changing the

stream detection window between 8-16 and prefetch degree between 0-4. Results

showing the L1 cache miss rate errors are shown in Figure 7.6c. Capturing both

temporal and spatial locality patterns using long history-based stride transitions in

the memory access streams of the complex, big-data applications leads to highly

accurate replication of cache performance. The proxies experience about an error

of up to 2 MPKI in some configurations, especially when the cache line size of the

L1 caches changes significantly because the collected memory profiles do not cap-

ture locality within cache-blocks. Nonetheless, it can be observed that the overall

correlation between the proxy and the original applications is high (0.98).

L2 cache and prefetcher configurations - The next experiment evalu-

ates CAMP’s effectiveness across different L2 cache and prefetcher configurations.

Eight different L2 cache configurations are evaluated per benchmark (varying the

cache size from 128KB-1MB and the associativity from 2-16). For each cache

configuration, the L2 stream prefetcher configuration is also varied by changing

the stream detection window between 8-16 and the prefetch degree between 0-2.
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Results showing the L2 cache miss rate errors are shown in Figure 7.6d. It can

be observed that the overall correlation is high (0.97) due to accurate modeling of

load-store patterns and write-back cache traffic.

DRAM performance - Next, the effectiveness of CAMP proxies at en-

abling design-space exploration of the memory system in lieu of the original ap-

plications is verified. In particular, 6 different DRAM configurations are evaluated

(changing the memory controller scheduling policy between FR-FCFS and FCFS,

channel parallelism between 4-8 and the row buffer size between 2-4KB) per bench-

mark (resulting in 54 total data-points). The original and proxy benchmarks are

compared in terms of average read/write latency per instruction (see Figure 7.6e).

Each value is normalized with the original TPC-H Q14 benchmark’s performance

metrics. Overall the average error in average read-write latency per instruction is

14.5% (average correlation = 0.89).

Comparison with prior techniques - Figure 7.7 contrasts the result of

clones generated using the single dominant stride (SDS proxy) profile, the most

commonly used statistic in literature for modeling memory locality patterns in

system-level proxy benchmarks, against CAMP proxies. For this, the L1 cache

size is varied from 16-64KB and associativity from 2-8 ways. It can be observed

that the SDS clones show significant errors in miss ratio (measured as the absolute

difference in miss ratios) at many data points, reaching as high as 33%. CAMP

proxies, on the other hand, show near-zero errors across almost all cases, and only

shows a few data points with relatively elevated error (≤ 4%). This result demon-

strates that the SDS approach is not suitable for modeling the complex memory
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Figure 7.8: IPC Cloning Accuracy of CAMP versus SDS proxies.

access patterns of big-data applications. Figure 7.8 compares the IPC cloning accu-

racy of the SDS and CAMP proxies for three big-data benchmarks across different

core pipeline and cache configurations. Overall, it can be observed that account-

ing for accurate memory locality models together with replicating the program ILP,

instruction types, basic blocks, etc. helps CAMP proxies to achieve much lower

cloning error (∼ 11%) compared to SDS proxies (∼ 21%).

Degree of miniaturization - Since CAMP relies on statistical convergence
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to replicate instruction and memory locality, it is important to have sufficient num-

ber of samples in the original application to replicate the different probability values

due to the law of large numbers. The proxies contain roughly 90-100 million dy-

namic instructions, yielding a clone that is roughly 10-12x smaller than the original

application and as a result, achieving a ∼10x reduction in simulation time. The de-

gree of miniaturization on real-world applications can be higher since the number

of samples in the real-world application traces is often very large. Further miniatur-

ization can be achieved by reducing the number of instructions, but at the expense

of a drop in the cloning accuracy.

