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”I would rather have questions that can’t be answered than answers that can’t be
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SUMMARY

Machine learning algorithms especially Deep Neural Networks (DNNs) have revolu-

tionized the arena of computing in the last decade. DNNs along the with the computational

advancements also bring an unprecedented appetite for compute and parallel processing.

Computer architects have risen to challenge by creating novel custom architectures called

accelerators. However, given the ongoing rapid advancements in algorithmic development

accelerators architects are playing catch-up to churn out optimized designs each time

new algorithmic changes are published. It is also worth noting that the accelerator design

cycle is expensive. It requires multiple iteration of design space optimization and expert

knowledge of both digital design as well as domain knowledge of the workload itself. It

is therefore imperative to build scalable and �exible architectures which are adaptive to

work well for a variety of workloads. Moreover, it is also important to develop relevant

tools and design methodologies which lower the overheads incurred at design time such

that subsequent design iterations are fast and sustainable.

�is thesis takes a three pronged approach to address these problem and push the

frontiers for DNN accelerator design process. First, the thesis present the description of a

now popular cycle accurate DNN accelerator simulator. �is simulator is built with the

goal of obtaining detailed metrics as fast as possible. A detailed analytical model is also

presented in this thesis which enables the designer to understand the interactions of the

workload and architecture parameters. �e information from the model can be directly

used to prune the design search space to achieve faster convergence. Second, the thesis

details a couple of �exible yet scalable DNN accelerator architectures. Finally, this thesis

describes the use of machine learning to capture the design space of DNN accelerators and

train a model to predict optimum con�gurations when queried with workload parameters

and design constraints. �e novelty of this piece of work is that it systematically lays out

the formulation of traditional design optimization into a machine learning problem and

xxii



also describes the quality and components of a model which works well across various

architecture design tasks.
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CHAPTER 1

INTRODUCTION

�e pervasiveness of computing into our daily lives is irrefutably immense. It was only a

couple decades ago when a single computer would typically serve the needs of a household.

�ese days not only every person generally has a personal computers, but have smart-

phones, smart watches and other devices, which have computing power usually rivaling

the performance of the aforementioned PCs. �e breakneck advancements of computing

has changed the way we are entertained, shop, and even commute in the most parts of

the world. Among the many signi�cant strides that moved the world of computing as we

know it, some innovations stand out more than the others. In the last decade there have

been two fundamental advances which has made tremendous impact on the direction of

computer engineering research.

�e �rst is the development of machine learning algorithms. Over the last few years,

innovations in data science and machine learning has solved the problem like human

level image perception and planning, natural language processing, data mining etc. which

were thought to be impossible a few years ago. Deep neural networks are among the

most noteworthy, which are capable of capturing complex representation spaces owing

to their high dimensionality and learning capability using back-propagation algorithm.

For the uninitiated, these networks can learn the mapping between two spaces given

su�cient data proportional to the learnable parameters in the networks without any

explicit programming.

While data is one a�ribute of enabling DNNs to achieve tremendous feat, yet another

enabling factor contributing to the success is the rise of general purpose parallel processing

on GPUs. �e extensive parallelism and high computation demand of DNN training and

inference provided a clear mandate to engineer more performant and parallel computing
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hardware. Traditionally computing relied over the voltage and frequency scaling properties

of shrinking device sizes to extract both performance and e�ciency among the generations

of computers. However, at the beginning of the decade, the device sizes already reached

sub 10nm level, which led to lower yields and other physical constraints which diminished

the performance bene�ts the computer engineers traditionally depended on.

�is brings us to the second signi�cant advancement. As the hindrances encountered

from device scaling became clear, computer architects turned to building custom architec-

tures called accelerators to extract both performance and energy e�ciency for the DNN

algorithms. �e need for custom design lead to a Cambrian explosion in custom designed

DNN accelerator proposal from both academia or industry. For custom architecture design,

tight integration with the workload is the key to achieve highly performant yet e�cient

designs. However, this also becomes a problem when the nature of the workload changes.

Given the infancy of the �eld, there exist several challenges to ensure that the designs

process is systematic and e�ective to generate performant as well as energy e�cient

instances of DNN acceleration. Moreover, advances in the machine learning community

continue to build workloads that require more computation, have novel structures, and

demand signi�cantly di�erent optimization goals between generations. In this thesis, I

study the design space of custom DNN accelerators and describe architectures, tools, models,

and methodology to systematically design �exible yet scalable accelerators at the face of

evolving AI workloads. �e next few sections describe the contributions and the structure

of this thesis.

1.1 �esis Contribution

In this thesis we address the challenges of systematically studying the design space of

DNN accelerators and propose solutions to build �exible and scalable architectures which

can accommodate the new and upcoming networks with diverse computing pa�erns and

large computation demands. Figure 1.1 depicts the trifecta of directions that constitute the
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Chapter 4 Chapter 6

Chapter 3Chapter 5

Figure 1.1: �e three main directions of research which build up this thesis

content of the thesis. As custom architectures become the norm to extract the performance

as well as high e�ciency, be�er exploration tools are required which can be used for

rapid design optimization at minimum possible cost across the di�erent workloads and

implementation constraints. With access to fast and reliable tools, one can generate large

amount of design space exploration data, mapping di�erent implementation use cases

and workloads to optimal design points. As we gather this data, we can employ the

latest advancements in the machine learning algorithm to learn the optimization space

of custom architecture and predict the optimal design points for future implementation

or exploration tasks. As the �gure depicts, Chapter 5 describes the contributions in this

domain. �is set of learnt model in turn, make the design space exploration task even

faster and cheaper leading to invention of architectures which are capable of achieving

even higher e�ciencies. Chapter 4 and Chapter 6 describe two instances of accelerator

design which are in�uenced by the tools developed as a part of this work. �e following
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subsections provides a brief overview of the various solutions that this thesis proposes.

1.1.1 Systematic design decisions using analytical modeling and simulation

Chapter 2 describes the large variety of DNN accelerator architectures that have been

proposed over the years. �e various proposals touch and optimize of various aspects

of the architecture, like interconnect, memory hierarchy, data�ows, the structure of the

compute array and many other factors. While each of these components are important in

themselves, the success of overall architecture design depends on the synergistic design of

the individual components and the �t of the architecture and mapping strategy with the

workloads.

In Chapter 3, I chose the simplest possible structure of systolic arrays and create an

analytical model to capture the interaction of the workload parameters with the architec-

ture parameters. �e analytical model helps in optimizing the array design with respect

to the workloads dimensions. �e chapter also describes SCALE-Sim, a systolic array

based simulator which provides cycle accurate compute and memory access to generate

performance and e�ciency metrics. �e tool also provides metrics on interface behavior

of the simulated design on a system level.

1.1.2 Scalable and �exible DNN accelerator design

In this thesis I also present two designs which demonstrate building building �exible and

scalable accelerator design using the design principles laid out in Chapter 3. In Chapter 4,

I describe a �exible accelerator implementation on Xilinx FPGAs. �e presented design

is di�erent from existing FPGA implementation of DNN accelerators in several ways.

First, the accelerator design is composed of building blocks implemented using existing

DSP slices present in Xilinx FPGAs, which can be con�gured to work optimally for dense

matrix-matrix and matrix-vector operations. Unlike the traditional practice of using LUTs

in the con�guration fabric to implement computation units, using preexisting hard DSPs
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enables faster clock speeds and hence higher performance. Second the design exploits the

hardware cascades present in Xilinx FPGAs to provide con�gurable but dedicated links

among the DSPs to scale the compute capability at runtime while maintaining ASIC like

performance owing to the hard-wiring in the cascades.

�e design presented Chapter 6, demonstrates a case for �exible and scalable architec-

tures for ASIC based DNN acceleration. �e proposed architecture leverages the leanings

from Chapter 3 and depicts a recon�gurable systolic array based design, which can be

morphed into a collection of distributed arrays or a monolithic array depending upon the

�t for a workload.

1.1.3 Learning the accelerator design space using machine learning (ML)

�is thesis presents a comprehensive methodology and example of leveraging machine

learning for architecture design. To the best of my knowledge this thesis is the �rst to

propose and demonstrate learning the design space of custom architectures. Traditionally,

computer architecture focused on developing performant general purpose computer which

are programmable for a large variety of workloads. Finding optimal design points, although

a data driven decision making process, is conventionally manual and is dependent on

iterative simulation and evaluation of the various points in the design space. With the

advent of custom architectures, conventional techniques are no longer su�cient to �nd

the optimal con�gurations in a cost e�ective way since the solution space has become

diverse, complex, and in practical terms intractable to be e�ectively searched.

Figure 1.2 depicts a possible use-case for deploying learnt model for architecture

optimization replacing search. As the �gure depicts, there are two phases required to

enable a learnt model based system to work which we call, ”Development” and ”Production”.

�e deployment starts at the development stage, where a model is constructed and trained

on the optimal architecture and mapping prediction task using previously generated

simulation data, or data obtained from actual implementations. Once the training converges,

5



Training
( Back-propagation )

SCALE-Sim

Stored data from 
past simulations

Data from 
new workloads 

and 
cost models

Model

Trained
weights

Development Stage

Production Stage

Periodic 
updates

Workload Parameters

Computation units

Memory size

Design Constraints

Optimal Architecture 
and Mapping 
Parameters

Model
Power limit

Figure 1.2: Schematic of a reference implementation scenario for deployment of a learnt model for

aiding optimization of architecture and mapping parameters.

the learnt model is then deployed onto the production stage. It is in this stage where the

model helps architecture designers with the optimization queries. As Figure 1.2 shows,

in the production use case, the uses query the trained model with workload parameters,

design constraints, and additional information about the system. �e model then generates

with the optimal parameters by performing a single inference. Given a single machine

learning model inference is much faster than iterative search, the time and logistical of

design space exploration is signi�cantly reduced. While the production model serves

queries from the customers, the development model is continuously updated with new

training data to ensure that the distribution of design objectives learnt by the model is

expanded regularly. �e learnt weights from the development stage are used to periodically

update the production model to keep it abreast with the changing design landscape.
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Chapter 5 of the thesis details the formulation of the design space exploration problem

into a ML problem, describes model creation and dataset generation to facilitate learning.

Furthermore, in this thesis I perform both design aware, and design agnostic statistical

analysis to get insights into the optimization spaces of various architecture design tasks.

Furthermore, in Chapter 6, I show a speci�c use-case of learning the design and mapping

space of a recon�gurable accelerator. �e chapter describes AdaptNet, which is leaned

neural network that can predict the optimal con�guration and mapping to be used for a

speci�c workload during execution on our design. �e high accuracy of prediction, can be

faithfully used to bypass caching, or highly cost intensive online searching techniques. In

this chapter, I also advocate that due to the presence of the learned model, new class of

recon�gurable architectures can now be deployed by coupling a highly �exible substrate

with a con�guration recommender. �is thesis proposes the name Self Adaptive Recon�g-

urable Arrays or (SARA) for such designs, which were impossible to create without the

learnt model simply because of the overheads of searching for optimal con�gurations in

runtime.

1.2 �esis Impact

Honors. �e concept of using machine learning to capture the design space of DNN

accelerators and hence using the learned model to obtain the optimal con�guration by side

stepping traditional search mechanism is generally well appreciated in the community.

�e initial proposal of AIrchitect won a silver medal at ACM student research competition

(SRC) at ASPLOS 2019. Genesys[1] was also chosen as one of the �nalists at ACM SRC at

ASPLOS-2018.

Adoption and Follow on works. SCALE-Sim is a well received simulator used by

many academic and industry research labs. SCALE-Sim’s GitHub repository has about 225

stars and >100 forks. �e simulator has been cited more than 130 times on Google Scholar

since its release in 2018.
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Tutorials. �ree tutorial have been presented in top conferences (ISCA-2019, ASPLOS-

2021, ISCA-2021) where I and my colleagues informed the community on using SCALE-Sim

for their research and making contributions to the tools. �e tutorials were a�ended by

about 20 researchers in each iteration.

Book. �e concepts of scaling and systematic design methodologies have been adopted

in a couple of chapters in the synthesis lectures book titled, ”Data Orchestration in Deep

Learning Accelerators”[2] published in 2020.

1.3 �esis Statement

�is thesis demonstrates the development of ML assisted self-adaptive hardware architectures

for e�cient execution of evolving AI workloads

1.4 �esis Overview

As mentioned in the sections before, in this thesis, I discuss about the simulation and

analytical infrastructure, instances and design principles for constructing �exible and

scalable accelerators, and machine learning techniques to aid the design process of custom

architectures. �e rest of the thesis is organized as follows:

• Chapter 2 discusses the background information and the related works similar to the

topics discussed in this thesis. �is chapter is a summary of the existing literature.

• In Chapter 3, the thesis provides details on SCALE-Sim, which is a popular cycle

accurate systolic array based DNN accelerator simulator. �is chapter, also describes

and analytical model to understand the interactions of architecture parameters of the

compute array with the parameters of the workload for several mapping strategies.

Finally the utility of both the analytical and simulation tool is demonstrated by

conducting a study to systematically design DNN accelerators at scale.
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• �e next chapter, Chapter 4 demonstrates an instance of a DNN accelerator which

is both �exible and scalable, implemented on Xilinx VU37P FPGA. �e novelty of

the proposed design lies in the fact that it purely uses the hardware cascades and

interconnects already present in the FPGA to achieve high frequency operation,

close to Fmax of the FPGA. �e chapter describes, the use to SCALE-Sim to determine

the optimal mix of convolution and matrix-vector multiplication units for any given

workload to get the maximum performance.

• Chapter 5, introduces the concept of machine learning assisted accelerator design.

�is chapter presents a detailed study on learning the accelerator design space using

machine leaning and hence using the learned model to predict the optimal architec-

tural parameters when queried with workloads and design constraints. Several novel

concepts like formulating the traditional design optimization as ML problem, design

aware and statistical analysis of the design datasets are presented in the chapter

to provide thorough understanding of the design space and the possiblilty to learn

it. �e chapter also provides details about AIrchitect, a custom designed neural

network recommendation model, which shows promising performance of learning

the datasets and predicting the optimal design points for the case studies presented

in this chapter.

• In Chapter 6, we consolidate the knowledge from the works presented in the previous

chapters and demonstrate a �exible yet scalable recon�gurable accelerator can be

constructed. �e recon�gurable accelerator also incorporates a learnt machine

learning model to �nd the optimal con�guration of the accelerator at runtime for a

given workload without taking the assistance of the so�ware stack to search through

the large con�guration space. �e leanrt model and the �exible accelerator are

presented together as an instance of a new class of accelerators called Self Adaptive

Recon�gurable Accelerators or SARA.
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CHAPTER 2

BACKGROUND AND RELATEDWORKS

2.1 Background

2.1.1 Computation in Deep Neural Network

Neural network and Multi layer perceptron. An arti�cial neural network is a set of

mathematical operations which are inspired by the interconnection of physical neurons in

a biological organism. Figure 2.1 depicts the logical structure of the arti�cial neuron and

contrasts it with the biological counterpart. �e biological neuron depicted in Figure 2.1(a)

takes input signals from adjacent neurons through the dendrites. �ese signals in most

cases are electrical pulses, which are ampli�ed or a�enuated by ion channels present in

the connections between the neurons called synapses. �e neuron body accumulates the

input signals and generates an output electrical pulse based on speci�c �ring mechanisms.

�e output signal is sent out to neighbouring neurons through the axon.

Akin to the biological counterpart, the basic building block in an arti�cial neural

network is an arti�cial neuron which is depicted in Figure 2.1(b). �e arti�cial neuron

accepts the input vector which is weighted by each element of a weight vector. �e

weighted elements are �rst accumulated, and then passed via an activation function to

generate the �nal output element.

Neural networks are constructed by grouping several neurons together in layers and

then connecting the layers one a�er another. One of the simplest possible neural networks

is the Multi-Layer Perceptron (MLP). Figure 2.2(a) shows a simple MLP neural network

comprising of an input layer, and an output layer. Mathematically, the operations performed

in each layer is equivalent to a matrix vector multiplication. In this operation the output

vector is generated by multiplying the operand matrix with weights with the vector of

10



a4

a0
a1
a2
a3

w0
w1
w2
w3
w4

A
W

∑a i wi. ∑a i wi.f( )f( )

(a)

(b)

activation 
function

Output 
element

Input 
vector

Weights Dot 
product

Figure 2.1: (a)Schematic of biological neural adapted from [3], (b) Logical structure of an arti�cial

neuron

activations obtained from either the input or the output of the previous layer.

Convolution networks. Convolution neural networks are popular class of networks

which comprise of special Conv2D layers followed by fully connected layers found in

MLPs. �e Conv2D layers work by multiplying the elements of the various �lters with

elements from only a portion of the input matrices in a sliding window pa�ern. �e small

portion of the input matrix used at a time is called a receptive �eld, which is inspired by

the biological counterpart of the vision processing neural systems found in animals.

Figure 2.3(a) depicts an example convolution neural network and convolution layer.

Mathematically the operation in a Conv2D layer is equivalent to a matrix-matrix multipli-

cation operation. �e operand matrices involved in the operations are (a) a matrix obtained

by performing a Im2Col transformation of the input matrix, and (b) a matrix formed by

11



w0,0

w0,1
w0,2

w1,0

w1,1

w1,2

a0

a1

O0

O1

O2

a0

a1

w0,0

w0,1

w0,2

w1,0

w1,1

w1,2

O0

O1

O2

X =

(a) (b)

Figure 2.2: (a) Example of a simple MLP network with inputs, outputs, and weights (b) Equivalent

matrix-vector multiplication

unrolling the di�erent �lter matrices and concatenating them along the rows. Figure 2.3(b)

shows an example operand matrices obtained by Im2Col transformation of the input, and

the weight matrix.

Recurrent network computation. Recurrent neural networks (RNNs) are another

type of networks which bring in the notion of memory in to the networks. �e salient

feature in these networks is that unlike MLP or convolution networks the output generated

by subsequent layers are used as inputs to the previous layers. Mathematically however,

matrix-vector and matrix-matrix multiplications are equivalent to the operations performed

in an RNN. In this thesis we primarily focus on accelerating MLPs and CNNs instead of

RNNS.

2.2 Related Works

2.2.1 DNN Accelerator proposals

• Early Accelerator Proposals. �e massive parallelism and relatively simple com-

putation is a lucrative candidate for custom architecture implementation. Diannao

[4] is one of the �rst hardware accelerator implementation, which not only focused

on constructing e�cient hardware structures but also presents a primitive memory

hierarchy for the accelerator to extract the reuse of operands for CNNs and MLP

networks. ShiDiannao [5], demonstrates that a new class of smart sensors can be
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designed by creating highly power e�cient accelerators that can work directly on the

sensor data, bypassing the system memory hierarchy. Eyeriss [6] is one of the seminal

papers, which �rst systematically categorize the various data�ows that are used in

DNN acceleration and their respective roles in improving the reuse and consequently

the energy e�ciency of the accelerator execution. �is paper also introduces the row

stationary data�ow, which is one of the �rst demonstrations of so�ware-hardware

co-design to improve the energy e�ciency in DNN accelerators. Google’s TPU [7] is

a well known accelerator design which is one of the �rst ones to be coming from

the industry. �is large systolic array based accelerator architecture proposals �rst

discussed the nature of inference workloads encountered at a data-center scale at

the time and their implications in driving the design decisions. While the TPU opted

for a throughput optimized design, Brainwave [8] from Microso� demonstrated a

latency optimized design. �e Brainwave system is constructed by implementing

accelerator instances over multiple instances connected via data-center networks to

build a scaled-out system contributing to a single inference.

• Flexible Accelerators. �e high diversity of workload dimensions lead to a huge

divergence of optimal mapping and compute structures. �is has led to an justi�able

push towards design which can recon�gure or support multiple mapping strategies.

MAERI [9] is one of the early designs which employ a highly con�gurable intercon-

nect to create logical or virtual neurons, which is mapped onto a multiplier array to

accommodate various workload dimensions. �is design also implemented a adder

tree structure which can emulate adder trees of di�erent depths. While MAERI em-

ployed �exible substrate to accommodate for varying compute dimensions, Flex�ow

[10] proposed hardware structures to enable several mapping strategies. Zhang

et al [11] on the other hand, argue that the inherent �exibility of FPGAs can be

used to run designs tailored for individual networks rather than compromising on

e�ciency due to rigidity of ASIC based architectures. In their paper the authors
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propose an analytical optimizer, which generates the best micro-architecture for

CNN and MLP workloads. Fused Layer CNN Accelerator [12] is another example of

�exible accelerator design, which also uses FPGA based implementation. However,

the authors employ a layer fusion strategy to extract the maximum reuse out of the

input operands and generated activations to minimize o�-chip accesses.

• Accelerators Exploiting Sparsity. A curious artifact of CNN and other DNNs

using ReLU activation is that a signi�cant amount of inputs, weights and generated

activation values are either zero or close to zero. Furthermore, as the number of pa-

rameters grew in size regularization techniques lead to improved performance of the

network but also inserts more zero valued activations leading to sparse operand ma-

trices. Building accelerators which can bypass the redundant computation using zero

valued operands can signi�cantly improve the energy e�ciency and performance of

inference. EIE[13] is one of the �rst works to design accelerator hardware with spar-

sity in mind. �is design, implemented in FPGA, identi�ed the sparsity in the input

activations and scheduled only those computations with non-zero operands. SCNN

[14] from Nvidia is a well known design which takes a two step approach to exploit

the advantages of sparse operands. �e authors proposed to �rst construct tiles by

parsing the sparse operand matrices and hence use a dense accelerator substrate

with tracking structures to perform the computation for non-zero operands. Cam-

briconX [15], is one of the �rst sparse matrix-multiplication based DNN accelerator

which uses indexing structures in the hardware to remove redundant computation.

A follow on work by the same team, Cambricon-S [16] proposes improvements in

so�ware to reduce the irregularity of the generated sparse activations and hence

call for reducing complexity of the hardware indexing unit in the new accelerator

architecture. SIGMA [17], on the other hand is a recent proposal which uses highly

specialized interconnects to map sparse computation with irregular operand matrix

sizes at a large scale.
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• Acceleration at scale As the advances in machine learning research continue, more

sophisticated model with increasing number of parameters are being developed and

deployed in the recent years. Conventional accelerators struggle to provide adequate

hardware support for such workloads which has triggered requirements for new

designs which can perform e�cient computation at scale. DaDiannao [18] is perhaps

the �rst proposal which proposes a system comprised of interconnected accelerators

to target large network training and inference at scale. Simba [19] is a recent

scaled-out proposal from Nvidia, which demonstrate creation of an on-chip scaled

out processor, composed of DNN accelerators connected together using a silicon

interposer. Tangram [20] is a proposal from Stanford which also used Eyeriss like PEs

to construct a larger accelerator connected by a new interconnect structures. Several

new companies have recently been active in the building accelerators at scale. �e

most notable among them is probably Cerebras with their wafer scale processor [21].

Groq’s tensor streaming processor[22] example of monolithic accelerator working

at scale.

2.2.2 Simulation and Analytical Infrastructure for DNN accelerator Design

Over the course of past few years, there have been several simulation and analytical

model proposals which complement SCALE-Sim with analytical models and simulation

infrastructure, operating at various levels of details. Aladdin[23], is a tool which helps

estimate power, performance and silicon area of arbitrary accelerators. �e tool uses a

HLS-like methodology and uses the C-code of the workload to estimate the regions of

acceleration and hence the overhead of a potential accelerator design. Gem5-Aladdin[24]

integrates the tool with the popular CPU simulator GEM-5[25]. MAESTRO[26], is an

analytical cost model that provides pragmas to precisely describe the mapping of layers

of DNN workloads and uses this information to infer the accelerator architecture and

hence the various costs incurred. Marvel[27], extends MAESTRO’s primitives to �nd
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the optimal scheduling strategy such that the o� chip data movement cost is minimized.

dMazerunner[28] is yet another tool, which uses the loop nest representation of the

mapping space of DNN workloads to obtain the best mapping strategy by using clever

techniques to prune the search space. Interstellar[29], is a similar tool to obtain energy

e�cient mapping of DNN workloads by analyzing Halide’s [30] scheduling language.

STONNE[31] is an recent full functional cycle level simulator infrastructure which models

MAERI[9] and SIGMA[17] and can provide details of all execution steps of the workloads

described in PyTorch[32].

2.2.3 Machine learning for assisting system design

Finding the optimal system design parameters is a data driven process. Furthermore, the

size and complexity of design space is increasing at a pace such that traditional search

based methods are no longer practical to �nd the optimal design parameters in a cheap and

cost bounded manner. As a consequence, researchers have been exploring using machine

learning techniques to improve the quality and convergence time to search for the optima.

�e following paragraphs list a few recent works.

• ML for Architecture search: Apollo [33] is a recent work from Google, targeting

sample e�cient searching through the accelerator design space using reinforcement

learning. Gamma[34] and ConfuciuX[35] are similar ML based architecture mapping

and design space con�guration search methods which use genetic algorithm and

reinforcement learning (RL) respectively. AutoTVM[36] use ML model for cost

prediction to improve fast mapping search during compile time.

• ML for EDA: Recently there has been a signi�cant push toward automating place-

and-route using machine learning. Mirhoseni et al[37] use RL for task placement on

a heterogeneous system. Wang et al[38] use GCN and RL for automatic transistor

sizing. NVCell[39] is a RL based proposal from Nvidia to automate standard cell
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placement. Nautilus[40] uses genetic algorithm to improve FPGA place and route.

Kwon et al[41], use online tensor-based recommender systems to aid place and route

in chip design.
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CHAPTER 3

ANALYTICAL MODELING AND SIMULATION INFRASTRUCTURE FOR

SYSTEMATIC CHARACTERIZATION AND DNN ACCELERATORS

3.1 Introduction

DNN accelerators extract e�ciency and performance simultaneously by employing cus-

tomized optimization for target workloads and employing innovative structure which are

not available on a general purpose computing chip. �e cost of this customization however

is the risk of obsolescence when the nature of the workload changes signi�cantly.

Given the ever changing landscape of the deep learning and machine learning in

general, the risk of such obsolescence is o�en signi�cant. Finding new designs quickly

while minimizing cost is therefore a top requirement and requires in depth knowledge of

both the workload and its interplay with the architecture and mapping parameters. Any

infrastructure that can provided detailed information about the performance of various

designs within the changing landscape of workloads is therefore extremely valuable to

systematically explore the design space and �nd optimal implementations.

In this chapter, two such tools are presented. First the chapter details SCALE-Sim, which

is a cycle accurate simulation infrastructure for systolic array based DNN accelerators

(Section 3.2.3). SCALE-Sim is designed to provide cycle level details on both on-chip

and o�-chip transactions of operand and output elements, and also generates metrics

on performance, mapping, and e�ciency much faster that traditional RTL simulation.

�is chapter also presents the work performed by me and my colleagues on designing an

analytical framework to understand the performance and mapping of GEMM workloads

on a systolic array based accelerator (Section 3.3). �e merit of the analytical model is

that, the closed for equations help identify the most important architectural parameters
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Figure 3.1: Schematic showing the integration model of accelerator in a systems context

that need to be optimized prior to running a simulation. �is helps pruning the space for

design space exploration and help in faster convergence. Next in Section 3.4, we show the

utility and e�ectiveness of both the tools in a case study to identify strategies for scaling

DNN accelerators.

3.2 SCALE-Sim: Systolic Accelerator Simulator

SCALE-Sim is a cycle-accurate behavioural simulator that provides a publicly available

open-source modeling infrastructure for array-based DNN accelerators. SCALE-Sim en-

ables designers to quickly iterate over and validate their upcoming designs with respect to

the various optimization goals for their respective implementation points. In this section,

we �rst provide some background on systolic arrays and second, we describe our modeling

methodology.

