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Abstract
We have seen a proliferation of wireless technologies and devices in recent years. The
resulting explosion of wireless demand has put immense pressure on available spectrum.
Improving spectrum utilization is therefore necessary to enable wireless networks to keep
up with burgeoning demand.

This dissertation presents a cognitive and cooperative wireless architecture that sig-
nificantly enhances spectrum utilization. Specifically, it introduces four new systems that
embody a cross-layer design for cognition and cooperation. The first system, SWIFT, is a
cognitive cross technology solution that enables wideband devices to exploit higher layer
network semantics to adaptively sensewhich portions of the spectrum are occupied by un-
known narrowband devices, and weave the remaining unoccupied spectrum bands into a
single high-throughputwideband link. Second, FARA is a cooperative system that enables
multi-channel wireless solutions like 802.11 to dynamically use all available channels for
all devices in a performance-aware manner by using information from the physical layer
and allocating to each link the frequency bands that show the highest performance for that
link. SourceSync, the third system, enables wireless nodes in last-hop and wireless mesh
networks to cooperatively transmit synchronously in order to exploit channel diversity
and increase reliability. Finally, MegaMIMO enables wireless throughput to scale linearly
with the number of transmitters by enabling multiple wireless transmitters to transmit
simultaneously in the same frequency bands to multiple wireless receivers without inter-
fering with each other.

The systems in this dissertation demonstrate the practicality of cognitive and cooper-
ative wireless systems to enable spectrum sharing. Further, as part of these systems, we
design several novel primitives - adaptive spectrum sensing, time alignment, frequency
synchronization, and distributed phase-coherent transmission, that can serve as funda-
mental building blocks for wireless cognition and cooperation. Finally, we have imple-
mented all four systems described in this dissertation, and evaluated them in wireless
testbeds, demonstrating large gains in practice.

Thesis Supervisor: Dina Katabi
Title: Professor of Electrical Engineering and Computer Science
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CHAPTER 1

Introduction

Wireless connectivity has become a sine qua non for a wide variety of systems. It enables

a variety of applications such as mobility, distributed sensing and monitoring, peripheral

connectivity, smart grids, and so on. The proliferation of wireless applications has led to

the wide deployment of a large number of technologies such as 802.11 (and its various

flavors 802.11b, 802.11a, 802.11g, 802.11n, 802.11ac etc.) and LTE for data communication,

Bluetooth for peripherals, ZigBee for sensors, DECT for cordless phones etc. Simultane-

ously, the proliferation of devices such as notebooks, netbooks, smartphones, tablets etc.

has led to a dramatic increase in the demand for wireless data.

This explosion in wireless demand has put immense pressure on available spectrum.

For example, the recent move of television bands from analog to digital was driven by the

need to free up about 200 MHz of additional spectrum for data communication in white

spaces, public emergency networks etc. Major cellular providers have been aggressively

acquiring additional spectrum, and upgrading their networks to support higher data rates.

Despite all this, however, the FCC predicts that given the current trends in wireless de-

mand growth, and based on current technologies, there will be a spectrum shortfall in

2013 [43]. Similarly, the Rysavy Research Group predicts that the average demand per

user will exceed the average capacity per user sometime in 2013 [126].

The key challenge is that since wireless is inherently a broadcast medium, and wireless

spectrum is a fundamentally limited resource, wireless technologies and devices need to

share the available spectrum. Today’s wireless networks adopt a static approach to spec-

31



32 CHAPTER 1. INTRODUCTION

trum sharing. The approach attempts to ensure that only one wireless link operates in any

portion of the spectrum in a region at any given time. Different technologies are typically

statically assigned different parts of the spectrum to operate in, and devices operating in

the same part of the spectrum orchestrate their transmissions so that only one device trans-

mits at a time.

However, static sharing makes inefficient use of wireless spectrum. For instance, not all

wireless technologies are present in all locations, and a system that can dynamically detect

and use spectrum unoccupied by other technologies at any given location can increase the

efficiency of spectrum usage. Similarly, different sender-receiver pairs experience differ-

ent performance from the same spectrum, and a system that dynamically divides spec-

trum between different links based on the performance they observe can improve wireless

throughput and reliability.

Motivated by these observations, this dissertation proposes an agile spectrum sharing

architecture. In contrast to a statically configured division of spectrum across wireless

nodes, our architecture enables wireless nodes to dynamically adapt the spectrum they

operate in based on their surrounding wireless environment. We demonstrate that such

dynamic spectrum sharing increases the throughput and reliability of wireless networks,

and ultimately improves spectrum utilization.

The work in this dissertation builds on the ideas of cognitive and cooperative commu-

nication. Cognitive radios were first introduced by Mitola et. al. in [67], which presented a

broad vision for “wireless personal digital assistants (PDAs) and the related networks that

are sufficiently computationally intelligent about radio resources and related computer-

to-computer communications to detect user communications needs as a function of use

context, and to provide radio resources and wireless services most appropriate to those

needs.” This initial vision has been followed by work on detection of devices in licensed

frequency bands [9], economic models for spectrum sharing [22, 21], and centralized and

distributed spectrum sharing protocols [2, 162, 163, 14, 93].

The performance and reliability benefits of simultaneous transmission of data from

multiple devices were first recognized in early work by van der Meulen [101], where he

explored a simple three node wireless system. Since then, there has been much work on

a variety of fronts, including formally characterizing the reliability gains in this small sys-

tem [33], evaluating a variety of cooperation schemes [89], and expanding the results to a
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larger network [81, 84]. In addition to reliability, there has also been a wealth of work on

the benefits of joint transmission of data frommultiple nodes to enhance throughput using

coding [157, 84] as well as MIMO [112, 113] techniques.

However, prior work on cognitive radios largely focuses on licensed bands, where the

goal is to ensure that a cognitive secondary user does not interfere with a licensed primary

user whose signal format (including modulation, occupied frequencies, pilots, packet for-

mat etc.) is well known. The large body of theoretical work on cooperative transmission

assumes transmitters that are tightly coupled and synchronized in time, frequency, and

phase, and systems that implement this theoretical work largely try to replicate this as-

sumption by connecting transmitters or receivers with high bandwidth low attenuation

cables, or highly accurate clocks.

As a result, existing techniques are not amenable to awide variety of practical scenarios.

For instance, in unlicensed frequency bands, there is no single primary user; instead, mul-

tiple different technologies, whose signal formats and occupied frequencies are unknown,

contend with each other. Further, it is often not economical or feasible, for instance, in

indoor deployments, to assume that transmitting devices can share the same clock and be

tightly synchronized with each other. These challenges have proved to be major barriers

to adoption of cognitive and cooperative technologies in practice.

This dissertation provides a simple and practical approach to agile spectrum sharing

networks. It relaxes the restrictions of prior work requiring that devices have knowledge

of contending signal patterns, or can tightly synchronize their signals in time, frequency,

or phase using shared clocks. Instead, the systems presented in this dissertation adopt a

cross-layer approach to cognition and cooperation. In particular, they exploit higher layer

network semantics, and devise digital algorithms that automatically identify, calibrate and

correct for the variations in channel characteristics across different wireless devices. Thus,

the algorithms in this dissertation can address the practical scenarios of widely deployed

wireless devices in unlicensed frequency bands, and enable agile spectrum sharing both

across technologies, and within a single technology.

This dissertation introduce four new systems: SWIFT, FARA, SourceSync, and

MegaMIMO, that embody such cross-layer design for cognition and cooperation.

• SWIFT is a cognitive cross-technology solution that enables wideband devices to

adaptively sense which portions of the spectrum are occupied by narrowband de-
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vices. SWIFT exploits the fact that the link and transport layers of narrowband de-

vices typically respond when faced with interference to accurately identify occupied

portions of the spectrum, and devises physical layer algorithms that can communi-

cate using the remaining unoccupied portions of the spectrum.

• FARA is a cooperative system that enables multi-channel wireless solutions like

802.11 to share spectrum among wireless devices. FARA’s MAC uses information

from the physical layer to share spectrum across devices in a performance-aware

manner to increase performance and utilization as compared to today’s static divi-

sion of channels.

• SourceSync enables wireless nodes in last-hop and wireless mesh networks to co-

operatively transmit jointly in order to exploit channel diversity. SourceSync’s link

layer can leverage physical layer coding and synchronization mechanisms to exploit

channel diversity and increase the reliability of wireless transmissions.

• MegaMIMO scales wireless throughput with the number of transmitters by en-

abling multiple wireless transmitters to transmit simultaneously in the same fre-

quency bands to multiple wireless receivers without interfering with each other.

MegaMIMO’s protocol works across the physical, link and network layers to en-

able such joint transmission, thereby providing dramatic improvements in network

throughput and reliability.

The systems in this dissertation demonstrate the practicality of cognitive and coopera-

tive wireless systems to enable agile spectrum sharing. Further, as part of these systems,

the dissertation presents several novel primitives - adaptive spectrum sensing, time align-

ment, frequency synchronization, and distributed phase-coherent transmission, that have

applicability to a wide variety of wireless systems. All four systems described in this dis-

sertation have been implemented and evaluated them in wireless testbeds, demonstrating

large gains in practice.

� 1.1 SWIFT

The first system in this dissertation, presented in Chapter 2, is SWIFT. SWIFT addresses

the challenge of designing high throughput wideband systems that can efficiently utilize
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This chart is a graphic single-point-in-time portrayal of the Table of Frequency Allocations used by the
FCC and NTIA. As such, it does not completely reflect all aspects, i.e., footnotes and recent changes
made to the Table of Frequency Allocations. Therefore, for complete information, users should consult the
Table to determine the current status of U.S. allocations.

Figure 1-1: United States Spectrum Allocation. The figure shows that all radio spectrum is allocated to

existing technologies, with the current static spectrum sharing model, there is little to no spectrum available

for use by new technologies.

wireless spectrum. Wideband technologies have the potential to satisfy the demand of

bandwidth hungry rich media applications.

With the traditional static spectrum sharing architecture, wideband systems would

need to be assigned a large contiguous chunk of spectrum for their use. However, the

proliferation of technologies in recent decades, coupled with the allocation of different

chunks of spectrum to different technologies, makes it challenging to find contiguous un-

occupied swaths of spectrum. Fig. 1-1, which depicts the allocation of spectrum to various

wireless technologies, illustrates this problem. Even if one could find a large contiguous

chunk of unoccupied spectrum, allocating it statically to a wideband technology would

be inefficient because this spectrum would go unused in locations where the wideband

technology is currently not being used.

SWIFT is designed for wideband systems that can opportunistically share spectrum

with existing narrowband technologies. Its design is motivated by measurement stud-

ies [32, 100] showing that, while various wireless technologies exist throughout the spec-
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trum, only a few such technologies are usually operational in a house or small geographic

area,1 and hence a large number of non-contiguous frequency bands are likely to be un-

used. SWIFT is designed for a dynamic spectrum usage model that can accommodate a

diversity of unknown narrowband technologies. It detects exactly which bands are oc-

cupied by these narrowband devices, and composes the remaining unoccupied bands to

build a single wireless link. Such a system allows wideband devices to operate at normal

power without affecting narrowband devices, and delivers on the promise of simultane-

ously achieving high throughput, range, and coexistence.

In order to achieve its goals, SWIFT needs to address three challenges: (a) how does

SWIFT detect the frequency bands that it must avoid, to allow narrowband devices to op-

erate normally?, (b) how does the PHY layer operate across chunks of non-contiguous fre-

quencies?, and (c) Given that different nodes might perceive different usable frequencies,

how do SWIFT nodes communicate?.

SWIFT detects frequency bands occupied by narrowband devices by exploiting com-

mon network semantics of these devices, in particular, the fact that many narrowband

devices react when faced with interference, either at the lower layers [13, 40], or at higher

layers [70]. This observation allows SWIFT to directly identify frequency bands which, if

used, would interfere with narrowband devices. Thus, SWIFT probes frequencies whose

power profile indicates that they might be in use by narrowband devices, monitors the

change in the narrowband power profilewhen probed, and backs off if it perceives narrow-

band reaction. It then designs a cognitive PHY that incorporates cross-layer information

from the adaptive sensing subsystem.

Chapter 2 describes the design of each of the components of SWIFT, the prototype hard-

ware and software implementation on a customwideband radio, and a testbed evaluation.

� 1.2 FARA

The next system in this dissertation is FARA, presented in Chapter 3. FARA addresses the

challenge of rate adaptation and spectrum sharing in wideband wireless systems. Wire-

less systems are increasingly moving to wider frequency bands in order to achieve high

throughput and efficient spectrum utilization. For instance, the state-of-the-art Wi-Fi stan-

1The measured average spectrum occupancy is 5.2% [32].
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Figure 1-2: Frequency diversity across 100 MHz of 802.11a spectrum as observed by two receivers for trans-

missions from the same sender. The figure shows that the SNRs of different frequencies can differ by as much

as 20 dB on a single link. Further, different receivers prefer different frequencies.

dard, 802.11n [6], has a 40 MHz high throughput mode which bonds together two 20 MHz

bands, and the upcoming 802.11ac standard [116] is capable of operating in even wider

bands of 80 MHz. Cognitive wideband solutions such as SWIFT, which is described in

Chapter 2, and ultra-wideband technologies in the 2.4 GHz and 60 GHz spectrum operate

over hundreds of MHz, or even a few GHz, in order to support the bandwidth require-

ments of high definition video and other rich media. The FCC has recently permitted

unlicensed use of about 100-250 MHz of white spaces vacated by the move of television

bands from analog to digital. Further, several empirical studies [58, 108] also show that the

802.11 multi-channel model, which divides the spectrum in 20 or 40 MHz channels among

access points leads to inefficient spectrum utilization due to imbalance in the load handled

by different access points.

FARA is an agile spectrummanagement scheme for such wideband networks. The key

challenge addressed by FARA is the frequency diversity experienced in these wide fre-

quency bands. This frequency diversity can either be due to interference from narrowband

devices operating in the wideband as in SWIFT, or due to multipath effects [144]. Multi-

path propagation causes multiple delayed and attenuated copies of the signal to combine
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with each other at a receiver. This combination can result in differing levels of constructive

or destructive interference, and thereby different fading, at the receiver. The exact fading

behavior and resulting performance (SNR) of a frequency for a particular sender-receiver

pair naturally depends both on the specific frequency as well as the paths traversed by

the signal between the sender and the receiver. Frequencies that are far apart from each

other can experience significantly different SNRs for a single sender-receiver pair, and this

effect becomes increasingly important with wider frequency bands. Additionally, differ-

ent sender-receiver pairs experience different SNRs in the same frequency, and hence the

frequencies that show good performance for a particular pair can be significantly different

than those that show good performance for another pair. Fig. 3-1 shows empirical mea-

surements of the SNRs across 100 MHz of the 802.11a spectrum, as observed by 2 clients

for transmissions from the same AP (see Section 3.9 for experimental setup). The figure

reveals that different frequencies show a difference in SNR of over 20 dB both for a single

link and across links.

Today’s rate adaptation and medium access control protocols however are spectrum-

oblivious. They assign the same bitrate to all frequencies for a particular sender-receiver

pair, and divide the medium across different sender-receiver pairs in a performance-

oblivious manner. As a result, they cannot deal with the challenges, or exploit the op-

portunities, presented by frequency diversity in wideband channels.

FARA’s spectrum aware architecture, in contrast, can improve network throughput and

spectrum utilization in emerging wideband Wi-Fi, cognitive, and white space networks.

FARA has four key components: (a) fine-grained spectrum performance estimation, (b) a

spectrum-aware link layer, (c) a performance-aware spectrum sharing andMAC layer, and

(d) load aware contention to improve spectrum utilization.

Chapter 3 describes the detailed architecture of each of the components of FARA, and

provides results of the implementation and testbed evaluation.

� 1.3 SourceSync

The third system in this dissertation, presented in Chapter 4 is SourceSync. SourceSync is

a cooperative wireless system that enables multiple senders to transmit a packet simulta-

neously in the same spectrum to exploit channel diversity. As described in the previous
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section on FARA, channel diversity is a fundamental property of wireless networks. This

diversity manifests itself both in channels from a sender to multiple receivers (i.e., when a

sender transmits a packet, it traverses different channels to different receivers, and is un-

likely to experience fading simultaneously at all receivers), and from multiple senders to

a receiver (i.e., when multiple senders transmit packets simultaneously to a receiver, the

packet is unlikely to experience fading from all senders at the same time).

The ability to harness diversity across senders in order to ensure that all frequencies

have good performance is particularly important in wideband channels, which experience

frequency diversity. Transmitting a packet simultaneously from multiple senders to a re-

ceiver ensures that no frequency is deeply faded at the receiver, since it is unlikely that a

frequency simultaneously experiences fading from all senders. However, while transmit

diversity has been analyzed in theory [84], Wi-Fi networks do not use it in practice, and in-

stead use only one transmitter at a time, say, the one with the strongest channel [107]. This

contrasts starkly with the variety of mechanisms [19, 26, 125, 155, 79] that exploit receive

diversity, i.e., the simultaneous reception of a transmitted packet across multiple receivers.

Harnessing simultaneous transmission from multiple senders is challenging for multi-

ple reasons. First, it requires that the transmitters are aligned at the symbol level so that

their signals do not interfere with each other. Such alignment requires fine grained syn-

chronization across transmitters, which is difficult to achieve [36, 78, 53, 119], since the

different transmitters need to time their transmissions without the assistance of a shared

clock or central controller. SourceSync instead uses shared reception of a wireless packet

to synchronize all transmitters. The challenge is to make such shared reception robust to

the typical hardware and channel dependent variations in packet detection delay, which

can be on the order of hundreds of ns [151]. Second, even when transmitters are aligned,

they need to orchestrate their signals so that they combine constructively and increase

the resulting signal strength at the receiver. Finally, receivers of such simultaneous trans-

missions need to be able to decode these transmissions while dealing with the fact that

different transmitters have different hardware impediments (e..g, different oscillators with

slightly differing operating frequencies).

SourceSync addresses these challenges by devising a new mechanism for fine-grained

time synchronization of wireless transmitters. SourceSync’s Symbol Level Synchronizer

uses shared packet reception as a time reference across transmitters, computes robust es-
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(a) First-hop receiver diversity (b) Second hop sender diversity

Figure 1-3: Opportunistic routingwith sender diversity. SourceSync enables multiple forwarders to transmit

jointly to the destination.

timates of signal propagation delays between transmitters and receivers, as well as hard-

ware turnaround times at transmitters, and compensates for these delays prior to transmis-

sion. SourceSync’s robust estimation can accurately eliminate the inherent variability in

packet detection delays, and also passively leverage data packets to track changes in chan-

nel delays over time. In addition, SourceSync transmitters use space time block codes in a

distributed manner to ensure that transmitted signals combine constructively at receivers

independent of transient channel conditions. Finally, SourceSync receivers can indepen-

dently estimate the channels from multiple senders, track the variations of these channels

across the duration of a packet, and compose them to compute the aggregate channel as a

result of joint transmission. Taken together, these mechanisms enable distributed synchro-

nized transmission to harness sender diversity.

The dissertation shows how SourceSync is used to develop protocols for exploiting

sender diversity with opportunistic routing as well as last-hop routing. Existing oppor-

tunistic routing protocols such as ExOR, MORE, SOAR, and MIXIT leverage receive diver-

sity, i.e., the property that it is unlikely that all nodes close to the destination do not receive

a transmitted packet, as shown in Fig. 1-3(a). SourceSync complements the opportunistic

receptions exploited by existing protocols with opportunistic synchronous transmissions

from multiple forwarders as shown in Fig. 1-3(b), i.e., since it is likely that multiple inter-

mediate nodes receive a packet, they can transmit it simultaneously thereby improving

network reliability and throughput. Similarly, with lasthop routing, existing protocols like

MRD, SOFT, and Link-Alike exploit the fact that a transmitted packet on the uplink is

unlikely to be lost at all access points (APs). This allows them to exploit receive diver-
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(a) Uplink receiver diversity (b) Downlink sender diversity

Figure 1-4: Last-hopwith sender diversity. SourceSync enables multiple APs to transmit jointly on the down-

link.

sity in the case of lossy uplinks without needing retransmissions, as shown in Fig. 1-4(a).

However, these protocols cannot exploit sender diversity across APs on the downlink.

SourceSync enables multiple APs to harness downlink sender diversity by transmitting a

packet simultaneously to a client, as shown in Fig. 1-4(b).

Chapter 4 describes the design of SourceSync’s components, and how they are used to

exploit sender diversity in wireless mesh and last-hop networks. It also presents detailed

results from an implementation and testbed evaluation.

� 1.4 MegaMIMO

The final system, MegaMIMO, is described in Chapter 5. MegaMIMO is a cooperative

wireless system that addresses the fundamental wireless scaling problem: in today’s wire-

less networks, as the number of users increases, the throughput available to each user

decreases.

Dense Wi-Fi networks today, for instance, in convention centers, hotels, stadiums, en-

terprises etc., are unable to keep up with user demands [145, 66]. This has led to high

profile failures in recent times like the collapse of the Wi-Fi network during Steve Jobs’s

iPhone 4 keynote. Cellular networks too face a similar challenge, with demands forecast to

exceed capacity within the next few years [126]. This capacity crunch is despite dramatic

improvements in individual link capacity and wireless device performance in recent years.
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Figure 1-5: Traditional vs. Joint Multi-User Beamforming. In a traditional multi-user beamforming system

withmultiple 2 antenna APs, only 1 AP can transmit on a given channel at any given time. This leads to amax-

imum of 2 simultaneous packet transmissions regardless of the total number of APs. In contrast, MegaMIMO

enables all APs to transmit on the same channel, allowing up to 2N simultaneous packet transmissions if there

areN 2-antenna APs.

The problem, rather, is that user demands scale up with the number of wireless devices in

the network, but total network throughput does not. MegaMIMO is a system that enables

wireless networks to scale their throughput with the number of transmitting devices.

MegaMIMO allows multiple wireless transmitters to simultaneously transmit different

packets to multiple independent wireless receivers. The key idea behind MegaMIMO is

joint multi-user beamforming. Multi-user beamforming is a known technique that enables

aMIMO transmitter to deliver multiple independent packets concurrently to receivers that

each have fewer antennas. Fig. 1-5(a) shows a single 2-antenna access point deliver two

independent packets to two single antenna receivers. In contrast, as shown in Fig. 1-5(b),

MegaMIMO enables multiple access points operating in the same frequency bands to de-

liver packets concurrently to multiple independent receivers without interfering with each

other. Such a system scales wireless throughput with the number of transmitting devices,

and delivers as many concurrent packets as the total number of antennas across all APs.

Furthermore, it can leverage continuing performance and reliability improvements of indi-

vidual links and devices (e.g., more antennas per device, lower receiver noise figure, better

codes etc.).
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The main challenge in implementing MegaMIMO is the need for phase-coherent trans-

mission across distributed transmitters. Specifically, in order that each client can decode its

intended signal without interference from other signals, beamforming attempts to ensure

that, at each client, the signals intended for all other clients cancel each other out. Trans-

mitters therefore need to control the relative phases of their signals in order to achieve this

cancellation. In the case of a single transmitter, this requirement is naturally satisfied as

all the transmitted signals are modulated by a single oscillator. However, in the case of

MegaMIMO, since different transmitters have different oscillators with slightly different

frequencies, the signals from the different transmitters rotate relative to each other. This

causes their phases to diverge, thereby preventing beamforming from working.

It might seem that transmitters can keep their phases coherent by estimating their rel-

ative frequency offsets, say ∆ω, and compensating for the accumulated phase error over

a time t as ∆ωt. However, such an approach is susceptible to even small errors in estima-

tion of frequency offsets. For instance, even an error of 10 Hz (which is 4 parts per billion of

typical Wi-Fi carrier frequencies, say 2.4 Ghz, several orders of magnitude smaller than the

typical 802.11 tolerance of 20 parts permillion, or cellular tolerance of 1-2 parts permillion)

can lead an accumulated error of 20 degrees (0.35 radians), within a short time interval of

5.5 ms. Such a high phase error will lead to significant interference during beamforming,

and prevent receivers from decoding their packets. Thus, it is not practical to rely on fre-

quency offset estimation to keep transmitters phase-coherent across several milliseconds.

MegaMIMO avoids this problem by directly measuring phase offsets at the time of

interest, and correcting for them, rather than inferring them from frequency offsets. The

key idea is to elect one of the APs as a lead, and use its phase as a reference for the system.

Other APs act as slaves, measure the change in phase of the lead AP, and change the phases

of the signals they transmit so that they maintain a desired alignment with the signals of

the leadAP. In particular, the leadAP begins eachMegaMIMO joint data transmissionwith

a couple of symbols. All slave APs use these symbols to estimate their phase offset relative

to the lead AP, and correct their subsequent signals during the joint data transmission.

During the data transmission itself, slave APs use an estimate of the frequency offset to

correct for changes in phase through the packet. This limits the phase error accumulation

to within a packet, and slave APs use a long term average of the frequency offset to ensure

that the phase error during a packet is bounded.
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Chapter 5 expands on this idea, describes its implementation, and demonstrates that it

can enable distributed transmitters to accurately beamform to multiple receivers. Further,

it extends MegaMIMO to work with off-the-shelf 802.11 cards, so that MegaMIMO can

be implemented simply by an upgrade to the AP infrastructure, without any changes to

clients. Finally, it details results of MegaMIMO implementation and evaluation both with

programmable radios and off-the-shelf 802.11 cards.

� 1.5 Contributions

The high level contribution of this dissertation is to demonstrate a practical agile spectrum

sharing architecture based on novel network primitives that enable cognition and cooper-

ation in wireless networks, and prototype implementations and experimental evaluations

that demonstrate large practical performance gains. The specific contributions of this dis-

sertation that derive from this high level contribution are highlighted below.

� 1.5.1 An Agile Spectrum Sharing Architecture

This dissertation establishes agile spectrum sharing as a practical architecture for wireless

networks. The systems in this dissertation show how wireless devices can dynamically

adapt the spectrum they use, as well as the signals they transmit to improve network per-

formance and enhance spectrum utilization. SWIFT and FARA are architectures that di-

vide spectrum among wireless devices in a usage- and performance-aware manner, while

SourceSync and MegaMIMO enable multiple wireless devices to operate simultaneously

in the same spectrum to leverage spatial diversity. The ability of all these wireless systems

to dynamically share spectrum has been demonstrated using practical implementations

and evaluations showing large performance gains.

� 1.5.2 Wireless Coordination Primitives

The systems in this dissertation present several novel coordination and synchronization

primitives that can enable a variety of cooperative wireless architectures. The key primi-

tives presented are:

Adaptive Spectrum Sensing: SWIFT’s spectrum sensing algorithm allows it to determine

what bands are occupied by other wireless devices, and how they are affected by
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SWIFT’s transmissions. It shows how wireless systems can detect what frequen-

cies are used by other wireless devices by leveraging the typical response of a wide

variety of narrowband devices to interference, either at lower layers, for example,

carrier-sense to abstain from transmissionwhen other devices are using themedium,

or autorate, where interference can lead to a device picking lower rates/less dense

modulation schemes, or at higher layers, for example TCP back off on packet loss.

In addition to spectrum sensing, SWIFT also demonstrates how a wireless sender-

receiver pair can mutually agree on which spectrum bands to use for communication

even in the absence of any control channel to achieve consensus.

Frequency Synchronization: SourceSync demonstrates how multiple transmitters, each

with their own oscillator and differing carrier frequencies, can perform coarse fre-

quency offset correction to ensure that adjacent subbands in the spectrum do not

interfere with each other. It also shows how receivers can independently track the

frequency offset of each of the independent transmitters and correct for them to en-

able the decoding of a joint transmission.

Fine-grained symbol level alignment: SourceSync shows how multiple transmitters can

use shared packet reception as a robust, low-overhead synchronization mechanism

to trigger joint transmission. In particular, it shows how wireless transmitters can

overcome the inherent variability in packet detection that is induced by noise and

receiver hardware variations, and achieve tight symbol alignment on the order of 20

ns.

Distributed Phase-Coherent Transmission: MegaMIMO builds on the frequency and

symbol alignment in SourceSync to provide phase-coherent transmission across dis-

tributed transmitters. MegaMIMO is the first system that enables different transmit-

ters that are powered by different oscillators and do not share a clock to emulate a

single multi-antenna transmitter where all antennas are driven by the same oscillator.

In addition to the systems described in this dissertation, these primitives can enable a

wide variety of existing information-theoretic schemes that rely on synchronization across

wireless transmitters or receivers.
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� 1.5.3 Cross-layer Algorithms for Cognition and Cooperation

This dissertation demonstrates the power of a cross-layer approach to building cognitive

and cooperative wireless networks. The main instances of such a cross-layer approach are:

• SWIFT’s adaptive spectrum sensing leverages wireless response to interference both

at lower (PHY and MAC) and higher (network) layers to determine usable spectrum

bands for wideband transmission. Further, it works in conjunction with SWIFT’s

cognitive PHY to dynamically adapt the spectrum bands used by SWIFT both for

sensing as well as for communication.

• FARA’s cross-layer rate adaptation algorithm is PHY-aware, and uses fine-grained

information from the PHY about performance in individual spectrum subbands to

determine the optimal transmission rate for each subband. Additionally, FARA’s

medium access control (MAC) layer leverages this information to perform dynamic

spectrum allocation across wireless links. This allows FARA to achieve significantly

higher network performance than traditional wireless MACs that are PHY-unaware

and divide spectrum across wireless links without regard to performance.

• SourceSync’s physical layer provides coding and synchronization mechanisms that

enable cross-layer sender diversity schemes at the link layer for both wireless mesh

and last-hop wireless networks.

• MegaMIMO integrates the PHY, MAC, and network layers to enable multiple

wireless transmitter-receiver links to operate at the same time. In particular,

MegaMIMO’s PHY layer modifies transmitted signals based onMAC layer decisions

about which links will operate jointly at any time. MegaMIMO’s MAC, in turn, uses

PHY information about the channels characterizing different links to determinewhat

combination of links can maximize network layer performance.

� 1.5.4 Practical Evaluations Demonstrating Large Gains

All four systems presented in this dissertation have been deployed and evaluated in actual

testbeds. The evaluations reveal that each system provides large performance and reliabil-

ity gains. The actual gains depend on the particular system and are described in detail in

the individual chapters, but the main evaluation results are highlighted below:
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• SWIFT was evaluated in an indoor testbed the WiGLAN radio platform [37].

SWIFT safely coexists with narrowband devices while simultaneously providing

high throughput and good range. In comparison to a baseline system that coex-

ists with narrowband devices by operating below their noise level, SWIFT is as

narrowband-friendly, but its throughput is 3.6 − 10.5× higher, and its range is 6×
greater.

• FARA was implemented on the WiGLAN radio hardware, and evaluated in an in-

door testbed. FARA is effective at harnessing frequency diversity, and delivers a

median throughput gain of 3.1× over traditional frequency-oblivious rate-adaption

and MAC layers in our testbed.

• SourceSync was implemented using the WiGLAN radio platform, and prototypes of

both last-hop diversity and opportunistic routing with sender diversity were eval-

uated in an indoor testbed. SourceSync achieves a median throughput gain of 57%

over traditional last-hop schemes that pick the best AP. Additionally, the combina-

tion of SourceSync and ExOR [19] achieves a median throughput gain of up to 45%

over ExOR alone, and up to 2× over single-path routing.

• MegaMIMO was implemented both in a testbed with Universal Software Radio

Peripherals (USRP2) [41] nodes acting as APs and clients, and in a testbed with

USRP2 APs and off-the-shelf 802.11n clients. MegaMIMO’s throughput increases

linearly with the number of APs. In particular, in an experimental testbed with 10

USRP2 APs and 10 USRP2 clients, MegaMIMO can achieve a median throughput

gain of 8.1− 9.4× over traditional 802.11 unicast, across the range of 802.11 SNRs.

MegaMIMO’s ability to linearly scale the network throughput with the number

of transmitters applies to off-the-shelf 802.11 clients. Specifically, MegaMIMO can

transmit simultaneously from two 2-antenna APs to two 2-antenna 802.11n clients to

deliver a median throughput gain of 1.8× compared to traditional 802.11n.
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CHAPTER 2

Learning to Share:

Narrowband-Friendly Wideband

Networks

Wideband technologies in the unlicensed spectrum can satisfy the ever-increasing de-

mands for wireless bandwidth created by emerging rich media applications. The key

challenge for such systems, however, is to allow narrowband technologies that share

these bands (say, 802.11 a/b/g/n, Zigbee) to achieve their normal performance, without

compromising the throughput or range of the wideband network. This chapter presents

SWIFT, a system that allows wideband devices to dynamically detect which parts of the

spectrum are occupied by narrowband devices, and weave together the remaining unoc-

cupied parts of the spectrum to create a high throughput cognitive wideband system.

� 2.1 Overview

Users’ desires to share high definition audio and video around the home are driving the

need for ever-increasing wireless bandwidth [31, 69], and wideband radios, whose fre-

quency bandwidth spans hundreds of MHz to many GHz, have been proposed as a solu-

tion [69, 152, 37]. These radios mainly operate in the unlicensed spectrum, which is pop-

ulated by a variety of legacy narrowband devices (e.g., 802.11a/b/g, Zigbee), as well as a

slew of emerging technologies (e.g., 802.11n). The key problem in operating these wide-

49



50 CHAPTER 2. LEARNING TO SHARE: NARROWBAND-FRIENDLY WIDEBAND NETWORKS

band systems is to ensure that they neither hinder the performance of narrowband devices

in these bands, nor sacrifice their own throughput or operating range. Overcoming this

problem requires a network design that achieves high throughput even when interferers

continuously exist, a fundamental departure from traditional wireless networks, which are

crippled by interference.