HALO memory model - CAMP is a very flexible system-level proxy bench-

mark generation technique that allows combining a instruction-pipeline locality

modeling technique with an accurate memory locality modeling technique to create

miniature system-level proxy benchmarks. This section replaces the STM-based

memory model, which was used in previous experiments, with a HALO-based

memory model. This experiment requires collecting HALO-specific memory lo-

cality profiles (as discussed in Chapter 5). The other components of CAMP (as

shown in Figure 7.1) remain unchanged. Figure 7.9 compares the IPC of the orig-

inal and proxy benchmarks across different core configurations (pipeline width is

varied between 2-8, re-order buffer size is varied between 128-512 and issue rate is

varied between 2-4). It can be observed that the average error between the proxy

and original applications is ∼10%. As discussed earlier, HALO out-performs STM

in modeling cache and memory reference locality. As a result, using HALO based

memory model leads to slightly more accurate proxy benchmarks. This experiment
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however intends to demonstrate that CAMP’s proxy generation, modeling and re-

play methodology is very generic.

7.3 Summary

This chapter presented CAMP, a system-level proxy benchmarking tech-

nique to solve the confidentiality and representativeness problems of workload per-

formance cloning for big-data applications. CAMP models both core-performance

and memory locality accurately along with modeling the feedback loop between the

core and memory performance. To model the core performance, CAMP adopts ex-

isting methods for generating proxy instruction streams by capturing and modeling

the dependencies between instructions (instruction-level parallelism), instruction

types, control-flow behavior, etc. An improved memory locality profiling approach

is added that captures both the spatial and temporal locality of applications. Fi-

nally, a novel proxy generation and replay technique is used to integrate the core
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and memory locality models together to create accurate system-level proxy bench-

marks. It was demonstrated that CAMP clones mimic the original application’s

performance behavior and that they capture the performance feedback loop well.

For a variety of real-world database applications, CAMP proxies achieved an av-

erage cloning error of ∼11%. This system-level proxy benchmarking technique is

expected to be a new capability that can enable accurate overall system (core and

memory subsystem) design-space exploration.
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Chapter 8

Synthetic Workload Generation using Proxy
Generator Framework to Densely Cover Performance

Spectrum

During a typical computer system design cycle (often spanning over several

years), applications can change quite significantly; for example, new applications

are introduced, existing applications are expanded to work on bigger problems and

data footprints, and even the same applications may produce different workloads

due to better compiler optimization. However, it is impractical to create a new stan-

dard benchmark whenever a new application domain or software paradigm emerges.

For example, the latest SPEC CPU benchmark suite, SPEC CPU2017 is just re-

leased after a gap of 11 years [72]. As a result, computer designers traditionally

rely on benchmarks of yesterday or today to build machines for tomorrow. Another

issue is that the set of programs included in a standard benchmark suite is fixed

and the benchmarks often fill only certain data points in the workload design-space.

Much of the workload design-space map is not represented by any workloads. It

will be useful to have broader and denser coverage of the workload map. This chap-

ter introduces Genesys [75], a methodology to create hypothetical benchmarks, by

tweaking program characteristics in a systematic way to produce new workloads

with performance behavior that does not currently exist for filling up the workload
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performance spectrum more densely.

8.1 Genesys’s Methodology

Genesys is a synthetic workload generation framework (shown in Figure

8.1) that enables systematic generation of synthetic applications covering a broad

range of the application state-space. It builds upon a set of key workload-specific

metrics that can be controlled systematically to generate workloads with desired

properties. Each workload-specific metric corresponds to a low-level program fea-

ture, which defines particular application characteristics, and is available as a user-

controllable knob. The user can choose to fix the values of some (or all) core met-

rics to generate targeted program behavior. For the remaining set of core metrics (if

any) whose values are not fixed by the user, Genesys randomizes their values within

reasonable bounds in order to achieve well-rounded program state-space coverage

around the target behavior. By allowing each workload-specific metric to be con-

trolled using easy-to-use programmable knobs, Genesys allows the creation of tar-

geted benchmarks with desired program features. Together, the values chosen for

the core metrics act as unique profiles for the synthetic workloads. These workload

profiles are fed into a code generator algorithm that uses the target metric values

to generate a suite of synthetic applications. Together, these applications form a

set of unique programs, which target particular aspects of the program behavior

depending upon the choice of the core metrics.

