An Architectural Journey
into RISC Architectures
for HPC Workloads

Ying Hao Xu Lin

Director: Filippo Mantovani *

Codirector: Eduard Ayguadé 2

! Barcelona Supercomputing Center (BSC)
2 Universitat Politécnica de Catalunya, Barcelona Tech (UPC)

Facultat d’Informatica de Barcelona (FIB)

This dissertation is submitted for the degree of

Master in Innovation and Research in Informatics:
High Performance Computing

Barcelona, 28th of January 2019

Universitat Politecnica de Catalunya (UPC) - BarcelonaTech

Acknowledgments

I would like to thank my two advisors, Filippo Mantovani and Eduard Ayguadé for their support
and for offering me the opportunity to grow as a researcher by working in very interesting and
motivating projects.

A special mention to all my teammates, Constan, Fabio, Kilian and Guillem. Thank you very much
for your support and for making the days in the office more entertaining and more productive.

I would like to thank to all my family and friends, especially to my grandparents. For your ma-
ximum support and the trust you put on me during all this project. There is not enough words to
express how grateful I am. To Cristina, for being there in the best and in the worst moments, for chee-
ring me up when things were not working, for all the sacrifices that you’ve made on my behalf. Thank you!

Finally, I would like to thank all my colleagues at the Barcelona Supercomputing Center for providing an
excellent working environment. And to the research center, I cannot think about a better place to do
research. Thank you for bringing me this opportunity.

“Success is a journey, not a destination. The doing
is often more important than the outcome.”

- Arthur Ashe

Abstract

The race to the Exascale (i.e., 1018 Floating Point operations per seconds) together with the slow-down
of Moore’s law are posing unprecedented challenges to the whole High-Performance Computing (HPC)
community. Computer architects, system integrators and software engineers studying programming
models for handling parallelism are especially called to the rescue in a moment like the one in which we
are living.

While studying the current HPC market, a careful observer can notice that i) the dominance of a single
x86 is fading; i) as a consequence of the previous point, new CPU architectures and accelerators are
gaining relevance (e.g. RISC CPUs and GP-GPUs); #4) also, new workloads coming from industry 4.0
and automotive (e.g. machine learning) are requiring more and more computational resources. Thus,
driving the development of next-generation computational systems.

This thesis explores the boundary of these three observations evaluating the current state-of-the-art of
emerging RISC architectures in HPC (Arm and RISC-V). It studies the performance, the instantaneous
power consumption and total energy spent to reach the solution of a scientific problem in heterogeneous
System-on-Chips (SoCs). For the evaluation, four platforms have been tested: two heterogeneous Arm
platforms (CPU+GPU and CPU4+FPGA), one RISC-V platform and one Open Source RISC-V core
running in an FPGA.

The added values of the thesis come from the fact that:

A. The evaluation of the aforementioned platforms has been performed using a machine learning test-case
based on the k-means clustering algorithm related to predictive maintenance and failure detection
provided by an industrial partner. While preparing this master thesis, I was in fact involved in the
research activities within the collaboration between the Barcelona Supercomputing Center (BSC) and
Aingura IIoT.

B. The tests of the k-means algorithm on the RISC-V core implied the implementation of a System on
Chip allowing the interaction with the RISC-V core. Even if the Ariane core itself is freely available
online, the work of having peripherals for minimal I/O operations and performance counters required
careful work on FPGA using a hardware description language (SystemVerilog).

As expected, the more mature Arm Cortex A57 processor outperformed the rest of the platforms and the
best RISC-V platform shown to perform as good as the Arm Cortex A9. For the heterogeneous platforms,
the studied CPU+GPU system achieved the best performance but the CPU+FPGA used less energy
when considering only the active power of the execution. The document makes special emphasis on the
reproducibility of the experiments by explaining step-by-step how to set up an FPGA-based research
platform using an Open Source RISC-V core and how to interact with the hardware counters defined in
RISC-V in order to measure the performance.

The research work behind this thesis generated two contributions to international conferences: the poster
Is Arm software ecosystem ready for HPC? presented at the Supercomputing conference 2017 [1] and
the paper Implementation of the K-means Algorithm on Heterogeneous Devices: a Use Case Based on
an Industrial Dataset for which I have been corresponding author and speaker at the ParCo conference
in September 2017 [2]. My work on RISC-V cores contributed to the preliminary architectural studies
performed for the European Processor Initiative (EPI) project, a European project for developing next-
generation HPC technology for data centers and automotive industry.

This thesis is organized as follows:
- Chapter 1 presents the motivation of this thesis and the related work;
- Chapter 2 introduces the two RISC architectures we are focusing on, Arm and RISC-V;

- Due to the less mature environment of RISC-V, the entire Chapter 3 focuses on discussing RISC-V,
including the methods available today to run HPC applications;

- Chapter 4 focuses on explaining the scientific problem derived from a real industrial use-case.
The chapter also discusses the optimizations that I applied to map a clustering algorithm into an
algebraic matrix manipulation problem.

- Chapter 5 introduces the methods and the evaluation of four RISC platforms using the scientific
application described in Chapter 4.

- Chapter 6 wraps up with the conclusions followed by Chapter 7, where the future work and next
steps are presented.

Contents

Introduction

1.1 Reduced Instruction Set Computer (RISC)

1.2 Motivation oL e e

1.3 Related work e
1.3.1 Arm in HPC e
1.3.2 RISC-V . . ot e
1.3.3 Clustering techniques and industrial data analysis
1.3.4 Energy analysis oL

RISC Architectures

2.1 Advanced RISC Machine (Arm)
2.1.1 Compilers oL e
2.1.2 Scientific libraries e e e
2.1.3 Parallel Programming models oo
2.1.4 Platforms

2.2 RISC-V . o
2.2.1 Software Ecosystem
2.2.2 Platforms

RISC-V for HPC

3.1 Processor selection L e

3.2 Bare-metal UART e
3.2.1 AXI4d on Ariane e e
3.2.2 wart2debug moduleo
3.2.3 External interaction Lo

3.3 Bare-metal OpenOCD
3.3.1 RISC-V debug specification
3.3.2 Hardware setup L e
3.3.3 External Interaction e

3.4 Linuxo e e e
3.4.1 Device Tree o e
3.4.2 Bootrom
3.4.3 Bootloader e
3.4.4 DBooting Linux oL e

The k-means algorithm

4.1 Algorithm analysis L e

Test and results

5.1 Platforms e
5L Arm .. oL e e
5.1.2 RISC-V . . e

52 CPUonly e e
5.2.1 Methodology e
5.2.2 Evaluation e

5.3 CPU plus accelerator e
5.3.1 Methodology e

10
10
11
11
11
12
12
12

14
14
14
15
15
16
17
18
18

20
20
22
22
23
24
26
26
27
29
32
32
33
33
34

5.3.2 Serial Optimizations
5.3.3 Parallel Implementations o
5.3.4 Evaluation e

6 Conclusions

7 Future work

Appendices

T QHEHOQW >

arlane.cfgo e
Objectdump of add.exe
Ariane Device Tree o . e e
Kernel configuration file (buildroot_defconfig)
PAPI library functions
Read CSV functions e
Bare-Metal k-means Makefile Lo oL
GEMM Kernel figures of merit L oL

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25

5.1
5.2
5.3
5.4
5.5

5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16

Mont-Blanc prototype software stack L 15
Static Instruction mix of a Linux Kernel 0. 21
Ariane’s minimal SoC block diagram. In green the AXI4 connections. 22
Ariane’s AXI4 Crossbar module instantiation. 23
Finite State Machine of uart2debug’s R/W protocol. 23
Finite State Machine of uart2debug’s SoC control protocol. 24
Mini example written in C for testing Ariane’s functionality in an FPGA. 24
Python script to load the binary into the SoC’s memory. 25
Result of the add example running in Ariane on an FPGA. 25
Disassembly of the add example executable (compiled with GGC). 26
RISC-V Debug System Overview from Debug Specificacion version 0.13 draft. 27
Ariane Debug Module Interface ports definition (dmi_jtag.sv). 27
Pmod interface pin numbering (Genesys 2 reference manual). 28
Ariane Genesys 2 user defined constraints for the JTAG port (genesys-2.xdc). 28
Photo of the Genesys 2 board connected to the Olimex ARM-USB-OCD-H debugger. . . 29
OpenOCD connecting to the Olimex ARM-USB-OCD-H. 30
GDB session connected remotely to Ariane using OpenOCD. 30
Loading and executing add.exe in GDB.o 0oL 31
Snippet of code from Ariane’s Device Tree . Full description available in Appendix C. . . 32
RISC-V Bootrom code« e 33
Building the RISC-V Cross-Compiler GNU Toolchain 34
Building the Linux Kernel image for Ariane. 35
Generating the bbl file with the vmlinux as a payload. 35
Converting the bbl ELF into a Bin file. 35
Preparing the SD card to boot Linux. 36
Booting Linux in Ariane running on an FPGA. 0L, 36
Checking the available PAPI counters in the Zynq 7020. 41
Functions to read the hardware counters in RISC-V using Extended Asm from GCC.. . . 41
Ariane executing k-means in Bare-metal vs Linux. Compiled with GCC Unknown EIf. . . 43
input.s file containing CSV input file. oo oL 43

Comparison of the Arm compilers executing k-means (integers) with -O3 flag. For the
figure on the right, baseline time is 36 miliseconds for Zynq and 7 miliseconds in Jetson TX1. 44
Comparison of the RISC-V compilers executing k-means (integers) with -O3 flag. For the
figure on the right, baseline time is 289 miliseconds for Ariane and 40 miliseconds in HiFive

Unleashed. 45
Error when trying to enable Floating Point support in Ariane. 45
K-means (Float) retired instructions in single core cpuonly. 46
K-means (Float) execution time in single core cpuonly. 46
K-means (Float) CPI in single core cpuonly. 46
K-means (Float) speedup between optimization flags on the same platform. 46
K-means (Int) retired instructions in single core cpuonly. 47
K-means (Int) execution time in single core cpuonly. 47
K-means (Int) CPI in single core cpuonly. 47
K-means (Int) speedup between optimization flags on the same platform. 47
GEMM execution time in both Integer and Floating Point version. 48

5.17 K-means pseudocode with OmpSs pragmas with support for SMP, FPGA and GPU execution. 50

5.18 Speedup between different implementations on Jetson TX1 and Zynq 7020. 51
5.19 Execution time between different implementations on Jetson TX1 and Zynq 7020. 51
5.20 Power consumption of 10 k-means repetitions in the Arm platforms. 52

List of Tables

2.1

3.1
3.2
3.3
3.4
3.5

4.1

5.1
5.2
5.3
5.4
5.5
5.6

List of the current available Arm supercomputers. 17
RISC-V extensions status (ISA version 2.2). 21
Genesys 2 Pmod interfaces. L 28
Olimex to Pmod pins assignment. L 0L 29
Olimex ARM-USB-OCD-H pin connections. 29
Genesys 2 JC Pmod pin connections. L Lo 29

Computational cost comparison: dimension (D), num. elements (N), num. centroids (K). 38

Technical specifications of the evaluated Arm platforms. 39
Technical specifications of the evaluated RISC-V platforms. 40
RISC-V user-level performance-monitoring registers addresses. 42
Tested compilers in Arm and RISC-V. 44
Dynamic code size of the k-means kernels. 0L 48

Comparison of figures of merit related to the reference implementation and the one based
on matrix operations. Parameters considered are L1 Data Cache Misses (DCM), Floating
Point operations (FP) and Vectorial operations (VEC). 50

Chapter 1

Introduction

High Performance Computing (HPC) has become an essential part of the scientific method. HPC typically
refers to the practice of combining multiple computers such in a way that the whole system can works
toward solving a large and complex computational problem, generally from the science, engineering or
business field. Scientists are taking advantage of the large computation capacity of HPC systems to
simulate and study complex situations or phenomena, filling in several cases the gap between experiments
and theory. For this reason, HPC is often called the “‘third pillar” of science [3].

Even if High Performance Computing systems are considered a fundamental tool in order to conduct a
research, these systems are so complex that they are a research topic itself. As an HPC system is made of
simple computers (also known as nodes), the current research in HPC tackles the same problems found
in computer research but at a higher scale.

With the end of Moore’s law [4], the trend in performance growth has recently been slowing down so
domain specific architectures have become more prominent. These architectures are both more energy
efficient and faster than general purpose ones, however, as the name says, they are only designed for
accomplishing specific tasks. The System-on-Chips (SoC) powering our smartphones are one of the best
examples of a system containing domain specific units (e.g. wireless radio unit).

Taking advantage of the less complex RISC (Reduced Instruction Set Computer) architecture, current
SoCs can integrate multiple domain specific units combined with a general purpose processor enabling a
balance between energy consumption and performance.

In the following sections we explain the RISC architectural approach, the motivation and the related
work, and finally, we describe the organization of this document.

1.1 Reduced Instruction Set Computer (RISC)

RISC stands for Reduced Instruction Set Computer. This concept is more related to the type of instruc-
tions that are executed rather than the actual implementation of the processor. A processor typically
implements an Instruction Set Architecture (ISA), this is, a set of well defined instructions and encodings.
A RISC ISA is the one that defines a small set of simple and general instructions.

The other existing approach is Complex Instruction Set Computer (CISC). A CISC ISA defines complex
instructions, each of which can execute several low-level operations (e.g. load plus an arithmetic opera-
tion). The main representative of this category is the x86 architecture from Intel. Although the RISC
approach may sound easier to implement than CISC, modern Intel processors read CISC instructions but
the instructions are later converted into RISC-like simpler instructions (Micro-Operations) at the back-end.

The RISC approach requires a higher number of cycles per instructions while in CISC architecture
a single instruction can take multiple cycles due to its complexity. However instruction complex-
ity and throughput are not the only differences between CISC and RISC. Typically the RISC ISAs
use a uniform instruction length and the memory is strictly accessed using separate load/store instructions.

10

For these reasons, nowadays, the industry is focusing on RISC-like architectures. There are several RISC
architectures that are used today but the one with more presence is Arm (Advanced RISC Machine). Arm
processores are used in almost all the embedded devices (e.g. smartphones and IoT) and became a really
popular architecture due to its embedded nature and the lower power consumption®.

The next big thing to happen in computer architecture is RISC-V (pronounced “risk-five”). RISC-V as
the name states, also falls in the RISC-like architecture category but the main difference is that is free
and the ISA is open. This means that anyone can build a RISC-V processor and commercialize it without
having to pay any license. In Arm’s case, if a company wants to commercialize an Arm processor, it has
to pay licenses to use the Arm instruction set even if the processor is not designed by Arm.

Due to the free nature of RISC-V, computer microarchitecture researchers are benefiting of online available
open-source RISC-V cores to conduct their experiments. On the other hand, companies can take advantage
of the RISC-V ISA, as they can design their own processors targeting their specific problem (domain
specific architectures) and commercialize them without having to pay any license.

1.2 Motivation

The work presented in this thesis started with a collaboration between Barcelona Supercomputing Center
(BSC) and Aingura IIoT. Aingura IIoT is a Spanish industrial manufacturing company, part of the
Etxe-tar group, specialized on industrial IoT solutions. Their solutions focus on optimizing the operation
of industrial machines, e.g. implementing predictive maintenance techniques.

Part of the Aingura IIoT solutions involves machine learning workloads. These are well known to be
compute intensive workloads often classified as HPC workloads. The collaboration between BSC and
Aingura IIoT started looking at a real industrial problem where a machine uses a laser to apply a
treatment (temper) to a surface. Monitoring the temper process and combining it with on-line machine
learning algorithms, BSC and Aingura IIoT worked on predictive maintenance and failure detection
techniques. In the temper process, two independent monitoring systems are providing feedback to an
embedded board housing a Xilinx Zynqg 7020 with two Arm Cortex-A9 and a reconfigurable logic (FPGA).
The requirement of Aingura IToT was to detect anomalies in the temper process within a time frame
using clustering techniques (k-means).

The implementation, early tests and the evaluation I performed within this collaboration were collected
and presented in the paper Implementation of the K-means Algorithm on Heterogeneous Devices: a
Use Case Based on an Industrial Dataset [2], which I presented in the ParaFPGA mini-symposium in
conjunction with ParCo2017 conference.

Within the collaboration with Aingura IIoT I continued the work started in the paper and extended it
to more platforms, i.e., other state-of-the-art Armv8 and RISC-V cores. As in the paper we were trying
to solve a real industrial problem, this research was motivated by the interest of knowing how new
architectures, such as RISC-V, are performing while solving compute intensive problems coming from a
real industrial environment.

1.3 Related work

The work presented in this thesis tackles three research areas: 4) Arm in HPC, i) RISC-V, and 4ii) Clus-
tering techniques and industrial data analysis. In this section I present the papers, books and online
resources that I used to build my background on each of this topic.

1.3.1 Arm in HPC

The Arm architecture is gaining importance in the race to Exascale [5]. Several international projects
announced the adoption of Arm technology for high-end production HPC systems, e.g. the European

Tt is important to remember that the fact that a processor is Arm does not mean that it will be really energy efficient.
The main benefit of Arm would be more on the opportunities that the Arm ISA offers to the designers in order to optimize
the power consumption.

11

Mont-Blanc?, the Japanese Post-K[6], and the UK’s GW4/EPSRC?. Also, in November 2018 the Astra
supercomputer, powered by the Arm-based Marvell’s ThunderX2 installed at the Sandia National Labo-
ratories (US), has been ranked 204 in the Top500 list [7].

For more than six years, research projects in collaboration with industry evaluated Arm-based systems for
parallel and scientific computing advocating the higher efficiency of this technology mutated from the mo-
bile and the embedded market. The Barcelona Supercomputing Center has been pioneer in delivering the
first mobile-based HPC research clusters. Several papers have been published with the preliminary analysis
of benchmarks and performance projections of Arm-based SoCs coming from the mobile and embed-
ded market [8, 9, 10]. More recently tests on Arm-based server SoCs also appeared in the literature [11, 12].

The AXIOM project* also demonstrated that embedded platforms using Arm cores plus an accelerator
(in this case a Field Programmable Gate Array or simply FPGA) are serious competitive options [13].

1.3.2 RISC-V

The RISC-V project originated in 2010 at the University of California, Berkeley [14] for designing small,
fast, and low-power CPUs [15]. As of May 2017, version 2.2 of the userspace ISA is fixed and the
privileged ISA is available as draft version 1.10°.

The Parallel Ultra Low Power (PULP) Platform® aims to develop an open, scalable hardware and
software research and development platform based on RISC-V [16, 17, 18]. The same authors of the
PULP platforms released the HERO platform [19], which is an heterogeneous embedded system on chip
(HESoC) that combines general-purpose with domain-specific architectures. The HERO platform combines
PULP-based cores implemented on FPGA with an Arm Cortex-A multicore processor (host) running Linux.

The PULP platform also developed efficient 32-bit and 64-bit RISC-V cores. These cores are available in
Github (open) and one of their 32-bit core, RI5CY, was already included in Google’s Pixel Visual Core
Image Processing Unit (IPU) [20]. This IPU is currently present on commercial devices like the Pixel 2

smartphone. For this thesis I used their 64-bit core called Ariane”.

1.3.3 Clustering techniques and industrial data analysis

Clustering methods are used to identify groups of similar objects in multivariate data sets collected from
images, sensors or data sources in general. An example of research using the same algorithm that I use in
this thesis (k-mean) but applied to text mining is described in [21].