This chapter presents SWIFT, a Split Wideband Interferer Friendly Technology that

safely coexists with narrowband devices operating in the same frequencies. SWIFT’s key

feature is cognitive aggregation: the ability to create high-throughput wireless links by

weaving together non-contiguous unused frequency bands that change as narrowband

devices enter or leave the environment. Our design is motivated by measurement stud-

ies [32, 100] showing that, while various wireless technologies exist throughout the spec-

trum, only a few such technologies are usually operational in a house or small geographic

area,1 and hence a large number of non-contiguous frequency bands are likely to be un-

used. SWIFT’s ability to detect and utilize exactly these unoccupied bands, and compose

them to build a single wireless link, allows wideband networks to operate at normal power

without affecting narrowband, and delivers on the promise of simultaneously achieving

high throughput, operating range, and coexistence.

SWIFT bridges two areas in wireless communications: cognitive radios, and wideband

and ultra-wideband design. While there has been a lot of interest in cognitive communica-

tion, most proposals have focused on the licensed spectrum [14, 9, 23], where the primary

users of the band are known a priori, and hence this knowledge may be incorporated into

detecting if the band is occupied by the known signal pattern. In contrast, SWIFT focuses

on the unlicensed band, where narrowband devices are many, and their signal patterns are

unlikely to be known. Further, cognitive proposals attempt to find a single unused band

which they may opportunistically use, while SWIFT aggregates the bandwidth of many

such bands to maximize throughput. Similarly to cognitive radios, Wideband (WB) and

Ultra-wideband (UWB) technologies have to cooperate with existing users of the spec-

trum. They have, however, tried to bypass the coexistence problem by reducing their

transmission power below the noise floor of narrowband devices [152, 105, 3], and lim-

iting themselves to a single contiguous band. While this allows narrowband devices to

operate unhindered, it sacrifices the WB device’s throughput, operating distance, or both.

1The measured average spectrum occupancy is 5.2% [32].
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To achieve its goal of high throughput, range, and narrowband-friendliness, SWIFT has

to address three key challenges:

• How does SWIFT detect the frequency bands that it must avoid, to allow narrowband devices

to operate normally? In the absence of any information about the narrowband signal,

traditional solutions avoid frequency bands that show high narrowband power [9].

This approach uses observed power (or the lack of it) in a band as a proxy for whether

interference in this band is detrimental (or irrelevant) to operation of the narrowband

device, and is known to have both false positives and false negatives [141]. Instead,

SWIFT has a novel adaptive sensing technique that exploits common network seman-

tics, by observing that many unlicensed devices react when faced with interference,

either at the lower layers [13, 40], or at higher layers [70]. This observation allows

SWIFT to directly address the key goal of cognition: identifying frequency bands

whose use could interfere with narrowband devices. Thus, SWIFT probes ambigu-

ous frequencies, monitors the change in narrowband power profile, and backs away

if it perceives narrowband reaction.

• How does the PHY layer operate across chunks of non-contiguous frequencies? The current

PHY layer of high-throughput wireless systems assumes a known and contiguous

communication band, and breaks down in the presence of narrowband devices. For

example, even basic primitives like packet detection can be triggered incorrectly by

power from narrowband transmissions. SWIFT introduces a cognitive PHY that incor-

porates cross-layer information from the adaptive sensing subsystem into the basic

signal processing algorithms.

• Given that different nodes might perceive different usable frequencies, how do SWIFT nodes

communicate? Varying proximity to narrowband devices between SWIFT transmitter-

receiver pairs may lead to differences in their choice of usable frequency bands. Since

state of the art high-throughput wireless systems (e.g. OFDM) communicate across

a frequency band by striping the data bits sequentially across sub-frequencies in the

band, disagreement in the set of usable sub-frequencies between a sender-receiver

pair leads to unknown insertions and deletions in the data stream, which cannot be

dealt with by typical error-correcting codes. SWIFT’s in-band consensus scheme trans-

forms these insertions and deletions into bit errors, which can be dealt with using
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standard error-correcting techniques, and hence enables communication despite un-

certainty in the environment.

We have built SWIFT in a custom wideband radio hardware [37]. Our implementation

addresses the major details of computational complexity, storage, and pipelining inherent

in building a wideband wireless transceiver and apparent only at the hardware level. We

evaluate our design in a testbed of wideband nodes and 802.11 narrowband devices. Our

results reveal the following findings.

• SWIFT safely coexists with narrowband devices while simultaneously providing

high throughput and good range. In comparison to a baseline system that coex-

ists with narrowband devices by operating below their noise level, SWIFT is as

narrowband-friendly, but its throughput is 3.6 − 10.5× higher, and its range is 6×
greater.

• Adaptive sensing is effective. As compared to a threshold based approach, which

is neither efficient for wideband nor safe for narrowband across all locations, adap-

tive sensing accurately identifies interfered frequency bands, and provides efficiency

while still being safe for narrowband.

• SWIFT nodes can communicate despite disagreement over narrowband spectrum

usage and tolerate up to 40% disagreement about the usable frequency bands.

To the best of our knowledge, SWIFT is the first system where wideband nodes are

shown in a working deployment to coexist safely with unknown narrowband devices,

while forming a network of their own.

� 2.2 Related Work

SWIFT brings together research in two threads of wireless communications: wideband

systems, and cognitive radios.

(a) Wideband Systems. The last couple of years have seen tremendous successes in the

implementation of WB and UWB radios [27, 37, 69, 152]. This work falls in two major

categories: low power consumption, low-rate radios for precision location and tracking

systems, and high throughput radios for personal area networks and wire replacement in

homes and offices [69, 31].
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An intrinsic problem for high-throughput wideband radios, however, is coexistence

with narrowband devices with which they share the unlicensed bands. Prior work

tries to avoid interfering with narrowband devices by transmitting below their noise

level [152, 105]. This approach inherently limits the throughput and operating range of

the WB radio [152]. Further, in many cases, it fails to achieve its goal of protecting narrow-

band devices [105, 3]. Mishra et al. [104] propose to detect and avoid WiMax operating in

the same band as an ultra-wideband device. Their work however is specific toWiMax, and

can deal neither with general narrowband devices nor with a dynamic environment. Also,

their implementation considers only a wideband sender and does not include a wideband

receiver.

While most prior work is focused on a single link and the PHY layer, SWIFT’s com-

ponents span multiple areas, including signal processing, coding, and network protocols,

which together successfully address the issue of coexistence with dynamic and unknown

narrowband devices.

(b) Cognitive Radios. The realization of the congested spectrum allocation and its ineffi-

cient utilization [32, 100] has led to a surge of interest in cognitive communications. Work

here has largely focused on detecting unused bands (spectrum sensing) and providing

methods for sharing these bands among cognitive radios (spectrum sharing).

Prior work on spectrum sensing focuses on the licensed band, where it is crucial that

cognitive secondary users do not interfere with the licensed primary user. The most basic

approach involves measuring the energy level in a band. Energy detection is cheap, fast,

and requires no knowledge of the characteristics of the signal. However, choosing energy

thresholds is not robust across a wide range of SNRs [9]. Thoughmore sophisticatedmech-

anisms such as matched filter detection [9] are more accurate, they require knowledge of

the transmitted signal (modulation, packet format, pilots, bandwidth, etc.) and thus work

only for known technologies.

Architectures for spectrum sharing fall in two categories: centralized and dis-

tributed [9]. Centralized approaches [2, 22, 21] require a controller, such as a base sta-

tion or spectrum broker, to allocate spectrum to all cognitive users. Distributed ap-

proaches [162, 163, 14, 23, 93] have MAC protocols that rely on one or more control chan-

nels to coordinate spectrum access.

While our work builds on these prior foundations, it makes three major departures.
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First, cognitive radios focus on finding a single contiguous unoccupied band, whereas

SWIFT weaves together multiple non-contiguous unoccupied bands to create a high-

throughput wideband link. Second, SWIFT introduces new spectrum sensingmechanisms

that exploit network semantics to strengthen traditional energy based techniques for un-

known signals. Third, SWIFT allows communicating nodes to agree on usable frequencies

using a fully distributed consensus scheme that requires no control channels.

� 2.3 Problem Domain

SWIFT is designed to provide high throughput wireless connectivity for rich media ap-

pliances in a home scenario. It operates in the unlicensed spectrum, and is intended to

function in the presence of narrowband devices that utilize the same part of the spectrum,

and which might persist for long periods, or arrive and depart within minutes or hours,

e.g., a laptop utilizing an 802.11 wireless connection.

SWIFT is a cognitive architecture for OFDM wideband radios. We focus on Orthog-

onal Frequency Division Multiplexing (OFDM) because it has emerged as the technique

of choice for the majority of wireless technologies, such as wideband digital communica-

tion [37], ultra-wideband [5], 802.11 a/g/n [13, 56] and WiMAX [11]. The rest of our de-

scription focuses on single antenna radios, but our ideas are also applicable to wideband

MIMO radios, as they too use OFDM [20].

Robust detection of narrowband devices without any knowledge of their signal pat-

terns or other characteristics is impossible [141]. Since it is impractical to assume known

signal patterns in the unlicensed band, SWIFT focuses its design on the practical scenarios

that could arise in the environment of interest. Specifically, SWIFT addresses situations in

which the following constraints apply:

1. It is acceptable to treat narrowband traffic as best effort. Specifically, narrowband

devices should continue to experience the same average throughput and loss rate in

the presence of wideband nodes as without them, but their requirements are not any

more stringent than what is expected from today’s wireless LANs.

2. The capacity of the wideband network exceeds its peak traffic. This implies that the

medium exhibits frequent idle intervals such that narrowband devices that perform
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Figure 2-1: Schematic of an OFDM System.

carrier sense are not completely locked out. Sufficient capacity can arguably be ob-

tained by increasing the spectrum width spanned by the wideband radio.

3. Narrowband technologies of interest in this chapter react to interference. This re-

action can be at lower layers, for example, carrier-sense abstaining from using the

medium, or autorate changing modulation schemes, or at the higher layer, for exam-

ple, TCP backing off on sustained packet loss. Further, these devices are expected

to operate at reasonable SNRs (a few dB above the noise floor, e.g. 802.11a/b/g/n).

Narrowband devices that operate below or around the noise floor are expected to

have their own mechanisms to combat interference, as they need them in such a

regime.

� 2.4 OFDM Background

This section provides a simplified description of OFDM focused only on issues related

to this chapter. OFDM divides the used RF bandwidth into many narrow sub-channels,

called OFDMbins. Each OFDMbin can be treated independently from other bins, andmay

use a different modulation (e.g., BPSK, 4-QAM) or transmission power. A data stream is

striped into bits, with different numbers of bits assigned to each bin based on its modu-

lation scheme. An assignment of modulated bits to each of the OFDM bins is called an

OFDM symbol, see Fig. 2-1. The frequency representation of the OFDM symbol is con-

verted to a time domain OFDM symbol by using an Inverse Fast Fourier Transform (IFFT)

and sent on the medium by the transmitter.
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Figure 2-2: Cognitive Aggregation. While narrowband devices exist (e.g., 802.11 laptop), SWIFT still uses the

remaining non-contiguous chunks of spectrum as if they were one wireless link.

The receiver first determines the exact sample at which the packet starts. It then aligns

the time samples on OFDM symbol boundaries, and performs a few basic signal process-

ing tasks like Carrier Frequency Offset (CFO) and channel estimation. Next, the aligned

time signal is passed to a Fast Fourier Transform (FFT) module to produce the frequency

representation. The data symbols are then converted to their frequency representation,

corrected for the channel, and demodulated to retrieve the transmitted data bits.

� 2.5 SWIFT

SWIFT is designed around the concept of cognitive aggregation. Similar to the cognitive ra-

dio vision, cognitive aggregation is based on detecting narrowband systems and avoiding

their frequency bands. Unlike prior cognitive systems, which use only a single contigu-
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ous band, cognitive aggregation merges many non-contiguous bands into a single high-

throughput communication channel, as shown in Fig. 2-2. Such a design is critical when

using a wide band in the unlicensed spectrum since a wide contiguous unused band typ-

ically does not exist. SWIFT implements a cognitive aggregation design by utilizing three

key components: (a) a spectrum sensing mechanism based on determining how SWIFT’s

selection of frequency bands impacts narrowband transmissions, rather than just how the

narrowband transmissions look to SWIFT, (b) a cognitive PHY layer that can operate over

non-contiguous spectrum bands, and (c) a consensus protocol that allows SWIFT nodes to

agree on usable frequency bands despite uncertainty about which bands are occupied by

narrowband devices. Below, we explain each of these components in detail.

� 2.5.1 Adaptive Spectrum Sensing

SWIFT senders must learn the set of OFDM bins in which they can send while being

narrowband-friendly.

How do we detect bins that interfere with narrowband?

Ideally, SWIFT could directly measure how its choice of transmit bins affects a narrowband

device. Since this is typically not possible, and given that one does not know the signal de-

tails for arbitrary unlicensed narrowband devices, prior cognitive devices passively listen

for narrowband devices, and avoid all frequency bins in which they see power above some

threshold [9]. This approach essentially uses information about how SWIFT observes the

narrowband transmissions to guess how a SWIFT transmission would be observed by the

narrowband device. Such an approach is problematic for two reasons.

First, it is difficult to pick a power threshold [141] to precisely identify occupied bins, be-

cause the correct value varies with time and proximity to the narrowband device. Fig. 2-3

illustrates this issue. It shows the power profile of an 802.11a narrowband device operat-

ing on channel 52, as observed by two SWIFT nodes at different distances from the 802.11a

transmitter. In this scenario, the narrowband device uses bins 3 through 23. Clearly, no sin-

gle fixed threshold would eliminate exactly the correct set of bins used by the narrowband

device at both locations. This problem becomes even worse in the presence of variable

power levels among narrowband devices. For example, portable 802.11 devices such as

laptops and handheld devices often transmit at power levels well below the maximum in
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Figure 2-3: 802.11a Power Profile. The observed power of an 802.11a transmitter at different SWIFT locations

is very different, highlighting the difficulty in picking a power threshold that works at all locations.

order to conserve their battery, meaning that even though SWIFT’s effect on two devices in

different locations might be very different, the transmissions from those two devices might

be indistinguishable from SWIFT’s perspective. Accounting for all this variability requires

using a very conservative threshold that wastes many bins.

Second, even if one could identify the exact bins the narrowband device uses for its

transmissions, this may not be the correct set of bins to avoid. Since transmitters leak

power into bins adjacent to the ones they use, a wideband transmitter might need to avoid

bins that are unused by the narrowband device if using themwould leak significant power

into the narrowband bins. Conversely, a wideband device might be able to use bins that

are used by the narrowband device without affecting narrowband operation. This might

happen if the narrowband device is far away from thewideband transmitter, or uses highly

redundant coding schemes (e.g., Zigbee [164]). Because these effects depend on the dis-

tance and receive sensitivity of the narrowband device, it is impossible to account for them

without being extremely conservative in the choice of threshold.

The key problem with current solutions is that they use the wideband device’s view of

the narrowband transmissions in an open loop, as a proxy for how the narrowband device

will observe the wideband transmissions. Asymmetric links, and varying transmission

powers and receive sensitivities, make this a poor proxy. SWIFT instead uses a technique

we call adaptive sensing, which closes the loop by taking advantage of the observation that
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many narrowband devices react in some perceivable way if wideband transmissions dis-

rupt their transmissions. In particular, a large class of narrowband technologies in the

unlicensed spectrum reacts to interference, either at lower layers (e.g., carrier-sense and

autorate) or higher layers (e.g., TCP or end-user backoff). Intuitively, SWIFT pokes the

narrowband device by putting power in ambiguous bins, notes any changes in the nar-

rowband power profile, and backs away if such a reaction is observed.

Note that our goal with adaptive sensing is not to use narrowband bins during short

gaps in narrowband transmissions; rather, we design it to immediately relinquish bins that

it suspects of being used by narrowband devices, and reuse them only when confident that

the narrowband devices have disappeared for several minutes.

Detecting Narrowband Reaction

SWIFT continuously senses the medium whenever it is not sending or receiving a packet.

It converts the incoming time signal to the frequency domain using an FFT, and then cal-

culates the current power in each bin. These power measurements are used both to detect

the existence of a narrowband device, and to identify whether the narrowband device has

reacted to the wideband device.

SWIFT detects the presence of a narrowband device in a bin, by comparing the power in

that bin to the noise floor. SWIFT computes the noise floor by taking advantage of its wide

band. Since it is highly unlikely that narrowband devices are simultaneously present in all

bins, SWIFT just computes the minimum power across all bins and averages it over time

to estimate the noise floor. Before SWIFT runs its adaptive sensing algorithm to choose

the correct set of bins, it uses a conservative threshold that declares a bin narrowband-occupied

if the power in that bin exceeds the noise floor by 3 dB in any sample, and narrowband-

free otherwise. A sample is considered narrowband-occupied if any bin in that sample is

narrowband-occupied.

SWIFT also uses its powermeasurements to compute four metrics that capture themost

common responses to interference.

• Inter-transmission time captures the behavior of narrowband devices that react to in-

terference by backing off (e.g. 802.11 or TCP backoff). It is computed by counting the

number of consecutive narrowband-free samples.
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• Transmission duration captures the behavior of devices that fall back to more robust,

lower rate modulation schemes, thereby taking a longer amount of time for each

transmission (e.g. autorate in 802.11). It is computed by counting the number of

consecutive narrowband-occupied samples.

• Average narrowband power allows SWIFT to deal with multiple narrowband devices

in the same band (e.g., two 802.11 devices). If SWIFT interferes with a nearby device

causing it to backoff, but a more distant device fills in the freed bandwidth such that

none of the other metrics changes, the average power will significantly decrease,

allowing SWIFT to detect the change. This metric is computed by averaging the

power in narrowband-occupied samples over a window.

• Probability of transmission immediately after SWIFT captures whether SWIFT triggers

the carrier-sense reaction of narrowband. If SWIFT triggers narrowband carrier-

sense, the narrowband device will not transmit immediately after a SWIFT packet,

because it waits to ensure that the medium is free (In 802.11, this translates to the

DIFS, followed by a random contention window). The metric is computed by look-

ing at the power immediately after SWIFT finishes transmitting a packet, and setting

a flag to 0 if the sample is narrowband-free, and 1 otherwise. The probability is com-

puted as the average of these flags over a recent window.

SWIFT maintains sufficient statistics to compute the mean and variance of each met-

ric. To achieve high confidence in the value of a particular metric, SWIFT needs to collect

multiple measurements of that metric. Note that for the first three metrics, SWIFT gets

one measurement every time it sees a narrowband transmission. The last metric is dif-

ferent, however, in that it can be measured independent of whether the narrowband de-

vice transmits or not. If the narrowband device has nothing to send though, the fact that

no narrowband transmission is observed provides no information. Hence, SWIFT only

includes samples of this metric when it senses a narrowband transmission within some

maximum time after a SWIFT packet (1 ms in our implementation). Thus, the confidence

of our estimates of all four metrics depends only on how many samples are obtained, and

is independent of how sporadically the narrowband device transmits.
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Figure 2-4: Control Flow for Adaptive Sensing Algorithm

Adaptive Sensing Algorithm

We define a bitvector UsableBins, which identifies the set of bins that SWIFT currently

uses. The adaptive sensing algorithm starts with a conservative choice of UsableBins

that does not interfere with the narrowband device, and iteratively tightens the setting

of UsableBins to converge on the maximal set of usable bins that does not affect the

narrowband device. Fig. 2-4 shows the control flow of our algorithm, which we describe

in detail below.

Whenever SWIFT first detects narrowband power in a bin (using the conservative

threshold), it immediately backs away from that bin, and updates UsableBins accord-

ingly. This conservative choice of UsableBins allows SWIFT to be confident that obser-

vations made in this state represent normal narrowband behavior.

After gathering enough data at this normal setting, SWIFT begins the process of deter-

mining a choice of UsableBins that does not affect the narrowband device, but provides

a maximal number of available bins. It starts by grouping contiguous sets of narrowband-

occupied bins into a single narrowband group. Each narrowband group is then assigned

a top and bottom bin which bound, for this narrowband group, the range of bins which

must be left unused.

Next, SWIFT will try to grow UsableBins by using the top and bottom bins in each

narrowband group and observing whether the narrowband device reacts. At each step,

SWIFT alternates between reducing the top bin by one and increasing the bottom bin by

one. For each choice of UsableBins, SWIFT waits to gather data measuring the effect
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of this new choice. It continuously monitors the incoming data by comparing the metrics

with this bin choice to those observed under normal behavior with the conservative bin

choice. If, at any point, SWIFT determines that it has impacted any of the metrics, it imme-

diatelymoves back one step, and resets UsableBins to the previous decision. If, however,

after gathering enough data, SWIFT determines that none of the metrics are impacted, it

moves on to the next step, and tightens its choice further by one bin.

For each narrowband group, SWIFT independently continues this process until it either

reaches a bin choice for which it notices the narrowband device reacting, in which case it

retreats to the previous UsableBins setting, or it marks as usable all bins in this narrow-

band group and still notices no reaction. At this point, SWIFT continues to monitor the

metrics and compare them to normal. If it notices a change at any point, SWIFT retreats

to the conservative choice of UsableBins, recomputes normal metrics, and repeats the

probing process, as shown in Fig. 2-4.

Note that this algorithm inherently deals with dynamics. For example, if the narrow-

band device moves closer or farther after SWIFT has finalized a bin choice, the average

narrowband power metric will change from normal, and cause SWIFT to reinitiate the en-

tire probing process. Furthermore, if all narrowband devices in a group depart, SWIFTwill

stop seeing any transmissions in the narrowband group, time out the entire group after a

predefined interval, and reclaim these bins. Also, as articulated in Section 2.3, a narrow-

band device appearing in a new band currently occupied by SWIFT will always have the

opportunity to transmit during SWIFT’s idle intervals, and hence be quickly detected, al-

lowing SWIFT to immediately back away and trigger the adaptive sensing algorithm for

this new narrowband group.

Measuring Statistically Significant Changes

When should SWIFT decide that changes in some metric are not due to statistical aberra-

tions, but reflect a real change in the performance of the narrowband device?

SWIFT uses a statistical test called a t-test, typically used to decide whether a drug

has had a statistically significant effect on the population studied [25]. A t-test takes the

means, variances, and number of samples of the two compared sets: normal and current.

It computes the following t-value where the x̄’s and σ’s represent the means and standard

deviations, respectively, of the two sets, and nnorm and ncurr refer to the number of samples
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in the normal and current set:

t =
x̄norm − x̄cur
√

σnorm

nnorm
+ σcur

ncur

.

To determine whether any difference between the means is statistically significant, the

t-value must be combined with an alpha level, which represents the acceptable probability

of being wrong. In our case, this value represents the probability that the t-test will tell

us that SWIFT is interfering even if it is not. This is a parameter which effectively sets the

aggressiveness of SWIFT. We use an alpha level of 0.05, typical for scientific and medical

studies. The t-value combined with the alpha level and the total number of samples is then

used in a table look-up to determine whether the t-test passes, i.e., whether SWIFT has had

a statistically significant impact on narrowband.

� 2.5.2 Cognitive PHY

The cognitive PHY uses the output of adaptive sensing to provide a single high-

throughput link over the set of usable bins.

On the transmitter, this means ensuring that no power is used in bins marked as

narrowband-occupied by the adaptive sensing module. This is straightforward with

OFDM since it naturally allows different power assignments for each frequency bin.
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On the receiver side, the cognitive PHY has to ensure that the receiver can receive in

non-contiguous bins even when narrowband devices are using the other bins. At first, it

might seem that this can be done analogous to the transmitter by taking the FFT of the

incoming signal, and just using values from the bins of interest. However, this is impracti-

cal. To understand why, consider the frequency-time diagram in Fig. 2-5 which illustrates

how theN OFDM frequency bins are converted toN time samples that together represent

an OFDM symbol. As can be seen, the correct frequency domain values can be retrieved

from the time samples only when the FFTs are aligned correctly on OFDM symbol bound-

aries. But the receiver can align the FFT correctly on symbol boundaries only if it knows

the starting sample of a packet in the first place!

Hence, we need to modify a few basic receiver algorithms to cope with non-contiguous

bands.

(a) Receiver Packet Detection: In order to perform any processing on a packet, the re-

ceiver first needs to determine the start of the packet within a few time samples. Typically,

this is done using the double sliding window algorithm [63], which uses energy ratios to

determine the time sample where a burst of energy is received on the medium. This algo-

rithm calculates the ratio of received energy over two consecutive sliding time windows

as shown in Fig. 2-6. When only noise is received, the ratio is flat since both windows

essentially contain only the same energy. When the packet edge starts to cover the A win-

dow, the energy in theAwindow gets higher, while theB window still contains only noise

energy. The ratio keeps rising and ideally peaks at the point when the edge betweenA and

B is aligned exactly at the start of the packet.
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Since packet detection happens in the time domain, it cannot distinguish between en-

ergy from narrowband devices and wideband transmitters, and can be spuriously trig-

gered by narrowband transmissions. Recall that SWIFT concurrently transmits with nar-

rowband devices by using separate frequencies. Hence, if the receiver is kept busy with

false packet detections, it is very likely to miss desired wideband transmissions.2

The solution is to actively filter the narrowband devices, allowing the receiver to per-

form packet detection on the clean signal consisting primarily of power from wideband

transmitters. The choice of the bins to filter is driven by the adaptive sensing module.

However, the receiver may not be able to use a filter per narrowband group since filters

are resource-intensive in hardware. Hence, SWIFT is designed to use a small fixed num-

ber of bandstop filters, whose widths and center frequencies are dynamically configured.

Note that since these filters are purely on the receiver side, by definition, they do not af-

fect narrowband devices. A particular filter choice that is not perfectly aligned with the

desired set of bins to be filtered only affects packet detection to the extent of the amount of

narrowband energy that it lets in, or the amount of wideband transmitted energy it filters

out.

We formulate the filter computation problem as a dynamic program that eliminates as

many narrowband bins as possible, while maximizing the amount of received wideband

energy. The module first compresses the input bitmask into a sequence of runs of consecu-

tive 1’s and 0’s. Since a single narrowband interferer occupies a continuous portion of the

spectrum, this transforms the mask, which was originally as large as the total number of

bins of the wideband system, into a much smaller number, L, proportional to the number

of active narrowband interferers.

Let K be the maximum allowable number of filters. For a given bitmask and a filter

assignment, for each run r, define

Xr =







Length of run r if r should be filtered but is not

included in the filter

0 otherwise

Yr =







Length of run r if r should not be filtered but is

included in the filter

0 otherwise

2Due to the hardware pipelining typical to receivers [63], they cannot receive packets while they are still
working on the spuriously detected packet and have not rejected it.
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The cost,Ci,j,k, of using at most k,1≤ k ≤K filters in the interval [i, j], i < j,1≤ i, j ≤ L,

is calculated as αXr + βYr where α is the weight assigned to bins that are not filtered,

and β is the weight assigned to bins spuriously filtered. α and β might be set to 1 in the

simple case, but more generally, can be set proportional to the average interference power

and transmission power perceived by the receiver. We now wish to minimize C1,L,K . This

problem exhibits the “optimal substructure” property, i.e. the cost of a combined run can be

derived from the cost of two sub-runs, and hence can be solved by dynamic programming.

Specifically, we compute:

Ci,j,k = min

{

Ci,j,k−1, min
i<t<j,0≤f≤k

{Ci,t,f +Ct,j,k−f}
}

Intuitively, the first component propagates the cost of using k − 1 filters up, while the

second splits the interval [i, j] into two sub intervals, one of which contains some or all

of the filters, and the other the remaining intervals. It only remains to define the initial

conditions: Ci,j,0 = αXr , and Ci,j,1 can be computed in O(L2) time by trying all possible

single filter assignments in the interval [i, j].

We compute the dynamic program top-down using a table to memoize the costs. The

table has at most O(L2K) entries, and each entry is computed in O(LK) time for a total

computational complexity of O(L3K2) time. Note that, in practice, the running time is

insignificant for several reasons: (a) The total number of filters, K , is small, usually less

than 5, (b) the total number of active narrowband interferers, L, is negligible compared to

the size of the band, and (c) many of the memoized costs can be used in future runs as the

set of used bins usually changes only marginally between iterations of the system.

(b) Receiver Packet Processing: Now that the start of the packet has been detected ac-

curately, the receiver has the right alignment for the symbols and the rest of the packet

processing can be done in the frequency domain over the actual bins used by the wide-

band system, as shown in Fig. 2-7. Specifically, carrier frequency offset estimation, which

is traditionally done in the time domain, is instead performed in the frequency do-

main after zeroing out the contributions of bins occupied by narrowband, as determined

by adaptive sensing. This permits a more precise estimate than an application of the

time domain estimation algorithms on the noisy filtered signal used for packet detec-

tion.
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Figure 2-7: Packet detection uses a filtered version of the time-domain signal to produce an estimate of the

packet start. The aligned signal can then be processed in the frequency domain for the rest of the chain.

(c) Data reception: Recall that the transmitter, while assigning data to bins, zeros out all

bins that are deemed unusable by adaptive sensing, and stripes data only across the re-

maining bins. Similarly, when the receiver collects the received data, it only utilizes bits

from bins that are deemed unoccupied by narrowband devices. Again, we note that since

data reception happens after the alignment provided by packet detection, it can work on

the unfiltered signal and hence can precisely remove bins susceptible to narrowband in-

terference.

� 2.5.3 Communication Over Uncertain Bands

Since each node in a SWIFT network independently decides the bands that it can use for

transmission and reception, differences in proximity to narrowband devices and variations

in time make it likely that a transmitter and receiver identify different bins as usable. For

example, a wideband sender and receiver that are just a few meters apart may differ in
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Transmitter
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Figure 2-8: Bin Disagreement Causes Communication Failure. If the transmitter sends in bins 1, 3, 4, and

5 while the receiver listens in 1, 2, and 5, then the receiver will decode noise in bin 2 as data, and miss data

in bins 3 and 4. These insertions and deletions will cause a misalignment in the demodulated data stream,

creating an error pattern than cannot be rectified by standard error-correcting codes.

their perspectives of narrowband-occupied bins by as much as 10-20 MHz as we show in

Section 2.7.2.

This disagreement between a transmitter and its receiver can be a fatal obstacle to es-

tablishing an OFDM communication link. To understand why, recall that an OFDM trans-

mitter stripes data across all usable OFDM bins. A receiver reconstructs the original data

by extracting bits from the individual bins. Thus, as shown in Fig. 2-8, if the receiver ex-

pects data in a bin that the transmitter did not send in, it will result in insertion of bits into

the data stream. Conversely, if the transmitter sends data in a bin that the receiver does

not expect data in, it will manifest itself as deletions of bits from the data stream. Thus,

disagreements about bins result in alignment and framing errors, and produce a wireless

channel that has unknown insertions and deletions, which conventional error correcting

codes cannot deal with.

We solve this problem using two mechanisms: (a) an infrequent synchronization phase

when the communicating wideband pair has a drastic disagreement, say, when a wide-

band node boots up, or when many narrowband devices in different bands appear si-

multaneously, and (b) a low overhead handshake, which is used when nodes that have

previously agreed experience a limited disagreement, say, because a single narrowband

device was turned on or moved closer.
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SWIFT nodes are equipped with a robust initial synchronization mechanism. Each

SWIFT node divides the whole transmission band into chunks of 16 bins, checksums and

codes the value of its UsableBins, and sends it simultaneously in all chunks. Assum-

ing that the bandwidth of the wideband node is large enough, and has enough bins that

are not interfered with narrowband, at least one of these chunks in this sync packet will be

received correctly, allowing the nodes to establish connectivity. Note that the sync packet

uses all OFDM bins, and hence does not suffer from an alignment problem.

Even after a SWIFT node pair is synchronized, they can still suffer from occasional

disagreements, for example, when adaptive sensing changes the set of usable bins on a

node. We leverage the existing agreement to transform the potential disagreements into

bit errors, i.e., we transform the hard problem of unknown insertions and deletions into

the simpler problem of bit errors, a problem that all wireless links know how to deal with

by adding practical error correcting codes.

To do so, SWIFT exploits the following key observation. If the transmitter stripes the

data across the previously agreed bins, there will be no deletions or insertions. The prob-

lem, however, is that, by transmitting in the old bins, some of which may no longer be

free, the transmitter might hinder a narrowband device. To address this problem, SWIFT

stripes the data across the previously agreed bins, but transmits only in the subset that

is still usable. The receiver, which still expects to receive data across the old agreement,

receives data in the intersection of the old and new bins correctly, but sees errors in the

other bins. However, this can be easily fixed by using a simple error correcting code with

sufficient redundancy to cover the expected extent of disagreement between old and new

bins.

SWIFT uses a low-overhead handshake to quickly resolve disagreements. The data in

the handshake is the new set of usable bins, and the striping technique is as described

above. Once the handshake terminates, the nodes resume normal data exchange.

� 2.5.4 Network Issues

This section briefly describes how we compose multiple SWIFT links to build a network.

