38 research outputs found

    Design, Analysis, Implementation and Evaluation of Real-time Opportunistic Spectrum Access in Cloud-based Cognitive Radio Networks

    Get PDF
    Opportunistic spectrum access in cognitive radio network is proposed for remediation of spectrum under-utilization caused by exclusive licensing for service providers that are intermittently utilizing spectrum at any given geolocation and time. The unlicensed secondary users (SUs) rely on opportunistic spectrum access to maximize spectrum utilization by sensing/identifying the idle bands without causing harmful interference to licensed primary users (PUs). In this thesis, Real-time Opportunistic Spectrum Access in Cloud-based Cognitive Radio Networks (ROAR) architecture is presented where cloud computing is used for processing and storage of idle channels. Software-defined radios (SDRs) are used as SUs and PUs that identify, report, analyze and utilize the available idle channels. The SUs in ROAR architecture query the spectrum geolocation database for idle channels and use them opportunistically. The testbed for ROAR architecture is designed, analyzed, implemented and evaluated for efficient and plausible opportunistic communication between SUs

    実観測に基づく電波環境データベースを用いた空間的周波数共用に関する研究

    Get PDF
    The growth in demand for mobile communication systems has exponentially increased data traffic during the last decade. Because this exponential growth consumes finite spectrum resources, traditional spectrum utilization policies with exclusive resource allocation faces a limit. In order to develop novel spectrum resources, many researchers have shown an interest in spectrum sharing with cognitive radio (CR). This method allows secondary users (SUs) to share spectrum bands with primary users (PUs) under interference constraints for PUs. SUs are required to take into consideration the interference margin to the estimated interference temperature at PUs in order to protect communication quality of PUs. On the other hand, an excess interference margin decreases the spectrum sharing opportunity; therefore, it is important to manage the interference power properly. Spectrum estimation techniques in spectrum sharing can be categorized into two methods: spectrum sensing and spectrum database. Spectrum sensing uses the detection of PU signals to characterize radio environments. To provide good protection, signal detection must be performed under the (strict) condition that the PU signal strength be below the noise floor, even under low signal-to-noise ratios (SNRs) and fading conditions. These fluctuations make it difficult for the SUs to achieve stable detection; thus, it is very challenging to accurately estimate the actual activity of the PU. The second method is based on storing information about spectrum availabilities of each location in spectrum databases. In this method, afterSUs query the database before they utilize the spectrum, the database provides spectrum information to the SUs. Current databases usually evaluate white space (WS) based on empirical propagation models. However, it is well known that empirical propagation models cannot take into account all of the indeterminacies of radio environments, such as shadowing effects. Because SUs must not interfere toward PUs, the conventional database requires the SUs to set large margins to ensure no interference with PUs.In this dissertation, we propose and comprehensively study a measurement-based spectrum database for highly efficient spectrum management. The proposed database is a hybrid system, combining spectrum sensing and a spectrum database. The spectrum database consists of radio environment information measured by mobile terminals. After enough data are gathered, the database estimates the radio environment characteristics by statistical processing with the large datasets. Using the accurate knowledge of the received PU signal power, spectrum sharing based on PU signal quality metrics such as the signal-to-interference power ratio (SIR) can be implemented.We first introduce the proposed database architecture. After we briefly discuss a theoretical performance of the proposed database, we present experimental results for the database construction using actual TV broadcast signals. The experimental results show that the proposed database reduces the estimation error of the radio environment. Next, we propose a transmission power control method with a radio environment map (REM) for secondary networks. The REM stores the spatial distribution of the average received signal power. We can optimize the accuracy of the measurement-based REM using the Kriging interpolation. Although several researchers have maintained a continuous interest in improving the accuracy of the REM, sufficient study has not been done to actually explore the interference constraint considering the estimation error. The proposed method uses ordinary Kriging for the spectrum cartography. According to the predicted distribution of the estimation error, the allowable interference power to the PU is approximately formulated. Numerical results show that the proposed method can achieve the probabilistic interference constraint asymptotically, and an increase in the number of measurement datasets improves the spectrum sharing capability. After that, we extend the proposed database to the radio propagation estimation in distributed wireless links in order to accurately estimate interference characteristics from SUs to PUs. Although current wireless distributed networks have to rely on an empirical model to estimate the radio environment, in the spectrum sharing networks, such a path loss-based interference prediction decreases the spectrum sharing opportunity because of the requirement for the interference margin. The proposed method focuses on the spatial-correlation of radio propagation characteristics between different wireless links. Using Kriging-based shadowing estimation, the radio propagation of the wireless link that has arbitrary location relationship can be predicted. Numerical results show that the proposed method achieves higher estimation accuracy than path loss-based estimation methods. The methods discussed in this thesis can develop more spatial WSs in existing allocated bandwidth such as TVWS, and can provide these WSs to new wireless systems expected to appear in the future. Additionally, these results will contribute not only to such spectrum sharing but also to improvement of the spectrum management in existing systems. For example, in heterogeneous networks (HetNets), a suitable inter-cell interference management enables transmitters to reuse the frequency efficiently and the user equipment can select the optimum base station. We anticipate that this dissertation strongly contributes to improvingthe spectrum utilization efficiency of the whole wireless systems.電気通信大学201