3.2.1 Background: Systolic Arrays and Data�ows

Systolic arrays are a class of simple, elegant and energy-e�cient architectures for acceler-

ating general matrix multiplication (GEMM) operations in hardware. �ey appear in many
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academic and commercial DNN accelerator designs [42, 43, 44]. An overview of system

integration is shown in Figure 3.1

Compute. �e compute microarchitecture comprises several Multiply-and-Accumulate

(MAC) units (also known as Processing Elements, or PEs), connected in a tightly coupled

two dimensional mesh. Data is fed from the edges from SRAMs, which then propagates to

the elements within the same row (column) via unidirectional neighbour-to-neighbour

links. Each MAC unit stores the incoming data in the current cycle in an internal register

and then forwards the same data to the outgoing link in the next cycle. �is store and

forward behavior results in signi�cant savings in SRAM read bandwidth and can very

e�ectively exploit reuse opportunities provided by convolution/GEMM operations, making

it a popular choice for accelerator design. Note that this data movement and operand

reuse is achieved: (1) without generating or communicating any address data, and (2) only

using hard-wired local register-to-register inter-PE links, without any interconnect logic

or global wires. For these two reasons, the systolic array is extremely energy and area

e�cient.
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Memory. Systolic Arrays are typically fed by local linearly-addressed SRAMs on the

two edges of the array, with outputs collected along a third edge. �ese local SRAMs are

o�en double bu�ered and are backed by the next level of the memory hierarchy.

Data Reuse. A typical convolution can be viewed as a small �lter kernel being slid

over a given input matrix, with each overlap generating one output pixel. When the

convolution operation is formulated as successive dot-product operations, three reuse

pa�erns are immediately evident:

• Each convolution window uses the same �lter matrix, to generate pixels correspond-

ing to a given output channel.

• �e adjacent convolution windows share portions of the input matrix if the stride is

smaller than window dimension.

• To generate a output pixel in di�erent output channels, di�erent �lter matrices use

the same convolution window.

�ese reuses can be exploited via the data�ow or mapping of the DNN over the array.

Data�ow. �ere are three distinct strategies of mapping compute or data�ows onto the

systolic array named Output Stationary (OS), Weight Stationary (WS), and Input Stationary

(IS) [6] as shown in Figure 3.3. �e “stationarity” of a given data�ow is determined by the

tensor whose element is not moved (i.e. stationary) for the maximum duration of time

throughout the computation. Although many di�erent data�ows exist for spatial arrays,

we only consider true systolic data�ows that only use local communication.

�e OS data�ow depicted in Figure 3.3(a), therefore refers to the mapping where each

MAC units is responsible for all the computations required for a OFMAP pixel. All the

required operands are fed from the edges of the array, which are distributed to the MAC

processing elements (PE) using internal links to the arrays. �e partial sums are generated

and reduced within each MAC unit. Once all the MAC units in the array complete the

generation of output pixels assigned to itself, the peer to peer links are used to transfer
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the data out of the array. No computation takes place in the array during this movement.

An alternative high performance implementation using a separate data plane to move

generated output is also possible, however, it is costly to implement.

�e WS data�ow on the other hand uses a di�erent strategy as shown in Figure 3.3(b).

�e elements of the �lter matrix are pre�lled and stored into each PE prior to the start

of computation, such that all the elements of a given �lter are allocated along a column.

�e elements of the IFMAP matrix are then streamed in through the le� edge of the array,

and each PE generates one partial sum every cycle. �e generated partial sums are then

reduced across the rows, along each column in parallel to generated one OFMAP pixel (or

reduced sum) per column.

�e IS data�ow is similar to WS, with the di�erence being in the order of mapping.

Instead of pre-�lling the array with elements of the �lter matrix, elements of the IFMAP

matrix are stored in each PE, such that each column has the IFMAP elements needed

to generate a given OFMAP pixel. Figure 3.3(c) depicts the mapping. We describe these

data�ows in more detail in Section 3.3.2.

3.2.2 System Integration

We consider the typical o�oad model of accelerator integration in SCALE-Sim. We a�ach

the DNN accelerator to the system interconnect, using a slave interface on the accelerator,

as illustrated in Figure 3.1. �e CPU is the bus master which interacts with the accelerator

by writing task descriptors to memory-mapped registers inside the accelerator. When a

task is o�oaded to the accelerator, the CPU master can context switch to progress other

jobs, while the accelerator wakes up and starts computing, independently generating

its memory requests and side channel signals. When the computation has �nished, the

accelerator noti�es the CPU, which accesses the results from the accelerator internal

memory.

�us, the cost on the system performance for integrating an accelerator is the extra
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accesses on the system bus, which could be modelled as interface bandwidth requirement.

SCALE-Sim allows for modeling the main memory behavior by generating accurate read

and write bandwidths at the interface, which can then be fed into a DRAM simulator e.g.,

DRAM-Sim2[45].

3.2.3 Implementation

Internally, SCALE-Sim takes an inside-out implementation approach. Speci�cally, the

simulator assumes that the accelerator is always compute bound and the PEs are always

used to the maximum possible utilization - as dictated by the data�ow in use. With this

implementation model, the simulation in SCALE-Sim takes place in following steps.

• SCALE-Sim generates cycle accurate read addresses for elements required to be fed on

the top and le� edges of the array such that the PE array never stalls. �ese addresses

are e�ectively the SRAM read tra�c for �lter and input matrices, as dictated by the

data�ow. Given the reduction takes a deterministic number of cycles a�er the data

has been fed in, SCALE-Sim generates an output trace for the output matrix, which

essentially constitutes the SRAM write tra�c.

• SCALE-Sim parses the generated tra�c traces, to determine total runtime for compute

and data transfer to and from SRAM. �e data transfer time is essentially the cycle

count of the last output trace entry. �e SRAM trace also depicts the number of rows

and columns that have valid mapping in each cycle. �is information couples with

the data�ow is used to determine the utilization of the array, every cycle.

• In SCALE-Sim the elements of both the input operand matrices, and the generated

elements of the output matrix is serviced by dedicated SRAM bu�ers backed via a

double bu�ered mechanism, as shown in Figure 3.2. As the sizes of these bu�ers are

known from user inputs, SCALE-Sim parses the SRAM traces and determines the

time available to �ll these bu�ers such that no SRAM request is a miss. Using this
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Figure 3.4: Figure depicting the cycles obtained by RTL implementation and SCALE-Sim simulation

for varying array sizes under full utilization

interfaces SCALE-Sim generates a series of prefetch requests to SRAM which we call

the DRAM trace.

• �e DRAM traces are the used to estimate the interface bandwidth requirements for

the given workload and the provided architecture con�guration.

• �e trace data generated at the SRAM and the interface level is further parsed to

determine the total on-chip and o�-chip requests, compute e�ciency, and other high

level metrics.

3.2.4 Validation of the tool

We validated SCALE-Sim against an RTL implementation of a systolic array. Figure 3.4

depicts the cycles obtained when matrix multiplications are performed on varying arrays

sizes (X-axis) under full utilization with OS data�ow, from RTL implementation and SCALE-

Sim simulations. As depicted by the �gure the cycle counts obtained by both the methods

are in good agreement.
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Table 3.1: SCALE-Sim con�g description

Parameter Description

ArrayHeight Number of rows of the MAC systolic array

ArrayWidth Number of columns of the MAC systolic array

IfmapSRAMSz Size of the working set SRAM for IFMAP in KBytes

FilterSRAMSz Size of the working set SRAM for �lters in KBytes

OfmapSRAMSz Size of the working set SRAM for OFMAP in KBytes

IfmapO�set O�set to the generated addresses for IFMAP px

FilterO�set O�set to the generated addresses for �lter px

OfmapO�set O�set to the generated addresses for OFMAP px

DataFlow Data�ow for this run. Legal values are ’os’,’ws’, and ’is’

Topology Path to the topology �le

3.2.5 User Interface

Figure 3.2 depicts the inputs �les used by the simulator, the outputs that are generated.

SCALE-Sim takes two �les as input from the user: one is a hardware con�guration, and

the other is a neural network topology for the workload. �e con�guration �le contains

the user speci�cation for architectural parameters, like the array size, the memory size,

and the path to the topology �le. Table 3.1 depicts the complete list of parameters, which

are mostly self-explanatory. For layers such as fully-connected (i.e. matrix-vector), the

input parameters correspond to convolutions where the size of the �lters are same as that

of the IFMAP.

�e topology �le contains the layer topology dimensions for each of the layers in the

given neural network workload. �is is a comma-separated value (CSV) �le, with each row

listing all the required hyper-parameters for a given layer – Table 3.2 gives the complete

list of all the entries in a given row. SCALE-Sim parses the topology �le one line at a

time and simulates the execution of the layer. �is is a natural approach for traditional

neural networks which are primarily composed of a single path. However, modern DNNs

o�en contain “cells” that are composed of multiple convolution layers in parallel [46].

SCALE-Sim serializes the execution of such layers in the same order in which they are

listed in the topology �le.
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Table 3.2: SCALE-Sim Topology �le description

Parameter Description

Layer Name User de�ned tag

IFMAP Height Dimension of IFMAP matrix

IFMAP Width Dimension of IFMAP matrix

Filter Height Dimension of one Filter matrix

Filter Width Dimension of one Filter matrix

Channels Number of Input channels

Num Filter Number of Filter matrices. �is is also the number of OFMAP channels

Strides Strides in convolution
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Figure 3.5: Data Flow Mapping

SCALE-Sim generates two types of outputs. First is the cycle accurate traces for

SRAM and DRAM reads and writes. �e traces are also CSV �les, which list the cycle

and the addresses of data transferred in a given cycle. �e other type of output �les are

reports with aggregated metrics obtained by parsing information from the traces. �ese

include cycle counts, utilization, bandwidth requirements, total data transfers etc. �e

trace-based methodology is very easy to debug and highly-extensible to new analyses and

architectures.

3.3 Analytical model for runtime

In SCALE-Sim, all the simulated metrics including runtime are determined at the end

of a round of simulation. However running simulation for all possible data points in a

large search space is expensive and sometimes unnecessary. In this section we describe an
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Table 3.3: Spatio-Temporal Allocation of DNN Dimensions

Spatial Rows (SR) Spatial Columns (SC) Temporal (T )
Output Stationary No f map N f ilter Wconv
Weight Stationary Wconv N f ilter No f map
Input Stationary Wconv No f map N f ilter

N f ilter : Number of convolution �lters

No f map: Number of OFMAP pixels generated by �lter

Wconv : Number of partial sums generated per output pixels

e�ective analytical model for runtime, which accounts for the data movement pa�erns

simulated by SCALE-Sim. Please note however, the analytical model does not model the

memory accesses and bandwidth demand arising due to limited memory which is captured

by SCALE-Sim. We use this model to estimate costs and prune the search space for the

subsequent scalability study described in Section 3.4.

3.3.1 Mapping across Space and Time

In dense DNN computations, running di�erent types of layers generalize to matrix-matrix

multiplications of di�erent sizes. For systolic arrays, we consider the operand matrices of

dimensions SR×T and T ×SC respectively, where SR and SC are the spatial dimensions

along which computation is mapped, and T is the corresponding temporal dimension.

�ese matrices are obtained by projecting the original operand matrices into the available

spatio-temporal dimensions. For example, for multiplying matrices of size M×K and

K×N, the dimension M is mapped to SR, dimension N is mapped to SC and the dimension

K to T .

Figure 3.5 illustrates the mapping of a 2D convolution onto the three data�ows. Fig-

ure 3.5a shows the mapping corresponding to output stationary (OS) data�ow. �e �rst

operand matrix, with size SR×T , is a rearranged input feature map (IFMAP) matrix. Each

row consists of elements corresponding to one convolution window, while the number

of rows is the number of OFMAP pixels generated per �lter. �e second operand matrix

contains unrolled �lter elements, with each �lter unrolled along each column, resulting in
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a T ×SC matrix.

Figure 3.5b and Figure 3.5c depict the mapping for other two data�ows; Weight Sta-

tionary (WS) and Input Stationary (IS). For WS, the number of convolution windows maps

to SR, while SC is equal to the number of �lters. As seen in Section 3.2 the partial sums

for each OFMAP pixel are generated every subsequent cycle making the mapping along

the temporal dimension T equal to the number of OFMAP pixels generated. In the IS

data�ow however, the order and direction of feeding the IFMAP matrix and the �lter

matrices are interchanged. �is implies that the mapping along the SR and SC dimensions

for this data�ow is the same size as the convolution window and number of OFMAP pixels

generated per �lters respectively. While the temporal dimension T maps the number of

�lters. Table 3.3 summarizes these dimensions.

3.3.2 Runtime for Scale-Up

With the above abstraction of mapping in place, it is feasible to model the runtime for

various data�ows, under the assumption of either a restricted or unrestricted number of

compute elements. In our discussions we will only use multiply-and-accumulate (MAC)

units as the compute elements within the systolic array.

Runtime with unlimited MAC units

Given an unlimited amount of MAC units, the fastest execution for any data�ow is achieved

using the maximal array size of SR×SC. However, note that even though all the multipli-

cation operations are done in one cycle, the runtime needs to account for both the store

and forward nature of the array, and the existence of the temporal dimension T ( > 0).

Figure 3.6 shows the steps followed for moving data in the three data�ows introduced

in Section 3.2. Figure 3.6a depicts the steps when implementing the OS data�ow. As

mentioned before the IFMAP matrix is fed from the le� while the �lter elements are pushed

in from the top edge. To account for the store and forward nature of the arrays and match
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Figure 3.6: Schematic depicting steps to model runtime for data�ows in systolic array.

the data arrival time at all the PEs, the data distribution is skewed; the PE at the top le�

corner of the array receives both the operands at the �rst cycle, the PEs in the next column

and next row get their operands in the next cycles, their neighbours in the cycle a�er that

and so on. �e PE at the bo�om right corner of the array (marked in blue), is the last to

receive the operand data. It is easy to see that the cycle at which the �rst operands arrive

at this PE is SR +SC−2 (adding steps 1 , 2 and 3 ). In this data�ow, each PE receives

two operands per cycle and generates one OFMAP pixel value by in-place accumulation.

It takes T cycles to generate on output, which is equal to the number of elements in a

convolution window. �e generated outputs are taken out from the bo�om edge of the

array. While it is possible to take out the output along other edges as well, using the

bo�om edge is the fastest alternative. �e time required to completely drain the array

of the generated output is SR cycles a�er the PE at the right most corner has �nished

computation (step 4 ). �erefore, the total time taken for entire computation is,

τscaleup min = 2SR +SC +T −2 (3.1)

In Figure 3.6b we perform the same analysis for WS data�ow. Here, the �lter matrix is
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fed into the array from the top and is kept alive until the computations involving these

operands are complete. Skewing is not needed as no computation is taking place while the

�lters are being fed. �is takes SR cycles (step 1 ). Once the �lter elements are in place,

the elements of the IFMAP matrix are fed from the le� edge of the array. Each PE reads the

IFMAP operand, multiplies it with the stored weight and forwards the partial sum to the

PE in the neighbouring row for reduction. �e �rst data arrives at the last row a�er SC−1

cycles (step 2 ). �e IFMAP matrix is fed in one column at a time, therefore every column

in the systolic array receives T operands, one each cycle, corresponding to the number of

columns in the IFMAP matrix (step 3 ). Furthermore, for all the partial sums generated

reduction occurs across the rows, for each column. A�er the top row receives and operand

from the IFMAP, it takes SR−1 cycles to reduce (step 4 ). �erefore the array is drained

out of all partial sums, a�er reduction happens in the rightmost column. �e total runtime

therefore is,

τscaleup min = 2SR +SC +T −2

Using similar analysis and Figure 3.5c, we can show that the above expression holds true

for the IS data�ow as well. �us Equation 3.1 captures the runtime for all the data�ows in a

systolic array when the number of MAC units is in�nitely large

Runtime with limited MAC units

Having a large enough systolic array which can map all the compute at once is o�en

not practically feasible. Due to the large amount of computation compared to hardware

compute units, it is necessary to tile the workload into chunks. We term this practice as

folding where each of these chunks are called a fold1
. Folds can be generated by slicing the

compute along the SR and SC dimensions. When using a R×C array, the number of fold

1
�is is o�en also known as tiling
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along rows (FR) and columns (FC) are determined as follows.

FR = dSR/Re FC = dSC/Ce (3.2)

Figure 3.7 illustrates this.

Analysis similar to Section 3.3.2 can be used to express the time taken in each of these

folds as is given by the following equation, for all data�ows.

τF = 2R+C+T −2 (3.3)

Where R and C are the rows and columns of the systolic array and T is the temporal dimen-

sions. �e total runtime can therefore be expressed from Equation 3.2 and Equation 3.3 as

following.

τscaleup = (2R+C+T −2)dSR/RedSC/Ce (3.4)

�e above equation provides us with the insights on the factors a�ecting runtime. For

a given workload and array con�guration, choice of data�ow assigns the values for SR,

SC and T respectively, which could be selected to minimize τ . On the other hand if the

workload and data�ow is �xed, for a given number of MAC units, the optimal values of R

and C could be determined to reduce the runtime as well.

Equation 3.4 can be used to determine the optimal con�guration for a given matrix

by implementing search over the possible R and C values. For workloads with multiple

matrix operations, this model can be used as a cost model as depicted later in Section 3.4.2.

3.3.3 Optimal Partitioning for Scale-Out

In our previous analysis we have only considered a single array to study the a�ect of micro-

architectural and design parameters on runtime. Instead of creating a single monolithic

architecture with multiple PEs (i.e., scale-up), an alternative design choice is to employ
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multiple units of systolic arrays, each responsible for one partition of the output feature

map, to increase the available parallelism (i.e., scale-out) In this section we will model the

runtime of such systems.

�e scaled out con�guration introduces another set of parameters, as shown in Fig-

ure 3.8. Unlike in scale-up where all the MAC units are arranged in a R×C array, in

scaled-out con�guration, the MAC PEs are grouped into PR×PC systolic arrays, each with

a PE array of R×C.

Using this approach for a given number of partitions P=PR×PC, the e�ective workload

mapped for computation over each partition can be determined by,

S′R = dSR/PRe, S′C = dSC/PCe (3.5)

Within each array, we can use Equation 3.4 to decide the optimal aspect ratio (R×C)

for running the partitioned workload. Since the individual partitions execute in parallel,

the total runtime of the scaled-out system is simply the runtime of the slowest cluster

which can be determined by Equation 3.4 and Equation 3.5

τscaleout = (2R+C+T −2)dS′R/RedS′C/Ce (3.6)

34



Table 3.4: Matrix dimensions of our language model workloads. mapped to SR, SC, and T
Name SR T SC
GNMT0 128 4096 2048

GNMT1 320 4096 3072

GNMT2 1632 1024 36548

GNMT3 2048 32 4096

DB0 1024 50000 16

DB1 35 2560 4096

TF0 31999 84 1024

TF1 84 4096 1024

NCF0 2048 128 1

NCF1 256 2048 256

3.4 Analysis of Scaling

�e primary aim of scaling a hardware accelerator, is to improve the runtime of a given

workload. Since there are many ways of scaling a system, the �rst natural question to

ask is whether any one of the methods proves bene�cial over the others. To answer

this question, we computed runtime using the analytical model described in Section 3.3,

when using di�erent con�gurations of monolithic vs scaled out arrays, given the same

budget for MAC units. For workloads in our experiments, we used the convolution layers

in Resnet50 CNN [46] and a few representative layers from widely used contemporary

natural language processing models: GNMT[47], DeepSpeech2 [48], Transformer [49],

and neural collaborative �ltering [50]. �e matrix dimensions corresponding to these

workloads are detailed in Table 3.4

Search Space for Scale-up and Scale-out. Figure 3.9(a) provides the glimpse of the

search space associated with the problem at hand. Each marker in the �gure depicts a

design point for corresponding to �ve di�erent compute capabilities denoted by number

of MAC units. On the x axis we have all possible dimensions for a systolic array with these

mac units. �e y axis represents the partitioned con�gurations when scaling out. We limit

the smallest systolic dimensions to 8x8 to ensure we have a reasonable size arrays per

partition when scaling out. �e color of each point denotes the normalized stall free run
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Figure 3.9: (a) �e search space of all possible scale-up (monolithic) and scale-out (partitioned) con-

�gurations, with di�erent array sizes; the color represents runtime for TF0 layer of the Transformer

model, normalized to max runtime across con�gurations for a given array size. �e variation in

runtime and array utilization for all scaled-up con�gurations when running TF0 layer for (b) 214

MACs, (c) 216
MACs.
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time when TF0 is run using OS data�ow. Run times are normalized to the highest runtime

among all the con�gurations for a �xed number of MAC units.

E�ect of Aspect Ratio on Scale-up Array. From this chart we can get a �rst order

estimate of runtime variation between partitioned and monolithic con�gurations. We

observe that the highers runtimes are usually located near the points corresponding to

y value of 1×1, which represent the monolithic con�gurations. Figure 3.9(b-c) depicts

the various aspect ratio (Row:Column) con�gurations for monolithic arrays with 4096 and

16384 MAC units respectively. �e �rst observation is that, the di�erence in runtime for

optimum con�guration and others can vary by several orders of magnitude even when

the workload is the same, depending on the size of the array. In fact, with larger arrays

this di�erence is exacerbated. Second, the aspect ratio of the optimal con�guration is not

the same at di�erent performance points, necessitating the need to have a framework to

examine various con�gurations. When considering the array utilization, another interest-

ing trend arises. For con�gurations with low array utilization, the runtime of the layer is

high, which is expected. Also, runtime generally drops with array utilization. Interestingly,

when the array dimensions become signi�cantly rectangular, the e�ect of utilization is

less pronounced. In these con�gurations even though a high utilization is achieved, the

improvement in runtime is minimal. �is is due to the fact that the time to �ll in and take

out the data starts dominating, as captured in Equation 3.3.

Comparison of Best Runtime. Moving to the points up along the y-axis in Fig-

ure 3.9(a) show almost monotonic improvement in performance, depicting that partitioning

is always bene�cial. To further investigate this trend in Figure 3.10 we plot the stall free

runtimes corresponding to the fastest scaled out (monolithic) con�guration normalized to

the lowest runtime achieved among all the scaled-out (partitioned) con�gurations using

equal MAC units. Figure 3.10(a) plots the rations for �rst and last �ve convolution and fully

connected layers of Resnet50 CNN for di�erent number of MAC units. It can be observed

that monolithic con�gurations are sometimes signi�cantly slower (25x for CB2a 1 layer)
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Figure 3.10: Ratio of no stall runtimes obtained in best scaled-up array con�guration vs best

scaled-out (partitioned) con�guration for a few layers in (a) Resnet50 and (b) Language models, for

di�erent MAC units

that partitioned con�gurations, and never faster that the corresponding partitioned con-

�guration. Moreover, for a given layer, the relative slowdown tends to amplify when the

hardware is scaled. �is trend is also replicated in language models, which predominantly

use fully connected layers as seen in Figure 3.10(b). Here for 65536 MAC units the best

monolithic con�guration is 50x slower than the best partitioned con�gurations.

Note that since the runtimes involved in the above charts are stall free, the memory is

not involved in slowdown. �erefore, the root cause of this slowdown can be understood by

a closer look into the analytical model. First we should remember that in both monolithic

and partitioned con�gurations the amount of serial computation is equal assuming all

the MACs are utilized, or in other words the number of folds are equal. However from

Equation 3.4 we can see that the runtime per fold is directly proportional to the array

dimensions. Which explains the trend that the partitioned con�gurations are always faster.

Furthermore, the di�erence in runtime per layer is ampli�ed if the number of folds are

high, even when both the arrays are fully utilized and the di�erence comes from data

loading and unloading times. Also, utilizing the entire array in a monolithic con�guration,

howsoever �exible, is o�en not possible, as we can notice in Figure 3.9(b-c), which limits

the amount of available compute resources and thus, contributes further to the relative

slowdown.
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Figure 3.11: Trends for best possible stall free runtime and DRAM bandwidth requirements when

the number of partitions are increased from monolithic array in CBa 3 layer in Resnet50 for (a)

218
MAC units, (b) 216

MAC units, and (c) 214
MAC units; and TF0 layer in Transformer for (d) 218

MAC units, (e) 216
MAC units, and (f) 214

MAC units

3.4.1 Cost of scaling out

Observations from the experiments in the previous section seem to suggest that scaling out

is the best strategy to achieve the optimal runtime. However this choice involves paying

additional costs as we discuss below.

�e immediate cost of a partitioned design is the loss of spatial reuse. In a big systolic

array any element read from the memory is used by processing elements along a row or

column by forwarding it on the internal links of the array. Dividing up the array into

smaller parts reduces the number of rows, or columns, or both, resulting in drastic reduction

of this reuse opportunity. �is is then re�ected in terms of number of SRAM reads, data

replication, and the input bandwidth (BW) demand from the DRAM. �e loss of reuse

within the array over short wires also leads to longer traversals over an on-chip/o�-chip

network (depending on the location of the partitions) to distribute data to the di�erent

partitions and collecting outputs - which in turn can a�ect overall energy.

Runtime vs. DRAM BW Requirement. In Figure 3.11 we plot the DRAM BW

requirement and runtime for layer CBa 3 in Resnet-50 and layer TF0 in Transformer, as a

function of number of partitions, for given number of MAC units. For all the three cases

a total of 512KB of SRAM is allocated for IFMAP bu�er, 512KB for Filter bu�er, and 256
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Figure 3.12: Energy consumption in running (a) Layer CBa 3 from Resnet50 and (b) layer TB0

from Transformer, when scaling-up and scaling out with di�erent MAC units

KB for OFMAP bu�er. �is memory is evenly distributed among the partitions in case

of scaling out. �e BW numbers are obtained from our cycle accurate simulator when

running the output stationary data�ow. As the number of partitions increase, the runtime

goes down, however, BW requirements also rise due to loss of reuse originally provisioned

by the internal wires, and increased replication of the data among the partitions, bringing

down the e�ective memory capacity. �e sweet spot lies at the intersection of runtime

and bandwidth curves. When scaling to higher number of MAC units, it is interesting to

note that the BW requirement is o�en higher than traditional DRAM BW. For instance,

for both Resnet and Transformer layers with 218
MAC units, about 10 KB/cycle of DRAM

bandwidth is needed for stall free operation at the sweet spot.

Energy Consumption. In Figure 3.12 we study the e�ect of scaling out on energy.
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Figure 3.12(a) depicts the energy consumption to run layer CBa 3 of Resnet50 as the

number of partitions are increased for various MAC unit (barring the energy consumption

of interconnection network). Figure 3.12(b) captures the same information for Layer

TF0 for Transformer. For a given workload and hardware con�guration, the energy

consumption directly depends on the cycles MAC units have been active and the number

of accesses to SRAM and DRAM. �e counteracting e�ects of these factors can be observed

in Figure 3.11, therefore lays down an interesting trade-o� space. As the �gure depicts, for

lower number of MAC units (256, 1024 and 4096), the con�guration with minimum energy

is the monolithic con�guration. However with increase in number of MAC units, the

point of minimum energy moves towards the right of the chart, favouring more number of

partitions. On other words the energy saved in by stealing runtime from powering the

massive compute array is more signi�cant than the extra energy spent by the loss of reuse.

Furthermore, the bulkier the array, more the savings in compute to counteract the losses

in reuse, which explains the observed trend.

To summarize the data indicates scaling out is bene�cial for performance and with larger

MAC units is more energy e�cient that scaling up. However the cost paid is the extra

bandwidth requirement to keep compute units fed, which even at sweet spots are signi�cantly

higher than the best scaled-up con�guration for large MAC units.

3.4.2 Optimizing for multiple workloads

Any hardware accelerator should be performant for di�erent workloads. To �nd such

a globally optimized hardware accelerator, a global cost function must be minimized.

However, as Figure 3.9(a) depicts even for a single workload as the global cost function is

large and discontinuous. Optimally searching such a space for �nding the global minima

is out of the scope of this paper. Instead we propose a method to �nd reasonable pareto-

optimal points for a given set of workloads

Considering the runtime as cost, our analytical model from Sec. Section 3.3.2 and
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Figure 3.13: Total runtime loss vs. best con�guration for scale-up ie. aspect ratio (R:C).

Colors di�erentiate con�gurations ordered by runtime.