(a) The MAC:We use a carrier sense based MAC similar to 802.11 [49]. A node senses the

medium and transmits if the medium is not busy. However, a direct application of the car-

rier sense technique of narrowband radios, which just checks for the total received power
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Parameter Value
Carrier Freq. 5.247 GHz
Data BW 100 MHz
Number of Bins 100 (×1MHz)
Symbol Period 1.4 µs
Uncoded BER 10−3

Bin Modulation BPSK, 4-
16-, 64-QAM

Max Link Len 10 m
Average Output
Power

7.5 dBm

Figure 2-9: Wideband Radio Used in SWIFT

in the band to exceed a threshold, will unnecessarily reduce the transmission opportunities

of SWIFT nodes since narrowband transmitters are always likely to be using some part of

the band and hence preventing the wideband radio from transmitting. Instead, SWIFT’s

carrier sense focuses only on the bins declared usable by adaptive sensing. Specifically,

when a node wants to send, it computes an FFT of the observed power, and proceeds with

its transmission only if a large fraction of its usable bins are below the wideband carrier

sense threshold.3 The use of frequency-domain carrier sense ensures that SWIFT does not

interfere with ongoing narrowband transmissions in the frequency bands used by SWIFT,

even if those narrowband devices had not been previously detected by adaptive sensing.

Further, while wideband nodes can use an 802.11-like MAC, they need to wait for a rel-

atively longer period to check that the medium is idle, i.e., they should use a longer DIFS

interval than typical values picked by narrowband devices. This ensures that a narrow-

band device that has just arrived into the environment can quickly access the medium and

trigger adaptive sensing.

The SWIFT MAC randomly jitters the start of a probing epoch to ensure that differ-

ent SWIFT nodes perform adaptive sensing independently. Further, a node uses control

packets analogous to RTS/CTS to notify other SWIFT nodes of the start and end of a prob-

ing epoch in order to avoid simultaneous probing by multiple nodes. While this solution

works for small wideband networks, extensions to larger networks may require more so-

phisticated mechanisms to leverage probing results across multiple SWIFT nodes.

3Note that the objective of wideband carrier sense is not to correctly decode the received signal, but rather
to measure received power, which does not require alignment.
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(b) Transmitter Identification: The alert readermight have observed that a SWIFT receiver

potentially needs to receive and decode packets from multiple transmitters; however, de-

coding a packet requires knowledge of the exact set of mutually agreed bins overwhich the

data is striped, and this mutual agreement is likely to be different with different transmit-

ters. Hence, the SWIFT receiver needs to identify the transmitter of a packet even before

it can decode the packet. This is in contrast to current networks where a node decodes

received packet headers to determine if they are intended for itself.

SWIFT adapts the technique of correlation with known pseudonoise sequences, typi-

cally used for packet detection, to develop a solution at the link layer. It is well known that

pseudonoise sequences exhibit low correlation with each other while showing high corre-

lation with themselves, thereby allowing identification of specific pseudonoise sequences

purely by correlation [118]. Transmitter MAC addresses in SWIFT are pseudonoise se-

quences, and appear in a known and fixed symbol location in the received packet. When a

receiver detects a packet, it correlates it against its neighboring nodes’ MAC addresses to

determine the transmitter, and hence the set of bins. This requires a receiver to maintain

a table of neighbor MAC addresses; a receiver learns about a neighbor’s MAC address

during the initial sync packet where they exchange their mutually usable set of bins. Note

that receiving the sync packet itself does not require prior bin agreement, as described in

Section 2.5.3.

� 2.6 Implementing SWIFT

We have implemented SWIFT in a custom wideband radio transceiver platform devel-

oped by the WiGLAN research project [37]. The WiGLAN transceiver board, shown in

Fig. 2-9, connects to the PC via the PCI bus, and acts like a regular network card. The

transceiver [98] consists of three parts: 1) the RF front-end, which captures the analog

signal, 2) the data converters, which convert between analog and digital signals, and 3)

the digital baseband modem. All digital processing, such as packet acquisition, channel

estimation etc., is done in baseband.

Our prototype has two components: the driver and the firmware. The former is imple-

mented in software, and the latter in FPGA.

Driver: The driver presents a standard network interface to the kernel. In addition to
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Figure 2-10: Testbed Map: Node Locations are Highlighted.

this typical functionality, the driver offloads from the FPGA any computation that is too

complex for hardware and is not on the critical path of an OFDM symbol. For example,

the driver implements the metric computation and t-test (Section 2.5.1). Our current proto-

type implements twometrics: average narrowband power, and probability of transmission

immediately after SWIFT.

Firmware: Several of SWIFT’s major components that need to be on the critical path,

such as narrowband power measurement (Section 2.5.1), the cognitive PHY (Section 2.5.2),

the band consensus protocol (Section 2.5.3), and the MAC (Section 2.5.4), are implemented

on the FPGA. We design SWIFT’s algorithms in the Simulink environment, which has a

hardware model for the Xilinx Virtex-4 SX35 FPGA that we use. The code is then compiled

into an intermediate form using Xilinx tools [4]. We use Verilog to integrate this interme-

diate form with the PCI subsystem, and create the final hardware representation of our

code.
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Figure 2-11: Approaches to Narrowband-friendliness: Presents the throughput-range tradeoff, and shows

that SWIFT, illustrated in (d), is as friendly to 802.11a as LOW, while attaining dramatically higher throughput

and operating range.

� 2.7 Performance Evaluation

We evaluate SWIFT in a 12 node testbed consisting of four wideband nodes, and eight

802.11a nodes. Fig. 2-10 shows the experimental environment, which has high diversity

due to the presence of walls, metal cabinets, desks, and various non-line-of-sight node

locations. The exact choice of node locations for each experiment will be described along

with the results for that experiment.

Wideband Devices. We use the WiGLAN wideband hardware described in Section 5.10,

whose specifications are in Fig. 2-9. It has 100 OFDM data bins, numbered from -50 to +50,

with bin 0 never being used. For all schemes, the wideband devices are evaluated while

continuously sending 10 ms packets with a 1 ms gap between packets.

NarrowbandDevices. These nodes run 802.11a in channel 52, corresponding to wideband

bins 3 through 23. 802.11a nodes send UDP streams at the highest rate supported by the
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medium, except for experiment 2.7.5, in which they use TCP. The protocol, signal details,

and occupied bands of 802.11a are, of course, unknown to SWIFT.

Compared schemes. We compare the different schemes by configuring our wideband

hardware to run one of:

• SWIFT: This is the SWIFT protocol implemented as in Section 2.6.

• Low-power wideband (LOW): This is a baseline system that operates below the

noise level to avoid interfering with narrowband devices. Specifically, it transmits

signals with a power spectral density of -41 dBm/MHz, the FCCmaximum for UWB

devices [1].

• Non-adaptive wideband (NORM): This is a system that transmits across a wide

band at the normal power of our hardware platform, but does not adapt to narrow-

band devices.

Note that both LOW and NORM will suffer drastic bit errors in bins used by 802.11a

when it is turned on. For conservative comparison in this case, we therefore consider

idealized versions of these systems that use the minimal amount of coding required to

correct these errors.

� 2.7.1 Throughput and Range

This experiment explores if it is possible to be as narrowband-friendly as a transmitter

operating below the noise level, while preserving the good throughput and range of a

normal-powered wideband system.

Method. We place the wideband transmitter in location tx, and test its performance to the

wideband receiver which is placed in each of locations 1 through 10. For each location,

we measure the throughput of LOW, NORM, and SWIFT with and without interfering

802.11a traffic, and plot the results in Fig. 2-11.

Results. Fig. 2-11 demonstrates that, while both NORM and LOW are flawed, SWIFT de-

livers on the fundamental goal of simultaneously achieving the high throughput and wide

range of NORM, while being as narrowband friendly as LOW. In particular, we see that:

• Throughput and range of LOW are limited: Fig. 2-11(c) shows that LOW gets no

throughput after location 2, and has 3.6− 10.5× lower throughput than SWIFT and

NORM.
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• NORM is not narrowband friendly: We can see from Fig. 2-11(a) that NORM sig-

nificantly reduces 802.11a throughput.

• SWIFT has high throughput and range: From Figs. 2-11(b) and 2-11(d), we can see

that in all locations, SWIFT achieves the same or greater throughput than NORM,

with or without 802.11a.

• SWIFT is narrowband friendly: From Fig. 2-11(a), we can see that 802.11a through-

put is unaffected by SWIFT.

We see from Figs. 2-11(b) and 2-11(d) that SWIFT surprisingly achieves higher throughput

than NORM in the presence of 802.11a. This is because SWIFT intelligently avoids 802.11a

occupied bins, while NORM uses these bins, suffers errors due to high narrowband

power, and hence incurs additional overhead to correct errors in these bins.

� 2.7.2 Power Threshold Sensing

In Section 2.5.1, we discussed the intractability of a threshold based algorithm. Here, we

present results validating that claim, first showing the difficulty of picking a threshold,

and, second, showing that a single threshold cannot simultaneously be safe for narrow-

band, and efficient for wideband.

Difficulty in Using Thresholds

Method. This experiment uses one pair of SWIFT nodes at location tx and rx in Fig. 2-10,

and one pair of 802.11a nodes which is moved among locations 1-10. At each location, we

measure two quantities: (a) Correct Bin Choice: We disable adaptive sensing on SWIFT and

manually try all possible usable bin settings until we find the maximal set of usable bins

that does not affect 802.11a throughput.

(b) Ideal Threshold: This is defined for each location as the highest threshold that results

in a bin choice which does not affect 802.11a in that location. This is the threshold that

is most efficient for wideband, while still being safe for narrowband. We record the time

average of the power SWIFT sees in each bin when 802.11a transmits, and calculate the

ideal threshold as the minimum power across all bins that must be left unused to ensure

safe 802.11a operation.
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Figure 2-12: No Single Threshold Works Across Locations: This figure plots the ideal threshold that ensures

safe narrowband operation while maximizing bins usable by wideband. 802.11a nodes at locations 7-10 are

not affected by wideband, and hence the ideal threshold for these locations is infinity.

Results. Fig. 2-12 shows the difficulty in choosing a single threshold across locations: the

ideal threshold varies by as much as 4.3× in our testbed; furthermore, the thresholds do

not correlate with distance, because of the reflection and shadowing typical in an indoor

environment.

No Single Threshold is Both Safe and Efficient

In this section, we illustrate how a particular choice of threshold forces a compromise

between safe narrowband operation and efficient wideband performance across locations.

Method. We use the same placement of wideband nodes as in Section 2.7.2. We consider

two thresholds based on our experiments in Section 2.7.2 above, setting the threshold to

either the median, or the minimum of those in Fig. 2-12. We then determine the set of

bins that would be marked as usable for each threshold setting and location. We disable

adaptive sensing in SWIFT, and at each location, manually set it to use the set of bins

resulting from the chosen threshold, and measure the 802.11a throughput.

Results. Fig. 2-13 compares the number of wasted bins, i.e., bins that the threshold un-

necessarily marks as unusable by wideband, at each location, against the corresponding
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Figure 2-13: No Threshold is Safe and Efficient in All Locations

802.11a throughput, for both the median and minimum thresholds from Fig. 2-12. The me-

dian threshold leads to a dramatic reduction in 802.11a throughput in locations 2, 3, and

6, while simultaneously producing over 10 wasted wideband bins in each of locations 8, 9,

and 10. Bins are wasted in these locations because the 802.11a nodes, being too far, are no

longer affected by wideband transmissions, but this threshold still causes many bins to be

marked as unusable. Note that a threshold-based design can be both unsafe and inefficient

in the same location. In particular, with the median threshold it is unsafe in locations 2 and

6, but also wastes a few bins in those same locations. This is because a blip in power in any

bin outside of those occupied by the narrowband device causes that bin to be wasted.

A lower choice of thresholdwould increase the likelihood of safe narrowband operation

at the cost of increased inefficiency. For example, using the minimum threshold among

all measured locations ensures safe 802.11a operation in all of these locations, but almost

doubles the bandwidth wastage. In our example, in addition to wasting bins in locations

7, 8, 9, and 10 where 802.11a is out of range, it also wastes bins in location 1. This wastage

is because 802.11a transmissions leak significant power into bins adjacent to those it uses.
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Figure 2-14: Adaptive Sensing is Robust: At each location, SWIFT finds the correct unusable bins, i.e. those

that interfere with 802.11a.

Additionally, this minimum threshold may be unsafe for locations outside the measured

set, or for a different 802.11a transmitter.

� 2.7.3 Adaptive Sensing

In this section we show how the adaptive sensing algorithm allows SWIFT to use a maxi-

mal set of bins with almost no impact on 802.11a, and hence is both safe and efficient.

Method. The setup is similar to the previous experiment, except that the SWIFT nodes

now have adaptive sensing turned on. We run one experiment at each location, by first

starting the SWIFT node, and then starting the 802.11a transmission 5 seconds later. We

record the UsableBins setting on which SWIFT settles, and compare it with the correct

bin setting for each location as determined in Section 2.7.2.

Results. Fig. 2-14 shows that SWIFT finds the exact set of unusable bins, i.e., bins that

interfere with 802.11a, at all locations. Note further that SWIFT detects when 802.11a goes

out of range, as in locations 7-10, and can reclaim all occupied bins.

Fig. 2-15 shows the typical dynamics of adaptive sensing, using results from an exper-

iment with 802.11a at location 3. SWIFT conservatively backs away from bins used by



SECTION 2.7. PERFORMANCE EVALUATION 79

 0

 5

 10

 15

 20

 25

 30

 0  2  4  6  8  10  12

80
2.

11
 T

hr
ou

gh
pu

t (
M

bp
s)

1) 802.11a
    starts

3) 802.11a
    reacts

-5

 0

 5

 10

 15

 20

 25

 30

 0  2  4  6  8  10  12

U
nu

sa
bl

e 
B

in
s

Time (secs)

2) SWIFT backs off
    to conservative
    bin choice

4) SWIFT retreats to
    previous choice

Figure 2-15: Responsiveness of Adaptive Sensing: The top graph shows that 802.11a throughput is not

hindered for longer than 0.5 seconds by SWIFT. The bottom graph shows that, when 802.11a first appears,

SWIFT backs off to a conservative bin choice within 120 ms, but quickly converges to a maximal set of safe

bins.

802.11a within 120 ms of 802.11a commencing transmission. Additionally, within 4 sec-

onds, it finds the ideal bin selection and then sticks with this selection. Over 60% of this

time is a result of the communication overhead from our prototype PCI driver, and can be

mostly eliminated with an optimized implementation.

Specifically, the bottom graph shows the SWIFT bin selections over time. SWIFT starts

out using all bins, (1) until it first detects the 802.11a transmissions. (2) At this point, SWIFT

immediately backs off using a conservative threshold, and avoids bins -2 through 28. As

it gathers more data, and determines that 802.11a is unaffected, SWIFT decreases its set
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Figure 2-16: Robustness to disagreement: The figure shows the probability of a transmission succeeding as

a function of the number of disagreeing bins. It shows that SWIFT is robust to as much as 40% disagreement

between the set of transmitter and receiver bins.

of unused bins gradually, till it begins avoiding only bins 4 through 22. (3) At this point,

we see from the top graph that the throughput of 802.11a is affected for the first time. (4)

SWIFT immediately relaxes its bin selection to avoid bins 3 through 23, and this returns

the throughput of 802.11a to normal. As a result, SWIFT stabilizes at a state that avoids

bins 3 through 23, which is the tightest bin selection that does not affect 802.11a.

� 2.7.4 Dealing with Bin Disagreement

We evaluate the impact of disagreement between communicating pairs on SWIFT’s band

consensus protocol.

Method. We place the wideband transmitter and receiver within a few feet of each other

so that they can communicate with each other with very low probability of channel bit

errors. We do this to ensure that almost all bit errors are likely to be introduced purely due

to disagreements. We initialize the transmitter and receiver to agree to use the entire wide

band, consisting of 100 bins.

We then configure the adaptive sensing module to update the transmitter with a new

set of usable bins with a sequence ofK consecutive bins marked as narrowband-occupied,

to simulate the appearance of a narrowband transmitter with a band of size K . Since the

transmitter cannot use these bins whereas the receiver continues to expect data in them,
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(a) 802.11a Throughput without SWIFT
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(b) 802.11a Throughput with SWIFT
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(c) SWIFT Throughput with TCP

Figure 2-17: SWIFT reaction to TCP web downloads: (a) and (b) show that, even in the face of intermit-

tent 802.11a traffic, SWIFT avoids affecting 802.11a transmissions, while (c) shows that it does this while still

achieving 90% of its original throughput.
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the size of the disagreement between the nodes is K . We send a random coded sequence

from transmitter to receiver using this disagreeing set of bins, check whether it is received

correctly, and repeat this operation with a large number of random coded sequences for

increasing values of K . We declare a transmission to have succeeded if it is decoded cor-

rectly, and compute the probability of a successful transmission for a disagreement of size

K .

Results. Fig. 2-16 shows that SWIFT’s band consensus works robustly for a large range

of disagreements. When K is small, the consensus scheme sees a very small number of

errors which can be easily corrected. As K grows, the receiver sees a burst of errors in

the disagreeing bins, but the number of errors in any single code word is limited because

transmitted data bits are interleaved across the frequency bins. This allows successful

transmissions even when the fraction of disagreement is as large as 37% (37 of the 100 total

bins). Such a large amount of disagreement is extremely unlikely, and hence SWIFT’s low

overhead handshake mechanism can almost always achieve band consensus. It is only

when the extent of disagreement becomes large (56 bins in our case) that SWIFT nodes

will need to reestablish connectivity using a sync packet.

� 2.7.5 Intermittent Narrowband TCP Web Downloads

This experiment evaluates SWIFT’s ability to adapt correctly to intermittent and bursty

traffic patterns.

Method. We model a typical home scenario, using an 802.11a node that accesses the

Internet by connecting to a Linksys wireless router. We first start the SWIFT node, and at

time t = 15 seconds, the 802.11a node begins periodic web downloads. We download the

home page from www.apple.com every 3 seconds. We average the throughputs of the

TCP downloads and SWIFT over 100ms intervals, and plot them as a function of time.

Results. Fig. 2-17 shows that SWIFT adapts to intermittent and bursty web traffic, without

causing any performance impact on the narrowband user. Notice that the narrowband

traffic is indeed intermittent, and that the TCP downloads are too short for narrowband

to achieve a peak throughput higher than 2-3 Mbps, despite the fact that the auto-rate

algorithm is sustaining 48 or 54 Mbps in this case.

We see that SWIFT throughput drops as soon as the user begins her web download.

This is because SWIFT falls back to a conservative set of bins. SWIFT throughput then
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Figure 2-18: Throughputs in a Network: (a) and (b) show the throughputs of the four 802.11a pairs, with

and without SWIFT. SWIFT has no impact on 802.11a, while, still getting good throughput as seen in (d). In

contrast, (c) shows that non-adaptive wideband transmitters reduce 802.11a throughput by around 50%.

gradually increases as it tightens its set of bins. However, this process is slower than the

example in Fig. 2-15 because SWIFT only uses measurements in the vicinity of a narrow-

band transmission, as described in Section 2.5.1. It therefore needs to wait for a longer

time to acquire enough data points for each bin choice. SWIFT converges on the right set

of bins, and its throughput stabilizes around t= 75 seconds. This throughput is lower than

the throughput that SWIFT achieved prior to the web downloads because SWIFT is now

avoiding bands that could affect 802.11a performance. Throughout this process, SWIFT

remains safe to 802.11a and does not cause any noticeable impact on the TCP throughput.4

� 2.7.6 Network Results

Here, we show that SWIFT performs well even in a chaotic environment with multiple

802.11a devices, and multiple SWIFT nodes.

Method. In this experimentwe use four wideband nodes and eight 802.11a nodes, creating

six pairs of communicating nodes. We place the four 802.11a pairs at locations A-H, and

4The differences in TCP throughput with and without SWIFT are caused by varying queue lengths in the
wired Internet. In particular, note that the variations in downloads between the two graphs are no greater
than the variations within any one graph.
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the twowideband pairs at the locations labeled tx/rx and tx’/rx’ in Fig. 2-10. We thenmea-

sure the throughputs when running the networkwithout any wideband transmitters, with

the wideband transmitters running NORM, and with the wideband transmitters running

SWIFT.

Results. Fig. 2-18(c) shows that, when NORM transmits simultaneously with 802.11a, it

significantly reduces 802.11a throughput. While the throughput reduction of 802.11a pairs

at different locations is different, all pairs are impacted, with an overall average loss in

throughput of around 50%.

Figs. 2-18(a) and (b) show the throughput of the four 802.11a pairs, with and without

SWIFT. In this case, both pairs of SWIFT nodes move away from the bins occupied by the

802.11a nodes, allowing all 802.11a pairs to have essentially the same performance as in the

absence of SWIFT. Additionally, Fig. 2-18(c) shows that by utilizing all bins not occupied

by 802.11a, the SWIFT nodes are each still able to get reasonable throughputs of 30-100

Mbps in the face of 802.11a.

This result shows that SWIFT can deliver an operational wideband network, while en-

suring that it does not affect multiple competing narrowband nodes.

� 2.8 Discussion

This chapter addresses the problem of coexistence between emerging wideband networks

and narrowband devices withwhich they share the unlicensed bands. We show that overly

conservative designs that avoid interference by running below the noise floor needlessly

sacrifice the throughput and the range of the wideband radios. In contrast, a design based

on cognitive aggregation, which adapts its frequency bands and weaves together multi-

ple non-contiguous bands into one wireless link, can be as narrowband-friendly as the

conservative approaches, while achieving a significant increase in operating range and

throughput.

Our results can be extended in multiple directions:

(a) Non-reactive narrowband devices: This chapter addresses narrowband technologies

that react to interference in their band. Of course, not all devices react to interference.

We envision that SWIFT can be extended to deal with such devices in one of two ways:

either by being configured to avoid known non-reactive bands if they are present, or by
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having adaptive sensing recognize a device as non-reactive if all narrowband bins can be

reclaimed without any identifiable reaction. In this case, SWIFT can fall back to a conser-

vative bin setting that avoids all bins with non-reactive narrowband power.

(b) Coexistence of multiple wideband protocols: SWIFT selectively avoids frequency bands

used by narrowband devices, and shares the spectrum with other cooperating wideband

devices using the SWIFT protocol. However, the future may bring a variety of wideband

protocols. These systems need to find a way to share spectrum among different wideband

technologies even when they do not use the same protocol.

(c) Dynamic Range: Like other techniques that allow a node to receive multiple concur-

rent signals [144], SWIFT’s nodes deal with a wide range of signal powers and hence their

performance improves with a wider dynamic range of the system.
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CHAPTER 3

Frequency-Aware Rate Adaptation

and MAC Protocols

There has been burgeoning interest in wireless technologies that can use wider frequency

spectrum. This chapter presents FARA, a cooperative wideband wireless system that can

dynamically share spectrum across wireless nodes in a performance-aware manner.

� 3.1 Overview

Wireless technologies are pushing toward wider frequency bands than the 20 MHz chan-

nels employed by existing 802.11 networks. 802.11n already includes a 40 MHz mode that

bonds together two 20 MHz bands [68]. Emerging ultra-wideband (UWB) technologies

employ hundreds of MHz to support multimedia homes and offices [69, 152, 31, 121]. The

FCC has recently permitted unlicensed use of digital TV whitespaces that occupy 100-250

MHz of spectrum vacated by television bands in the analog-to-digital transition [42]. Fur-

thermore, recent empirical studies show that the 802.11 channelization model which limits

each node to a single 20 MHz channel can lead to severe load imbalance [58, 77, 108]. They

advocate discarding channelization and allowing all nodes to access the entire 802.11 spec-

trum based on demand [58, 108]. This push towards wider bands is further enabled by the

constantly lowering prices of high-speedADC and DAC hardware [114, 85].1 In particular,

1The wider the band, the faster the ADC and DAC have to sample the signal.

87
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Figure 3-1: Frequency diversity across 100 MHz of 802.11a spectrum as observed by two receivers for trans-

missions from the same sender. The figure shows that the SNRs of different frequencies can differ by as much

as 20 dB on a single link. Further, different receivers prefer different frequencies.

today, wireless cards that span over 100 MHz of spectrum can be built using off-the-shelf

hardware components [98].

As wireless networks push towards wider bands, we can no longer afford to ignore fre-

quency diversity. Specifically, multipath effects cause frequencies that are far away from

each other in the spectrum to experience independent fading. Thus, different frequencies

can exhibit very different SNRs for a single sender-receiver pair. Further, the frequencies

that show good performance for one sender-receiver pair may be very different than the

frequencies that show good performance for another pair. Fig. 3-1 shows empirical mea-

surements of the SNRs across 100 MHz of the 802.11a spectrum, as observed by 2 clients

for transmissions from the same AP (see Section 3.9 for experimental setup). The figure re-

veals that different frequencies show a difference in SNR of over 20 dB both for a single link

and across links. Existing bitrate adaptation and MAC protocols however are frequency-

oblivious. They assign the same bitrate to all frequencies and allocate the medium in a

time-based manner, ignoring the fact that different frequencies work better for different

sender-receiver pairs. Thus, current rate adaptation and MAC protocols can neither deal
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with the challenge nor exploit the opportunities introduced by the frequency diversity of

wide bands or unchannelized 802.11.

This chapter presents the design and implementation of FARA, a frequency-aware wire-

less architecture. FARA is beneficial for bothwireless LANs andmesh networks. Its design

focuses on the 802.11a/b/g/n spectrum, but it can also be used in a cognitive mode over

white spaces as discussed in Section 3.10.

FARA has four key components that together allow it to improve network throughput

and balance load.

• Per-frequency SNR estimation: FARA leverages the existing OFDM system, which

divides the entire frequency band into many narrow subbands. It devises a

new approach to allow a receiver to use normal data packets, whether re-

ceived correctly or incorrectly, to robustly estimate the SNR in each OFDM sub-

band.

• Frequency-aware rate adaptation protocol: FARA uses its per-frequency SNR mea-

surements to enable a transmitter to use different bitrates across different OFDM

subbands. Specifically, a FARA receiver measures the SNR in each subband, maps it

into an optimal bitrate using characterization tables for the receiver hardware,2 and

periodically reports this optimal bitrate for each subband to the transmitter.

• Frequency-aware MAC:A FARA transmitter acquires the medium using carrier-sense.

However, once the medium is acquired, a transmitter that has traffic for multiple re-

ceivers can simultaneously transmit to all these receivers by preferentially allocating

frequencies to receivers to maximize the overall throughput across these receivers.

• Load-aware contention: In contrast to existing channelized 802.11 networks, in FARA

the entire frequency spectrum is available to all nodes without channelization. As a

result, load balancing can be done using a small modification to CSMAwhere an AP

or a router in a mesh network contends for the medium proportionally to its load.

We implemented FARA using the WiGLAN radio platform [98], and compared it to

the current frequency-oblivious 802.11. Measurements from our indoor testbed reveal the

following findings:

2These characterization tables need to be calibrated only once for a particular receiver hardware.
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• Frequency diversity exists, and is stable over time. Specifically, our results show

that different subbands in the 802.11a spectrum can show a difference in SNR of over

20 dB. Further, the SNRprofile for individual subbands is relatively stable for periods

up to 5 seconds, and hence can be communicated from receiver to transmitter with

low overhead.

• FARA is effective at harnessing frequency diversity, delivering a median throughput

gain of 3.1× in our testbed.

• FARA’s gains come both from exploiting frequency diversity within a single sender-

receiver pair (frequency-aware rate adaptation), as well as across sender-receiver

pairs (frequency-aware MAC). Typically, for our experimental scenarios, about 70%

of the gains are due to frequency-aware rate adaptation, and 30% are due to the

frequency-aware MAC.

• FARA’s load-aware contention protocol is fair even when APs have a wide load dis-

parity.

To the best of our knowledge, FARA is the first system to present frequency-aware rate

adaptation and MAC protocols, and show through a prototype implementation and ex-

perimental evaluation, that frequency-awareness can improve the throughput of an 802.11

network.

� 3.2 Related Work

Related work falls in the following areas.

(a) Measurement andAnalysis of FrequencyDiversity. The impact of multipath effects in

creating varying signal strength across frequencies is well understood theoretically [144].

Also, multiple measurement studies [99, 134, 30, 80, 17] have demonstrated the existence

of this frequency diversity in practice, showing that it occurs both at the low end of the

RF spectrum, as in white spaces [15, 117], as well as the high end of the spectrum, as in

60 GHz technologies [99, 134]. Among these, the most relevant to our work are measure-

ment studies in the 2.4 and 5.2 GHz spectrum [30, 80, 17] (corresponding to 802.11b/g and

802.11a, respectively), which report a difference in signal strength of as much as 20 dB
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between frequency bands both in line-of-sight (LOS) and non line-of-sight (NLOS) scenar-

ios. Our work is motivated by these results, but differs from them significantly because

it presents a rate-adaptation and MAC that can leverage frequency diversity to improve

network throughput.

(b) Subband Adaptive Modulation and Coding. Wired cable modem standards, such as

Asymmetric Digital Subscriber Line (ADSL), High bit-rate DSL (HDSL), and Very high-

speed DSL (VDSL) [136] adapt modulation and coding independently across OFDM sub-

bands. Some prior theoretical or simulation studies have proposed a similar approach for

wireless channels [76, 44, 29, 65, 83, 161, 86, 88, 95, 39], and a few papers [156, 147] have in-

vestigated the complexity of hardware implementations of such designs. Our work builds

on this foundation but differs in two ways. First, FARA presents a rate adaptation algo-

rithm that works in real-time and supports its design with empirical evaluation. Second,

FARA augments its frequency-aware rate adaptation with a frequency-aware MAC, while

all these prior studies focus only on a single link, and none of them exploits frequency

diversity across multiple users.

(c) Opportunistic Communication Schemes. Prior work on opportunistic communica-

tion considers a scenario where two nodes that can hop between frequencies try and iden-

tify the best channel on which to communicate [127, 57]. This work proposes schemes

to minimize exploration overhead while maximizing the probability of finding a high-

performance frequency band. While FARA is similar in that it exploits frequency diversity,

it differs from these schemes in both objective and mechanisms. First, these schemes focus

on finding and using a small set of good frequencies assuming that they all have similar

SNRs, while FARA allows a sender-receiver pair to operate over a wide set of frequencies

that may differ drastically in SNR. To achieve this goal, FARA provides a rate adaptation

scheme that uses different bitrates on frequencies with different SNRs. It also extends the

802.11 protocol to allow a transmitter to transmit simultaneously to multiple receivers,

taking advantage of frequency diversity across them. Furthermore, FARA is implemented

and evaluated in a wireless testbed, while prior work is simulation-based.

(d) Non-channelized 802.11 Protocols. Recent work has advocated using the 802.11

spectrum as a whole, and discarding the traditional fixed-width channel model [58, 108].

Specifically, ODS [58] allows all nodes to simultaneously access the entire 802.11 spectrum,
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and share it using code divisionmultiple access (CDMA), whileMoscibroda et. al. [108] dy-

namically assign non-overlapping frequencies to different APs proportional to their load.

Similarly to these schemes, FARA allows all nodes access to the entire 802.11 spectrum

based on their demands, and hence can provide load balancing, but, in contrast to the

frequency-obliviousness of the prior work, FARA can exploit frequency diversity both for

rate adaptation, and medium access, hence providing additional gains even when loads

are balanced.

(e) FDMA Cellular Networks. Multiple cellular technologies such as Flash OFDM, GSM

and WiMax [144, 11, 124] use frequency division multiplexing for medium access. Flash

OFDM and GSM use pseudorandom frequency hopping, rather than assigning to each

user those frequencies that work best for the user at that instant. WiMax on the other

hand has two modes. For mobile and fast-changing channels, WiMax randomly assigns

frequencies to users, rather than assigning the best instantaneous frequencies to each user.

For static or moderately dynamic environments, WiMax allocates to each user a chunk

of contiguous frequencies that work best for that user. FARA is designed for static or

moderately dynamic networks and is similar to this latter mode ofWiMax in that it assigns

to each sender-receiver pair the frequencies that work best for that pair. FARA however

differs from WiMax in two ways: First it does not limit a user to a contiguous chunk of

frequencies, and allows a sender-receiver pair to use non-contiguous frequencies. Second,

in contrast to WiMax, which uses the same bit rate across the whole chunk allocated to a

user, FARAadapts the bit rate independently across different frequencies used by a sender-

receiver pair.

� 3.3 Frequency Diversity

Frequency diversity is an intrinsic characteristic of RF propagation in multipath environ-

ments [144]. The wireless channel both attenuates the RF signal and changes its phase.

Specifically, the channel shifts the signal’s phase by 2πfτ , where f is the signal’s frequency

and τ is the path delay. In environments with multipath effects, the receiver ends up with

multiple copies of the signal that traversed different paths with different delays, as shown

in Fig. 3-2. These copies have different phases and hence may add up constructively or

destructively. Since the phase of the received signal is a linear function of its frequency,
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Tx Rx

Figure 3-2: Multipath Effect Causes FrequencyDiversity. Signals fromdifferent paths combine at the receiver

constructively or destructively depending on their phases. Since the phase is a linear function of the frequency,

the destructive and constructive patterns differ across frequency bands causing different frequencies to have

different SNRs.

different frequencies show different degrees of constructive and destructive signal pat-

terns.

