661 research outputs found

    To develop an efficient variable speed compressor motor system

    Get PDF
    This research presents a proposed new method of improving the energy efficiency of a Variable Speed Drive (VSD) for induction motors. The principles of VSD are reviewed with emphasis on the efficiency and power losses associated with the operation of the variable speed compressor motor drive, particularly at low speed operation.The efficiency of induction motor when operated at rated speed and load torque is high. However at low load operation, application of the induction motor at rated flux will cause the iron losses to increase excessively, hence its efficiency will reduce dramatically. To improve this efficiency, it is essential to obtain the flux level that minimizes the total motor losses. This technique is known as an efficiency or energy optimization control method. In practice, typical of the compressor load does not require high dynamic response, therefore improvement of the efficiency optimization control that is proposed in this research is based on scalar control model.In this research, development of a new neural network controller for efficiency optimization control is proposed. The controller is designed to generate both voltage and frequency reference signals imultaneously. To achieve a robust controller from variation of motor parameters, a real-time or on-line learning algorithm based on a second order optimization Levenberg-Marquardt is employed. The simulation of the proposed controller for variable speed compressor is presented. The results obtained clearly show that the efficiency at low speed is significant increased. Besides that the speed of the motor can be maintained. Furthermore, the controller is also robust to the motor parameters variation. The simulation results are also verified by experiment

    Thermodynamic analysis, modelling and control of a novel hybrid propulsion system

    Get PDF
    Stringent emission regulations imposed by governments and depleting fossil fuel reserves have promoted the development of the automotive industry towards novel technologies. Various types of hybrid power plants for transport and stationary applications have emerged. The methodology of design and development of such power plants varies according to power producing components used in the systems. The practical feasibility of such power plants is a pre-requisite to any further development. This work presents thermodynamic analysis and modelling of such a novel power plant, assesses its feasibility and further discusses the development of a suitable control system. The proposed system consists of a hybrid configuration of a solid oxide fuel cell and IC engine as the main power producing components. A reformer supplies fuel gas to the fuel cell while the IC engine is supplied with a liquid fuel. The excess fuel from the fuel cell anode and the oxygen-depleted air from cathode of the fuel cell are also supplied to the engine. This gas mixture is aspirated into the engine with the balance of energy provided by the liquid fuel. The fuel cell exhaust streams are used to condition the fuel in the engine to ensure minimum pollutants and improved engine performance. Both, fuel cell and engine share the load on the system. The fuel cell operates on a base load while the engine handles majority of the transient load. This system is particularly suitable for a delivery truck or a bus cycle. Models of the system components reformer, solid oxide fuel cell, IC engine and turbocharger were developed to understand their steady state and dynamic behaviour. These models were validated against sources of literature and used to predict the effect of different operating conditions for each component. The main control parameters for each component were derived from these models. A first law analysis of the system at steady state was conducted to identify optimum operating region, verify feasibility and efficiency improvement of the system. The results suggested reduced engine fuel consumption and a 10 % improvement in system efficiency over the conventional diesel engines. Further, a second law analysis was conducted to determine the key areas of exergy losses and the rational efficiency of the system at full load operating conditions. The results indicate a rational efficiency of 25.4 % for the system. Sensitivity to changes in internal exergy losses on the system work potential was also determined. The exergy analysis indicates a potential for process optimisation as well as design improvements. This analysis provides a basis for the development of a novel control strategy based on exergy analysis and finite-time thermodynamics. A dynamic simulation of the control oriented system model identified the transient response and control parameters for the system. Based on these results, control systems were developed based on feedback control and model predictive control theories. These controllers mainly focus on air and fuel path management within the system and show an improved transient response for the system. In a hierarchical control structure for the system, the feedback controllers or the model predictive controller can perform local optimisation for the system, while a supervisory controller can perform global optimisation. The objective of the supervisory controller is to determining the load distribution between the fuel cell and the engine. A development strategy for such a top-level supervisory controller for the system is proposed. The hybrid power plant proposed in this thesis shows potential for application for transport and stationary power production with reduced emissions and fuel consumption. The first and second law of thermodynamics can both contribute to the development of a comprehensive control system. This work integrates research areas of powertrain design, thermodynamic analysis and control design. The development and design strategy followed for such a novel hybrid power plant can be useful to assess the potential of other hybrid systems as well