Section 3.3.3 or SCALE-Sim yields a runtime-optimal con�guration, ak = (S′C,S
′
R,R,C),

for each individual layer (i.e. workload wl = (SC,SR,T )). We then search among these

candidates for the globally optimized one, A. In case of runtime, the total runtime is

additive and thus it is calculated by summing the runtimes Tr of all workloads wl for each

candidate ak:

A = argminak ∑
wl

Tr(wl,ak)

As the number of candidates is limited, exhaustive search is feasible to �nd the optima.

In Figure 3.13 we plot the costs (runtime) of the various candidate con�gurations

normalized to the cost of the pareto-optimal con�guration obtained by the method men-

tioned above, for layers in Resnet50 and the language models mentioned in Table 3.4. In

Figure 3.14 the normalized costs for all locally optimal candidates for scale-out is depicted.

In both these cases we observe that the pareto optimal con�guration is up to 8x faster than

the locally optimal con�gurations. However, the second and third best con�gurations are

within 20% for smaller number of MAC in both scaled-up and scaled-out con�gurations.

However as the MACs increase the spread of runtimes and we see about 50% increase

in runtime for second and third best con�gurations, while slower con�guration taking

several factors more cycles to complete than the best con�guration.

3.5 Chapter Summary

�is chapter discusses the simulation and analytical tools for systematically characterizing

the systolic array based architecture design space. We �rst cover SCALE-Sim a cycle
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and aspect ratio (R:C). Colors di�erentiate con�gurations ordered by runtime.

accurate systolic array based DNN accelerator simulator, and describe the inputs and

outputs that are used and generated by the tool. �is chapter also provides details on

the scope of the tool in terms of designs, mappings, and the workloads that the tool can

work with. Next we develop and describe an analytical model for systolic array based

accelerators, which helps expose the various architectural and workload parameters that

e�ect the performance and e�ciency when GEMM workloads are executed on the systolic

array based accelerator.

�e utility of the analytical model is that, it allows designers to statically identify

the key architectural parameters that contribute the most for performance and energy

e�ciency for a given workload before any simulations are run. �is helps prune the

search space for the simulation runs to �nd the optimal parameter values. �e SCALE-Sim

simulator on the other hand, provides plethora of �ne grained execution information

without explicit functional simulation, saving signi�cant time per simulation. �e cycle

accurate traces generated by the tool also helps in �ne tuning the design of system level

integration. Finally, in this chapter we demonstrate the utility and convenience of the

tools by performing a study to �nd the optimal accelerator design at scale.
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CHAPTER 4

INTERCONNECT AWARE SCALABLE DNN ACCELERATOR

IMPLEMENTATION USING HARDWARE CASCADES IN XILINX FPGAS

Note: �e work and materials presented in this chapter has been developed in collaboration

with Dr. Nachiket Kapre and his group at University of Waterloo.

4.1 Introduction

In the previous chapter (Chapter 3), the discussion was focused on building scalable

accelerators from an analytical perspective. One important observation presented in the

chapter is that various array con�gurations are optimal for various layers of the workload

(Section 3.4). Traditionally ASIC based accelerator design is optimized for the common case

with some or no recon�gurability available to accommodate for di�erent workloads. An

alternative approach to counter this limitation is to implement the accelerator design on

an FPGA such that dynamic recon�guration is a�ainable by either exploiting the dynamic

recon�gurability of the interconnect or the logic fabric itself. �e penalty of this approach

however is the compromise in clock frequency which is a natural consequence of emulated

logic.

In this chapter, I describe a design for scalable accelerator implementation on Xilinx

VU37P FPGA, which is the work performed by me and my collaborators. �is work

circumvents the limitations of emulated fabric of FPGAs by constructing a con�gurable

accelerator using hard DSP48 and memory cascades already present in Xilinx Ultrascale+

FPGAs. Figure 4.1 depict the schematics of UltraRAM (URAM), BlockRAM (BRAM), and

the DSP48 block interconnected in hardware cascades. In this work we demonstrate the

construction of compute units for computation and e�cient data reuse for convolution and

matrix-vector operation using the cascaded DSP and memory units. �e entire accelerator
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Figure 4.1: High level view of cascades connections between DSP48, RAMB18, and URAM288

blocks

is then constructed by augmenting these units with each other as described in Section 4.3.

�e �exibility of an FPGA allows us to determine the ratio of area to be allocated to

convolution and matrix-vector multiplication unit during deployment for a given workload,

thus enabling tailored acceleration. On the other hand, using only the hard logic and

interconnect structures on the FPGA allows us to achieve high frequency, close to the max

frequency of the board as depicted in Table 4.2.
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(a) DSP48 Cascade (891MHz) (b) RAMB 18 Cascade (825MHz) (c) URAM288 Cascade (650MHz)

Figure 4.2: Hard cascades structures embedded in Xilinx hard blocks

4
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4.2 Background

4.2.1 Dedicated Cascade Interconnect in Xilinx Ultrascale FPGAs

�e Xilinx UltraScale + device family , integrates thousands of hard resources such as DSP

and RAM blocks in a columnar arrangement. We enumerate the salient features of the

di�erent blocks below:

1. DSP48(Figure 4.2(a)): �ese components primarily support arithmetic integer op-

erations including 27x18 multiplication, and 48b accumulation. A unique feature

of the Xilinx DSPs is that they expose con�gurability within the DSP block to the

FPGA logic fabric for runtime control. A developer may not only choose the kind of

operation being performed in the DSP block, but also change data routing and data

movement pathways within the DSP. �e key feature of the DSP48 blocks we wish

to exploit in this paper is the ability of multiple DSP blocks to cascade together in a

chain-like con�guration. �is is supported either for performing accumulation of a

series of partial products (adder cascade), or for permi�ing e�cient data reuse for

certain inputs (input cascade). While the adder cascade is programmable dynamically,

the input cascade is only statically con�gured.

2. RAMB18 ( Figure 4.2(b)) : Modem FPGAs provide access to thousands of small

distributed on-chip memories that have con�gurable port widths, and other statically

con�gurable operating modes. A particularly unique feature of the Xilinx UltraScale

FPGAs is the presence of nearest-neighbor, dynamically cascade-able connections

for the two data ports in the same direction as the DSP cascades (uphill). �is allows

the developer to construct deeper memory structures, cascaded FIFOs, and other

user-con�gurable data�ow pa�erns. �e multiplexers controlling data�ow are only

available on the data ports.
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3. URAM288 ( Figure 4.2(c)) : UltraScale + FPGAs introduced higher density SRAM

blocks with 288 KB capacity that sacri�ce port width �exibility for lower cost. While

the port aspect ratios are not programmable, there is still a column-spanning cascade

network for the data ports along with address. �is allows the developer to address

any location in any URAM block in a column with ease. In contrast to BRAM cascades,

the URAM cascade network separates the read and write ports into independent

cascades. Importantly, it provides cascade-ability for data, address, as well as control

signals.

4.3 High-Frequency FPGA Cascades

�e architecture of FPGA-based ML accelerator in this paper exploits (1) the resource

balance constraints of the device, and (2) unique cascade interconnect features of the

UltraScale + family. In this section, we �rst discuss the building blocks for Convolution

and Matrix-Vector multiplication blocks and show how to map these over the cascades

to create repeating tiles that balance capacity, bandwidth, and precision. A�er that, we

provide an overview of the design space of possible implementations. Pooling operations

are mapped onto the same resources as the Convolution engines, while ReLU so�max

operations are provided as by passable operators prior to data commit.

4.3.1 Building Block: Convolution

We present a weight-stationary implementation of convolution that takes advantage of data

reuse pa�erns in convolution without transforming it to memory-hungry matrix-matrix

operations as discussed earlier.

For our accelerator template, shown in Figure 4.3 , we take a 3×3 convolution and

parallelize the inner convolution loops across a series of nine DSP48 blocks, four BRAMs,

and two URAMs. �e nine multiplications and eight additions are mapped to the nine DSPs

in a sequential chain fashion. Each DSP48 computes the result of multiplying a weight
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Figure 4.3: Design of a 3×3 convolution block. DSPs con�gured in SIMD=2 mode, a set of 8bit

weights are shi�ed into the B cascade. One stream of 2×8b = 16b data streamed in B cascades

from di�erent rows. BRAM cascades also con�gured to exploit row reuse

Figure 4.4: �e state of the DSP48 blocks in steady operation for 1×3 �lter slice using 3 DSP48

units.

with a corresponding input value and computes the partial sum of products. We operate

the DSP in a SIMD = 2 mode, i.e., we con�gure the 16b multiply and add datapath into

two parallel 8b operations to enhance throughput. �e DSP 48P cascade (Figure 4.2(a)) is

used to accumulate the result of nine multiplication results.

We show snapshots of the internal DSP48 state in Figure 4.4 a�er cycle 7, 8 and 9. In

the �rst six cycles, we initialize the pipelines from their empty state. We pipeline output

of each multiply and add operation and orchestrate the input pixel shi�ing using a 2-stage

pipeline to align data for systolic operation. �e nine weights of a kernel are loaded into the

B cascade chain of the DSP48 block and locked in place. �e kernel BRAM store multiple

sets of kernel weights that are accessed infrequently. �e inputs are streamed over the A
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Figure 4.5: Data movement between URAM and BRAM to support 3× 3 convolution while

exploiting data reuse

chain of the DSP48 blocks and split into three segments of length three. Using systolic

pipeline mode of the DSP48 input chains, we are able to stream in a row and a�er an initial

latency generate a stream of output pixels.

Each segment is fed by a single BRAM thereby requiring three BRAMs to stream row

pixels into the DSP48 chain. We achieve input row data reuse by copying the row data into

the next BRAM as its been read out. �us, in double- bu�ered fashion, the row data stages

its way through the three BRAMs feeding into the three A segments. �is is illustrated

via snapshots of the row BRAMs in Figure 4.5 . �ree rows are fed in parallel to the

Convolution Block while simultaneously being shi�ed into the next BRAM via the hard

cascades. New rows are streamed from the URAM and one row is updated in the output

URAM.

4.3.2 Building Block: Matrix-Vector Multiply

Unlike convolution, matrix-vector computations have low arithmetic intensity and require

blocking to support diverging problem sizes across layers of the network.

Our accelerator design, shown in Figure 4.6 , parallelizes the computation across a

series of nine DSP48 blocks. �e multiply-accumulate P cascade chain is identical to the

one used in the convolution block with the exception of SIMD =1 mode con�guration.
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Figure 4.6: Design of a Length-9 dot product unit that can perform URAM-capacity-limited

matrix-vector multiplications. �e DSP-48 chain is con�gured with SIMD=1 mode to perform

matrix-vector product of 8b inputs. A chain of 9 DSPS is con�gured to perform length-9 dot

products. URAM distributes 9 chunks of 8b values from the matrix in a row-wise fashion. �e bank

of 9 BRAMs distributes 8b values.

Nine BRAMs feed 8b data to the adjacent DSP48 blocks to provide the vector input. �e

URAMs support 72b port widths, which are sliced across the nine DSP48s to distribute the

matrix entries. �e �nal result is accumulated in the result BRAM. �e result is distributed

across the FPGA via BRAM cascades so the output vector can be fanned out in preparation

for the next computation.

4.3.3 Scaling And Tiling

�e �nal FPGA organization that uses these building blocks for tiling must consider the

unique DSP-BRAM-URAM capacity and bandwidth balance available on the UltraScale +

device family. We must also consider the deep network architecture as layer connectivity

must be considered to ensure data movement between layers in handled properly. �e Xil-

inx VU37P FPGA enforces a resource balance of 1 URAM288, 4.2 BRAM18s, and 9.4 DSP48s.

Additionally the URAM can supply 72b data, while the RAMB18s can supply 18b data in

True Dual Port (TDP) mode. �e DSP48 blocks can consume inputs to feed the 27x18b

multiplier and can be con�gured in SIMD =2 mode to compute two 8x8 multiplications

with a common input.
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Figure 4.7: Repeating tiles of the ML accelerator that obey Xilinx VU37P resource, capacity

bandwidth constraints: Two Convolution tiles sharing the weight memory, while 4 tiles of Matrix-

Vector multiplication block share the vector RAM

We design repeating tiles to satisfy the resource-balance, bandwidth, and precision

constraints of the FPGA device:

1. �e Convolution Tile: As shown in Figure 4.7(a) , each URAM supplies input

channel data to two convolution blocks instead of one. �e URAM has enough

bandwidth to satisfy the needs of both blocks and helps create a repeating tile with 2

URAMs, 8 BRAMs, and 18 DSPs which is well within the VU37P balance of 2 URAMs,

8.4 BRAMs, and 18.8 DSPs. In addition, the URAM read/write cascades are employed

to move the input channels across the di�erent convolution tiles. �is is necessary

to support the all-to- all communication pa�ern inherent in an implementation of

a convolution layer - here, each input channel convolves with a unique kernel for

each output channel combination. We stream the input channel into a convolution

block to update a particular output channel which is resident in the output URAM

of that block. Simultaneously, the input channel is the shi�ed into the next URAM

for the next output channel computation using the dedicated URAM cascade wiring.
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�is all-to-all pa�ern is thus implemented by shi�ing data along a ring con�gured

out of the URAM cascade structures.

2. Matrix-VectorMultiplication Tile: In Figure 4.7(b) , we see that, we again need to

generate a resource, bandwidth, and precision aware repeating tile. In this scenario,

each URAM with its 72b port distributes matrix data to nine DSP48s in 8b chunks.

We con�gure nine BRAMs to supply 8b vector data in parallel to the nine DSP48

blocks. Since the vector is common across all dot product evaluations, we fanout

each BRAM output to the di�erent copies of the Matrix- Vector multiplication blocks.

�us, each repeating tile has 4 URAMs, 9 BRAMs (input )+4 BRAMs (output), 36

DSP48s which is well within the VU37P resource balance of 4 URAMs, 16.8 BRAMs,

and 37.6 DSPs. If multiple FC layers are to be sequenced together, the resulting

partial vector outputs stored in the output BRAMs are then shi�ed in a ring-like

fashion across the multiple tiles to replicate the output vector across all tiles. �is

will the allow the next FC layer computation to proceed in an identical fashion.

4.3.4 System Design Strategy

Finally, we determine the use of Space-Division multiplexing as the high-level paralleliza-

tion strategy for supporting the di�erent layer con�gurations on the same FPGA. We

can partition the FPGA statically into two regions: one for convolutions, and another for

matrix-vector multiplication. We can calibrate the balance based on the speci�c require-

ments of the deep network architecture (GoogLeNet splits across 80% convolution, and

20% matrix multiplication). To limit resource idling at the cost of inference latency, we (1)

replicate the design to evaluate multiple images in parallel, or (2) decompose the FPGA into

sub-regions devoted to a subset of layers of a CNN. Unlike the Xilinx SuperTile , overlay,

our design generalizes to a range of benchmarks beyond GoogLeNet. Recon�guration was

ruled out due to an exorbitant 140 ms of programming time [51]
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Table 4.1: MLPerf and GoogLeNet benchmark characteristics.

Topology Operation Count Storage (bytes)

(MLPerf) All Conv MM ∑Wts. Activ.

AlphaGoZero 352M 352M 353K 1.5M 92K

DeepSpeech2 1.7G 1.7G 74K 355K 6.5M

FasterRCNN 3.5G 1.6G 1.8G 13M 802K

NCF 11M 0 11M 11M 138K

Resnet50 3.4G 1.6G 1.8G 25M 802K

Sentimental 210M 0 210M 172K 30.7M

Transformer 113M 35M 78M 77M 4096

GoogLeNet 1.3G 1.3G 46M 6.8M 200K

4.3.5 Overall FPGA Architecture

�e Xilinx VU37P FPGA supports HBM interfaces with 32× AXI ports with 256b 450

MHz rates feeding into the FPGA core. �is is used for initial loading of the on- chip

memory contents and is not needed therea�er for all benchmarks (except Transformer, see

Table 4.1 later) as the weights and worst-case activation state is <35 MB. It also includes

960 URAM288 blocks, 9024 DSP48 slices, and 4032 RAMB18k blocks. Our architecture can

support 960 computing blocks con�gured as 480 3×3 Convolution tiles, or 240 Length-9

Matrix-Vector Multiplication tiles. �e Convolution tiles perform two 3×3 convolutions

across 18 DSP48 blocks con�gured in SIMD = 2 mode thereby processing 36 8b× 8b

multiplications and 36 24b accumulations per cycle. �e Matrix-Vector Multiplication tile

can process four dot products of length 9 to yield a throughput of 36 8b×8b multiplications

and 36 48b accumulations per cycle.

4.4 Methodology

4.4.1 FPGA Mapping

We describe our designs directly in RTL component-level instantiations of DSP48, RAMB18,

and URAM288 blocks and associated controllers for orchestrating data movement and
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control �ow for convolutions and matrix-vector multiplication. We use Vivado 2018.2 for

our experiments and use a tight 1 ns timing constraint for the CAD tools. We generate

explicit physical location mapping for the DSP, and RAM components, and supply cus-

tomizable pipelining to enforce the high-frequency design constraint. We measure the

resulting frequency of the mapped design, and interconnect utilization metrics to quantify

the extent of wiring reduction. We map our designs to the Xilinx UltraScale + VU37P

FPGA XCVU37p-3.

4.4.2 Performance Analysis Of MLPerf Benchmarks

We build a cycle-accurate model of our design using an open-source CNN accelerator

simulator from ARM called SCALE-Sim . We model our system as a 9×1920 systolic array

for Convolution and 9×960 array for Matrix-Vector Multiplication. Each grouping of 9

DSP48s in each chain are modeled as ID systolic chains. We are able to model a variety of

data�ows including the “weight-stationary” and “input-stationary” models for our design.

For convolutions, our modeling framework includes support for parallelization of partial

sum generation for an output channel. �is feature can be added to our RTL design with a

minor modi�cation requiring an adder chain across multiple convolution blocks.

We run DNNs from MLPerf to evaluate the performance of our cascade design along

with GoogLeNet. We validate the cycle counts for various layers in GoogLeNet against

that reported by our RTL simulation and SCALE-Sim runs. In Table 4.1 , we tabulate the

peak memory usage footprint of MLPerf workloads that includes sum of all weights (�lters

and matrices) as well the worst-case activation layer storage costs. With the exception of

Transformer benchmark, we never exceed the 35 MB capacity of the 960 URAMs on the

VU37P.

55



Figure 4.8: Histogram of congestion of routes for full-chip Convolution and Matrix-Vector

multiplication hardware

4.5 Evaluation

We now discuss the implementation results of our interconnect-aware mapping of ML

problems on Xilinx UltraScale + VU37P FPGA. We �rst highlight the frequency and

utilization of our proposed cascade design against one where the data movement is directly

mapped over the so� fabric instead along with related work. We then discuss performance

results for the MLPerf benchmark set for our platform and use GoogLeNet benchmark for

comparison against Xilinx SuperTile.
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Table 4.2: Resource and Frequency Trends for Convolution and Matrix-Multiplication blocks, tiles, and full-chip layouts

Design Size LUTs FFs Clk (ns) Net Util. %

Fabric Cascade % Fabric Cascade % Fabric Cascade % Fabric Cascade %

Convolution Block 325 327 0% 1.3K 1K 30% 0.9 0.9 0% 0.01 0.01 0%

Tile (2 blocks) 424 435 -2% 1.9K 1.5K 26% 0.9 1 -10% 0.02 0.02 0%

Full Chip 20.9K 21.1K -1% 95.3K 71.2K 32% 1.4 1.4 0% 12.8 9.6 33%

Matrix-Vector Block 98 98 0% 775 688 12% 1 0.9 10% 0.01 0.01 0%

Multiplication Tile (4 blocks) 375 374 0% 2.3K 1.9K 21% 1.1 0.9 22% 0.04 0.05 -8%

Full Chip 90.2K 90.2K 0% 56.8K 46.6K 21% 1.5 1.3 15% 9.3 8 16%

5
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Figure 4.9: Full chip VU37P layout of Convolution and Matrix-Vector multiplication hardware

4.5.1 Frequency Trends

In Table 4.2, we show the LUT and FF cost of the various design con�gurations along

with frequency and interconnect utilization data. As expected, our careful bo�om-up

design methodology delivers high performance outcomes with the worst clock period of

1.5 ns. When considering the use of cascaded interconnect structures we observe a 15%

reduction in clock period and 20–30% reduction in FF use. Convolution designs do not

show much clock frequency improvements as our designs are extensively pipelined even

without cascading features. A key measurement is the interconnect utilization drop of

16–33%. �is is directly a�ributable to the use of cascade rather than general purpose

interconnect for data movement.

We show the e�ect of cascading on network congestion through the histogram plots

in Figure 4.8 . It is clear that the cascaded design uses fewer congested routes than the

non-cascaded design. �is gap is stark for Convolution design with as many as 20% more

routes in the lowest congestion bin. At the far end of the spectrum in the highly congested

bins, we have 5–10× fewer routes for the cascaded design con�guration.

We show chip-spanning FPGA layouts of our Convolution and Matrix-Vector Multipli-

58



cation designs in Figure 4.9 . �e regularity of the connectivity, and the use of nearest-

neighbour cascade resources are visible in the layout. Complete FPGA mapping takes

6–7 hours on Vivado 2018.2 for these designs and is able to get close to the timing target

of a ns. �is easily outperforms the 250 MHz operating frequency of Brainwave design.

Our implementation frequency is limited purely by the hard resource constraints than our

design architecture. We ran an experiment by removing the URAM operations from our

netlist and found the peak frequency achievable is 800900 MHz in agreement with the

limits of the DSP and BRAM components.

When compared to related work, our 650 MHz clock is within 70 MHz of the state-of-

the-art 720 MHz Xilinx SuperTile [52, 53] design, and much faster than other contemporary

designs. While Xilinx SuperTile only uses 56% of the DSP48 blocks, we use 95% of our

DSP48 resources delivering an e�ective throughput that is
100%
56% ×

650MHz
720MHz = 1.6× be�er.

Brainwave operates between 225–500 MHz on the Stratix V-Stratix 10 silicon and is

constrained by the memory controller interfacing speeds. In contrast, we operate like

SuperTile by keeping weights and activations fully on-chip in URAM288s and loading only

once at the start.

4.5.2 Performance Trends

First, we tabulate the inference latency and throughput results in Table 4.3. We see runtimes

< 2ms across all benchmarks in the MLPerf set. In particular, we highlight the runtime of

GoogLeNet at 0.4 ms which outperforms the 3.3 ms latency of the Xilinx SuperTile design

on the VCU1525 board with the VU9P-2 FPGA card ( 30% fewer DSP48s and 10% more

BRAMs and identical URAM counts compared to VU37P FPGA). Our design uses almost all

the DPS48s rather than the 56% of the SuperTile design, and also operates everything at the

650 MHz identical clock rather than half rate RAM speeds of SuperTile. When considering

throughput, the SuperTile array o�ers an impressive 3K images/sec of processing capacity.

Our design can deliver a peak throughput of 2.4K images/sec which is 25% lower than
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Table 4.3: Xilinx VU37P FPGA inference latency (ms) and throughput (inf/s) for MLPerf

benchmarks and GoogLeNet.

Topology Ratio Cycles Time Tput.

(MLPerf) (Conv:MM) (ms) (inference/s)

AlphaGoZero 90:10 60K 0.09 10K

DeepSpeech2 60:40 1.2M 1.89 528

FasterRCNN 30:70 903K 1.38 719

NCF 0:100 2.4K 0.003 260K

Resnet50 30:70 848K 1.3 766

Sentimental 100:0 24K 0.037 27K

GoogLeNet (Us) 70:30 261K 0.40 2.4K

GoogLeNet - - 3.3 3K

(SuperTile [53])

SuperTile. �e Xilinx design maximizes device utilization by pipelining execution across

layers with three identical copies of the design, each with a chain of four processors sized

di�erently and working on subset of the DNN layers. �is sacri�ces latency but improves

throughput by allowing each processor to maximize device utilization. In contrast to the

95% utilization achieved by SuperTile, we only achieve 50% utilization but deliver superior

inference latency.

In Figure 4.10 , we show the bene�ts of systematic resource allocation of the FPGA

to the di�erent layers of the neural network. We divide resources to convolution:matrix-

vector portions (the x-axis ratio shown in Figure 4.10) of the application keeping overall

FPGA design area at 100%. Our current goal is to optimize for inference latency, and the

particular balance of resources sacri�ces some throughput to deliver superior inference

latency outcomes. �e resource balance at the runtime minimum point matches the ratio of

work performed in the Convolution and Matrix-Vector Multiplication phases as indicated

in Table 4.1 . Resnet50 and FasterRCNN workloads shows a trade-o� that suggests best

performance in the 30:70 resource division ratio. Rest of the workloads end up preferring

a solution that is on either ends of the resource balance scale.

Finally, in Figure 4.11, we show a strong correlation between the problem requirements
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Figure 4.10: Optimizing resource allocation for MLPerf Workloads

of the MLPerf benchmarks and the division of hardware resources to Convolution or

Matrix- Vector multiplication tiles. Our optimization shows that there is a clean transition

between the use of Convolution to Matrix- Vector multiplication hardware allowing us to

stream the images through the chip.

4.6 Lessons

Based on our study, we identify the following suggestions for future ML-friendly FPGA

designs:

1. URAM Bandwidth Balance: A 2× improvement in URAM memory bandwidth

from each URAM will help address the memory bandwidth bo�leneck for the matrix-

vector multiplication phase of the computation.

2. Dynamic Programmability: For the Xilinx DSP48s, the cascades on the AB inputs,

fracturing modes, and URAM cascades remain stubbornly statically con�gurable.

�is forces a designed to lock down data movement pa�erns at compile time and

tailored uniquely for either convolution or matrix-vector multiply phases which
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Figure 4.11: Correlating MLPerf benchmark characteristics to Space Division Multiplexing

arrangement

makes a uni�ed full chip design is di�cult.

3. Impact of Xilinx Versal FPGA: As stated earlier, we propose a closer look at

existing hard interconnect structures within the FPGA fabric rather than embracing

rigid ASIC- like computing elements targeting only the AI application domain. �is

departure also imposes a high design cost on the developer through the adoption of

a mixed RTL and C/ C++ or VLIW-assembly programming. �e Versal system-level

hard NoC does not address the intra-accelerator data movement requirements of

computing workloads.

4.7 Chapter Summary

�is chapter provides the details of �exible yet scalable DNN accelerator implemented in

Xilinx VU-37P FPGA. �e �exibility of the design is a�ributed to the fact that the design

is implemented on a FPGA thus resource allocation can be determined in a case to case

basis for di�erent workloads. �e scalability is the direct consequence of constructing the

accelerator from the Convolution and Matrix-Vector multiplication blocks implemented

using the DSP48 blocks, URAM and BRAM slices and hence connected by clever exploitation
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of existing hardware cascades. �e novelty of this design lies in the fact that unlike

traditional FPGA implementations, the accelerator is constructed using pre-exiting hard

DSP48, URAM and BRAM cascades present in Xilinx Virtex FPGA. As depicted in Section 4.5,

this lets us achieve high frequency operation, close to the maximum frequency leading to

maximum performance while enabling �exibility.

63



CHAPTER 5

AIRCHITECT: LEARNING DESIGN AND MAPPING SPACE FOR CUSTOM

ARCHITECTURES

5.1 Introduction

In the previous chapters, we have discussed about systematically capturing the design

space using analytical models or simulators. �e optimal points in this space are then

determined by employing search algorithms which iteratively calculate the cost of the

various points within the space. �e optima, naturally is dependent on the target workload

or the set of workload, and the implementation constraints.

Previous works have shown that the accelerator and mapping space for DNN workloads

is extensive[26, 34, 35, 27] and understandably is non tractable when using brute force

techniques. In face design space exploration (DSE) is one of the large contributors of

the non recurring engineering cost (NRE) incurred when newer designs are needed to

be implemented. Given the importance of the problem, there have been several recent

proposals which try to make the search process fast and e�cient using techniques like

learned cost models [36], reinforcement learning [33, 35], genetic algorithms [34] etc.