The effect of this frequency diversity is significant when examined across a wide spec-

trum, such as the entire 300 MHz of spectrum usable by 802.11a, or the 80 MHz usable

by 802.11g. Past measurements show that different frequency bands within the wide

802.11a/b/g spectrum can differ by as much as 20 dB of SNR [17, 30, 80]. These results

align with our own measurements shown in Fig. 3-1. The figure shows the SNRs of two

100-MHz channels in the range of 802.11a, for subbands of one MHz wide. The measure-

ments are taken for two links in our testbed (from transmitter tx to receivers A2 and B3

in Fig. 3-6). The figure reveals that the SNR difference between frequencies is significant.

Furthermore the SNR pattern is highly diverse both for a single link and across the two

links.

Frequency diversity motivates bit rate adaptation schemes andMAC protocols that can

leverage SNR differences across frequencies to increase network throughput.

� 3.4 FARA

FARA is a new architecture for static and moderately dynamic wireless networks, i.e., typ-

ical 802.11 environments. Similarly to recent proposals for channel bonding [68] and load

balancing [58, 108], FARA advocates discarding the current channel notion and allowing
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all nodes to access a larger chunk of the 802.11 spectrum. FARA however recognizes that a

wider spectrum increases frequency diversity. Its design harnesses frequency diversity via

four components: per-frequency SNR estimation algorithm, frequency-aware rate adapta-

tion, frequency-aware MAC protocol, and load-aware contention. Together these compo-

nents significantly increase network throughput and balance the utilization of the 802.11

spectrum. In the following sections, we explain each of these components in detail.

� 3.5 Per-Subband SNR Estimation

FARA introduces a novel algorithm that allows a sender-receiver pair to estimate the per-

formance of each frequency, i.e., its SNR, using normal data packets, whether received

correctly or incorrectly. To do so, FARA leverages Orthogonal Frequency Division Mul-

tiplexing (OFDM), which is already implemented as part of the 802.11a/g/n physical

layer [13, 56]. OFDM divides the used frequency spectrum into many narrow subbands.

A subset of these subbands are called pilots and used to transmit a known bit pattern

modulated at BPSK to allow the receiver to track the channel [63]. The other subbands

are used for data transmission. A FARA receiver estimates the SNR for each OFDM data

subband, for each sender, by estimating the signal power from all of the transmitted data,

and leveraging the known bit pattern in the pilot bins to estimate noise.

In particular, the SNR in subband i, SNRi is the ratio of the signal power in subband i,

Si, to the noise power,Ni. The receiver cannot directly measure the signal power; however,

it can measure the received power in subband i, Ri, which is the sum of the signal power,

Si and the noise power,Ni. Thus,

SNRi =
Si

Ni

=
Ri −Ni

Ni

SNRi =
Ri

Ni
− 1 (3.1)

Note that the noise in a communication channel is typically the same for all subbands, i.e.,

white noise.3 This is because noise comes from thermal noise in the receiver hardware,

3While channel noise is typically white, interference due to other technologies, say Zigbee, can differ across
subbands. In this dissertation, we deal with interference the sameway 802.11 does, i.e., via carrier sense. FARA
however can leverage our previous work on SWIFT [121] to identify subbands occupied by other technologies
and avoid them.
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quantization, and digital computation errors, which are all independent of frequency.

Thus, we can rewrite Eq. 3.1 as

SNRi =
Ri

N0
− 1,where N0 = Ni,∀i (3.2)

The received power, Ri, in a particular subband can be easily estimated by taking the

square of the signal corresponding to that subband, and averaging this value across all

data symbols in a packet.

We can get an accurate estimate of the noise power, N0, by exploiting the fact that

OFDM uses some subbands as pilots, which contain known data bits. Specifically, the

received signal sample, yi[k], in subband i can be written as:

yi[k] = Hixi[k] + ni[k] (3.3)

where Hi is the channel, xi[k] is the kth transmitted signal sample in subband i, and ni[k]

is the corresponding noise sample. The receiver knows Hi for all subbands because it is

estimated using knownOFDM symbols in the preamble [63]. In the case of a pilot subband,

xi[k] is also known at the receiver since pilot subbands contain a known data sequence. As

a result, the receiver can estimate the noise samples, ni[k], and the noise power, N0, as:

ni[k] = yi[k]−Hixi[k] (3.4)

N0 = Ei,k(ni[k]
2) (3.5)

where the function E(.) is the mean computed using all pilot bits across all symbols in the

data packet.

Thus, every received packet allows the receiver to obtain a new SNR measurement for

each OFDM subband. The receiver maintains a time weighted moving average of the SNR

in each subband, which it updates on the reception of a data packet.

A few points are worth noting:

(a) What happens when the data packet is corrupted (i.e. does not pass the checksum test)? Even

when the packet is corrupted, the receiver can still compute an accurate estimate of the

per-subband SNRs. This is because the receiver can compute the average received power,

regardless of whether the packet is corrupted or not. Furthermore, the receiver can still
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obtain an accurate estimate of the noise power since this only requires the pilots which

are known, and sent at BPSK, which is the most robust modulation rate and hence allow

synchronization and packet recovery even at low SNRs. Thus, FARA can get accurate esti-

mates of the per-subband SNRs from every captured packet, including corrupted packets.

(b) How accurate are FARA’s SNR estimates? We note that since FARA has access to the PHY

layer, it can collect accurate SNR estimates. In particular, traditional estimates of the SNR

use RSSI readings, which measure the received power of a few samples at the beginning

of the packet (i.e., the AGC gain) [24], or infer the SNR using just the correlation of header

symbols in the preamble of the packet [150]. In contrast, FARA exploits the known pilot

bits to accurately estimate the noise power and utilize it in its SNR computation. Further-

more, FARA computes its signal and noise estimates over the whole packet and not just a

few samples at the beginning of the packet, which allows it to obtain more stable estimates.

(c) Do different choices of bitrate affect the accuracy of FARA’s SNR estimation? OFDM data

subbands use a different modulation scheme depending on the choice of bitrate. The mod-

ulation scheme in a subband, however, does not affect our per-subband SNR estimate. The

estimation of SNR involves only the measured power in each subband and hence can be

performed on any packet independent of the modulation and coding schemes used by the

transmitter.

� 3.6 Frequency-Aware Rate Adaptation

The goal of rate adaptation is to determine the highest bitrate that a channel can sustain

at any point in time. Traditional 802.11 rate adaptation schemes are frequency-oblivious,

and use the same modulation scheme and coding rate across all frequencies. Thus, they

cannot exploit the frequency diversity present across the 802.11 spectrum. In contrast,

FARA exploits this frequency diversity via a frequency-aware rate adaptation scheme that

picks different bitrates for different frequencies depending on their SNRs.

� 3.6.1 PHY Architecture

In 802.11, a particular bit rate implies a single modulation scheme and code rate over all

OFDM subbands in the entire packet. For example, a bitrate of 24 Mbps corresponds to 16-

QAM modulation scheme and a half-rate code. 802.11 has 4 possible modulation schemes



SECTION 3.6. FREQUENCY-AWARE RATE ADAPTATION 97

… 011010 …… 011010 …

subband n

Modu-

late IF
F

T

OFDM Transmitter Side

ADC

subband 1

F
F

T

OFDM Receiver Side

Code & 

Interleave

Demodu-

late

Decode & 

Deinterleave

subband n

subband 1

DAC

(a) Schematic of 802.11 PHY

… 011010 …… 011010 …
IF

F
T

OFDM Transmitter Side

ADC F
F

T

OFDM Receiver Side

DAC

M
o

d
u

la
te

C
o

d
e

 &
 I

n
te

r
le

a
v

e

D
e

c
o

d
e

 &
 D

e
in

te
r
le

a
v

e

D
e

m
o

d
u

la
t
ie

(b) Schematic of FARA-enabled 802.11 PHY

Figure 3-3: OFDM PHY semantics with and without FARA. In FARA-enabled devices, the choice of modu-

lation and FEC code rate is done independently for each OFDM subband.

(BPSK, 4-QAM, 16-QAM, and 64-QAM), and 3 possible code rates (1/2, 2/3, and 3/4).

In current 802.11, a transmitter implements a particular bitrate by first taking the input bit

stream, passing it to the convolutional coder, and puncturing to achieve the desired coding

rate. The bits are then interleaved, modulated and striped over the OFDM subbands, as

shown in Fig. 3-3(a). The process is reversed on the receiver as shown in the figure.

FARA makes a few modifications to the existing 802.11 PHY layer, as shown in

Fig. 3-3(b). Specifically, FARA employs the same set of modulation schemes and code

rates supported by the existing 802.11. However, it allows each OFDM subband to pick

a modulation scheme and a code rate that match its SNR, independently from the other

subbands. Note that this design does not require additional modulation/demodulation or

coding/decoding modules in the PHY layer. In particular, since we use standard 802.11

modulation and coding options, we only need to buffer the samples and process them

through the same pipeline.
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Minimum Required SNR Modulation Coding
<3.5 dB Suppress subband
3.5 dB BPSK 1/2
5.0 dB BPSK 3/4
5.5 dB 4-QAM 1/2
8.5 dB 4-QAM 3/4
12.0 dB 16-QAM 1/2
15.5 dB 16-QAM 3/4
20.0 dB 64-QAM 2/3
21.0 dB 64-QAM 3/4

Table 3-1: Minimum required SNR for a particular modulation and code rate (i.e., bitrate). Table is gen-

erated offline using the WiGLAN radio platform by running all possible bit rates for the whole operational

SNR range. The SNR field refers to the minimum SNR required to maintain the packet loss rate below 1% (see

Section 3.9 for experimental setup).

� 3.6.2 Mapping Subband SNRs to Optimal Bitrates

The receiver needs to map the average SNR in each subband to the optimal bitrate for that

band. To do so, the receiver uses an SNR characterization table like the one in Table 3-1

that lists the minimum SNR required for a particular combination of modulation and cod-

ing rate, i.e., a particular bitrate. For each subband, the receiver picks the highest bitrate

that can be sustained by the SNR of that subband. Subbands which have SNR too low to

support even the lowest bitrate in Table 3-1 are not used i.e., they do not have any power

or data assigned to them, as such a decision will improve the overall throughput. Said

differently, subband suppression is simply a special case of FARA’s ability to use different

modulation and coding rates for subbands based on their SNR.

Many hardware manufacturers already perform this calibration and can provide it as

part of hardware specification sheets [38]. Even when the manufacturer does not provide

the SNR characterization table, it can be computed using brute force by varying the trans-

mission power and bitrates, and measuring the observed throughput and SNR [75]. We

show in the results section that the table does not change with location or time, and thus

the measurements can be done only once for each receiver.

� 3.6.3 Rate Adaptation Protocol

FARA’s rate adaptation is receiver driven: a FARA receiver computes the optimal choice of

bitrate on each subband, and feeds it back to the sender in ack packets. Specifically, FARA

extends the 802.11 synchronous ack format with a field for bitrate feedback.



SECTION 3.6. FREQUENCY-AWARE RATE ADAPTATION 99

When a sender first initiates communication with a receiver, it makes a conservative

choice and uses the lowest bitrate on all subbands. The receiver uses this to obtain its first

estimate of the SNRs, and hence, the bitrate, in each subband. In order to allow the sender

to quickly jump to the correct bitrate, the receiver then sends the appropriate bitrate for

each subband immediately in the ack response.

After this initialization, receiver feedback is sent in 802.11 synchronous acks, which

we augment with a feedback field. FARA reduces the feedback overhead by exploiting

the fact that bitrates typically do not change from one packet to the next, and even when

they do, are likely only to change to neighboring bitrates on either side (i.e., jump up or

down by one bitrate) As a result, the subsequent ack packets only need to use a 2-bit field

per subband to represent one of three choices: stay at the current bitrate, move up to the

next highest bitrate, move down to the next lower bitrate. Further, since most of these

field values are likely to represent staying at the current bitrate, the feedback information

can be compressed drastically using run-length encoding, which is easy to implement in

hardware.

We note that sending variable-length synchronous acks does not affect 802.11 behavior.

An 802.11 network only requires acks to start within a fixed (SIFS) interval; variable-length

acks will not affect network function as the next packet transmission will not start until the

medium becomes idle.

What happens when packets or acks get lost? Since FARA’s acks are incremental, loss

of these acks could lead a sender and receiver to go out of sync. To address this problem,

the receiver includes a sequence number with each ack, and stores the bitrate state that the

sender would compute as a result of receiving that ack. The sender, in turn, includes the

sequence number of the last ack that it has received in its data packets. Thus, when the

receiver gets a data packet, it can look up the included ack sequence number in its stored

state, and thereby infer the sender’s bitrate state. It can then compute the incremental

feedback to be included in the new ack with reference to that state. Note that, since FARA’s

acks are synchronous, the receiver only needs to store the state corresponding to the most

recent ack sequence number received from the sender. It therefore needs only a small

amount of state to track the sender’s bitrate. The receiver also includes the original ack

sequence number with respect to which the increment is computed, so that the sender can

update its state correctly upon reception of the new ack.
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Figure 3-4: Simplified FARA frame with three concurrent packets. A FARA sender transmits concurrently

to multiple receivers, by allocating to each receiver a subset of the OFDM subbands. To ensure fairness, i.e., to

ensure that all clients obtain the same average rate, distant receivers that experience lower per-frequency SNRs

are allocated more frequencies. Note that the frequencies used for one receiver are not necessarily consecutive.

They are made consecutive in the figure to simplify the drawing. The frame header includes metadata about

the intended nexthops as well as their allocated subbands.

� 3.7 Frequency-Aware MAC

Similar to 802.11, a FARA sender uses carrier-sense to access the medium. However, dif-

ferent from 802.11, when it accesses the medium, it transmits simultaneously to multiple

nexthops, assigning each of them a non-overlapping set of OFDM subbands. The choice

of concurrent nexthops, as well as the set of subbands assigned to them, aims to maximize

throughput.

Determining the optimal assignment of subbands to concurrent receivers is a difficult

problem. To see why, say that a FARA sender wants to deliver 3 packets to 3 nexthops in

a single transmission. Fig. 3-4 shows the transmitted frame across time and frequency. As

can be seen, each frame contains multiple concurrent packets intended for different nex-

thops. The rate for a particular nexthop is the sum of the rates of all the subbands assigned

to that nexthop. The transmission time for a packet to that nexthop is therefore the packet

size divided by the rate to that nexthop. Since all 3 packets in the figure are being transmit-

ted concurrently, we would like to minimize wastage of medium time by equalizing the

transmission time of the 3 packets. For equal packet sizes, this implies that the total rate
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assigned to the different nexthops are equal. If packet sizes are not equal, the rates need

to be proportional to the packet size. This problem is NP-hard as can be demonstrated by

a trivial reduction to the bin-packing problem [48]. Hence we seek a heuristic solution.

Assigning subbands to concurrent receivers: FARA’s MAC protocol works as follows.

A sender is configured with a maximum allowed number, N , of concurrent packets in a

transmission. In practice, N is a small number between 2-5. FARA maintains per-nexthop

packet queues, as well as a global FIFO transmission queue which contains pointers to

packets in the per-nexthop queues. For each transmitted frame, the sender picks upto N

concurrent packets. It first picks the packet at the head of the global FIFO transmission

queue, and determines the associated nexthop. It then randomly chooses uptoN − 1 other

nexthopswith non-empty queues, and picks the packets at the head of these queues. These

packets will be transmitted concurrently in one frame. The random choice of nexthops

ensures that FARA is fair to all nexthops while providing significant throughput gains, as

we show in Section 3.9.4.

The FARA sender now needs to assign subbands to each packet as to equalize the

transmission rate to all N receivers. The sender also wants to assign to each receiver its

preferred frequencies, i.e., the frequencies that achieve high SNRs for that receiver.

We use a randomized greedy approach for the subband assignment problem. The algo-

rithm maintains two data structures:

• SubbandAssignment: Stores the current nexthop assignment for each subband.

• RateCounter: Stores the total rate currently assigned to each nexthop.

The algorithm first orders the N nexthops randomly. It initially assigns all subbands

to nexthop 1. The RateCounter for that nexthop is assigned the sum of the rates that it

would have obtained from all these subbands, and all other RateCounter values are set

to 0.

At each step, we pick the nexthop nmin with the smallest RateCounter value,

breaking ties randomly. We now need to assign an additional subband to this nex-

thop so that it can achieve a higher rate. To do this, we pick the nexthop nmax with

the largest RateCounter value. For each subband i assigned to nmax, we compute

∆rate[i] = ratenmin[i] − ratenmax[i], where ratenmin[i] and ratenmax[i] are the rates that

nexthops nmin and nmax would obtain from subband i respectively. We then change the
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SubbandAssignment for the subband with the largest ∆rate from nmax to nmin, and

update the corresponding RateCounter values accordingly.

We keep repeating this process and stop when we cannot increase the minimum rate,

which means that the receivers have as close a rate to each other as possible.

The algorithm above aims to allocate to each nexthop the frequencies that work better

for it than for other nexthops. This is achieved by assigning subbands to a receiver ac-

cording to the decreasing order of ∆rate[i]. It also aims for equal rates to all concurrent

nexthops. This is achieved by moving subbands to the nexthop that has the minimum rate

so far, and repeating until we can no longer increase the minimum rate.

The header of each transmitted frame includes the number of nexthops and their ad-

dresses, as well as a bitmap with the frequency assignment. This allows each nexthop to

learn the frequency subbands used for its packet. In contrast to traditional 802.11 where

each data packet is followed by one synchronous ACK, a data frame that encapsulates N

packets is followed by N synchronous acks from the corresponding nexthops. The acking

order is determined by the order of the nexthops in the header of the data frame, and the

acks are separated by a SIFS.

� 3.7.1 Wireless LANs vs. Mesh Networks

FARA can be used both in wireless LANs and mesh networks. Further, our description of

the protocol directly applies to both. We note, however, that the benefits of applying FARA

differ between these two scenarios. Specifically, in a mesh network, any node typically has

multiple neighbors which constitute its potential nexthops. Hence, a mesh sender can

derive gains from both FARA’s frequency-aware rate adaptation and MAC protocols.

In contrast, a wireless LAN has two types of nodes, APs and clients. Since an AP is

associatedwithmany clients, the downlink, which carries the bulk of the traffic, can benefit

from both frequency-aware rate adaptation and MAC protocols. On the uplink, however,

the client is associated with a single AP, and hence has only one potential nexthop. While a

client does not benefit from a frequency-aware MAC, it can still benefit from a frequency-

aware rate adaptation protocol.4

4One extension to FARA would be to allow concurrent senders, in addition to concurrent receivers. A
fine-grained allocation of OFDM subbands to concurrent senders, however, would require the senders to be
synchronized to within an OFDM symbol to avoid power leakage between subbands. We therefore leave this
for future work.
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� 3.8 Load-Aware Contention

Since all senders in a FARA network have dynamic access to the entire frequency band,

FARA naturally eliminates the problem of underutilizing the frequency spectrum due to

inefficient 802.11 channel allocation [58, 108].

It is also straightforward to improve load balancing in a FARA network by exploiting

prior work on load balancing for CSMA networks [64]. Specifically, FARA’s contention-

aware load balancing is based on two simple techniques. First, each AP or router contends

for themediumby simulating contention from asmany clients as have packets in its queue.

Tracking the number of active clients is relatively simple. The AP or router keeps a hash

table of counters. Whenever it receives a packet, it hashes the IP address of the nexthop,

and increments the corresponding entry in the hash table. Whenever it transmits a packet,

it hashes its nexthop IP and decrements the corresponding entry. Packets which arrive into

a full queue are not counted. The number of active clients is equal to the number of non-

zero entries in the hash table. This value needs to be updated only when an entry changes

to or from zero. Say the number of active clients is N , the FARA AP picks N random

contention slots and transmits in the smallest one as long as no other node transmits first.

The second technique scales the size of the contention window as a function of the

number of contenders for the medium. Specifically, since FARA nodes contend for the

entire medium without channelization, the average contention is higher. To deal with

this issue, we leverage prior research on scaling the contention window with the level

of contention. Specifically, IdleSense [64] updates the size of the minimum contention

window depending on how long the medium is idle. FARA can use this result directly for

its contention window scaling.

Combined, these two techniques allow a node to compete for themedium in proportion

to its load, while ensuring that CSMA contention avoidance stays efficient.

� 3.8.1 Hidden Terminals

One concern with discarding channelization is that it might increase hidden terminal sce-

narios. FARA uses a simple solution that extends adaptive RTS-CTS activation [154], a

commonly used mechanism to detect and address hidden terminals. Specifically, since

FARA’s SNR based rate adaptation allows the sender to converge to the correct rate within
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Figure 3-5: The WiGLAN radio platform used in FARA’s evaluation.

a few packets, a persistently high loss rate is a good indication of interference due to hid-

den terminals. Hence, a sender turns on RTS-CTS to a receiver whenever the loss rate to

that receiver exceeds a configured threshold (20% in our case). FARA can also additionally

leverage recent techniques to solve the hidden terminal problem such as [53].

� 3.9 Performance

We have implemented a prototype of FARA in FPGA using the WiGLAN radio plat-

form [98], and evaluated it in a wireless testbed.

(a) Hardware: We use the WiGLAN transceiver platform shown in Fig. 3-5. The radio

board connects to the PC via the PCI bus, and acts like a regular network card. The radio

spans 100 MHz of bandwidth around the 802.11a spectrum and its FPGA code implements

standard 802.11 transmit and receive chains, including OFDM over BPSK, 4-QAM, 16-

QAM, and 64-QAM modulations. It however differs from traditional 802.11 cards in that
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it does not use channelization, and hence allows a node to directly access the medium over

a 100 MHz of spectrum.

(b) Implemented Infrastructure: Comparing FARA to a frequency-oblivious 802.11 sys-

tem requires implementing an evaluation infrastructure that is suitable for running both

standard 802.11 and FARA.

(a) Supporting 802.11: TheWiGLAN board does not implement the 802.11 convolutional

codes. Thus, we implement the 802.11 convolutional codes in software and apply them on

the signal before passing it to the radio board to be modulated. Matlab has a reference

implementation of 802.11 convolutional codes as part of its communication toolbox. It

includes the scrambler, the convolutional coder, and the interleaver. We use this reference

implementation to ensure that packets receive the same error protection that they would

receive with a complete 802.11 implementation.

(b) Supporting FARA: We have implemented both FARA’s rate adaptation algorithm

and MAC protocol. Specifically, we augmented the FPGA code on the radio board to

measure the SNR in each OFDM subband as explained in Section 3.5. The FPGA is also

programmed to use SNR measurements to predict the optimal bit rate for each OFDM

subband using the table in Fig. 3-1 and communicate it back to the sender. Finally, the

frequency-aware MAC is implemented partially in software in the driver and partially in

FPGA. The driver divides the subbands between potential nexthops, whereas the PHY

code in the FPGA uses this subband assignment to transmit packets concurrently in one

frame.

� 3.9.1 What is the Opportunity from Frequency Diversity?

Frequency diversity is a known property of wireless channels. However, if the perfor-

mance of a frequency subband changes too quickly (say every millisecond), it will be hard

to track it without excessive overhead. Exploiting frequency diversity in rate adaptation

and MAC protocols requires the performance of the subbands to change slowly in com-

parison with the adaptation timescale.

Method. We use the topology in Fig. 3-6, where the node labeled tx transmits and the

rest of the nodes receive. Since we have a total of 5 radio boards, we fix one of them as

the transmitter and move the other boards to cover all the locations indicated in the figure.
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Figure 3-6: Testbed topology showing node locations. The node marked tx is used as a transmitter/AP. The

other 17 locations are used for receivers.

Each run lasts for 10 minutes, and is repeated 5 times. The receivers continuously measure

the SNRs in all subbands and report the values as a function of time.

Results. Top graphs in Figs 3-7 (a) and Fig. 3-8 (a) show a plot of subband SNR for

both non-line-of-sight (NLOS) and line-of-sight (LOS) channels. The transmission band is

depicted as centered on 0 and, the subbands are numbered from -50 to 50, as is conven-

tional for baseband representation. The figures show that SNR differs significantly across

subbands for both cases. Differences can be as high as 15–25 dB for the NLOS channel.

The LOS channel is less diverse. Nonetheless its subband SNRs can vary by as much as

5–10 dB. Thus, a frequency-aware rate allocation scheme can derive benefits in both these

channels.

The bottom graphs in the same figures show how the SNR in a representative subband

varies over time. As can be seen, the SNRs largely vary within only a narrow interval even

over a period of several seconds, except for the rare deep fade. Hence, a rate adaptation

scheme based on SNRs can successfully harness the frequency diversity.
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Figure 3-7: Frequency Diversity in Non-Line-of-Sight (NLOS): The top graph presents the SNR in each 1-

MHz wide subband across the 100 MHz band of our radio for a typical NLOS channel in our testbed. The

graph shows that the subband SNRs can differ by more than 20 dB. The bottom graph shows the SNRs of two

subbands in the top graph as a function of time. It reveals that the subband SNRs are stable over a multiple-

second time period, thereby allowing an adaptive scheme to harness the frequency diversity.
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Figure 3-8: Frequency Diversity in Line-of-Sight (LOS): The top graph presents the subband SNR for a

typical LOS channel in our testbed. It shows that the subband SNRs can differ by more than 5-10 dB. While

the variation is smaller than in NLOS channels, it is still significant. The bottom graph shows the SNRs of

two subbands in the top graph as a function of time. It reveals that the subband SNRs are stable over a

multiple-second time period, thereby allowing an adaptive scheme to harness the frequency diversity.
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Figure 3-9: Mapping SNRs to a bitrate (i.e., a modulation and code rate): Plots the throughput per 1-MHz

subbband as a function of SNR for each choice of modulation and code rate. It shows that for any SNR, the

optimal choice of modulation and code rate is fairly clear.

� 3.9.2 Can We Robustly Map SNR to Best Bitrate?

Method. Harnessing frequency diversity in a rate adaptation scheme requires mapping

an SNR value to the maximum sustainable bit rate, i.e., to a combination of modulation

and code rate. FARA uses a table look up for this mapping. Underlying our approach is

an assumption that given an SNR value, one can determine the optimal combination that

maximizes the throughput independent of location and time. Thus, in this experiment, we

show that the SNR value robustly determines the best bit rate.

As in the previous experiment, the tx node in Fig. 3-6 transmits and the rest of the nodes

measure the received SNRs in each subband. For this experiment, we treat each subband

completely independently, i.e., we assign it its own modulation, convolutional FEC code,

and checksum. The separate checksum allows us to decide whether the bits in a particular

subband are decoded correctly, independent from the bits in other subbands. The sender’s

transmissions use all 802.11 bit rates in a round robin manner, assigning the same rate

to all subbands. For each received packet, the receiver reports the SNR in each subband

and whether the bits in that subband have passed the checksum test. We aggregate this

information across all subbands and all receivers. We plot in Fig. 3-9 the bits per second
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Figure 3-10: Stability of the relation between SNR and the optimal modulation and code rate across time

and space. The figure shows the envelope of the functions in Fig. 3-9, for measurement collected at receivers

A1 and D4 at different times. The two envelopes match closely showing that the SNR dictates the best modu-

lation and code rate.

per 1-MHz subband, i.e., the throughput of a single 1-MHz subband as a function of its

SNR, for all 802.11 modulation and code combinations.

Results. Fig. 3-9 shows that the per-subband SNR clearly determines the optimal mod-

ulation and code rate. For example, when the subband SNR is 17 dB, the optimal choice

is the third from the top, i.e., 16-QAM and code rate of 3/4. Using any higher modulation

or code rate reduces the probability of decoding the bits in that subband and brings the

per-subband throughput close to zero. Using any lower modulation and code rate reduces

the subband throughput. On the other hand, when the subband SNR is below 3.5 dB, no

combination of modulation or code rate works. In this case, it is better not to transmit in

that subband, i.e., to suppress that subband.

Fig. 3-10 plots the envelope of the curve in Fig. 3-9 for two different locations and times.

It shows that the mapping of SNR to a modulation and code rate is stable across time and

space. Thus, mapping subband SNRs to bit rates requires only a table lookup which re-

ports the SNR values that cause a transition from one set of modulation and code rate to

the next. In fact, Table 3-1, which we presented in Section 3.6.2, summarizes the informa-

tion in the previous figures and is all that a bitrate adaptation protocol needs to map SNRs

to bitrates.
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Figure 3-11: FARA Rate Adaptation: FARA’s frequency-aware rate adaptation achieves higher throughput

than SampleRate’s frequency-oblivious rate adaptation at all locations, with gains varying from 1.4× to 3.6×

for a 100 MHz wide channel, and 1.1× to 1.5× for the 20 MHz channel.
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� 3.9.3 Gains of Frequency-Aware Rate Adaptation

Now that we have established the existence of frequency diversity, its stability which

makes it amenable to be harnessed by a rate adaptation protocol, and the robustness of

the mapping from SNR to optimal bitrate, we measure the experimental gains from a

frequency-aware rate adaptation protocol.

Method. Againwe use the topology in Fig. 3-6. We fix the sender in location tx and ran-

domly pick a receiver location. We repeat the experiment for all receiver locations shown

in Fig. 3-6. For each location, we compare two schemes. The first is FARA’s frequency-

aware rate adaptation as described in Section 3.6. The second uses SampleRate [18], a well

known rate adaptation scheme that assigns the same bitrate to all subbands. Each run

lasts for ten minutes, and is repeated five times. We look at the benefit of frequency-aware

adaptation for two scenarios: a standard 20 MHz 802.11 channel, and a wide 100 MHz

channel.

Results. Fig. 3-11 shows that FARA’s frequency-aware rate adaptation achieves sig-

nificantly higher throughput than a frequency-oblivious algorithm such as SampleRate.

Specifically, for a standard 20 MHz channel, a frequency-aware rate adaptation scheme

increases the throughput by 1.24×. These gains become even higher as we move to wide

and bonded channels, where FARA’s rate adaptation improves the average throughput by

2.1× over SampleRate.

The throughput gain is larger for receivers with worse channels. For example, some

of the worse receivers experience a throughput gain that is as high as 3.5×. This is due

to FARA’s ability to avoid bad frequency bands. Specifically, SampleRate’s frequency-

oblivious rate adaptation experiences significant errors from subbands that have very low

SNRs and hence cannot support even the lowest transmission rate. To compensate for

such bad subbands, SampleRate has to drastically lower its average transmission rate and

increase coding across all subbands. In contrast, FARA suppresses subbands with less than

3.5 dB SNR and does not need to reduce the rate of every subband to compensate for the

extra errors from such bad subbands.

Also, the throughput gain for NLOS channels is typically higher than the gain for LOS

channels, because these channels see higher frequency diversity due to the greater preva-

lence of multiple paths with similar attenuation. Interestingly, location A2 shows signifi-

cant throughput gain even though it has a LOS channel to tx, because it is within a passage
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Figure 3-12: Gains from a Frequency-aware Architecture: The figure plots two CDFs. The dashed line is the

CDF of the ratio of client throughput under FARA to its throughput in traditional 802.11 networks which use

SampleRate and CSMA MAC. The solid line is the CDF of the ratio of client throughput under FARA with

a CSMA MAC and traditional 802.11 with SampleRate and CSMA. The CDFs show that FARA provides on

average 3× throughput gain. 70% of the gain comes from FARA’s frequency-aware rate adaptation, and 30%

is due to its frequency-aware MAC protocol.

that provides multiple opportunities for reflected waves that together create significant

frequency diversity.

� 3.9.4 Gains of Frequency-Aware MAC

We now examine the throughput improvement provided by a frequency-aware MAC over

a frequency-oblivious MAC.

Method. We again use the topology in Fig. 3-6. We collect measurements by trans-

mitting from node tx to four random receiver nodes. We consider only four concurrent

receivers because we have a total of five radio boards (including the transmitter). How-

ever, we can experiment with various scenarios by choosing different receiver sets. We run

the experiment 10 times for each set of receivers, and repeat for a variety of receiver sets.

We compare twoMAC protocols: first, a frequency-oblivious CSMAMAC, where a sender

checks whether the medium is available and transmits the packet at the head of its queue,
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and second, FARA’s frequency-aware MAC as described in Section 3.7. Note that FARA

transmits four packets in every frame and hence has less medium sensing overhead. Thus,

to ensure that the differences between the two MACs are due only to frequency diversity,

and not medium access overhead, we allow the sender to transmit its packets without

waiting for an idle medium. This optimization favors the baseline MAC, and is possible

because we have only a single sender in each experiment. Note that both FARA and the

CSMA MAC use the same spectrum of 100 MHz.

Results. Fig. 3-12 plots the CDFs of the ratio of the throughput in FARA to the through-

put in traditional 802.11 which uses SampleRate and a CSMAMAC. The CDF is computed

across all receivers in our testbed and all runs. The graph contains two CDFs, one for

a full-fledged FARA, and one for FARA after replacing its frequency-aware MAC with a

frequency-oblivious CSMAMAC. The figure shows that a full-fledged FARA improves the

median throughput by 3.1× over a traditional SampleRate based CSMA MAC. The figure

also demonstrates that about 30% of this gain is due to FARA’s frequency-aware MAC

while 70% is due to its rate adaptation scheme, showing that both mechanisms contribute

significantly to the throughput improvements. Finally, it shows that all clients achieve sig-

nificantly higher throughput with FARA than with traditional 802.11, which shows that

FARA is beneficial to all nodes.

� 3.9.5 Load Balancing

We now demonstrate that, with FARA, multiple APs sharing the same frequency spec-

trum can achieve load balancing by using the load aware contention scheme described in

Section 3.8.