The term Industry 4.0 refers to the current trend in automation and manufacturing technologies of using
data sensing, cyber-physical systems, Internet of things, cloud computing and cognitive computing for
improving the efficiency of the manufacturing process. A review of Industry 4.0 is introduced in [22],
while the computational challenges introduced by Industry 4.0 can be found in [23].

As mentioned in the introduction, in this thesis we use the data provided by a process of laser tem-
per explained by our colleagues of Aingura IToT / Etxe-tar in [24]. Machine learning techniques in
manufacturing are described in [25, 26].

1.3.4 Energy analysis

The interest of the scientific community and the system integrators towards the energy efficiency of the
processors in HPC systems has significantly grown during the last years. With the increase of power
consumption, more energy must be dissipated. Ware-house scale computer facilities are having serious
problems to effectively cool the systems. The cost of maintaining a ware-house scale computer has
increased due to the extra cost of keeping everything cool and the environmental footprint is starting

?http://montblanc-project.eu/
Shttps://gw4-isambard.github.io/docs/
4http://www.axiom-project.eu
Shttps://riscv.org/specifications/
Shttps://www.pulp-platform.org
"https://github.com/pulp-platform/ariane

12

http://montblanc-project.eu/
https://gw4-isambard.github.io/docs/
http://www.axiom-project.eu
https://riscv.org/specifications/
https://www.pulp-platform.org
https://github.com/pulp-platform/ariane

to be non-negligible too [27]. In fact, energy has become the primary cost driver for data centers. A
comprehensive study of the problems related to the deployment of a data-center, including observations
about energy and power consumption can be found in [2§]

Also, in [29], the importance of analyzing the performance and the energy-efficiency in multi-node clusters
is shown followed by a discussion on how important is to use good analysis techniques in order to be
able to correlate performance and power. In this thesis, we covered the impact of both performance and
energy consumption in heterogeneous platforms when the CPU and the accelerator are used.

13

Chapter 2

RISC Architectures

As mentioned in Section 1.1, RISC stands for Reduced Instruction Set Computer and represents a class
of CPU architectures. In this section we are going to discuss the two most popular RISC architectures
available today: Arm and RISC-V. A short introduction of each architecture will be provided followed by
the current software ecosystem and the available platforms.

2.1 Advanced RISC Machine (Arm)

Advanced RISC Machine or simply Arm, is a family of RISC architectures for computer processors. It
belongs to Arm Holdings, a British multinational semiconductor and software design company owned
by the SoftBank group. The main Arm product is the Arm ISA but the company also designs its
own processors based on the Arm instruction set. Both products are provided under the form of in-
tellectual property (IP) to partners that needs to pay a fee (license) to build final silicon out of the Arm IPs.

The Arm architecture originally targeted low power embedded systems that do not require high compute
capacity, however over time, Arm has improved the compute capacity of its designs, supporting 32-bit
address space in versions ARMv3 to Armv7 and introducing a new 64-bit support in the Armv8 version.
Since Armv7-A version of the ISA, Arm introduced its Single Instruction Multiple Data (SIMD) support,
called NEON. The NEON extension allows to operate with registers of 128 bits using IEEE compliant
arithmetic. During 2016 Arm announced the Scalable Vector Extension (SVE) as part of the Armv8.2-
A architecture [30]. SVE allows implementation choices for vector lengths that scale from 128 to 2048 bits.

With the computation capability increasing every new generation, Arm processors found its way into the
HPC market. The European project Mont-Blanc significantly contributed to adoption of Arm within
HPC. Since 2011 in fact the Mont-Blanc consortium pushes Arm into HPC deploying Arm-based HPC
clusters and improving the system software required for the adoption by the scientific community and
the data center. In the early days of the Mont-Blanc project, the Arm software ecosystem for executing
HPC applications was not mature enough. In the framework of the Mont-Blanc project a significant
effort was put in order to develop the HPC software ecosystem required to run HPC applications in the
same way as in traditional x86 based machines.

System software in an HPC node refers to the complete set of libraries and utilities required to run
scientific applications on a distributed fashion. Figure 2.1 shows the software stack of the Mont-Blanc
prototype [10]. In the following sections we will detail the parts of the system software that have been
improved or delivered from scratch by the Mont-Blanc project for enabling the Arm architecture in HPC.

2.1.1 Compilers

Compilers are a fundamental pillar of any software ecosystem. Without a compiler, none of the software
can be ported to the target architecture. Luckily nowadays there are several Arm compilers available. The
most popular one is the GNU Compiler Collection. However, Arm also offers the Arm HPC Compiler®
which is built in Clang (front-end) and LLVM (back-end). The LLVM core libraries implements two of

8https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc

14

https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc

the three basic parts of a compiler: optimizer and back-end (machine code generation). The third and
missing part is the front-end (typically Clang). This is responsible of the lexical analysis and the parsing.
In other words, it takes the source code and generates an abstract syntax tree (LLVM IR) that is passed
to the LLVM optimizer. The combination of a front-end plus LLVM let us replace the full GCC stack
and in the Arm case, they tuned the compiler for the most popular Arm platforms.

Compilers
GNU JDK Mercurium

Scientific libraries
ATLAS LAPACK SCALAPACK FFTW
BOOST ¢cIBLAS CcIFFT PETSc HDF5

Performance analysis Debugger
EXTRAE Paraver Scalasca Alinea DDT
Runtime libraries
Nanos++ OpenCL OpenMPI MPICH3
Cluster management
SLURM Nagios Ganglia
Hardware support Storage

Power monitor LustreF'S

Operating System
Ubuntu

Figure 2.1: Mont-Blanc prototype software stack

2.1.2 Scientific libraries

When we talk about libraries, we tend to think about a place where there are a lot of books, however, in
computer science, a library consists in a collection of non-volatile resources that any program can use. In
HPC, when we talk about scientific libraries, we refer to a collection of routines implementing mathe-
matical operations in a very efficient way. The most common one is Basic Linear Algebra Subprograms
(BLAS) which defines vector and matrix operations.

BLAS itself is a specification rather than an implementation. The BLAS specification defines three
levels of complexity: level one are vector operations, level two are matrix-vector operations and level
three are matrix-matrix operations. There are closed implementations of BLAS, e.g. the Intel Math
Kernel Library (MKL), which are optimized specifically for Intel processors, while the two most popular
open-source implementations are OpenBLAS and ATLAS. Arm provides the Arm Performance Libraries,
an implementation of BLAS specifically tuned for server-class Arm based platforms (closed source).
However, both open-source implementations, OpenBLAS and ATLAS are available too. Using these
libraries have a non-negligible performance impact and the actual effects are discussed in Chapter 5. I
also took part in a wider study of the impact of using Arm Performance Libraries on several HPC codes.
This work has been published in a poster presented at the Supercomputing Conference 2017 [1].

2.1.3 Parallel Programming models

In computing, a programming model refers to an abstraction of the parallel computer architecture which
usually take the form of a library invoked as an extension of an existing language. In HPC the Parallel
Programming Models are very important as they are key to use all the resources (in parallel) of the
machines. Modern parallel programming models also support parallel heterogeneous executions. In
Section 5.3 we will discuss and show the impact of using the OmpSs parallel programming model to
exploit the parallelism in devices featuring an accelerator. The programming models usually take care of
the interaction among parallel processes and the problem decomposition.

Process interaction defines how the parallel processes interacts/communicates among them. Since
process interaction usually leverages read/write into memory locations, the two main kinds of process

15

interactions are:

e Shared memory: Processes share a global address space that can be read and written asyn-
chronously.

e Distributed memory: Processes do not share the same address space and requires a message-
passing mechanism to exchange data between the other processes.

In Arm, there are several shared memory programming models available. The two most popular ones are
OpenMP and OmpSs. In the distributed memory category, popular implementations of MPI (Message
Passing Interface) like OpenMPI or MPICH are available too and are used to run applications in a
multi-node environment.

Problem decomposition explains how the workload is divided among the parallel processes. The
decomposition can be classified in:

e Domain decomposition: In this type of partitioning, the data of the problem is decomposed
such that each parallel process works on a portion of the data.

e Functional decomposition: In this type of partitioning, the problem is decomposed from the
point of view of the work that must be done. In this case, the processes perform a portion of the
total work.

These two approaches of problem decomposition are not orthogonal and they are typically combined in
most of the parallel applications.

2.1.4 Platforms

The current number of platforms using Arm processors has increased a lot. Almost all the smartphones
sold today use an Arm based processor and the embedded world is basically dominated by Arm too.
Platforms like the Jetson TX1 from Nvidia packs 4 Arm cores plus a GPU based on the Nvidia Maxwell
architecture. This combination gives enough compute capacity to provide 1 TFlop/s using 16bit floating
point data. A comercial device that uses the same processor as the Jetson TX1 is the popular handheld
Nintendo Switch gaming console. Another popular platform is the Xilinx Zynq 7000 family. This platform
packs 2 Arm cores plus a user programmable logic (FPGA). This type of devices are very popular in the
Industry 4.0. For example, Aingura IIoT uses the Xilinx Zynq 7020 platform in their numerical control
machines for gathering information from the sensors. They use the programmable unit to develop a
custom solution adapted for each machine. However, the Arm presence goes beyond the embedded market.
Amazon recently launched the Graviton processor. This processor is custom designed by Amazon and it
is based on Armv8. Amazon is currently offering AWS (Amazon Web Services) nodes that uses these
chips [31]. Huawei has also recently launched a server-class Arm-based processor called Kunpeng 920
[32]. Huawei claims that it is the industry’s highest-performance Arm-based processor, delivering a 25%
more perfomance than the competition, but by the time of this thesis no official performance numbers
have been revealed.

Another important milestone for the Arm architecture is its presence in supercomputers. Table 2.1
shows the current most important supercomputers running Arm processors. The Mont-Blanc prototype
is the world’s first Arm-based HPC cluster and first using only embedded processors. This prototype
demonstrated that using Arm technology in HPC was doable. The rest of the supercomputers are using
server-class Arm processors, being the ThunderX2 processor the clear dominant. Recently, the HPE
Astra entered into the TOP500 list. This is the very first time that an Arm-based system appears on the
TOP500. The HPE Astra, which uses the ThunderX2 processor, achieved 1529 TFlop/s in the Linpack
test and was ranked in the position 204 of the list”.

https://www.top500.org/system/179565

16

https://www.top500.org/system/179565

Name Location Processor State

HPE Astra Sandia Labs (USA) ThunderX2 In production
Fujitsu Post-K RIKEN (Japan) ARMG64FX Expected in 2021
Dibona Bull Atos (France) ThunderX2 In production
Isambard GW14 (UK) ThunderX2 In production
Mont-Blanc prototype BSC (Spain) Samsung Exynos 5 Dual In production
<unnamed> French Atomic Energy ThunderX2 Expected in 2019

Commission (CEA)

Table 2.1: List of the current available Arm supercomputers.

2.2 RISC-V

RISC-V started back in 2010 in the University of California (UC) Berkeley. At first UC Berkeley was
looking on the nowadays currently available ISAs to use it in their next set of projects. At that time,
the two immediate choices were x86 and Arm [33]. However, these two easily became unrealistic options
for their purpose. The first reason is because both ISAs were extremely complex for their initial goal
and second, both ISAs are protected under Intelectual Property laws. As UC Berkeley already had past
experience in designing RISC ISAs, they decided to start a 3 months project of designing their own simple
and open ISA. Four years later, what started as a small inhouse project ended up gaining a lot of interest
from the community and UC Berkeley decided to release the first frozen base user-spec of their ISA under
the name of RISC-V. UC Berkeley previous RISC projects were: RISC-I[34] (1981), RISC-II[35] (1983),
SOAR[36] (1985) and SPUR[37] (1986). RISC-V is the fifth UC Berkeley RISC project, hence the V (number
5 in roman numerals).

In 2015, the RISC-V Foundation was established. The Foundation comprises more than 150 member
organizations working together to build the first open, collaborative community of software and hardware
around RISC-V. With the promise of being a non-profit corporation controlled by its members, the
foundation is in charge of the development of the RISC-V specification and pushes forward the adoption
of the RISC-V ISA.

Due to the already present shift toward domain specific architectures, SoCs are becoming more popular.
These systems pack together really different units targeting a very specific function in mind. But the
problem is that each of them talk a unique and different ISA (typically propietary) due to how the
units were designed. In most of the cases, these are not designed from scratch specifically for our SoC,
instead, they use other existing units as a starting point. This results in the unnecessary pain of having
to deal with many different ISAs for the correct functioning of the system. RISC-V borns with the idea
of bringing an open and free ISA that everyone could use for everything. The main characteristics of
RISC-V are:

e Simple: RISC-V takes advantatge of being new. It does not take any other legacy ISA as base,
therefore it can implement only the useful instructions resulting in a much more compact ISA
compared to other commercial ISAs.

e Clean design: After decades of research of what has gone well (and what has not), the RISC-V
specification avoids many bad decisions included in older legacy ISAs and boosts the ones that gone
well. For example, in RISC-V there is a clear separation between the user and the privileged ISA
and it does not expose microarchitecture or technology dependent features.

e Modularity: In RISC-V, you are not forced to implement the whole ISA. Only the Integer extension
is mandatory while the rest of the ISA is optional (extensions). This approach helps to mitigate the
issue of dealing with an enormous ISA, as only the extensions that matter to you are the ones you
end up implementing.

e Specialization: Part of the benefit of having modules is the possibility of building a RISC-V
processor tailored to your needs. The RISC-V specification not only defines some extensions
targeting very specific environments but it also reserves space for user-defined extensions. So for
example if you need to add custom instructions to interact with an accelerator, the ISA has support
for it.

17

The RISC-V modularity approach is to focus on stability and compatibility rather than functionality.
For this reason, once an extension is frozen, it will remain as is forever. If for some reason, the extension
has to be modified, they way to go is to define a new extension.

2.2.1 Software Ecosystem

The current software status in RISC-V can be found on their official website'®, however, in this chapter
we are focusing only on the software related to run scientific applications in HPC environments.

Considering how young is the RISC-V architecture, is not difficult to guess that the scientific software
stack is not ready yet. However, for the small amount of time it has been around, the software ecosystem
maturity is quite impressive. To Arm, it took many more years to reach this point of maturity and part
of the reason why nowadays there are server-class computers based on Arm is due to the joint effort in
the Mont-Blanc project. Following the same steps as in Mont-Blanc, the European Processor Initiative
(EPI) project aims to push forward the HPC ecosystem in RISC-V by developing an accelerator based on
RISC-V, containing only European and Open-Source technology.

In HPC, having a Linux Operating System is a hard requirement. Lukily, the Linux kernel has already
been ported to RISC-V!'!' and there are already efforts in porting popular Linux distributions like open-
SUSE, Fedora or Debian to RISC-V. Another popular kernel in RISC-V is the Proxy Kernel (PK), a
lightweight application execution environment that supports statically-linked RISC-V ELF binaries. PK
targets tethered environments!? therefore it does not fit in the HPC environment, however, sometimes it
is quite useful to test applications in a isolated environment.

Compilers

Regarding the compilers, GCC has already been ported to RISC-V. The supported languages are C, C++
and Fortran, and also supports the OpenMP parallel programming model. The GCC port for RISC-V
has two versions: GCC Unknown Elf, which is a version targeting the execution of application in a
Proxy Kernel environment (bare-metal), and the other one is GCC Linux GNU, which targets the Linux
execution environment. Another well-known compiler toolchain available in RISC-V is Clang+LLVM.
However it is still under development and the current version is not part of an official release yet. It is
important to notice that the current compilers (specially LLVM) are focusing more in the correctness
rather than tuning the generated code for specific platforms.

Libraries

The scientific libraries are a fundamental part of the software stack in a HPC system. However, in
RISC-V there are many of these libraries missing. Althought OpenMP is supported, there is no MPI
implementation ready, meaning that distributed memory parallel computing is not supported yet.

Scientific libraries like BLAS are also missing. These libraries typically make heavy use of the data
parallelism paradigm (SIMD), and because the Vector extension is not frozen yet, our feeling is that
these libraries will continue to be missing until the Vector extension becomes stable.

2.2.2 Platforms

The official RISC-V website also has a compilation of the current available Open Source RISC-V cores'?.

Most of the cores are very simple 32-bit single core configurations and not all of them are capable of
booting Linux. For the time of this thesis, the only ones that boot Linux are:

Ohttps://riscv.org/software-status

Hhttps://github.com/riscv/riscv-1linux

121n a tethered environment, the RISC-V core handles the I/O-related systems calls by proxying them to a host computer.
Bhttps://riscv.org/risc-v-cores

18

https://riscv.org/software-status
https://github.com/riscv/riscv-linux
https://riscv.org/risc-v-cores

Rocketchip: 64-bit core developed by SiFive and supporting all the frozen extensions. Currently,
has already been tapped out in a quadcore configuration and can be found on the HiFive Unleashed
development kit.

BOOM: 64-bit core supporting multicore configurations, out of order execution and all the frozen
extensions in the specification. The core has been developed by Esperanto and UCB-BAR.

Ariane: 64-bit core developed in ETH Zurich in collaboration with the Universita di Bologna.
Currently only supports single core configuration, but multicore support is comming soon.

SHAKTI C-CLASS: 64-bit core developed by II'T Madras. It only supports single core configu-
ration.

19

Chapter 3

RISC-V for HPC

Due to RISC-V’s short-life, the HPC capability is not quite ready, some of the reasons have been discussed
in Section 2.2, however, this does not mean that it is impossible to execute HPC applications in the
current RISC-V state.

As RISC-V is open, there are several Open-Source implementations available online and one could
potentially choose one and build new things on top of it for research purposes. In this section, we are
going to explain step-by-step the process of picking an open-source RISC-V core and the initial steps that
have to be done in order to run an HPC workload in a RISC-V core that it is running on an FPGA.

3.1 Processor selection

The modularity of the RISC-V ISA is a double-edged sword. For example, the success of the Intel
processors came due to the backward compability in newer generations, this is that newer processors
have to implement all the instructions that have been defined since the definition of x86, even if they
make no sense in the current days. In RISC-V, if some extension makes no sense anymore, you can drop
it and only implement the really necessary ones in favour of reducing the chip area. On the other hand,
having extensions will give way to fragmentation, as not all the processors are going to be equal (even if
the base is RISC-V) and not all the binaries will run in every machine.

The very first requirement before choosing a processor is to delimit the scope. In this case we are analyzing
what type of instructions are present in the Linux kernel. The reason why we are choosing Linux is
because HPC environments uses Linux as the main Operative System. This analysis is also known as
static instruction mix. The static instruction mix let us identify which instructions are present, therefore
which RISC-V extensions must be supported by our processor in order to execute that code.

Figure 3.1 shows the static instruction mix of the RISC-V Linux Kernel. Analyzing the pie chart, we
can conclude that most of the instructions are Integer (I), Compressed (C) and few ones are Integer
multiplication/division (M) and Atomic (A). Even if the presence of these last two is almost negligible, the
processor must support it, otherwise, an ilegal instruction exception will be raised when these instructions
are executed.