    Enabling 5G Technologies

    Get PDF
    The increasing demand for connectivity and broadband wireless access is leading to the fifth generation (5G) of cellular networks. The overall scope of 5G is greater in client width and diversity than in previous generations, requiring substantial changes to network topologies and air interfaces. This divergence from existing network designs is prompting a massive growth in research, with the U.S. government alone investing $400 million in advanced wireless technologies. 5G is projected to enable the connectivity of 20 billion devices by 2020, and dominate such areas as vehicular networking and the Internet of Things. However, many challenges exist to enable large scale deployment and general adoption of the cellular industries. In this dissertation, we propose three new additions to the literature to further the progression 5G development. These additions approach 5G from top down and bottom up perspectives considering interference modeling and physical layer prototyping. Heterogeneous deployments are considered from a purely analytical perspective, modeling co-channel interference between and among both macrocell and femtocell tiers. We further enhance these models with parameterized directional antennas and integrate them into a novel mixed point process study of the network. At the air interface, we examine Software-Defined Radio (SDR) development of physical link level simulations. First, we introduce a new algorithm acceleration framework for MATLAB, enabling real-time and concurrent applications. Extensible beyond SDR alone, this dataflow framework can provide application speedup for stream-based or data dependent processing. Furthermore, using SDRs we develop a localization testbed for dense deployments of 5G smallcells. Providing real-time tracking of targets using foundational direction of arrival estimation techniques, including a new OFDM based correlation implementation

    Radio frequency interference detection and mitigation techniques for navigation and Earth observation