Method. We use a modified version of the topology in Fig. 3-6. Specifically, we put

two transmitters (i.e., two APs) around the location tx, and place their corresponding re-

ceivers at C3 and D4 respectively. Since we have a small number of radio boards, we

make each board simulate a number of clients. AP1 simulates a varying number of back-

logged clients, ranging from 1 to 5, on the link to C3, while AP2 always has only one

backlogged client at D4. This setup allows us to experiment with scenarios with imbal-

anced loads, where AP1 has up to 5 times the number of clients of AP2. We perform an

infinite download to each client and compute the per client throughput averaged over the

first 10 minutes.
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Figure 3-13: Load balancing with FARA: The figure plots the Jain’s Fairness Index as a function of the ratio of

the number of clients on AP1 to those on AP2. Note that fairness is optimal when the index is 1, and is worst

when the index is 1/n, where n is the total number of clients.

Using the per client throughput, we compute the Jain Fairness Index for the network,

as follows [72]:

Fairness Index =
(
∑n

1 xi)
2

n
∑n

1 x
2
i

,

where xi is the throughput of client i. The network shows optimal fairness when the index

is 1, and is completely unfair when the index is 1
n
, in which case only one client has traffic.

We compare channelized 802.11 to a single channel FARA-equipped 802.11. Since we

have only twoAPs, we limit both FARA and the channelized 802.11 to a total bandwidth of

40 MHz. In the case of channelized 802.11, the 40 MHz band is divided into two channels

of 20 MHz and each AP is assigned a different channel. In the case of FARA, only one

channel of 40 MHz is used for both APs.

Results. Fig. 3-13 plots the Jain fairness index as a function of the ratio of the number of

clients at AP1 to those at AP2. The figure shows that the Jain fairness index remains close

to 1 for FARA, whereas, for traditional 802.11, it drops linearly as the difference in load

between the APs increases. This is because, in traditional 802.11, different APs operate on

different channels and hence the single client on AP2 enjoys a throughput that is about the



116 CHAPTER 3. FREQUENCY-AWARE RATE ADAPTATION AND MAC PROTOCOLS

sum of the throughputs of all clients on AP1. In contrast, FARA discards channelization

and further allows each AP to contend for the medium in proportion to the number of

active clients. Hence, it allows the nodes to achieve a fairer throughput distribution.

� 3.10 Discussion

This chapter addresses the challenge and the opportunity of frequency diversity presented

by the growing trend of wireless systems to use wider frequency bands. It demonstrates

that a frequency-aware design of the physical, link and MAC layers offers significant

throughput improvements both for a single client and for a network of clients, as com-

pared to current frequency-oblivious rate adaptation and medium access schemes.

While the results in this chapter have been presented in the context of 802.11, FARA ap-

plies to a wider variety of scenarios. Specifically, measurement studies show the existence

of frequency diversity in the WiMax, UWB, and the 60 GHz range [11, 45, 99, 134]. All of

these technologies use OFDM and have static or moderately dynamic applications, where

the per-subband SNRs change relatively slowly [153, 69, 50]. FARA naturally extends to

these scenarios.

FARA can also be extended for cognitive operation, and applied to the newly intro-

duced whitespaces. The FCC has recently opened up for unlicensed access 100-250 MHz

of digital whitespaces vacated by television bands as part of the analog-to-digital transi-

tion [42]. These whitespaces demonstrate significant frequency diversity [15, 117]. Further,

they are expected to be used for several static and low mobility scenarios such as fixed

wireless broadband access in rural and urban areas, as well as data connectivity inside the

home, where FARA could provide significant throughput benefits. To do so, FARA needs

to detect which subbands are occupied by the primary owner of the whitespace, and avoid

these occupied subbands. FARA can leverage much prior work on detecting and agree-

ing upon occupied subbands [9, 121], and avoiding them by suppressing these occupied

subbands, as in the cognitive PHY of [121], and as discussed in Section 3.6.2.



CHAPTER 4

SourceSync: A Distributed Wireless

Architecture for Exploiting Sender

Diversity

Channel diversity is an intrinsic property of wireless networks. Recent years have wit-

nessed the emergence of many distributed protocols like ExOR, MORE, SOAR, SOFT, and

MIXIT that exploit channel diversity across multiple receivers in 802.11-like networks. In

contrast, the dual of receiver channel diversity, sender channel diversity, has remained

largely elusive to such networks. This chapter presents SourceSync, a distributed cooper-

ative architecture for harnessing sender channel diversity. SourceSync enables concurrent

senders to align their transmissions to symbol boundaries, and cooperate to forward pack-

ets in the same spectrum at higher data rates than they would have achieved by transmit-

ting separately.

� 4.1 Overview

Diversity across nodes is an intrinsic property of wireless networks. The wireless envi-

ronment exhibits channel diversity both across receivers and senders. Receiver channel

diversity is the property that a single transmitted packet traverses different channels to

different receivers, and hence is unlikely to suffer fading at all receivers at the same time.

Sender channel diversity, on the other hand, is the property that a packet transmitted si-

117
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multaneously from multiple senders traverses different channels to the same receiver, and

hence is unlikely to suffer fading from all senders at the same time. In the context of 802.11

networks, the ability to have multiple transmitters simultaneously forward a packet to a

receiver can harness both frequency diversity and power gains. Specifically, 802.11 chan-

nels span a relatively wide bandwidth (20–40 MHz), where different senders experience

deep fading in different frequencies. Enabling multiple transmitters to simultaneously

forward a packet to a receiver ensures that no frequency is deeply faded at the receiver,

and reduces the overall bit error rate for a particular transmission power. Second, simul-

taneously forwarding a packet enables senders to combine their transmission power and

thereby deliver a higher SNR to the receiver, as compared to a single sender.1

Despite the benefits of simultaneous forwarding from multiple transmitters, existing

approaches for sender diversity in 802.11 networks restrict themselves to only one sender

transmitting at a time, using mechanisms like picking the sender with the best chan-

nel [107]. This is in sharp contrast to receiver diversity where many practical systems

like ExOR, MORE, SOAR, SOFT, and MIXIT [19, 26, 125, 155, 79] leverage simultaneous

reception across multiple receivers.

Simultaneous transmission from multiple senders has challenged 802.11 for three main

reasons.

• First, senders need to be synchronized to the symbol level in order that their sig-

nals combine on the medium in a manner that reduces the overall packet error rate.

Such fine-grained transmitter synchronization is difficult to achieve in a distributed

manner, as has been observed by past research [36, 78, 53, 119]. The difficulty arises

because the different transmitters need to time their transmissions so that they are

synchronized accurately (to within tens of ns) [36] at the receiver. In the absence

of a shared clock or a central controller, the only mechanism for synchronization

is for senders to use packet reception as a reference. However, such a mechanism

requires transmitters to compensate for differences in propagation delays, and hard-

ware turnaround times from reception to transmission. These measurements are

challenging because a node does not detect packet reception at the exact instant when

the signal arrives at its antenna, but rather incurs a random delay depending on the

1The FCC limits the maximum transmission power of a single sender, and combining transmissions there-
fore increases the maximum received power.
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noise in the environment and the receiver hardware. This variability is usually on

the order of hundreds of ns [151], which is too high for accurate symbol-level syn-

chronization.

• Second, the received signal is a combination of signals from multiple senders. Each

of these signals has traversed a different path, and has hence experienced a differ-

ent channel. One might think that the receiver could compensate for the channel

distortion of the composite signal in the same manner as it would compensate for

the channel distortion of a signal from a single sender. Unfortunately, this approach

does not work since the composite channel has fundamentally different characteris-

tics from single sender-receiver channels. Specifically, unlike single sender-receiver

channels, which have a constant attenuation throughout a packet, the attenuation of

the composite channel varies even within a single packet. This is because the oscilla-

tors of different senders naturally have slightly different operating frequencies, and

hence the signals from different senders continuously rotate relative to each other.

• Finally, transmitted signals are complex numbers which have phases. Unless these

signals are carefully orchestrated at the senders, they can add up constructively, en-

hancing each other, or destructively, weakening each other.

This chapter introduces SourceSync, a practical architecture for harnessing sender di-

versity. SourceSync is designed for OFDM, which is the transmission scheme for most

modernwireless networks, including 802.11 a/g/n, WiMax, LTE etc. SourceSync has three

components that harness sender diversity in a distributed manner:

Symbol Level Synchronizer (SLS). SourceSync has a distributed synchronization algo-

rithm that leverages packet reception as a time reference, computes robust estimates of

the propagation delays from all senders to the receiver, as well as hardware turnaround

times at each of the senders, and compensates for these delays at the senders prior to trans-

mission, in order to ensure that the packets arrive synchronized at symbol boundaries at

the receiver. The key feature that allows SourceSync to achieve tight synchronization is

that it can prevent the inherent variability in packet detection from inducing variability in

its propagation delay and turnaround time estimates. SourceSync has a mechanism that

allows it to accurately measure the delay between the first sample of a packet and when

the receiver detects that packet, and account for the delay when computing its estimates.
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Further, SourceSync can leverage data packets to track changes in propagation delay over

time, and hence keep senders synchronized without the need for active measurements.

Joint Channel Estimator (JCE). A SourceSync receiver decodes the combined signal from

multiple synchronized senders. However, SourceSync differs from prior schemes, where

transmitted signals interfere, and hence decoding the signals either requires multiple

transmissions from each sender, as in ZigZag [53], or a large difference in power (or

code rate) between them, as in Successive Interference Cancellation [59, 149]. In contrast,

SourceSync does not need to treat senders as interfering, and can decode a single simul-

taneous transmission from multiple senders, even when they have comparable powers. It

estimates the individual channels from each sender, computes how they interact to cre-

ate the composite channel, and tracks the variations of the composite channel through the

combined packet.

Smart Combiner (SC). Since signals from multiple senders rotate continuously relative to

each other, naively transmitting the same packet from all senders will cause the signals to

combine destructively at some points within the packet. Therefore, senders need to have

a joint strategy for manipulating the phase of the signal prior to transmission to ensure

that their transmitted codewords do not combine destructively. SourceSync leverages the

rich body of research on space-time block codes [142, 10, 71], which are typically used in

MIMO systems to control how signals from different antennas on a single transmit node

combine at a receiver. In contrast to MIMO systems, however, SourceSync uses these codes

in a distributed manner across multiple transmit nodes.

We use SourceSync to develop the following two protocols.

� 4.1.1 Combining Sender Diversity with Opportunistic Routing

Opportunistic routing protocols leverage receiver diversity; they exploit the fact that since

wireless receptions are probabilistic, it is unlikely that all nodes closer to the destination

are unable to receive a packet, as shown in Fig. 4-1(a). Protocols like ExOR, MORE, SOAR,

and MIXIT therefore allow any downstream node that receives a packet to forward it to

the destination. However, none of these schemes take advantage of the analogous oppor-

tunity of sender diversity presented by the fact that multiple nodes often receive the same

packet. SourceSync complements the opportunistic receptions exploited by current pro-
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(a) First-hop receiver diversity (b) Second hop sender diversity

Figure 4-1: Opportunistic routingwith sender diversity. SourceSync enables multiple forwarders to transmit

jointly to the destination.

tocols with opportunistic synchronous transmissions by multiple forwarders. Specifically,

since multiple forwarders are likely to receive a packet, they can transmit it simultaneously

as shown in Fig. 4-1(b). This provides two types of gains. First, since different forwarders

experience fades in different frequencies [119], joint transmission reduces the likelihood

that a frequency experiences a deep fade at the receiver, and hence decreases the overall

bit error rate. Second, since joint transmission allows forwarders to combine their power,

it improves the receiver SNR, and thereby its bit rate.

� 4.1.2 Combining Sender Diversity with Last-hop Receiver Diversity

Protocols like MRD, SOFT and Link-Alike [106, 155, 73] all exploit different aspects of the

same concept: last-hop diversity. Consider, for example, a sender with poor connectivity

to multiple nearby APs. A transmitted packet is unlikely to reach any specified AP, but

is likely to be received by at least one AP. All the above protocols exploit this receiver di-

versity by allowing APs to combine received bits or packets over the wired network, and

hence can increase uplink reliability without any retransmissions, as shown in Fig. 4-2(a).

However, none of these schemes can similarly address a lossy downlinkwithout expending

medium time on retransmissions. SourceSync complements all these protocols by harness-

ing sender diversity to increase downlink reliability without any retransmissions, analo-
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(a) Uplink receiver diversity (b) Downlink sender diversity

Figure 4-2: Last-hopwith sender diversity. SourceSync enables multiple APs to transmit jointly on the down-

link.

gous to receiver diversity mechanisms on the uplink. Specifically, instead of requiring that

a client receive packets from only one AP at a time, in SourceSync, multiple neighboring

APs can transmit simultaneously to the client as in Fig. 4-2(b), and increase throughput.

� 4.1.3 Results

We implemented SourceSync on the FPGA of the WiGLAN radio platform [37]. We also

implemented proofs of concept of both last-hop diversity, and opportunistic routing with

sender diversity. Results from an indoor wireless testbed reveal the following:

• SourceSync’s symbol level synchronization is accurate. Testbed evaluations show

that two randomly chosen transmitters using SourceSync have a 95th percentile syn-

chronization error of at most 20 ns across the range of operational SNRs of 802.11.

• SourceSync increases the gains of opportunistic routing by exploiting sender diver-

sity. Evaluating across multiple deployments with different bitrates and link loss

rates, we show that the combination of SourceSync and ExOR achieves a median

throughput gain of up to 45% over ExOR alone, and up to 2× over single-path rout-

ing.
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• SourceSync is effective in harnessing last-hop sender diversity. Specifically, by hav-

ing two APs transmit simultaneously to a client, SourceSync provides a median

throughput gain of 57%. This is because the higher power resulting from simul-

taneous transmission from APs allows the combined transmission to use a higher

802.11 rate than a transmission by either AP alone.

� 4.1.4 Contributions

This chapter makes the following contributions:

• It demonstrates via a design, implementation and testbed evaluation the practicality

and benefits of simultaneous transmission in 802.11 networks.

• It presents a distributed algorithm for symbol level synchronization and an empirical

study of its accuracy.

• It reveals the synergy between opportunistic routing and sender diversity by show-

ing that opportunistic receptions can be further used to enable concurrent forward-

ing to downstream nodes.

� 4.2 Related Work

Sender diversity was pioneered by Laneman andWornell’s work on cooperative diversity,

which theoretically demonstrated the gains of spatially diverse senders cooperating to re-

lay information [84, 128]. Since then, many papers have analyzed aspects of sender spatial

diversity focusing on signal processing and coding algorithms at the relays [132, 82, 129].

These papers focus on theoretical gains, ignore practical issues such as transmitter syn-

chronization and oscillator offsets, and do not present a practical working system. Cellu-

lar networks today attempt to exploit sender diversity using Distributed Antenna Systems

(DAS) [28]. DAS do not allow separate transmitters to send simultaneously; rather, they

consist of a single transmitter with geographically distributed antennas connected using

long, low attenuation cables. These systems are expensive and inflexible [34], and hence

there is increasing interest in exploiting simultaneous transmissions frommultiple senders

in future cellular networks. Themost recentWiMaxmultihop relay standard [138] includes

simultaneous transmissions from multiple relays as an optional feature, and cooperative
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relays are also being considered for the future 3GPP LTE-Advanced standards [137]. How-

ever, there is no published work currently demonstrating a practical design and imple-

mentation of simultaneous transmissions for cellular systems, and further these systems

operate under different constraints as they have the benefit of a centralized scheduler and

a shared GPS clocking mechanism. 802.11 networks have also shown interest in exploit-

ing sender diversity; however they still restrict themselves to only one sender transmitting

at a time, using mechanisms like picking the sender with the best channel [107], which

can neither exploit frequency diversity across senders, nor the power gain from combin-

ing multiple senders. Concurrent with our work, Zhang et al. [160] have demonstrated an

implementation of cooperative diversity with nodes connected to a single shared clock.

In contrast, our approach requires no shared clocks and applies to practical wireless net-

works, and also demonstrates the synergy of sender diversity with opportunistic routing.

Additionally, there has been recent work on systems that exploit concurrent transmis-

sions from multiple senders, but cannot provide any sender diversity gains since they do

not synchronize transmissions at the symbol level. These include systems like SMACK [36]

for group acknowledgments, Message-in-Message [96] for exposed terminals, interference

cancellation [59] and ZigZag [53] for hidden terminals, and ANC [78] for network coding.

Finally, SourceSync builds on past work on space-time block codes. These codes are

used by different antennas on a single MIMO transmitter and do not extend to differ-

ent transmitters due to lack of synchronization [142, 8, 10, 71], or because of oscillator

frequency offsets [87]. SourceSync addresses synchronization and oscillator offset issues,

showing that these codes can be implemented in a distributed manner to collect the gains

of sender diversity in practice.

� 4.3 SourceSync

SourceSync enables multiple senders to concurrently forward a packet to one or more re-

ceivers in order to collect diversity and power gains. It does so via a fully distributed joint

PHY-MAC architecture.

(a)MAC:Medium access for concurrent transmissions is done by one of the senders, which

we call the lead sender. Any node in the network can be a lead sender for a transmission.

The lead sender accesses the medium via carrier sense, just as in 802.11. When the lead
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Figure 4-3: FFT windows at a receiver for a single transmitter. Any FFT window within the slack is valid.

Any other FFT window would include energy from the previous symbol and hence is invalid.

sender acquires the medium, it transmits a synchronization header. Other nodes that hear

the synchronization header, and have the packet being transmitted, can then join the lead

sender’s transmission.

(b) PHY: The PHY layer ensures that concurrent transmissions are decodable at their in-

tended receiver(s). It does so using three components: (a) a Symbol Level Synchronizer

that ensures that transmissions frommultiple nodes are synchronized, and can be decoded

jointly at the receiver, (b) a Joint Channel Estimator which estimates the composite channel

from the concurrent senders, and compensates for the resulting distortions, and (c) a Smart

Combiner that encodes the concurrent transmissions to ensure that they combine on the

channel in a manner that reduces the error rate at the receiver.

The next few sections describe the PHY in detail. The MAC is a simple extension of 802.11

carrier sense, and is described in the specific context of WLANs (Section 4.7.1) and oppor-

tunistic routing (Section 4.7.2).

� 4.4 Symbol Level Synchronization

� 4.4.1 Why do we synchronize transmitters?

To understand why one needs to synchronize, let us start by explaining what happens

with a single sender-receiver pair. When a sender transmits to a receiver, the wireless
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signal bounces off walls, obstacles etc. and traverses multiple paths to the receiver. This

phenomenon, known as the multipath effect, is common in wideband wireless channels

such as 802.11. As a result of the multipath effect, different copies of the same signal arrive

at the receiver delayed with respect to each other. This means that the energy from one

symbol bleeds into the next symbol, and corrupts its signal as shown in Fig. 4-3. Because

of this effect, OFDM symbols typically have a guard interval between them, called the

cyclic prefix (CP). In a typical network, the value of the CP is chosen to be as small as

possible while still accounting for the maximum multipath delay spread of the network,

i.e., the maximum delay difference between delayed copies of the signal.

OFDMdata is encoded in the frequency domain. AnOFDM receiver, in order to decode,

converts the received symbol to a frequency representation by taking an FFT of the symbol.

In order to do so while ensuring that the symbol is not corrupted by multipath noise from

the previous symbol, the receiver should skip the samples in the CP, and take the FFT of

the remaining samples.2 In a typical network, the CP has a small amount of slack to allow

for packet detection errors [151]. This means that the receiver has a corresponding amount

of slack in the choice of where to align the receiver FFT window in a symbol. Thus, as

shown in Fig. 4-3, any FFT window within the slack is valid. Any other FFT window

would include energy from the previous symbol and hence lead to erroneous results.

Now, consider two senders transmitting the same symbol to a receiver. If the copies

of this symbol from the two transmitters arrive at the receiver aligned within the existing

slack of the CP, the receiver can take the FFT as before while still receiving energy only

from this symbol, as shown in Fig. 4-4(a). If not, as before, any FFT window that the

sender uses would include energy from the previous symbol, as shown in Fig. 4-4(b), and

hence would yield incorrect results.

Of course, it is possible to increase tolerance to misalignment and provide more slack

by increasing the CP. This approach, however, is problematic for two reasons. First, with-

out sender synchronization, as in existing 802.11 networks, the amount of misalignment

between senders can take any value depending on the differences in propagation delays

and hardware processing times on different senders. While propagation delays may be

bounded in certain environments based on the network diameter, the hardware process-

2Since the CP is a cyclic permutation of the symbol, and since FFT is periodic, the FFT yields correct results
as long as it is within the symbol.
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Valid FFT Window

Tx1
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(a) A valid FFT window for aligned transmitters.

No Valid FFT Window

Tx1

Tx2

Slack

(b) No valid FFT for these misaligned transmitters.

Figure 4-4: FFT windows at a receiver for two transmitters. In order to decode both transmissions, the

symbols from the transmitters must arrive at the receiver aligned within the slack of the CP.

ing times can be significantly different across senders. In fact, 802.11 standards [13, 56, 6]

impose only very loose bounds on hardware turnaround times (10 µs in 802.11 a/g/n),

and these are far longer than the 802.11 OFDM symbol time (4 µs). The second problem

with increasing the CP is that the CP is overhead that is incurred for every OFDM sym-

bol. Hence, the general trend has been to decrease the CP (for example, 802.11n negotiates

down the CP if the network topology permits it [6]). Thus, even if one can exactly deter-

mine the required increase in the CP, such an approach will increase overhead and may

significantly reduce, or even negate, the gains.

� 4.4.2 Delay Measurements for Accurate Synchronization

At a high level, our synchronization algorithm is simple. One of the senders, called the

lead sender, acquires the medium and transmits the packet. Upon hearing this signal,

other nodes, which we refer to as co-senders, join the transmission. The choice of lead

sender for a transmission depends on context and is explained in Section 4.7.

The key, however, is that transmissions from the lead sender and co-senders arrive

aligned at the receiver. The challenge is that co-senders need to accumulate several sam-

ples before detecting the lead sender’s transmission, and hence do not detect the trans-

mission at the first sample. Further, different co-senders may take different times to turn
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Figure 4-5: Unwrapped channel phase of OFDM subcarriers in a flat fading channel. The slope is a function

of the detection delay.

around from receiving the lead sender’s transmission to transmitting with the lead sender.

Finally, signals from different senders traverse different paths and therefore incur different

propagation delays. The co-senders therefore need to measure these different delays, and

compensate for them to ensure synchronization at the receiver. In this section, we focus on

how to accurately measure the delays, and describe how we compensate for the delays in

the next section.

(a) Packet Detection Delay: This is the offset between the arrival of the first sample of

the packet at a node, and the instant at which the receiver detects the packet. Estimating

packet detection delay is a challenging task as it varies from packet to packet, and depends

on the SNR, as well as the multipath characteristics of the channel.

SourceSync exploits a fundamental property of FFTs; a delay in the time domain man-

ifests itself as a phase shift in the frequency domain [111]. To understand how we can

leverage this property, let us look at the channel of an OFDM packet whose arrival the

receiver detected at a few samples away from the first sample. For clarity, we discuss the

case of a flat fading channel. The channel is a complex number, and we will focus on the

phase of the channel in each OFDM subcarrier since that is the quantity affected by shifts
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in time. The dotted curve in Fig. 4-5 shows the receiver channel phases per subcarrier. As

can be seen from the figure, the phases increase by a fixed slope. If we artificially induce

an additional delay offset and process the packet as if it were detected∆ samples after its

actual detection time, the dotted slope of the graph changes to the solid slope as shown in

Fig. 4-5. Thus, a delay offset in packet detection has introduced a shift in the phase of each

OFDM subcarrier proportional to the index of that subcarrier.

In fact, one can show as a direct consequence of the definition of the FFT [111] that the

change in phase of subcarrier i is 2πi∆
Ns

, where Ns is the number of samples in a symbol.

Hence, in the graph in Fig. 4-5, the induced offset∆ introduces an additional slope of 3

ζ =
2π∆

Ns
(4.1)

Now, what would the phase slope be if the receiver detects the packet exactly at the first

sample? In the case of a flat fading channel (i.e. coherence bandwidth larger than channel

bandwidth), the different OFDM subcarriers will experience similar channels. Hence, the

phase of the subcarriers at different channels will be constant, and the slope will be zero.

On the other hand, if the coherence bandwidth is very small, then the different OFDM

subcarriers will experience uncorrelated channels. Since the phases of these channels are

equally likely to be positive or negative, the slope will be close to zero in this case too. So,

how about the intermediate case where the coherence bandwidth is neither too large nor

too small? We can treat this case similar to the flat fading case by computing the slope over

a small window of consecutive subcarriers that spans a width smaller than the coherence

bandwidth, and averaging over several such windows. In fact, we do not need to differ-

entiate between the cases; the solution proposed for intermediate channels works for the

other cases too. Hence, in SourceSync, we compute the slope over windows of consecutive

OFDM subcarriers that span 3 MHz, which is less than the coherence bandwidth of indoor

channels [51], and average multiple such windows to estimate the overall slope. Since the

slope should be zero in the absence of detection delay, we can substitute the average slope

as ζ in Eq. 4.1, and compute the detection delay offset,∆.

3Note that the contribution of detection offset to channel slope is different from carrier frequency offset
(CFO) and sampling offset (SFO) estimation. Specifically, the contribution of detection offset to slope is con-
stant across symbols, unlike CFO which does not change the slope, but only shifts the intercept of the line in
Fig. 4-5 from symbol to symbol, and SFOwhich creates a relative slope between two consecutive symbols [63].
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(b) Hardware Turnaround Delay: The turnaround delay is the time required for a co-

sender to switch from reception of the lead sender’s transmission to transmission of its

concurrent signal. This time is dependent both on the speed of the baseband pipeline and

the switching time of the radio frontend from reception to transmission. The turnaround

time is constant for a particular node and can be measured by locally counting the hard-

ware clock ticks from detection of the lead sender’s packet to the beginning of the co-

sender’s transmission.

(c) Propagation Delay: This is the time of flight of the signal between the nodes. Given

a transmitter-receiver pair, one can easily obtain an estimate of the total round trip delay

between the nodes by having the sender send a probe and count the number of hardware

clock cycles till it gets a response from the receiver. The round trip time elapsed between

the transmission of the probe and the processing of the response has multiple components

as follows:4

DelayProbe→Response = Probe Propagation Delay from Tx to Rx

+ Probe Packet Detection Delay at Rx

+ Hardware Turnaround Time at Rx

+ Response Propagation Delay from Rx to Tx

+ Response Packet Detection Delay at Tx (4.2)

Both sender and receiver can estimate their packet detection delays for the probe and

response packets, as well as their hardware turnaround delays as described above. The

receiver includes its delay values in the response packet. The transmitter knows the to-

tal round trip delay and its own packet detection delay, and can substitute these delays, as

well as the delays in the receiver response packet in Eq. 4.2 to obtain the two-way propaga-

tion delays. The one-way propagation delay is computed as half the two-way propagation

delay.

4Eq. 4.2 assumes that the hardware turnaround delay at the transmitter is less than the sum of propagation
delays and hardware turnaround delay at the receiver. Note that we can always ensure that this condition
holds by adding a constant wait time at the receiver, whose value is known to the transmitter. We drop this
detail from the equation for clarity.
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� 4.4.3 Compensating for Different Delays

SourceSync uses its measured delays to estimate how long co-senders must wait to en-

sure that their transmissions arrive synchronized with the lead sender’s transmission at

the receiver. At a high level, the lead sender initiates transmission by sending a synchro-

nization header. The co-senders hear the synchronization header, switch from reception to

transmission, and then begin transmitting their data.

Let di be the one-way propagation delay from the lead sender to co-sender i, hi the

hardware turnaround delay of co-sender i, and∆i the detection delay for the synchroniza-

tion header at co-sender i. Co-sender i will not be ready to transmit until after a delay of

di +∆i + hi. Hence, the lead sender cannot transmit data immediately after the synchro-

nization header, but has to wait for all co-senders to be ready for data transmission. What

is the least time necessary to ensure that all co-senders are ready? The 802.11 specification

requires that a node should be able to transmit a response within a SIFS after another node

transmits a packet to it [13, 56, 6]. Hence, it is sufficient that the lead sender waits for a SIFS

(10 µs in 802.11 g/n) after the synchronization header. We will refer to this time, when all

co-senders are ready to transmit, as the global time reference. Since co-sender i is ready

to transmit di +∆i + hi units after the synchronization header, it therefore needs to wait

an additional time of SIFS − (di +∆i + hi) to align itself with the global time reference.

Co-senders however should not begin transmission exactly at the global time reference,

since different senders have different propagation delays to the receiver. Specifically, if

the co-sender is further away from the receiver than the lead sender, it needs to transmit

earlier than the global time reference, and if it is closer to the receiver, it needs to transmit

after the global time reference. Exactly how much before or after depends on the one-way

propagation delays. Let T0 be the one-way delay from the lead sender to the receiver, and

let ti be the one-way delay from co-sender i to the receiver. Then, co-sender i simply waits

for a time of wi = T0 − ti relative to the global time reference to determine when it should

transmit.

The above algorithm requires the co-senders to know the propagation delay from the

lead sender to themselves, and the propagation delay from themselves and the lead sender

to the receiver. SourceSync computes these delays by having nodes exchange periodic

probes. The packet detection delay and hardware turnaround delays are both computed

and compensated for locally at co-senders.
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(a) Transmission by lead sender for the joint frame.
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(b) Transmission by co-sender for the joint frame.

Figure 4-6: Joint frame from the perspective of the senders. Symbols in solid blue are transmitted by the lead

sender, symbols in dotted red by the co-sender, and symbols in white reflect silence periods. The co-sender

hears the lead sender’s transmission after a delay of d1, waits for SIFS−(d1 +∆1 + h1) after processing the

synchronization header, followed by a wait of w1, and then begins its transmission.
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Figure 4-7: Format of joint frame seen by the receiver.

� 4.4.4 SourceSync’s Synchronization Protocol

We now describe SourceSync’s synchronization protocol, assuming that all co-senders

have computed their wait times. For clarity, we focus on two concurrent senders. The

extension to multiple concurrent senders is straightforward.

The lead sender triggers the joint transmission by transmitting a synchronization

header. The header contains a standard preamble for packet detection and channel es-

timation, followed by the lead sender identifier, a flag indicating that this is a joint frame,

and a packet identifier (16-bit hash of the IP source address, IP destination address, and

the IP identifier). After transmitting the synchronization header, the lead sender goes silent

for a duration of SIFS to allow the co-sender to switch from reception to transmission. The

lead sender stays silent for an additional duration of two symbols to allow the co-sender to

transmit its channel estimation symbols, and then begins transmitting data. The co-sender,

on its part, starts by listening on the medium. Once it receives the synchronization header,

it continues listening till it has received the packet identifier and then switches from re-
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ception to transmission mode. The co-sender then waits for its wait time, w1, computed

as above, and transmits its channel estimation symbols, followed immediately by data.

Figs. 4-6(a) and (b) show the transmission timeline of the joint frame from the perspective

of the lead sender and co-sender respectively. As a result of this procedure, the receiver

sees a single joint frame as shown in Fig. 4-7.

Two points are worth noting.

• SourceSync extends directly to more than two senders. In this case, after sending

the synchronization header, the lead sender stays silent for the duration of a SIFS to

allow all co-senders to switch, followed by two channel estimation symbols for each

co-sender.

• The overhead of synchronization is low. In particular, it consists of a SIFS for switch-

ing and wait time, and 2 symbols per co-sender channel estimation. For example,

in the case of 802.11 using 1460 byte packets, and 12 Mbps transmission rate, the

overhead is 1.7% for two concurrent senders, and 2.8% for five concurrent senders.

� 4.4.5 Delay Tracking and Mobility

The algorithm described so far ensures that senders can transmit synchronized with each

other. But what happenswhen nodesmove? It might seem that the changes in propagation

delays resulting from node mobility will necessitate constant probe-response exchanges to

recompute these delays, and maintain synchronization. However, SourceSync can deal

with mobility without additional probes. Instead, it simply uses data transmissions to

continuously adjust wait times at co-senders and keep transmitters synchronized.

Specifically, for each received joint frame, a SourceSync receiver detects the start of the

synchronization header, and computes the channels of the lead sender and the co-sender.

It then measures the slopes of both these channels, and translates the measured slopes to

symbol offsets using the technique described in Section 4.4.2. If the lead sender and co-

sender are perfectly synchronized, their symbol boundaries will be aligned, and therefore

their computed symbol offsets will also be equal. Otherwise, the difference of the offsets

corresponds exactly to the misalignment between the senders. The receiver includes the

measured misalignment in its ACK, and the co-sender uses this update to appropriately

change its wait time for the following transmission.
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Figure 4-8: Synchronization at two receivers. One-way delays are shown. No choice of wait time allows

perfect alignment at both receivers.

� 4.4.6 Synchronization at Multiple Receivers

So far, we have focused only on synchronization at a single receiver. However, applications

such as opportunistic routing would benefit from synchronization at multiple receivers.

In contrast to synchronization at a single receiver, where an appropriate choice of wait

times at co-senders can achieve perfect alignment at the receiver, propagation delays may

prevent us from achieving perfect synchronization simultaneously at multiple receivers.