Finding the optima using iterative cost estimation and search is a data driven decision

making process. In this work, our hypothesis is that, it should be possible to automate

this process, by learning the design space from the data obtained from simulation or

analytical model queries by using machine learning methods. As we show later in this

chapter, a model can be constructed and trained on the existing database of optimal design

points, which when queried with workload parameters and design constraints is capable

of predicting the optima in constant time.

In the subsequent sections of this chapter, we demonstrate that learning the archi-
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tecture design space is feasible by using the three case studies dealing with �nding the

optimal architectural parameters and mapping strategies for a systolic array based DNN

accelerator(see Section 5.3). �e next section (Section 5.2) describes the case studies and

the associated search space. We then perform a design aware and statistical analysis of

the design space to understand the feasibility of the capturing the space using a learning

model. Next, we describe our �ndings of formulating the design space exploration problem

as a machine learning problem for di�erent design tasks using the three distinct case

studies(see Section 5.4). Finally we describe the custom designed neural network based

recommendation model, which we found to faithfully capture the various design spaces

pertaining to our case studies. We also present a comparative study of the performance of

the model with the contemporary o� the shelf machine learning models.

5.2 Case Studies

In order to evaluate our hypothesis on weather learning the design and mapping space

of custom architecture is feasible, we chose three design tasks for systolic array based

accelerators for GEMM workloads. �e motivation to chose systolic array based design is

simplicity and e�cacy. �e simple construction of the systolic arrays make it scalable, and

easy to implement. Furthermore, systolic arrays are arguably the most e�cient designs

for accelerating GEMM workloads, which is perhaps why they are used in numerous

DNN academic and industry DNN accelerator proposals. Owing to their simplicity and

popularity, there is an abundance of literature studying these structures, including our

work mentioned in the previous chapters. Using systolic arrays makes it convenient for

us to evaluate the rationalize about the behavior and the performance of the learning

algorithm. �e three case studies that we undertake deal with:

1. Array shape, size and the mapping of a monolithic systolic array
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Figure 5.1: Monolithic systolic array template with con�gurable array dimensions, choice of

data�ow, and con�gurable bu�er sizes

2. �e total size and the relative partitioning of the SRAM bu�ers in a monolithic

systolic array

3. Mapping of various workloads onto di�erent arrays in a heterogeneous systolic

array se�ing.

We elaborate on each of the case studies in subsequent sections.

5.2.1 Case 1: Optimal Architecture and Mapping for Monolithic Systolic Array

Figure 5.1 depicts the schematic of a generic monolithic systolic arrays based accelerator.

For the �rst case study we focus on designing the optimal compute array for a given

workload. Recalling from our discussion in Chapter 3, extracting the most performance is

not solely determined by allocating the more number of compute (multiply and accumulate
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Figure 5.2: Variation of runtime and utilization (red do�ed line) when using di�erent array shapes

and data�ows for (a) 29
MAC units, and (b) 215

MAC units for �rst layer in ResNet18

(MAC)) units. For a given DNN layer, or a GEMM operation the shape of the computation

needs to be in agreement with the mapping and the shape of the array to e�ectively use

the given array. �is point is further illustrated in by the charts depicted in Figure 5.2. In

Figure 5.2(a) we show the runtimes and the array utilization in terms of mapping when

when data�ows are employed while running the �rst layer of Resnet-18 [46] network. For

each of the charts the x-axis denotes the various array con�gurations (row× columns) of

the systolic array, all having the same number of MAC units (29
). Figure 5.2(b) depicts

similar information, but for the various array con�gurations with 215
MAC units.

A couple of observations can be made from these charts. First, we note that although

there is a correlation between high utilization and low runtime, the con�guration with

highest utilization does not translate to be the most performant con�guration. Recalling

our discussion from Chapter 3, several factors like the number of folds and serialization

delay are also the factors that play additional role in determining the best performant

con�guration. Second, the best performant con�guration and data�ow changes when

the number of MAC units used changes, even for a the same workload. Same is the case

for utilization. �ese variations are signi�cant since these results demonstrate the huge
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Figure 5.3: �e variation of optimal array dimensions as the number of compute units vary from

25
to 215

for (a) the �rst layer and (b) the eighth layer in Resnet18 network for di�erent data�ows.
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variation in the space of optima for just compute dimensions and mapping, even when

the workload remains the same. Lack of any apparent pa�ern naturally is a problem for a

learning algorithm targeted for this space.

As the optimal array con�guration changes with the number of MAC units, it is

interesting to determine if there is a pa�ern that the change follows. If such pa�ern exists

then potentially a learnt model can use that to determine best con�gurations. Figure 5.3

depicts the trends in optimal array con�gurations for di�erent data�ows as the number

of MAC units are increased in exponents of 2. In each of this �gure the y-axis represents

array con�gurations sorted by aspect ratios (ratio of rows:columns) where the ’fat-short’

con�guration are placed towards zero and ’tall-skinny’ con�gurations are placed near the

top, pu�ing the regular square con�gurations towards the middle of the axis. Figure 5.3(a)

captures the variation of the optimal con�guration for the �rst layer in Resnet18 network.

A �rst order analysis does reveal some pa�erns, for instance the optimal con�gurations

for input stationary data�ow appear to be localized with small rows and relatively wider

columns, while the con�gurations for weight stationary data�ow seems to favour short-

wide con�gurations for fewer MAC units and then start favouring con�gurations with more

rows then columns. Similar changes in ’preferences’ can also be observed for favourable

con�gurations using output stationary data�ow. Taking the example of yet another layer

in the network (eighth layer), chosen randomly, we observe similar trends as depicted in

Figure 5.3(b). However, the takeaway from these charts is that further investigation is

required to ascertain that the pa�erns generalized and therefore are relevant. Furthermore

even if they are relevant, the seemingly arbitrary trends foreshadow that simple models

with low dimensionality are unlikely to faithfully capture the landscape of optimal points.

We therefore need to create a dataset with large number of points and perform systematic

model exploration to learn the design space of optimal points.
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Figure 5.4: Variation of stalls encountered due to memory limitation vs memory size categorized

per bu�er type for GoogleNet’s[54] second layer when using (a) OS data�ow, 32x32 array, and

interface BW of 50 bytes per cycle; (b) IS data�ow, 32x32 array, 50 bytes/cycle BW (c) OS data�ow,

32x32 array, 100 bytes/cycle BW (d) OS data�ow, 8x128 array, 50 bytes/cycle BW

5.2.2 Case 2: Optimal Memory Partitioning for Monolithic Systolic Array

Proper memory sizing is yet another important parameter which determines both the

performance and energy e�ciency of an accelerator. Figure 5.1 depicts the template of

the on chip SRAM memories employed in a systolic array based accelerator design. For

GEMM operations, bu�ering is required for two operand matrices and the elements of the

generated output before they can be drained o�-chip. �ese bu�ers can be implemented

either as logical sections of a monolithic memory bank or as physically distinct structures

as depicted in Figure 5.1. �e �gure denotes the distinct memories in using the terminology

of CNN matrices. �e two bu�ers for hosting the elements of the input matrices are

denoted as Input Feature Map (IFMAP) and Filter bu�ers, while the one for hosting the

elements of the output matrix is denoted as the Output Feature Map (OFMAP) bu�er.

�ese memory segments are in general implemented as double bu�ered storage to exploit
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reuse and absorb the bandwidth mismatch of the interface links and the demand from the

compute array. In double bu�ered implementation, some portion of the total memory size

(typically 50%) is used to prefetch data from the external interface while the rest of the

bu�er is used to service the requests performed by the compute array. Once the elements

in the read portion of the bu�er are no longer required for computation, the prefetch

segment is used for servicing request from the compute array while the rest of the memory

is overwri�en with the prefetched data.

During the design process however, real estate is allocated in terms of area which can

be translated into total memory capacity. �e task of the architect then is to determine

the best allocation of this capacity into the three logical or physical bu�ers depending

on implementation choice and the requirements of the workloads. �e best design is of

course the one which takes the minimum real estate in term of capacity but provides

enough bu�ering such either there are no stalls arising due to bu�ering or at least the stall

encountered are minimized within the determined budget.

Similar to the previous case study, we are interested in determining if there are any

learnable pa�erns present in optimal memory sizing when running DNN workloads. From

traditional knowledge of memory design we know that optimal bu�ering primarily de-

pends on the dimensions of the array, the workload dimensions, mapping in terms of

data�ow, and the bandwidth of the external interface supporting the bu�er. To understand

the cost landscape of bu�er design, we take the example of the second layer in GoogleNet

[54] in Figure 5.4. In each of these �gure the x axis depicts the di�erent memory con�gura-

tions, broken down in terms of sizes of each bu�er in KB. For example, the con�guration

128 512 1024 denotes a con�guration where the IFMAP bu�er is 128KB of capacity, Filter

bu�er is 512KB, and the OFMAP bu�er is 1024KB worth of capacity. For keeping the search

space simple yet representative of the problem, we allow each bu�er size to have values

in the set 128KB, 512KB, 1024KB, and 2048KB without repetition. �e y axis depicts the

stalls encountered in serving the read and write requests for operand and result matrices.
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�e overall cost of stalls encountered is measured as the maximum of the stall a�ained

of the three matrices. �e best con�guration naturally is the one which encounters the

minimum cost. For con�gurations with equal costs, the one which uses the least amount

of capacity is deemed as optimal.

Figure 5.4(a) depicts the cost landscape of second layer in GoogleNet on a 32× 32

array, using OS data�ow, with the interface bandwidth of 50 elements per cycle for each

bu�er. We observe that in this se�ing the IFMAP operand matrix encounters the most stalls

and hence determines the performance. Naturally the con�gurations which allocate the

most capacity to IFMAP bu�er (2048KB) are optimal. Since, even with the most capacity,

stalls encountered by IFMAP elements dominate, the best con�guration is the one which

uses 128 KB for Filter bu�er and 512 KB for OFMAP bu�er. �e e�ect of changing the

data�ow, can be observed in Figure 5.4(b). �is �gure depicts the cost landscape when the

data�ow is changed to Weight Stationary (WS) with all other parameters remaining the

same. We immediately notice that across all the con�gurations only the OFMAP accesses

encounter stalls. Hence the optimization goal then shi�s to allocating the maximum size

to the OFMAP bu�er, hence making the con�gurations 128 512 2048 and 512 128 2048

both as optimal con�gurations.

In Figure 5.4(c) we depict the e�ect of interface bandwidth on the cost landscape. For

this case, we again plot the stalls obtained for the second layer in GoogleNet on a 32×32

array, using OS data�ow, but the interface bandwidth is now changed to 100 elements per

cycle for each bu�er. �e immediate di�erence when compared to the case of Figure 5.4(a),

when allocating 2048KB for IFMAP bu�er, the stalls due to the IFMAP matrices are nulli�ed

and the optimal con�guration is determined by OFMAP stalls. �e �gure shows that the

con�gurations with 1024 KB allocated for OFMAP bu�er lead to the same stalls, and out of

the two equivalent con�gurations the one with the least size ie. 128KB Filter bu�er turns

out to be optimal. On a similar vein we show the a�ect of array dimensions in Figure 5.4(d).

As compared to Figure 5.4(a), the only change in this case is that we use an 8×128 array
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which has the same number of MAC units as the original 32×32 array, with all the other

parameters being the same. �e dimension change reduces the pressure on the IFMAP

bu�er and again the OFMAP bu�er determines the best con�guration. From the �gure we

see that con�gurations with 2048KB allocated to OFMAP, and 1024 KB allocated to IFMAP

proves to be least costly. Hence rendering the con�guration point 1024 128 2048 as the

optima.

�e takeaway from this simple experiment and the associated discussion is that even

for a simplistic use case input parameters drastically change the points of optima. It is clear

that simple learning model is unlikely to capture the mapping from the input parameter

space to the space of optima.

5.2.3 Case 3: Optimal Compute Scheduling for Multi-Array System

�e previous case studies primarily focus on the determining the optimal architecture

parameters for a systolic array based accelerator. In this case study we examine a pure

mapping problem involving multiple accelerators. �e problem at hand is to �nd out the

mapping on workloads on a multi-accelerator se�ing. To keep the problem set tractable

we chose number of workloads to be mapped at once is equal to the number of accelerators

we have available Figure 5.5 provides more information about the problem. �is �gure

depicts three distinct accelerators, one monolithic 32×32 systolic array, a coarse grained

distributed systolic array based accelerator setup with 4 8×8 arrays, and a �ne grained

distributed accelerator with 256 2× 2 arrays. �e number of MAC units in all three

accelerators are kept constant to ensure that the choice of mapping a workload on any

array is purely on the basis of mapping and not on computational upper-hand. �ree

workloads can be mapped onto these three accelerators at a single instance. �e task of

the mapper (either manual or automated) is to �nd the best mapping strategy such that all

the three computations can complete in minimum time. �e best mapping strategy not

only includes the mapping of each workload to the corresponding accelerator but also the
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Figure 5.5: Schematic description of the multi-array scheduling case study

data�ow to be used.

Similar to the other two case studies, before we can analyse the feasibility of training a

learning algorithm on this task, we take some examples to estimate the cost landscape for

determining the optima for one example. In Figure 5.6(a) we show a scheme of indexing the

various possible mapping strategy, that we refer to as a ’schedule’ for the three accelerator

system that we show in Figure 5.5. Each entry in the table captures the workload ID and

the chosen data�ow for the monolithic 32×32 array, the distributed 4 8×8 array, and

the 256 2×2 arrays. For this example we see that there is a total of 162 di�erent schedules

possible. To understand the cost landscape we search through all the con�gurations and

observe the cost in terms of critical path runtime for a couple of example workloads.

74



Optima 
(Cfg ID = 10)

Optima 
(Cfg ID = 136)

(b) (c)

(a)

Schedule ID Workload ID Dataflow Workload ID Dataflow Workload ID Dataflow

161 3 IS 2 IS 1 IS

Monolithic 32x32 Distributed 4 8x8 Distributed 256 2x2

0 1 OS 2 OS 3 OS
1 1 OS 2 OS 3 WS
2 1 OS 2 OS 3 IS
3 1 OS 2 WS 3 OS

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

Configuration ID
Ru

nt
im

e 
(C

yc
le

s)
Configuration ID

Ru
nt

im
e 

(C
yc

le
s)

Figure 5.6: (a) Table of scheduler IDs and corresponding con�guration (b) Runtimes of the critical

path for the �rst layer in GoogleNet, YoloTiny, and Alexnet (c) Runtimes of the critical path for the

third layer in GoogleNet, YoloTiny, and Alexnet

In Figure 5.6(b) we plot the critical path runtime for the �rst layer of three popular

convolution neural networks, GoogleNet[54], YoloTiny[55], and Alexnet[56] respectively.

For this particular layer we observe that, the schedule with indexed by ID 10 emerges as

the optima. Interestingly when we observe the cost landscape for the third layers in the

respective network, we observe that it is quite di�erent from the case of �rst layers of

the networks and an the con�gurations close to the optima lie with larger schedule IDs,

with 136 being the best. �e cost landscape for each layer themselves do not depict any

particular pa�ern that could be learnt to train a predictor since (a) it is not uniform and (b)

the nature of the landscape is heavily dependent on the workload parameters.

In the next section, we therefore turn our a�ention to the space of just the optimization

points for the three workloads instead of the cost landscape to identify learnable pa�erns.
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(a) (b) (c)

Figure 5.7: Relative frequency of optimal array dimensions obtained for GEMM workloads using

(a) Output Stationary, (b) Weight Stationary, and (c) Input Stationary data�ows

5.3 Design Aware Analysis

In the search of learnable pa�erns for determining the optimal parameters of systolic array

based accelerator design, we turn our a�ention to variation of the optimal parameters

themselves. In this section we examine the optimal parameters and their correlation with

the input and other system level parameters. �e following subsections provide evidence

of learnable pa�erns for the �rst to case studies involving array con�guration, data�ow,

and memory design tasks.

5.3.1 Array Shape and Data�ow

First we take a look at the space of optimal array dimensions. We generated a dataset of 105

points, each comprising a GEMM workload represented by M, N, and K dimensions, and

design constraint represented as maximum MAC units, and the best array con�guration

and optimal data�ow among OS, WS, or IS. �e M,N, and K values are obtained by randomly

choosing an integer value from a uniform distribution. �e maximum mac unit is chosen

as a power of two. To determine the best array con�guration and data�ow, we search

through all the possible data�ows, row and columns with MAC units less than or equal to

the maximum MAC units speci�ed.

Interesting pa�erns begin to emerge when the distribution of the optimal con�gurations

are considered. For example, consider Figure 5.7(a). �is is a sca�er plots of all the optimal
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Figure 5.8: �e pa�ern of optimal aspect ratio and optimal data�ow obtained for GEMM workloads

on systolic arrays with 28
to 215

MACs.

rows and columns which emerge as optimal for 104
data points for which the maximum

MAC units is kept �xed as 29
and the optimal data�ow obtained is output stationary (OS).

�e radius of the marker in for each point captures the relative frequency. Figure 5.7(b-c)

plots the same distribution of optimal points, but for the ones for which the optimal

data�ow is determined to be weight stationary (WS) and input stationary (IS) respectively.

A couple of observations are immediate from these charts. First, we observe the optimal

array con�gurations all utilize the maximum MAC units. �is is understandable since

the con�gurations that would not follow this trend would only for the workloads which

encounter severe under utilization for all array con�gurations with the maximum MAC

units 29
which usually never happens. Second, we notice that the array con�guration with

almost equal number of rows and cols are favoured most for all the three data�ows.

Figure 5.8 shows the complete picture across the entire search space of this speci�c case
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(a) (b) (c)

Figure 5.9: �e correlation of optimal array dimension obtained (y-axis) and the matrix shape

in terms of aspect ratio (x-axis) of (a) Input operand matrix (M×K) (IFMAP), (b) input operand

matrix (K×N) (Filter), and (c) Output matrix (M×N) (OFMAP). �e colors of the markers indicate

the optimal data�ow obtained, highlighting the pa�ern in the design space1.

study �is plot is a combination of optimum array con�gurations and data�ows as shown

in Figure 5.7, but captures the points where the maximum MAC units are varied from 28
to

215
, furthermore the array con�gurations corresponding to the di�erent optimal data�ows

are also consolidated in this charts and are plo�ed as markers with di�erent colors. For

instance the con�gurations with OS as the optimal data�ow are plo�ed as red markers,

the ones with WS as optimal data�ow are plo�ed in green, and ones with IS as optimal are

plo�ed as blue. With this chart, we can make observe some interesting pa�erns apparent

in the distribution of the optimal con�gurations for a wide variety of input.

�e �rst and immediate observation is about the relative frequencies of array con�gu-

rations. �e nearly square con�gurations with 2× the columns as the rows are optimal for

most of the workloads, irrespective of the MAC unit constraints. �e next two the most

popular con�guration are the ones with equal sized rows and cols, the con�gurations with

4× as many columns as rows, and the ones with 2× more rows as columns. As a simple

rule of thumb a search among these four aspect ration variations might be su�cient to

�nd the best array con�guration for many workloads. However, there are two other subtle

observations which are critical to build a robust learning model. �e chart also shows that

there are no points no valid points on the chart which does not serve as the optima for at

least one data point. �is shows that a higher dimensional model is required to faithfully

capture the space of the optima. One more observation is about the correlation of the
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optimal data�ows and optimal data�ows. For most of the points, especially the ones which

turn out to be optimal for many inputs, no reasonable conclusions can be made about

weather any data�ow is preferred over another.

From our analysis in a Chapter 3 we know that the shape of the operands are one of

the major factors that determine the optimal data�ow for GEMM operations on systolic

arrays. Acting on this piece of knowledge we examine the optimal data�ows obtained

and the shape of the operand matrices in Figure 5.9. In each of the plots in this �gure, the

x-axis plots the shape of an operand matrix in terms of increasing aspect ratio ( the ratio of

rows to columns); thus larger the value of x is the taller and skinnier the operand matrix it

denotes. �e y axis captures the various aspect ratios of systolic arrays ranging from ones

with 28
to 215

MAC units also sorted in terms of aspect ratios. Each point in any of the

sca�er plots depicts the operand shape for the GEMM operation, and the corresponding

array con�guration that comes out as the optimum. �e color of the optimal data�ow

a�ained is depicted using di�erent colors.

�ese charts show telltale signs of the how the optimal aspect ratios can be determined

by using the operand shape and optimal array con�guration information. Figure 5.9(a)

which captures the optimal array dimension and data�ows with the shape of the M×K

GEMM or the IFMAP matrix shows a clear separation of output stationary (OS) vs weight

stationary (WS) favouring con�gurations. However the information captured in this chart

cannot be used to determine if input stationary would be optimal as compared to the other

two alternative data�ows. �e next chart Figure 5.9(b), capturing the �lter operands or the

K×N operand matrix shows a clear separation of the OS optimal and IS optimal cases,

although WS optimal cases could not be di�erentiated among the other two. However,

when considering a similar plot with output matrix shape in Figure 5.9(c) a clear distinction

among IS and WS optimal cases is apparent. �ese three charts in conjunction depict that

a statistical model should be able to be trained to predict the optimal data�ow for GEMM

workloads mapped onto systolic arrays.
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(b) (c)

Figure 5.10: �e relation of optimal bu�er sizes of (a) IFMAP operand bu�er, (b) Filter operand

bu�er, and (c) OFMAP bu�er, with operand sizes, interface bandwidth, and data�ow.

5.3.2 SRAM bu�er Sizing

We also examine the space of optimal memory con�gurations to �nd out the pa�erns that

could be leveraged for learning the design space. Similar to the case for optimal array

dimension and data�ow above, we perform a design aware analysis by visualizing the

optimal sizes obtained for each bu�ers for about 104
data points.

Each data point in our analysis is obtained as following. First we chose the GEMM

workload dimensional by randomly sampling integers as explained in the case study above.

We also randomly sample the rows, columns from a set of powers of two such that the

total number of MAC units is < 220
. A random integer < 100, is sampled from an uniform

distribution to denote the interface bandwidths of the bu�ers. We also allocate a maximum

memory constraint by randomly choosing a number between 300KB to 3MB. Next multiple

memory con�gurations are evaluated for the obtained workload and compute system

con�guration to determine the memory sizes which lead to least amount of stall while

taking the least possible bu�er capacity.

Figure 5.10 plots the trends observed for the optimal memory sizes thus obtained with

respect to the interface bandwidth, the size of the matrices, and the data�ow used. For

simplicity of plo�ing we show only two sizes. �e small 100KB bu�er size represented by

blue dots, and large 90KB bu�er size represented by orange dots. Figure 5.10(a) depicts the
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distribution of optimal IFMAP bu�er sizes. We notice that the main determining factor in

this case is the data�ow. �e output and weight stationary data�ows predominantly prefer

larger bu�er sizes, while input stationary data�ow prefer the smaller sizes. �is pa�ern is

explainable by considering the fact that IS data�ow by its very nature maximizes the reuse

in the IFMAP matrix, thus relieving pressure on the interface which translates to lower

bu�er requirements. On the other hand, the other two data�ows stream the elements of

this particular matrix throughput the computation, which justi�es the preference for larger

bu�er sizes.

5.4 Learning Architecture and Mapping Space

Our analysis in the previous section shows that the systolic-array-based accelerator design

and mapping space possesses high-level pa�erns that indicate that it is perhaps possible to

predict design parameters given that the distribution of the data is internalized. In this

section, we discuss systematically structuring the learning problem, dataset generation,

and brie�y perform statistical analysis on the generated datasets.

5.4.1 Design Optimization as Learning Problem

�e �rst step towards learning the observed pa�erns is to formulate the search-based

optimization problems involved in our case study to machine learning-based regression

or classi�cation problem se�ing. Empirically we found classi�cation tends to be a be�er

�t for learning architecture and mapping optimization. A naive approach for employing

classi�cation for predicting architecture parameters is to independently predict each design

parameter. However, there are a couple of problems with this approach. First, a separate

model needs to be trained for each design parameter, which can get easily get out of

hand when dealing with a system with signi�cant complexity. Second, the parameters are

o�en inter-dependent, for example, the sizes of memory bu�ers in the systolic array, and

di�erent models might fail to capture the interdependence if trained separately. Motivated
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(a) (b)

Figure 5.11: (a) Chart showing the distribution of operand matrix dimensions for GEMM operations

involved in layers of popular neural networks (b) Growth of the scheduling space

by these factors, we formulate the problem into a recommendation se�ing, where a bunch

of parameters is clubbed into bins, and the trained model is expected to recommend the bin

corresponding to the optimal parameters. �is formulation helps us leverage the existing

classi�er models developed by the machine learning community and also helps us reason

about the problem systematically.

5.4.2 Dataset Generation

Case Study 1: Array and Data�ow prediction. For this case study, we want to predict

the optimal dimensions of a systolic array and the data�ow, given then design constraints

and the dimensions of the GEMM workload. �e input space our for this task, therefore

comprises of four integers, three for the operand dimensions (M, N, and K), and one

integer capturing the maximum number of MAC units allowed. To keep the input space

bounded, the MAC units are provided in exponents of 2. We limit the maximum possible

MAC units at 218
. �e workload dimensions are provided as randomly sampled integers

from a uniform distribution. �e limits of the workload dimensions are determined by

the distribution depicted in Figure 5.11(a). �is distribution is generated from the layer

dimensions of popular convolution neural networks [56, 57, 54, 46] . �is distribution

dictates that the values for M dimension vary between 1 to 105
, N in [1, 104

], and K in
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Figure 5.12: (a) Input space size and input parameters for the three case studies; Output space of

(b) Systolic Array dimension and data�ow prediction case study (c) Memory bu�er size prediction

case study (d) Distributed array schedule prediction case study

[1, 103
]. �e output space is a list of labels for this task. As shown in Figure 5.12(b) each

label serves as the index for a set of parameters, which for this case study denote the

systolic array height, width, and one of the data�ows. Keeping with the conventional

systolic array designs, we only consider the array dimensions that are powers of 2. In

our experiments, we allow the minimum array dimensions to be 22
while the maximum

dimensions, dictated by the maximum possible MAC units in the input space, come out to

be 218
. With these limits in place, the output space for our problem contains 459 di�erent

array and mapping con�gurations. To generate the dataset, we use runtime as the cost

metric. We use the SCALE-Sim [58] simulator to generate runtimes for each workload for

a given array dimension and workload. We modify the simulator to generate only compute

runtime and ignore stalls, speeding up the search. We exhaustively search through all the

valid con�gurations to generate the label. We generated about 5 million data points, which

took about a couple of weeks of times when running over several servers using a total of
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800 logical CPU cores.

Case Study 2: Bu�er Size prediction. In the second case study, our goal is to

predict all optimum sizes of the three operand bu�ers in the systolic array (see Figure 5.1)

simultaneously for given workload parameters, information about the compute, and design

constraints.

�e input space, as depicted in Figure 5.12(a), captures the maximum memory capacity,

workload dimensions (M, N, K), the array dimensions, data�ow, and interface bandwidth

of the bu�ers. For simplicity, we assume the same interface bandwidth for all three bu�ers.

�e limit for the maximum memory capacity is set to 3000 KB; the workload dimensions

are sampled from the same distribution as the previous case study with limits observed

in Figure 5.11(a). �e array dimensions and data�ow are sampled from the output space

of the previous case study to keep our experiments consistent. �e interface bandwidth

expressed in bytes/cycles is taken from the space of integers in [1, 100], sampled with

uniform probability. �e output space, is a list of labels, where each label indexes an entry

of memory sizes for each of the bu�ers. �e minimum size of each bu�er is restricted

to 100 KB, and the allowable sizes increment with a step size of 100 KB as well. �e

maximum allowable size is 1 MB for an individual bu�er. With these constraints, the

output space contains 1000 distinct points de�ning the search space. For this case study,

the optimal memory size is the one that leads to a minimum or no stall. For di�erent

con�gurations with the same stalls encountered, the one with the smallest cumulative

capacity is considered the best. For this case study as well, we use SCALE-Sim[59] to

generate costs of the various memory sizes. We generate about 5 million data points, where

a million point takes about a week when multiple runs are launched onto a server cluster

totaling 800 logical CPUs.