In this section, the core workload-specific metrics used by Genesys are first

discussed, followed by the workload generation methodology. The core feature
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Figure 8.1: Genesys’s Overall Methodology and Framework

set is divided at a high-level into three categories, depending upon the aspects of

program behavior that the individual metrics control. The three categories, together

with their associated sub-categories and component metrics are shown in Table 8.1

and are described below. It should be noted that the set of core metrics used in this

paper are not meant to be conclusive, rather, they are key metrics that affect different

aspects of program behavior. Nevertheless, Genesys’s framework is flexible enough

to add new metrics to control other aspects of program behavior.

8.1.1 Instruction-level Characteristics

These metrics correspond to the instruction-level behavior of the applica-

tions.

a. Instruction mix: The first metric is the application’s instruction mix

(IMIX). Genesys categorizes instructions into fractions of loads and stores (mem-

ory), control-flow, integer and floating-point instructions. It should be noted that the
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framework is very flexible and can be easily extended to support specific instruc-

tion categories. The target IMIX can be provided as an input to Genesys directly,

in which case it generates programs having the desired overall IMIX. Otherwise,

IMIX fractions, randomized within bounded ranges, are used to generate the suite

of synthetic applications.

b. Instruction count: The second metric that is considered is instruction

count (IC), which controls the static instruction footprint of the application. IC

can be provided by the user directly or estimated automatically based on the target

instruction cache miss rate (ICMR, metric 3). If the ICMR metric is provided,

Genesys determines the number of static instructions to instantiate in the synthetic

benchmark to achieve the target ICMR. An initial estimate of the number of static

instructions is made based on the assumption of a default instruction cache (Icache)

size/configuration. This serves as an initial estimate only, the final static code size

is further tuned to achieve the target ICMR.

c. Instruction-level parallelism: Instruction-level parallelism (ILP) is an

important determinant of an application’s performance. Tight producer-consumer

chains in program sequences limit ILP and performance because of dependency-

induced serialization effects. Genesys models ILP by controlling the dependencies

between instructions in the application sequence using the dependency distance

metric. Dependency distance is defined as the total number of instructions in the

dynamic instruction stream between the production (write) and consumption (read)

of a register/memory location. We classify dependency distance into 32 bins (values

varying between 1 to 32 and higher), where each bin represents the fraction of in-
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Table 8.1: Genesys’ Workload Metrics

Category Metrics Count 

Instruction-level 

Characteristics 

1. Instruction mix 5 categories 

2. Instruction count 1 

3. Instruction cache miss rate (ICMR) 1 

4. Instruction level parallelism (ILP) 32 bins 

Control-flow 

Characteristics 

5. Average basic block size 1 

6. Branch transition rate (BTR) 1 

7. Branch misprediction rate 1 

Memory-access 

Characteristics 

8. Data footprint 1 

9. Regular/irregular behavior 1 

10. Spatial locality stride bins 32 bins 

11. Temporal locality bins 8 bins 

12. L1/L2 Data cache miss rates 2 

structions having that particular dependency distance. The desired dependency dis-

tance can be provided as an input to Genesys or automatically randomized (within

bounds) to generate synthetic programs with varying degrees of ILP.

8.1.2 Control-flow Characteristics

These metrics affect the program’s control-flow behavior.

a. Average basic block size: Average basic block size is an important met-

ric because it determines the average number of instructions that can be executed in

the program sequence without executing any control instructions. This can affect

performance significantly depending on the branch predictor performance. Again,

this metric could be provided directly as an input or inferred from the ICMR metric

(described before) and the fraction of control instructions.
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b. Branch predictability model: Genesys considers two other control-

flow metrics: branch transition rate (BTR) and branch misprediction rate. Prior

research studies [34] have shown that an application’s branch misprediction rate

is highly correlated with the transition characteristics of the branch instructions.