Consider the senders in Fig. 4-8 with one-way delays as shown. To synchronize at Rx1,

the co-sender has to start data transmission before the lead sender. But to synchronize

at Rx2, the co-sender has to start data transmission after the lead sender. Thus, it is not

always feasible to synchronize senders simultaneously at multiple receivers. However,

one can still leverage sender diversity gains from joint transmissions by increasing the CP

to account for the residual misalignment. The objective of SourceSync in this case is to pick

wait times at co-senders so as to minimize the maximum misalignment at all receivers.

SourceSync formulates this problem as a linear program that estimates the optimal wait

time, wi, for co-sender i. Define tij as the one-way delay from co-sender i to receiver j, and

Tj as the one-way delay from the lead sender to receiver j. These values are estimated as in

the single-receiver case described in Section 4.4.2. The pair-wise misalignment at receiver

k of co-sender i with the lead sender can be written as |(wi + tik)− Tk|, and similarly the

pair-wise misalignment with another co-sender j can be written as |(wi + tik)− (wj + tjk)|.
The linear program then chooses the wi’s so as to minimize the maximum pair-wise mis-

alignment across the lead sender and all co-senders. This optimization is a linear program,

and can be solved efficiently, especially since the number of co-senders and receivers is
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usually small, say, < 5. Note that to determine the potential receivers to synchronize at,

we use the ETX metric as described in Section 4.7.2.

The lead sender performs this optimization and computes the necessary increase in CP

as the maximum misalignment across all senders. In order to ensure that all senders in a

joint transmission are synchronized throughout the joint frame, it communicates the new

CP to co-senders as a field in the synchronization header. Co-senders use this increased

CP for the concurrently transmitted data symbols.

� 4.5 Joint Channel Estimation

Now that senders are synchronized, the next step is to decode the joint frame at each

receiver.We focus on a single OFDM subcarrier since OFDM subcarriers can be decoded

independently. For simplicity of exposition, we consider two concurrent senders for the

rest of this section. Our technique generalizes to multiple concurrent senders.

Say the two senders are already synchronized, and they both transmit the same symbol

xi in subcarrier i. After the FFT, the receiver receives a symbol yi in subcarrier i, which is

related to the transmitted symbol xi as yi = Hixi + n, where Hi is the composite channel

experienced by xi and n is noise. If the receiver knows the composite channel Hi, it can

extract xi from its received signal as xi =
yi
Hi

.

The composite channel, however, is affected by two factors. The first is the individual

channels traversed by symbol xi from each of the senders. The second factor is that each

sender has a different oscillator crystal. It is unlikely that different crystals have exactly the

same carrier frequency [102], and therefore, each sender has a different frequency offset

with respect to the receiver. Hence, the composite channel can be written as:

Hi(t) =Hi,1e
j2π∆f1t +Hi,2e

j2π∆f2t

whereHi(t) is the composite channel in subcarrier i at time t,Hi,j are the individual chan-

nels in subcarrier i from sender j, (j = 1,2), and ∆fj is the frequency offset of sender j

relative to the receiver.5

Since different senders have different frequency offsets, the two components of the com-

posite channel will keep rotating relative to each other. SourceSync addresses this issue by

5The frequency offset is normalized in units of the subcarrier width.
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leveraging the observation that the frequency offset is relatively stable over long periods

of time. Therefore it can be computed at the same time as the initial pair-wise propagation

delay estimation and communicated to each sender, which can then correct for the offset

before transmitting by multiplying its transmitted symbol at time t by e−j2π∆fit.

Once the transmitter corrects the offset, the receiver can estimate each sender’s channel

by using the corresponding channel estimation symbols in the joint frame. It can then add

the individual channels to estimate the combined channel.

However, this is not sufficient. One can never correct completely for the frequency off-

set because, even if the estimate is relatively accurate, a small residual error in frequency

accumulates over time leading to large phase errors and unrecoverable decoding errors

throughout the packet. This is why, even for a single sender-receiver pair, OFDM decoders

have to perform phase tracking to correct for residual errors in frequency offset through-

out the packet. SourceSync performs phase tracking for the same reason. The difference,

however, is that it has to perform independent phase tracking for each of the senders.

To do so, we augment the traditional OFDM algorithm for phase tracking. Specifically,

OFDM allocates some subcarriers known as pilots in every data symbol for phase tracking.

The exact algorithm for phase tracking is in [63], but the important point here is that the

algorithm is designed to correct the residual frequency offset from a single sender. Hence,

this algorithm cannot work as such for concurrent senders, since each sender has a dif-

ferent residual frequency offset. We address this issue by sharing the pilots between the

concurrent senders across symbols. This is feasible since senders are synchronized and

have a common understanding of symbol boundaries. For example, the lead sender can

use pilot subcarriers in odd symbols, and the co-sender can use pilot subcarriers in even

symbols. The receiver now maintains two residual frequency offset estimates which it

applies to the individual channels of the corresponding senders before summing them to

compute the composite channel.

� 4.6 Smart Combiner

As stated earlier, even when the senders correct for the frequency offset, there is always

a residual frequency error that, over time, causes the channel from each sender to rotate

relative to the other. Further, the initial phase of the channel for the two senders at the



SECTION 4.6. SMART COMBINER 137

beginning of a joint frame is random. The consequence of these two behaviors is that

the signals from the concurrent senders can combine constructively or destructively de-

pending on the random initial phase and the rotation of the two channels, and the senders

cannot knowhow the signals are going to combine a priori. Thus, if the two senders naively

send the same signal, some unlucky symbols will observe a deeply faded channel due to

destructive combining and the receiver will be unable to decode those symbols.

Let us consider a scenario where the channels from the two senders happen to cancel

each other, i.e., Hi,1 = −Hi,2. In this case, if the transmitters sent the same data symbol,

xi, the receiver receivesHi,1xi +Hi,2xi, which equals 0. Of course, one way to address the

problem would be for one transmitter to transmit xi and the other to transmit −xi. This

transformation would transform the destructive composite channel to a channel where

the two signals reinforce each other at the receiver. But such a strategy does not always

work; if the channels were originally aligned with each other, sending xi and −xi would

result in a 0 signal at the receiver, transforming the constructive channel into a destructive

one! Since the transmitters cannot track the individual channels and their phases ahead of

transmission, they need a coding strategy that will provide high throughput irrespective

of the relative orientations and magnitudes of the channels.

SourceSync addresses this issue by leveraging space time block codes [142] that clev-

erly code data across symbols to eliminate deep fades due to destructive combination of

signals. Specifically, in the case of two senders, SourceSync uses the Alamouti code [10],

which is known to provide the optimal throughput in such a scenario, and has low en-

coding and decoding complexity. In the case of more than two senders, SourceSync uses

a quasi-orthogonal space-time block code [71] that is a simple extension of the Alamouti

coding scheme, and retains its simplicity of encoding and decoding. Given a sequence

of data symbols, a SourceSync lead sender uses codeword 1 from the replicated Alamouti

codebook specified by [71], and co-sender i uses the (i+1)th codeword from this codebook.

This sequence of codewords also has the property that the receiver can decode the received

frame even if only a subset of intended senders participate in the concurrent transmission.

Note that a receiver can determine whether an intended co-sender participates in a trans-

mission based on the presence of energy in the time slots corresponding to the channel

estimation symbols of that co-sender.
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Figure 4-9: SourceSync for the last hop. SourceSync can harness sender diversity using concurrent transmis-

sions from many APs.

� 4.7 Using SourceSync to harness sender diversity

Now that we have described the components of SourceSync, we explain how SourceSync

can be used to harness sender diversity for opportunistic routing and wireless LANs. As

we do so, we also explain how SourceSync integrates with the MAC for both scenarios.

� 4.7.1 Combining SourceSync with Last Hop Diversity

Consider a client that is in the neighborhood of multiple APs, but has poor connectivity

to them. Uplink receiver diversity schemes like MRD, SOFT, and Link-Alike [106, 73, 155]

exploit the fact that, while a transmitted packet has low probability of being received cor-

rectly by a specific AP, it is likely to be received by at least one AP, and all such APs can

combine received packets or bits over the wired network. SourceSync complements these

schemes by enabling sender diversity on the downlink, i.e., instead of a client receiving

packets from only one AP at a time, multiple neighboring APs can transmit simultane-

ously to the client and increase downlink reliability.

SourceSync exploits last-hop diversity using the architecture shown in Fig. 4-9. We

leverage the high bandwidth of the wired network connecting the access points. A

SourceSync controller resides on the wired network, and uses it to forward packets ar-
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riving from the wired uplink to all the APs in a neighborhood. This enables multiple APs

to transmit the same data to a wireless client. Further, the APs have a static ordering that

decides which codeword of the space-time block they will utilize for their transmission.

MAC and Association: When a client first joins the wireless network, it associates with

multiple, say K , APs in its neighborhood, where K is a tunable parameter. One of these

APs, say the one with the best link to the client, is chosen as the lead AP for this client and

this information is disseminated to all other APs. All the APs estimate the propagation

delays to their associated client. Additionally, the APs can offline estimate their hardware

turnaround delays and propagation delays to each other. Each AP then uses this informa-

tion to calculate its delay compensation, as described in Section 4.4.4.

TheAPs use a contention-basedMAC similar to 802.11. The only difference is that when

there is a downlink packet destined to a client, only the lead AP contends for the medium.

Once the lead AP acquires the medium, it transmits its synchronization header followed

by the data. Upon hearing the synchronization header, all other APs join the transmission

as described in Section 4.4.4.

Similarly to 802.11, a client acknowledges successful receptions. Note that since the

ACK is on the uplink, APs can use standard receiver diversity techniques like SOFT [155]

or MRD [106] to increase the reliability of ACK reception. Received ACKs are communi-

cated to the lead AP over the wired network. The lead AP initiates retransmissions when it

does not receive an ACK, and these retransmissions are joined by the other APs, similarly

to the original transmission.

Rate Adaptation: The APs coordinate rate adaptation since all simultaneously transmit-

ted packets must have the same set of data symbols. Rate adaptation in SourceSync is

controlled by the lead AP. Specifically, the lead AP runs a standard rate adaptation algo-

rithm such as SampleRate, RRAA or SoftRate [18, 154, 150] which makes rate decisions

based on the feedback from the receiver (acknowledgment, soft rate hint etc.). The lead AP

then includes the chosen rate for the packet in the synchronization header when it initiates

transmission. Other APs use this information to pick the right transmission rate. Note

that, since SourceSync can leverage power and diversity gains across APs, the combined

transmission across APs might be able to use a rate that cannot be used by any individual

transmissions.
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Figure 4-10: SourceSync with Opportunistic Routing. SourceSync exploits the fact that many relays hear a

packet to improve throughput.

� 4.7.2 Combining SourceSync with Opportunistic Routing

In this section, we showhow to extend opportunistic routing, particularly ExOR [19], to ex-

ploit sender diversity. Opportunistic routing has been proposed to deal with lossy links in

wireless mesh networks. Consider the example in Fig. 4-10. Since all links have a loss rate

of 0.5, a traditional single-path routing protocol will require an average of two transmis-

sions to deliver a packet from the source to its nexthop router. However, when a source

broadcasts its packet, the probability that at least one of these routers will receive it is

1− (0.5)3, and hence the expected number of transmissions to deliver a packet is reduced

to 1.14. Opportunistic routing protocols exploit this property to decrease loss rates and

increase mesh throughput.

However, the same property means that, half the time, multiple routers will receive

the packet from the source. Further, the probability of such an event, i.e., multiple routers

hearing the same packet increases with network size and density. Existing protocols can-

not exploit this property. In contrast, SourceSync can leverage the fact that multiple routers

in a mesh overhear the same packet to have these routers transmit the packet simultane-

ously towards the destination. This form of cooperative forwarding increases the effective

transmission power, enabling the packet to make longer jumps towards its destination.

Additionally, since the channels from the concurrent transmitters to a downstream node

router are unlikely to experience simultaneous deep fading, overall loss rate is reduced.
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In the rest of this section, we will describe how to integrate SourceSync with ExOR to

provide an opportunistic routing protocol that exploits both sender diversity and receiver

diversity. At a high level, ExOR works as follows. Given the link loss probabilities, ExOR

computes the ETX metric [35] of each link, and then arranges the nodes in decreasing

order of ETX distance from the destination. ExOR is designed for bulk transport. The

source operates in batches, and starts by broadcasting all packets in the batch. Any node

that overhears the packet can potentially forward it towards its destination. ExOR has a

priority scheduler that ensures that each packet is forwarded by the node closest to the

destination that has the packet. We refer the reader to [19] for the details of the scheduling

algorithm.

MAC: SourceSync retains ExOR’s MAC and extends it to allow simultaneous transmis-

sion from multiple forwarders. Similar to ExOR, the potential forwarders for a transmis-

sion are determined based on ETX measurements, and included in the packet header of a

transmission. However, unlike ExOR, SourceSync ensures that when an ExOR forwarder

transmits a packet, other nearby forwarders who happen to have overheard this packet

join the transmission. This is similar to how neighboring APs join the transmission of a

lead AP to provide lasthop diversity as described in Section 4.7.1. There is one key differ-

ence, however. Unlike in the last-hop scenario where AP transmissions need to be aligned

at one receiver, in opportunistic routing, transmissions from multiple forwarders need to

be aligned at multiple receivers. Hence, SourceSync uses the SLS described in Section 4.4

to determine both the wait compensation at the forwarders, and the minimum necessary

increase in the CP to compensate for misalignment between the receivers. This compu-

tation requires forwarders to know the delay differences between various nodes in their

neighborhood, and the set of concurrent forwarders and potential receivers for each trans-

mission.

SourceSync computes the delay differences between nodes by running periodic

measurements, similar to existing loss rate measurements by mesh routing protocols.

SourceSync however does not need to perform delay measurements between all node

pairs. A node needs to compute delay differences only to nodes that are potential co-

forwarders or potential nexthops. The size of this set dictates the measurement overhead.

So, in SourceSync, only nodes that are connected by links with loss probability below

a threshold perform pairwise delay measurements. Further, SourceSync leverages data
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packets from concurrent forwarders to keep updating its estimates of delay differences as

described in Section 4.4.5.

What happens when all forwarders do not hear a transmission? It is likely that not all

forwarders selected during the measurement phase hear all of their intended transmis-

sions. Exchanging information for every packet about exactly which forwarders heard

that packet in order to determine the increase in CP, as well as the transmission codeword

and wait time to be used by each forwarder will introduce high overhead. SourceSync

eliminates the need for such exchanges by leveraging the measurement phase to pick the

required wait time and additional CP assuming all forwarders hear a transmission, and

also determines the ordering (and therefore codeword) of the forwarders. After this assign-

ment, whenever the lead forwarder transmits, other forwarders hear the synchronization

header, which contains the additional CP and identifier of the packet to the transmitted. If

a node is in the set of co-forwarders and has the transmitted packet, it joins the transmis-

sion using the appropriate wait-time compensation. The node also knows exactly which

codeword to use for its transmission based on the precomputed ordering of co-forwarders.

For example, say the lead forwarder is node i, and the size of the co-forwarder set is k. The

lead forwarder then uses the first codeword, node i− 1 uses the second codeword, and so

on. Of course, not all nodes in the set of potential co-forwarders might hear the packet,

or the transmission of the lead forwarder. Note that this does not affect the correctness of

SourceSync; a receiver can still decode the concurrent transmission, and garner the benefits

of sender diversity from co-forwarders that actually join the transmission.

� 4.8 Performance

We have implemented a prototype of SourceSync in FPGA using the WiGLAN radio plat-

form [37] and evaluated it in a wireless testbed.

(a) Hardware: The radio board of our transceiver platform connects to the PC via the PCI

bus, and acts like a regular network card. The radio operates in the 802.11a spectrum, has

a maximum operating bandwidth of 128 MHz and a symbol time of 1 µs. We configure

the radio to use 20 MHz of bandwidth, which is the bandwidth of 802.11 channels. The

FPGA is clocked at 128 MHz, and the implementation supports standard 802.11 transmit

and receive chains.
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Figure 4-11: Testbed map. Node locations are highlighted.

(b) Implemented Infrastructure: We implement the components of SourceSync and

an infrastructure to evaluate it for last-hop diversity and opportunistic routing. Since

symbol-level synchronization requires fine-grained sample level timing, we implement

SourceSync in the FPGA using Verilog and Simulink. In order to evaluate last-hop and

opportunistic diversity, we also implement the following additional components:

(a) SampleRate: We implement SampleRate in our driver, using MadWifi as a reference.

We modify SampleRate for SourceSync last-hop diversity to perform rate adaptation only

on the lead AP.

(b) ExOR: We use the reference ExOR code and implement a simplified version for our

topology, including ETX measurement, forwarder computation, and a priority scheduler.

We evaluate SourceSync in an indoor testbed. Fig. 4-11 shows the node locations in

the experimental environment, which exhibits high diversity due to the presence of walls,

metal cabinets, desks, and various combinations of line-of-sight and non-line-of-sight con-

figurations. The exact evaluation methodology and topologies used for each experiment

are described below.
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� 4.8.1 Symbol Level Synchronization

In this section, we show that SourceSync can provide tight symbol level synchronization

across nodes, and that without such tight synchronization the system may suffer signifi-

cant reduction in SNR.

SourceSync provides tight synchronization

First, we investigate whether SourceSync provides accurate symbol-level synchronization

across transmitters.

Method. In this experiment, we place a pair of SourceSync nodes acting as lead sender

and co-sender, and one node acting as a SourceSync receiver at three randomly cho-

sen locations in our testbed. We synchronize the two transmitters at the receiver using

SourceSync, as described in Section 4.4.4 and Section 4.4.5. Next, we want to measure

the resulting synchronization error (i.e., the time difference between transmitters’ symbol

boundaries). Recall, however, that SourceSync works by measuring synchronization er-

rors and feeding them back to the transmitters in the ACK so they can synchronize their

next transmissions, as explained in Section 4.4.5. Thus, to measure SourceSync’s synchro-

nization error, we need an algorithm that is more accurate than SourceSync in measuring

synchronization errors. How do we find such an algorithm? And if such an accurate algo-

rithm exists, why don’t we use it in SourceSync?

We can obtain such a highly accurate algorithm if we incur very large overhead. Specif-

ically, instead of computing synchronization errors using only a few symbols at the begin-

ning of each packet, as in SourceSync, we can replace all the data in the packet with known

symbols and use the full packet to compute synchronization errors. A SourceSync packet

starts with an initial header consisting of the lead sender’s synchronization header fol-

lowed by the co-sender’s channel estimation symbols, after which the two senders jointly

transmit their data. The regular SourceSync algorithm obtains an estimate of the synchro-

nization error using only the lead sender’s synchronization header and the co-sender’s

channel estimation symbols, as described in Section 4.4.4 and Section 4.4.5. The error es-

timation algorithm, on the other hand, replaces the data in each packet with 200 repeti-

tions of the initial header (i.e., the lead sender’s synchronization header and the co-sender

channel estimation symbols). Since the synchronization error does not change within a

packet, the new algorithm can obtain 200 estimates of the synchronization error for each
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Figure 4-12: 95th percentile synchronization error. SourceSync ensures that the synchronization error is less

than 20 ns across the operational range of 802.11 SNRs.

estimate of SourceSync. By taking the average of these 200 estimates, the new algorithm

dramatically reduces the estimation noise, and hence obtains an almost error free estimate

of synchronization error for that packet. Such an algorithm is fine to evaluate the extent

of synchronization error, but its overhead precludes its use in a practical system. For ev-

ery set of locations, we transmit 2000 such packets and measure the average SNR from the

two transmitters, as well as the transmitters’ synchronization errors using both SourceSync

and the new algorithm. We consider the new algorithm as the ground truth and compute

SourceSync’s synchronization errors with respect to the new algorithm. We repeat the

experiment with multiple randomly chosen location triplets in our testbed.

Results. Fig. 4-12 shows the synchronization error between the two transmitters when

using SourceSync, as a function of the average SNR. The graph shows that SourceSync’s

synchronization algorithm is robust across a wide range of SNRs. Specifically, the 95th

percentile of the synchronization error is less than 20 ns for the operational range of 802.11

SNRs. Thus, SourceSync’s estimates can be used to perform highly accurate symbol level

synchronization.
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Figure 4-13: CP reduction with SourceSync. SourceSync enables concurrent transmissions to achieve high

SNR with a significantly lower CP than an unsynchronized baseline that does not compensate for delay dif-

ferences.

The need for accurate synchronization

SourceSync compensates for delays at senders to synchronize symbols at the receiver, and

so that the joint transmission has multipath tolerance that is as good as with a single trans-

mitter. In this section, we evaluate the consequences of loose vs. tight synchronization.

Method. We place two transmitters and the receiver in a random line-of-sight config-

uration in our testbed. We label one transmitter a lead sender, and the other a co-sender.

Both transmitters have identical hardware, and hence the same hardware turnaround de-

lay. The only difference in delays between the transmitters is due to propagation. We com-

pare two schemes: a baseline scheme where the lead sender transmits a synchronization

header, and the co-sender joins the transmission without compensating for delay differ-

ences, and SourceSync’s symbol level synchronization scheme where the co-sender joins

the transmission after an appropriate wait time as described in Section 4.4.4. For both

schemes, we calculate the average receiver SNR of a joint transmission, and perform this

calculation for various values of the cyclic prefix (CP).

Results. Fig. 4-13 plots the SNR of the joint transmission as a function of CP, for

SourceSync, and for the baseline. We see that SourceSync requires a far lower CP to achieve
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which corresponds to the CP length required with synchronization.

the peak SNR of the combined transmission, in comparison with the baseline. In particu-

lar, SourceSync requires only a CP of 117 ns (15 samples in our system) to achieve an SNR

within 95% of the maximum, whereas the baseline requires a CP of 469 ns (60 samples in

our system). Two points are worth noting. First, even when the transmitters have identical

turnaround times, the baseline increases the required CP by 352 ns (45 samples) over what

is required by SourceSync. By compensating for delay differences, SourceSync can operate

with a much smaller CP, thus significantly increasing the benefits of sender diversity. Sec-

ond, the baseline has no mechanism to identify the required increase in CP. Without this

knowledge, one may pick a CP that is too small, in which case the communication system

stops working. To prevent this scenario from occurring, one cannot simply set the CP to

469 ns since this value may not work for a different set of senders and receivers. One has

to pick a conservative CP that works for any network, and hence incur a large overhead.

Finally, it might seem that SourceSync’s SNR decreases at a CP lower than 15 samples

due to residual synchronization error. However, this is not the case. The SNR reduction is

due to the multipath delays in the channel. One can see this by looking at the time domain

representation of the channel from one of the transmitters. Fig. 4-14 shows the magnitude

of the time domain channel as a function of tap index. We see that the channel has around
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Figure 4-15: Power gains. SourceSync achieves a 2–3 dB gain over a single sender across the range of SNRs.

15 significant taps. Reducing the CP below 15 samples causes symbols to leak into each

other, and hence reduces the maximum achievable SNR of the system.

� 4.8.2 Power and Diversity Gains

As explained earlier, allowing multiple senders to transmit simultaneously provides both

power gains from the addition of the senders’ powers, and frequency diversity gains be-

cause it is unlikely that the same frequency experiences a fade from all senders to the

receiver. In this section, we verify that SourceSync actually provides these gains.

Method. We place the receiver and two transmitters at various random locations in

our testbed. For each set of locations, we measure the average SNR across subcarriers,

as well as the SNR per subcarrier when each sender transmits separately, and when the

two senders transmit in combination using SourceSync. We group the locations into three

categories based on the SNRs of the senders transmitting separately: low (<6dB), medium

(6–12dB), and high (>12dB).

Results. Fig. 4-15 plots the average SNR across subcarriers, both for senders transmit-

ting separately, and for joint transmission using SourceSync. As we can see, SourceSync

improves the average SNR by 2–3 dB for all SNR ranges. The increase in SNR is due to the

addition of power from both senders to the receiver. In particular, simultaneous transmis-
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Figure 4-16: Frequency diversity gains. SourceSync improves the SNR in each sub-carrier and creates a flatter

SNR profile.
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sion from two senders whose signals arrive at the receiver with equal power results in an

SNR increase of 3 dB.

To understand the gains further, we plot the SNR per subcarrier for all three SNR

ranges. We see from Figs. 4-16(a)-(c) that SourceSync not only improves the average SNR,

but has a flatter SNR profile than that of either sender transmitting separately. This shows

that SourceSync is able to exploit sender diversity on a per-subcarrier basis. These gains

are due to SourceSync’s smart combiner (Section 4.6) that uses space time block codes

at a subcarrier granularity to enable signals from multiple transmitters to combine con-

structively. The flatter SNR profile is important in channels like 802.11, which exhibit fre-

quency selective fading and different SNRs across subcarriers. Since it is unlikely that

both senders will simultaneously experience a fade in the same subcarrier, SourceSync has

a flatter SNR curve. 802.11 convolutional codes can be affected by even a few bad subcar-

riers, and hence, a flatter profile allows the system to achieve significantly higher bitrates

with SourceSync than without SourceSync.

� 4.8.3 Last Hop Diversity

We now examine the gains from using SourceSync in a last-hop scenario to harness sender

diversity gains.

Method. We place the two transmitters, acting as APs, and the receiver, acting as a

client, in random testbed locations. For each set of positions, we compute the through-

put with each AP acting alone, as well as the throughput of the combined system with

SourceSync, using SampleRate [18] for rate adaptation. We repeat the experiment with

different sets of random locations.

Results. Fig. 4-17 shows the CDF of the throughputs obtained for each set of positions

using the best AP for the client in that configuration, as well as the throughputs when

leveraging diversity across APs using SourceSync. As can be seen, SourceSync provides

benefits over selective diversity (i.e. using the single best AP) at all client throughputs,

with a median throughput gain of 1.57×.

� 4.8.4 Opportunistic Routing with SourceSync

We evaluate the gains of SourceSync with opportunistic routing.
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Figure 4-18: SourceSync with opportunistic routing. SourceSync together with ExOR provides gains both

over ExOR alone, and over traditional single path routing. The median gains are 1.26-1.4× over single path

routing, and 1.35-1.45× over ExOR, depending on the bitrate.
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Method. We create a five node topology as follows. We place two nodes, acting as

source and destination, at random locations in our testbed. For each choice of source and

destination, we place nodes acting as relays in three other random locations between the

source and destination location. We measure pairwise loss rates between the nodes, com-

pute the ETX metric for each link, and evaluate three schemes: (a) a single path routing

scheme that picks the best relay to route the packets from source to destination, (b) ExOR,

which opportunistically uses any of the three relays as forwarders, and (c) a combination

of ExOR and SourceSync which also exploits sender diversity to forward from relays to

the destination. Since rate adaptation for opportunistic routing protocols is still an open

area, we configure the entire network to run at 6 Mbps, and at 12 Mbps, and pick the con-

figuration that provides the highest throughput. We repeat the experiment for 20 different

topologies at each rate.

Results. Figs. 4-18(a) and (b) show the CDF of the throughputs with single-path rout-

ing, ExOR, and the combination of ExOR and SourceSync. As would be expected, ExOR

can harness gains from receiver diversity from the source to the relays, and provide a

median throughput gain of 1.26–1.4× over single path routing. SourceSync can provide

additional gains of 1.35–1.45× over the receiver diversity in ExOR by exploiting sender di-

versity from the relays to the destination. Further, SourceSync and ExOR work in tandem

and provide a median throughput gain of 1.7–2× over single path routing.

� 4.9 Discussion

This chapter introduces SourceSync, a distributedwireless architecture that exploits sender

diversity and demonstrates its practicality via implementation and testbed evaluation. It

integrates sender diversitywith last-hop diversity and opportunistic routing, showing that

this synergy can significantly improve throughput.

We believe that SourceSync has wider implications for wireless design than explored

here. Techniques such as distributed beamforming [130] and lattice codes [109] promise

significant throughput improvements in theory. However, these techniques have hitherto

not been used in practice because they require some form of symbol synchronization. The

synchronization mechanisms in this chapter provide a first step toward practical imple-

mentations of these techniques.



CHAPTER 5

MegaMIMO: Scaling Wireless

Capacity with User Demands

As wireless devices proliferate, the key challenge faced by wireless systems is that they

are unable to scale wireless throughput with the growth in user demands. This chapter

presents MegaMIMO, a system that enables wireless networks to scale their capacity with

the number of transmitters. MegaMIMO enables multiple independent access points (APs)

to beamform their signals, and transmit different packets to different end users on the same

spectrum without interfering with each other.

� 5.1 Overview

Wireless spectrum is limited; wireless demands can, however, grow unlimited. Busy Wi-

Fi networks, for instance, in conference rooms, hotels, and enterprises are unable to keep

up with user demands [145, 66], even causing high profile failures like the wireless net-

work collapse during the Steve Jobs iPhone 4 keynote. Cellular networks are in a similar

predicament, with their demands forecast to exceed available capacity within the next few

years [126]. This is not for lack of improvement in the performance of wireless devices.

Indeed, individual wireless devices have improved dramatically in recent years through

innovations like the introduction of multi-antenna systems, better hardware, and lower

receiver noise. The problem however is that there is a mismatch between the way user

demands scale and network throughput scales; user demands scale with the number of

153
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devices in the network but network throughput does not. Unless network throughput

also scales with the number of devices, wireless networks will always find it hard to keep

up with their demands, and projected demands will keep exceeding projected capacity.

In this chapter, we present a system that enables a network to scale its throughput with

the number of transmitting devices. We focus on the scenario of typical busy wireless

environments such as multiple users in a conference room, enterprise, hotel etc. We enable

a wireless LAN to keep increasing its total throughput by continuously addingmore access

points (APs) on the same channel.

The key technical idea behind our system is joint multi-user beamforming. Multi-user

beamforming is a known technique that enables a MIMO transmitter to deliver multi-

ple independent streams (i.e., packets) to receivers that have fewer antennas, as shown in

Fig. 5-1(a), where a 2-antenna access point delivers two packets concurrently to two sin-

gle antenna receivers. In contrast, as shown in Fig. 5-1(b), MegaMIMO enables multiple

access points on the same channel to deliver their packets concurrently to multiple re-

ceivers, without interfering with each other. This system scales network throughput with

the number of devices, and delivers as many concurrent streams/packets as the total num-

ber of antennas on all APs. Furthermore, it can leverage the continuing performance and

reliability improvements of individual devices (e.g., more antennas per device).

The main challenge in implementing MegaMIMO stems from the need to synchronize

the phases of distributed transmitters. Specifically, the goal of beamforming is to ensure

that each client can decode its intended signal without interference. Thus, at each client,

the signals intended for the other clients have to cancel each other out. This requires the

transmitters to control the relative phases of their transmitted signals so that the desired

cancellation can be achieved. Such a requirement is naturally satisfied in the case of a

single device performing multi-user beamforming. However, in the case of MegaMIMO,

the transmitters have independent oscillators, which are bound to have differences in their

carrier frequencies. If one simply tries to jointly beamform these independent signals from

different transmitters, the drift between their oscillators will make the signals rotate at

different speeds relative to each other, causing the phases to diverge and hence preventing

beamforming.

At first blush, it might seem that it would be sufficient to estimate the frequency off-

set (i.e., the drift) ∆ω between the transmitters, and compensate for the beamforming
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Figure 5-1: Traditional vs. Joint Multi-User Beamforming. In a traditional multi-user beamforming system

withmultiple 2 antenna APs, only 1 AP can transmit on a given channel at any given time. This leads to amax-

imum of 2 simultaneous packet transmissions regardless of the total number of APs. In contrast, MegaMIMO

enables all APs to transmit on the same channel, allowing up to 2N simultaneous packet transmissions if there

areN 2-antenna APs.

phase errors as ∆φ = ∆ωt, where t is the elapsed time. However, such an approach is

not practical. It is well known [6, 139, 63] that frequency offset estimates have errors due

to noise, and using such estimates to compute phases causes rapidly accumulating errors

over time. Even a small error of, say, 10 Hz (4×10−3 ppm, which is several orders of mag-

nitude smaller than the mandated 802.11 tolerance of 20 ppm, or cellular tolerance of 1-2

ppm), can lead to a large error of 20 degrees (0.35 radians) within a short time interval of

5.5 ms. Such a large error in the phase of the beamformed signals will cause significant

interference at the receivers, preventing them from decoding.

MegaMIMO presents a simple and practical approach for synchronizing the phases of

multiple distributed transmitters. The key idea underlying MegaMIMO is to elect one of

the APs as a lead and use its phase as a reference for the whole system. Other APs (i.e., the

slaves) directly measure the phase of the lead AP and change the phase of their signals to

maintain a desired alignment with respect to the lead. In particular, MegaMIMO precedes

every data packet with a couple of symbols transmitted by the lead AP. The slave APs use

these symbols to directly measure the required phase correction for proper beamforming.

Since this is a direct phase measurement as opposed to a prediction based on frequency

offsets, it has no accumulated errors. After correcting for this phase error, the slave APs use
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the estimate for their frequency offset to predict any phase changes throughout the packet

and correct for it. This bounds the maximum phase error accumulation to the duration of

a packet. One can use a simple long term average for the frequency offset to ensure that

the phase error accumulated for the duration of a packet is within the desired performance

bounds.

In the rest of the chapter, we expand on this basic idea and demonstrate that it can

deliver accurate joint beamforming across distributed transmitters. Further, we also extend

this idea toworkwith off-the-shelf 802.11 cards. This would allow organizations to directly

leverage MegaMIMO by simply upgrading their AP infrastructure, without requiring any

modification to the clients.