Considering these extensions, we decided to pick Ariane. Ariane is a 6-stage, single issue, in-order CPU
implementing the 64-bit RISC-V ISA'4. It fully implements the I, M, C and A'® extensions, therefore
we can execute all the instructions present in the Linux Kernel. The other considered option was
Rocketchip. Rocketchip is also 64-bit, however, in Rocketchip the hardware generation is done using
Chisel. Chisel, as a hardware language is too abstract, in the sense that the developer does not have a
100% control of the generated hardware, as you only specify parameters (e.g. number of cores) and the
compiler does the job. In comparison, Ariane is built entirely using SystemVerilog, the new industry
standard Hardware Description Language fully supporting the UVM (Universal Verification Methodology)
verification standard.

M The instructions in RISC-V are always 32-bit length. The 64-bit ISA forces the data width to be 64 bits, therefore the
general purpose registers are 64 bits width.
15For the date of this thesis, the atomics support in Ariane is only valid in single core configurations.

20

Instruction Mix of linux-kernel

Others - 0.00%

Integer (1) - 44.00%
Mult/Div Int (M) - 0.43%
Atomics (A) - 0.08%

SP Float (F) - 0.00%

DP Float (D) - 0.00%
Compressed (C) -55.49%

Figure 3.1: Static Instruction mix of a Linux Kernel

Base Version | Frozen?
RV321I 2.0 Yes
RV32E 1.9 No
RV641 2.0 Yes
RV128I 1.7 No
Extension | Version | Frozen?
M 2.0 Yes
A 2.0 Yes
F 2.0 Yes
D 2.0 Yes
Q 2.0 Yes
L 0.0 No
C 2.0 Yes
B 0.0 No
J 0.0 No
T 0.0 No
P 0.1 No
A% 0.2 No
N 1.1 No

Table 3.1: RISC-V extensions status (ISA version 2.2).

21

3.2 Bare-metal UART

A core by itself is useless and modern processors pack much more than only cores. As first step in order
to be able to test some code we designed an SoC with only the essential units to accomplish this goal.
These units are the core, the memory and a UART unit to communicate with the outside.

Figure 3.2 shows a block diagram of the minimal SoC we used as first approach. The figure shows in
green the AXI4 connections, which goes from Ariane to the other units. We can also see the uart2debug
unit, which will take care of the communication between the SoC and external devices using the UART
(Universal Asynchronous Receiver-Transmitter) protocol. All these units will be explained in more detail
in the following subsections.

Ariane SoC

Ariane debug uart2debug

instr_if data_if bypass_if RX TX useCoreUART

A 4 Y
RX T useCorelJART

bypass_data_instr[0] bypass_data_instr[1] bypass_data_instr[2]

RX

A

axi_node_intf wrap mux_uart
TX

A\ J

mem_uart[0] mem_uart[1]

axizmem

RX TX RIS CTs
AA

axizapb_wrap

Main Memory

mem_axi_wrap axiZuart_wrap

Figure 3.2: Ariane’s minimal SoC block diagram. In green the AXI4 connections.

3.2.1 AXI4 on Ariane

The first step is to learn how Ariane expects to interact with other units. In this case, Ariane bases its
external communication using the AXI4 protocol. AXI stands for Advanced eXtensible Interface and
is part of the Arm Advanced Microcontroller Bus Architecture (AMBA) specification.!® One particular
thing that simplifies a lot the communication in AXI4 is the fact that interfaces are memory mapped. So
if a unit A wants to communicate with another unit B, the only thing that it needs to know is in which
memory address range unit B is mapped on, so that sending the data to an address in that range will
arrive to that unit. This approach makes the communication to be more homogeneous, as every unit
only works around a defined memory map.

In Arine’s case, they use an Open Source AXI4 implementation developed by their team. This includes
the AXI_BUS interface and the axi_node_intf_wrap module, being this last one an AXI Crossbar inter-
connection unit. Figure 3.3 shows how the AXI4 crossbar is instantiated. Note that we are defining
the address range of each destination port with the start_addr_soc and end_addr_soc variables. These
variables are later passed to the start_addr_i and end_addr_i ports from the crossbar unit.

16More information in: Introduction to AXI Protocol: Understanding the AXI interface

22

https://community.arm.com/soc/b/blog/posts/introduction-to-axi-protocol-understanding-the-axi-interface

localparam logic [63:0] MEM_START = 64’h0000_0000;
localparam logic [63:0] MEM_END = 64°h8100_0000;

N =

localparam logic [63:0] PERIPHERALS_START = 64’h1000_0000;

5 localparam logic [63:0] PERIPHERALS_END = 64°h1000_1000;

6

7 localparam logic [1:0][63:0] start_addr_soc = { PERIPHERALS_START, MEM_START };
& localparam logic [1:0][63:0] end_addr_soc = { PERIPHERALS_END, MEM_END };

10 axi_node_intf_wrap #(
12) i_axi_node (

14 .start_addr_i (start_addr_soc),
15 .end_addr_i (end_addr_soc),
16

17)

Figure 3.3: Ariane’s AXI4 Crossbar module instantiation.

In Figure 3.3 we defined two destination ports, one for the main memory, which is mapped from the
address 0x00000000 to 0x81000000 and another one for the UART, which is mapped from address
0x1000000 to 0x10001000. This means that for example, any transaction with a target address in the
{0x00000000, 0x81000000} interval will be received by the memory, and same applies for the UART
unit.

3.2.2 uart2debug module

As seen in Figure 3.2, there is a unit called vart2debug. This unit has been designed from scratch in
order to handle the communication between the SoC and external devices. On one hand, it implements
the UART protocol, with which the SoC will talk with an external device (e.g. a computer), and on
the other hand, it is connected to the core. Note that it is connected to the mux_uart unit because the
UART port in the FPGA is shared between the debug unit and the actual output serial device of the
core (axi2uart_wrap unit).

For the communication with external devices, we have defined a simple custom protocol. This protocol
is based on two type of transactions, the ones that controls the SoC state (e.g. halt, resume) and the
ones for reading/writing data from/to the SoC. Figure 3.4 shows the Finite State Machine for reading
and writing data. The main bottleneck in this type of transactions is the UART bandwidth. As the
communication granularity is 1 byte, we have to repeat the WAIT->SEND and the RECV->RECV transitions
8 times.

sent_bytes ==
sent_bytes < 8

recv_bytes < 8

recv_bytes == 8

Figure 3.4: Finite State Machine of uart2debug’s R/W protocol.

23

For the SoC control, we defined 5 different commands. The Finite State Machine of each of these
commands can be seen in Figure 3.5. These commands changes the SoC state in the following way:

e do_halt: This command will automatically halt the processor. In order to avoid inconsistent states,
the processor will not be halted until the whole pipeline has been flushed.

e do_resume: This command will resume the processor if it was halted, otherwise, nothing will
change.

e do_fetch_en: This command will enable the fetch of new instructions in the processor. Typically,
this is used at the beginning so that we can write data to the memory when the processor starts
(the processor boots in a resume state and with the fetch disabled).

e use_core_uart: This command switches the multiplexer (mux_uart) in order to connect the UART
port to the output serial device of the SoC (and disconnects it from the uart2debug unit).

e set_PC: This command changes the current PC of the core to the address received through the
UART.

do_halt do_resume do_fetch_en

use_core_uart

recv_bytes == 8

Figure 3.5: Finite State Machine of uart2debug’s SoC control protocol.

3.2.3 External interaction

Now that we have an SoC with a dedicated unit to handle the communication with external devices, it is
time to communicate from a laptop’s shell (minicom) to the SoC running on the FPGA. To do so, we
have implemented a Python class that adds a level of abstraction and let us interact with the SoC in an
easier manner.

The Python class has a method to read a binary (compiled with gcc for example), and then load it into
processor’s memory at a user-defined address. Similarly, there are methods to read or modify the regis-
ters and the memory. To test that we can successfully interact with the core, we wrote the following C code:

1 int add(int a, int b) {
2 return a + b;

3}
|

5

void _start(void) {

6 int x = add(1, 2);

7 while (1) {

8 __asm__ __volatile__("" : : "r"(x));
9 }

10 %}

Figure 3.6: Mini example written in C for testing Ariane’s functionality in an FPGA.

24

And then using the following Python code, we will write the instructions into Ariane’s memory and make
it execute them:

| #Connect to the serial unit
2 du = DebugUnit("/dev/ttyUSBO")

#Halt the processor
du.doHalt ()

#Set the General Purpose registers to a known state
8 for i in range(0, 32)
9 du.writeRegister(format(i, ’x’), format(0, ’x’))

12 #Load binary to Ariane’s memory

13 with open(tmpfile) as f:

14 base_addr = 0

15 lines = f.readlines()

16 for inst in lines:

17 a = du.writeMemory(format(base_addr, ’x’), inst)
18 base_addr += 8

20 #Set PC

21 init_addr = 8

22 du.setPC(format(init_addr, ’x’))
2

2

)

| du.doResume()
5 du.doFetchEn()

Figure 3.7: Python script to load the binary into the SoC’s memory.

To check if Ariane executed the instructions correctly, we read the registers also using the Python class:

L ...
2 du.doHalt()
3 du.readAllRegisters()

The readAllRegisters() method actually reads the 32 general purpose registers in Ariane and prints
their value. In this case, the values reported by the script can be seen in Figure 3.8.

yxu@laptop:$./test-add.py add.bin
x1: 0000000000000020
x2: ffffffFLEFFELFE0

x10: 0000000000000003
x11: 0000000000000002

Figure 3.8: Result of the add example running in Ariane on an FPGA.

In order to understand this output we have to first check the instructions that the RISC-V compiler has
generated from our C code. Figure 3.9 shows the disassembly of the add.exe executable. The output
shows the virtual registers (aX) however, if we manually check the instruction’s code with the RISC-V
ISA specification, we can see that a0 has been mapped to the physical register x10 and al has been
mapped to the physical register x11. Considering this mapping, the expected value for register x10 would
be 3, which is in fact the reported value above. Another observation is that in RISC-V, the register x1
stores the return address when we execute a jump (jalr in this case). In the above output, x1’s value
was 0x0020, which is in fact the address of the instruction after the jump. Similarly, x2 is assigned to
the stack pointer and as the initial value of that register was 0, the instruction in address 0x10008 sets
the value =16 (0x£f££0 in two’s complement), which matches again with the reported value. Considering
these checks, we can conclude that our minimal SoC running on an FPGA is working correctly.

25

yxu@laptop:$ objdump add.exe
add.exe: file format elf64-littleriscv

Disassembly of section .text:

00000000000100b0 <add>:
10000: 00a5853b addw a0,al,a0 # x10 = x11 + x10
10004 : 00008067 ret

00000000000100b8 <_start>:
10008: ££010113 sp,sp,-16
1000c: 00112423 ra,8(sp)
10010: 00100513 i a0,1 # a0 is x10
10014: 00200593 i al,2 # al is x11
10018: 00000097 ra,0x0
1001c: £e8080e7 -24(ra) # 100b0 <add>
10020: 0000006f 100d0 <_start+0x18>

Figure 3.9: Disassembly of the add example executable (compiled with GGC).

3.3 Bare-metal OpenOCD

In the previous section we defined a simple and effective way to interact with the Ariane core running on
an FPGA. Even if the uart2debug unit is simple and capable enough for running programs, it has some
limitations. For example, our unit is not designed to actually debug low level software and hardware and
does not offer user-friendly ways to achieve that, instead, we can execute all or none of the instructions,
but not an intermediate term. Luckily, in RISC-V exists the debug specification that although is still a
draft for the time of this thesis, the industry is starting to move towards this direction (including Ariane).

3.3.1 RISC-V debug specification

In this subsection we are going to introduce briefly the debug specification in RISC-V. Currently, the
latest version of the specification is 0.13. The debug specification started out as an email list but due to
the common need of having a standarized way to debug any RISC-V core, a working group started in
August 2016. The main goal of the specification is to let any debugger connect blindly to any RISC-V
platform and discover everything it needs to know.

Figure 3.10 shows a block diagram of the main components involved in the debug support. Blocks
shown in dotted lines are optional and it is up to the designer to implement them, allowing different
implementations for different use-cases.

The debug specification is designed to work in conjunction with a debugger (software). Currently the
two most popular options are telnet!” and GDB (GNU Project Debugger). The debugger talks with
a Debug Translator, typically OpenOCD, and this one talks to the Debug Transport Hardware which
talks with the Debug Transport Module (DTM) inside the SoC. Note that the Debug Translator may
have to implement the drivers of the Debug Transport Hardware in order to communicate with him and
that both Debug Transport Hardware and Debug Transport Module must communicate using the same
protocol (e.g. JTAG).

The DTM communicates with the Debug Module Interface (DMI), who knows how to communicate with
the Debug Modules (DM). A RISC-V core must implement at least one hart (Hardware Thread) and
each hart can only be controlled by one DM. However, one DM can control multiple harts, which is the
most common case. Also, the core must implement a ”Debug” execution mode where the core waits for
instructions from the debugger, the interrupts are disabled and the exceptions are handled by the debugger.

7Telnet is a protocol used on the Internet or local area network to provide a bidirectional interactive text-oriented
communication facility using a virtual terminal connection. - Wikipedia

26

Debug Host

Debugger | g Debug Translator | g | w Deb:gr('jl'r;:rseport
feg.gdb) |& 7 (eg. OpenOCD) bl (eg. JTAG debug probe)
A
RISC-V Platform A 4
il
< Debug Module 3| Debug Transport | 1=
Debug Module (DM) :_' Interface (DMI) Module (DTM) ! :
reset/nalt ¥ T
control T — .
: ~
' RISC-V Core -
abstract ' -
] Ll B
commands : Hardware Thread [.
B '
' . Debug Mode
H bus access : 9

[Sy i Hardware |
""""""""" ' 1 Trigger
H t Module |

VT T System ¢

' Program
! Buffer (4B-64B) Bus

Figure 3.10: RISC-V Debug System Overview from Debug Specificacion version 0.13 draft.

The DM interacts with the core using Abstract commands and optionally a Program Buffer can be used
too. The Abstract commands provide access to the core internal registers. These are the Control Status
Registers (CSR), which includes the Program Counter (PC) for example, the General Purpose Registers
(GPR), the Floating point registers, etc. On the other hand, the Program Buffer lets the debugger to
write any instruction into the buffer and make the hart execute them. This is typically used to implement
memory accesses.

As there are a lot of optional functionality, the debugger must discover which are supported by trial and
error. In the case of the Abstract commands, the debugger writes into the internal command register, waits
until busy (bit 12) is not high and later checks the cmderr (bits 10:8) to check if no errors happened.
Both informations come from the abstractcs (Abstract Control Status) register.

3.3.2 Hardware setup

Ariane includes in the same repository both Debug Module (DM) and Debug Module Interface (DMI). The
later also implements the Debug Transport Module (DTM) and uses the JTAG protocol to communicate
with the Debug Transport Hardware.

| module dmi_jtag (

2 input logic clk_i, // DMI Clock

3 input logic rst_ni, // Asynchronous reset active low
4

5 input logic tck_i, // JTAG test clock pad

6 input logic tms_i, // JTAG test mode select pad

7 input logic trst_ni, // JTAG test reset pad

8 input logic td_i, // JTAG test data input pad

9 output logic td_o // JTAG test data output pad

Figure 3.11: Ariane Debug Module Interface ports definition (dmi_jtag.sv).

27

Figure 3.11 shows some of the SystemVerilog ports definition of the DMI module. In this case, we want
to focus on the JTAG ports (tck-i, tms_i, trstni, td_i, td_o). These ports are going to be directly
connected to the Debug Transport Hardware. For this task, as we are working with an FPGA, having
user-assignable pins is a hard requirement. For the board we have (Digilent Genesys 2), we can make
use of the Pmod connectors. The Pmod interface is tipically found in comercial peripheral modules
that extend the board features (e.g. SD card reader) but there is no restriction regarding the pin as-
signment of the Pmod ports. For this reason, we decided to assign the JTAG ports to the Pmod connectors.

VCC GND 8signals
F'inE\l*
Pin12 | &

.

. Pin 1

=i b

H.‘
o

Figure 3.12: Pmod interface pin numbering (Genesys 2 reference manual).

On the Genesys 2 board we have 5 Pmod connectors. Table 3.2 shows the characteristic of each port. For
Ariane’s JTAG module, we chose the JC connector. The reason behind this decision instead of choosing
the other ones is mainly due to the 2002 protection resistor, which will avoid damages to the board in
the event of mismatched connections.

’ Pmod conector \ Power \ Analog/Digital \ Series protection \ Use-case ‘
JXADC VADJ Dual 10082 Analog inputs
JA, JB 33V Digital-only 092 >=10MHz
JC, JD 33V Digital-only 20082 <10MHz

Table 3.2: Genesys 2 Pmod interfaces.

Finally, in the XDC (Xilinx Design Constraints) file is where we specify the mapping between the Pmod
pins and the JTAG ports of the dmi_jtag module (Figure 3.13).

set_property -dict {PACKAGE_PIN AK29 IOSTANDARD LVCMOS33} [get_ports tck]
set_property -dict {PACKAGE_PIN AG30 IOSTANDARD LVCM0S33} [get_ports tdi]
set_property -dict {PACKAGE_PIN AJ27 IOSTANDARD LVCMOS33} [get_ports tdo]
set_property -dict {PACKAGE_PIN AK30 IOSTANDARD LVCMOS33} [get_ports tms]
6 set_property -dict {PACKAGE_PIN AH30 IOSTANDARD LVCM0S33} [get_ports trst_n]

T W N~

Figure 3.13: Ariane Genesys 2 user defined constraints for the JTAG port (genesys-2.xdc).

The other part of the communication chain is the Debug Translator and the Debug Transport Hardware.
For the first one, we chose OpenOCD which stands for Open On-Chip Debugger. OpenOCD supports
many architectures (e.g. Arm, MIPS) and recently has been ported to RISC-V'®. For the Debug Transport
Hardware we chose the Olimex ARM-USB-OCD-H debug adapter for two reasons: first because it is
natively supported by OpenOCD, and second because the voltage range is between 1.65 and 5.0 V (Pmod
works at 3.3 V). However it is important to note that Olimex ARM-USB-OCD-H and the Pmod header
on the Genesys 2 have different pin assignment schemes. Tables 3.3, 3.4 and 3.5 clarifies the pinout

assignment we followed in both connectors'®.

Figure 3.14 shows how the real setup looks like with the Olimex debugger connected to the Genesys 2
board.

8https://github.com/riscv/riscv-openocd
19The Pmod pinout assignment we used is different to the pinout used in the official Ariane repository.

28

https://github.com/riscv/riscv-openocd

Signal Name | ARM-USB-OCD-H | Cable Color | Genesys 2 Pmod
Pin Number Pin Number
VREF 1 Red 12
VREF 2 Brown 6
trst_n 3 Purple 3
tdi 5 Black 8
tms 7 Grey 9
tck 9 Green 4
tdo 13 White 2
GND 14 Orange 5
GND 16 Yellow 11

Table 3.3: Olimex to Pmod pins assignment.

1:VREF(red) 2:VREF (brown)
3:trst.n (purple) 4
5:tdi (black) 6 square pad 1 7
7:tms (grey) 8 2:tdo (white) 8:tdi (black)
NOTCH 9:tck (green) 10 3:trst_n(purple) 9:tms (grey)
NOTCH 11 12 4:tck(green) 10
13:tdo (white) | 14:GND(orange) 5:GND(orange) | 11:GND (yellow)
15 16:GND (yellow) 6:VREF (brown) | 12:VREF (red)
17 18
19 20 Table 3.5: Genesys 2 JC Pmod pin connections.