    Get PDF
    Radio-Frequency Interference (RFI) signals are undesired signals that degrade or disrupt the performance of a wireless receiver. RFI signals can be troublesome for any receiver, but they are especially threatening for applications that use very low power signals. This is the case of applications that rely on the Global Navigation Satellite Systems (GNSS), or passive microwave remote sensing applications such as Microwave Radiometry (MWR) and GNSS-Reflectometry (GNSS-R). In order to solve the problem of RFI, RFI-countermeasures are under development. This PhD thesis is devoted to the design, implementation and test of innovative RFI-countermeasures in the fields of MWR and GNSS. In the part devoted to RFI-countermeasures for MWR applications, first, this PhD thesis completes the development of the MERITXELL instrument. The MERITXELL is a multi-frequency total-power radiometer conceived to be an outstanding platform to perform detection, characterization, and localization of RFI signals at the most common MWR imaging bands up to 92 GHz. Moreover, a novel RFI mitigation technique is proposed for MWR: the Multiresolution Fourier Transform (MFT). An assessment of the performance of the MFT has been carried out by comparison with other time-frequency mitigation techniques. According to the results, the MFT technique is a good trade-off solution among all other techniques since it can mitigate efficiently all kinds of RFI signals under evaluation. In the part devoted to RFI-countermeasures for GNSS and GNSS-R applications, first, a system for RFI detection and localization at GNSS bands is proposed. This system is able to detect RFI signals at the L1 band with a sensitivity of -108 dBm at full-band, and of -135 dBm for continuous wave and chirp-like signals when using the averaged spectrum technique. Besides, the Generalized Spectral Separation Coefficient (GSSC) is proposed as a figure of merit to evaluate the Signal-to-Noise Ratio (SNR) degradation in the Delay-Doppler Maps (DDMs) due to the external RFI effect. Furthermore, the FENIX system has been conceived as an innovative system for RFI detection and mitigation and anti-jamming for GNSS and GNSS-R applications. FENIX uses the MFT blanking as a pre-correlation excision tool to perform the mitigation. In addition, FENIX has been designed to be cross-GNSS compatible and RFI-independent. The principles of operation of the MFT blanking algorithm are assessed and compared with other techniques for GNSS signals. Its performance as a mitigation tool is proven using GNSS-R data samples from a real airborne campaign. After that, the main building blocks of the patented architecture of FENIX have been described. The FENIX architecture has been implemented in three real-time prototypes. Moreover, a simulator named FENIX-Sim allows for testing its performance under different jamming scenarios. The real-time performance of FENIX prototype has been tested using different setups. First, a customized VNA has been built in order to measure the transfer function of FENIX in the presence of several representative RFI/jamming signals. The results show how the power transfer function adapts itself to mitigate the RFI/jamming signal. Moreover, several real-time tests with GNSS receivers have been performed using GPS L1 C/A, GPS L2C, and Galileo E1OS. The results show that FENIX provides an extra resilience against RFI and jamming signals up to 30 dB. Furthermore, FENIX is tested using a real GNSS timing setup. Under nominal conditions, when no RFI/jamming signal is present, a small additional jitter on the order of 2-4 ns is introduced in the system. Besides, a maximum bias of 45 ns has been measured under strong jamming conditions (-30 dBm), which is acceptable for current timing systems requiring accuracy levels of 100 ns. Finally, the design of a backup system for GNSS in tracking applications that require high