We implemented MegaMIMO in two environments:

• The first environment consists of USRP2 APs and receivers, where both APs and

clients can be modified. We use this environment to verify the scaling properties

of MegaMIMO, and also to perform finer grained analysis of the individual compo-

nents of MegaMIMO.

• The second environment consists of USRP2 APs and receivers with Intel Wi-Fi Link

5300 adapters. Each AP in this second testbed consists of two USRP2s connected

via an external clock and configured to act as a 2-antenna MIMO AP. Correspond-

ingly, each receiver Wi-Fi card has 2 antennas enabled. We use this testbed to verify

that MegaMIMO can provide throughput gains with off-the-shelf 802.11n cards, and

further, that MegaMIMO can provide these gains with multi-antenna devices.

We evaluated MegaMIMO in an indoor testbed using APs and receivers deployed

densely in a room to simulate a conference room scenario. Our results reveal the following

findings:

• USRP testbed: MegaMIMO’s throughput increases linearly with the number of APs.

In particular, in our testbed, which has 10 APs, MegaMIMO can achieve a median

throughput gain of 8.1 − 9.4× over traditional 802.11 unicast, across the range of

802.11 SNRs.

• 802.11 testbed: MegaMIMO’s ability to linearly scale the network throughput

with the number of transmitters applies to off-the-shelf 802.11 clients. Specifically,
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MegaMIMO can transmit simultaneously from two 2-antenna APs to two 2-antenna

802.11n clients to deliver a median throughput gain of 1.8× compared to traditional

802.11n.

• Phase Synchronization: MegaMIMO’s distributed phase synchronization algorithm

is accurate. The 95th percentile misalignment between APs observed at the receiver

is less than 0.05 radians. Further, for the whole range of operational SNRs of 802.11

(5-25 dB), the reduction in SNR at each client due to misalignment, (i.e., the total

power of interference from all signals not intended for this client to the noise floor)

increases on average by 0.13 dB for every additional AP-client pair.

Contributions: This work presents the first system that scales wireless throughput by en-

abling joint beamforming from distributed independent transmitters. To achieve this, we

design a simple and practical approach for performing phase synchronization across mul-

tiple distributed transmitters. Finally, we also show that our system can deliver through-

put gains from joint beamforming with off-the-shelf 802.11n cards.

� 5.2 Related Work

(a) Empirical systems: Recent years have seen a few systems that tried to capture the gains

promised by distributed multi-user beamforming [47, 123, 46, 110]. These systems, how-

ever, do not address phase synchronization, which is a basic problem in achieving such

a system. In particular, they either require the base stations to be tightly synchronized

with a Global Positioning System (GPS) clock1, or assume that all the transmit antennas

are driven by a single oscillator [46], or even assume that the receivers can jointly decode

the data by exchanging all the received signals [110]. The closest to our work is [74],

which addresses phase synchronization, but does not perform distributed joint transmis-

sion and achieves large errors (around 20 degrees) that cannot support distributedMIMO.

In contrast, MegaMIMO provides the first system that achieves phase synchronization us-

ing independent oscillators at the devices in the network. As a result, MegaMIMO can

enable devices to operate independently without having to share a common clock or use

1While promising, GPS typically does not work indoors, rendering such a GPS-based system hard to use
in practice.
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external clocks such as GPS. Finally, since MegaMIMO does not require any modifications

to existing hardware, it can work with off-the-shelf 802.11n cards.

MegaMIMO is related to work on enabling concurrent transmissions across different

nodes in the network like MU-MIMO in LTE and WiMAX [103, 92], SAM [140], IAC [54],

multi-user beamforming [12] , and n+ [90]. However, these systems do not scale with

the number of devices in the network. In particular, the throughput of these systems is

limited either by the number of antennas on a single AP [103, 92, 140, 12], or the maximum

number of antennas on any device in the network [90], or twice the number of antennas

on any device in the network [54]. In contrast, MegaMIMO is the first system that enables

the number of concurrent transmissions to scale with the number of APs, independent of

the number of antennas on a single device. This allows MegaMIMO to support multiple

independent APs communicating simultaneously with multiple independent clients.

MegaMIMO is also related to work on harnessing channel diversity gains such as dis-

tributed antenna systems [94, 34], and SourceSync [120], as well as work on phased ar-

rays [55], which provide directional gain by sending the same signal on different antennas

with different, carefully calibrated delays. However, these systems can not provide mul-

tiplexing benefits and hence, unlike MegaMIMO, cannot scale network throughput with

the number of APs. Finally, recent work has shown how to synchronize concurrent trans-

missions in time and frequency [139, 120]. MegaMIMO builds on these results to deliver

a distributed MIMO system. However, time and frequency synchronization alone are not

sufficient, since joint multi-user beamforming intrinsically depends on the ability of the

distributed APs to achieve phase synchronization, without which it is impossible to allow

independent clients to decode simultaneously.

(b) Theoretical results: There is some theoretical work [143, 16] that addresses distributed

phase synchronization, but assumes frequency synchronous oscillators and only provides

one-time phase offset calibration. Further, the promise of distributed MIMO to improve

the scalability of wireless networks has been explored in the theoretical community [7, 135,

148]. Work by Ozgur et al. [113] theoretically proved that such a setup can scale wireless

capacity with the number of nodes. While MegaMIMO builds on this foundational work,

MegaMIMO is the first empirical system that shows that linear scaling of throughput with

the number of transmitters is possible in practical systemswith unsynchronized oscillators

and resulting time-varying phase differences.
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� 5.3 MegaMIMO

MegaMIMO is designed for the wireless downlink channel. It is applicable to wireless

LANs, especially in dense deployments like enterprises, hotels, and conference rooms.

MegaMIMO APs can operate with off-the-shelf WiFi client hardware. The techniques in

MegaMIMO are also applicable to cellular networks, but the potential of integrating them

with off-the-shelf cellular clients and evaluating them in the cellular context are beyond

the scope of this chapter.

MegaMIMO APs are connected by a high throughput backend, say, GigE, like APs are

today. Packets intended for receivers are distributed to all APs over the shared backend.

MegaMIMO enables the APs to transmit concurrently to multiple clients as if they were

one large MIMO node, potentially delivering as many streams (i.e., packets) as the total

number of antennas on all APs.

In the next few sections, we describe how MegaMIMO works. We start with the basic

idea that enables distributed phase synchronization. We then describe our protocol imple-

menting this basic idea for emulating a large MIMO node. We then extend our system to

integrate our design with off-the-shelf WiFi cards.

� 5.4 Distributed Phase Synchronization

The chief goal of distributed phase synchronization is to enable different transmitters pow-

ered by different oscillators to emulate a single multi-antenna transmitter where all anten-

nas are driven by the same oscillator. Intuitively our solution is simple: We declare one

transmitter the lead, and make all other transmitters synchronize to the oscillator of the

lead transmitter, i.e., each transmitter measures the offset between its oscillator and the

lead oscillator and compensates for the offset by appropriately correcting the phase of its

transmitted signal. This behavior makes all transmitters act as if they were antennas on

the same chip controlled by the same oscillator.

We now demonstrate how this intuitive design can deliver the proper MIMO behavior

and hence enable each receiver to correctly decode its intended signal without interference.

For simplicity, we consider a scenario of 2 single-antenna APs transmitting to 2 single-

antenna clients, as shown in Fig. 5-2. Let hij , where, i, j ∈ {1,2} be the channel to client i

from AP j, xj(t) the symbol that needs to be delivered to client j at time t, and yj(t) the
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Figure 5-2: Channel matrix with 2 APs transmitting to 2 clients.

symbol that is received by client j at time t. Correspondingly, let H = [hij ], i, j ∈ {1,2}
be the 2x2 channel matrix, ~x(t) = [x1(t) x2(t)]

T be the desired symbol vector, and ~y(t) =

[y1(t) y2(t)]
T be the received symbol vector.

No Oscillator Offset: Assume first that there are no oscillator offsets between any APs

and clients. If each AP i simply transmits the signal xi(t), each client will receive a linear

combination of the transmitted signals. Since each client has only one antenna, client 1

receives y1(t) = h11x1(t) + h12x2(t) and client 2 receives y2(t) = h21x1(t) + h22x2(t). Each

of these equations has two unknowns, and hence, neither client can decode its intended

data.

In order to deliver two concurrent packets to the two clients, the APs need to ensure

that each client receives only the signal intended for it (i.e., it experiences no interference

from the signal intended for the other client). Specifically, we need the effective channel

experienced by the transmitted signal to be diagonal, i.e.,, it should satisfy:





y1(t)

y2(t)



 =





g11 0

0 g22









x1(t)

x2(t)



 , (5.1)

where g11 and g22 are any non-zero complex numbers. In this case, the received signal will

simply appear at each receiver as if it has experienced the channel gii, which each receiver

can estimate using standard techniques.

TheAPs can achieve this result by using beamforming. In beamforming, theAPsmeasure

all the channel coefficients from the transmitters to the receivers at time 0. Then, instead of
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transmitting x1(t) and x2(t) directly, the APs transmit:2





s1(t)

s2(t)



 =H−1





x1(t)

x2(t)



 (5.2)

In this case, the two clients receive:





y1(t)

y2(t)



 = H





s1(t)

s2(t)



 = HH−1





x1(t)

x2(t)





SinceHH−1 = I, the effective channel experienced by the clients in this case is a diagonal

matrix, i.e., Eq. 5.1 is satisfied. Hence, each client can now decode its intended datawithout

interference from the signal intended for the other client.

With Oscillator Offset: What happens when the oscillators of the APs and clients have

different frequencies? Let ωT i be the oscillator frequency of AP i, and ωRj the oscillator

frequency of client j, i, j ∈ {1,2}. In this case, the channel at time t,H(t), can be written as:

H(t) =





h11e
j(ωT1−ωR1)t h12e

j(ωT2−ωR1)t

h21e
j(ωT1−ωR2)t h22e

j(ωT2−ωR2)t



 ,

where j =
√
−1. Because the oscillators rotate with respect to each other, the channel no

longer has a fixed phase.

Now, if the APs try to perform beamforming as before, using the channel value they

computed at time t = 0 and transmitting H−1~x, the clients receive:





y1

y2



 = H(t)H−1





x1

x2



 ,

The product H(t)H−1 is no longer diagonal, and hence the receivers cannot decode their

intended signal. Thus, standard MIMO beamforming does not work in this case.

So how can one do beamforming with such a time varying channel? A naive approach

would try to make each transmitter compute H(t) at every t and then multiply its time

signal by H(t)−1. Say that the network has N APs and N clients. Then such an approach

would require each transmitter to maintain accurate estimates of N2 frequency offsets of

2The APs also need to normalize H−1 to respect power constraints, but we omit that detail for simplicity.
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the form ∆ωij = ωTj − ωRi. (Further since nodes can only measure frequency offsets rel-

ative to other nodes, but not the absolute frequencies of their oscillators, the number of

estimates cannot be reduced to N .) Measurement errors from all of these estimates will

accumulate, prevent accuracy of beamforming, and create interference at the receivers.

However, according to our intuition at the beginning of this section, we can make multiple

transmitters act as if they were one big MIMO node, and hence do accurate beamform-

ing, by having each transmitter estimate only its frequency offset to the lead transmitter.

Said differently, our intuition tells us that it should be possible to reduce the number of

frequency offset estimates that each transmitter maintains from N2 to one. Let us see how

we can achieve this goal.

Observe that we can decompose the channelmatrix at time t asH(t) =R(t)HT(t), where

H is time invariant, and R(t) and T(t) are diagonal matrices defined as:

R(t) =





e−jωR1t 0

0 e−jωR2t





and

T(t) =





ejωT1t 0

0 ejωT2t





Since R(t) is diagonal, it can function analogous to the G matrix in Eq. 5.1. Thus, if the

transmitters transmit the modified signal T(t)−1H−1~x at time t, then the received signal

can be written as:




y1

y2



 = R(t)HT(t)T(t)−1H−1





x1

x2



 (5.3)

which reduces to the desired form of Eq. 5.1:





y1

y2



 = R(t)





x1

x2





Note that T(t) is also diagonal, and as a result the transmitter phase correction matrix

T(t)−1 =





e−jωT1t 0

0 e−jωT2t




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is also diagonal. Further, the phase correction entry for each AP depends only on the

oscillator phase of that AP. This means that if each AP, i, knows its phase, ejωTit, at time t,

it can simply compensate for that phase and the APwill not need any additional frequency

or phase measurements. Unfortunately, this is not practical. An AP has no way to measure

the exact phase change of its oscillator locally.

We address this difficulty by observing that the channel equation is unchanged when

we multiply by 1 = ejωT1te−jωT1t, i.e,

H(t) = ejωT1tR(t)HT(t)e−jωT1t

=





ej(ωT1−ωR1)t 0

0 ej(ωT1−ωR2)t



H





1 0

0 e(j(ωT2−ωT1)t





Since the new observed channel matrix is still diagonal, the clients can still continue to

decode the received signal as before.

The resulting system implements our intuition at the beginning of this section.

� 5.5 MegaMIMO Protocol

We start by describing the protocol at a high level, and follow by the detailed explanation.

MegaMIMO’s distributed transmission protocol works in two phases:

• MegaMIMO starts with a channel measurement phase, in which the APs measure

two types of channels:

1) the channels from themselves to the receivers (i.e., the matrix H), which is the

beamforming channel whose inverse the APs use to transmit data concurrently to

their clients; and

2) the channels from the lead AP to the slave APs (the hleadi ’s), which enables each

slave AP to determine its relative oscillator offset from the lead AP.

• The channel measurement phase is followed by the data transmission phase. In this

phase, the APs transmit jointly to deliver concurrent packets to multiple receivers.

Data transmission uses beamforming after having each slave AP corrects for its fre-

quency offset with respect to the lead AP.
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Figure 5-3: Packet Structure from the perspective of APs and the receiver. Symbols in blue are transmitted

by the lead AP, symbols in red by the slave AP, and symbols in white reflect silence periods.

Note that a single channel measurement phase can be followed by multiple data trans-

missions. Channels only need to be recomputed on the order of the coherence time of

the channel, which is several hundreds of milliseconds in typical indoor scenarios [52].

Section 5.7 describes how MegaMIMO reduces channel measurement overhead in greater

detail.

We now describe the channel measurement and data transmission phases in greater

detail. (The description below assumes symbol level time synchronization, for which we

use the scheme in [120], which provides tight synchronization up to a few nanoseconds.

Our experimental results also incorporate an implementation of that scheme).

� 5.5.1 Channel Measurement

The goal of channel measurement is to obtain a snapshot of the channels from all APs to

all clients, i.e., H and the reference channels from the lead AP to the slave APs, i.e., the

hleadi ,∀i.
The key point is that all these channels have to be measured at the same time, which is the

reference time t = 0. Otherwise the channels would rotate with respect to each other due

to frequency offsets and hence be inconsistent. Below, we divide channel measurement

into a few sub-procedures.
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(a) Collecting Measurements. The lead AP starts the channel measurement phase with

a synchronization header, followed by channel measurement symbols, i.e., known OFDM

symbols that the clients can use to estimate the channel. The channel measurement sym-

bols are separated by a constant gap, whose value is chosen to permit the slave APs to

send their channel measurement symbols interleaved with the symbols from the lead AP.

When the slave APs hear the synchronization header, they know to transmit their channel

measurement symbols in the gap, one after another, as shown in Fig. 5-3.

Thus, channel measurement symbols are repeated and interleaved. They are repeated

to enable the clients to obtain accurate channel measurements by averaging multiple esti-

mates to reduce the impact of noise. They are interleaved because we want the channels

to be measured as if they were measured at the same time. Since exactly simultaneous

transmissions will lead the APs to interfere with each other, MegaMIMO performs a close

approximation to simultaneous transmission by interleaving symbols from different APs.

(b) Estimating H at the clients. Upon reception of the packet in Fig. 5-3, each client per-

forms three tasks: it computes its carrier frequency offset (CFO) to each AP; it then uses its

knowledge of the transmitted symbols and the CFO to compute the channel from each AP

to itself; and finally it uses its knowledge of the CFOs to rotate the phase of the channels

so that they look as if they were measured exactly at the same time. We detail these tasks

below.

Different transmitters (i.e., APs) have different oscillator offsets to receivers, and each

receiver needs to measure the frequency offset from each transmitter to correct the corre-

sponding symbols from that transmitter appropriately. To enable this, the channel mea-

surement transmission uses CFO symbols from each AP followed by channel estimation

symbols similar to traditional OFDM [63]. The only departure is that the receiver computes

and uses different CFO and channel estimates for symbols corresponding to different APs.

Note that these channel estimates are still not completely simultaneous, in particular,

the channel estimation symbols of slave AP i is separated from the symbol of the lead AP

by i− 1 symbol widths, as shown in Fig. 5-3. The receiver compensates for this by rotating

the estimated channel for AP i by e−j∆ωi(i−1)kT+D (in each OFDM subcarrier), where T is

the duration of one OFDM symbol, k is the index of the interleaved symbol, and D is the

duration of the lead AP synchronization header. This ensures that all channels are mea-

sured at one reference time, which is the start of the synchronization header. The receiver
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averages the channel estimates (in each OFDM subcarrier) from each AP to cancel out the

noise and obtain an accurate estimate. The receivers then communicate these estimated

channels back to the transmitters over the wireless channel.

(c) Estimating the hleadi ’s at the Slave APs. Each slave AP uses the synchronization header

to compute the value of the channel from the lead AP to itself at the reference time hleadi (0).

Note that at the end of the channel measurement phase, each slave AP i has the entire

channel matrix to be used for beamforming, as well as a reference channel, hleadi (0) from

the lead AP which it will use during data transmissions, with all channels measured with

respect to one reference time.

� 5.5.2 Data Transmission

Now that the channels are measured, the APs can use beamforming to transmit data con-

currently without interference.

(a) AP Coordination: The APs need to agree on which packets are sent concurrently in

one beamforming frame. To do this we leverage the bandwidth of the backend Gigabit

Ethernet to send all client packets to all APs. The lead AP makes all control decisions and

communicate them to the slave APs over the Ethernet. In particular, it determines which

packets will be combined in a data transmission and communicates it to the slave APs over

the wired backend.

(b) Beamforming: Client packets are transmitted by joint beamforming from the

MegaMIMOAPs participating in the system. Note that slave APs need to correct the phase

of their signal prior to transmission. One way to do this would be for each slave to esti-

mate the frequency offset ωlead − ωslave from the lead to itself (using the synchronization

header from the previous phase) and then compute the net elapsed phase by calculating

(ωlead − ωslave)t, where t is the time elapsed since the channel measurement was taken.

However, this would lead to large accumulated errors over time because of any inaccu-

racies in the measurement of the initial frequency offset. For example, even a small error

of 100 Hz in the measurement of the initial frequency offset can lead to a large phase er-

ror of π radians in as short a timespan as 20 ms, and hence significantly affect the phase

alignment required for correct beamforming. Unless addressed, this error would prevent

MegaMIMO from amortizing the cost of a single channel measurement over the coherence
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time of the channel, e.g., 250 ms, and would force the system to repeat the process of mea-

suring H every few milliseconds, which means incurring the overhead of communicating

the channels from all clients to the APs almost every packet.

MegaMIMO avoids this issue of accumulating error over large timescales by directly

measuring the phase difference between the lead AP and the slave AP. Said differently in-

stead of multiplying the frequency offset ∆ω(= ωlead − ωslave) by the elapsed time (which

leads to errors that accumulate over time), MegaMIMO directly measures the phase differ-

ence∆φ(t)(= (ωlead − ωslave)t).

In MegaMIMO the lead AP initiates data transmission using a synchronization header,

as in channel estimation. Each slave AP use this synchronization header to measure the

current channel, hleadi (t) from the lead AP to itself. Note that the current channel will be

rotated relative to the reference channel because of the oscillator offset between the lead

AP and slave AP. In particular, hleadi (t) = hleadi (0)ej(ωT1−ωT2)t. Each slave can therefore

compute ej(ωT1−ωT2)t directly, from its two measurements of the lead AP channel. Such an

estimate does not have errors that accumulate over time because it is purely a division of

two direct measurements. The slave then multiplies its transmitted signal by this quantity,

as described in Section 5.4.

Now that all AP oscillators are synchronized at the beginning of the data transmis-

sion, the slave AP also needs to keep its oscillator synchronized with the lead transmitter

through the actual data packet itself. It does this by multiplying its transmitted signal by

ej(ωT1−ωT2)t where t is the time since the initial phase synchronization at the beginning

of the joint transmission. Note that this offset estimate only needs to be accurate within

the packet, i.e., for a few hundred microseconds or about 2 ms at most. MegaMIMO APs

maintain a continuously averaged estimate of their offset with the lead transmitter across

multiple transmissions to obtain a robust estimate that can maintain accurate phase syn-

chronization within a packet.

Two additional points about MegaMIMO’s synchronization are worth noting.

First, for ease of exposition, we have discussed the entire system so far in the context

of correcting carrier frequency offsets. However, any practical wireless system has to also

account for the sampling frequency offsets. Note that any offset in the sampling frequency

just adds to the phase error in each OFDM subcarrier. Since our phase offset estimation

using the synchronization header, described in Section 5.5, estimates the overall phase, it
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automatically accounts for the initial phase error accumulated from sampling frequency

offset. Within each packet, the MegaMIMO slave APs correct for the effect of sampling

frequency offset during the packet by using a long-term averaged estimate, similar to the

carrier frequency offset.

Second, as mentioned earlier, in Section 5.5, MegaMIMO APs are synchronized in time

using [120]. As described in [120], due to differences in propagation delays between dif-

ferent transmitters and different receivers, one cannot synchronize all transmitted signals

to arrive exactly at the same time at all receivers. It is important to note that MegaMIMO

works correctly even in the presence of different propagation delays between different

transmitters and receivers. This is because the signals from different MegaMIMOAPs will

arrive within a cyclic prefix of each other at all receivers.3 The delay differences between

the signals from different APs at a receiver translate to a relative phase difference between

the channels from these APs to that receiver. MegaMIMO’s channel measurement phase

captures these relative phase differences in the channel matrix, and MegaMIMO’s beam-

forming then applies the effect of these phase differences while computing the inverse of

the channel matrix.

� 5.5.3 Overarching Principles

In summary, the core challenge met by MegaMIMO’s design is to accurately estimate and

track the phase differences between each of theN clients andN APs. This challenge is par-

ticularly arduous for two reasons: (1) each receiver must simultaneously track the phase

of N independent transmitters, and (2) errors in the estimates in the CFO result in phase

offsets that accumulate over time, quickly leading to very large errors. Our general ap-

proach to tackling these challenges is to have all transmitters and receivers synchronize

their phase to that of a single lead transmitter. Our implementation of this approach has

been guided by following three overarching principles:

• Between APs and within a packet we can use estimated frequency and sampling

offsets to track phase: We can measure the frequency and sampling offsets between

APs accurately enough that the accumulated phase differences within a single packet

3In fact, since the common design scenario for MegaMIMO is confined locations like conference rooms
and auditoriums, the propagation delay differences between different APs to a receiver are in the tens of
nanoseconds, which is smaller than the 802.11 cyclic prefix of 400 or 800 ns, which is designed for worst case
multipaths.
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(10s to a few 100s of microseconds) are not significant enough to harm performance.

Specifically, since APs are a part of the infrastructure, and CFOs do not change sig-

nificantly over time, we can get very accurate estimates of the CFO between APs by

averaging over samples taken across many packets.

• Between APs and across packets we cannot use estimated frequency and sampling

offsets to track phase: The across packet time scales (10s to 100s of milliseconds)

are large enough that even with extremely accurate estimates of the frequency and

sampling offsets, the accumulated phase differences from residual errors will lead

to significant performance degradation. To handle this, MegaMIMO uses a single

header symbol to directly estimate the total phase offset and re-sync the phases of all

nodes at the beginning of each packet.

• Between a client and an AP, we cannot use estimated frequency and sampling

offsets to track phase even through a packet: Since clients are a transient part of the

network, we cannot get accurate enough estimates of frequency and sampling offsets

to use for phase tracking even within a single packet. Thus each client uses standard

OFDM techniques to track the phase of the lead AP symbol by symbol, Additionally

when performing channel estimation, the APs interleave their packets so that the

correction of the channels to a common reference time has minimal error.

� 5.6 Compatibility with 802.11

In order for MegaMIMO to work with clients using off-the-shelf 802.11 cards, MegaMIMO

needs to address two challenges:

1. Sync header: The sync header transmitted by the lead AP to allow the slave APs to

compute their oscillator offset, and trigger their transmission, is not supported by

802.11.

2. Channel measurement: Recall that MegaMIMO requires a snapshot of the channel

from all transmitters to all receivers measured at the same time. In Section 5.4, we

described how to do this with a custom channel measurement packet format with

interleaved symbols that allows a receiver to measure channels from all transmitters.
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However, such a packet format is not supported by 802.11, and hence 802.11 cards

cannot simultaneously measure channels from all APs at the same time.

MegaMIMO solves these issues in the context of 802.11n by leveraging 802.11n chan-

nel state information (CSI) feedback for beamforming. We now describe MegaMIMO’s

solutions to each of the challenges listed above.

� 5.6.1 Sync Header

The lead AP in MegaMIMO needs to prefix each transmission with a sync header that

allows the slave transmitters to measure their relative oscillator offset from the lead, and

also triggers their joint transmission. A mixed mode 802.11n packet essentially consists of

an 802.11n packet prefixedwith 5 legacy symbols. These legacy symbols are only intended

to trigger carrier sense in 802.11a/g nodes, and are not used by 802.11n receivers. Thus, the

lead MegaMIMO can use these legacy symbols as a sync header. MegaMIMO slave APs

use the legacy symbols to measure their oscillator phase offset from the lead, correct their

transmission signal, and join the lead AP’s transmission after the legacy symbols when the

actual 802.11n symbols are transmitted.

� 5.6.2 Channel Measurement

802.11n does not support the interleaved packet format that allows MegaMIMO to mea-

sure a snapshot of the channels from all the transmitters to a receiver simultaneously. Even

more fundamentally, an 802.11n receiver withK (at most 4) antennas can measure at most

K channels at a time. In a MegaMIMO system, the total number of transmit antennas

across all APs is larger than the number of antennas on any single receiver. Thus, a re-

ceiver with off-the-shelf 802.11n cards will be unable to simultaneously measure channels

from all transmit antennas to itself.

Naively, one could measure the channels from all transmit antennas by transmitting

a separate packet from each AP, and then correcting these channel measurements using

the estimated frequency offsets to the receiver like in Section 5.5.1. Unlike the scenario

in Section 5.5.1 where the transmissions from different APs are separated from each other

by only a few symbols (using interleaving), the transmissions from different APs here are

separated by at least one packet width. As discussed in Section 5.5.3, it is not practical
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Figure 5-4: 802.11 Channel Measurement. MegaMIMO measures channels with 802.11 clients by sending

a series of two-stream transmissions. Every transmission includes the reference antenna, L1, as well as one

other antenna (eitherL2 or S1 in our example). Note that for clarity, the figure does not show the transmissions

to/from R2 and S2, but MegaMIMO naturally measures the channels to R2 simultaneously.

to compute receiver frequency offsets accurately enough to ensure that the accumulated

phase error across packets will be tolerable.

MegaMIMO instead performs robust channel measurement by “tricking” the receiver

into measuring channels from different AP antennas simultaneously. This trick allows

MegaMIMO to measure the channel from each AP antenna to the receiver in conjunction

with a common reference channel to the receiver. Using such a common reference across all

measurements allows MegaMIMO to avoid measuring the receiver frequency offset, and in-

stead directly estimate the oscillator phase offset between different channel measurements,

and therefore compensate for it, as we describe below.

For simplicity, we focus on the scenario in Fig. 5-4 with 2 APs (a lead and a slave) and

1 client, where all nodes have 2 antennas each. In the rest of this discussion, we will focus

only on the channel measurements to R1 since the channels to R2 are naturally measured

simultaneously with R1 in exactly the same manner.

At time t0, L1 and L2 transmit a 2-stream packet jointly to R1. This measurement gives

us the channels L1 → R1 and L2 → R1 at time t0. In addition, S1 measures the channel

L1 → S1 using the synchronization header.
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At time t1, L1 and S1 trick the receiver by jointly transmitting a 2-stream packet from 2

different APs. This measurement gives us the channels L1 → R1 and S1 → R1 at time t1.

Again, S1 measures the channel L1 → S1 using the synchronization header.

The challenge is that we would like to obtain the channel S1 → R1 at time t0 but we

have only the channel S1 → R1 measured at t1.

We therefore need to correct our measured channel by the accumulated phase offset

between S1 and R1 in the time interval t0 to t1. To do this, we take advantage of the fact

that we can compute the accumulated phase offset between both L1 and R1, and between

L1 and S1 in the time interval t0 to t1.

• L1 and R1: We can compute this accumulated phase offset using the measurements

of the channel L1 → R1 at time t0 and time t1.

• L1 and S1: We can compute this accumulated phase offset using the measurements

of the channel L1 → S1 at time t0 and time t1.

The difference between these two accumulated phase offsets gives us the desired accumu-

lated phase offset between S1 and R1 in the time interval t0 to t1.

We can similarly measure the channel S2 → R1 in the next time slot, say t2, and rotate it

back to time t0. We can repeat this process for all AP antennas.

� 5.7 Decoupling Measurements to Different Receivers

The scheme described in Section 5.4 assumed that the channels from all APs to all receivers

are all measured at the same time. In Section 5.6.2, we showed how MegaMIMO could

measure channels from different APs to a single receiver at different times and compen-

sate for differences in oscillator offset by using a shared reference measurement across all

APs for that receiver. But what about the channels to a different receiver? If this receiver

joins the wireless network after the channels to the first receiver are measured, there is

no opportunity for a shared reference measurement between the two receivers. It might

therefore seem that MegaMIMO’s requirement for all channels to be measured at the same

time would necessitate measurement of channels to all receivers whenever a receiver joins

the network, or when a single receiver’s channels change.

In fact, we can show that such full measurement is not necessary, and that MegaMIMO

can decouple channel measurements to different receivers. The key idea is that
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MegaMIMO can use the channels from the lead AP to slave APs as a shared reference

in this case, instead of the channel from the lead AP to a receiver as was the case in Sec-

tion 5.6.2. We prove below that using such a shared reference allows MegaMIMO to mea-

sure channels to different receivers at different times, and still correctly performmulti-user

beamforming using distributed phase synchronization.

For simplicity, we focus on the example of two APs and two clients in Fig. 5-2. Let us

consider a system where the channels, h11 and h12, to receiver 1 are measured at time t1

and the channels, h21 and h22, to receiver 2 are measured at time t2. For a subsequent

transmission at time t, the channels experienced to receiver 1 experience a rotation cor-

responding to the time t− t1, while the channels experienced to receiver 2 experience a

rotation corresponding to time t− t2. In particular, the channel matrix experienced at time

t can be written as:

H(t) =





h11e
j(ωR1−ωT1)(t−t1) h12e

j(ωR1−ωT2)(t−t1)

h21e
j(ωR2−ωT1)(t−t2) h22e

j(ωR2−ωT2)(t−t2)





Recall that for MegaMIMO to perform distributed phase synchronization, we need

to decompose H(t) into the form R(t)HT(t) where H is time-invariant, and the time-

dependentmatrices R(t) and T(t) are diagonal, and the ith diagonal entry of T(t) (similarly

) depends only on parameters that the ith AP (similarly ith receiver) can estimate locally.

The APs can then all use the time invariant matrixH to calculate their beamforming signal,

and perform correction using the relevant entry of T(t).

We observe that H(t) can indeed be written in this desired form. Specifically, we can

writeH(t) as R(t)HT(t), where:

R(t) =





ej(ωR1−ωT1)(t−t1) 0

0 ej(ωR2−ωT1)(t−t2)





H =





h11 h12

h21 h22e
−j(ωT1−ωT2)(t2−t1)





T(t) =





1 0

0 ej(ωT1−ωT2)(t−t1)





Note that H is now time invariant as desired. The entries only depend on the oscillator
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offset between times t1 and t2. Slave AP i can easily compute this offset by using the

reference channel, hleadi from the lead measured at time t1 and t2.

Further, note that the diagonal entries of the matrix T(t) only depend on the frequency

offset of the corresponding slave AP from the lead AP, and hence each slave AP can, as

before, observe the channel of the sync header, compute the oscillator offset using the

channel measured at time t1 as reference, and correct its transmission appropriately.

Similarly the diagonal entries of the matrix R(t) only depend on the frequency offset of

the corresponding receiver from the lead AP, and hence each receiver can independently

decode its packet as if it were sent from a single transmitter.

Intuitively, this scheme can be understood as the slave AP rotating its measured chan-

nel to receiver 2 back to the time t1 by multiplying h22 by e−j(ωT1−ωT2)(t2−t1), and then

performing all future channel corrections relative to the time t1. This is why it corrects by

the time dependent quantity e−j(ωT1−ωT2)(t−t1) shown in T(t). The slave AP can, as before,

measure this quantity by observing the rotation of the phase of the channel from the lead

AP, T1, between the reference time t1 and the current t.

� 5.8 Diversity

MIMO systems can provide both multiplexing and diversity gains. So far, we have de-

scribed the use of MegaMIMO for multiplexing. The same discussion applies to diversity

except that in this case, we have all the APs transmitting jointly to a single client, say client

1. Each AP then computes its beamformed signal as
h∗

1i

‖h1i‖
x1 and slaves continue to perform

distributed phase synchronization as before.