Table 3.4: Olimex ARM-USB-OCD-H pin connec-

tions.

W03 xauiyo
“'”3‘*55n-wav 7

XBLIN0

Figure 3.14: Photo of the Genesys 2 board connected to the Olimex ARM-USB-OCD-H debugger.

3.3.3 External Interaction

Similarly as in the previous case, we are interacting with the SoC using a shell in a laptop. Now, instead
of using a custom made Python script, we are using GDB combined with OpenOCD. The first step is
to connect the Olimex ARM-USB-OCD-H to the computer. After that, Linux will recognize it as a
/dev/ttyUSB* device.

29

At this point, we can run OpenOCD, which will scan all the devices and connect to Olimex ARM-USB-
OCD-H. Figure 3.15 shows the command and the output once we successfully connect to the Olimex
device. The olimex.cfg file is the same file found in OpenOCD’s installation directory but slightly
modified for Ariane. This file can be found in the Apendix A.

yxu@laptop:$ openocd -f olimex.cfg
work/build/openocd/prefix/bin/openocd -f bsp/env/genesys2/openocd.cfg
Open On-Chip Debugger 0.10.0+dev (2018-11-29-17:56)

Licensed under GNU GPL v2

For bug reports, read
http://openocd.org/doc/doxygen/bugs.html
adapter speed: 1000 kHz
Info : auto-selecting first available session transport "jtag". To override use
Info : clock speed 1000 kHz

Info : JTAG tap: riscv.cpu tap/device found: 0x249511c3 (mfg: 0xOel (Wintec Industries),
Info : datacount=2 progbufsize=12

Info : Exposing additional CSR 3071

Info : Examined RISC-V core; found 1 harts

Info : hart 0: XLEN=64, misa=0x8000000000141105

Info : Listening on port 3333 for gdb connections

Ready for Remote Connections

Info : Listening on port 6666 for tcl connections

Info : Listening on port 4444 for telnet connections

Info : accepting ’gdb’ connection on tcp/3333

Figure 3.15: OpenOCD connecting to the Olimex ARM-USB-OCD-H.

After starting OpenOCD, it will be listening for GDB, TCL or telnet communications. In this case, we
are using GDB. GDB let us execute a binary in a remote session and have a full control of the execution.
Some of the GDB features are to read/write any register or memory position, load a binary into the
memory or add breakpoints into the execution. Figure 3.16 shows the commands and arguments we used
to load Figure 3.6’s code.

yxu@laptop:$ riscv64-unknown-elf-gdb add.exe -ex "target extended-remote localhost:3333"
GNU gdb (GDB) 8.0.50.20170724-git

Copyright (C) 2017 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "--host=x86_64-pc-linux-gnu --target=riscv64-unknown-elf".
Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from software/add/add...done.

Remote debugging using localhost:3333

0x0000000000010050 in ??7 ()

(gdb)

Figure 3.16: GDB session connected remotely to Ariane using OpenOCD.

30

GDB offers a lot of commands to the user. The most relevant ones for this experiment are the following:

e load: This command loads the binary into the memory. The file must be in Executable and
Linkable Format (ELF) format as the address where the instructions are going to be loaded are
read from the ELF header.

e x: This command is used to read an address value. For example, for reading the memory position
0x80000000, the command would be: (gdb) x /32x 0x80000000.

e info argument: This command shows information of the argument you pass. For example if
you want to check the integer registers and their content, the command would be: (gdb) info
registers.

e stepi: This command steps into the next machine instruction. If the instruction is a function call,
the stepi command steps into the function being called.

e b: This command sets a breakpoint into the code so that the execution stops at the address specified
by the breakpoint. For example if you want to stop before the instruction at address 0x80000b78
is executed, the command would be: (gdb) b *0x80000b78.

e c: This command is the abreviation of continue. Executing this command will continue the
execution until the next breakpoint is found.

e p: This command prints the value of a symbol. For example if you want to check the current
Program Counter value, the command would be: (gdb) p $pc.

yxu@laptop:$ riscv64-unknown-elf-gdb add.exe -ex "target extended-remote localhost:3333"
[...]

(gdb) load

Loading section .text, size 0x44 1lma 0x80000000

Start address 0x80000028, load size 68

Transfer rate: 544 bits in <1 sec, 68 bytes/write.

(gdb) b *0x80000042
Breakpoint 1 at 0x80000042: file add.c, line 12.

(gdb) ¢

Continuing.

Breakpoint 1, 0x0000000080000042 in _start () at add.c:12
12 __asm__ __volatile__("" : : "r"(x));

(gdb) info registers

ra 0x0000000080000038 2147483704

sp Oxffffffffffffffe0 -32

a0 0x0000000000000003
al 0x0000000000000002

pc 0x0000000080000042 2147483714
0x80000003 prv:3 [Machine]

Figure 3.17: Loading and executing add.exe in GDB.

Figure 3.17 shows the commands we used in order to load the add.exe executable (Figure 3.6) into
Ariane’s memory using GDB plus OpenOCD, and how using GDB commands we can drive the execution
remotely. The final state of the registers matches the expected behaviour. In register a0 we have a 3 and
in the same way, the ra (Return Address) and sp (Stack Pointer) matches with the behaviour of the
compiler’s generated code. The objdump of the binary we used for this test can be found in the Appendix
B.

31

3.4 Linux

Linux Kernel is an open-source computer operating system kernel first released on 1991, by Linus Torvalds.
Operating Systems packing the Linux Kernel are known as Linux Distributions. These are currently wide
used on both, traditional personal computers and servers, and on variuous embedded devices such as
routers, access-points, smart TVs, Network Attached Storage systems, etc. In RISC-V the most popular
option is Buildroot?® due to its simplicity and the easy-to-use process of generating embedded Linux
systems through cross-compilation.

For Ariane, there is an Open Source repository?! containing the necessary tools (including Buildroot) to
build a Linux Image from scratch. In the next subsections we are going to explain the main requirements
a RISC-V processor has to support in order to boot a Linux based Operating System.

3.4.1 Device Tree

For the previous tests, we successfully executed a simple code without any issue, however, in order to run
an Operating System like Linux in an embedded system, a Device Tree is required. The Device Tree is
basically a data structure describing the hardware components available in the system. This information
is required by the kernel so it can use and manage those components. Typically the Device Tree describes
the number of cores (and its frequency), the memory and its (AXI4) address range and the peripherals
such as the Platform Level Interrupt Controller (PLIC), Core Local Interrupt Controller (CLINT) and
the UART device (frequency, baudrate, AXI4 address range, etc). Figure 3.18 shows a snippet of code
from the Device Tree describing the properties of the core.

1 /dts-vi/;
2

3 /A

4 -

5 cpus {

6 #address-cells = <1>;
#size-cells = <0>;

8 timebase-frequency = <32768>; // 32.768 kHz
9 CPUO: cpu@0 {

10 clock-frequency = <50000000>; // 50 MHz
11 device_type = "cpu";

12 reg = <0>;

13 status = "okay";

14 compatible = "eth, ariane", "riscv";

15 riscv,isa = "rv64imacsu";

16 mmu-type = "riscv,sv39";

17 tlb-split;

18 // HLIC - hart local interrupt controller
19 CPUO_intc: interrupt-controller {

20 #interrupt-cells = <1>;

21 interrupt-controller;

22 compatible = "riscv,cpu-intc";

23 };

24 };

25 };

26 e

27}

Figure 3.18: Snippet of code from Ariane’s Device Tree . Full description available in Appendix C.

The usage of the Device Tree is free and open source, and the current specification?? targets small systems.
Traditional computers using an x86 architecture generally do not use a device tree, instead they use auto
configuration protocols to discover the hardware. Embedded Systems typically do not change, therefore

2Onttps://www.buildroot.org
2Ihttps://github.com/pulp-platform/ariane-sdk
22nttps://wuw.devicetree.org/specifications/

32

https://www.buildroot.org
https://github.com/pulp-platform/ariane-sdk
https://www.devicetree.org/specifications/

there is no need of relying on automatic detection of the devices. Instead, this information is directly
provided by the device tree. However, there are boot loaders (e.g. U-Boot) that supports reading the
Device Tree from a file and load it into an specific memory address. This approach is often used in SoCs
with an embedded FPGA, as you may program the FPGA with a custom device and this must appear
in the Device Tree in order to be usable from the Linux environment. In RISC-V, the current available
bootloaders do not support this approach and a static Device Tree is written into a ROM (Read Only
Memory). In our case, this must be done before generating the FPGA bitstream??, therefore if we want
to change the Device Tree we have to regenerate the bitstream.

3.4.2 Bootrom

The bootrom device as its name state is a ROM that is read during the boot. In fact, it contains the first
instructions that a processor executes when it powers on or resets. In RISC-V, the most typical use case is
to load into the x10 and x11 registers the hart id and the Device Tree address respectively and then jump
into the bootloader (Figure 3.19). The Device Tree address is not fixed, instead, the way how it is done is
to include the Device Tree (ariane.dtb) into the assembly code using the keyword .incbin and define a
label (_dtb). With this label, in the assembly code we can refer to the Device Tree address without knowing
the actual value. The final address of the Device Tree is decided during the compilation and linking process.

#define DRAM_BASE 0x80000000

.globl _start
: _start:
6 1i sO, DRAM_BASE
csrr a0, mhartid
8 la al, _dtb
9 jr sO

1
2
3 .section .text.start, "ax", Q@progbits
4
5

Il .section .text.hang, "ax", @progbits
12 .globl _hang

13 _hang:

14 csrr a0, mhartid

15 la al, _dtb

16 1:

17 wfi

18 j 1b

19

20 .section .rodata.dtb, "a", @progbits

21 .globl _dtb
22 .align 5, 0
23 _dtb:

24 .incbin "ariane.dtb"

Figure 3.19: RISC-V Bootrom code

3.4.3 Bootloader

After the Bootrom stage, it comes the Bootloader. The Bootloader is the responsible of loading the
final OS (Linux). This includes initializing all the devices to the state in which Linux expects them to
be. In RISC-V, the most common one is BBL (Berkeley Bootloader), which is a First Stage Bootloader
(FSBL). Unlike in the Bootrom, the Bootloader is not embedded in the hardware nor its unmodifiable.
The Bootloader it is packed together with the Linux image and must be loaded into the main memory
everytime it boots.

23 An FPGA bitstream is a file that contains the programming information for an FPGA.

33

BBL expects the processor to be running in machine mode and to already have the Device Tree at some
address in the memory. The BBL will do the following steps [38]:

e Select one main hart (Hardware Thread) and put the other harts into sleep until it is time to pass
the control to Linux.

e The Device Tree passed from the previous stage (Bootrom) is read and filtered. This is done in
order to strip out information that is not relevant for Linux (e.g. platform specific information).

e All the other harts are woken up so they can setup their Physical Memory Protection (PMP), trap
handlers and enter supervisor mode.

e The mhartid?®* register is read in order to ensure that a unique per-hart identifier is passed to
Linux.

e Set up a PMP to allow Supervidor mode to access all the memory (the hart is in Machine mode at
this point).

e Set up Machine mode trap handlers. BBL’s machine mode code must handle unimplemented
instructions and machine-mode interrupts.

e The processor executes the instruction mret which will change the privilege level from Machine
mode to Supervisor.

e BBL jumps to the first address of the Linux Kernel.

In Ariane’s case, the bootloader is stored in the address 0x80000000, which is the instruction address
where we jump in Figure 3.19’s code (DRAM_BASE).

3.4.4 Booting Linux

In this subsection we are going to focus on which steps you have to follow in order to boot Linux in the
Ariane core running on an FPGA, this includes the steps to follow in order to generate a Bootloader
that contains Linux. For accomplishing this task we first need a compiler that can generate RISC-V
instructions. In our case, we used the RISC-V GNU Toolchain. Figure 3.20 shows the commands to build
the compiler.

yxu@laptop:
yxu@laptop:
yxu@laptop:
yxu@laptop:
yxu@laptop:
yxu@laptop:

yxu@laptop:
yxu@laptop:
yxu@laptop:
yxu@laptop:
yxu@laptop:
yxu@laptop:
yxu@laptop:

git clone https://github.com/riscv/riscv-gnu-toolchain.git
cd riscv-gnu-toolchain

git reset --hard 45f5db5a2dc167e£040c70143b94a806912£5771
git submodule update --init --recursive

cd ..

mkdir -p toolchain_build

mkdir -p riscv-gnu-toolchain/build

export RISCV=$(pwd)/toolchain_build

cd riscv-gnu-toolchain/build

../configure --prefix=$RISCV --with-arch=rv64imac --with-abi=1p64 --disable-gdb
make -j8

make linux -j8

cd ../..

Figure 3.20: Building the RISC-V Cross-Compiler GNU Toolchain

Once we have the cross compiler, we can start building the Linux kernel image. For this task, we are
using Buildroot as mentioned in the previous subsections. It is important to note that Buildroot expects
2 configuration files (busybox.config and linux defconfig) to be in the configs directory. Figure
3.21 shows the commands we followed in order to generate the vmlinux file. The configuration we used
(buildroot_defconfig) can be found in Appendix D.

24The mhartid is a CSR register containing an integer ID of the hardware thread running the code.

34

yxu@laptop:
yxu@laptop:
yxu@laptop:
yxu@laptop:
yxu@laptop:
yxu@laptop:

yxu@laptop:
yxu@laptop:
yxu@laptop:
yxu@laptop:
yxu@laptop:
yxu@laptop:
yxu@laptop:

mkdir -p configs rootfs && cd configs

export BASE_URL="https://raw.githubusercontent.com/pulp-platform/ariane-sdk/master
wget $BASE_URL/configs/linux_defconfig

wget $BASE_URL/configs/busybox.config

wget $BASE_URL/configs/buildroot_defconfig

wget $BASE_URL/configs/0001-Add-RISC-V-architecture-to-Xilinx-ethernet-Kconfig.patq
wget $BASE_URL/configs/0002-emaclite-Align-buffer-and-iomem-on-64-bits.patch

cd ..

export PATH=$(pwd)/toolchain_build/bin:$PATH

git clone git://git.buildroot.net/buildroot buildroot

make -C buildroot clean

make -C buildroot defconfig BR2_DEFCONFIG=../configs/buildroot_defconfig

make -C buildroot && cp buildroot/output/images/vmlinux vmlinux

Figure 3.21: Building the Linux Kernel image for Ariane.

The next step is to build the BBL which will have as payload the vmlinux file we just generated (Figure

3.22).

yxu@laptop:
yxu@laptop:
yxu@laptop:

git clone https://github.com/pulp-platform/riscv-pk.git
cd riscv-pk && git reset --hard e2c9af30180eeeb751428d4821ebfcbdc6513ect
git submodule update --init --recursive

yxu@laptop:$ cd ..

yxu@laptop:$ mkdir -p build && cp vmlinux build/.

yxu@laptop:$ cd build

yxu@laptop:$../riscv-pk/configure --host=riscv64-unknown-elf --with-payload=vmlinux && cd ..
yxu@laptop:$ make -C build && cp build/bbl bbl

Figure 3.22: Generating the bbl file with the vmlinux as a payload.

At this point we have generated the bbl file, but the file is in ELF format, this means that inside the file,
we can find information regarding the file content (e.g. Machine Architecture) apart from the actual
executable code. In our case, we are interested in having only the explicit instructions to be loaded into
the memory. For this reason, we must convert the ELF file into a Bin file (Figure 3.23).

yxu@laptop:$ riscv64-unknown-linux-gnu-readelf -h bbl
ELF Header:

Type: EXEC (Executable file)
Machine: RISC-V

Version: 0x1

Entry point address: 0x80000000

Flags: 0x1, RVC, soft-float ABI

yxu@laptop:$ riscv64-unknown-elf-objcopy -S -0 binary --change-addresses -0x80000000 bbl bbl.bi

Figure 3.23: Converting the bbl ELF into a Bin file.

Now we are ready to boot Linux on our FPGA. The way how Ariane copies the BBL into the main
memory is through the MicroSD card. The bootloader of Ariane requires a GPT partition table so we
first have to create one. To do so, we have to connect the MicroSD into the computer and check the
name of the device (sdb in this case). Figure 3.24’s first command shows how to create the GPT partition
table and two partitions, the first partition of 32MB for the bbl.bin and the second one for the Linux
root. The second command is for copying the bbl.bin file into the MicroSD.

35

yxu@laptop:$ sudo sgdisk --clear --new=1:2048:67583 --new=2 --typecode=1:3000
--typecode=2:8300 /dev/sdb

[sudo] password for yxu:

The operation has completed successfully.

yxu@laptop:$ sudo dd if=bbl.bin of=/dev/sdbl status=progress oflag=sync bs=1M
10+1 records in

10+1 records out

10638924 bytes (11 MB, 10 MiB) copied, 0,622679 s, 17,1 MB/s

Figure 3.24: Preparing the SD card to boot Linux.

Now we are ready to boot Linux! We have to program first the FPGA with the Ariane bitstream?® and
then with the MicroSD inserted in the FPGA, Ariane will boot Linux. From this point, the interaction
with Ariane will be done through the serial port, so it is important to have the FPGA UART port
connected to the computer. Figure 3.25 shows a snippet of the messages you find once it starts booting.
Once the device booted, the user is root and no password is required.

yxu@laptop:$ screen /dev/ttyUSBO 115200
iniPI

status: 0x0000000000000025

status: 0x0000000000000025

SPI initialized!

initializing SD...

copying boot image

bbl loader

[0.000000] OF: fdt: Ignoring memory range 0x80000000 - 0x80200000

[0.000000] Linux version 4.20.0-rc2 (yxu@laptop) (gcc version 8.2.0 (GCC))
[0.000000] printk: bootconsole [earlyO] enabled

Welcome to Buildroot
buildroot login: root
login[179]: root login on ’console’

cat /proc/cpuinfo
processor H¢

hart : 0

isa : rv64imac
mmu : sv39

uarch : eth, ariane

uname -a
Linux buildroot 4.20.0-rc2 #2 SMP Sun Dec 23 21:09:23 CET 2018 riscv64 GNU/Linux

Figure 3.25: Booting Linux in Ariane running on an FPGA.

25For this test, we used the Ariane version 4.0 and the bitstream available in the release ¢

36

https://github.com/pulp-platform/ariane/releases/tag/v4.0.0

Chapter 4

The k-means algorithm

Current comercial and enterprise applications such as e-commerce, health monitoring, industrial pro-
duction and financial data analysis rely more and more on Machine Learning techniques to get the best
result.

In [39], the importance of organizing data has been deeply discussed, analyzing the evolution of clustering
algorithms since k-means appeared. One of the most important reasons of clustering algorithm’s popularity
in the scientific community is that cluster analysis and classification are present in a wide range of
disciplines, specially the ones involving multivariate data analysis.

The k-means clustering algorithm has been used in several studies to compare the performance of different
platforms. The algorithm itself results to be of high interest for such comparative studies due to the
characteristics it presents [40]. Firstly, the iterative nature of the algorithm implies that the current
iteration results are needed in the next iteration. Secondly, calculating the centroids is a compute-intensive
task. And thirdly, in order to obtain the global solution when the algorithm is parallelized, a reduction
of the local results is needed. However, clustering algorithms are not only benchmarking algorithms, they
have been used to solve computationally demanding applications.