Case Study 3: Multi-Array Scheduling. In Section 5.2.3 we describe the problem

of scheduling a set of GEMM workloads on an equal number of a distinct heterogeneous

collection of compute units. �e input space, for this problem, is simply the GEMM workload
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dimensions (M, N, K) one for each compute array. �e output space, is an id depicting the

mapping of workload to the arrays and the corresponding data�ow to be used as shown in

Figure 5.6(a).

It is worth noting that our case study concerns the schedules when the number and the

dimensions of the arrays are �xed. �is case study does not cover the cases where the number of

arrays or the workloads changes. However, it is interesting to observe that when the number

of arrays changes the possible number of scheduling strategies grows exponentially as

well as combinatorially as depicted by the equation N = 3x× x!, where x is the number of

compute arrays.

Figure 5.11(b) depicts the growth of the space with the number of compute units. In this

case study, we chose to learn the scheduling space of four arrays, which leads to 1944 possible

entries in the output space. �e decision to chose this con�guration is purely pragmatic,

intended to keep the dataset generation times bounded. �e di�erent arrays used in the

study is shown in Figure 5.12(c).

Run time is used as the cost function for dataset generation. �e schedule which leads

to the least runtime of the slowest running workload is deemed to be the winner. For the

schedules which have the same critical path runtime, the one with the least cumulative

runtime is chosen to be optimal. We create an in-house simulator similar to [59] to compute

the runtime of GEMM workloads on a distributed systolic array se�ing. Similar to the

previous case studies we generate roughly 5 million data points for learning.

5.4.3 Statistical analysis

In Section 5.3 we observed that the optimal con�gurations show distinct pa�erns when

analyzed with manually picked parameters. In this section, we perform statistical analysis

on the generated datasets to gain additional insights on the ability to learn the distribution.

First, we analyze the distribution of the categories in the training dataset. In Fig-

ure 5.13(a-c) we plot the relative frequencies of the label categories for three case studies.
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Figure 5.13: Distribution of the con�guration ids for (a) Case Study 1, (b) Case Study 2, (c)

Case Study 3. Distribution of data points along the most relevant principal component of two

con�gurations for (d) Case Study 1, and (e) Case Study 3.

�e dataset for our �rst case study (see Figure 5.13(a)), which captures the optimal array

dimensions and data�ow for given GEMM workloads, we immediately notice that the out-

put distribution is complicated and non-uniform, but structured. We observe that several

con�gurations are represented in the majority while there exist a reasonable amount of

con�gurations that have minuscule representation. �is is consistent with the observations

we make from Figure 5.8, where we see that highly skewed array dimensions are optimal

only for a small number of use cases, leading to lower frequencies. It should be noted

however that the input space of the dataset, which comprises the dimensions of the GEMM

workload and the max number of MAC units is covered uniformly.

In Figure 5.13(b) we show the distribution of categories for the second use case, pertain-

ing to the memory sizing problem. �e immediate observation that can be made on this

distribution is that for this problem, a handful of con�gurations work for a wide variety of

input con�gurations, evident by the few classes the dominate the output distribution. �e

most frequent category accounts for 38% of the output. �e two most frequent capture 66%.

Continuing, the ten most frequent con�gurations account for roughly 90% of the output.

Beyond this point, other con�gurations have very few occurrences and are therefore much

harder to predict. We expect low prediction accuracy on this dataset due to the high bias

in the dataset.

A similar analysis on the scheduling dataset, depicted in Figure 5.13(c) reveals a di�erent

pa�ern. In this case, not only there are a few very prominent con�gurations, but also a

large number of categories with very low frequency. �e vast majority of con�gurations
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SVC RBF Support Vector Classification using Radial Basis Kernel

SVC Linear Support Vector Classification using Linear Kernel

XGBoost eXtreme Gradient Boosting based Classifier

MLP-A Multi-layer perceptron with 1 hidden layer with 128 nodes

MLP-B Multi-layer perceptron with 1 hidden layer with 256 nodes

MLP-C MLP with 2 hidden layer with 128 nodes each

MLP-D MLP with 2 hidden layer with 256 nodes each

AIrchitect Custom network shown in Fig1, with 256 hidden nodes

Figure 5.14: Performance of Classi�er Frameworks

are never optimal and do not occur. We can see that four classes, in particular, dominate

the spectrum. Each accounts for roughly 14% of the output totaling 56%. �ere are eight

additional classes that each account for roughly 3% each totaling 24%. �e twelve major

classes then account for 80% of the optimal con�gurations. We can take away two key

insights from this plot. First, a relatively simple model, which can classify the larger

spikes can still provide respectable prediction performance. However, employing a more

sophisticated model can signi�cantly boost the performance of the schedule predictor, if it

can learn to classify the labels with smaller frequencies.

Finally, we examine the e�cacy of the handcra�ed features used in the datasets.

In Figure 5.13(d-e) we plot a subset of the data points along with the most prominent

principal components for the �rst and the third case study respectively for two randomly

chosen labels/categories. �e visual separation of the points corresponding to di�erent

labels suggest that performing higher dimensional transformation with the chosen input

parameters helps to choose a hyper-plane capable of classifying the data points. �is chart

provides a quality assurance that the datasets are classi�able and as a consequence can be

learned, although not formal proof.

5.4.4 Learning with Existing Classi�ers

�e problem formulation discussed in Section 5.4, allows us to use o�-the-shelf classi�ers

to capture the design space and make predictions about the optimal parameters for given

workloads and design constraints. We test out various models with di�erent degrees of
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complexity on the datasets generated for the three case studies. �e table in Figure 5.14

show these models. To summarize we used the scikit-learn [60] libraries implementation

of support vector classi�ers [61] with linear and radial basis kernel. �e state-of-the-art

tree boosting method called eXtreme gradient boosting (XGBoost [62]) available from the

xgboost package [63]. We also implemented four multi-layer perceptron (MLP) networks

in TensorFlow’s Keras [64, 65].

Figure 5.14 shows the accuracy obtained for the three case studies when 2×106
data

points are used for �t/training. For the MLPs, the networks are trained for 15 epochs

with 90:10 training-validation split. We used a categorical cross-entropy loss function

with accuracy as the optimization objective. Among the various case studies, the one for

memory size prediction is learned well among all the models, with MLP-B a�aining about

63% validation accuracy. Support Vector Classi�cation, however, was able to perform the

best among the models considered a�aining about 50% test accuracy for case study 1, 60%

and 40% for the other two respectively.
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Figure 5.15: Progression of training and validation accuracy vs epochs when training AIrchitecton the dataset for (a) Case Study 1, (b) Case
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Figure 5.16: Generic structure of the custom designed recommendation network

5.5 AIrchitect: Design and Analysis

From our analysis in the previous section Section 5.4.4, we notice that although o�-the-

shelf classi�ers are capable of learning the design space for our various use cases no single

model appears to perform consistently across the di�erent spaces. We design a general

network structure, which we call AIrchitect, intending to obtain the capability to achieve

reasonable learning performance across di�erent distributions. Figure 5.16 depicts the

general structure of our proposed model. �e inspiration for this design comes from

the structure of the modern recommendation networks like DLRM [66], which perform

recommendation by mapping query inputs onto a trained embedding space, followed

by MLP based classi�cation. �e trained embedding map the input data from the user-

de�ned input space onto a latent space, which immensely improves the performance of the

classi�ers. �is is also evident from the performance of MLP-B vs AIrchitect as depicted

in Figure 5.14. Among the various case studies, the number of inputs and outputs are

the parameters that we changed. �e number of inputs to the network is equal to the

input space, while the network generates a one-hot vector of length equal to the output

space of the problem indicating the optimal design or mapping parameters, as discussed in
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Figure 5.17: Predicted and actual labels for case study 1 for a few layers of popular CNNs

Section 5.4.2, Figure 5.12. We use an embedding size of 16 and a 256-node MLP hidden

layer for our models across the case studies.

For all three use cases we train the corresponding versions of AIrchitect on the

respective datasets with 4.5M points (Section 5.4 using 90:10:10 train-validation-test split).

We use TensorFlow’s Keras library[64, 65] to implement the network and train using

categorical-cross-entropy as the loss function, with accuracy as the optimization metric.

Figure 5.15(a-c) shows the accuracy obtained during training for the three case studies

respectively. We observe that the design space of case study 1 is learned with a high

validation accuracy (> 94%) in about 15 epochs. �e training for case study 2 �nishes, in

about 22 epochs achieving a validation accuracy of 74% before starting to over�t. For case

study 3, the network saturates at about 15 epochs at about 76% validation accuracy. As we

see in Figure 5.14, AIrchitect beats the best performing o�-the-shelf classi�ers at least

by about 10% accuracy.

To gain further insights on the quality of training, we plot the distribution of the actual

labels and the predicted con�guration IDs for 105
previously unseen test data points for

each case study. Figure 5.15(d-f) shows predicted vs actual distribution for the three case
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studies. �e �rst observation is that the test datasets’ actual distribution closely matches

with distributions of the original dataset, shown in Figure 5.13(a-c) corroborating that the

test set does not compromise on generality. Second, visually the predicted distribution for

case study 1 almost perfectly matches the actual distribution, con�rming that the network

learned the design space. �ird, we observe that the networks for case study 2 and 3,

learn to predict the con�gurations with signi�cant representation on the dataset, while

the con�guration IDs with low statistical probability is ignored as noise. �e presence

of large spikes in the case of memory size prediction biases the model, shown by the

high frequencies of the top two con�guration IDs (Figure 5.15(e)) leading to relatively low

accuracy. Similarly, for case study 3,Figure 5.15(f) shows that the model was successful

in learning the distribution of the large spikes. However, in doing so it ignored the

con�gurations with lower frequencies, which in turn cumulatively lowered the accuracy

�gure. However, it is worth noting that the model ignoring the lower frequencies as statistical

noise demonstrates that the model is robust and does not over�t for any of the use cases. Further

improving prediction accuracy for di�erent design spaces requires data engineering on a

case-by-case basis and therefore, is out of the scope of this paper.

To understand the cost of misprediction within the use cases, we compute the per-

formance (reciprocal of runtime) of the workloads in the test dataset, for the predicted

and label con�gurations. In Figure 5.15(g) we show the performance of the predicted

con�gurations normalized to the labels for the 105
data points. Due to the high prediction

accuracy, we observe that only a few data points have catastrophic performance losses

(¡20% of the optimal) leading to a 99.99% average performance (Geometric Mean) of the

best possible. In Figure 5.17 we depict the performance of the network on some layers from

networks like FasterRCNN[67], GoogleNet[54], Alexnet[56], MobileNet[57] and ResNet-

18[46]. �e layers of any of these networks were not part of the training or validation

dataset, but the model is able to predict the optimal array shapes and data�ow, when

queried with a constraint of 210
MAC unit limit. Interestingly for case study 3, which
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had relatively low accuracy, for most cases, the performance does not lead to catastrophic

losses. Figure 5.15(h) shows that among the mispredictions, most of the points su�er about

10% to 15% loss compared to the best achievable, leading to an average of 99.1% of the best

possible runtime on average (GeoMean).

5.6 Chapter Summary

In this chapter, we demonstrate that the design and mapping space of DNN accelerators

can be learnt using machine learning models. To be precise, this chapter takes the help

of three case studies covering the various example design and mapping space of systolic

array based DNN acceleration. In main contributions of the chapter can be summarized as

follows. First, the work here performs detailed design aware and design agnostic statistical

study of the design space to �nd the underlying pa�erns in the design space exploration

data to make a case for applying a learning model. Second, the chapter demonstrates how

to formulate the traditional architecture design space exploration problem into a machine

learning problem. �ird, in this chapter we design and train a custom neural network based

recommendation engine which is capable of capturing the design and mapping space of all

the three case studies presented in this work, and is able to a�ain high prediction accuracy

on test set for all three and greater than the o� the shelf ML models.
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CHAPTER 6

SELF-ADAPTIVE RECONFIGURABLE ARRAYS (SARA): LEARNING GEMM

ACCELERATOR CONFIGURATION SPACE USING ML

6.1 Introduction

Custom architecture design enables us to achieve high performance and energy e�ciency

for a given class of workloads in post Moore’s Law era. Highly specialized architectures

however are in�exible to any variation in the nature of workload and thus can easily

be rendered obsolete. To mitigate this limitation, there has been an increasing interest

in developing �exible architectures which have additional components (interconnects,

bu�ers, and con�guration registers) to support changing workload requirements. For

popular applications like DNN acceleration, several such �exible architectures have been

proposed [8, 11, 68, 20, 9].

In all of the prior works on �exible DNN accelerators, however, the onus of �nding and

se�ing the best con�guration lies on the so�ware stack, typically using a compiler/map-

per [34, 69, 70, 71]. �is dependence causes a few deployment challenges: (i) a cost model

has be to developed and integrated as an optimizer into the compilation stack to help

�nd optimal mappings, without which the �exible design loses utility, (ii) an expensive

con�guration and mapping search has to be performed at compile-time before scheduling

any workload. Usually mapping search in so�ware is performed via exhaustive, heuristic

or optimization algorithm-based approaches which take about a few seconds to hours [69,

34, 71], even with sophisticated ML assisted frameworks like autoTVM [36]. (iii) the

search-time overhead also eliminates opportunities for deploying such �exible accelerators

for domains/applications with so� or hard-real time inference targets.

In this chapter, we combine the systematic design methodologies developed in Chapter 3
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Figure 6.1: Comparison of scalability, utilization, and operand reuse in traditional monolithic and

distributed accelerators, and the position of the proposed architecture
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and Chapter 4, and the machine learning based design space optimization technique

developed in Chapter 5 to create a scalable and yet �exible accelerator which morphs into

the best con�guration at runtime based on workloads. Speci�cally, this chapter presents

the following two concepts:

First, the chapter describes the work we design a scalable recon�gurable hardware

optimized for GEMM workloads called Reconfigurable Systolic Array (RSA). RSA is

developed upon the intuition that �exible accelerators o�en need to trade-o� utilization,

data reuse, and hardware complexity (i.e., scalability). �is is illustrated in Figure 6.1.

Rigid Monolithic arrays (e.g., TPU’s systolic array [7]), are simple to construct but o�er no

�exibility leading to high under -utilization for many workloads [17, 59].

Flexible Monolithic arrays (e.g., MAERI [9], Eyeriss v2 [72], SIGMA [17]) provide �exi-

bility via clever use of interconnects and con�guration logic, enabling high utilization for

a majority of workloads. However, the increased hardware complexity hinders scaling,

and the design requires external so�ware support to exploit the bene�ts of recon�gura-

bility [69, 70, 34]. Distributed architectures (e.g., Tangram [20], Simba [19]) help address

the utilization challenge, since irregular workloads can be tiled on to these smaller arrays.

However, this architecture leads to loss in spatial reuse (i.e., direct data-forwarding) that

monolithic designs provide, and also requires data replication across the SRAMs of the

individual arrays. Data replication leads to a decrease in overall on-chip storage capacity,

leading to a loss of temporal reuse due to smaller tiles. Moreover, distributed arrays can

exacerbate the mapping search problem [19, 69]. RSA aims to address the shortcomings

of all three design strategies. It is a �exible accelerator capable of supporting mappings

that can be realized by monolithic as well as distributed arrays by con�guring to variable

array dimensions and number of sub-arrays (as depicted later in Figure 6.5(d)), thereby

enhancing both utilization and reuse. In practice, RSA closely approximates a �exible

monolithic design, with a fraction of area cost.

Second, extending the methods discussed in Chapter 5, we present a custom ML
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Figure 6.2: �e constitution and interactions of the self adaptive (SA) and recon�gurable array

(RA) components to make up the SARA accelerator called SAGAR in this work.

recommendation system model calledAdaptNet that achieves a recommendation accuracy

of 95% on a dataset of 200K GEMM workloads, and on average(GeoMean) 99.93% of the

best a�ainable performance (Oracle). We also design a custom hardware unit to run

AdaptNet called AdaptNetX. AdaptNetX enables to get a recommendation response

for any query in about 600 cycles which is at least about 6 orders of magnitude faster than

so�ware. Furthermore, AdaptNetX consumes the same hardware real-estate and roughly

the same on-chip memory capacity
1

for di�erent arrays, thus proving to be a scalable

solution in contrast to approaches like using con�guration caches. With AdaptNetX the

con�guration lookup using AdaptNet can be performed at runtime, without involving

the so�ware stack.

Together, these two components enable us to develop a new class of accelerators that

we call Self Adaptive Recon�gurable Array (SARA) (Figure 6.2). SARA accelerators can self

adapt at runtime to optimized con�gurations for the target workload, without requiring

compile-time analysis. We demonstrate an instance of SARA that we name ‘Shape Adaptive

GEMM AcceleratoR (SAGAR 2
) as shown in Figure 6.2 and evaluate its performance across

various con�gurations.

1
�e only change in AdaptNet between various RSA is the weight of the output layer, which is small in

comparison to the embedding table which takes most of the on-chip space

2
means Ocean in Sanskrit, re�ecting the shape �exibility of our accelerator.
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Figure 6.3: �e trade-o� between improved runtime and lost operand reuse in compute equivalent

monolithic and distributed systolic array con�gurations. (a) the theoretical minimum runtime, and

the runtime obtained for stall free operation of monolithic and compute normalized distributed

systolic array se�ings; and (b) the corresponding SRAM reads, normalized to theoretical minimum

reads required when multiplying a 256×64 matrix with another 64×256 matrix.

6.2 Background and Motivation

To help understand the trade o�s involved in choosing a performant con�guration, and the

associated loss of reuse we perform a simple experiment. We run one GEMM operation,

involving operand matrices of sizes sizes 256×64 and 64×256 on various systolic array

con�gurations. �ese are, a 128× 128 monolithic array, and �ve distributed scale-out

con�gurations viz. 4 64× 64 arrays, 16 32× 32 arrays, 64 16× 16 arrays, 256 8× 8

arrays, and 1024 4×4 arrays. We obtain the runtime and memory accesses for running

this workload on all the array con�gurations using SCALE-Sim [58] (see Section 6.6.1).

In Figure 6.3(a) we show the runtime normalized to the theoretical minimum cycles

required. Please note that with the chosen matrix dimensions, the systolic arrays in all the

con�gurations are mapped 100% with useful computation. �e di�erences in runtime in

various arrays under 100% mapping e�ciency is a�ributed to the array �lling and draining

at each serialization step (see sec III in [59]). We observe that the con�guration with

32×32 array is the most performant, beating the monolithic con�guration by about 2×. In

Figure 6.3(b) we depict the SRAM read accesses performed by all the array con�gurations,

normalized to the theoretical minimum number of reads possible. From this �gure we

observe that the 32×32 con�guration performs about 4×more memory accesses then the

monolithic. �e excess memory accesses, which lead to reduced energy e�ciency, result
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Table 6.1: Previous accelerator proposals categorized in terms of computation support, and

�exibility of hardware and mapping. Accelerators are categorized into various types introduced in

Figure 6.1 viz. Rigid Monolithic (RM), Flexible Monolithic (FM), and Distributed (Dist)

Mapping Capability Flexibility

Type Homogenous Heterogenous Data�ow

Variable

Dimensions

Multi-array

Mapping

Self

Con�gurable

Zhang et al. [11] FM X X

Eyeriss [6] RM X

Alwani et al. [12] RM X

NeuroCube [73] Dist X X

MAERI [9] FM X X X

TPU [7] RM X

Flex�ow [10] FM X X

Tetris [68] Dist X X

Brainwave [8] Dist X X

Simba [19] Dist X X

Tangram [20] Dist X X

Cascades [74] FM X X

Sigma [17] FM X

Planaria [75] FM X X

SAGAR (�is work) X X X X X X

from the loss of wire reuse.

From the discussion above we make two observations.

(i) Distributed arrays are more performant than an equivalent monolithic array, even

when mapping e�ciency is 100% on both. However, the optimal size of each device in a

distributed se�ing is workload dependent. (ii) Monolithic con�gurations are strictly more

energy e�cient than distributed arrays, due to loss the of spatio-temporal reuse in the

la�er.

It is intuitive to reason that the optimal solution is perhaps a coarser grained array

which provides su�cient mapping �exibility while maximizing reuse. In Table 6.1 we

inspect a few well known accelerator proposals in terms of scalability and potential to

maximize utilization. We notice that simple architectures that are easy to scale in size,

under perform on extracting operand reuse. On the other hand, architectures with su�cient

�exibility are not scalable. None of the architectures, including the ones with multiple

arrays and NoC support, can create variable sized arrays or �exible array dimensions

which can help simultaneously achieve high mapping e�ciency and data reuse.
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Figure 6.4: (a) A systolic array of traditional MAC units, (b) the architecture of a traditional MAC
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6.3 Recon�gurable Array Design

6.3.1 Compute array

Traditional MAC units. In Figure 6.4(a) we show a traditional systolic array constructed

by laying down Multiply-and-Accumulate (MAC) (Figure 6.4(b)) units in a 2D grid. Each

MAC unit is designed to get an operand from either both (Le� in, Top in) ports or from

either of the ports, and perform multiplication and addition operation. In the next cycle

the operand data received is sent to its neighbour over the peer-to-peer links. �e internal

registers, and multiplexers enable the array to work in output stationary (OS), weight

stationary (WS), and input stationary (IS) modes of operation [6]. �is simple mechanism

of data movement results in high wire reuse, but at the same time restricts the mapping of

compute only to those operations which require same set of operands to be mapped along

a row or a column.

100



(a) (b) (c)

From SRAM banks

From 
SRAM 
banks

Vertical Bypass 
links

Horizontal Bypass 
links

SRAM 
Buffer

SRAM Buffer

SRAM 
Buffer

SRAM Buffer

Mux with no 
bypass selected

Mux with latch to 
bypass selected

SRAM bank

Active Port

Inactive Port

Pipeline latches 
(optional, for timing)

One 8x8 Two 4x8 Two 8x4 Four 4x4 Four 2x8 Four 8x2 Eight 2x4 Eight 4x2

Pass neighbor data Use inputs from bypass links Send peer output and use inputs from bypass links

Sixteen 2x2(d)

Figure 6.5: (a) Construction of a 4×4 systolic-cell with bypass muxes and bypass links. (b) A 8×8 SMART systolic array operating in scale-up

con�guration. Each 4×4 systolic-cell is connected to its neighbor with the peer-to-peer links as the bypass muxes are turned o�. �e SRAM ports

connected to bypass links are unused. (c) Con�guration of bypass muxes to enable the 8×8 SMART systolic array to work as a scaled-out distributed

collection of systolic arrays. �e bypass muxes are turned on to allow systolic-cells to directly connect to the SRAM ports which are all active. (d)

Possible monolithic and distributed con�gurations possible in the recon�gurable Smart-Systolic Array(SSA) using 2×2 systolic-cells

1
0
1



Systolic Cells. �e mapping �exibility in systolic arrays can be improved by allowing

adjacent MAC units to work on di�erent operands. To enable this, the architecture needs

to provision for additional links from the SRAM to the MACs. Providing such links to

each MAC however is costly in terms of area as well as energy since the spatial reuse over

wires is compromised. To simultaneously achieve mapping �exibility and the advantages

of spatial reuse in systolic arrays, we propose a design called systolic-cell. A systolic-cell is

a small grid of traditional MAC units augmented with multiplexers at the edges. �is

enables them to chose the operands from the neighbouring MAC units or a separate set of

operands available via bypass links. �e MACs within a systolic-cell are connected using

peer-to-peer links similar to that of a traditional systolic array. Figure 6.5(a) shows a 4×4

systolic-cell example. Please note that choice of the size of a systolic-cell is implementation

dependent. In general, the smaller the cell size, higher the mapping �exibility, which comes

at a cost of slightly increased area and power.

Scale-up and Scale-out using Systolic Cells. Larger arrays can be created by ar-

ranging and connecting the systolic-cells as depicted in Figure 6.5(b) using the peer-to-peer

links. At the edge of each systolic-cell the muxes can be con�gured to connect to the bypass

links. Please note that dedicated bypass links are allocated to each systolic-cell to allow

concurrency. A�aining �exible mapping in such a design is a ma�er of con�guring the

multiplexers of the systolic-cells. Depending on the mapping , an user can chose not to use

the bypass paths at all and use the entire array as a single monolithic unit by se�ing the

multiplexers to accept data only to/from the peer-to-peer links, (this is the case depicted

in Figure 6.5(b)), which is equivalent to a scaled-up con�guration. One the other hand,

the user can set all the multiplexers to accept and deliver data solely to the bypass links,

therefore operating as a cluster of arrays, each the size of a systolic-cell. �is con�guration,

depicted in Figure 6.5(c) is equivalent to a scaled-out con�guration. Figure 6.5(d) illustrates

some of the possible con�gurations constructed using a 64 MAC units with 2×2 systolic-

cells. As can be observed in this �gure, not only can the array be con�gured to work in
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fully monolithic or fully distributed con�gurations, but also in any of the con�gurations

in between. By se�ing the appropriate muxes in either pass-through or bypass modes,

sub-arrays larger than systolic-cell size can be constructed (eg. 4× 4, 8× 4 etc in this

example). Each of the sub-arrays have access to the scratchpad memory using the bypass

links. Please note that when fully utilized, a larger systolic array improves energy e�ciency

over a distributed con�guration of same number of MAC units by exploiting wire reuse and

reducing SRAM reads. �e availability of such variety of choices for recon�guration leads

to �exible and e�cient mapping, hence improving the utilization and energy e�ciency of

the design.

6.3.2 Bypass links

Adding a dedicated bypass link from the SRAM bank to each systolic-cell along that

row/column is necessary to a�ain full throughput from the array. Given the nature of

the data movements in systolic arrays, we recognize that the vertical links can be used

for both second input and the output operands. In Table 6.2, we examine the bandwidth

requirements from the bypass links for the three systolic data�ows in a distributed se�ing,

by contrasting it to the requirements of the operands. �ese requirements clearly dictate

that high bandwidth bypass are necessary. Another addition in our proposed architecture

are the switches at the edges of the systolic-cells. However, these switches are simple

multiplexers, which are con�gured statically for a given workload, without the need for

any additional logic.

Scalability via Pipelining. On-chip wire scalability studies such as SMART[76] have

shown that it is possible to traverse a few millimeters (9mm to 11mm) of wire length in

1ns before latching the signal. �e authors in SMART achieved this using conventional

asynchronous repeaters (a pair of inverters) placed 1mm apart. In RSA, repeated wires

o�er an opportunity to not only cross a single-systolic cell in a cycle, but in fact bypass

multiple systolic cells within a single-cycle. In our reference architecture SAGAR, we
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Table 6.2: Bandwidth requirements for the bypass links for various data�ows, contrasted to

the requirements of operands (names in parenthesis re�ects the corresponding operands in 2D

convolutions)

Operands Links

Input Mat1

(Activations)

Input Mat2

(Filters)

Outputs Hor. Bypass Ver. Bypass

Output

Stationary

High High Low

High

(Inputs)

High

(Filters)

Weight

Stationary

High Low High

High

(Inputs)

High

(Outputs)

Input

Stationary

Low High High

High

(Filters)

High

(Outputs)

perform place-and-route to determine the number of systolic cells per pipeline stage of

the bypass links. At 28nm, we �nd that 8 systolic cells can be bypassed at 1GHz, as we

demonstrate later in Section 6.6.2, Figure 6.13(h). Note that pipelining the bypass links

only adds a few cycles of �ll time to the RSA, and does not impact the internal timing of

the systolic array within each systolic cell (which is itself pipelined at each MAC unit).

6.3.3 Scratch pad memory

�e array constructed from systolic-cells is backed by SRAM scratchpad memories, which

are constructed as two individual bu�ers. Each of these bu�ers is dedicated to one of the

operand matrices. Such scratchpad SRAM bu�ers are common in accelerators, and are

designed to reduce the number of o� chip accesses and facilitate temporal reuse. Each

operand bu�er is operated in a double bu�ered fashion, so that the prefetch latency can

be minimized. �e system also contains a third bu�er which is used to store generated

outputs elements.