reliability against RFI and jamming attacks is proposed.Les interferències de radiofreqüència (RFI) són senyals no desitjades que degraden o interrompen el funcionament dels receptors sense fils. Les RFI poden suposar un problema per qualsevol receptor, però són especialment amenaçadores per les a aplicacions que fan servir senyals de molt baixa potència. Aquest és el cas de les aplicacions que depenen dels sistemes mundials de navegació per satèl·lit (GNSS) o de les aplicacions de teledetecció passiva de microones, com la radiometria de microones (MWR) i la reflectometria GNSS (GNSS-R). Per combatre aquest problema, sistemes anti-RFI s'estan desenvolupament actualment. Aquesta tesi doctoral està dedicada al disseny, la implementació i el test de sistemes anti-RFI innovadors en els camps de MWR i GNSS. A la part dedicada als sistemes anti-RFI en MWR, aquesta tesi doctoral completa el desenvolupament de l'instrument MERITXELL. El MERITXELL és un radiòmetre multifreqüència concebut com una plataforma excepcional per la detecció, caracterització i localització de RFI a les bandes de MWR més utilitzades per sota dels 92 GHz. A més a més, es proposa una nova tècnica de mitigació de RFI per MWR: la Transformada de Fourier amb Multiresolució (MFT). El funcionament de la MFT s'ha comparat amb el d'altres tècniques de mitigació en els dominis del temps i la freqüència. D'acord amb els resultats obtinguts, la MFT és una bona solució de compromís entre les altres tècniques, ja que pot mitigar de manera eficient tots els tipus de senyals RFI considerats. A la part dedicada als sistemes anti-RFI en GNSS i GNSS-R, primer es proposa un sistema per a la detecció i localització de RFI a les bandes GNSS. Aquest sistema és capaç de detectar senyals RFI a la banda L1 amb una sensibilitat de -108 dBm a tota la banda, i de -135 dBm per a senyals d'ona contínua i chirp fen un mitjana de l'espectre. A més a més, el Coeficient de Separació Espectral Generalitzada (GSSC) es proposa com una mesura per avaluar la degradació de la relació senyal a soroll (SNR) en els Mapes de Delay-Doppler (DDM) a causa del impacte de les RFI. La major contribució d'aquesta tesi doctoral és el sistema FENIX. FENIX és un sistema innovador de detecció i mitigació de RFI i inhibidors de freqüència per aplicacions GNSS i GNSS-R. FENIX utilitza la MFT per eliminar la interferència abans del procés de correlació amb el codi GNSS independentment del tipus de RFI. L'algoritme de mitigació de FENIX s'ha avaluat i comparat amb altres tècniques i els principals components de la seva arquitectura patentada es descriuen. Finalment, un simulador anomenat FENIX-Sim permet avaluar el seu rendiment en diferents escenaris d'interferència. El funcionament en temps real del prototip FENIX ha estat provat utilitzant diferents mètodes. En primer lloc, s'ha creat un analitzador de xarxes per a mesurar la funció de transferència del FENIX en presència de diverses RFI representatives. Els resultats mostren com la funció de transferència s'adapta per mitigar el senyal interferent. A més a més, s'han realitzat diferents proves en temps real amb receptors GNSS compatibles amb els senyals GPS L1 C/A, GPS L2C i Galileo E1OS. Els resultats mostren que FENIX proporciona una resistència addicional contra les RFI i els senyals dels inhibidors de freqüència de fins a 30 dB. A més a més, FENIX s'ha provat amb un sistema comercial de temporització basat en GNSS. En condicions nominals, sense RFI, FENIX introdueix un petit error addicional de tan sols 2-4 ns. Per contra, el biaix màxim mesurat en condicions d'alta interferència (-30 dBm) és de 45 ns, el qual és acceptable per als sistemes de temporització actuals que requereixen nivells de precisió d'uns 100 ns. Finalment, es proposa el disseny d'un sistema robust de seguiment, complementari als GNSS, per a aplicacions que requereixen alta fiabilitat contra RFI.Postprint (published version