Aingura IToT presented in [41] a real industrial application from acquisition to processing and interpre-
tation of industrial data. In this application, a set of different machine learning techniques including
k-means clustering are used to develop a knowledge discovery application for a real industrial use case.

In the framework of the collaboration, the study was restricted to a thermal process performed by a laser
over mechanical pieces supervised by a high frequency thermal camera tracking 32 x 32 pixel pictures
every 1 ms. The stream of frames needs to be analyzed with clustering techniques within a given time
window in order to find anomalies in the thermal process. The industrial machine performing this process
is equiped with a compute unit based on Arm cores plus programmable logic (FPGA) that can be used
as an accelerator. This unit is responsible of acquiring the data from the sensors (in this case from the
camera) and perform the clustering algorithm. The computational intensity of the algorithm is not trivial
and involves heavy floating point computation that can be tackled using techniques derived from High
Performance Computing.

4.1 Algorithm analysis

The k-means algorithm consists of classifying a set of N points of D dimension in K different groups, called
clusters. The criteria for classifying the points is to minimize the intra-class variance, e.g. minimizing the
sum of squared distances from each point to the cluster point. It is a well known clusterization technique
already applied in similar cases [42].

Typically, the k-means++ algorithm [43] is used to initialize the cluster centers (centroids) before
proceeding with the standard k-means. This algorithm specifies a procedure to initialize the cluster
centers (centroids) before proceeding with the standard k-means. This algorithm helps avoiding poor
clusterings found by the standard k-means algorithm and to converge to the desired solution faster.

37

As part of the k-means problem consists in computing distances between two points, the binomial theorem
can be applied. The computation of the distance between two points is mathematically defined in
Equation 4.1.

D
d* = (ci—p)? (4.1)
i=1
where ¢; is the coordinate of the centroids and p; the coordinate of each of the point to clusterize. In
our case D = 1024, as we are working with 32 x 32 pixels images. The binomial theorem defines the
following equivalence:

(ci —pi)? = ¢ +p} — 2cips (4.2)
Applying it to the original distance formula, we obtain that the distance can be expressed as:

D
&’ = Z(C? +p} — 2cipi) (4.3)
i=1
We can also note that, as the points do not change their position during the clustering process, any
operation that only involves the p; can be precomputed (memoization) and reused each time is needed.
In our case, all the p? are computed at the beginning as a simple dot product before starting the k-means
algorithm. Following the same idea, the ¢? operations are computed as a dot product, but this time
during each iteration (as the centroids change their value during the clustering iterations).

The ¢;p; operation can be computed as a matrix multiplication of the matrices P, storing the D coordinates
of the N points to clusterize, and the transposed of the matrix C storing the D coordinates of the K
centroids.

1 1 1 1 2 K
p]_ p2 .« .. pD cl Cl e cl
2 2 2 1 2 K
pl p2 PRI pD 62 CQ PRI CQ
P = cT =
N N N 1 2 K
pr P2 - Pp ¢p ¢ Cp

Each cell of the final matrix is then multiplied by the constant —2. The resulting matrix will contain for
each cell, the —2¢;p; operation that is part of the original expression of d2.

Computational cost of the matrix implementation

As result of applying the optimizations explained in Section 4.1, the number of operations have been
reduced as some of the operations are precomputed once or within an iteration. Table 4.1 shows the
computational cost of the two implementations for the size evaluated. Note that, following the original

Precomputed (once) Per iteration
Original - TDNK
Optimized 2DN (2DK) + (2 + 2D)NK

Table 4.1: Computational cost comparison: dimension (D), num. elements (N), num. centroids (K).
k-means algorithm, for each iteration, the distance from the points to the centroids is calculated. The

distance formula is computed K times for each point and, as the centroids do not change their position
within an iteration, the operation ¢? can be precomputed at the beginning of each iteration.

38

Chapter 5

Test and results

In this section we are going to discuss the performance of 4 RISC platforms executing the algorithm
explained in the previous section. This includes the methodology we followed in order to obtain the
results and the environment setup where we run the tests. As our two target architectures (Arm and
RISC-V) are not at the same level of maturity, comparing them using their best setup is not fair. Instead,
we will first do a CPU only test comparing the single core performance of both architectures and then,
we will make a comparison of only Arm platforms but using the accelerator and a very optimized linear
algebra library. This comparision will show how different the Arm platforms are at their best setup.

5.1 Platforms

During this thesis, we had the chance to play with 4 different platforms: 2 heterogeneous Arm boards and
2 RISC-V platforms. The technical details of each platform will be discussed in the following subsections.

5.1.1 Arm

Table 5.1 shows the Arm platforms we used and their main architectural features. One board has a 32-bit
processor (Cortex A9) and the other one has a 64-bit processor (Cortex A57). These processors are from
different generations, however, both feature an accelerator embedded inside the SoC.

Zynq 7020 Jetson TX1
CPU FPGA accel. CPU GPU accel.

Compute resources 2x Cortex-A9 106.4k FFs, 4x Cortex-A57 256 Maxwell

53.2k LUTsS, CUDA cores

220 DSPs
L1 I-cache 32KB 4-way - 48KB 3-way -
L1 D-cache 32KB 4-way - 32KB 2-way -
Frequency [MHz] 667 200 up to 1730 up to 998
Memory [MB] 1024 4.9 + CPU mem 4096 shared with CPU
Interconnection 1 GbE (native) - 1 GbE (USBS3 bridge) -

Table 5.1: Technical specifications of the evaluated Arm platforms.

The 32-bit processor (Xilinx Zyng 7020) has an FPGA that is directly connected to the CPU and the
64-bit processor (Nvidia Jetson TX1) has a GPU (Graphics Processing Units) with CUDA cores. It is
important to note that in both cases, we are in front of a multi-core setup.

In both platforms we installed a standard software stack for scientific computing, including Linux OS
(Ubuntu), Network File System (NFS), GNU Compiler Suite together with linear algebra (ATLAS)
and communication libraries (MPI). We operated the compute nodes as nodes of a cluster and we
took advantage of the Mont-Blanc system software stack already deployed on Arm-based clusters. A
key part of the software stack installed in these machines is the OmpSs programming model [44, 45],
composed of the source-to-source Mercurium compiler and the Nanos++ runtime library. OmpSs is
a task-based programming model with explicit inter-task dataflow that allows the runtime system to

39

orchestrate out-of-order execution of the tasks, selectively off-loading tasks to the GPU/FPGA when
possible. OmpSs is developed at Barcelona Supercomputing Center and in this thesis has been used on
the CPU plus accelerator part to maintain a single portable and scalable code that can be executed on
parallel heterogeneous devices by only changing few pragmas.

5.1.2 RISC-V

Table 5.2 shows the RISC-V platforms we used. On one hand we have Ariane, which is not a physically
available platform, instead it is only HDL (Hardware Description Language) code synthesized and running
on the Genesys 226 FPGA. The reason why there is not a physical board using Ariane yet is because
it is still in development. For this reason, at the current state, Ariane does not support multi-core
configurations and lacks of a synthesizable Floating Point Unit (FPU). In the same way, the total memory
and the interconnection is not known as any option is possible. The resources utilization of Ariane in
the Genesys 2 FPGA is: 10% of BRAMs, 2% of DSPs, 11% of Flip-Flops and 24% of LUTs. On the
other hand, the HiFive Unleashed is a board with a real RISC-V chip. The SoC packs 4 cores based on
the Rocketchip (open-source) and supports the floating point extensions. Note that unlike in the Arm
platforms, our RISC-V platforms lack an accelerator.

Ariane HiFive Unleashed
Cores 1 4
ISA Extensions RV64IMAC RV64GC (RV64IMAFDC)
L1 I-cache 32KB 4-way 32KB 8-way
L1 D-cache 64KB 8-way 32KB 8-way
Frequency 1.5 GHz (50MHz on FPGA) 1.5 GHz
Memory - 8 GB
Interconnection - 1 GbE (native)

Table 5.2: Technical specifications of the evaluated RISC-V platforms.

Both platforms are capable of booting Linux but because they run in a very limited environment,
everything is cross-compiled from an x86 machine. On the other hand, it is important to remember
that there is no standard software stack ready for scientific computing in RISC-V. This includes the
lack of very optimized linear algebra libraries (e.g. BLAS), communication libraries (e.g. MPI) and job
scheduling systems (e.g. SLURM). There is OpenMP support for exploiting the parallelism in multicore
environments, but in single core, the programs only count with the compiler optimization flags to increase
the performance.

5.2 CPU only

In this section we are going to discuss the performance of both architectures (Arm and RISC-V). It is
important to notice that the Arm architecture is way more mature than the RISC-V one. The current
software ecosystem in Arm gives much more advantage in terms of performance than RISC-V’s ecosystem
can provide. For example the Vector extension (SIMD) is not ready yet, which is very important in
HPC workloads and most of the current available RISC-V 64-bit implementations are single core (e.g.
Ariane). For these reasons, in this test we are going to limit the scope to a single core comparison with-
out using scientific libraries like BLAS and relying only on the optimization flags of the available compilers.

We are going to use the k-means algorithm as our reference benchmark for measuring the performance.
Regarding the input set, we are using a real industrial dataset provided by Aingura IIoT. This dataset
represents a short video of 21.5 seconds at 1000 FPS (N = 21500). Each frame has a resolution of 32 x 32
pixels, giving a total of D = 1024 pixels per frame. The initial centroids are chosen using k-means++
algorithm which helps avoiding to fall into local optimums and get poor clusterings.

26https ://store.digilentinc.com/genesys-2-kintex-7-fpga-development-board

40

https://store.digilentinc.com/genesys-2-kintex-7-fpga-development-board

5.2.1 Methodology

We run the k-means algorithm with the following parameters: dimension D = 128, number of elements to
clusterize N = 128, number of clusters K = 16, tolerance (convergence threshold) = 0 and 1 repetition.

For measuring the performance we relied on the information given by the hardware counters available
inside the processor. In Arm we have the PAPI (Performance Application Programming Interface) library,
which provides a portable way for reading the hardware counters in different platforms and architectures.
Appendix E shows an example of the functions we used for reading the hardware counters. Figure 5.1
shows the command we used to check the available counters in our Arm machines.

yxu@cortex-a9:$ papi_avail -c

Deriv Description (Note)
PAPI_L1_DCM 0x80000000 No Level 1 data cache misses
PAPI_L1_ICM 0x80000001 No Level 1 instruction cache misses
PAPI_TLB_DM 0x80000014 No Data translation lookaside buffer misses
PAPI_TLB_IM 0x80000015 No Instruction translation lookaside buffer misses
PAPI_HW_INT 0x80000029 No Hardware interrupts
PAPI_BR_MSP 0x8000002e No Conditional branch instructions mispredicted
PAPI_TOT_IIS 0x80000031 No Instructions issued
PAPI_TOT_INS 0x80000032 No Instructions completed
PAPI_FP_INS 0x80000034 Floating point instructions
PAPI_LD_INS 0x80000035 No Load instructions
PAPI_SR_INS 0x80000036 Store instructions
PAPI_BR_INS 0x80000037 Branch instructions
PAPI_VEC_INS 0x80000038 Vector/SIMD instructions (could include integer)
PAPI_TOT_CYC 0x8000003b Total cycles
PAPI_L1_DCA 0x80000040 Level 1 data cache accesses

0f 15 available events, 0 are derived.

Figure 5.1: Checking the available PAPI counters in the Zynq 7020.

In RISC-V there is no PAPI version available yet, however, the ISA offers mechanisms to the designers
to implement hardware counters in their RISC-V processors. There are 3 mandatory basic counters that
any RISC-V processor must provide. These are the total number of cycles, the total number of retired
instructions and the real time, which counts wall-clock real time that has passed from an arbitrary start
time in the past. To read these counters, there are 3 mandatory instructions: rdcycle, rdinstret and
rdtime respectively. The way how we read the counters can be seen in Figure 5.2. We took advantatge
of the Extended Asm feature present in the compiler in order to add assembler instructions with C
expression operands.

unsigned long read_cycles(void) {
unsigned long cycles;
asm volatile ("rdcycle %0" : "=r" (cycles));
return cycles;

T W N =

}

6 unsigned long read_loads(void){

{ unsigned long result;

8 asm volatile ("csrr %0, hpmcounter7" : "=r" (result));
9 return result;

Figure 5.2: Functions to read the hardware counters in RISC-V using Extended Asm from GCC.

41

However, that is not all. The hardware performance monitor includes 29 additional user-level event
counters (hpmcounter3-hpmcounter31). The events to count are platform specific and the RISC-V
specification does not limit it. It is important to notice that the specification forces the counters to be
64-bit width even for the 32-bit architecture. Table 5.3 shows the addresses of these registers.

Address ‘ Name ‘ Description
User Counter/Timers
0xCO00 cycle Cycle counter for rdcycle instruction.
0xCO01 time Timer for rdtime instruction.
0xC02 instret Instructions-retired counter for rdinstret instruction.
0xC03 hpmcounter3 Performance-monitoring counter.
0xC04 hpmcounter4 Performance-monitoring counter.

0xC1F hpmcounter31 Performance-monitoring counter.

0xC80 cycleh Upper 32 bits of cycle, RV32I only.
0xC81 timeh Upper 32 bits of time, RV32I only.
0xC82 instreth Upper 32 bits of instret, RV32I only.

0xC83 hpmcounter3h | Upper 32 bits of hpmcounter3, RV32I only.
0xC84 hpmcounterdh | Upper 32 bits of hpmcounter4, RV32I only.

0xC9F hpmcounter31h | Upper 32 bits of hpmcounter31, RV32I only.

Table 5.3: RISC-V user-level performance-monitoring registers addresses.

When running a code using the debug module with OpenOCD and GDB (Section 3.3), we can read the
hardware counters registers too. In order to do so, we have to make sure that the *.cfg file we pass to
OpenOCD contains the following line:

1 # ariane.cfg file
2 adapter_khz 1000

1 riscv expose_csrs 3071-3086

5 init
By adding the above line into the configuration file, we will be able to read the hardware counters inside
GDB using the p and/or the info commands:

yxu@laptop:$ riscv64-unknown-elf-gdb add.exe -ex "target extended-remote localhost:3333"
[...]

(gdb) p /u $csr3076

$1 = 59

(gdb) info reg csr3076
csr3076 0x3B 59
(gdb)

In order to measure the absolute execution time, as our embedded platforms run at a fixed frequency, we
computed the execution time as the number of cycles divided by the frequency of the processor in Hertz.
For example, Ariane runs at 50MHz on the FPGA and measuring the execution time will not be fair.
Instead we considered the expected tapped out frequency of 1.5Ghz at 22nm (GlobalFoundries 22FDX) [46].

All these counters are part of the CSR (Control Status Registers) registers. For more information about
CSR registers, you can check the Chapter 2 - Control and Status Registers (CSRs) from the RISC-V
privileged specification (version 1.10). In this chapter more insights regarding the machine-level counters
will be shown, however, for this thesis we will limit the scope to the user-level registers shown above.

Regarding the execution, in the Arm platforms we executed the application inside a Linux environment,
however, in order to reduce the noise as much as possible, the machine where the application run was
exclusively allocated for our tests using SLURM. For the two RISC-V platforms, our initial intention
was to use Linux too. However, our preliminary tests in Ariane shown that the Linux execution was not

42

reliable (Figure 5.3). This is due the fact that in Linux we have more than one process running at a
time, and as there is only one core in Ariane, our measurements were heavily affected by the context
switches between processes. For this reason, the tests in Ariane have been done using the debug module
in combination of OpenOCD and GDB. In the HiFive Unleashed, as it has more than one core, our
preliminary tests did not register any affecting noise, so the execution in this platform was done in Linux.
Due to lack of RISC-V support in SLURM, we run the application in interactive mode, but we dou-
ble checked the setup in the board such that no other heavy load process could interfere with the execution.

Cycles (Ariane) Instructions (Ariane)
6.00 4.26
3.93
4.92 4.00
5.00 2.33
— 4.00 S 300
g Py
3 300 5
E g 2.00
© 2.00 5
= 1.00
1.00

o
=]
S]

o

=]

S

Bare-metal Linux Bare-metal Linux

Figure 5.3: Ariane executing k-means in Bare-metal vs Linux. Compiled with GCC Unknown ElIf.

A side effect of running an application using the debug module (Ariane) is that there is no Operating
System. This means that we cannot make a printf neither open a CSV file nor allocate dynamic memory
using a malloc. For this reason, we had to adapt our application to run in a bare-metal environment.
The steps we followed are:

e FEmbed the CSV into the application binary.
e Use global variables to store the data.
e Implement custom functions for reading the CSV file.

e Compile using the -static flag.

First, for embedding the CSV file into the application binary we used the .incbin directive (Figure 5.4).
This directive takes any file and includes it within the file being compiled. The file is included as it is,
without being assembled. We also define the csv_begin and csv_end symbols that are used to know the
address where the CSV is stored. Now, for reading the file, we implemented a custom function called
read_csv(). Given the number of elements per line and the number of lines, this function reads the CSV
data (from an address pointer) and writes it into an array (global variable) which size must be known at
compile time. This way is how we can handle the lack of dynamic memory and not being able to open a
CSV file. Refer to the Appendix F for the C code.

.data

.global csv_begin
csv_begin:

Y U s W N =

.incbin "input.csv"
.global csv_end
7 csv_end:

Figure 5.4: input.s file containing CSV input file.

The final step is to compile everything. It is important to remeber that in order to compile the input. s file,
we used the GNU assembler utility (e.g. riscv64-unknown-elf-as) that reads an *.s file and compiles
it into a *.o file. This file is later linked to the final binary using gec (e.g. riscv64-unknown-elf-gcc).
Appendix G shows the Makefile we used for compiling the application.

43

About the compilers available in each platform, we tested both GNU and LLVM versions of each archi-
tecture (Table 5.4). GNU Compiler Collection (GCC) is free and open and it is produced by the GNU
Project. Testing it is very important because it is the standard compiler for most Unix like operating
systems. On the other hand, LLVM+-Clang is another really popular option. The standard version is
free, open-source and its customization potential makes it perfect for some scenarios.

For Arm we used the GCC compiler that came with the Linux distribution while in the LLVM case, we
tested the Arm HPC Compiler (a version of Clang/LLVM optimized by Arm) in the Jetson TX1 and
because the Armv7 architecture is not supported in this compiler, we tested the standard Clang/LLVM
in the Zynq 7020. In the case of GNU in RISC-V, we tested the Unknown Elf and the Linux GNU version.
On the LLVM side, we used a preliminary version of Clang/LLVM toolchain developed in the Barcelona
Supercomputing Center called EPI Compiler.

GNU LLVM
Zynq 7020 GGC 6.2.0 Clang 6.0
Jetson TX1 GGC 5.4.0 Arm HPC Compiler 19.0
Ariane GCC Unknown EIf 8.1.0 | EPI Compiler

GCC Linux GNU 8.2.0
HiFive Unleashed | GCC Unknown EIf 8.1.0 | EPI Compiler
GCC Linux GNU 8.2.0

Table 5.4: Tested compilers in Arm and RISC-V.

For consistency reasons, not only Ariane but also the rest of platforms have been tested using the
bare-metal ready version described in this section.