The key idea behind this correlation is that, the higher the transition probability of a

branch instruction, the more difficult it is to predict its next direction and vice versa.

To model a certain BTR, a set of control instructions are chosen to be modeled

with high transition probabilities (frequent switching) and the remaining branch

instructions are are modeled to have very low transition probabilities (infrequent

switching activity). Similarly, Genesys can also model the transition probability

of individual branch instructions in a directly correlated fashion to achieve a target

branch misprediction rate (metric 7).

8.1.3 Memory-level Characteristics

This section describes metrics that affect the memory performance (data-

side) of applications.

a. Data footprint: The data footprint metric determines the range of data

addresses accessed by the synthetic application during its execution time. This is

important because it can determine performance of different levels of caches and

memory based on how large the footprint is with respect to the available cache size

and memory structure. It controls the size of the memory regions that are accessed

by the synthetic application.

b. Memory access regularity: This metric determines if the memory ac-
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cesses made by load/store instructions of an application should have regular or ir-

regular behavior. For irregular memory behavior, Genesys generates load/store in-

structions that access allocated and initialized memory regions based on a randomly

generated sequence. Regular memory behavior is achieved using additional metrics

(spatial-temporal locality or L1/L2 cache miss rate metrics) as described below.

c. Spatial and temporal locality: The principle of data locality and its im-

pact on application’s performance is widely recognized. Genesys models regular

data memory accesses using simple strided stream classes over fixed-size data ar-

rays, where strides are defined to be the difference between consecutive effective

addresses. Strides can be provided directly as an input to Genesys to control spa-

tial locality characteristics (bins representing strides from -1K to 1K in multiples

of 64B). Genesys also provides knobs to control the temporal locality (8 bins ex-

pressed as powers-of-two from 0 to 128) in the memory accesses. The temporal

locality metric controls the number of unique memory accesses between access to

the same memory location and affects the achieved cache miss rates as well. To-

gether, the stride and temporal locality bin values are used to generate the sequence

of memory addresses.

Genesys can also automatically estimate the strides (offsets) of the load/store

instructions based on the target data cache miss rate statistics. This approach is sim-

ilar to that adopted by Bell et al. [11]. The strides for a particular memory access

are determined first by matching the L1 hit rate of a load/store, followed by the

L2 hit rate. We generate a table that holds the correlation between L1/L2 cache

hit rates and the corresponding stride values to be used. We use the target L1/L2
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hit rate information along with this table to generate stride values of load and store

instructions. By treating all memory accesses as streams and working from a base

cache configuration, the memory access model is kept simple.

8.1.4 Genesys’s Workload Generation Methodology

The workload synthesis algorithm, based on the metrics discussed previ-

ously, is as follows:

1. Generate a random number in the interval [0, 1] and select a basic block based

on this number and the block’s access frequency.

2. The basic block’s size is calculated in order to satisfy the mean and standard

deviation of the target basic block size.

3. The basic block is populated with instructions based on the IMIX metrics,

while ensuring that the last instruction of the basic block is a branch instruc-

tion.

4. Every instruction is assigned a dependency distance (i.e., a previous instruc-

tion that it is dependent upon) in order to satisfy the dependency distance

criterion.

5. The load and store instructions are assigned a stride-offset based on the mem-

ory access model described in the previous section (regular or irregular).

6. An X86 test operation is used to set the condition codes that affect the out-

come of the conditional branch instruction at the end of each basic block. The
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“test” operand is controlled to achieve the target BTR metric.

7. The number of generated basic blocks is incremented.

8. If the target number of basic blocks have been generated, go to step 9, else

update the individual metric distributions and go back to step 1.

9. Available architected registers are assigned to each instruction while satisfy-

ing the data dependencies established in step 4.

10. The above instruction sequence is generated as a part of two-level nested

loops where the inner loop controls the application’s data footprint and the

outer loop controls the number of dynamic instructions (overall runtime).

Every static load or store instruction resets to the first element of the strided

memory streams and re-walks the entire stream in the outer loop iterations.