    Antena na banda dos 17 GHz para aplicações Wi-Fi indoor/outdoor

    Get PDF
    Mestrado em Engenharia Eletrónica e TelecomunicaçõesO Wi-Fi permite estabelecer ligações sem fios de equipamentos à internet, sendo muito utilizado em casas, hotéis e espaços públicos. Opera nas bandas livres Industrial, Scientific, and Medical (ISM) nomeadamente nas faixas de 2.4 GHz e 5.8 GHz. Nos dias de hoje, as interferências nas soluções que recorrem ao Wi-Fi têm vindo a aumentar devido à enorme utilização destas bandas de frequência reduzindo significativamente a qualidade do servi co fornecido aos utilizadores. Algumas alternativas têm vindo a ser testadas para minorar este problema, como por exemplo a utilização de frequências de operação, nomeadamente a banda ISM dos 24 GHz ou na banda dos 17 GHz. Com esta dissertação pretendeu-se contribuir para esta solução através da construção de antenas que possam ser uma mais valia para o desenvolvimento das redes sem fios gama dos 17 GHz, visto que a banda dos 24 GHz é bastante afectada por atenuações que advêm das condições climatéricas (e.g. chuva). Face _as reduzidas dimensões das antenas, uma das dificuldades sentidas, durante o seu projecto, foi a sua alimentação, tendo sido realizado um estudo dos métodos de alimentação para antenas microstrip nesta frequência. O método de alimentação escolhido foi a alimentação por fenda que demonstrou conseguir um melhor desempenho a esta frequência de operação. De seguida, foi desenvolvida uma antena que cumpre os requisitos mínimos de operação para aplicações Wi-Fi em interiores, cujas as características, dependendo do cenário de instalação, deverão ter um ganho entre 0 e 6 dBi e ter uma grande rejeição da polarização inversa (é desejável que seja entre 30 e 40 dB). Por fim, foi realizada uma antena para comunicações que envolvam distâncias maiores, onde é desejável que as antenas possuam um ganho maior (desde 3dBi até29 dBi dependendo da aplicação). Para obter ganhos desta ordem foi realizado um agregado planar(2x2) que apresentou um ganho por volta de 11 dBi.Wi-Fi technology allows wireless connections of equipment to the Internet, being widely used in homes, hotels and public areas. It operates in the ISM band, also known as free bands , namely in the bands of 2.4 GHz and 5.8 GHz. Nowadays, interference in solutions that use Wi-Fi technology has been increasing due to the considerable use of these frequency bands, significantly reducing the quality of service provided to users. Some alternatives to solve this problem have been tested, such as the use of operating frequencies, namely the 24 GHz ISM band or at the 17 GHz band. With this dissertation it was intended to contribute to this solution through the construction of antennas that could be an asset for the development of wireless networks in the 17 GHz frequency range, since the 24 GHz band is greatly affected by attenuations due to the climatic conditions (e.g. rain). Considering the small size of the antennas at 17 GHz, one of the difficulties during their design was their feeding. Thus, a study of the feeding methods for microstrip antennas was carried out. The feeding method chosen was the aperture coupling feed which shown a better performance at this operating frequency. Then, an antenna that meets the minimum operating requirements has been developed for indoor Wi-Fi applications, whose characteristics, depending on the installation scenario, should have a gain between 0 and 6 dBi as well as a high rejection level of the orthogonal polarization component (it is desirable to be between 30 and 40 dB). Finally, an antenna for communications involving great distances was developed, where it is desirable that the antennas present a higher gain (from 3 dBi up to 29 dBi depending on the application). In order to obtain higher gains, a planar array antenna (2x2) was produced, presenting a gain around 11 dBi

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Design of a Dual Band Local Positioning System