To support the bandwidth of bypass links, we provision for this extra bandwidth by

increasing the number of memory banks in the scratchpad SRAM bu�ers. Despite having

the same number of SRAM ports as in a distributed con�guration, this approach has a

couple of advantages over the la�er. First, there is no replication of data required, which
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Figure 6.6: Psuedocode depicting the control logic

otherwise reduces the e�ective capacity of the system therefore adversely a�ecting reuse.

In our design by eliminating replication we inherently improve the temporal reuse of

operands. Second, each of the systolic-cells can access data in the entire operand bu�er.

Due to uni�ed memory control of each bu�er, operation like multi-cast are implicit in

form of read collation, which improves energy e�ciency without impacting performance.

We describe the impact on reads and energy e�ciency in detail in Section 6.6.1.

6.3.4 Control

Figure 6.6 shows the control logic executed for each GEMM workload or DNN layer. �e

control logic of our proposed system is similar to the control of a distributed systolic array

based system. However, unlike other systems, in a systolic-cell based design, the number

of distributed units is a variable and is determined at runtime based on the data-�ow

and operand shapes. �e following steps describe the logic. 1. recNetInference(): In

this work we use a recommendation system based described in Section 6.4. �e model

takes in the layer parameters and recommends a con�guration, which is the most e�cient

for the workload. 2. setBypassMuxes(): Next, the bypass muxes are set in the compute

hardware to realize the partitioned con�guration. �is is accomplished by writing select

values to a register, whose individual bits drives the select lines. �ese con�gurations stay

static throughout the GEMM computation. 3. partitionWorkload(): �e control logic, then

partitions the original workload by marking portions of the original operand arrays to be

used by each individual partition. 4. systolicController(): Finally, for each partition, an
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instance of systolic array controller is initiated to drive the GEMM operations to completion

and orchestrate the required data movement. Please note that in contrast to a traditional

systolic array like TPU, multiple control units are required to work in parallel.
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6.4 Recommendation Model

�is section describes a neural network based recommendation unit which can simul-

taneously predict the optimal architecture con�guration and mapping strategy, when a

workload arrives. �is system solves two problems. First it minimizes the changes required

in a compiler for con�guration and mapping search, thus easing deployment. Second, it

enables real time recon�gurability. Given that a large recon�gurable array is most likely be

deployed in data-center like use cases, the capability to adapt in real time will help achieve

improved resource allocation and consequently meeting tight service-level-agreements

(SLA).

6.4.1 Architecture design as ML problem

To facilitate learning the design space we have to frame the search problem into a ML task

framework like classi�cation or regression. We found that framing this as a classi�cation

or recommendation task works the best. �is abstraction lets us leverage the existing

works and models which have been invented by the ML community. An important step in

solving this problem is to de�ne the output space of the model. It is natural to assign bins

for the each of the design parameters and independently predict the optimal values for

each parameter of interest. However, this would require a separate model to be trained and

queried for each design parameter. We show that multiple parameters can be combined

into a single output class and consequently can capture the design space using a single

model.

In our case, the output space comprises of (i) �e number and logical layout of the

partitions, (ii) �e dimensions of the arrays in each partition, and (iii) the mapping/data�ow

to be used eg. output stationary (OS), weight stationary (WS),and input stationary (IS).

Figure 6.7(b) shows this output space captured as categories of architecture con�gurations,

indexed by the class ID. �e learned classi�er is expected to select an architecture con�gura-
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tion and corresponding mapping strategy which provides the optimal performance for the

workload. To be�er visualize the complexity of the design space, in Figure 6.7(c) we depict

the runtime and energy consumption for computation and SRAM reads when running

layer 19 of FasterRCNN (see Section 6.6.1) for the di�erent architecture con�gurations and

data�ows. We observe that determining the optima is a non-trivial task; and the likelihood

to chose a sub-optimal con�guration is high, when naive methods are used, resulting in

signi�cant performance and energy costs. Moreover, the best con�guration for this layer

is using 256 partitions laid out as a 8×32 grid of 16×4 arrays using WS data�ow, which

does not conform to conventional practice of using square or near-square layouts.

6.4.2 Recommendation Neural Network

Dataset generation. We generated a dataset of about 2 million workloads, by sampling M,

N, and K dimensions from a uniform distribution of positive integers <= 104
. For each such

workload dimension we searched through the con�guration space of the recon�gurable

array design using 212
MAC units to �nd the optimal (minimum runtime) con�guration

using SCALE-Sim simulator, modi�ed for fast runtime estimation. When using a server

cluster with about 200 Xeon cores, it takes about a week to obtain all the samples.

Choosing the classi�er. Abstracting the problem in the form of a classi�cation

naturally opens up the choice of using existing classi�cation algorithms. We explored a
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handful of pre-existing classi�ers, some of which are listed in Figure 6.7(d). �e Support

Vector Classi�ers and the XGBoost models we use are standard implementations provided

in scikit-learn [60] and xgboost[62] python packages respectively. We implement the

MLPs in keras subpackage in tensor�ow and train them for 20 epochs. In Figure 6.7(e),

we show the prediction accuracy of these models on a test set of 200K points, a�er the

model has been trained on 90% of the dataset. It is interesting to observe that among all

the models only XGBoost was able to reasonably learn the design space and achieve about

87% prediction accuracy.

Recommendation Model: �e performance of XGBoost model is encouraging and

demonstrates that the design space can be learnt. To further improve the prediction

performance of the model, we hand designed a recommendation neural network. We take

inspiration from typical neural network based recommendation systems like DLRM[66],

which is constructed by augmenting embedding lookups with MLP based classi�cation. �e

presence of trainable embeddings help in mapping the input data from the raw input space

to a latent space, which is observed to improve the classi�cation performance. Given our

use-case, there are two main requirements we need to satisfy. First, we need our network

to have high accuracy in predicting the best runtime con�guration which maximizes

performance. Second, given that the recommendation network needs to be queried at

runtime, the network should be small keep the inference latency and implementation costs

low. In our use case, the recommendation inference for a given layer is run concurrent to

the execution of a previous layer whenever possible. Lower inference latency therefore

moves the recommendation step out of the critical path. Moreover, a smaller network

has fewer computation and storage requirements and hence minimizes the overheads.

Honoring these requirements, we propose a network as depicted in Figure 6.7(f). �e

network, called AdaptNet, is simple, where we lookup the embedding entries for the input

features, and then use a classi�er with single hidden layer with 128 nodes and so�max

activation at the output.
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Training, Performance, and Generalizability. To train our recommendation net-

work we use one Titan RTX GPU with 84 SMs. When training on the dataset for 214

MAC based RSA, for 30 epochs with a mini-batch size of 32, it takes about an hour to

converge. Figure 6.8(a) shows the accuracy progression as the training proceeds. We

obtain a high accuracy of 95% of the test dataset of 200K points, which is compared against

other classi�ers in Figure 6.7(e). We also test the robustness of our design by generating

similar datasets of 2M points each for RSA’s with varying number of MAC units (eg 212
,

213
etc). �e aim is to test the performance of di�erent AdaptNet with di�erent output

con�guration space. In Figure 6.8(b) we plot the test accuracies obtained for each such

AdaptNet trained for 30 epochs with 90:10 training-testing split. Please note that the

data points in test datasets are unknown at training time. We observe that the networks

all achieve high accuracies over 90%. To distinguish the AdaptNet’s among themselves

we use the size of the con�guration space as a su�x. For example, the design space of

214
MAC has 858 possible con�guration, therefore we call the corresponding network

AdaptNet-858.

6.4.3 Alternatives to AdaptNet

Memoization, in form of caching is one alternative to AdaptNet to a�ain constant time

con�guration lookup. However, caching only works for a limited number of previously

computed workloads. For any workload which does not hit in the cache, search has to be

performed at runtime. �e large con�guration space of RSA as depicted in Figure 6.7(a)

makes it a non scalable solution. One the other hand, AdaptNet, owing to learned

parameters, can generalize con�guration recommendation to any query having workload

dimensions generated from the distribution of its training dataset.
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hardware unit (AdaptNetX) as a function of number of multipliers. (b) Architecture of the custom

1-D unit hardware for AdaptNetX(c) Relative performance of the con�gurations predicted by

AdaptNet-858 for SAGAR for 2×105
test samples when compared to the runtime of best possible

con�gurations

6.5 Self Adaptive Reconfigurable Arrays

By coupling AdaptNet with a recon�gurable array, we can create a self adaptive system

which can be conceptually viewed as a combination of two units, a Self Adaptive unit (SA),

and a Recon�gurable Array (RA) unit as shown in Figure 6.2. �e SA unit encompasses

the so�ware and hardware components which recommend the optimal con�gurations.

�e RA unit is the hardware unit capable of �exibly con�guring to the recommended

con�gurations and hence run the workloads. It is worth pointing out that this design class

is not speci�c to a recon�gurable core for running GEMM workloads. Instead any Coarse

Grained Recon�gurable Array (CGRA) unit, con�gurable at runtime, can be augmented

with a suitable SA, to ensure optimal performance. We believe this results in a new class

of designs, which we name Self Adaptive Recon�gurable Array (SARA).
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6.5.1 Hardware to run AdaptNet

In the context of our use case, an intuitive option is to allocate a few systolic-cells from the

main array to run AdaptNet. However, this choice will lead to either fewer MAC units

le� for the actual workloads, or to allocate additional systolic-cells for AdaptNet leading

to an additional overhead. An alternative to adding more systolic-cells will be to add a

custom hardware dedicated for running AdaptNet. We explore both the systolic-cell and

custom hardware options below for AdaptNet-858.

AdaptNet Runtime on systolic-cells. Figure 6.9(a) shows the cycles required for

a single inference of the AdaptNet as a function of multipliers used in 4× 4 systolic-

cell based array. Understandably, the runtime decreases proportional to the increase

in number of multipliers as we increase the number of systolic-cells, achieving the best

runtime of 1134 cycles when using 1024 multipliers or 64 cells. When both the workloads

and the recommendation engine is run on a same array; for a TPU equivalent machine with

214
MAC units, about 6.25% of the array needs to be allocated for running the AdaptNet.

Another choice could be allocating more hardware resources in terms of extra 64 systolic-

cells dedicated to run the recommender network. However, given that AdaptNet has

exclusively dense layers processing the embedding lookups, a systolic execution turns out

to be sub-optimal.

AdaptNet Runtime on AdaptNetX. We found a custom design tuned for Adapt-

Net layer parameters to be more e�cient. For e�cient execution of the dense layers, we

chose a 1-D multiplier unit with a binary tree based reduction as shown in Figure 6.9(b).

We found Input stationary (IS) data�ow to be the most performant for our use case. In this

mapping the elements of the input vector is bu�ered near the multipliers, while elements

of the weight matrix are streamed through to generate one output element/partial sum,

with a sustained throughput of 1 element per cycle. �roughput can be further increased

by adding more such 1-D units. We name the custom core with one or more such 1-D units

as AdaptNetX. In Figure 6.9(a) we depict the variation of runtime of AdaptNet inference
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on AdaptNetX with two 1-D units as a function of multipliers. We �nd the 512 multipliers

result in best runtime of 576 cycles, when running AdaptNet for 214
MAC unit systolic-cell

design. We also examine the cost of misprediction of AdaptNet in Figure 6.9(c), where we

plot the runtime of the predicted con�gurations from AdaptNet-858 normalized to best

possible runtime. We see that most mispredictions are benign and only a few misprediction

lead to catastrophic performance losses, leading to a geometric mean of 99.93% of the best

possible performance.

6.5.2 SAGAR Accelerator

SAGAR is constructed by augmenting the 214
MAC RSA unit, laid out as 32×32 grid of

systolic-cells, with AdaptNetX running AdaptNet-858 (see Figure 6.10). We chose this

con�guration as it has the same compute as the TPU v2, and the 4×4 systolic-cell size

works the best for our workloads (see Section 6.6.1). Since each row and column in this

con�guration has 31 bypass links and one link to MAC, each bu�er is constructed as a

collection of 1024 1KB banks.

Real-time Recon�guration. �e AdaptNetX uses an additional SRAM bank of

512KB to store the embedding table and the weight matrices for AdaptNet-858. Each

con�guration corresponds to a 3968 bit vector which sets the bypass muxes, once the layer

is ready to be mapped.
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Figure 6.11: (a) Simulated runtimes for monolithic 128×128 baseline, distributed 1024 4×4 baseline, and SAGAR for layers in AlphaGoZero,

DeepSpeech2, and �rst 10 layers of FasterRCNN (b) SRAM reads for the same workloads for SAGAR and baseline con�gurations (c) Speedup of

SAGAR and distributed baseline as compared to the monolithic baseline (d) Energy consumption breakdown for our workloads in SAGAR and
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Table 6.3: Table depicting the architectural con�guration of distributed systolic array based systems,

monolithic systolic array baseline, and SAGAR

Name Num Units MAC/unit

Banks per

SRAM bu�er

Capacity per

SRAM bank

Dist. 4x4 units 1024 16 4 256 B

(Baseline)

Dist. 8x8 units 256 64 8 512 B

Dist. 16x16 units 64 256 16 1 KB

Dist. 32x32 units 16 1024 32 2 KB

Dist. 64x64 units 4 4096 64 4 KB

Monolithic 128x128 1 16384 128 8 KB

(Baseline)

SAGAR 1 16384 1024 1 KB

6.6 Evaluations

We evaluate SAGAR in two se�ings. To capture the merits of the architecture, we present

results obtained from simulation. While the implementation aspects are captured by

reporting PPA number obtained from Place-and-Route (PnR).

6.6.1 Architectural evaluations

Methodology. For our architecture level studies we chose to use SCALE-Sim [58]. SCALE-

Sim is a cycle accurate simulator for systolic array, which generates per cycle data accesses

to and from various memories. �is enables us to estimate and compare performance,

energy consumption, power etc. of systolic array based components to a certain degree of

accuracy. We created in-house scripts to generate SCALE-sim input �les to perform the

workload partitioning for the con�gurations recommended by AdaptNet-858.

Workloads. For our evaluations we choose FasterRCNN[67], DeepSpeech2[48], and

AlphaGoZero[77], as our workloads as a representative of convolution neural networks,

language modelling network, and DNNs for reinforcement learning respectively. Fig-

ure 6.11(f-g) shows our sensitivity analysis using a few other well known networks.
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Table 6.4: Dimensions for the synthetic GEMM workloads

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

M 128 256 512 1024 2048 128 256 512 1024 2048

K 128 256 512 1024 2048 64 64 64 64 64

N 128 256 512 1024 2048 64 64 64 64 64

G11 G12 G13 G14 G15 G16 G17 G18 G19 G20

M 64 64 64 64 64 64 64 64 64 64

K 64 64 64 64 64 128 256 512 1024 2048

N 128 256 512 1024 2048 64 64 64 64 64
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Figure 6.12: Distribution of favorable array sizes for a 16384 MAC distributed system which a�ain

the lowest runtime when run for each layer in (a) synthetic GEMM workloads (b) AlphaGoZero, (c)

DeepSpeech2, and (d) FasterRCNN.

Baselines. We chose a 128×128 monolithic systolic array and distributed array of

1024 4× 4 arrays as our baselines as depicted in Table 6.3. Both the arrays have same

number of MAC units as TPUv2. Each array in distributed con�guration resembles the

tensor cores in Nvidia GPUs. Both that baselines have the same total SRAM memory

capacity of 3MB divided into bu�ers for staging two operand and one output matrix.

Performance Analysis. We model both of the baseline systems and SAGAR in SCALE-

Sim and compare the performance for our workloads. In Figure 6.11(a) we depict the

cycles taken to run all the layers in AlphaGoZero, DeepSpeech2, and the �rst 10 layers

of FasterRCNN networks. Among the baselines, the distributed con�guration mostly

results in faster runtime owing to higher mapping �exibility. However SAGAR, owing to

recon�gurability is capable of matching the be�er baseline con�guration. Naturally, this

�exibility leads to lower aggregated runtime for SAGAR than either of the baselines. We

see this trend generalizing in Figure 6.11(f) as well.
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systolic-cell Design Space Exploration. SAGAR is also capable of realizing con�gu-

rations which are out of scope of either of baselines. �is allows SAGAR to achieve higher

performance than both the baselines on certain layers. For example, consider the synthetic

GEMM operands depicted in Table 6.4. Figure 6.12(a) depicts the histogram of the best

con�guration for these layers obtained from simulation. �e layers favouring 8× 8 or

32× 32 con�gurations constitute about 40% of the set. Neither of these con�gurations

can be realized a �xed array con�guration like the baselines. In Figure 6.12(b,c,d) we

show the histogram of a similar experiment conducted on our DNN workloads. For these

speci�c workloads, the 4×4 con�guration works the best for majority of the layers. �is

observation also explains our �ndings in Figure 6.11(a) on why SAGAR’s performance is

identical to the 4× 4 baseline. Nevertheless, for layers which favor con�gurations like

8× 8, 32× 32 etc. SAGAR will lead to lower runtime than both the baselines. �is is

depicted by Figure 6.11(c), where we see that SAGAR achieves about > 10× speedup over

monolithic when distributed con�gurations are preferred. While in cases where monolithic

is preferred it runs faster than both the baselines.

SRAM reads and Energy e�ciency. In general, due to the loss of reuse, distributed

con�gurations with smaller array sizes have more SRAM reads resulting in lower energy

e�ciency. We observe this trend in action in Figure 6.11(b) where we depict the number

of SRAM reads performed for layers when running our workloads on the two baselines

and on SAGAR. �e distributed 4×4 system has much higher number of reads as com-

pared to SAGAR and the monolithic baseline. In SAGAR this e�ciency loss in reuse is

mitigated by using bypassing links. As shown in Figure 6.11(b), across all layers in our

workloads, SAGAR incurs SRAM reads close to that in the monolithic baseline. In the

case of DeepSpeech2, SAGAR, owing to e�cient mapping, incurs reads even fewer than

that of the monolithic baseline. Similar trends are also re�ected in other networks as well

(Figure 6.11(g)). To further quantify the e�ciency of SAGAR, we estimated the energy

spent by the three con�gurations on the workloads by taking into account the cycle counts
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and the SRAM reads and scaling the counts by typical energy consumed per operation

computed from RTL PnR �ows. For all the workloads, the wire energies calculated using

100 fJ/bit-mm at 14nm [78], come to be about 0.1% (maximum being 0.11% or 0.8uJ in

AlphaGoZero), which is negligible. In Figure 6.11(d) we plot the energy consumed for the

three workloads on the baselines and SAGAR. We observe that for workloads amenable

to monolithic array (ie. FasterRCNN and DeepSpeech2), SAGAR’s energy consumption is

almost identical to the monolithic baseline. �e distributed baseline on the other hand con-

sumes an order of magnitude higher energy for all the three workloads, while supporting

the same mapping con�gurations as SAGAR. �e di�erence in energies are a direct conse-

quence of utilization. Since �ne grained power or clock gating is impractical, the arrays

with poor utilization consume same amount of power as the arrays with be�er utilization.

However, these arrays take longer to complete resulting in higher energy consumption.

For AlphaGoZero, which favours a distributed con�guration, SAGAR consumes about 20%

of the energy consumed by the monolithic baseline, while almost one order of magnitude

lower than that of the distributed baseline. Figure 6.11(d) also shows that SAGAR’s energy

consumption for SRAM is close to that of consumed by the monolithic array for all the

three workloads. �e computation energy consumption in SAGAR equivalent to the be�er

of the two baselines. �e combined e�ect of improved latency and reuse is perhaps be�er

represented by the energy-delay product (EDP) depicted by Figure 6.11(e). In this �gure

we plot the EDP for SAGAR and the two baselines normalized to the values corresponding

to the monolithic con�guration. We observe that SAGAR results in about 92% to 80% less

EDP compared to the monolithic baseline. �is further demonstrates the e�ciency of our

proposed architecture, resulting from preserving reuse while simultaneously decreasing

latency due to improved mapping.
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Figure 6.13: Design-space exploration and �nal architecture of SAGAR. (a) �e post PnR �oor-plan diagram of SAGAR’s compute array, (b) A

table detailing architecture con�guration of SAGAR, the implementation parameters, and post PnR area and power of SAGAR. (c) �e comparison

and breakdown of post synthesis area for distributed systolic array based designs, the monolithic systolic baseline, SAGAR, and SIGMA (d) �e

corresponding breakdown for power consumed by various components in distributed systolic array based designs, the monolithic systolic baseline,

SAGAR, and SIGMA (e) �e variation of total area footprint of SRAM banks in various distributed systolic array and monolithic con�guration

juxtaposed with the variation in bank sizes and the number of banks required, (f) A similar variation in the power consumption by the SRAM banks
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6.6.2 Implementation evaluations

Methodology. We implemented SAGAR in RTL as a 32×32 array of 4×4 systolic-cells and

ran ASIC �ow till Place-and-Route (PnR) to obtain area and power. We used 28nm library

for implementing the logic. We also implemented the SRAM bu�ers as a collection of 1024

1KB cells with the SAED32 education library from Synopsis, to quantify the power and

area overheads, and then scaled down to 28nm equivalent by using Dennard’s scaling [79].

Figure 6.13(a) depicts the post PnR �oorplan of SAGAR’s compute logic. Figure 6.13(b) lists

the array con�guration, area, and power consumption reported a�er PnR by synthesizing

the RSA and memory at a operating frequency of 1 GHz. At 32.768 TOPs (with 1 MAC

being two operation) at 1 GHz SAGAR takes 81.90 mm2
of real estate while consuming

13.01 W of power. AdaptNetX consumes 8.65% of area and 1.36% of power.

Baselines. We implement the baseline monolithic 128×128 systolic array and dis-

tributed 4× 4 array in RTL. �e distributed array is implemented using 1024 identical

4×4 traditional systolic arrays connected together by a mesh interconnect. We used the

OpenSMART [80] tool to generate and synthesize the mesh topologies for these systems.

�e total memory capacity of both the monolithic and the distributed con�gurations

are kept the same at 3MB. As discussed in Section 6.6.1 the monolithic array has two

input operand bu�er of 1MB each and an output bu�er also with the 1MB capacity. In

our implementation, we opted for one bank per row or column of the array. �is choice

ensures that each incoming link to the array will have full bandwidth from SRAM provided

that bank con�icts are negligible. �erefore each bu�er in the monolithic baseline is

constructed using 128, 8KB banks. For the distributed con�guration, for each 4×4 array

we end up with 1MB for each operand bu�er. Using the same design approach as above,

we end up with each bu�er being constructed using 4 banks of 256 words each. In Table 6.3

we extend the same design principle for designing the memory for various other cell sizes

and for SAGAR. In SAGAR, in addition to the links going directly from the SRAM to the

edge MAC units of the array, we have to consider the bypass links as well. To get full
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bandwidth on these links we need to consider additional bu�ers. Extending the design

described in Figure 6.5, each row and column of SAGAR has 31 bypass links and one link

to the �rst MAC unit, we need 32 banks per row/column. �erefore each SRAM bu�er is

constructed with 1024, 1KB banks.

Area Analysis. In Figure 6.13(c) we depict the break down of area overheads for

SRAM bu�ers, mesh NoC, and the compute array for various distributed con�gurations, the

monolithic array, SAGAR and SIGMA [17]. We observe that the monolithic con�guration is

the most e�cient in terms of area, where it is about 5× more compact than the distributed

4× 4 array con�guration. �e breakdown suggests that the bloating in the distributed

4× 4 con�guration is caused predominantly by the Mesh NoC (contributing to 40.5%),

followed by the SRAM bu�ers. SAGAR on the other hand takes about 8% more area than

the monolithic array, while consuming about 3.2× lower area than the distributed 4×4

con�guration. Considering both SAGAR and the distributed con�guration provides same

mapping �exibility, the proposed design is strictly more e�cient.

Across the various systolic-array con�gurations in Figure 6.13(c), the SRAM area

appears to remain fairly constant. �is is a direct consequence of the bu�er capacity and

construction of the array. In Figure 6.13(e) we depict the total area obtained for various

con�gurations depicted in Table 6.3. We observe that, the various con�gurations vary in

the bank capacity and the number of banks. Since the total capacity remains the same

across the con�gurations, these factor counter balance each other leading to observed

trends.

Power Consumption. In Figure 6.13(d) we depict the post PnR power consumption

for various array con�guration. �e Mesh NoC stands out as the major contributor, which

naturally makes the 4×4 distributed con�guration about 5.3× more expensive than the

monolithic con�guration, with the NoC contributing to about 78% of the power. Consid-

ering the power of the compute array alone, all the systolic-array based con�gurations

appear to consume similar power. We also depict the trend in power consumed by SRAM

123



banks across various systolic-array based con�gurations in Figure 6.13(f). Similar to the

trends observed in area breakdown, the counter balancing a�ects of increasing the bank

sizes and lowering of number of banks lead to similar powers across various distributed

and monolithic con�gurations.

RSA however consumes about 50% more power than the monolithic con�guration,

owing to the bypass links. However this extra cost results in achieving the same mapping

�exibility of the 4×4 distributed con�guration, which is about 3.5× more expensive.

Scalability Analysis. (i) Figure 6.13(g) we show the overhead of using smaller systolic-

cell sizes in terms of area and power normalized to monolithic con�guration. For speci�c

use cases with relaxed requirements for �exibility larger sized systolic-cells can be used to

improve the implementation costs. (ii) Figure 6.13(h) we depict the max frequency that can

be met as a function of number of 4×4 systolic-cells that can be bypassed at 28 nm. Since

we target 1GHz, we need to pipeline the bypass paths by inserting �ops a�er 8 systolic-cells

as we discuss in Section 6.3.2.

6.6.3 Comparison with SIGMA

Implementation Comparison. We compare the area of SAGAR with the published area

and power numbers of a state-of-the-art �exible accelerator SIGMA [17]. SIGMA allocates

a signi�cant portion of area for NoC, which together with SRAM comprise about 80% of the

total area Figure 6.13(c). In SAGAR, simple bypass links are used to achieve the �exibility,

which saves about 30% of the area in comparison. From Figure 6.13(d), we observe that

NoC is SIGMA consumes about 1.8× more power than SAGAR, with NoC consuming 45%

of total power.

Performance Comparisons. We analytically model the performance of SIGMA [17],

estimating the time taken to stream, compute, and add partial sums as per the functionality

described in their paper. In Figure 6.14(a) we plot the simulated runtimes for SAGAR,

monolithic baseline, and SIGMA with equal number of MAC units (denoted as SIGMA C)
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Figure 6.14: Runtimes obtained for (a) running dense workloads for monolithic baseline, SAGAR,

and compute normalized con�guration of Sigma (SIGMA C), (b) SAGAR and SIGMA C con�guration

by increasing levels of sparsity (decreasing density) in DeepSpeech2, (c) dense workloads for

monolithic baseline, SAGAR, and area normalized con�guration of Sigma (SIGMA A); and (d)

SAGAR and SIGMA A con�guration by varying levels of sparsity in AlphaGoZero

for our representative workloads. SIGMA C outperforms SAGAR in all workloads. �is is

due to the fact that the operands are directly streamed to the multiplier over the heavy Benes

network, whereas in SAGAR, the store-and-forward operation takes up some cycles. �e

gap in performance further widens with the increase in sparsity as shown in Figure 6.14(b).

As SIGMA implementation takes more area than SAGAR, we also compare against the

area normalized con�guration of SIGMA (denoted as SIGMA A in Figure 6.14) for fairness.

In this case, SIGMA A consumes about an order of magnitude more number of cycles for

each workload as compared to compute normalized con�guration, therefore rendering

SAGAR as the best performer (Figure 6.14(c)). Even when considering workloads with

sparse operands, SIGMA A is able to surpass SAGAR only at operand sparsity values above

70% (see Figure 6.14(d)).
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6.7 Related Works

Flexible DNN Accelerator. Table 6.1 depicts the standing of various such accelerators

in term of native operation supported, mapping capability and �exibility. To e�ciently

execute a variety of workloads, DNN accelerator designs generally come with two tiers

of �exibility, architecture and data�ow. Designs like Neurocube[73], Flex�ow[10], and

by FPGA based designs[11] enable �exible mapping by supporting multiple data�ow.