5.2.2 Evaluation

As first approach, due to the different compilers available in each architecture, we evaluated the impact
they have on the performance in each of our platforms. In the Arm machines (Figure 5.5, we see a
different trend between the standard Clang/LLVM (used in the Zynq7020) and the Clang/LLVM version
optimized by Arm (used in the Jetson TX1). In the Zyngq, the Cycles Per Instruction (CPI) in LLVM
are lower (which is better) however, the actual execution time is higher than GCC, which means that
Clang/LLVM generates more but less complex instructions from the same code, but in the end, the extra
number of instructions penalized the performance. In the Jetson case, Arm did a great job optimizing
their compiler and even if the CPI is greater in LLVM, the final performance (time) is 1.12x faster.
This means that Arm managed to generate a code that is more compact (less instructions) but they
do more (require more cycles per instructions) resulting in a better usage of the processor microarchitecture.

Arm Compilers (CPI) Arm Compilers (time)
1.00 0.91 0.88 1.40
9 120 1.15
0.80 o 1.00 1.00
2 1.00 0.89
_ 060 g 0.80
z 0.41 2
“ 0.0 037 E 0.0
2 0.40
0:20 € 020
0.00 0.00
Zynq 7020 Jetson TX1 Zynq 7020 Jetson TX1
EGCC mWLLVM mGCC mLLVM

Figure 5.5: Comparison of the Arm compilers executing k-means (integers) with -O3 flag. For the figure
on the right, baseline time is 36 miliseconds for Zynq and 7 miliseconds in Jetson TX1.

For the RISC-V machines (Figure 5.6, we found a similar trend as in the standard Clang/LLVM of the
Zynq. The performance is worse when using the custom Clang/LLVM. The GCC Linux and the LLVM
compilers we used target Linux environments, therefore, the generated code, expects to be running in
Linux for the correct functioning. For this reason, in Ariane we tested the GCC Unknown EIf in a bare

44

metal environment and the GCC Linux and LLVM in Linux. That is the reason why the execution time
is lower in GCC Unknown Elf, but the important point of the comparison is that it shows the same trend
as in Arm, where the LLVM performance is worse. For the HiFive Unleashed, the performance is the same
for both GCC Unknown Elf and GCC Linux, but the LLVM shown a higher CPI and execution time.
Analyzing the raw numbers, we see that for the three compilers, LLVM generates 12% more instructions
and takes 24% more cycles than both GCCs, hence the increase in CPI and the execution time. This
behaviour is somehow expected as the Clang/LLVM version we used in RISC-V still on a preliminary
stage.

RISC-V Compilers (CPI) RISC-V Compilers (time)
14.0 w14 1.24
11.57 z 1.14 1.16
12.0 11.03 1.2 :
10.60 £ 1.00 1.00 1.00
10.0 510
_ 80 308
o o}
“ 60 206
ael
4.0 204
1.68 ©
20 1.52 1.52 £ 02
[| g
0.0 GC) 0.0
Ariane HiFive Unleashed g Ariane HiFive Unleashed
B GCC Unknown EIf GCC Linux LLVM B GCC Unknown EIf GCC Linux LLVM

Figure 5.6: Comparison of the RISC-V compilers executing k-means (integers) with -O3 flag. For the
figure on the right, baseline time is 289 miliseconds for Ariane and 40 miliseconds in HiFive Unleashed.

Considering the non-availability of the Arm HPC Compiler for Armv7, we decided to stick to GCC in
the future tests as GCC is free, open source and available in most of the Linux distributions. On the
RISC-V side, as the Clang/LLVM compiler still on a preliminary stage we also decided to use GCC for
our next tests. From the two GCC version available in RISC-V, both shown to perform equally good
and for convenience, we ended up using the GCC Unknown Elf, which runs in bare-metal and in Linux
without any issue. For each case, we tested the 4 different optimization flags offered by the compiler
(-00, -01, -02, -03) in order to evaluate how good is each compiler optimizing the code and how good is
each platform in taking advantatge of such optimizations.

Theoretically, the 4 platforms we chose support Floating Point operations. In our experience, only 3
of the 4 actually supported it without any issue. The only platform we were unable test the floating
point performance is Ariane. In the official website, it is mentioned that Ariane supports the RISC-V F
extension and enabling the floating point support is as easy as changing a constant variable. The reality
is that while the Floating Point unit is there, the code they provide only works in simulations and cannot
be synthesized (Figure 5.7) into real hardware (FPGA).

yxu@server:$ make fpga

[...]

[Synth 8-561] range expression could not be resolved to a constant [fpnew_pkg.vhd:593]
[Synth 8-285] failed synthesizing module ’fp_i2fcasts’ [fp_i2fcasts.vhd:78]
[Synth 8-285] failed synthesizing module ’fp_conv_multi’ [fp_conv_multi.vhd:74]
[Synth 8-285] failed synthesizing module ’conv_multifmt_slice’ [conv_multifmt_slice.vhd:9
[Synth 8-285] failed synthesizing module ’conv_block’ [conv_block.vhd:77]
[Synth 8-285] failed synthesizing module ’fpnew’ [fpnew.vhd:82]
[Synth 8-285] failed synthesizing module ’fpnew_top’ [fpnew_top.vhd:93]
8-6156] failed synthesizing module ’fpu_wrap’ [fpu_wrap.sv:17]

RTL Elaboration failed
[Vivado_Tcl 4-5] Elaboration failed - please see the console for details

Figure 5.7: Error when trying to enable Floating Point support in Ariane.

45

The first test we have done is to measure the performance executing the floating point single precision
version of k-means. We intentionally left out Ariane in this comparison due to the errors mentioned
above. Figure 5.8 shows the number of retired instructions. This comparison let us check any imbal-
ance in the number of instructions generated by the compiler for each architecture. In this case, the
number of instructions is pretty similar between the platforms for each optimization flag. On the other
hand, Figure 5.9 shows the execution time for each case. As expected, the best performing platform
is the Jetson TX1 which packs one of the best Arm cores today (Cortex A57). For the other Arm
platform (Zynq 7020), it packs the Cortex A9, which it was a really good processor at that time and
surprisingly, it has been outperformed by the SiFive HiFive Unleashed with a speedup of 1.65% in average.

Instructions (Float) Time (Float)
200 300 285
168
. 152 250
27150 141 200
S) 2 200
w c
5 S
5 100 S 150
S £
z £ 100 59
g % 29 9y 2 22 19 22 22 19 22 50 43 39 43 43
2126 ; 24 ;
. An’ Emy Em .
-00 -01 -02 -03 -00 -01 -02 -03
W SiFive MZynq Jetson TX1 SiFive ®mZyng © Jetson TX1

Figure 5.8: K-means (Float) retired instructions in
single core cpu only.

Figure 5.9: K-means (Float) execution time in
single core cpu only.

Even if the execution time is the typical metric used to measure how good is a platform, it does not
give us a clear view of the actual microarchitecture design performance. For example, a platform with
a higher frequency clock can potentially outperform another platform just because the frequency. For
this reason, we also measured the Cycles Per Instruction (CPI). This metric does not consider the clock
frequency but the actual number of cycles a processor spends in each instruction in average. Figure 5.10
shows the CPI for the previous case. Again Jetson TX1 has the lower CPI. For the two other platforms,
the CPI in the Zynq is lower than in the SiFive in most of the cases. This means that part of the reason
why the execution time is lower in SiFive is due to the microarchitecture’s capability of running at a
higher frequency (2,25x higher).

CPI (Float) Speedup (Float)
2.50 9.00 8.30
2.03 209 509 e 6.66
200 179 6.636.
1.751 N 162 7.00 5.875.93
150 1.35 : 1.48 %6.00 5.16
= 1.18 3 5.00 4.13
)
1.00 :l’ 4.00
0.49 0.57 0.57 3.00 2.00
0.50 200 100 1.00 1.00
1.00
0.00 0.00
-00 -01 -02 -03 SiFive Zyng Jetson TX1
SiFive Zynq Jetson TX1 -00 ©-01 +-02 -03

Figure 5.10: K-means (Float) CPI in single core
cpu only.

Figure 5.11: K-means (Float) speedup between
optimization flags on the same platform.

Figure 5.11 shows the speedup achieved in each platform using the optimizations flags provided by the
compiler. It is important to notice that even if the CPI increased from -00 to -01 in all the platforms, the
actual performance improvement is quite high (3.36x in average). Overall the RISC-V compiler achieved
the higher improvement and among Arm, Zynq achieved a higher improvement than the Jetson TX1.

46

Ariane is one of the state of the art RISC-V 64-bit processors written in HDL available today. Comparing
its performance to other available platforms is important. For this reason, we repeated the previous tests
but using Integer data types. The main downside of using Integers rather than Floats is that we lose
precision during our calculations, but for some use-cases, Integer precision is enough.

Instructions (Int) Time (Int)
[2544]
300 567267
500
= 250 216233 398 405
S 200 400
- < 90
£ 15 8 300 286 289
] 2
£ 100 T 200
3
£ 44 44 44 39 39 3939
50 35 3135 3134 100 64 59
43 3736 4036
) lIl Hlisn Him . 2 7 7
-02 -03 -00 -01 -02 -03
W Ariane M SiFive MZyng Jetson TX1 m Ariane SiFive Zyng 1 Jetson TX1

Figure 5.12: K-means (Int) retired instructions in
single core cpu only.

Figure 5.13: K-means (Int) execution time in single
core cpu only.

At first glance, the number of retired instructions in Ariane is identical to the SiFive HiFive Unleashed,
meaning that there is no load imbalance between both. This is the expected result because we are running
the same binary. In the Arm case, the two platforms are different (32-bit vs 64-bit) and that is the
reason why the number is not equal, however, they are similar and in the same order of magnitude. For
the performance (Figure 5.9), Ariane shown to perform much worse than the SiFive (and the rest of
platforms), being this latter 8.26x faster in average than Ariane. For the rest of platforms, the Jetson
TX1 still the best performer, however, the SiFive is only better than the Zynq in the -00 and -01 cases,
in the two other cases, the Zynq is 1.07x faster in average.

CPI (Int) Speedup (Int)
16.00 1431 1376 12.00 10.9710.99
10.00 9.04
12.00 10.90 11.03 8.893 81 . 8.74
8.00 7.26
- e 627 6.68 6.77
% 800 g 6.00
Q.
7 400
“00 T REKT) ta 15 .
0.48 0.89 078 55 . 200 1.00 1.00 1.00 1.00
0.0 0.00
-00 -0t -02 -03 Ariane SiFive Zynq Jetson TX1
Ariane SiFive Zynq Jetson TX1 -00 ©-01 @ -02 -03

Figure 5.14: K-means (Int) CPI in single core cpu
only.

Figure 5.15: K-means (Int) speedup between opti-
mization flags on the same platform.

Analyzing the CPI (Figure 5.14), Ariane is at 1 order of magnitude of difference. This clearly shows how
much improvement still to be done in Ariane. As in the Floats case, the Jetson TX1 has the lower CPI
followed by the Zynq and the SiFive. In this case, the difference between the Zynq and the SiFive is much
higher than in the Floats for the -02 and -03 cases. This explains why the execution time of the Zynq is
better than the SiFive in this same cases. Regarding the speedup achieved (Figure 5.15), the compilers
did a great job with the optimization flags even in Ariane, which shows that the bad performance in
Ariane is not directly related with the code generated by the compiler. For the rest, the platform that
improved the most was the Zynq, achieving a 10.99x speedup in the best case. It is important to notice
that in the RISC-V platforms, the performance decreased when passing from -02 to -03. Checking the

47

retired instructions in these cases, we found out that using -03 actually reduced the instructions, but the
CPI has increased, which means that the compiler reduced the number of instructions in favor of more
complex ones, but in the end, did not improve the performance at all. As this happens in both RISC-V
platforms, it seems like a problem directly related to the -03 optimizations applied by the GCC compiler
in RISC-V .

Considering that the performance in Ariane was really bad, we tried to analyze in more detail the other
available performance counters. During this process we found a bug related to the performance counters
in Ariane and we already opened an issue with the corresponding fix?7. With the bug fixed, we tried to
measure other metrics like the L1 data cache misses, load instructions and store instructions. However,
we found out that the reported L1 cache misses made no sense (e.g. more cache misses than load accesses).
For the other two metrics, they were similar to the Arm executions, therefore we can assume that they
are correct. We consider that analyzing the HDL code and fixing the bugs is out of the scope of this
thesis. For this reason, we did not go further into the analysis of the HDL code and in the end, no
conclusive result were drawn regarding why the performance was so bad in Ariane.

K-means kernels

In Section 4.1 we have seen that the k-means algorithm uses 3 different kernels: GEMM (Matrix Matrix
Multiplication), AXPY (Y = Ax X +Y) and DOT (dot product). Table 5.5 shows the number of dynamic
instructions of these kernels in one iteration of the previous k-means execution. This measurement is
derived from the static instructions generated by the compiler. This is that the dynamic instructions are
computed as instructions inside a loop multiplied by the number of iterations of the loop plus the static
instructions.

DOT | AXPY | IGEMM
Arm (armv7) | 2618 3130 11617680
RISC-V (RV64) | 2904 3553 14515738

Table 5.5: Dynamic code size of the k-means kernels.

From the 3 kernels, the more time consuming one is the GEMM (Matrix Multiplication) and because
this kernel has a lot of relevance in scientific applications and machine learning algorithms, we decided to
analyze the GEMM operation on our platforms. This will help other developers to have a reference on how
their applications will work on the platforms we used, if the application makes use of the GEMM operation.

Following the same methodology as in k-means (N = 128, K = 16, D = 128), we tested both Integer and
Floating Point versions of the GEMM kernel. Figure 5.16 shows the execution time in each platform.
Overall, the performance trend is similar to the k-means tests. As expected, Ariane does not perform
very well and the gap still of 1 order of magnitude. The Jetson TX1 is the best performing platform in
both Interger and Floating Point versions. The SiFive performance is almost as good as the Zynq in the
Integers version but the Floating Point performance in SiFive is clearly better than Zyng.

GEMM Time (Int) GEMM Time (Float)

[1410]

300 241

250 230

222

§ § 200 169
g 200 161 155 3 150
% 150 121 2
E E 100

o 35 36 > 34

50 233143 2018 ¢ 1819 5 50 340 LR 2022

0 0
-00 -01 -02 -03 -00 -01 -02 -03
Ariane SiFive Zynq Jetson TX1 SiFive Zyng Jetson TX1

Figure 5.16: GEMM execution time in both Integer and Floating Point version.

For more metrics like the CPI and the Speedup on the GEMM kernel, check the Appendix H.

2"Thttps://github.com/pulp-platform/ariane/issues/158

48

https://github.com/pulp-platform/ariane/issues/158

5.3 CPU plus accelerator

In the previous section we focused in comparing the performance of two Arm and two RISC-V processors
in a single core environment. However, the reality is that the Arm platforms have much more potential
than the shown previously. In RISC-V the software ecosystem is not ready yet and furthermore, the
platforms we tested do not have an accelerator. In this section we will focus only on the Arm platforms
but with the idea of optimizing the application as much as the Arm software ecosystem let us and also
take advantage of the accelerator embedded in the SoC.

5.3.1 Methodology

We followed a similar methodology as in the CPU only tests. We measured the performance using the
PAPI library and executed the application in a Linux environment. The machine where the application
run was exclusively allocated for our tests using SLURM. However, we will only use the float data type
in order to be closer to a real world scenario.

For the dataset, we used a input file provided by Aingura IIoT which represents the same manufacturing
process described in Section 5.2. Regarding the input parameters, as we executed the application in a
multicore setup plus an accelerator, we used the following ones for all the tests: dimension D = 1024,
number of elements to clusterize N = 21500, number of clusters K = 8, 1 repetition and an error tolerance
of 10*. For choosing the initial centroids, we also used the k-means++ algorithm.

For accelerating the k-means kernels (GEMM, DOT, AXPY), we took advantatge of a BLAS implemen-
tation present in Arm. In this case, we used the ATLAS (Automatically Tuned Linear Algebra Software)
library (version 3.10.3). Using this library let us achieve a huge improvement that will be discussed in
the next subsections.

The two platforms we used in this test (Zynq 7020 and Jetson TX1) are considered heterogeneous
platforms. This means that inside the same SoC, both platforms have two or more processing units with
different characteristics. This difference typically comes from the ISA of each unit, but it also applies
to the microarchitecture and the speed (e.g. Arm big.LITTLE). In the Jetson TX1 platform, there are
4 identical Arm Cortex A57 cores plus an Nvidia GPU with CUDA cores. The GPU do not follow the
Arm ISA hence the platform is heterogeneous. In the same way, the Zynq 7020, packs 2 identical Arm
Cortex A9 cores plus user programmable units (FPGA) and is also considered heterogeneous for this reason.

In order to run the code in multiple cores and handle the heterogeneity of the platforms, we used
the OmpSs programming model. OmpSs extends OpenMP by adding new directives for supporting
asynchronous parallelism and executions in heterogeneous devices (e.g. GPUs, FPGAs). This means that
by using OmpSs, we can offload some workloads to run in parallel in the heterogeneous accelerators and
in the main cores (e.g. Arm) at the same time. All the management related to the architectural difference
of the devices is done by OmpSs, letting the programmers to focus on optimizing the code without caring
about the (usually) cumbersome details of accelerator programming.

OmpSs programming is based on pragmas and this characteristic let us maintain a single portable and
scalable code supporting multiple platforms. For running in a heterogeneous configuration, we only had
to change few pragmas and recompile the application.

5.3.2 Serial Optimizations

In this section we will discuss about the advantatges of applying the optimizations explained in Section
4.1. At first we wanted to test the effect on both Arm and RISC-V architectures, but we limited it to
only the Arm platforms due to the following reasons:

e The SiFive HiFive Unleashed board does not have some of the counters we are interested in (e.g.
L1 Data Cache Miss®3.)

e Some of the performance counters in Ariane are not 100% reliable.

28Table 3 in https://static.dev.sifive.com/FU540-C000-v1.0.pdf

49

https://static.dev.sifive.com/FU540-C000-v1.0.pdf

e The lack of a Vector unit in the analyzed RISC-V platforms.

e The non-availability of a BLAS implementation in RISC-V .

The optimizations discussed in Section 4.1 helped us to reduce the number computations, however, the
most beneficial effect of the optimization is to reduce the original algorithm to simple computational
kernels. Without isolating the kernels, none of the ATLAS library routines could have been used.

Table 5.6 presents the data locality improvement achieved with the ATLAS libary. This comparison
shows the total number of L1 data cache misses of a k-means execution for both platforms in a single
core configuration. The improvement is noticeable, as the number of data cache misses in the optimized
version decreases 1.56% in Jetson TX1 and 2.49x in Zynq 7020.

The new implementation strategy ensures that the coordinates of the points are stored consecutively in
memory. For this reason, SIMD instructions can be used. Besides the L1 data cache misses, Table 5.6
shows the floating point and vector operations executed in a k-means execution. In the Jetson TX1 case,
the vector operations represents the 99% of the total floating point operations, meaning that a huge
level of data parallelism has been exploited. On the other hand, due to the fact that Armv7 NEON
hardware does not fully implement the IEEE 754 standard for floating-point arithmetic [47] (e.g. the
direct comparison of single-precision values, used by our algorithm), no SIMD operations have been used
for the Zynq 7020 execution.