    Power Management Techniques for Supercapacitor Based IoT Applications

    Get PDF
    University of Minnesota Ph.D. dissertation. January 2018. Major: Electrical Engineering. Advisor: Ramesh Harjani. 1 computer file (PDF); xi, 89 pages.The emerging internet of things (IoT) technology will connect many untethered devices, e.g. sensors, RFIDs and wearable devices, to improve health lifestyle, automotive, smart buildings, etc. This thesis proposes one typical application of IoT: RFID for blood temperature monitoring. Once the blood is donated and sealed in a blood bag, it is required to be stored in a certain temperature range (+2~+6°C for red cell component) before distribution. The proposed RFID tag is intended to be attached to the blood bag and continuously monitor the environmental temperature during transportation and storage. When a reader approaches, the temperature data is read out and the tag is fully recharged wirelessly within 2 minutes. Once the blood is distributed, the tag can be reset and reused again. Such a biomedical application has a strong aversion to toxic chemicals, so a batteryless design is required for the RFID tag. A passive RFID tag, however, cannot meet the longevity requirement for the monitoring system (at least 1 week). The solution of this thesis is using a supercapacitor (supercap) instead of a battery as the power supply, which not only lacks toxic heavy metals, but also has quicker charge time (~1000x over batteries), larger operating temperature range (-40~+65°C), and nearly infinite shelf life. Although nearly perfect for this RFID application, a supercap has its own disadvantages: lower energy density (~30x smaller than batteries) and unstable output voltage. To solve the quick charging and long lasting requirements of the RFID system, and to overcome the intrinsic disadvantages of supercaps, an overall power management solution is proposed in this thesis. A reconfigurable switched-capacitor DC-DC converter is proposed to convert the unstable supercap's voltage (3.5V~0.5V) to a stable 1V output voltage efficiently to power the subsequent circuits. With the help of the 6 conversion ratios (3 step-ups, 3 step-downs), voltage protection techniques, and low power designs, the converter can extract 98% of the stored energy from the supercap, and increase initial energy by 96%. Another switched-inductor buck-boost converter is designed to harvest the ambient RF energy to charge the supercap quickly. Because of the variation of the reader distance and incident wave angle, the input power level also has large fluctuation (5uW~5mW). The harvester handles this large power range by a power estimator enhanced MPPT controller with an adaptive integration capacitor array. Also, the contradiction between low power and high tracking speed is improved by adaptive MPPT frequency