    Get PDF
    This work presents a robust dual band local positioning system (LPS) working in the 2.4GHz and 5.8GHz industrial science medical (ISM) bands. Position measurement is based on the frequency-modulated continuous wave (FMCW) radar approach, which uses radio frequency (RF) chirp signals for propagation time and therefore distance measurements. Contrary to state of the art LPS, the presented system uses data from both bands to improve accuracy, precision and robustness. A complete system prototype is designed consisting of base stations and tags encapsulating most of the RF and analogue signal processing in custom integrated circuits. This design approach allows to reduce size and power consumption compared to a hybrid system using off-the-shelf components. Key components are implemented using concepts, which support operation in multiple frequency bands, namely, the receiver consisting of a low noise amplifier (LNA), mixer, frequency synthesizer with a wide band voltage-controlled oscillator (VCO) having broadband chirp generation capabilities and a dual band power amplifier. System imperfections occurring in FMCW radar systems are modelled. Effects neglected in literature such as compression, intermodulation, the influence of automatic gain control, blockers and spurious emissions are modeled. The results are used to derive a specification set for the circuit design. Position estimation from measured distances is done using an enhanced version of the grid search algorithm, which makes use of data from multiple frequency bands. The algorithm is designed to be easily and efficiently implemented in embedded systems. Measurements show a coverage range of the system of at least 245m. Ranging accuracy in an outdoor scenario can be as low as 8.2cm. Comparative dual band position measurements prove an effective outlier filtering in indoor and outdoor scenarios compared to single band results, yielding in a large gain of accuracy. Positioning accuracy in an indoor scenario with an area of 276m² can be improved from 1.27m at 2.4GHz and 1.86m at 5.8GHz to only 0.38m in the dual band case, corresponding to an improvement by at least a factor of 3.3. In a large outdoor scenario of 4.8 km², accuracy improves from 1.88m at 2.4GHz and 5.93m at 5.8GHz to 0.68m with dual band processing, which is a factor of at least 2.8.Die vorliegende Arbeit befasst sich mit dem Entwurf eines robusten lokalen Positionierungssystems (LPS), welches in den lizenzfreien Frequenzbereichen für industrielle, wissenschaftliche und medizinische Zwecke (industrial, scientific, medical, ISM) bei 2,4GHz und 5,8GHz arbeitet. Die Positionsbestimmung beruht auf dem Prinzip des frequenzmodulierten Dauerstrichradars (frequency modulated continuous wave, FMCW-Radar), welches hochfrequente Rampensignale für Laufzeitmessungen und damit Abstandsmessungen benutzt. Im Gegensatz zu aktuellen Arbeiten auf diesem Gebiet benutzt das vorgestellte System Daten aus beiden Frequenzbändern zur Erhöhung der Genauigkeit und Präzision sowie Verbesserung der Robustheit. Ein Prototyp des kompletten Systems bestehend aus Basisstationen und mobilen Stationen wurde entworfen. Fast die gesamte analoge hochfrequente Signalverarbeitungskette wurde als anwendungsspezifische integrierte Schaltung realisiert. Verglichen mit Systemen aus Standardkomponenten erlaubt dieser Ansatz die Miniaturisierung der Systemkomponenten und die Einsparung von Leistung. Schlüsselkomponenten wurden mit Konzepten für mehrbandige oder breitbandige Schaltungen entworfen. Dabei wurden Sender und Empfänger bestehend aus rauscharmem Verstärker, Mischer und Frequenzsynthesizer mit breitbandiger Frequenzrampenfunktion implementiert. Außerdem wurde ein Leistungsverstärker für die gleichzeitige Nutzung der beiden definierten Frequenzbänder entworfen. Um Spezifikationen für den Schaltungsentwurf zu erhalten, wurden in der Fachliteratur vernachlässigte Nichtidealitäten von FMCW-Radarsystemen modelliert. Dazu gehören Signalverzerrungen durch Kompression oder Intermodulation, der Einfluss der automatischen Verstärkungseinstellung sowie schmalbandige Störer und Nebenschwingungen. Die Ergebnisse der Modellierung wurden benutzt, um eine Spezifikation für den Schaltungsentwurf zu erhalten. Die Schätzung der Position aus gemessenen Abständen wurde über eine erweiterte Version des Gittersuchalgorithmus erreicht. Dieser nutzt die Abstandsmessdaten aus beiden Frequenzbändern. Der Algorithmus ist so entworfen, dass er effizient in einem eingebetteten System implementiert werden kann. Messungen zeigen eine maximale Reichweite des Systems von mindestens 245m. Die Genauigkeit von Abstandsmessungen im Freiland beträgt 8,2cm. Positionsmessungen wurden unter Verwendung beider Einzelbänder durchgeführt und mit den Ergebnissen des Zweiband-Gittersuchalgorithmus verglichen. Damit konnte eine starke Verbesserung der Positionsgenauigkeit erreicht werden. Die Genauigkeit in einem Innenraum mit einer Grundfläche von 276m² kann verbessert werden von 1,27m bei 2,4GHz und 1,86m bei 5,8GHz zu nur 0,38m im Zweibandverfahren. Das entspricht einer Verbesserung um einen Faktor von mindestens 3,3. In einem größeren Außenszenario mit einer Fläche von 4,8 km² verbessert sich die Genauigkeit um einen Faktor von mindestens 2,8 von 1,88m bei 2,4GHz und 5,93m bei 5,8GHz auf 0,68m bei Nutzung von Daten aus beiden Frequenzbändern