Jetson TX1 Zynq 7020
L1 DCM FP VEC L1 DCM FP VEC
Original ~ 4.3-10% 1.5-101° ~0 89-108 32-10" ~0
Optimized 2.7-10% 3.9-107 5.7-10° 3.6-108 1.3-10° ~0

Table 5.6: Comparison of figures of merit related to the reference implementation and the one based on
matrix operations. Parameters considered are L1 Data Cache Misses (DCM), Floating Point operations
(FP) and Vectorial operations (VEC).

5.3.3 Parallel Implementations

In Section 5.2, we implemented a basic k-means algorithm following the optimizations described in Section
4.1, but due to the limited software ecosystem in RISC-V, we limited our tests to run only in a single
core. In the current tests, we took Section 5.2’s code as baseline and we modified it to take advantage of
the multiple cores and the accelerator available in the Arm platforms.

I A = dot_product (DATA)
2 CENTROIDS = kpp(DATA)
3 do {

1 B = dot_product (CENTROIDS)
5 for each block i {

6 #pragma omp target device(fpga,smp,cuda) copy._deps

7 #pragma omp task in(DATA,CENTROIDS) out(Ci)

8 Ci = MxM(DATA,CENTROIDS)

9 #pragma omp task in(A,B,Ci) out(CENTROIDS,LABELS)

10 <CENTROIDS,LABELS,error> = compute_centroids(A, B, Ci)
11 #pragma omp atomic

12 total_error+=error;

13 }

14 #pragma omp taskwait

15 } while (total_error > tolerance);

Figure 5.17: K-means pseudocode with OmpSs pragmas with support for SMP, FPGA and GPU execution.

As mentioned before, the OmpSs programming model has been used not only for parallelizing the code
but also to handle the heterogeneous devices in a transparent way to the user. Figure 5.17 shows in a
pseudocode how by just adding few pragmas within the almost same code, OmpSs is capable of managing

50

three different devices: SMP (Symmetric Multiprocessor), FPGA and GPU. Our heterogeneous k-means
implementations follow this approach and leverages in OmpSs to exploit the hardware accelerators.

The OmpSs version is the parallelized version of the sequential code. In this case, the parallel granularity
is expressed at point level. This means that a parallel task computes the dot product and the matrix
multiply of a continuous subset of points (domain decomposition).

The OmpSs+BLAS version is identical to the OmpSs version but adapting the dot product and matrix
multiply operations to be done using the ATLAS (BLAS) library.

The OmpSs@QCUDA+BLAS version uses as baseline the OmpSs+BLAS version but combines the
power of an NVIDIA GPU accelerator. The OmpSs@QCUDA ecosystem manages all the data transfers
between the GPU and the host in a transparent way. The OmpSs runtime scheduler will optimize the
data transfers by analyzing the data dependencies and moving data only when it is necessary.

The OmpSs@FPGA+4BLAS version uses as baseline the OmpSs+BLAS version but takes advantage
of the programmable logic of the board. In this case, The OmpSsQFPGA ecosystem has generated
a Matrix Matrix Multiplication (GEMM) accelerator that is programmed into the FPGA. The data
transfers between the FPGA and the host are also managed by the runtime. The percentage of hardware
resources reported by Vivado is: 32% BRAMs, 80% DSPs, 26% FFs and 62% LUTs.

5.3.4 Evaluation

In this section we will evaluate the platforms from two points of view, the pure performance and the
energy to solution.

Performance

Figure 5.18 shows the speedup achieved when we executed the different implementations on both platforms.
We took as reference a CPU-only serial implementation. By just annotating the code with few OmpSs
pragmas and execute it in parallel, the performance improvement in both cases (Jetson TX1 and Zynq
7020) is quite good (3.13x and 1.58x respectively). The version that combines OmpSs plus ATLAS
(BLAS), achieves a performance boost up to 7.39x and 6.20x respectively. Combining the CPU plus the
accelerator embedded in the SoC (GPU or FPGA), the performance in the Jetson TX1 (GPU) is worse
than only using the CPU. This is directly related to the fact that the dimension of the used input set is
too small to benefit from the embedded accelerator. However, the performance in the Zyng 7020 (FPGA)
increased up to 7.76x compared to the serial version. This shows that for certain real case scenarios (as
this industrial one), using a GPU is not always the best way to achieve performance.

Speedup (Float) Time (Float)
9.00 140,00 12761
7.76
8.00 7.39 12000
7.00 620
589 100.00
6.00 80.52
5 3 80.00
2 500 2 80
2 4.00 S
g4 313 g 6000
3.00
40.00
1.58 2135
200 1.00 1.00 rooo 20.58 16.42
1.00 . 682 2.89 3.62
0.00 0.00 - —_— —

Serial OmpSs OmpSs + BLAS OmpSs + BLAS + Serial OmpSs OmpSs+BLAS ~ OmpSs + BLAS +
GPU/FPGA GPU/FPGA

Jetson TX1 Zynq W Jetson TX1 Zynq

Figure 5.18: Speedup between different implemen- Figure 5.19: Execution time between different im-
tations on Jetson TX1 and Zynq 7020. plementations on Jetson TX1 and Zynq 7020.

The Figure 5.19 shows the same results as the Figure 5.18 but quantifying the performance in seconds

instead of the achieved speedup between implementations. As expected, the Zynq 7020 performs worse
than the Jetson TX1. In the serial execution, the Jetson TX1 is 6x faster than Zynq 7020 while in the

o1

execution using OmpSs plus BLAS plus the accelerator Jetson TX1 is only 4.5x faster. Even if the
speedup is greater on the Zynq 7020, as expected, the raw performance is much better in the Jetson TX1,
as the Jetson TX1 features the double of cores clocked to a higher frequency and a much more refined
architecture (Armv8 vs ArmvT).

Energy to solution

Embedded Arm processors are well known for its power consumption. In this section we will discuss the
power profile and the total energy to reach the solution of the problem (called Energy to Solution) on
both platforms. The power data has been collected using a Yokogawa power meter [48]. The energy to
solution has been computed as the sum over execution time of the instantaneous power. The evaluated
implementations are the ones using an accelerator (GPU / FPGA).

10,00 A
. 800 Active:
% ~6 Watts
% 6,00 Active: L
g ~1 Watt
&)
4,00 v
; Static:
2,00 Static: ~5,23 Watts
~3,9 Watts
0,00 v
1 16 31 46 61 76 91 106 121 136 151 166

Time (Seconds)

Jetson TX1 Zyng-7020

Figure 5.20: Power consumption of 10 k-means repetitions in the Arm platforms.

Both platforms have been tested using the input set mentioned in the methodology of this section but
computing 10 iterations instead of only one for power sampling reasons (Figure 5.20). The Jetson TX1
board consumed 307.54 J in total. 181.43 J of them are given by the contribution of active power,
i.e., ignoring static idle power. The Zynq 7020 consumed 1009.72 J in total and only 157.99 J was the
contribution of the active part.

The total energy of Jetson TX1 is 3x lower than the Zynq 7020. This is mostly due to the fact that
the first one has an idle power of 3.9 W while in the second platform is 5.23 W. The lower idle power
combined with the fact that the execution time is 4.5x faster in the Jetson TX1, makes the total energy
consumed by this platform significantly lower. However, considering only the active energy, the Zynq
7020 consumes 15% less energy than Jetson TX1 even if the lithography process in Zynq 7020 is 28 nm
and in Jetson TX1 is 20 nm.

We observe that the majority of the active power is currently used by the Arm cores: the impact of
the power consumption of the FPGA is below 1 W, but its performance benefits are notable. From all
these observations, a platform with newer Arm cores like the Cortex A57 plus an FPGA would probably
outperform the Jetson TX1 in both, pure performance and power consumption in the Aingura IloT case
scenario.

52

Chapter 6

Conclusions

From a real industrial case scenario presented by Aingura IIoT and due to the limitations of the industrial
environment, we considered the two most popular RISC architectures available today (Arm and RISC-V).
Starting from the technical specifications, we took the journey of analyzing the HPC capability of each
architecture at the current state.

RISC-V presence is growing really fast, although the HPC support is not ready yet, the idea behind an
open ISA is really interesting. By far, the ISA is the most important interface in a computer system. It
is the middle point where software meets hardware. There are open standards for almost every other
interface (for example: TCP/IP for networking, OpenGL for graphics, etc) and they worked really well
so we believe in the RISC-V proposal. However, as shown in our analysis, the support in HPC still not
mature enough. The lack of a frozen vector extension makes RISC-V to be a step down compared to the
competitors, however the community is putting a lot of effort in this direction and a lot of progress is
expected to happen in the short term. In our test, we included two RISC-V platforms: the SiFive HiFive
Unleashed, representing the best comercial option, and Ariane, representing the best research focused
option today.

In our tests, the SiFive HiFive Unleashed performed really well, achieving a speedup of 1.65x in Floating
Point performance and the same Integer performance compared to the Arm Cortex A9. This is really
impressive considering the short life-time of the SiFive company (2015). We cannot say the same for the
Ariane platform. In this case, the execution time was at 1 order of magnitude of difference compared to
the other platforms, being the SiFive 8.26x faster in average than Ariane. While this result shocked us,
it is important to remember that Ariane still an under development platform (e.g. real Atomic support is
still pending) and the current focus is more in the correctness direction rather than achieving the best
performance. However, it important to remember that we detected an inconsistent behaviour with some
of the performance counters and we even found a bug on the counters unit. Although the measured
cycles and the retired instructions follow a consistent behaviour, due to the other issues, we are taking
the performance numbers of Ariane with a grain of salt. On the other hand, a very important milestone
in the Ariane development progress is the booting Linux capability. While in our tests we found that
running applications in Linux for Ariane is not reliable, this issue will be solved once the multicore
support is added. Working in a Linux environment has a lot of advantatges, for example the pthreads
(POSIX Threads) support which opens the posibility of executing parallel programs. For these reasons,
we think that Ariane is an up-and-coming platform with a lot of potentials behind.

From our tests, it is very clear that the RISC-V platforms performance is not at the level of the current
state-of-the-art Arm chips. The performance of the Cortex A57 is 3.43x faster than SiFive, but that
is totally expected. The important point of the comparison was to check how far RISC-V processors
are compared to a processor from a big and very experienced company such as Arm. Considering only
the Arm platforms we analized, we can easily conclude that the Arm architecture found its way into the
HPC market. The software ecosystem in Arm got to a point where executing applications is as easy as in
traditional x86 platforms. With the Mont-Blanc software stack, we were able to run scientific workloads
and tackle real industrial needs like the Aingura IIoT case scenario. The most interesting part of the
analyzed Arm platforms is the fact that they are heterogeneous, packing Arm cores plus an accelerator
(FPGA or GPU). From the sequential code used in the RISC-V tests, we adapted it to be compatible

53

with three different computing resources at the same time: SMP, GPU and FPGA. Our tests shown that
by optimizing the code and using the correct software, we can achieve a speedup of 5.9x and 7.8x in the
Zynq 7020 and the Jetson TX1 respectively.

Thanks to the advanced OmpSs programming model, adapting the applications to the different devices
was less painful. Mainly because we did not have to care about the interaction between the Arm cores
and the accelerators. OmpSs handles that allowing us to focus on optimizing the code without caring
about the details of accelerator programming. This shows how important is to have a good software
support in a platform. On the other hand, the compilers also play a really important role on the
performance. With a very optimized compiler as the Arm HPC compiler, in our tests the performance
was 1.12x faster than GCC. Using the optimization flags provided by the own compiler, we achieved
an effortless speedup of 10X in some cases. It is important to mention that although the compiler
performance in RISC-V is not as good as in Arm, this is expected as the RISC-V architecture is relatively
new and the efforts of the community are focusing in the correctness rather than tuning the generated code.

To conclude, we want to remark that both Arm or RISC-V are simply ISAs. If a processor is Arm or
RISC-V, does not guarantee us to be really energy efficient or to perform really well. A clear example
of this is Ariane, which performs much worse than the SiFive option and both are RISC-V. Instead,
the important part when comparing ISAs is the opportunities they offer to the designers to come up
with a better implementation. Regarding the RISC-V ISA, it is improving really fast. The embedded
world already started shifting from Arm to RISC-V microcontrollers in commercial products (e.g. Nvidia
Falcon microcontroller) but for the HPC world the support is not ready yet. Heterogeneous SoCs like the
ones we used in this thesis (Zynq 7020 and Jetson TX1) demonstrated the huge potential behind these
type of configurations. Achieving a significant performance improvement without sacrificing the power
consumption. Considering the RISC-V modular approach, we see a lot of potential on this ISA to also fit
in heterogeneous platforms too.

54

Chapter 7

Future work

This chapter covers the future work of our research. Firstly, we plan to also measure the power consump-
tion in the SiFive HiFive Unleashed and compare it to the Jetson TX1 and the Zynq 7020. This would
allow us to calculate other metrics like the performance per watt and compare how the fastest RISC-V
platform today compares against the competition.

Secondly, we will continue the Ariane research line. We plan to double check that the performance
counters are working properly and contribute in the project if any bug is found. In case the read cycles
were correct, we will analyze why the performance is so bad and see where is the bottleneck.

As Ariane is a project in continue development, we plan to repeat the evaluation once a synthesizable
FPU is released. In the same way, once the multicore support is ready, we plan to repeat the tests in the
4 platforms using a k-means version ported to OpenMP.

Finally, taking advantatge of the modularity of RISC-V, we plan to test a k-means version using SIMD
operations in a RISC-V platform. To achieve that, we plan to use as baseline the Ariane core and we
will design in SystemVerilog a vector unit that will integrate with the core. This unit will follow a
simple custom ISA with an encoding defined within the custom extensions space mentioned in the RISC-V
specification.

55

Appendices

A ariane.cfg

#

Olimex ARM-USB-0CD-H

#

http://www.olimex.com/dev/arm-usb-ocd-h.html
#

adapter_khz 1000

interface ftdi
ftdi_device_desc "Olimex OpenOCD JTAG ARM-USB-0CD-H"
ftdi_vid_pid Ox15ba 0x002b

ftdi_layout_init 0x0908 0xObilb
ftdi_layout_signal nSRST -oe 0x0200
ftdi_layout_signal nTRST -data 0x0100 -oe 0x0100
ftdi_layout_signal LED -data 0x0800

#
Ariane TAP
#

set _CHIPNAME riscv
jtag newtap $_CHIPNAME cpu -irlen 5

set _TARGETNAME $_CHIPNAME.cpu
target create $_TARGETNAME riscv -chain-position $_TARGETNAME

gdb_report_data_abort enable
gdb_report_register_access_error enable

riscv set_reset_timeout_sec 120
riscv set_command_timeout_sec 120

prefer to use sba for system bus access
riscv set_prefer_sba off
riscv expose_csrs 3071-3086

init
halt
echo "Ready for Remote Connections"

56

B Objectdump of add.exe

0000000080000000 <add>:

80000000
80000002:
80000004 :
80000006 :
80000008
8000000a:
8000000e:
80000010:
80000014:
80000018:
8000001c:
8000001e:
80000020
80000022:
80000024 :
80000026:

0000000080000028 <_start>:
80000028
8000002a:
8000002c:
8000002e:
80000030:
80000032:
80000034 :
80000038:
8000003a:
8000003e:
80000042:

1101
ec22
1000
87aa
872e
fef42623
87ba
fefd2423
fec42703
fe842783
9fb9
2781
853e
6462
6105
8082

1101
ec06
e822
1000
4589
4505
fcdffOef
87aa
fef42623
fec42783
bff5

addi
sd
addi
mv
mv
sW
mv
sSW
1w
1w
addw

sext.

mv
1d
addi
ret

addi
sd
sd
addi
1i
1i
jal
mv
sW
1w

sp,sp,-32
s0,24(sp)
s0,sp,32
ab,al
a4,al
ab,-20(s0)
ab,ad
ab,-24(s0)
ad,-20(s0)
a5,-24(s0)
ab,ab,ad
ab,ab
a0,ab
s0,24(sp)
sp,sp,32

sp,sp,-32
ra,24(sp)
s0,16(sp)
s0,sp,32

al,2

a0,1

ra,80000000 <add>
ab,al

ab,-20(s0)
ab,-20(s0)
8000003e <_start+0x16>

57

C Ariane Device Tree

/dts-v1/;

/£
#address—-cells = <2>;
#size-cells = <2>;

compatible = "eth,ariane-bare-dev";
model = "eth,ariane-bare";
// chosen {

// stdout-path = "/soc/uart@10000000:115200";
/1 };
cpus {

#address-cells = <1>;

#size-cells = <0>;

timebase-frequency = <32768>; // 32.768 kHz

CPUO: cpu@0 {

clock-frequency = <50000000>; // 50 MHz

device_type = "cpu";

reg = <0>;

status = "okay";

compatible = "eth, ariamne", "riscv";
riscv,isa = "rv64imacsu";

mmu-type = "riscv,sv39";

tlb-split;

// HLIC - hart local interrupt controller
CPUO_intc: interrupt-controller {
#interrupt-cells = <1>;
interrupt-controller;
compatible = "riscv,cpu-intc";
};
};
};
memory@80000000 {
device_type = "memory";
reg = <0x0 0x80000000 0x0 0x1800000>;
};
soc {
#address-cells = <2>;
#size-cells = <2>;

compatible = "eth,ariane-bare-soc", "simple-bus";
ranges;
c1int@2000000 {

compatible = "riscv,clint0";

interrupts-extended = <&CPUO_intc 3 &CPUO_intc 7>;
reg = <0x0 0x2000000 0x0 0xc0000>;
reg-names = '"control";

I

PLICO: interrupt-controller@c000000 {
#address-cells = <0>;
#interrupt-cells = <1>;
compatible = "sifive,plic-1.0.0", "riscv,plicO";
interrupt-controller;
interrupts-extended = <&CPUO_intc 11 &CPUO_intc 9>;
reg = <0x0 0xc000000 0x0O 0x4000000>;
riscv,max-priority = <7>;
riscv,ndev = <2>;

};

debug-controller@0 {
compatible = "riscv,debug-013";
interrupts-extended = <&CPUO_intc 65535>;
reg = <0x0 0x0 0x0O 0x1000>;

58

reg-names = "control";
3
uart@10000000 {
compatible = "ns16750";
reg = <0x0 0x10000000 0x0 0x1000>;
clock-frequency = <50000000>;
current-speed = <115200>;
interrupt-parent = <&PLICO>;
interrupts = <1>;
reg-shift = <2>; // regs are spaced on 32 bit boundary
reg-io-width = <4>; // only 32-bit access are supported

D Kernel configuration file (buildroot defconfig)

BR2_riscv=y

BR2_riscv_custom=y

BR2_RISCV_ISA_CUSTOM_RVM=y

BR2_RISCV_ISA_CUSTOM_RVC=y

BR2_CCACHE=y

BR2_TOOLCHAIN_EXTERNAL=y
BR2_TOOLCHAIN_EXTERNAL_PATH="$(RISCV)"
BR2_TOOLCHAIN_EXTERNAL_CUSTOM_PREFIX="$ (ARCH)-unknown-linux-gnu"
BR2_TOOLCHAIN_EXTERNAL_GCC_8=y
BR2_TOOLCHAIN_EXTERNAL_HEADERS_4_13=y
BR2_TOOLCHAIN_EXTERNAL_CUSTOM_GLIBC=y
BR2_TOOLCHAIN_EXTERNAL_CXX=y
BR2_ROOTFS_OVERLAY="../rootfs"