    Integrated high-voltage switched-capacitor DC-DC converters

    Get PDF
    The focus of this work is on the integrated circuit (IC) level integration of high-voltage switched-capacitor (SC) converters with the goal of fully integrated power management solutions for system-on-chip (SoC) and system-in-pagage (SiP) applications. The full integration of SC converters provides a low cost and compact power supply solution for modern electronics. Currently, there are almost no fully integrated SC converters with input voltages above 5 V. The purpose of this work is to provide solutions for higher input voltages. The increasing challenges of a compact and efficient power supply on the chip are addressed. High-voltage rated components and the increased losses caused by parasitics not only reduce power density but also efficiency. Loss mechanisms in high-voltage SC converters are investigated resulting in an optimized model for high-voltage SC converters. The model developed allows an appropriate comparison of different semiconductor technologies and converter topologies. Methods and design proposals for loss reduction are presented. Control of power switches with their supporting circuits is a further challenge for high-voltage SC converters. The aim of this work is to develop fully integrated SC converters with a wide input voltage range. Different topologies and concepts are investigated. The implemented fully integrated SC converter has an input voltage range of 2 V to 13 V. This is twice the range of existing converters. This is achieved by an implemented buck and boost mode as well as 17 conversion ratios. Experimental results show a peak efficiency of 81.5%. This is the highest published peak efficiency for fully integrated SC converters with an input voltage > 5V. With the help of the model developed in this work, a three-phase SC converter topology for input voltages up to 60 V is derived and then investigated and discussed. Another focus of this work is on the power supply of sensor nodes and smart home applications with low-power consumption. Highly integrated micro power supplies that operate directly from mains voltage are particularly suitable for these applications. The micro power supply proposed in this work utilizes the high-voltage SC converter developed. The output power is 14 times higher and the power density eleven times higher than prior work. Since plenty of power switches are built into modern multi-ratio SC converters, the switch control circuits must be optimized with regard to low-power consumption and area requirements. In this work, different level shifter concepts are investigated and a low-power high-voltage level shifter for 50 V applications based on a capacitive level shifter is introduced. The level shifter developed exceeds the state of the art by a factor of more than eleven with a power consumption of 2.1pJ per transition. A propagation delay of 1.45 ns is achieved. The presented high-voltage level shifter is the first level shifter for 50 V applications with a propagation delay below 2 ns and power consumption below 20pJ per transition. Compared to the state of the art, the figure of merit is significantly improved by a factor of two. Furthermore, various charge pump concepts are investigated and evaluated within the context of this work. The charge pump, optimized in this work, improves the state of the art by a factor of 1.6 in terms of efficiency. Bidirectional switches must be implemented at certain locations within the power stage to prevent reverse conduction. The topology of a bidirectional switch developed in this work reduces the dynamic switching losses by 70% and the area consumption including the required charge pumps by up to 65% compared to the state of the art. These improvements make it possible to control the power switches in a fast and efficient way. Index terms — integrated power management, high input voltage, multi-ratio SC converter, level shifter, bidirectional switch, micro power supplyDer Schwerpunkt dieser Arbeit liegt auf der Erforschung von Switched-Capacitor (SC) Spannungswandler für höhere Eingangsspannungen. Ziel der Arbeit ist es Lösungen für ein voll auf dem Halbleiterchip integriertes Power Management anzubieten um System on Chip (SoC) und System in Package (SiP) zu ermöglichen. Die vollständige Integration von SC Spannungswandlern bietet eine kostengünstige und kompakte Spannungsversorgungslösung