    An adaptive threshold energy detection technique with noise variance estimation for cognitive radio sensor networks

    Get PDF
    The paradigm of wireless sensor networks (WSNs) has gained a lot of popularity in the recent years due to the proliferation of wireless devices. This is evident as WSNs find numerous application areas in fields such as agriculture, infrastructure monitoring, transport, and security surveillance. Traditionally, most deployments of WSNs operate in the unlicensed industrial scientific and medical (ISM) band and more specifically, the globally available 2.4 GHz frequency band. This band is shared with several other wireless technologies such as Bluetooth, Wi-Fi, near field communication and other proprietary technologies thus leading to overcrowding and interference problems. The concept of dynamic spectrum access alongside cognitive radio technology can mitigate the coexistence issues by allowing WSNs to dynamically access new spectrum opportunities. Furthermore, cognitive radio technology addresses some of the inherent constraints of WSNs thus introducing a myriad of benefits. This justifies the emergence of cognitive radio sensor networks (CRSNs). The selection of a spectrum sensing technique plays a vital role in the design and implementation of a CRSN. This dissertation sifts through the spectrum sensing techniques proposed in literature investigating their suitability for CRSN applications. We make amendments to the conventional energy detector particularly on the threshold selection technique. We propose an adaptive threshold energy detection model with noise variance estimation for implementation in CRSN systems. Experimental work on our adaptive threshold technique based on the recursive one-sided hypothesis test (ROHT) technique was carried out using MatLab. The results obtained indicate that our proposed technique is able to achieve adaptability of the threshold value based on the noise variance. We also employ the constant false alarm rate (CFAR) threshold to act as a defence mechanism against interference of the primary user at low signal to noise ratio (SNR). Our evaluations indicate that our adaptive threshold technique achieves double dynamicity of the threshold value based on the noise variance and the perceived SNR

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    Enhancing spectrum utilization through cooperation and cognition in wireless systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2013.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections."February 2013." Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 201-217).We have seen a proliferation of wireless technologies and devices in recent years. The resulting explosion of wireless demand has put immense pressure on available spectrum. Improving spectrum utilization is therefore necessary to enable wireless networks to keep up with burgeoning demand. This dissertation presents a cognitive and cooperative wireless architecture that significantly enhances spectrum utilization. Specifically, it introduces four new systems that embody a cross-layer design for cognition and cooperation. The first system, SWIFT, is a cognitive cross technology solution that enables wideband devices to exploit higher layer network semantics to adaptively sense which portions of the spectrum are occupied by unknown narrowband devices, and weave the remaining unoccupied spectrum bands into a single high-throughput wideband link. Second, FARA is a cooperative system that enables multi-channel wireless solutions like 802.11 to dynamically use all available channels for all devices in a performance-aware manner by using information from the physical layer and allocating to each link the frequency bands that show the highest performance for that link. SourceSync, the third system, enables wireless nodes in last-hop and wireless mesh networks to cooperatively transmit synchronously in order to exploit channel diversity and increase reliability. Finally, MegaMIMO enables wireless throughput to scale linearly with the number of transmitters by enabling multiple wireless transmitters to transmit simultaneously in the same frequency bands to multiple wireless receivers without interfering with each other. The systems in this dissertation demonstrate the practicality of cognitive and cooperative wireless systems to enable spectrum sharing. Further, as part of these systems, we design several novel primitives - adaptive spectrum sensing, time alignment, frequency synchronization, and distributed phase-coherent transmission, that can serve as fundamental building blocks for wireless cognition and cooperation. Finally, we have implemented all four systems described in this dissertation, and evaluated them in wireless testbeds, demonstrating large gains in practice.by Hariharan Shankar Rahul.Ph.D
    corecore