BR2_LINUX_KERNEL=y

BR2_LINUX_KERNEL_CUSTOM_VERSION=y
BR2_LINUX_KERNEL_CUSTOM_VERSION_VALUE="4.20-rc2"
BR2_LINUX_KERNEL_PATCH="../configs/0001-Add-RISC-V-architecture-to-Xilinx-ethernet-Kconfig.patch ../configs/000
BR2_LINUX_KERNEL_USE_CUSTOM_CONFIG=y
BR2_LINUX_KERNEL_CUSTOM_CONFIG_FILE="../configs/linux_defconfig"
BR2_PACKAGE_BUSYBOX_CONFIG="../configs/busybox.config"
BR2_PACKAGE_DHRYSTONE=y

BR2_PACKAGE_MEMSTAT=y

BR2_PACKAGE_RAMSPEED=y

BR2_PACKAGE_STRACE=y

BR2_PACKAGE_STRESS=y

BR2_PACKAGE_STRESS_NG=y

BR2_PACKAGE_TRACE_CMD=y

BR2_PACKAGE_IFUPDOWN_SCRIPTS is not set
BR2_PACKAGE_HTOP=y

BR2_PACKAGE_NANO=y

BR2_TARGET_ROOTFS_CPIO_GZIP=y
BR2_TARGET_ROOTFS_INITRAMFS=y

BR2_TARGET_ROOTFS_TAR is not set

59

E PAPI library functions

1 int events[2] = {PAPI_TOT_INS, PAPI_TOT_CYC}, papi_ret;
2 long unsigned papi_cl, papi_c2;

3 void papi_check() {

4 long_long values[2];

5 if (PAPI_num_counters() < 2) {

6 fprintf(stderr, "No hardware counters here, or PAPI not supported.\n");
7 exit(1);

8 }

9 }

10

11 void papi_start() {

12 if ((papi_ret = PAPI_start_counters(events, 2)) != PAPI_0K) {

13 fprintf (stderr, "PAPI failed to start counters: %s\n", PAPI_strerror(papi_ret));
14 exit(1);

15 }

16

18 void papi_read() {

19 long_long values[2];
20 if ((papi_ret = PAPI_stop_counters(values, 2)) != PAPI_OK) {
21 fprintf (stderr, "PAPI failed to read counters: %s\n", PAPI_strerror(papi_ret));
22 exit(1);
23 }
24 papi_cl = (long unsigned) values[0];
25 papi_c2 = (long unsigned) values[1];
26 printf ("PAPI_TOT_INS: %lu\n", papi_cl);
27 printf ("PAPI_TOT_CYC: %lu\n", papi_c2);
28}

F Read CSV functions

| #include <stdlib.h> /* atoi */

2 void* getline_from_pointer (DATA_TYPE* line, char* file, char separator, int nelem) {
3 char buff[256];

4 int n = 0;

5 while ((*file != ’\n’) && (n < nelem)) {

6 char*x q = buff;

7 while ((xfile != separator) && (*file != ’\n’)) {
8 *q = *file;

9 qt+;
10 file++;
11 };
12 n++;
13 *q = °\0’;
14 *1line = atoi(buff);
15 line++;
16 file++;
17 }
18 file++;
19 return file;
20 }
21 void read_csv(DATA_TYPEx q, char* file_p, int m, int n) {
22 for (int j = 0; j < m; j++) {
23 file_p = getline_from_pointer (q, file_p, ’;’, n);
24 q += n;
25 }
26}

60

G Bare-Metal k-means Makefile

cC

CFLAGS
LDFLAGS
ASFLAGS

kmeans
$(CC)gcc $(LDFLAGS) -o kmeans kmeans.o input.o utils.o -static

= riscv6

4-unknown-elf-

= "-mcmodel=medany -march=rv64imac -mabi=1p64"
= "-mcmodel=medany -march=rv64imac -mabi=1p64 -W1l,--section-start=.text=0x80000000"
= "-march=rv64imac -mabi=1p64"

: kmeans.

input.o: input.s
$(CC)as -o input.o input.s $(ASFLAGS)

kmeans.o: kmeans
$(CC)gcc $(CFLAGS) -c kmeans.c -g

utils.o:
$(CC)gcc $(CFLAGS) -c utils.c -g

.PHONY:
clean:

rm -vf kmeans kmeans_papi *.o0 *.bin *.exe *.gch

utils.c

clean

o input.o utils.o

.C

H GEMM Kernel figures of merit

GEMM CPI(Int) GEMM CPI(Float)
1600 1431 13.96 250 2.12
20 1.85
12.00 10.96 200 - 1.78 173 .
280 1.42
1.50 1.35 190 .
5 800 g ’ 1.08
1.00
0.57
4.00 1.63 16 40 5 a5 0.49 0.51
1.28 1-0592 0.73 0.92 050
0.48 : 0.4 0.50
0.00 0.00
-00 -01 -02 -03 -00 -01 -02 -03
Ariane SiFive Zynq Jetson TX1 SiFive Zynq Jetson TX1
GEMM Speedup (Int) GEMM Speedup (Float)
2500 22.40 12.00 11.21
20,00 10.00 8.62
13.00 o 800 789 7.06
2 15.00 EEwT S 5.95
B 8.98 : 11.64 g 6.00 5.01 5.86
g ' 9.10 g 421
& 10.00 8.14 7.51 7.38 635 7400
6.90 . 197
5.00 2.79 200 1.00 1.00 1.00
1.00 1.00 1.00 1.00
009 o SiFi z Jetson TX1
Ariane SiFive Zynq Jetson TX1 frive yng etson
00 ~-01 +-02 -03 -00 ©-01 -02 -03

61

Bibliography

[1]

[13]

Banchelli, F., Ruiz, D., Xu, Y., Mantovani, F.: Is Arm software ecosystem ready for HPC? In:
SC17: International Conference for High Performance Computing, Networking, Storage and Analysis.
(2017)

Xu, Y., Vidal, M., Arejita, B., Diaz, J., Alvarez, C., Jiménez, D., Martorell, X., Mantovani, F.:
Implementation of the K-means Algorithm on Heterogeneous Devices: a Use Case Based on an
Industrial Dataset. In: Parallel Computing is Everywhere (serie: Advances in Parallel Computing),
10S Press (2018) 642--651

Buttari, A., Dongarra, J., Kurzak, J., Langou, J., Luszczek, P., Tomov, S.: The impact of multicore
on math software. In: International Workshop on Applied Parallel Computing, Springer (2006) 1--10

Wikipedia contributors: Moore’s law --- Wikipedia, the free encyclopedia. https://en.wikipedia.
org/w/index.php?title=Moore27s_law&oldid=873729534 (2018) [Online; accessed 16-December-
2018).

Beard, J., Rusitoru, R.: MOMENTUM IS BUILDING FOR ARM IN HPC. URL: https://www.
nextplatform.com/2017/06/30/momentum-building-arm-hpc/ (2017)

Morgan, T.P.: DETAILS EMERGE ON POST-K EXASCALE SYSTEM
WITH FIRST PROTOTYPE. URL: https://www.nextplatform.com/2018/06/21/
details-emerge-on-post-k-exascale-system-with-first-prototype (2018)

Sandia National Laboratories: Astra supercomputer at Sandia Labs is fastest Arm-based machine
on TOP500 list. URL: https://share-ng.sandia.gov/news/resources/news_releases/top_500

Rajovic, N.; Rico, A., Puzovic, N., Adeniyi-Jones, C., Ramirez, A.: Tibidabol: Making the case for
an arm-based hpc system. Future Generation Computer Systems 36 (2014) 322--334

Rajovic, N.,; Carpenter, P.M., Gelado, 1., Puzovic, N., Ramirez, A., Valero, M.: Supercomputing with
commodity cpus: Are mobile socs ready for hpc? In: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, ACM (2013) 40

Rajovic, N., et al.: The Mont-blanc Prototype: An Alternative Approach for HPC Systems. In:
Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis. SC ’16, IEEE Press (2016) 38:1--38:12

Calore, E., Mantovani, F., Ruiz, D.: Advanced performance analysis of hpc workloads on cavium
thunderx. In: 2018 International Conference on High Performance Computing & Simulation (HPCS),
IEEE (2018) 375--382

Garcia-Gasulla, M., Josep-Fabrego, M., Eguzkitza, B., Mantovani, F.: Computational fluid and
particle dynamics simulations for respiratory system: Runtime optimization on an arm cluster.
In: ICPP’18 Proceedings of the 47th International Conference on Parallel Processing Companion,
Association for Computing Machinery (ACM) (2018)

Mazumdar, S., Ayguade, E., Bettin, N., Bueno, J., Ermini, S., Filgueras, A., Jimenez-Gonzalez, D.,
Martinez, C.A., Martorell, X., Montefoschi, F., et al.: Axiom: a hardware-software platform for
cyber physical systems. In: 2016 Euromicro Conference on Digital System Design (DSD), IEEE
(2016) 539--546

62

https://en.wikipedia.org/w/index.php?title=Moore%27s_law&oldid=873729534
https://en.wikipedia.org/w/index.php?title=Moore%27s_law&oldid=873729534
https://www.nextplatform.com/2017/06/30/momentum-building-arm-hpc/
https://www.nextplatform.com/2017/06/30/momentum-building-arm-hpc/
https://www.nextplatform.com/2018/06/21/details-emerge-on-post-k-exascale-system-with-first-prototype
https://www.nextplatform.com/2018/06/21/details-emerge-on-post-k-exascale-system-with-first-prototype
https://share-ng.sandia.gov/news/resources/news_releases/top_500

[14]

[15]

[26]

[27]

[28]

Asanovié, K., Patterson, D.A.: Instruction sets should be free: The case for risc-v. EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2014-146 (2014)

Asanovie, K., Patterson, D.A., Celio, C.: The berkeley out-of-order machine (boom): An industry-
competitive, synthesizable, parameterized risc-v processor. Technical report, University of California
at Berkeley Berkeley United States (2015)

Traber, A., Zaruba, F., Stucki, S., Pullini, A., Haugou, G., Flamand, E., Gurkaynak, F.K., Benini,
L.: Pulpino: A small single-core risc-v soc. In: 3rd RISCV Workshop. (2016)

Gautschi, M., Schiavone, P.D., Traber, A., Loi, I., Pullini, A., Rossi, D., Flamand, E., Giirkaynak,
F.K., Benini, L.: Near-threshold risc-v core with dsp extensions for scalable iot endpoint devices.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25(10) (2017) 2700--2713

Cheikh, A., Cerutti, G., Mastrandrea, A., Menichelli, F., Olivieri, M.: The microarchitecture
of a multi-threaded risc-v compliant processing core family for iot end-nodes. arXiv preprint
arXiv:1712.04902 (2017)

Kurth, A., Vogel, P., Capotondi, A., Marongiu, A., Benini, L.: Hero: Heterogeneous embedded
research platform for exploring RISC-V manycore accelerators on FPGA. CoRR abs/1712.06497
(2017)

Matt Cockrell: Evaluation of RISC-V for Pixel Visual Core. URL: https://content.riscv.org/
wp-content/uploads/2018/05/13.15-13.30-matt-Cockrell.pdf (2018)

Steinbach, M., Karypis, G., Kumar, V., et al.: A comparison of document clustering techniques. In:
KDD workshop on text mining. Volume 400., Boston (2000) 525--526

Brettel, M., Friederichsen, N., Keller, M., Rosenberg, M.: How virtualization, decentralization and
network building change the manufacturing landscape: An industry 4.0 perspective. International
Journal of Mechanical, Industrial Science and Engineering 8(1) (2014) 37--44

Lee, J., Kao, H.A., Yang, S.: Service innovation and smart analytics for industry 4.0 and big data
environment. Procedia Cirp 16 (2014) 3--8

Montealegre, M.A., Arejita, B., Alvarez, P., Laorden, C., Diaz-Rozo, J.: Control quality on process
of laser heat treatment. In: THERMEC 2018. Volume 941 of Materials Science Forum., Trans Tech
Publications (1 2019) 1860--1866

Diaz-Rozo, J., Bielza, C., Larranaga, P.: Machine learning-based cps for clustering high throughput
machining cycle conditions. Procedia Manufacturing 10 (2017) 997--1008

Larranaga, P., Atienza, D., Diaz-Rozo, J., Ogbechie, A., Puerto-Santana, C.E., Bielza, C.: Industrial
Applications of Machine Learning. CRC Press (2018)

Guitart, J.: Toward sustainable data centers: a comprehensive energy management strategy.
Computing 99(6) (Jun 2017) 597--615

Barroso, L.A., Clidaras, J., Holzle, U.: The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines, Second edition. Synthesis Lectures on Computer Architecture
8(3) (July 2013) 1--154

Mantovani, F., Calore, E.: Performance and power analysis of hpc workloads on heterogeneous
multi-node clusters. Journal of Low Power Electronics and Applications 8(2) (2018)

Stephens, N., Biles, S., Boettcher, M., Eapen, J., Eyole, M., Gabrielli, G., Horsnell, M., Magklis, G.,
Martinez, A., Premillieu, N., et al.: The ARM scalable vector extension. IEEE Micro 37(2) (2017)
26--39

New - EC2 Instances (Al) Powered by Arm-Based AWS
Graviton Processors. URL: https://aws.amazon.com/blogs/aws/
new-ec2-instances-al-powered-by-arm-based-aws-graviton-processors (2019)

: Huawei Unveils “Industry’s Highest-Performance ARM-based CPU”. URL: https://insidehpc.
com/2019/01/huawei-unveils-industrys-highest-performance-arm-based-cpu (2019)

63

https://content.riscv.org/wp-content/uploads/2018/05/13.15-13.30-matt-Cockrell.pdf
https://content.riscv.org/wp-content/uploads/2018/05/13.15-13.30-matt-Cockrell.pdf
https://aws.amazon.com/blogs/aws/new-ec2-instances-a1-powered-by-arm-based-aws-graviton-processors
https://aws.amazon.com/blogs/aws/new-ec2-instances-a1-powered-by-arm-based-aws-graviton-processors
https://insidehpc.com/2019/01/huawei-unveils-industrys-highest-performance-arm-based-cpu
https://insidehpc.com/2019/01/huawei-unveils-industrys-highest-performance-arm-based-cpu

[33]

[34]

[45]

[46]

[47]
[48]

Rick O’Connor: RISC-V ISA & Foundation Overview.
URL: https://content.riscv.org/wp-content/uploads/2018/05/13.00-13.
15-RISC-V-ISA-Foundation-Overview-Barcelona-7May2018-1.pdf (2018)

Patterson, D.A., Sequin, C.H.: RISC I: A Reduced Instruction Set VLSI Computer. In: Proceedings
of the 8th Annual Symposium on Computer Architecture. ISCA ’81, Los Alamitos, CA, USA, IEEE
Computer Society Press (1981) 443--457

Katevenis, M.G., Sherburne, Jr., R.W., Patterson, D.A., Séquin, C.H.: The RISC II Micro-
architecture. Adv. VLSI Comput. Syst. 1(2) (October 1984) 138--152

Samples, A.D., Klein, M., Foley, P.: SOAR Architecture. Technical Report UCB/CSD-85-226,
EECS Department, University of California, Berkeley (1985)

Hill, M., J. Eggers, S., Larus, J., S. Taylor, G., Adams, G., K. Bose, B., Gibson, G., Hansen, P.,
Keller, J., Kong, S., Lee, C., Lee, D., Pendleton, J., Ritchie, S., Wood, D., Zorn, B., Hilfinger, P.,
Hodges, D., Katz, R., Patterson, D.: Design Decisions in SPUR. Computer 19 (11 1986) 8--22

Palmer Dabbelt: All Aboard, Part 6: Booting a RISC-V Linux Kernel. URL: https://www.sifive.
com/blog/all-aboard-part-6-booting-a-risc-v-linux-kernel (2017)

Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern recognition letters 31(8) (2010)
651--666

Singh, D., Reddy, C.K.: A survey on platforms for big data analytics. Journal of Big Data 2(1)
(2015) 8

Javier Diaz-Rozo, Concha Bielza, P.L.: Machine learning-based cps for clustering high throughput
machining cycle conditions. Procedia Technology (2017)

Bekkerman, R., Bilenko, M., Langford, J.: Scaling up machine learning: Parallel and distributed
approaches. Cambridge University Press (2011)

Arthur, D., Vassilvitskii, S.: K-means++: The advantages of careful seeding. In: Proceedings of the
Eighteenth Annual ACM-STAM Symposium on Discrete Algorithms. SODA ’07 (2007) 1027--1035

Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X., Planas, J.: Ompss: a
proposal for programming heterogeneous multi-core architectures. Parallel Processing Letters 21(02)
(2011) 173--193

Bueno, J., Planas, J., Duran, A., Badia, R.M., Martorell, X., Ayguadé, E., Labarta, J.: Productive
Programming of GPU Clusters with OmpSs. In: 2012 IEEE 26th International Parallel and
Distributed Processing Symposium. (2012) 557--568

Florian Zaruba: Ariane: An Open-Source 64-bit RISC-V application class processor and lat-
est improvements. URL: https://content.riscv.org/wp-content/uploads/2018/05/14.15-14.
40-FlorianZaruba_riscv_workshop-1.pdf (2018)

: ARM Information Center: Cortex-A9 Reference Manual

: Yokogawa Power Meter Specifications

64

https://content.riscv.org/wp-content/uploads/2018/05/13.00-13.15-RISC-V-ISA-Foundation-Overview-Barcelona-7May2018-1.pdf
https://content.riscv.org/wp-content/uploads/2018/05/13.00-13.15-RISC-V-ISA-Foundation-Overview-Barcelona-7May2018-1.pdf
https://www.sifive.com/blog/all-aboard-part-6-booting-a-risc-v-linux-kernel
https://www.sifive.com/blog/all-aboard-part-6-booting-a-risc-v-linux-kernel
https://content.riscv.org/wp-content/uploads/2018/05/14.15-14.40-FlorianZaruba_riscv_workshop-1.pdf
https://content.riscv.org/wp-content/uploads/2018/05/14.15-14.40-FlorianZaruba_riscv_workshop-1.pdf

	Introduction
	Reduced Instruction Set Computer (RISC)
	Motivation
	Related work
	Arm in HPC
	RISC-V
	Clustering techniques and industrial data analysis
	Energy analysis

	RISC Architectures
	Advanced RISC Machine (Arm)
	Compilers
	Scientific libraries
	Parallel Programming models
	Platforms

	RISC-V
	Software Ecosystem
	Platforms

	RISC-V for HPC
	Processor selection
	Bare-metal UART
	AXI4 on Ariane
	uart2debug module
	External interaction

	Bare-metal OpenOCD
	RISC-V debug specification
	Hardware setup
	External Interaction

	Linux
	Device Tree
	Bootrom
	Bootloader
	Booting Linux

	The k-means algorithm
	Algorithm analysis

	Test and results
	Platforms
	Arm
	RISC-V

	CPU only
	Methodology
	Evaluation

	CPU plus accelerator
	Methodology
	Serial Optimizations
	Parallel Implementations
	Evaluation

	Conclusions
	Future work
	Appendices
	ariane.cfg
	Objectdump of add.exe
	Ariane Device Tree
	Kernel configuration file (buildroot_defconfig)
	PAPI library functions
	Read CSV functions
	Bare-Metal k-means Makefile
	GEMM Kernel figures of merit