für moderne Elektronik. Der kontinuierliche Trend hin zu immer kompakterer Elektronik und hin zu höheren Versorgungsspannungen wird in dieser Arbeit adressiert. Aktuell gibt es sehr wenige voll integrierte SC Spannungswandler mit einer Eingangsspannung größer 5 V. Die mit steigender Spannung zunehmenden Herausforderungen an eine kompakte und effiziente Spannungsversorgung auf dem Chip werden in dieser Arbeit untersucht. Die höhere Spannungsfestigkeit der verwendeten Komponenten korreliert mit erhöhten Verlusten und erhöhtem Flächenverbrauch, welche sich negativ auf den Wirkungsgrad und die Leistungsdichte von SC Spannungswandlern auswirkt. Bestandteil dieser Arbeit ist die Untersuchung dieser Verlustmechanismen und die Entwicklung eines Modells, welches speziell für höhere Spannungen optimiert wurde. Das vorgestellte Modell ermöglicht zum einen die optimale Dimensionierung der Spannungswandler und zum anderen faire Vergleichsmöglichkeiten zwischen verschiedenen SC Spannungswandler Architekturen und Halbleitertechnologien. Demnach haben sowohl die gewählte Architektur und Halbleitertechnologie als auch die Kombination aus gewählter Architektur und Technologie erheblichen Einfluss auf die Leistungsfähigkeit der Spannungswandler. Ziel dieser Arbeit ist die Vollintegration eines SC Spannungswandlers mit einem weiten und hohen Eingangsspannungsbereich zu entwickeln. Dazu wurden verschiedene Schaltungsarchitekturen und Konzepte untersucht. Der vorgestellte vollintegrierte SC Spannungswandler weist einen Eingangsspannungsbereich von 2 V bis 13 V auf. Dies ist eine Verdopplung im Vergleich zum Stand der Technik. Dies wird durch einen implementierten Auf- und Abwärtswandler-Betriebsmodus sowie 17 Übersetzungsverhältnisse erreicht. Experimentelle Ergebnisse zeigen einen Spitzenwirkungsgrad von 81.5%. Dies ist der höchste veröffentlichte Spitzenwirkungsgrad für vollintegrierte SC Spannungswandler mit einer Eingangsspannung größer 5 V. Mit Hilfe des in dieser Arbeit entwickelten Modells wird eine dreiphasige SC Spannungswandler Architektur für Eingangsspannungen bis zu 60 V entwickelt und anschließend analysiert und diskutiert. Ein weiterer Schwerpunkt dieser Arbeit adressiert die kompakte Spannungsversorgung von Sensorknoten mit geringem Stromverbrauch, für Anwendungen wie Smart Home und Internet der Dinge (IoT). Für diese Anwendungen eignen sich besonders gut hochintegrierte Mikro-Netzteile, welche direkt mit dem 230VRMS-Hausnetz (bzw. 110VRMS) betrieben werden können. Das in dieser Arbeit vorgestellte Mikro-Netzteil nutzt einen in dieser Arbeit entwickelten SC Spannungswandler für hohe Eingangsspannungen. Die damit erzielte Ausgangsleistung ist 14-mal größer im Vergleich zum Stand der Technik. In SC Spannungswandlern für hohe Spannungen werden viele Leistungsschalter benötigt, deshalb muss bei der Schalteransteuerung besonders auf einen geringen Leistungsverbrauch und Flächenbedarf der benötigten Schaltungsblöcke geachtet werden. Gegenstand dieser Arbeit ist sowohl die Analyse verschiedener Konzepte für Pegelumsetzer, als auch die Entwicklung eines stromsparenden Pegelumsetzers für 50 V-Anwendungen. Mit einer Leistungsaufnahme von 2.1pJ pro Signalübergang reduziert der entwickelte Pegelumsetzer mit kapazitiver Kopplung um mehr als elfmal die Leistungsaufnahme im Vergleich zum Stand der Technik. Die erreichte Laufzeitverzögerung beträgt 1.45 ns. Damit erzielt der vorgestellte Hochspannungs-Pegelumsetzer als erster Pegelumsetzer für 50 V-Anwendungen eine Laufzeitverzögerung unter 2 ns und eine Leistungsaufnahme unter 20pJ pro Signalwechsel. Im Vergleich zum Stand der Technik wird die Leistungskennzahl um den Faktor zwei deutlich verbessert. Darüber hinaus werden im Rahmen dieser Arbeiten verschiedene Ladungspumpenkonzepte untersucht und bewertet. Die in dieser Arbeit optimierte Ladungspumpe verbessert den Stand der Technik um den Faktor 1.6 in Bezug auf den Wirkungsgrad. Die in dieser Arbeit entwickelte Schaltungsarchitektur eines bidirektionalen Schalters reduziert die dynamischen Schaltverluste um 70% und den benötigten Flächenbedarf inklusive der benötigten Ladungspumpe um bis zu 65% gegenüber dem Stand der Technik. Diese Verbesserungen ermöglichen es, die Leistungsschalter schnell und effizient anzusteuern. Schlagworte — Integriertes Powermanagement, hohe Eingangsspannung, Multi-Ratio SC Spannungswan- dler, Pegelumsetzer, bidirektionaler Schalter, Mikro-Netztei