The code generator generates the instruction sequence using C-language

with embedded X86-based assembly instructions. An example code snippet is

shown in Figure 8.2. The code generator can be modified to generate instructions

for a different ISA. The code is encompassed inside a main header and malloc li-

brary calls are used to allocate memory for the data streams. Volatile directives are

used for each asm statement and the program is compiled using the lowest compiler

optimization level (-O0 with gcc) in order to prevent the compiler from optimizing

out the machine instructions.
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{ 
    _asm_ _volatile_("BBL1INS0:add %%ebx,%%ebx”) 
    _asm_ _volatile_("BBL1INS1:mov 0(%%r8),%%ecx”) 
    _asm_ _volatile_("BBL1INS2:add %%ebx,%%ebx”)    
    _asm_ _volatile_("BBL1INS3:mov 0(%%r14),%%ecx”) 
    _asm_ _volatile_("BBL1INS4:add %%ebx,%%ebx”)   
    _asm_ _volatile_("BBL1INS5:test $0,%%eax”) 
    _asm_ _volatile_("BBL1INS6:jz BBL2INS0“) 
} 

Figure 8.2: Example Synthetic Code Snippet

8.2 Evaluation

This section describes the experimental setup and results in detail.

8.2.1 Experimental Setup

All the experiments are conducted on Intel Xeon E5-2430 v2 server class

machines with Ivy-bridge micro-architecture based processing cores, three levels

of caches (1.5MB L2 and 15MB L3 cache) and 64 GB of main memory. The

Linux perf tool [53] is used for measuring the hardware performance of different

applications. Power consumption is monitored using Intel’s RAPL counters.

To show the efficacy of Genesys, the synthetic programs generated using

Genesys are compared with a program set comprised of benchmarks drawn from

several popular benchmarking suites (hereafter referred to as the REAL program

set). The REAL program set includes 70 standard benchmarks: 29 benchmarks

from the SPEC CPU2006 suite (using ref inputs), 20 benchmarks from MiBench, 10

benchmarks from MediaBench and 11 TPC-H queries. Details about the synthetic

programs created using Genesys (hereafter referred to as the GEN program sets)
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are provided in the following sections. Each GEN program’s size is restricted so

that each program can complete within 1 to 15 seconds on the target machine.

8.2.2 Results: State-space Coverage

This section shows how Genesys can be leveraged to automatically create

programs with different features leading to a wider coverage of the program state-

space. To do so, the program state-space coverage provided by the REAL program

set is compared against the GEN program set. For this study, the GEN set consists

of 500 synthetic programs created using Genesys. The GEN programs are uniquely

generated by using random combinations of individual metric values (chosen sys-

tematically within respective metric bounds). It takes roughly a few (∼5-20) sec-

onds to generate each GEN program and every program completes execution within

1 to 15 seconds on the target machine. Thus, the total run-time of all the GEN pro-

grams is roughly equal to the total run-time of the 70 programs from the REAL

program set due to the significantly longer run-times of several REAL benchmarks.

In order to compare the program state-space coverage achieved by either

program sets, a novel metric (SpreadRatio) is defined, which is defined as the ratio

of the area of the convex hull envelope of the REAL versus GEN program features.

The convex hull [9] of a set S of points in the Euclidean space is defined as the

smallest convex set that contains S. The convex hull of a set of points S in n dimen-

sions is the intersection of all convex sets containing S. For N points p1, ..., pN in

n-dimensions, the convex hull C is given by the expression:
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C ≡
N

∑
j=1

λ j p j : λ j ≥ 0 ∀ j and
N

∑
j=1

λ j = 1

Based on this definition of a convex hull, let CREAL represent the convex hull

of the points covered by the REAL program set and CGEN represent the convex hull

of the points covered by the GEN program set. Then, SpreadRatio can be defined

using the following expression:

SpreadRatio =
Area(CGEN)

Area(CREAL)