On the other hand proposals like Planaria [75], Brainwave[8], SIGMA [17], MAERI[9],

Cascades[74] and others [11, 12, 20] enable recon�guration at the hardware level. RSA

enables both mapping �exibility and recon�gurability.

Data�ow and Accelerator Design Space Search. Several architecture and mapping

space exploration tools have been proposed in the recent past to take advantage of �ex-

ibilities in the design. Tool like SCALE-Sim[59], MAESTRO[26], Tetris[68] etc. provide

analytical models for fast cost estimation of speci�c con�gurations. While Timeloop[69],

dMazeRunner[28] etc are tools which perform heuristic or exhaustive search for architec-

ture con�guration or mapping strategy. SARA systems like SAGAR on the other hand use

a trained recommender like AdaptNet to circumvent the search and obtain the optimal

con�guration and data�ow in one shot at runtime.

ML assisted system con�guration. Recent works have demonstrated the use of ML

algorithms to assist in system con�guration. Gamma[34] and ConfuciuX[35] perform

architecture mapping and design space con�guration search using genetic algorithm and

reinforcement learning (RL). On more systems size, work by Mirhoseni et al[37] use RL for

task placement on a heterogeneous system, while modern compilers like AutoTVM[36]

use ML models for cost prediction to improve compilation time. Nautilus[40] uses genetic

algorithm to improve FPGA place and route. It is worth noting that these approaches

mostly enhance search for the optimal con�guration, and this unlike AdaptNet do not

replace search. Perhaps the closest to our approach is work by Kwon et al[41], who use
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online tensor-based recommender systems to aid place and route in chip design.

6.8 Chapter Summary

In this chapter we demonstrate creation of scalable and �exible DNN accelerator ar-

chitecture consolidating the designs and techniques discussed in the previous chapters.

Speci�cally, the chapter introduces Self Adaptive Recon�gurable Architectures (SARA),

which is class of recon�gurable accelerators aided with a learnt model that can predict the

best con�guration for a given workload at runtime. �is chapter also describes SAGAR, an

instance of SARA which is a 32.7 TOPs �exible and scalable recon�gurable DNN accelerator,

coupled with AdaptNet recommendation model.
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CHAPTER 7

CONCLUSIONS

7.1 Overview of Insights

�e work presented in this thesis outlines the tools, methodologies, and reference archi-

tectures to design �exible architectures to extract both performance and energy e�ciency

in the face of every changing workload demands at scale. �e following paragraphs

summarise the contributions described in the previous chapters in the thesis.

Systematic analysis of scaling DNN accelerators. In Chapter 3, I have described

and analytical model and a cycle accurate simulator called SCALE-Sim, which together

facilitate fast but detailed analysis of the performance and e�ciency of systolic array

based DNN accelerators when running di�erent workloads and mapping strategies. �ese

tools are then used to perform an analysis of for scaling strategies for systolic array based

accelerators. �e main insight of this study are as follows:

• For systolic based accelerators, the scaling up strategy or building large monolithic

computing structures is economical given the regular shape of the array and simple

constructions. Provided that workloads can be mapped such that the entire array is

utilized; such large arrays are capable of a�aining high energy e�ciency by extract-

ing high wire reuse. However, the simple and rigid structure of the array makes it

extremely di�cult to utilize the full computational power of such arrays hindering

performance. Alternatively, the scaling out strategy, which involves using multiple

computational arrays to collaboratively solve a problem have much higher �exibility

in mapping compute and therefore almost always out performs a scaled up monolithic

array structure.

• Energy e�ciency is another important metric to be mindful about when designing
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custom architectures. When scaling systolic array based accelerators, opting for a

purely scaled out con�guration leads to a loss in operand reuse. Given that any GEMM

operation has deterministic work to be done, energy consumption is proportional to

the time hardware is kept on to perform the required computation. Lower utilization,

leads to higher runtimes, which in turn hurts the energy e�ciency. �e most e�cient

con�guration therefore is a trade o� between giving up operand reuse to gain mapping

�exibility. �e sweet spot of choosing the right partitioning granularity consequently

depends on individual computational workloads. Empirically however, as more compute

elements are employed more mapping �exibility is required, making �ner grained

distributed con�gurations more desirable.

• �e above two observations dictate that as the workloads increasingly demands high

computational performance, future accelerator architectures are required to be �exible

if both performance and energy e�ciency needs to be preserved.

High performance �exible accelerator design on FPGA. Chapter 4 describes an

implementation of a �exible DNN accelerator on state of the art Xilinx FPGA. �e design

is motivated by the observations in the previous chapter and aims to exploit �exibility to

co-optimize for performance and energy e�ciency. FPGAs are a natural implementation

choice for �exible architectures. However a serious drawback of FPGA based design is the

designs implemented in the programmable fabric struggle to achieve higher clock speeds

and barely a�ain the maximum possible frequency Fmax. �e following point summarizes

the novelty and e�cacy of the proposed design:

• �e design uses the DSP48 cascades as computational units instead of implementing

MAC compute elements on the FPGA fabric. �ese DSP48 blocks are hard macros

implemented on silicon as opposed to any logic emulated using the look up tables

(LUTs) on the FPGA fabric, and therefore are capable of running at a high frequency of

750MHz(Fmax) of Xilinx VU37P Ultrascale+ FPGA.
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• �e DSP48 units are connected using dedicated hardwired interconnects in a daisy

chained fashion (cascades) and thus are capable of short distance low latency transfer of

operand and results to each other. �ese compute elements are backed by URAM 288 and

RAMB18 (block RAM) structures, which also have their dedicated cascade connections

allowing both compute operations and memory transactions to take place at maximum

frequency (650 MHz for URAM).

• �e proposed design leverages the programability of the DSP48 blocks and cascade

connections and implements two main type of vectorized compute units which are

suitable for convolutions and matrix vector operations respectively. Each of the compute

units are designed to extract maximum possible operand and partial sum reuse by

exploiting the cascade connections between di�erent DSP48 units or the memory units.

Depending upon the workload, the fraction of area dedicated to convolution and matrix

vector compute units can be determined at the compile time.

• As described in detail in Section 4.5, this design a�ains an operating frequency of

650 MHz (Fmax for URAMs) and the recon�guration allows us to e�ciently divide the

available space for matrix-vector and convolutions units thus achieving maximum

possible energy e�ciency.

Learning design andmapping space of custom architectures. In the next chapter

(Chapter 5) we study the design space of systolic array based accelerators to determine if

the space can be captured by a machine learning model such that the design optimization

task can be automated. In my speci�c study, three representative yet signi�cant case studies

are considered. �e �rst case study deals with �nding the optimal array dimensions and

mapping (data�ow) for given GEMM operations, subjected to design constraints in terms

of maximum computational capacity. �e next case study deals with �nding the optimal

memory sizing for various SRAM bu�ers feeding the systolic array based accelerator.

�e �nal case study optimizes the placement of various workloads onto a collection of

130



heterogeneous accelerators such that runtime is minimized. �e following points capture

the main observations of this work:

• �e analysis of design space for the three case studies reveal consistent pa�erns which

hold across the changing landscape of input parameters. A couple of insights are

apparent from the analyzed data. First, the optimal values in general are clustered in

the design space. �is renders the learning model naturally to a classi�cation se�ing,

where the hyper planes separating the di�erent clusters are needed to be learnt. Second,

the pa�erns however are only recognizable at higher dimensional spaces with the input

parameters as basis.

• When choosing the right model for learning the hyperspaces, classi�ers appears to

be the natural candidate. A classi�er based learning framework however requires a

separate model for each architecture or mapping parameter to be optimized. In contrast

recommendation system models are capable of co-optimizing multiple parameters using

a single model. In this work we therefore build a custom recommendation model, which

is a simple concatenation of embedding tables for input parameters followed by a simple

2 layer MLP based classi�er.

• On training the custom designed recommender network on training datasets for the

three case studies, we observe that the network learns the optimization space to varying

degrees of test accuracy. In comparison to o�-the-shelf network topologies, the custom

model performs be�er for each of the cases. Among the various case studies however,

we observe that prediction accuracy is usually higher for the ones which have relatively

uniform probability distribution across the di�erent output labels

Self Adaptive Recon�gurable Arrays (SARA). Internalizing the insights obtained

from the previous chapters, Chapter 6 presents a architecture which is capable of extracting

both high performance and energy e�ciency at scale with negligible interference from

the so�ware stack. �e key motivating factor of the design is that in order to remain
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performant and energy e�cient at scale, the architecture needs to morph between varying

degrees of partitioned and monolithic con�gurations. Furthermore, even when working

with a �xed number of partitions the shape of the arrays along with the optimal mapping

strategy change when considering di�erent workloads. However, with increased �exibility

at scale the recon�guration space also increases signi�cantly, which poses a challenge for

deploying such accelerators. �is chapter also describes a method for rapid design and

mapping optimization using learnt model. �e following points capture the main insights

of the work:

• �e architecture comprises of two main sections. �e �rst part is a recon�gurable array

(RA) which is morphable in to varying partitioned or monolithic form factors which

ever is suited for the best possible execution of the target workload. �e second part is

a self adaptive (SA) engine, which is the optimizer responsible for con�guring the RA

part depending on the workload parameters without any optimization input from the

so�ware stack.

• �e RA portion in this proposal is implemented as an array of systolic cells connected

together using peer to peer and bypass links. �e systolic array like structure enable

simple design and high scalability, and also allows to exploit maximum possible operand

reuse. �e bypass links allow the various systolic cells to work on operands other then

the ones obtained from the peer to peer links. �e availability of these bypass paths

allows the array to be operated as a collection of distributed systolic arrays. �e bypass

paths can also be disabled and systolic cells can be con�gured to merged together to

work as a larger array whenever needed.

• �e SA portion of the proposed design comprises of a learnt recommendation model

similar to the ones presented in Chapter 5 called AdaptNet. �e recommendation

model is trained to predict the optimal con�guration of the array when queried with

dimensions of the GEMM workloads (M, N, and K). �e SA portion also comprises of a
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custom hardware block called the AdaptNet-X, which is designed for e�cient execution

of AdaptNet. �erying the learnt model leads to constant time recon�guration of the

array, which takes about 700 cycles from obtaining the workload parameters to se�ing

the con�guration muxes, making it extremely convenient to hide the recon�guration

latency behind the execution of previous workload.

• �e results presented in Section 6.6 depict that our reference implementation saves

about 75% of area and power while providing the same mapping �exibility than that of

a comparable fully distributed systolic array based accelerator system. When compar-

ing the energy delay product with baseline monolithic and distributed systolic array

con�gurations with comparable compute capability, the proposed accelerator achieves

orders of magnitude be�er energy e�ciency on popular convolution and fully connected

layer workloads.

7.2 Discussions

�e data science based analysis of architecture design presented in this thesis opens up

a new direction of architecture design and optimization which hopefully opens up a

new research e�orts. �e ultimate goal of the this e�ort is to build systems which (a)

automatically learn the space of optimal design choices, relevant for a variety of workloads

and (b) capable of recommending novel design components and system organizations to

adapt to changing workload demands. From the analysis depicted in Chapter 5 we can

identify a handful of broad areas exploring which will help maturing this direction of

research.

• Systematic analysis of optimization space. In Section 5.3, we observe that sys-

tematic exploration of design space reveals learnable pa�erns which is exploited

by ML models for prediction of optimal architecture or mapping parameters. How-

ever, an important observation is that these pa�erns are manifested in the space of
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optimal architectural parameters across various workloads and design constraints.

�is is stark contrast to previous works of using learnt models to assist architecture

design, which only aimed to approximate the cost function to speed up search. �e

discovery of the new space of optimal parameters enables us to directly predict

the optimal architecture and mapping con�gurations. Naturally the next step is to

identify and systematically analyze even higher dimensional spaces to help with

further generalization on the architecture mapping optimization task.

• Model construction. In this work we �nd that designing a custom recommendation

model can not only improve the learning performance, but also allows us to �nd

the optimal values of multiple parameters simultaneously using a single inference

pass. �e recommendation model however may not be able to capture design spaces

beyond a certain threshold of complexity. �e next natural question to ask is, weather

there exist some novel machine learning model structure which improves on the

recommendation model se�ing in terms of prediction performance, scaling to broader

con�guration spaces and other capabilities.

• Learned abstractions. �e custom designed machine learning model described

in Section 5.5 shows that multiple architecture and mapping parameters can be

combined and optimized simultaneously. However, it not clear if there is limit to the

nature and the number of parameters which can be combined and optimized. An

ambitious but proportionally impactful study would be the one which can determine

the right mix of parameters. Moreover, if it turns out that parameters can be co-

optimized across the computation stack then there is a possibility that complex

systems that are impractical in the present moment will become much more practical.
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7.3 Future Work

Architecture design has always been a data driven decision making process. However,

the e�orts for automating this process has not come into the mainstream. As of the time

of writing this thesis most of design optimizations are done using search based methods,

and are performed every time a new optima is needed to be found. �ere have been a few

a�empts in the past few years to use learnt models in design space exploration, however

these methods almost exclusively focused on learning the cost function to bypass costly

simulation steps rather than aiming to replace the iterative search based methods.

In this thesis I propose that learning the design space across di�erent parameters

has the potential to drastically reduce the cost of architecture optimization and design.

Although the results presented in the previous chapters of this thesis are promising, it is

undeniable that the study presented here is just scratching the surface. In the following

paragraphs, I present a few immediate and a few long term studies, which I believe will be

able to automate architecture design process. Such a goal if achieved with augment the

skills of an architect to explore more challenging problems.

1. Near Term. Exploring the limits of the recommendation model to capture the

optimization space. In the scope of this thesis, the recommendation models presented

in Chapter 5, Chapter 6 is capable of capturing the entire optimization space. �e

results also show that optimization goals involving multiple parameters is also

possible to be captured by the same model. However several follow on questions are

still needed to be answered. First, if there is a limit to the number of parameters that

can be consolidated into a single model? Second, how big can be the output space

which can be faithfully classi�ed by a recommender like system? �ird, are there

similar scalability limitations on the input space size?

2. Mid Term. �e scope of the studies presented in this thesis focuses on optimizing

within the space of a �xed architecture se�ing, which is our case is a systolic array.
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�e next natural step is to study if a model can be learnt such that it is capable of

recommending di�erent architectural motifs suitable for di�erent kinds of workloads.

For example, if there is a choice to chose from a monolithic systolic array, a SIMD

array, a CPU or any other systolic accelerator, if it is at all possible for a model

to recommend the optimal motif and the corresponding optimal architecture and

mapping con�gurations to run the workloads.

3. Long Term. �e goals mentioned above only concern with the recommendation

space of pre-existing architecture structures. �e long term goal of this study is

to create a model which can learn to generate the optimal architecture structures,

and possibly also create a system by interfacing it with appropriate memory and

peripheral structures.
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APPENDIX A

GENESYS: ENABLING CONTINUOUS LEARNING THROUGH NEURAL

NETWORK EVOLUTION IN HARDWARE

A.1 Introduction

Ever since modern computers were invented, the dream of creating an intelligent entity

has captivated humanity. We are fortunate to live in an era when, thanks to deep learning,

computer programs have paralleled, or in some cases even surpassed human level accuracy

in tasks like visual perception or speech synthesis. However, in reality, despite being

equipped with powerful algorithms and computers, we are still far away from realizing

general purpose AI.

�e problem lies in the fact that the development of supervised learning based solutions

is mostly open loop (Figure A.1(a)). A typical deep learning model is created by hand-tuning

the neural network (NN) topology by a team of experts over multiple iterations, o�en

by trial and error. �e said topology is then trained over gargantuan amounts of labeled

data, o�en in the order of petabytes, over weeks at a time on high end computing clusters,

to obtain a set of weights. �e trained model hence obtained is then deployed in the

cloud or at the edge over inference accelerators (such as GPUs, FPGAs, or ASICs). Unfortu-

nately, supervised learning as it operates today breaks if one or more of the following occur:

1. Unavailability of structured labeled data

2. Unknown NN topology for the problem

3. Dynamically changing nature of the problem

4. Unavailability of large computing clusters for training.
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Figure A.1: Conceptual view of GeneSys within machine learning.

Bringing general-purpose AI to autonomous edge devices requires a co-design of the

algorithm and architecture for synergistic solution of all four challenges listed above. �is

chapter presents a work that a�empts to solve this problem. We present GeneSys, a system

targeted towards energy-e�cient acceleration of neuro-evolutionary (NE) algorithms. NE

algorithms are akin to RL algorithms, but a�empt to “evolve” the topology and weights of a

NN via genetic algorithms, as shown in Figure A.2. NEs show surprisingly high robustness

against the �rst 3 challenges mentioned earlier, and have seen a resurgence over the past

year through work by OpenAI [81], Google Brain [82] and Uber AI Labs [83]. However,

these demonstrations have still relied on big compute and memory, which we a�empt to

solve in this work via clever HW-SW co-design. We make the following contributions:

• We characterize a NE algorithm called NEAT [84], identifying the compute and memory

requirements across a suite of environments from OpenAI gym [85].

• We identify opportunities for parallelism (population-level parallelism or PLP and

gene-level parallelism or GLP) and data reuse (genome-level reuse or GLR) unique to

NE algorithms, providing architects with insights on designing e�cient systems for

running such algorithms.

• We discuss the key a�ributes of compute and communication within NE algorithms

that makes them ine�cient to run on GPUs and other DNN accelerators. We design two

novel accelerators, Evolution Engine (EvE) and Accelerator for Dense Addition

and Multiplication (ADAM), optimized for running the learning and inference
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Figure A.2: Example of NE in action, evolving NNs to play Mario.

of NE respectively in hardware, presenting architectural trade-o�s along the way.

Figure A.1(b) shows an overview.

• We build aGeneSys SoC in 15nm, and evaluate it against optimized NE implementations

over latest embedded and desktop CPUs and GPUs. We observe 2-5 orders of magnitude

improvement in runtime and energy-e�ciency.
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A.2 Background

Before we start with the description of our work, we would like to give a brief introduction

to some concepts which we hope will help the reader to appreciate the following discussion.

A.2.1 Supervised Learning

Supervised learning is arguably the most widely used learning method used at present. It

involves creating a ‘policy function” (e.g., a NN topology) (via a process of trial and error

by ML researchers) and then running it through tremendous amounts of labelled data. �e

output of the model is computed for a given set of inputs and compared against an existing

label to generate an error value. �is error is then backpropogated [86] (BP) via the NN to

compute error gradients and update weights. �is is done iteratively till convergence is

achieved.

Supervised learning has the following limitations as the learning/training engine for

general purpose AI:

• Dependence on large structured & labeled datasets to perform e�ectively without

over��ing [87, 88]

• E�ectiveness is heavily tied to the NN topology, as we witnessed with deeper convolu-

tion topologies [56, 46] that led to the birth of Deep Learning.

• Extreme compute and memory requirements [89, 90]. It o�en takes weeks to train a

deep network on a compute cluster consisting of several high end GPUs.

A.2.2 Reinforcement Learning (RL)

Reinforcement learning is used when the structure of the underlying policy function is

not known. For instance, suppose we have a a robot learning how to walk. �e system

has a �nite set of outputs (say which leg to move when and in what direction), and

the aim is to learn the right policy function so that the robot moves closer to its target
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destination. Starting with some random initialization, the agent performs a set of actions,

and receives an reward from the environment for each of them, which is a metric for

success or failure for the given goal. �e goal of the RL algorithm is to update its policy such

that future reward could be maximized. �is is done by iteratively perturbing the actions

and computing the corresponding update to the NN parameters via BP. RL algorithms can

learn in environments with scarce datasets and without any assumption on the underlying

NN topology, but the reliance on BP makes them computationally very expensive.

A.2.3 Evolutionary Algorithms (EA)

Evolutionary algorithms get their name from biological evolution, since at an abstract level

they be seen as sampling a population of individuals and allowing the successful individuals

to determine the constitution of future generations. Figure A.3(a) illustrates the �ow. �e

algorithm starts with a pool of individuals/agents, each one of which independently tries

to perform some action on the environment to solve the problem. Each individual is then

assigned a �tness value, depending upon the e�ectiveness of the action(s) taken by them.

Similar to biological systems, each individual is called a genome, and is represented by a

list of parameters called genes that each encode a particular characteristic of the individual.

A�er the �tness calculation is done for all, next generation of individuals are created by

crossing over and mutating the genomes of the parents. �is step is called reproduction

and only a few individuals, with highest �tness values are chosen to act as parents in-order

to ensure that only the ��est genes are passed into the next generation. �ese steps are

repeated multiple times until some completion criteria is met.

Mathematically EAs can be viewed as a class of black-box stochastic optimization

techniques [81, 83]. �e reason they are “black-box” is because they do not make any

assumptions about the structure of the underlying function being optimized, they can only

evaluate it (like a lookup function). �is leads to the fundamental di�erence between RL

and EA. Both try to optimize the expected reward, but RL perturbs the action space and
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uses backpropagation (which is computation and memory heavy) to compute parameter

updates, while EA perturbs the parameter space (e.g., nodes and connections inside a NN)

directly. �e “black-box” property makes EAs highly robust - the same algorithm can

learn how to solve various problems as from the algorithm’s perspective the task in hand

remains the same: perturb the parameters to maximize reward.

A.2.4 �e NEAT Algorithm

TWEANNS are a class of EAs which evolve both the topology and weights for given NN

simultaneously. Neuro-Evolution for Augmented Topologies (NEAT) is one of the algorithms

in this class developed by Stanley et al [84]. We use NEAT to drive the system architecture

of GeneSys in this work, though it can be extended to work with other TWEANNs as well.

Figure A.3(b) depicts the steps and �ow of the NEAT algorithm, and Figure A.3(d) lists the

terminology we will use throughout this text.

Population. �e population in NEAT is the set of NN topologies in every generation

that each run in the environment to collect a �tness score.

Genes. �e basic building block in NEAT is a gene, which can represent either a NN

node (i.e., neuron), or a connection (i.e., synapse), as shown in Figure A.3(c). Each node

gene can uniquely be described by an id, the nature of activation (e.g., ReLU) and the bias

associated with it. Each connection can be described by its starting and end nodes, and its

hyper-parameters (such as weight, enable).

Genome. A collection of genes that uniquely describes one NN in the population, as

Figure A.3(c) highlights.

Initialization. NEAT starts with a initial population of very simple topologies com-

prising only the input and the output layer. It evolves into more complex and sophisticated

topologies using the mutation and crossover functions.

Mutation. Akin to biological operation, mutation is the operation in which a child

gene is generated by tweaking the parameters of the parent gene. For instance, a connection
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gene can be mutated by modifying the weight parameter of the parent gene. Mutations

can also involve addition or deletion of genes, with a certain probability.

Crossover. Crossover is the name of the operation in which a child gene for the next

generation is created by cherry picking parameters from two parent genes.

Speciation and Fitness Sharing. Evolutionary algorithms in essence work by pi�ing the

individuals against each other in a given population and competitively selecting the ��est.

However, it is not di�cult to see that this scheme can prematurely prune individuals with

useful topological features just because the new feature has not been optimized yet and

hence did not contribute to the �tness. NEAT has two interesting features to counteract

that, called speciation and �tness sharing. Speciation works by grouping a few individuals

within the population with a particular niche. Within a species, the �tness of the younger

individuals is arti�cially increased so that they are not obliterated when pi�ed against

older, ��er individuals, thus ensuring that the new innovations are protected for some

generations and given enough time to optimize. Fitness sharing is augmenting �tness of

young genomes to keep them competitive.

A.3 Computational Behavior of EAs

�is section characterizes the computational behavior of EAs, using NEAT as a case study,

providing speci�c insights relevant for computer architects.
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Table A.1: Open AI Gym [85] environments for our experiments.

Environment Goal Observation Action

Acrobot Balance a complex inverted pendulum constructed by link-

ing two rigid rods

Six �oating point num-

bers

One �oating point num-

ber

Bipedal Evolve control for locomotion of a two legged robot on a

simple terrain.

Twenty four �oating

point numbers.

Six �oating point num-

bers.

Cartpole v0 �e winning criteria is to balance an inverted pendulum on

a moving platform for 100 consecutive time steps.

Four �oating point

numbers.

One binary value.

MountainCar �e goal of this task is to control an underpowered car

si�ing in a valley such that it reaches the �nish point on

the peak of one of the mountains.

Two �oating point num-

bers.

One integer, less than

three, for the direction

of motion.

LunarLander �e goal to control the landing of a module to a speci�c

spot on the lunar surface by controlling the �re sequence

of its fours thrusters.

Eight �oating point

numbers.

One integer, less than

four, indicating the

thruster to �re.

Atari games �e agent has to play Atari games by controlling bu�on

presses. We used Airraid ram, Alien ram, Asterix ram and
Amidar ram environments

128 bytes indicating the

current state of the

game RAM.

One integer value, indi-

cating the bu�on press.
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Figure A.5: (a) Computation (i.e., Crossover and Mutations) Ops and (b) Memory Footprint of

applications from OpenAI Gym in every generation. A distribution is plo�ed across all generations

till convergence and 100 separate runs of each application.

A.3.1 Target Environments

We use a suite of environments described in Table A.1 from OpenAI gym [85]. Each of

these environments involves a learning task, which we ran through an open-source python

implementation of NEAT [91].

A.3.2 Accuracy and Robustness

All experiments start with the same simple NN topology - a set of input nodes (equal to

the observation space of the environment) and a set of output nodes (equal to the action

space of the environment). �ese are fully-connected but the weight on each connection

is set to zero. We ran the same code-base for di�erent applications, changing only the

�tness function between these di�erent runs. All environments reached the target �tness -

demonstrating the robustness of NEAT
1
.

1
We also ran the same environments with open-source implementations of A3C and DQN, two popular

RL algorithms, and found that certain OpenAI environments never converged, or required a lot of tuning of

the RL parameters for them to converge. However, a comprehensive comparison of RL vs. NE is beyond the

scope of this paper.

147



Figure A.4(a) demonstrates the evolution behavior of four of these environments across

multiple runs. We make two observations. First, across environments, there can be variance

in the average number of generations it takes to converge. Second, even within the same

environment, some runs take longer than others to converge, since the evolution process

is probabilistic. For e.g., for Mountain Car, the target �tness could be realized as early as

generation # 8 to as late as generation # 160. �ese observations point to the need for

energy-e�cient hardware to run NE algorithms as their total runtime can vary depending

on the speci�c task they are trying to solve.

A.3.3 Compute Behavior and Parallelism

As shown in Figure A.3(a), EAs essentially comprise of an outer loop running the evolu-

tionary learning algorithm to create new genomes (NNs) every generation, and inner loops

performing the inference for these genomes. Prior work has shown that the computation

demand of EAs drops by two-thirds compared to backpropagation [81].

Learning (Evolution)

In NEAT, there are primarily two classes of computations that occur - crossover and

mutation, as shown in Figure A.3(b). Figure A.5(a) show the distribution of the number of

crossover and mutations operations within a generation. �e distribution is plo�ed across

all generations till the application converged and across 100 runs of each application. We

observe that the mutations and crossovers are in thousands in one class of applications, and

are in the range of hundred thousands in another class. A key insight is that crossover and

mutations of each gene can occur in parallel. �is demonstrates a class of raw parallelism

provided by EAs that prior work on accelerating EAs [81, 83] has not leveraged. We

term this as gene level parallelism (GLP) in this work. Moreover, as the environments

become more complex with larger NNs with more genes, the amount of GLP actually

increases!
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Inference

�e inference step of NEAT involves running inference through all NNs in the population,

for the particular environment at hand. Inference in NEAT however is di�erent than that

in traditional Multilevel Level Perceptron (MLP) NNs. Recall that NEAT starts with a

simple topology (Section A.3.2) and then adds new connection and nodes via mutation.

�is way of growing the network results in a irregular topology; or when viewed from the

lens of DNN inference - a highly sparse topology. Inference on such topologies is basically

processing an acyclic directed graph. An interesting point to note is that, following an

evolution step, multiple genomes undergo the inference step concurrently (Figure A.3(a)).

As there is no dependence within the genomes, a di�erent opportunity of parallelism arises.

We term this as population level parallelism (PLP).

A.3.4 Memory Behavior

Figure A.4(b) plots the total number of genes as the NN evolves.