    High-Voltage Integrated Circuits design and validation for automotive applications

    Get PDF
    Electronic Integrated Circuits (ICs) are an important pillar of the automotive market, especially since legal and safety requirements have been introduced to manage vehicles emissions and behaviors. Furthermore, the harsh environment and the tight safety requirements, summed with the market that is pushing to reduce the development lead time and to increase the system complexity, require to develop dedicated ICs for the automotive applications. This thesis presents some peculiar high-power and high-voltage ICs for automotive applications that have been studied, designed and developed taking into account all the requirements that automotive grade ICs have to respect, with emphasis on performance, quality and safety aspects. Particularly the thesis reports the design and validation of power management blocks and output drivers for inductive loads, showing how to fulfill in an effective way the performance, quality and safety targets according to the guidelines and the constraints of the latest automotive standards, like ISO26262 and AEC-Q100. All the designed ICs has been simulated and manufactured, including layout drawings, in a 0.35um HV-CMOS technology from AMS. The effectiveness and robustness of the proposed circuits has been validated on silicon and corresponded measurement results has been reported

    Steering and control of a CVT based hybrid transmission for a passenger car

    Get PDF

    Hybrid monolithic integration of high-power DC-DC converters in a high-voltage technology

    Get PDF
    The supply of electrical energy to home, commercial, and industrial users has become ubiquitous, and it is hard to imagine a world without the facilities provided by electrical energy. Despite the ever increasing efficiency of nearly every electrical application, the worldwide demand for electrical power continues to increase, since the number of users and applications more than compensates for these technological improvements. In order to maintain the affordability and feasibility of the total production, it is essential for the distribution of the produced electrical energy to be as efficient as possible. In other words the loss in the power distribution is to be minimized. By transporting electrical energy at the maximum safe voltage, the current in the conductors, and the associated conduction loss can remain as low as possible. In order to optimize the total efficiency, the high transportation voltage needs to be converted to the appropriate lower voltage as close as possible to the end user. Obviously, this conversion also needs to be as efficient, affordable, and compact as possible. Because of the ever increasing integration of electronic systems, where more and more functionality is combined in monolithically integrated circuits, the cost, the power consumption, and the size of these electronic systems can be greatly reduced. This thorough integration is not limited to the electronic systems that are the end users of the electrical energy, but can also be applied to the power conversion itself. In most modern applications, the voltage conversion is implemented as a switching DC-DC converter, in which electrical energy is temporarily stored in reactive elements, i.e. inductors or capacitors. High switching speeds are used to allow for a compact and efficient implementation. For low power levels, typically below 1 Watt, it is possible to monolithically implement the voltage conversion on an integrated circuit. In some cases, this is even done on the same integrated circuit that is the end user of the electrical energy to minimize the system dimensions. For higher power levels, it is no longer feasible to achieve the desired efficiency with monolithically integrated components, and some external components prove indispensable. Usually, the reactive components are the main limiting factor, and are the first components to be moved away from the integrated circuit for increasing power levels. The semiconductor components, including the power transistors, remain part of the integrated circuit. Using this hybrid approach, it is possible in modern converterapplications to process around 60 Watt, albeit limited to voltages of a few Volt. For hybrid integrated converters with an output voltage of tens of Volt, the power is limited to approximately 10 Watt. For even higher power levels, the integrated power transistors also become a limiting factor, and are replaced with discrete power devices. In these discrete converters, greatly increased power levels become possible, although the system size rapidly increases. In this work, the limits of the hybrid approach are explored when using so-called smart-power technologies. Smart-power technologies are standard lowcost submicron CMOS technologies that are complemented with a number of integrated high-voltage devices. By using an appropriate combination of smart-power technologies and circuit topologies, it is possible to improve on the current state-of-the-art converters, by optimizing the size, the cost, and the efficiency. To determine the limits of smart-power DC-DC converters, we first discuss the major contributing factors for an efficient energy distribution, and take a look at the role of voltage conversion in the energy distribution. Considering the limitations of the technologies and the potential application areas, we define two test-cases in the telecommunications sector for which we want to optimize the hybrid monolithic integration in a smart-power technology. Subsequently, we explore the specifications of an ideal converter, and the relevant properties of the affordable smart-power technologies for the implementation of DC-DC converters. Taking into account the limitations of these technologies, we define a cost function that allows to systematically evaluate the different potential converter topologies, without having to perform a full design cycle for each topology. From this cost function, we notice that the de facto default topology selection in discrete converters, which is typically based on output power, is not optimal for converters with integrated power transistors. Based on the cost function and the boundary conditions of our test-cases, we determine the optimal topology for a smart-power implementation of these applications. Then, we take another step towards the real world and evaluate the influence of parasitic elements in a smart-power implementation of switching converters. It is noticed that the voltage overshoot caused by the transformer secondary side leakage inductance is a major roadblock for an efficient implementation. Since the usual approach to this voltage overshoot in discrete converters is not applicable in smart-power converters due to technological limitations, an alternative approach is shown and implemented. The energy from the voltage overshoot is absorbed and transferred to the output of the converter. This allows for a significant reduction in the voltage overshoot, while maintaining a high efficiency, leading to an efficient, compact, and low-cost implementation. The effectiveness of this approach was tested and demonstrated in both a version using a commercially available integrated circuit, and our own implementation in a smart-power integrated circuit. Finally, we also take a look at the optimization of switching converters over the load range by exploiting the capabilities of highly integrated converters. Although the maximum output power remains one of the defining characteristics of converters, it has been shown that most converters spend a majority of their lifetime delivering significantly lower output power. Therefore, it is also desirable to optimize the efficiency of the converter at reduced output current and output power. By splitting the power transistors in multiple independent segments, which are turned on or off in function of the current, the efficiency at low currents can be significantly improved, without introducing undesirable frequency components in the output voltage, and without harming the efficiency at higher currents. These properties allow a near universal application of the optimization technique in hybrid monolithic DC-DC converter applications, without significant impact on the complexity and the cost of the system. This approach for the optimization of switching converters over the load range was demonstrated using a boost converter with discrete power transistors. The demonstration of our smart-power implementation was limited to simulations due to an issue with a digital control block. On a finishing note, we formulate the general conclusions and provide an outlook on potential future work based on this research