Next, the state-space coverage of the GEN and REAL programs is com-

pared using the SpreadRatio metric. To better demonstrate the degree of controlla-

bility provided by Genesys, the GEN and REAL programs are first compared using

subsets of performance characteristics, followed by using the entire set. Since the

number of metrics is large, it is difficult to visualize all the variables simultaneously

to draw any meaningful conclusions. Thus, statistical data analysis techniques are

used to simplify the comparison. Using a large number of correlated variables tends

to unduly overemphasize the importance of a particular property. Therefore, raw

data are first normalized to a unit normal distribution (mean = 0, standard deviation

= 1) and then pre-processed using Principal Component Analysis (PCA) [21]. PCA

is an effective statistical data analysis technique to reduce the dimensionality of a

data-set, while maintaining most of its original information. PCA transforms the

original variables into a set of uncorrelated “principal components” (PC’s). If sig-

nificant correlation exists between the original variables, then most of the original

information will be captured using just the top few PC’s.
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Figure 8.3: State-space Coverage of REAL and GEN Programs using (a)
Cache/memory Behavior - PC1 vs PC2 (b) Cache/memory Behavior - PC3 vs PC4
(c) TLB Behavior (d) Instruction-level Behavior (e) Control-flow Behavior (f) Over-
all Characteristics

The first set of experiments compare the memory subsystem performance

behavior of the GEN and REAL program sets based on the L1 Dcache, Icache, L2

and LLC misses per kilo instruction (MPKI) metrics. Figures 8.3a and 8.3b show
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the scatterplots of the top 4 principal components (PC1 vs PC2 and PC3 vs PC4),

respectively. It can be observed that applications from the REAL set do not stress

the instruction side performance much, and as a result, the Icache MPKI for the

REAL programs is mostly very low. Such behavior is different from the emerging

big-data and cloud applications’ behaviors, which have been shown to stress the

instruction side performance more heavily [67, 70]. Nevertheless, by controlling

Genesys’s I/D memory-side metrics, it is possible to create programs that stress

the instruction and data-side performance to varying degrees. Overall, the GEN

programs provide 25.4 times (SpreadRatio = 25.4) higher coverage area than the

REAL programs for the first two principal components and 12.9 times (SpreadRatio

= 12.9) higher coverage than REAL programs in the PC3 versus PC4 space.

Figure 8.3c compares the I/D TLB performance of the REAL and GEN pro-

grams. The x-axis corresponds to the ITLB MPKI whereas the y-axis corresponds

to the DTLB MPKI of the programs. Although the standard benchmarks provide

good coverage in terms of DTLB performance, but none of the REAL programs

stress the ITLB much, whereas the GEN programs provide extensive state-space

coverage in terms of both the instruction and data TLB performance. Overall, the

GEN program set provides 12.8 times higher coverage than the REAL program set

(SpreadRatio = 12.8).

The next set of experiments focuses on the instruction-level performance

characteristics (shown in Figure 8.3d), based on the overall IPC, µOps/instruction,

IMIX and ILP (given by dependency-driven pipeline stalls) metrics. Again, the

GEN programs provide 8.1 times broader state-space coverage as compared to the
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Table 8.2: Hardware Performance Features Used to Compare REAL and GEN Pro-
grams.

Performance Features
µOps/instruction FP Ops/instruction
branch/instruction branch miss/instruction
Icache MPKI Dcache MPKI
ITLB MPKI DTLB MPKI
L2 MPKI LLC MPKI

REAL programs for the instruction-level metrics.

The control-flow performance coverage of the REAL and GEN programs is

shown in Figure 8.3e. For this experiment, control-flow performance corresponds

to three metrics - the branch misprediction rate, average basic block size and per-

centage of branch instructions. It can be observed that the REAL programs have

much better branch performance coverage as compared to their cache and TLB per-

formance, but the GEN programs still outperform the REAL set by providing 2.4x

higher coverage (SpreadRatio = 2.4).