Memory Footprint.

It is important to note that the memory footprint for EAs at any time is simply the space

required to store all the genes of all genomes within a generation. �e algorithm does

not need to store any state from the previous generations (which e�ectively gets passed

on in the form of children) to perform the learning. From a learning/training point of

view, this makes EAs highly a�ractive - they can have much lower memory footprint than

BP, which requires error gradients and datasets from past epochs to be stored in order

to run stochastic gradient descent. From an inference point of view, however, the lack

of regularity and layer structure means that genomes cannot be encoded as e�ciently as

convolutionl neural networks today are. �ere have been other NE algorithms such as

HyperNEAT [92] which provide a mechanism to encode the genomes more e�ciently,

which can be leveraged if need be.
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For all the applications in the Open AI gym we looked at, the overall memory footprint

per generation was less than 1MB, as Figure A.5(b) shows. While larger applications may

have larger memory footprints per generation, the total memory is still expected to be

much less than that required by training algorithms due to the reasons mentioned above,

enabling a lot of the memory required by the EA to be cached on-chip.

Communication Bandwidth

Leveraging GLP and PLP requires streaming millions of genes to compute units, increasing

the memory bandwidth pressure. Caching the necessary genes/genomes on-chip, and

leveraging a high-bandwidth network-on-chip (NoC) can help provide this bandwidth, as

we demonstrate via GeneSys.

Opportunity for Data Reuse

Data reuse is one of the key techniques used by most accelerators [93]. Unlike DNN

inference accelerators which have regular layers like convolutions that directly expose

reuse across �lter weights, the NN itself is expected to be highly irregular in an evolutionary

algorithm. However, we identify a di�erent kind of reuse: genome level reuse (GLR).

In every generation, the same �t parent is o�en used to generate multiple children. We

quantify this opportunity in Figure A.5(c). For most applications, the ��est parent in every

generation was reused close to 20 times, and for some applications like Cartpole and Lunar

lander, this number increased up to 80. In other words, one parent genome was used to

generate 80 of the 150 children required in the next generation, o�ering a tremendous

opportunity to read this genome only once from memory and store it locally. �is can save

both energy and memory bandwidth.
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Table A.2: Comparing DQN with EA

DQN EA

Compute 3M MAC ops in forward pass, 680K

gradient calculations in BP

115K MAC ops in inference, 135K

crossover + mutations in evolution

Memory 50 MB for replay memory of 100

entries, 4 MB for parameters and

activation given mini-batch size of

32

<1MB to �t entire generation

Parallelism MAC and gradient updates can par-

allelized per layer

GLP and PLP as described in Sec-

tion A.3.3 and Section A.3.3

Regularity Dense CNN with high regularity

and opportunity of reuse

Highly sparse and irregular net-

works

A.3.5 A case for acceleration

In this section we present the key takeaways from the compute and memory analysis

of EA. We also compare compute-memory requirements of EA with conventional RL in

Table A.2 with DQN [94] as a candidate, both running ATARI.

We notice that EA has both low memory and compute cost when compared to DQN.

Given the the reasonable memory foot print (less than 1MB for the applications we looked

at) and GLR opportunity, it is evident that a su�ciently sized on chip memory can help

remove/reduce o�-chip accesses signi�cantly, saving both energy and bandwidth. Also

the compute operations in EA (crossover and mutations) are simple and hardware friendly.

Furthermore, the absence of gradient calculation and signi�cant communication overheads

facilitate scalability [81, 83]. �e inference phase of EAs is akin to graph processing or

sparse matrix multiplication, and not traditional dense GEMMs like conventional DNNs,

dictating the choice of the hardware platform on which they should be run.

If we can reduce the energy consumption of the compute ops by implementing them in

hardware, pack a lot of compute engines in a small form factor, and store all the genomes

on-chip, complex behaviors can be evolved even in mobile autonomous agents. �is is

what we seek to do with GeneSys, which we present next.
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A.4 Genesys: System and Micro-architecture

A.4.1 System overview

GeneSys is a SoC for running evolutionary algorithms in hardware. �is is the �rst system,

to the best of our knowledge, to perform evolutionary learning and inference on the same

chip. Figure A.6 present an overview of our design. �ere are four main components on

the SoC:

• Learning Engine (EvE): EvE is the accelerator proposed in this work. It is responsible

for carrying out the selection and reproduction part of the NEAT algorithm parts of

the NEAT algorithm across all genomes of the population. It consists of a collection of

processing elements (PEs), designed for power e�cient implementation of crossover

and mutation operations. Along with the PEs, there is a gene split unit to split the

parent genome into individual genes, an on-chip interconnect to send parent genes to

the PEs and collect child genes, and a gene merge unit to merge the child genes into a

full genome.

• Inference Engine (ADAM): We observed in Section A.3.3, the neural nets generated

by NEAT are highly irregular in nature. �is irregularity deems traditional DNN

accelerators un�t for inference in this case, as they are optimized with the assumption

that the topology is a dense cascades of layers. In our case inference is closer to graph

processing than DNN inference, which is essentially a sequence of multiple vertex

updates for the nodes in the NN graph.

ADAM consists of a systolic array of MAC units to perform parallel vertex evaluations,

and a vectorize routine in System CPU to pack nodes into well formed input vectors

for dense matrix-vector multiplication. Similar to input vector creation, the vectorize

routine also generates weight matrices for genomes, every time a new generation is

spawned. However, as the weight matrices do not change within a given generation,

and are reused for multiple inferences, while every new vertex evaluation requires a

153



new input vector.

• System CPU (ARM Cortex M0 CPU): We use an embedded Cortex M0 CPU to perform the

con�guration steps of the NEAT algorithm (se�ing the various probabilities, population

size, �tness equation, and so on), and manage data conversion and movement between

EvE, ADAM and the on-chip SRAM.

• Genome Bu�er (SRAM): We use a shared multi-banked SRAM that harbors all the

genomes for a given generation and is accessed by both ADAM and EvE. �is is backed

by DRAM for cases when the genomes do not �t on-chip.

A.4.2 Walkthrough Example

We present a brief walk-through of the execution sequence in the system with the help

of Figure A.6 to demonstrate the data�ow through the system. Our system starts with a

population of genomes of generation n in memory. �rough the set of steps described,

next, GeneSys evolves the genomes for the next generation n + 1.

• Step 1: �e genomes (i.e., NNs) are read from the genome bu�er SRAM and mapped

over the MAC units in ADAM.

• Step 2: ADAM reads the state of the environment. In our evaluations, the environment

is one of the OpenAI gym games (Table A.1).

• Step 3: Inference is performed by multiple vertex update operations. Several vertices

are simultaneously updated by packing input vertices into a well formed vector in the

CPU, followed by matrix-vector multiplication on systolic array. Inference for a given

genome is marked as complete once the output vertices are updated.

• Step 4: �e output activations from step 3 are translated as actions and fed back to the

environment.

• Step 5: Steps 2-4 are repeated multiple times until a completion criteria is met. For the

OpenAI runs, this was either a success or failure in the task at hand. Following this a
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cumulative reward value is obtained from the environment - a proxy for performance

of the NN.

• Step 6: �e reward value is then translated into a �tness value by the CPU thread. �e

reward depends upon the application/environment. �e �tness value is augmented to

the genome that was just run in SRAM.

• Step 7: Once the �tness values for all individuals in the population are obtained,

reproduction for the next generation can now start. In NEAT, only individuals above

a certain �tness threshold area are allowed to participate in reproduction. A selector

logic running on the CPU takes these factors into account and selects the individuals

to act as parents in the next generation.

• Step 8: �e selected parent genomes are read by EvE. �e gene spli�ing logic curates

genes from di�erent parents that will produce the child genome, aligns them, and

stream them to the PEs in EvE.

• Step 9: �e PEs receive the parent genes from the interconnect, perform crossovers

and mutations to produce the child genes, and send these genes back to interconnect.

• Step 10: �e gene merge logic organizes the child genes and produces the entire

genome. �en this genome is wri�en back into the genome bu�er, overwriting the

genomes from the previous generation. As each child genome becomes ready, it can be

launched over ADAM once again, repeating the whole process.

�e system stops when the CPU detects that the target �tness for that application has

been achieved. Steps 1 to 6 can leverage PLP, while steps 8 to 10 can leverage GLP. Step 7

(��est parent selection) is the only serial step.
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Figure A.7: Schematic depicting the various modules of the Eve PE.

A.4.3 Micro-architecture of EVE

Gene Level Parallelism (GLP)

We leverage parallelism within the evolutionary part - namely at the gene level. As

discussed earlier, the operations in an EA can broadly be categorized in two classes:

crossover and mutation. In NEAT, there are three kinds of mutations (perturbations,

additions and deletions). �ese four operations are described in Figure A.3(d). While these

four operations themselves are serial, they do not have any dependence with other genes.

Moreover, the high operation counts per generation (Figure A.5(a)) indicates massive GLP

which we exploit in our proposed microarchitecture via multiple PEs.

Gene Encoding

Figure A.6 shows the structure for a gene we use in our design. NEAT uses two types of

genes to construct a genome, a node gene which describe vertices and the connection gene

which describe the edges in the neural network graph. We use 64 bits to capture both types

of genes. Node genes have four a�ributes - {Bias, Response, Activation, Aggregation} [84].

Connection genes have two a�ributes - source and destination node ids.

Processing Element (PE)

Figure A.6 shows the schematic of the EvE PE. It has a four-stage pipeline. �ese stages are

shown in Figure A.7. Perturbation, Delete Gene and Add Gene are three kinds of mutations
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that our design supports.

Crossover Engine. �e crossover engine receives two genes, one from each parent

genome. As described in Section A.2.4, crossover requires picking di�erent a�ributes from

the parent genome to construct the child genome. �e random number from the PRNG is

compared against a bias and used to select one of the parents for each of the a�ributes. We

provide the ability to program the bias, depending on which of the two parents contributes

more a�ributes (i.e., is preferred) to the child. �e default is 0.5. �is logic is replicated for

each of the 4 a�ributes.

Perturbation Engine. A perturbation probability is used to generate a set of mutated

values for each of the a�ributes in the child gene that was generated by the crossover

engine.

Delete Gene Engine. �ere are two types of genes in a given genome - node and

connection - and implementing gene deletion for each of them di�ers. Irrespective of the

type, the decision to delete a gene is taken by comparing the deletion probability with a

number generated by PRNG. For node deletion, in addition to the probability, the number

of previously deleted nodes is also checked. If a threshold amount of nodes are previously

deleted, no mode deletion happens in order to keep the genome alive. If not then the node

is nulli�ed and its ID is stored. �is ID is later compared with the source and destination

IDs of any of the connection genes to ensure no dangling connection exist in the genome.

Deletion of connections, is fairly straight forward, but deletion decision is taken either by

comparing the gene IDs as mentioned above or by comparing deletion probabilities.

Add Gene Engine. �is is the fourth and �nal stage of the PE pipeline. As in the

case of the previous stage, depending upon the type of the gene, the implementation

varies. To add a new node gene, the logic inserts a new gene with default a�ributes

and a node ID greater than any other node present in the network. Additionally two

new connection genes are generated and the incoming connection gene is dropped. �e

addition of a new connection gene is carried out in two cycles. When a new connection
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gene arrives, the selection logic compares a random number with the addition probability.

If the random number is higher, then the source of the incoming gene is stored. When

the next connection gene arrives, the logic reads the destination for that gene, appends

the stored source value and default a�ributes, and creates a new connection gene. �is

mechanism ensures that any new connection gene that is added by this stage always has

valid source and destinations.

Gene Movement

Here, we describe the blocks that manage gene movement.

Gene Selector. As we discussed in Section A.2.4, only a few individuals in a given

population get the opportunity to contribute towards the reproduction of the next genera-

tion. In very simple terms, selection is performed by determining a �tness threshold and

then eliminating the individuals below the threshold. In Section A.2.4 we have seen that

NEAT provides a mechanism to keep new features in the population by speciation and

�tness sharing. �e selection logic in our design works in three steps. First, the �tness

values of the individuals in the present generation and read and adjusted to implement

�tness sharing. Next, the threshold is calculated using the adjusted �tness values. Finally

the parents for the next generation are chosen and the list of parents for the children is

forwarded to the gene spli�ing logic. �is is handled by a so�ware thread on the CPU, as

shown in Figure A.6.

Gene Split.. �e Gene Split block orchestrates the movement of genes from the

Genome Bu�er to the PEs inside EvE. In the crossover stage, the keys (i.e., node id) for

both the parent genes need to be the same. However both the parents need not have the

same set of genes or there might be a misalignment between the genes with the same key

among the participating parents. �e gene split block therefore sits between the PEs and

the Genome Bu�er to ensure that the alignment is maintained and proper gene pairs are

sent to the PEs every cycle.
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In addition, this block receives the list of children and their parents from the Gene

Selector and takes care of assigning the PEs to generate the child genome. We describe the

assignment policy and bene�ts in Section A.4.3.

Gene Merge. Once a child gene is generated, it is wri�en back to the Gene Memory

as part of the larger genome it is part of. �is is handled by the Gene Merge block.

Pseudo Random Number Generators (PRNG). �e PRNG feeds a 8-bit random

numbers every cycle to all the PEs, as shown in Figure A.6. We use the XOR-WOW

algorithm, also used within NVIDIA GPUs, to implement our PRNG.

Network-on-Chip (NoC) A NoC manages the distribution of parent genes from the

Gene Split to the PEs and collection of child genes at the Gene Merge. We explored two

design options for this network. Our base design is separate high-bandwidth buses, one

for the distribution and one for the collection However, recall that the NEAT algorithm

o�ers opportunity for reuse of parent genomes across multiple children, as we showed

in Section A.3.4. �us we also consider a tree-based network with multicast support and

evaluate the savings in SRAM reads in Section A.6.

Integration

In this section we will brie�y describe how the di�erent components are tied together to

build the complete system.

Genome organization. As described in earlier sections, we have two types of genes,

nodes and connection. As shown in Figure A.6 each gene can be uniquely identi�ed by

the gene IDs. In this implementation we identify node genes with positive integers, and

the connection genes by a pair of node IDs representing the source and the destination.

Within a genome, the genes are stored in two logical clusters, one for each type. Within

each cluster, the genes are stored by sorting them in ascending order of IDs. Ensuring this

organization eases up the implementation of the Add Gene engine. During reproduction,

since the child gene gets the key of the parent genes, which in turn are streamed in order,
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Figure A.8: (a) Place-and-Routed GeneSys SoC (b) Power consumption with increase in PE in EvE

(c) Area footprint with increase in PE in EvE.

ordering is maintained. For newly added genes, the Gene Merge logic ensures that they

sequenced in the right order when put together in memory.

EvE Data�ow. A�er the Gene Selector �nalizes the parents and their respective

children, the list is passed to the Gene Split block. �e Gene Split logic then allocates PEs

for generation of the children. In this implementation we allocate only one PE per child

genome
2
. �e PE allocation is done with a greedy policy, such that maximum number of

children can be created from the parents currently in the SRAM. �is is done to exploit

the reuse opportunity provided by the reproduction algorithm and minimize SRAM reads.

When streaming into the PE, the node genes are streamed �rst. �is is done in order

to keep track of the valid node IDs in the genome, which will then be used in the gene

addition and deletion mutations. Information about valid nodes are required to prune out

dangling connections and assignment of node IDs in case of a new node or connection

addition. Once the nodes are streamed, connection genes are streamed until the complete

genome of the child is created. Before the genes are streamed, it takes 2 cycles to load the

parents’ �tness values and other control information.

A.4.4 Microarchitecture of ADAM

As mentioned in Section A.4.1, ADAM evaluates NNs generated by EvE by processing

vertices in the irregular NN graph. We had two design choices - either go with a con-

2
It is possible to spread the genome across multiple PEs as well but might lead to di�erent genes of a

genome arriving out-of-order at the Gene Merge block complicating its implementation.
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ventional graph accelerator like Graphicionado [95], or pack the irregular NN into dense

matrix-vector multiplications. Recall that EAs have a small memory requirement (unlike

conventional graph workloads) and do not require caching optimizations. Moreover, given

that our workloads are neural networks, vertex operations are nothing but multiply and

accumulate. We thus decided to go with the la�er approach. ADAM performs multiple

vertex updates concurrently, by posing the individual vector-vector multiplications into a

packed matrix-vector multiplication problem. Systolic array of Multiply and Accumulate

(MAC) elements is a well known structure for energy e�cient matrix-vector multiplication

in hardware, and is essentially the heart of ADAM’s microarchitecture.

However, picking the ready node values to create input vectors for packed matrix-

vector multiplication is a task with heavy serialization. We use the System CPU to generate

required vectors from the node genomes. As both systolic arrays and graph processing

are heavily investigated techniques in literature [96, 97, 95, 98, 99, 100], we omit details of

implementation for the sake of brevity.

A.5 Implementation

GeneSys SoC. We implemented the GeneSys SoC using Nangate 15nm FreePDK. We

implement a 32×32 systolic-array of MAC units for ADAM and measure the post synthesis

power and area numbers. EvE PEs are synthesized and the area and power numbers are

recorded similar to ADAM, as shown in Figure A.8(a). Figure A.8(b) shows the roo�ine

power as function of EvE PEs. We call it roo�ine because the numbers here are calculated

on the assumption that GeneSys is always computing and thus capture the maximum;

actual power will be much lower. In later sections we will discuss why this an overly

pessimistic assumption and ways power consumption can be lowered. Motivated by the

memory footprint in Section A.3.4, we allocated 1.5MB for on-chip SRAM. �e SRAM has 48

banks to exploit the reuse of parents observed in Section A.3.4, as well as to reduce con�ict

while feeding data to ADAM. We also take into account the area and power contributed
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Figure A.9: Runtime and Energy for OpenAI gym environments across CPU, GPU and GeneSys.

(a) Runtime, (b) Energy for Inference; and (c) Runtime, (d) Energy of Evolution

by the interconnect and the cortex M0 processor core. With the post synthesis numbers

and the relationship of SRAM size and number of PEs, we generate the area footprint for

design points with varying number of PE, Figure A.8(c) depicts the numbers.

We choose the operation frequency to be 200MHz, which is typical of the published

neural network accelerators [101, 102, 103, 104]. With 256 PEs, we comfortably blanket

under 1W as shown in Figure A.8(b).

Table A.3: Target System Con�gurations.

Legend Inference Evolution Platform

CPU a Serial Serial 6th gen i7

CPU b PLP Serial 6th gen i7

GPU a BSP PLP Nvidia GTX 1080

GPU b BSP + PLP PLP Nvidia GTX 1080

CPU c Serial Serial ARM Cortex A57

CPU d PLP Serial ARM Cortex A57

GPU c BSP PLP Nvidia Tegra

GPU d BSP + PLP PLP Nvidia Tegra

GeneSys PLP PLP + GLP GeneSys

PLP (GLP) - Population (Gene) Level Parallelism

BSP - Bulk Synchronous Parallelism (GPU)

A.6 Evaluation

A.6.1 Methodology

We study the energy, runtime and memory footprint metrics for GeneSys and compare

these with the corresponding metrics in embedded and desktop class CPU and GPU

platform. For our study we use NEAT python code base [91], and modify the evolution
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Figure A.10: Distribution of time spent in data-transfer and compute in (a) GPU a con�g, (b)

GPU b con�g and (c) GENESYS; (d) depicts the variation in memory footprints for given application

on various platforms

and inference modules as per our needs. We modify the code to optimize for runtime and

energy e�ciency on GPU and CPU platforms by exploiting parallelism and to generate a

trace of reproduction operations for the various workloads presented in Table A.1.

CPU evaluations. We measure the completion time and power measurements on

two classes of CPU, desktop and embedded. �e desktop CPU is a 6th generation Intel

i7, while the embedded CPU is the ARM Cortex A57 housed on Jetson TX2 board. On

desktop, power measurements are performed using Intel’s power gadget tool while on

the Jetson board we use the onboard instrumentation ampli�er INA3221. We capture the

average runtime for evolution and inference from the codebase, and use it to calculate

energy consumption.

GPU evaluations. Similar to CPU measurements, we use desktop (nVidia GTX 1080)

and embedded (nVidia Tegra on Jetson TX2) GPU nodes. For the desktop GPU, power is

measured using nvidia-smi utility while same onboard INA3221 is used for measuring GPU

rail power on TX2. Runtime is captured using nvprof utility for kernels and data-transfers,

and are used in energy calculations. To ensure that the correctness of the operations

are maintained, we apply some constraints in ordering, for example crossovers precede

mutation in time.

GeneSys evaluations. �e traces along with the parameters obtained by our analysis

in Section A.5 are used to estimate the energy consumption for our chosen design point

of EvE. Each line on the trace captures the generation, the child gene and genome id, the
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type of operation - mutation or crossover, and the parameters changed or added or deleted

by the operations. �ese traces serve as proxy for our workloads when we evaluate EvE

and ADAM implementations.

A.6.2 Runtime

Figure A.9(a) and (c) shows the runtime of di�erent OpenAI gym environments on various

platforms for both evolution and inference. In CPU, evolution happens sequentially while

we try to exploit PLP in inference by using multi-threading, running 4 concurrent threads

(CPU b and CPU d). Parallel inference on CPU is 3.5 times faster than the serial counterpart.

We try to exploit maximum parallelism in GPU by mapping PLP and GLP to BSP

paradigm in inference in two di�erent implementations. Genesys outperforms the best

GPU implementation by 100x in inference. Next, we describe our GPU implementations

and discuss our observations.

GPU deep dive. GPU a exploits GLP by forming compaction on input vectors serially

and evaluating multiple vertices in parallel for each genome. In GPU b, multiple vertices

across genomes are evaluated in parallel thus exploiting both GLP and PLP. However

the inputs and weights could no longer be compacted resulting in large sparse tensors.

Figure A.10(a,b,c) depict the contribution of memory transfer in total runtime. We observed

memory transfers take 70% of runtime in GPU a, while GPU b takes to 20% of total runtime

for memory transfer. GeneSys in comparison also take about 15% for memory transfers;

however since all the data is on chip, the actual runtime is 1000x smaller. Figure A.10(d)

depicts the overall on-chip memory requirement in the GPU a, GPU b and GeneSys. We

see that GPU b has a much higher footprint as all sparse weight and input matrices are

kept around, while for GPU a only compact matrices for one genome is required at a time.

GeneSys stores entire population in memory, thus we see 100x more footprint than GPU a,

which is expected as we have a population size of 150. GeneSys has 100x less footprint

than both GPU b as GPU b as genomes rather than sparse-matrices are stored on chip.
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Figure A.11(a) shows the distribution of connections and nodes in various workloads. �e

more the number of connection genes means denser weight matrices during inference

hence higher utilization in ADAM.

A.6.3 Energy consumption

Figure A.9(b) and (d) shows the energy consumption per generations for OpenAI gym

workloads on di�erent platforms. ADAM contributes to 100x more energy e�ciency, while

EVE turns out to be 4 to 5 orders of magnitude more e�cient than GPU c, the most energy

e�cient among our platforms.

A.6.4 Design choices: PEs, SRAMs and Interconnect

Impact of Network-on-Chip Neural network accelerators o�en take advantage of the

reuse in data �ow to reduce SRAM reads and hence lower the energy consumption. �e

idea is that, if same data is used in multiple PEs, there is a natural win by reading the data

once and multicasting to the consumers. In our case, we see reuse in the parents while

producing multiple children of a single parent. �erefore we can use similar methods

to reduce reads as well. Figure A.11(b) shows the number of SRAM reads with a simple

point-to-point network versus a multicast tree network. We observe more than a 100

× reduction in SRAM reads when supporting multicasts in the network, motivating an
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intelligent interconnect design. An intelligent interconnect can also help support multiple

mapping strategies of genes across the PEs, and is an interesting topic for future research.

Parallelizing Evolution Till now we have talked about EvE PE in terms of GLP and

reducing compute cost by implementing GA operations in hardware. �is line of reasoning

can lead to the question that weather GLP can be traded-o� for energy-bene�ts. �e

answer to this lies in Figure A.11(c), where we show the SRAM energy consumption for

evolution (Read+Write) and generation time as a function of EvE PEs; size of ADAM and

SRAM are constant. �e SRAM energy curve indicates that there is almost monotonic

improvement in energy e�ciency as more EvE PEs are added. �e linear decrease in

energy (the curve shows exponential decrease for exponential increase in number of PEs)

is a direct consequence of GLR. At lower PE counts, child genomes sharing same parent

PEs are generated over time, thus requiring a single operand to be read over and over

again. As the number of PEs increase multiple children sharing the same parent can be

serviced by one read if we employ an appropriate interconnect capable of multicasting.

Diverting a�ention to the runtime plot reveals a couple of interesting trends. First the

cycle count for inference is far less than intuitively expected for typical neural networks.

�is is a�ributed to two factors, (i) �e networks generated by NEAT are signi�cantly

simple and small than traditional Deep MLPs, and (ii) ADAM’s high throughput aids

fast Vector-Matrix computations we use to implement vertex updates. �e other more

interesting trend that we see is that at lower EvE PE counts the evolution runtime is

disproportionately larger than inference! �e exponential fall o� depicts that performance

wise evolution is compute-bound, which is in agreement to our observations on GLP and

PLP in Section A.3.3

Decreasing the generation runtime has further bene�ts than it meets the eye. In our

work we used simulated environments with which we can interact instantly. However, for

real life workloads, the interactions will be much slower. �is enables us to use circuit level

techniques like clock and power gating to save even more power. �e lower the compute
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window for GeneSys the more time is used to interact with the environment thus saving

more energy as we hinted in Section A.5.

�e tapering o� of the trends in Figure A.11(c) at 256 PEs is due to the fact that we

exploit only PLP for our experiments and at population size of 150 we intentionally restrict

the exploitable parallelism.

A.7 Discussion and Related Work

Future Directions. It is important to note that the success of evolutionary algorithms is

tied to the nature of application. From a very high level what EA does, is search for optimal

parameters guided by the �tness function and reward value. Naturally, as the parameter

space for a problem becomes large, the convergence time of EAs increase as well. In such

a scenario, we believe that GeneSys can be run in conjunction with supervised learning,

with the former enabling rapid topology exploration and then using conventional training

to tune the weights. Neuro-evolution to generate deep neural networks [105, 106, 107, 82,

108, 109] falls in this category. �e only thing that would change is the de�nition of gene.

Neuro-evolution. Research on EAs has been ongoing for several decades. [110, 111,

112, 113] are some examples of early works in using evolutionary techniques for topology

generations. Apart from NEAT [84], other algorithms like Hyper-NEAT and CPPN [92,

114] for evolution of NNs have also been reported in the last decade [115, 116, 117].

Online Learning. Traditional reinforcement learning methods have also gained trac-

tion in the last year with Google announcing AutoML [118, 119, 120]. In situ learning

from the environment has also been approached from the direction of spiking neural nets

(SNN) [121, 122, 123]. Recently intel released a SNN based online learning chip Loihi [124].

IBM’s TrueNorth is also a SNN chip. SNNs have however not managed to demonstrate

accuracy across complex learning tasks.

DNN Acceleration. Hardware acceleration of neural networks is a hot research topic

with a lot of architecture choices [125, 18, 5, 126, 93, 127, 128, 129, 130] and silicon
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implementations [101, 102, 103, 104]. �ese accelerators can replace ADAM for inference,

when genes are used to represent layers in MLPs as discussed above. However, EvE remains

non-replaceable as there is no hardware platform for e�cient evolution in the present to

the best of our knowledge.

A.8 Conclusion

�is chapter presents GeneSys, an SoC for performing highly energy e�cient and perfor-

mant execution of neuro-evolutionary (NE) algorithms. �e implementation of GeneSys

in 14m, shows orders of magnitude improvements in energy e�ciency and performance

when the same algorithm is run on o�-the-shelf edge hardware units such as Nvidia

Jetson TX2. Apart from the system description, the chapter �rst characterizes NEAT, a

neuro-evolutionary algorithm on several environments in OpenAI Gym. Next, the charac-

terization results are analyzed to determine the feasibility of acceleration and the system

design decisions.
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