    Advanced Propulsion Power Distribution System for Next Generation Electric/Hybrid Vehicle

    Get PDF
    The report essentially summarizes the work performed in order to satisfy the above project objective. In the beginning, different energy storage devices, such as battery, flywheel and ultra capacitor are reviewed and compared, establishing the superiority of the battery. Then, the possible power sources, such as IC engine, diesel engine, gas turbine and fuel cell are reviewed and compared, and the superiority of IC engine has been established. Different types of machines for drive motor/engine generator, such as induction machine, PM synchronous machine and switched reluctance machine are compared, and the induction machine is established as the superior candidate. Similar discussion was made for power converters and devices. The Insulated Gate Bipolar Transistor (IGBT) appears to be the most superior device although Mercury Cadmium Telluride (MCT) shows future promise. Different types of candidate distribution systems with the possible combinations of power and energy sources have been discussed and the most viable system consisting of battery, IC engine and induction machine has been identified. Then, HFAC system has been compared with the DC system establishing the superiority of the former. The detailed component sizing calculations of HFAC and DC systems reinforce the superiority of the former. A preliminary control strategy has been developed for the candidate HFAC system. Finally, modeling and simulation study have been made to validate the system performance. The study in the report demonstrates the superiority of HFAC distribution system for next generation electric/hybrid vehicle

    An Active Dead-Time Control Circuit With Timing Elements for a 45-V Input 1-MHz Half-Bridge Converter

    Get PDF
    ABSTRACT: In this study, a dead-time control circuit is proposed to generate independent delays for the high and low sides of half-bridge converter switches. In addition to greatly decreasing the losses of power converters, the proposed method mitigates the shoot-through current through the application of superimposed power switches. The circuit presented here comprises a switched capacitor architecture and is implemented in AMS 0.35 μm technology. In the implementation, the proposed dead-time control circuit occupies a silicon area of 70μm×180μm . To realize the technique, a two-sided wide swing current source is employed. Each sides of the current source comes with two capacitors, two Schmitt triggers, and three transmission gates. Results show that the low and high sides of the projected half-bridge converter switches respectively require delays of 35 and 62 ns. The performance of the proposed dead-time circuit is evaluated by assembling it with the half-bridge converter. The proposed dead-time prototype achieves a 40% drop in power losses in the half-bridge circuit
    corecore