Figure 8.3f shows the state-space coverage provided by the REAL and GEN

programs in the PC1 versus PC2 space using all performance features shown in

Table 8.2 including IPC. Overall, GEN provides 4.5x higher state-space coverage

as compared to the REAL set using all the program features. It can be concluded

that Genesys’s methodology of controlling key low-level application metrics allows

it to easily generate programs with varied performance characteristics.
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8.3 Summary

This chapter presented Genesys, a novel workload generation framework

that enables the systematic generation of synthetic applications, providing a wider

coverage of program behavior state-space. Genesys allows the user to control a set

of key workload-specific characteristics using easy-to-use, programmable knobs.

Thus, Genesys enables generating synthetic applications targeting specific program

properties. In order to compare the state-space coverage provided by different sets

of applications, this chapter defined a novel metric called SpreadRatio that is based

on the area of the convex hull envelope surrounding the program points. It is demon-

strated that by using automatically generated program sets, it is possible to achieve

over 11 times higher state-space coverage than that provided by popular, standard

benchmarks such as SPEC CPU2006, MiBench, MediaBench and TPC-H.
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Chapter 9

Conclusion and Future Work

Fast and accurate design-space exploration is a critical requirement for en-

abling future hardware designs. Early computer design evaluation is performed us-

ing detailed performance models such as execution-driven simulators or RTL-based

models. Although accurate, such detailed performance modeling techniques suffer

from several challenges. First, several emerging big-data applications are often

complex targets to evaluate on early performance models as running similar appli-

cations requires handling their complex software layers, back-end databases and

third-party libraries, which are challenging (often impossible) to support on most

early performance models. Second, detailed performance models are significantly

slower than real hardware, which makes it difficult to analyze the complete execu-

tion characteristics of these long-running applications. Finally, effective modeling

techniques require access to either the application source code or traces. Unfortu-

nately, source code or exact traces of end-user workloads are often inaccessible due

to their proprietary nature. Thus, computer designers and researchers often find it

difficult to create optimal designs targeting end-user applications.

This dissertation focuses on developing techniques, which help computer

designers gain a better understanding of end-user workloads and improve the speed
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and efficiency of early performance evaluation of emerging applications and ar-

chitectures. These techniques rely on proxy benchmarking, i.e., replicating the

performance behavior of end-user applications using miniaturized synthetic proxy

benchmarks. These benchmarks then can be used for early computer design space

exploration without compromising the privileged nature of software/data, while sig-

nificantly reducing the simulation times. The following section summarizes the key

contributions made in this dissertation.

9.1 Summary

This work describes five techniques to improve proxy benchmark generation

for emerging workloads and architectures.

Poor memory system performance is a critical overall performance bottle-

neck for several applications. Designing optimal memory systems for improved

performance and energy efficiency requires computer architects to have a deep un-

derstanding of the memory access behavior of the end-user workloads. To facilitate

fast and efficient evaluation of futuristic memory hierarchies, this dissertation pro-

poses HALO, a hierarchical memory access locality modeling technique that can

statistically capture the spatial and temporal locality of applications, while incur-

ring less meta-data storage overhead. HALO discovers patterns by decomposing

an application’s memory accesses into a set of independent streams that are con-

strained to a smaller region of memory and capturing fine-grained access patterns

within localized regions using repeating stride transitions. This allows the represen-

tation of complex workloads through the composition of a set of smaller and sim-
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pler building blocks. Moreover, different programs have different locality behavior.

HALO exploits this observation to achieve higher meta-data storage efficiency by

capturing multi-level stride transitions, which are tailored to an application’s lo-

cality patterns. However, modeling locality within localized streams alone is not

sufficient to recreate the original application’s memory behavior. HALO also mod-

els how accesses to the individual localized streams are interleaved with respect to

each other by leveraging coarse-grained temporal locality tracking. HALO proxies

achieve over ∼96% accuracy in replicating performance of several emerging appli-

cations across different cache, prefetcher, TLB and DRAM memory configurations,

while outperforming state-of-the-art WEST and STM techniques.

Next, this dissertation extends the workload cloning approach GPUs. In the

last few years, GPUs have emerged as a highly popular computation platform for

applications beyond graphics. Programmers exploit these massively parallel archi-

tectures in diverse domains (e.g., linear algebra, bio-informatics, high performance

computing, etc.). To enable fast and efficient memory system exploration in GPUs,

this dissertation proposes, G-MAP, a novel proxy benchmark generation method-

ology and framework that statistically models the patterns in GPU application’s

memory access streams. G-MAP models the regularity in code-localized mem-

ory access patterns of GPU applications and parallelism in the GPU’s execution

model to create miniaturized memory traces or proxies. G-MAP proxies achieve

over 90% accuracy in replicating cache and memory performance of original GPU

applications across thousands of cache, prefetcher, memory design configurations,

while significantly reducing the simulation time and storage requirements.
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The next proposal is a system-level proxy benchmarking methodology, CAMP

for creating miniature proxy benchmarks that model both core performance and

memory locality of big-data applications. CAMP proxies are representative of

the performance of real-world big-data applications and yet converge to results

quickly and without any complex software-stack support. To create the system-level

proxy benchmarks, this dissertation analyzes the key drivers of big-data applica-

tion performance (e.g., larger code/data memory footprints, operating system, and

other run-time effects). Such effects are often not highly significant in traditional

desktop/general-purpose applications and thus, are not modeled by prior workload

cloning proposals. To model the core performance, CAMP improves upon existing

methods for generating proxy instruction streams by capturing and modeling the

instruction-level parallelism, instruction types, control-flow behavior, etc. CAMP

adds an improved memory locality profiling approach that captures both the spatial

and temporal locality of applications. Furthermore, CAMP leverages a novel proxy

generation and modeling/replay methodology that integrates the core and memory

locality models to create accurate system-level proxy benchmarks.

The next proposal, PerfProx is a system-level proxy benchmark generation

methodology that captures the key performance metrics affecting big-data applica-

tion performance using hardware performance counters and stochastically models

them to create miniaturized proxy benchmarks. The proposed performance counter

based application characterization and associated extrapolation into generic param-

eters for proxy code generation enables fast analysis (runs almost at native hardware

speeds, unlike prior workload cloning proposals) and proxy generation of complex,

162



long-running big-data applications with reasonable accuracy. The generated proxy

benchmarks replicate performance behavior of real-world cloud applications with-

out needing any back-end database/complex software stack support and thus, help

to overcome the challenges in benchmarking such workloads on early performance

models.

Finally, Genesys allows creating futuristic workloads with performance be-

havior that does not currently exist by systematically tweaking the program char-

acteristics, used as an input to the proxy generation framework. Genesys proxies

can cover anticipated code trends and can represent futuristic workloads before the

workloads even exist.

9.2 Future Work

While this dissertation makes significant contributions to improve proxy

benchmark generation methodologies, there are still opportunities for future work.

This section list possible future work.

While the proposed system-level proxy benchmark generation schemes model

aggregate performance of the end-user workloads, they do not capture dynamic

phase-level behavior of the workloads. Modeling fine-grain phase level behavior

can help to improve accuracy and fidelity of the generated proxies. The proposed

schmese can be extended to incorporate fine-grain phase behavior into the proxies.

The current proxy benchmarks capture the performance behavior of the tar-

get end-user applications, including effects such as data footprint, query type, con-
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figuration, input data-set, etc. If any of these parameters change in the original ap-

plication, a new proxy has to be generated accounting for the change in parameters

or configuration. It will be useful if such scenarios can be analyzed and the current

proxy generation methodology can be extended to yield scalable proxies or prox-

ies with programmable knobs. For example, with the proliferation of cloud-based

computing systems, applications are scaling to larger configurations. Different ap-

plications exhibit different scaling behavior with different hardware and software

configurations. The application scaling behavior can be investigated and these ef-

fects be incorporated to create scalable proxy applications.
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