� 5.9 MegaMIMO’s Link Layer

So far, we have described MegaMIMO’s physical layer, which enables multiple APs to

transmit simultaneously to multiple receivers. We now describe how MegaMIMO’s link

layer is designed to use this capability.

MAC and Carrier Sense: In MegaMIMO, all downlink packets are sent on the Ethernet to

all MegaMIMO APs. Thus, all APs in the network have the same downlink queue. Each

packet in the queue has a designated AP, which is the APwith the strongest SNR to the client
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to which that packet is destined. MegaMIMO always uses the packet at the head of the

queue for transmission, and nominates the designated AP of this packet as the lead AP for

this transmission. The lead AP then chooses additional packets (and corresponding slave

APs) for joint transmission with this packet in order to maximize the network throughput.

There are a variety of heuristics [159, 131, 158] that can be adopted for selecting the packets

for joint transmission, and we leave the exact algorithm for making this choice for future

work.

The lead AP contends on behalf of all slave APs, with its contention window weighted

by the number of packets in the joint transmission as described in [119]. Clients contend

for the medium as they do today using 802.11 CSMA.When the lead AP wins a contention

window, it starts transmitting its synchronization header, which causes the slave APs to

join the transmission. We note that contention for joint transmission by the lead AP is

robust to hidden terminals for two reasons. First, MegaMIMO is intended for dense de-

ployments like conference rooms where access points can hear each other, and the overall

wireless capacity is limited by interference between access points. Further, even in the un-

likely event of hidden terminals, situations causing persistent packet loss due to repeated

collisions can be detected using mechanisms like in [133], and the lead AP can ensure that

JMB access points that trigger hidden terminal packet loss above a threshold are not part

of the joint transmission. This ensures that both MegaMIMO joint transmissions, as well

as other transmissions, do not encounter persistent hidden terminals.

Rate Selection using Effective SNRs: In systems like MegaMIMO where different sets of

APs transmit concurrently for different packets, the rate to a client can change from packet

to packet as the effective channel at each client changes as a result of beamforming. Such

systems therefore need to use a rate-selection algorithm [90]. MegaMIMO uses the effec-

tive SNR algorithm, which is designed for rate selection for 802.11-like frequency selective

wideband channels [61]. Since APs in MegaMIMO know the full channel matrix, H, prior

to transmission. APs multiply the signals by kH−1 (k accounts for the maximum power

constraint at APs). Thus, the effective channel is kH−1H= kI, giving a signal strength of k2

at each client. Client cards report noiseN as in [11]. Clients send the noiseN to APs along

with the measured channels. Since APs know the signal strength, k2, in each subcarrier,

and the associated noise N , they can compute the SNR in each subcarrier as k2

N
. They can

then map this set of SNRs to rate by performing a table lookup [61]. Thus, each client in
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a MegaMIMO joint transmission gets the same rate, which is similar to traditional 802.11

fairness.

Acknowledgments: MegaMIMO disables synchronous ACKs at clients and uses higher

layer asynchronous acknowledgments like in prior work such as MRD and ZipTx [106, 91].

Further, similar to systems like Maranello [62], MegaMIMO can modify the firmware on

clients to implement an optimized joint synchronous acknowledgment protocol consisting

of a single SIFS, followed by back-to-back acknowledgments from all the clients.

Packet losses and retransmissions: It is important to note that, even though APs trans-

mit packets jointly to different receivers, packet losses at different clients are decoupled.

Specifically, if APs have stale channel information to a client, only the packet to that client

is affected, and packets at other clients will still be received correctly. As in regular 802.11,

APs in MegaMIMO keep packets in the queue until they are ACKed. If a packet is not

ACKed, they can be combined with other packets in the queue for future concurrent trans-

missions.

� 5.10 Testbed and Implementation

We implement MegaMIMO’s AP design in software radios and evaluate it with both off-

the-shelf 802.11 clients and software-radio clients.

(a) Implementation for the software radio testbed: In this testbed, each node is equippedwith a

USRP2 board [41], and an RFX2400 daughterboard, and communicates on a 10 MHz chan-

nel in the 2.4 GHz range. We implement OFDM in GNURadio, using various 802.11 mod-

ulations (BPSK, 4QAM, 16QAM, and 64QAM), coding rates, and choose between them

using the effective-SNR bitrate selection algorithm [61].

Our MegaMIMO implementation includes the following modules: distributed phase

alignment, beamforming for multiplexing and diversity, and bitrate selection. We do not

implement ACKs, CSMA, or retransmissions. To perform correct phase alignment, con-

current transmitters must be synchronized tightly at the sample level. We do this by us-

ing USRP2 timestamps to synchronize transmitters despite delays introduced by software.

Before every data packet, the lead AP sends a trigger signal on the medium at ttrigger. All

other APs log the timestamp of this signal, add a fixed delay t∆ to it, and then transmit

concurrently at this new time. We select t∆ as 150µs based on the maximum delay of our
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Figure 5-5: Testbed Topology. Client locations are marked by red circles, and AP locations by blue squares.

Note that the figure shows the set of possible locations for clients and APs, and different subsets of locations are picked

for different experiments.

software implementation. Finally, to optimize the software turnaround, we did not use

GNURadio, but wrote our own C code that directly interacts with the USRP hardware.

(b) Implementation for the 802.11 testbed: There are two main differences between this

testbed and the one above. First, each client in this testbed uses an off-the-shelf 802.11

card. Second, each node in this testbed has two antennas and can act as a MIMO node.

Our objective is to show that MegaMIMO extends beyond single antenna systems; For

example, it can combine two 2x2 MIMO systems to create a 4x4 MIMO system.

Each AP is built by connecting two USRP2 nodes via an external clock and making

them act as a 2-antenna node. Each client is a PC equipped with a Intel Wi-Fi Link 5300

a/b/g/n wireless network adapter on which 2 antennas are enabled. The Intel Wi-Fi Link

5300 adapters are updated with a custom firmware and associated iwlwifi driver in

order to obtain the channel state information in user space [60].

The AP software implementation is similar to the other testbed except that wemake the

channel width 20 MHz to communicate with actual 802.11 cards. The packet format is also

changed to match 802.11 packets. The client software collects the channel measurements

from the firmware and logs correctly decoded packets.

(c) Testbed Topology: We evaluate MegaMIMO in an indoor wireless testbed that simulates

a conference room or classroom, with APs deployed on ledges near the ceiling, and clients

scattered through the room. Fig. 5-5 shows node locations in the experimental environ-
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ment. In every run, the APs and clients are assigned randomly to these locations. Note

that the testbed exhibits significantly diverse SNRs as well as both line-of-sight and non

line-of-sight paths due to obstacles such as pillars, furniture, ledges etc. The APs transmit

1500 byte packets to the clients in all experiments.

� 5.11 Results

We evaluate MegaMIMO both through microbenchmarks of its individual components, as

well as an integrated system on both USRP and 802.11n testbed.

� 5.11.1 Microbenchmarks

(a) Necessity of Phase Alignment: A key challenge for a distributed MIMO system is

that it must compensate for oscillator offsets between the transmitters. In this section, we

demonstrate the impact of misalignment between transmitters on the received SNR.

Method. We simulate a simple 2-transmitter, 2-receiver system where different data

is intended for each receiver. The transmitters measure the initial channel matrix to the

receivers, and use this matrix to compute their beamforming vectors. We then introduce

a phase misalignment at the slave transmitter, and compute the reduction in SNR at each

receiver as a result of this misalignment. We repeat this process for 100 different random

channel matrices, phase misalignments from 0 to 0.5 radians, and for two systems - one in

which the average SNR is 10 dB, and other in which the average SNR is 20 dB.

Results. Fig. 5-6 shows the average reduction in SNR in dB, as a function of phase

misalignment. As one would expect, an increase in phase misalignment increases the in-

terference at each receiver. As the graph shows, even a phase misalignment as small as

0.35 radians4 , can cause an SNR reduction of almost 8 dB at an SNR of 20 dB. This SNR

reduction will be greater as we add more and more transmitters to the system. Further,

phase misalignment causes a greater reduction in SNR when the system is at higher SNR.

This is because the impact of additional noise added by interference is higher when the

original noise itself is low, i.e., at high SNR.

40.35 radians is much smaller than the misalignment expected with the mandated 802.11 tolerance of 20
ppm.
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Figure 5-6: Degradation of SNR due to phase misalignment. Even with only 2 transmitters, a misalignment

of just 0.35 radians can reduce the SNR by almost 8 dB at the receivers due to interference.

(b) Accuracy of MegaMIMO’s Phase Alignment: We now examine the accuracy of

MegaMIMO’s lightweight distributed phase alignment algorithm.

Method. In this experiment, we place two MegaMIMO nodes at random AP loca-

tions and a third MegaMIMO node at a receiver location. We randomly pick one of the

two APs to be the lead and the other to be the slave. The slave transmitter implements

MegaMIMO’s distributed phase synchronization algorithm, and performs phase correc-

tion on its transmission before joining the lead transmitter’s data transmission. In order

to measure the accuracy of MegaMIMO’s phase synchronization algorithm, we make the

lead and the slave APs alternate between transmitting OFDM symbols. In particular, each

transmitter’s transmission consists of pairs of an OFDM symbol followed by an OFDM

symbol length of silence. The transmissions of the lead and slave transmitter are offset by

1 symbol so that the receiver sees alternating symbols from lead and the slave transmitter.

The receiver estimates the lead and slave transmitter’s channels separately, and computes

the relative phase between them. We then perform several rounds of this measurement.

The receiver uses the first measurement of relative phase as a reference, and computes the

deviation of relative phase from this reference in subsequent transmissions.
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Figure 5-7: CDF of observed phase misalignment. The median misalignment is 0.017 radians, and the 95th

percentile misalignment is 0.05 radians.

Results. Fig. 5-7 plots the CDF of the absolute value of the deviation in relative phase

across all the experiments. If the lead and slave transmitter are always perfectly aligned,

the deviation should be zero. However, estimation errors due to noise and oscillator drift

due to the delay from when the slave measures the lead’s channel and turns around to

jointly transmit data will induce misalignment. As can be seen, however, the median mis-

alignment is less than 0.017 radians, and the 95th percentile misalignment is less than 0.05

radians. Based on Fig. 5-6, with two transmitters, MegaMIMO’s phase alignment algo-

rithm can ensure that the SNR of joint transmission is not reduced by 0.4 dB at the 95th

percentile.

(c) How does SNR reduction scale? The previous experiments examined in depth the

impact of misalignment and MegaMIMO’s precise alignment performance in the case of

a 2x2 distributed MIMO system. In this experiment, we observe how the SNR reduction

grows as we increase the number of transmitters in the system.

Method. We evaluate the SNR reduction in MegaMIMO in three effective SNR [61]

ranges: low (6-12 dB), medium (12-18 dB) and high (> 18 dB). For each range, we place

several MegaMIMO nodes in random AP locations in the testbed. We then place the same

number of MegaMIMO nodes in random client locations, such that all clients obtain an
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Figure 5-8: Accuracy of Phase Alignment. Average INR at receivers for various numbers of receivers across

different SNR ranges. INR stays below 1.5dB across SNRs even with 10 receivers.

effective SNR in the desired SNR range. For each placement, we then choose a client at

which all APs null their interference, i.e. the expected signal at that client is zero and mea-

sure the received signal power at that client. If phase alignment is perfect, the received

signal power should be comparable to noise, i.e. the ratio of the received signal power

to noise should be 0 dB. Any inaccuracy in phase misalignment will lead to interference,

manifest as a higher ratio of received power to noise, and produce a corresponding reduc-

tion in SNR if data were actually transmitted to that client. For each topology, we null at

each client, and compute the average interference to noise ratio (INR) across clients. We

repeat this experiment for different topologies, and different numbers of MegaMIMO APs

at low, medium and high SNRs.

Results. Fig. 5-8 shows the INR as a function of the number of MegaMIMOAPs at low,

medium and high SNRs. Note that, as before, the reduction in SNR increases with SNR,

but is below 1.5 dB even at high SNR. The INR also increases with the number of APs,

as the number of interferers increases, but increases gradually: only ∼ 0.13 dB for every

additional AP-client pair even at high SNR.
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� 5.11.2 Theoretical Scaling Behavior of MegaMIMO

The key promise of MegaMIMO is that it provides linear scaling of throughput with the

number of APs at all SNRs. However, it is known that traditional MIMO does not pro-

vide unbounded scaling as the number of transmit and receive antennas is increased [144].

Instead, it is known to provide only at most 4 to 8 degrees of freedom in typical indoor

scenarios. A natural question is whether MegaMIMO suffers from the same scaling limi-

tation.

In order to answer this question, we first need to understand how traditional MIMO

provides degrees-of-freedom gain over single antenna systems. In traditional MIMO, the

transmit (similarly, receive) antennas are placed very close to each other with adjacent

antennas separated by roughly half a wavelength. In particular, the distance between ad-

jacent antennas is negligible compared to the distance between the transmitter and the

receiver. Thus, in the presence of pure line-of-sight (LOS) channels, traditional MIMO

does not provide any additional degrees of freedom in comparison to a single antenna

system [144]. In order to obtain additional degrees of freedom, the transmitter therefore

needs to have multiple paths with significant angular separation to the receiver. In tradi-

tional MIMO, this requires the presence of reflected paths from reflectors in the environ-

ment that are far apart from each other. Thus, the degree of freedom gain in traditional

MIMO is limited by the number of multipaths in the environment.

However, in MegaMIMO, transmit antennas are located on separate nodes and hence

are naturally geographically separated from each other. Thus, we would expect that

MegaMIMO has the ability to obtain additional degrees of freedom even in a pure line-

of-sight environment since the paths from different transmit antennas have high angular

separation to the receiver, and also suffer significantly different attenuation relative to each

other.

We formally evaluate this intuition in a linear array scenario, with MegaMIMO APs

placed along one edge of a rectangular room, and clients placed along the opposite edge

of the room, as shown in Fig. 5-9. This is the MegaMIMO equivalent of a traditional multi-

antenna transmitter with a linear antenna array on one side of the room, and a multi-

antenna receiver on the opposite side of the room. However, the key difference from tra-

ditional MIMO is the large inter-antenna separation in MegaMIMO as compared to tradi-

tional MIMO.
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Figure 5-9: Linear Array Topology. This is the MegaMIMO equivalent of a traditional MIMO transmit and

receive array. This topology hasN APs spaced uniformly along one edge of a rectangular room, andN clients

similarly spaced along the opposite edge. The length of the AP array is Lmeters, and the AP-client separation

isH meters.

Our methodology is as follows. We pick a certain number of APs, N . For each N , we

lay out the APs uniformly separated on one edge of the room and the clients uniformly

separated along the other edge of the room. We model a pure line-of-sight scenario, i.e.,

there are no reflectors present in the environment. We compute the distance, dij between

each client k and AP l. Following [144], we then compute the corresponding channel be-

tween these antennas as hkl = d−ρ
kl exp(− j2πdkl

λ
) where λ is the carrier wavelength (0.125

m corresponding to the Wi-Fi carrier frequency of 2.4 GHz in our case) and ρ is the path

loss exponent. Since this is a pure line-of-sight environment, the path loss exponent is 1

corresponding to quadratic power loss in free space.

We first estimate how the conditioning of the channel matrix changes as we add more

APs and pack themmore densely. We compute this in a manner similar to [144]. In partic-

ular, for a particular number of APs,N , we compute the channel vectors from two adjacent

APs to all N clients. We then determine the two singular values of the 2×N matrix corre-

sponding to these two channel vectors, and evaluate the condition number as the ratio of

the maximum singular value to the minimum singular value. We vary the number of APs,

N for a given AP-client separation,H . We repeat this experiment for various values ofH .
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Figure 5-10: Condition number of the channel matrix as a function of inter-AP separation in line-of-sight.

The channel matrix becomes better conditioned as the inter-AP separation becomes larger. When the inter-AP

separations are very small, the system is poorly conditioned similar to traditional MIMO. At large inter-AP

separations, the system is well conditioned even in a pure line-of-sight scenario.
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Fig. 5-10 plots the condition number as a function of the inter-AP separation (repre-

sented as multiples of the carrier wavelength) for client-AP separations,H , of 12.5, 50, and

125 meters (100, 400, and 1000 wavelengths respectively, at 2.4 GHz) and an antenna array

length, L, of 125 meters (1000 wavelengths) . Figs. 5-10(b) and (c) zoom into Fig. 5-10(a)

when the inter-AP separations are small (less than a wavelength) and large (greater than 2

wavelengths).

A large condition number indicates that the channel matrix is poorly conditioned, i.e.,

there is not a significant degrees-of-freedom gain, and a condition number close to 1 in-

dicates that the matrix is well condition and provides degrees-of-freedom gain. There

are two points to note from the graph. First, for a given client-AP separation, the condi-

tioning of the matrix improves as the inter-AP separation increases. This is because the

channel vectors from the two different APs get increasingly different from each other as

the inter-AP separation increases. Fig. 5-10(b) shows the condition number when the AP-

client separation is less than a wavelength. When the AP-client separation is very small,

the behavior of the system is similar to that of traditional MIMO. The matrix is poorly

conditioned, implying that there are no degrees-of-freedom gains from multiple antennas.

As the AP-client separation increases, the system moves into a different regime, shown in

Fig. 5-10(c). In this regime, the channel vectors from the twoAPs get increasingly different,

and the matrix is much better conditioned. When the APs are separated from each other

by multiple wavelengths, the system therefore provides degrees-of-freedom gains even in

a pure line of sight scenario. In MegaMIMO, since APs are separated from each other by

large distances (tens of centimeters to multiple meters), it operates in the latter regime and

can therefore provide degree of freedom gains even in line-of-sight.

Second, for a given inter-AP separation, the matrix is better conditioned when the AP-

client separation is smaller. This is because the angular resolution of the client array is

greater when the APs are closer to the clients. However, even when the AP-client separa-

tion is as large as 1000 wavelengths (125 m, in the case of Wi-Fi at 2.4 GHz), the matrix is

well-conditioned for an inter-AP separation of about 10 wavelengths (1.25 m). It is not fea-

sible for a single MIMO AP to have antennas separated by such a large distance, but such

a topology is both feasible and natural in MegaMIMO, where degrees-of-freedom gain are

obtained from the antennas on separate APs.

Now that we have obtained the intuition for degrees-of-freedom gain in MegaMIMO,
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Figure 5-11: Throughput gain as a function of number of APs for different AP-client separations.

MegaMIMO provides degrees-of-freedom gain and linear throughput scaling even in a line-of-sight scenario

because it can take advantage of large inter-AP spacing. Further, as the AP-client distance decreases, the min-

imum required inter-AP spacing to obtain linear scaling decreases allowing MegaMIMO to pack more APs

in the same space. In both cases, as the number of APs becomes large (and the inter-AP spacing small), the

gains of a naive MegaMIMO system that uses all available APs reduce and eventually become zero. However,

as described in Section 5.9, an actual MegaMIMO system would not use all APs, but adaptively use only as

many APs as necessary to achieve the maximum possible gain, as indicated by the green horizontal lines.

we compute the actual throughput scaling provided by MegaMIMO as we increase the

number of APs. For this experiment, we fix the length of the AP array, L, to be 125 m (1000

wavelengths), and pick two client-AP separations (H), say, 50m (400 wavelengths) and

125m (1000 wavelengths). In order to ensure that both systems are operating in the same

SNR regime, we scale the transmit power so that the client SNR from the nearest AP is the

same independent of client-AP separation. This allows us to determine the gains arising

purely from channel variation in the two different client-AP separation scenarios.

Figs. 5-11(a) and (b) show the throughput gain of MegaMIMO relative to the through-

put of a single AP-client link for an SNR of 20 dB and for the two different client-AP sepa-

rations. As the figures show, the throughput gain increases roughly linearly initially as the

number of APs increases. This is because the matrix stays well conditioned (correspond-

ing to large antenna separation) as we continue to add more APs. Eventually, the matrix

starts gradually becoming worse and worse conditioned. While there are still degrees-

of-freedom gain as compared to a single AP-client pair, the gain of a naive MegaMIMO

system that greedily uses all available APs starts reducing as we increase the number of

APs. Finally, beyond a threshold, the APs are packed too closely together and the chan-

nel matrix is singular, at which point a naive MegaMIMO system can no longer obtain
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any throughput gains compared to a single AP-client pair. However, as described in Sec-

tion 5.9, an actual MegaMIMO system adds additional APs to a joint transmission only as

long as they increase the total throughput. Thus, it would not greedily use all available

APs, but instead adaptively use the largest number of APs where the system still achieves

linear gains, and pick different subsets of APs for transmitting to different clients. Its gain

would therefore not drop to zero, but stay at the point indicated by the green horizontal

lines in the graphs.

This graph shows that MegaMIMO can obtain linear throughput scaling (indicated by

the red line with slope approximately 1 in both graphs) from degrees-of-freedom gains up

to several hundreds of APs even in a pure line-of-sight scenario. Further, while the max-

imum achievable gain is smaller as the AP-client separation increases, MegaMIMO can

still achieve large scaling even when the AP-client separation is large, unlike traditional

MIMO.

Note that all the results in this section demonstrates the gains of MegaMIMO purely

from the channel variations in a line-of-sight scenario with no reflections in the environ-

ment. The presence of reflectors and the addition of non line-of-sight paths will provide

additional channel diversity, and therefore yield even larger degrees-of-freedom gains

than a pure line-of-sight scenario.

� 5.11.3 Increase of Network Throughput with the Number of APs

Now that we have seen that MegaMIMO can indeed provide linear scaling of throughput

with the number of APs in theory, we verify if MegaMIMO delivers on that promise in

practice.

Method. We evaluate MegaMIMO’s performance in three effective SNR ranges: low (6-

12 dB), medium (12-18 dB) and high (> 18 dB). For each range, we place a certain number

of MegaMIMO nodes in random AP locations in the testbed. We then place the same

number of nodes in random client locations such that all clients obtain an effective SNR in

the desired range. For each such topology, we measure the throughput obtained both with

regular 802.11 andMegaMIMO. Since USRP2 cannot perform carrier sense due to software

latency, we measure the throughput of 802.11 by scheduling each client so that it gets an

equal share of the medium. We repeat the experiment for 20 different topologies and also

vary the number of MegaMIMO APs for each SNR range.
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Figure 5-12: Scaling of throughput with the number of APs. In this experiment, the number of APs equals

the number of receivers. At all SNRs, MegaMIMO’s network throughput increases linearly with the number

of APs while total 802.11 throughput remains constant.
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Results. Figs. 5-12(a), (b), and (c) show the total throughput obtained by 802.11 and

by MegaMIMO for different numbers of APs, and different SNR ranges. Note that, as one

would expect, the obtained throughput increases with SNR (802.11 throughput at low SNR

is 7.75 Mbps, at medium SNR is around 14.9 Mbps, and at high SNR is 23.6 Mbps). There

are two main points worth noting:

• 802.11 cannot benefit from additional APs operating in the same channel, and allows

only one AP to be active at any given time. As a result, its throughput stays constant

even as the number of APs increases. This throughput might vary with the number

of APs in a real 802.11 network due to increased contention; however, since USRPs

don’t have carrier sense, we compute 802.11 throughput by providing each client

with an equal share of the medium. In contrast, with MegaMIMO, as we add more

APs, MegaMIMO can use theseAPs to transmit concurrent packets tomore receivers.

As a result, we see that the throughput of MegaMIMO increases linearly with the

number of APs.

• The absolute gains provided by MegaMIMO are higher at high (∼9.4× for 10 APs)

and medium (∼9.1×) SNRs, than at low SNRs (∼8.1×). This is a consequence of the

theoretically predicted throughput of beamforming. In particular, the beamforming

throughput withN APs scales asN log(SNR
K

) =N log(SNR)−N log(K), whereK de-

pends on the channel matrixH and is related to howwell conditioned it is [144]. Nat-

ural channel matrices can be considered random and well conditioned, and henceK

can essentially be treated as constant for our purposes. The 802.11 throughput scales

roughly as log(SNR) [144]. The expected gain of MegaMIMO over 802.11 can there-

fore be written as N(1− log(K)
log(SNR)) and hence becomes closer to N as SNR increases.

This is why, MegaMIMO’s gains at lower SNR grow at a lower rate than the gains at

high SNR.

� 5.11.4 Fairness

In this experiment, we verify if MegaMIMO is fair, i.e., it delivers the above throughput

gains to all nodes.

Method. We perform the same experiment as in Section 5.11.3. We then compute

the throughput gain of each node as the ratio of its throughput with MegaMIMO to its
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throughput with 802.11. As before, we vary the number of APs from 2 to 10, and repeat

across the full range of SNRs.

Results. Figs. 5-13(a), (b), and (c) plot the CDF of throughput gain for 2, 6 and 10 APs

at high, medium, and low SNRs. The results show that MegaMIMO is fair i.e. all nodes see

roughly the same throughput gains, and these match the gains in total throughput shown

in Section 5.11.3. Note that the CDF is wider at lower SNR. This is a consequence of greater

measurement noise at low SNR causing larger throughput differences between clients.

� 5.11.5 Diversity

As described in Section 5.8, in addition to providing multiplexing gains, MegaMIMO

can also provide throughput gains through diversity. In this section, we investigate

MegaMIMO’s diversity gains.

Method. We place several APs in random AP locations in the testbed, and one node

at a client location, ensuring it has roughly similar SNRs to all APs. We then compute

the throughput with regular 802.11 and MegaMIMO. We repeat the experiment with the

number of APs varying from 2 to 10, and plot the results for the range of operational SNRs

of 802.11.

Results. Fig. 5-14 shows throughput of 802.11 and MegaMIMO as a function of SNR

for 2, 4, 6, 8 and 10 APs. Note that MegaMIMO provides significant gains over 802.11,

especially at low SNRs. For instance, a client that has 0 dB channels to all APs (i.e. its re-

ceived power from each AP is about the same as the noise) cannot get any throughputwith

802.11. However the figure shows that, with 10 APs, such a client can achieve a through-

put of 21 Mbps with MegaMIMO. Thus, using MegaMIMO for diversity can significantly

expand the coverage range of an 802.11 deployment, and alleviate dead spots. This is

expected because with MegaMIMO’s coherent diversity, using APs to coherent combine

the signal can provide a multiplicative increase in the SNR of N2 [144]. This results in

significant throughput improvements in the low SNR regime.

� 5.11.6 Compatibility with 802.11

Finally, as described in Section 5.6, MegaMIMO is compatible with existing 802.11n cards.

In this section, we investigate whether MegaMIMO can deliver significant throughput

gains when used with commodity 802.11n cards. Further, since each AP and each 802.11n
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 0
 0.2
 0.4
 0.6
 0.8

 1

 1  2  3  4  5  6  7  8  9  10

F
ra

ct
io

n 
of

 r
ec

ei
ve

rs

Throughput Gain

2 APs
6 APs

10 APs

(c) Low SNR (6-12 dB)

Figure 5-13: Fairness. CDFs of per-client throughput gain. Across all SNRs, MegaMIMO provides all clients

with very similar gains.
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Figure 5-14: Diversity Throughput. Throughput of a MegaMIMO client when using diversity with 2, 4, 6, 8

and 10 APs. MegaMIMO can achieve close to maximum rate even to a client unable to receive any packets

with 802.11.

card in this system has 2 antennas, this experiment also verifies that MegaMIMO can pro-

vide its expected gains with multi-antenna transmitters and receivers.

Method. We place 2 MegaMIMO nodes at random AP locations in the testbed, and 2

802.11n receivers at random client locations in the testbed. For each topology, we com-

pute the total throughput with 802.11n and with MegaMIMO. As before, we compute the

802.11n throughput by giving each transmitter an equal share of the medium. We repeat

the experiment across multiple topologies and the entire range of SNRs.

Results. Fig. 5-15 shows the total throughput with and without MegaMIMOat high,

medium and low SNRs. Since we have two receivers in this experiment, the theoretically

throughput gain compared to 802.11n is 2×. The chart shows that MegaMIMO delivers an

average gain of 1.67-1.83× across all SNR ranges. Similar to the case with USRP receivers,

the gains in the high SNR regime are larger than gains in the low SNR regime.

We now investigate MegaMIMO’s fairness, i.e., whether MegaMIMO can deliver its

throughput gains for every receiver in the network across all locations and SNRs. Fig. 5-16

shows the CDF of the throughput gain achieved by MegaMIMO as compared to 802.11n



SECTION 5.11. RESULTS 193

0

50

100

150

200

250

High�SNR Medium�SNR Low�SNR

T
h
ro
u
g
h
p
u
t�
(M

b
p
s)

802.11n

MegaMIMO

Figure 5-15: Throughput achieved using MegaMIMO on off-the-shelf 802.11n cards. MegaMIMO signifi-

cantly improves the performance of off-the-shelf 802.11n cards at high (>18 dB), medium (12-18 dB) and low

(6-12 dB) SNRs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.6  1.7  1.8  1.9  2  2.1

F
ra

ct
io

n 
of

 r
un

s

Throughput Gain

Figure 5-16: Fairness Results. For all nodes in our testbed, MegaMIMO delivers a throughput gain between

1.65-2×, with a median gain of 1.8× across SNRs. This shows that MegaMIMO provides similar throughput

gains for every node in the network.



194 CHAPTER 5. MEGAMIMO: SCALING WIRELESS CAPACITY WITH USER DEMANDS

across all the runs. The results show that MegaMIMO delivers throughput gains between

1.65-2× for all the receivers and hence is fair to the receivers in the network.

� 5.12 Discussion

This chapter enables joint beamforming from distributed independent transmitters. The

key challenge in delivering this system is to perform accurate phase synchronization across

multiple distributed transmitters. The lessons learnt from building the system and testing

it with real hardware are : 1) Estimates of frequency offset can be made accurate enough

to predict (and hence correct) phase misalignment within an 802.11 packet; however, these

estimates cannot be used across multiple packets due to large build-ups in phase errors

over time; and 2) Joint multi-user beamforming can be achieved by synchronizing the

phases of all senders to one lead sender, and does not impose any phase synchronization

constraints on the receivers.

We believe that the design of MegaMIMO has wider implications than explored in this

chapter. In particular, several areas of information theory like lattice coding, noisy network

coding, and transmitter cooperation for cognitive networks [109, 89, 97] assume tight phase

synchronization across transmitters. The algorithms presented in this chapter can bring

these ideas closer to practice.



CHAPTER 6

Discussion and Concluding Remarks

We have seen a proliferation of wireless technologies and mobile devices in recent years.

This has resulted in rapid growth of wireless traffic, putting immense pressure on the

limited wireless spectrum available. The looming spectrum crunch necessitates the devel-

opment of new practical techniques to enhance spectrum utilization, and enable wireless

networks to keep up with the burgeoning demand. .

� 6.1 A Wireless Architecture for Cooperation and Cognition

This dissertation proposes an architecture for cooperation and cognition in wireless net-

works and shows that it can provide large gains in spectrum utilization in practice. Nodes

in today’s wireless networks typically only cooperate in a limited manner, orchestrating

their transmissions so that they do not transmit at the same time in the same frequency.

In contrast, this dissertation demonstrates systems that perform agile and fine-grained

cognition and cooperation within and across technologies. Specifically, it introduces the

following systems:

• SWIFT, a cognitive cross-technology solution that enables wideband devices to dy-

namically detect frequency bands occupied by narrowband devices, and weave the

remaining, possibly non-contiguous, unoccupied frequency bands into a single high

throughput link.

195
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• FARA, a cooperative system for multi-channel wireless systems like 802.11 to dy-

namically utilize all available spectrum for all devices, allocating to each link the

frequency bands that show the highest performance for that link.

• SourceSync, a system that synchronizes wireless nodes and enables them to transmit

the same data simultaneously, in order to increase channel reliability.

• MegaMIMO, a system that linearly scales wireless throughput with the number of

transmitters by enabling multiple transmitters to transmit simultaneously to multi-

ple receivers in the same frequency bands without interfering with each other.

In addition to increasing spectrum utilization, these systems present novel coordina-

tion and synchronization primitives that can serve as a building block for other cooper-

ative wireless systems. These include an adaptive spectrum sensing primitive that ex-

ploits higher layer network semantics to dynamically detect frequency bands occupied

by narrowband devices using unknown modulation schemes (SWIFT), a distributed con-

sensus scheme to agree on the frequency bands to use for communication in the absence

of a control channel (SWIFT), a mechanism for fine-grained time synchronization (within

20 ns) of transmissions from distributed senders (SourceSync), and a protocol for phase-

coherent transmission from distributedwireless transmitters driven by different oscillators

(MegaMIMO).

The dissertation demonstrates how these primitives can be practically implemented us-

ing cross-layer techniques, provides prototype implementations of our systems, and shows

that these implementations provide large gains in spectrum utilization compared to exist-

ing wireless designs. It thus lays a robust foundation for cooperative wireless systems that

can dynamically share access to spectrum both within and across technologies.

� 6.2 Future Work

The work on cooperation and cognition presented in this dissertation can be extended to

act as underpinnings of future agile networks.

There has been significant interest in recent years in dynamic access to white space fre-

quencies, which are the bands vacated by television channels after the move from analog

to digital. Similarly, a recent PCAST study [115] has advocated dynamic and opportunis-
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tic access by secondary users to frequency bands that are currently reserved for use by

the government. A key question is how access to these frequency bands will be mediated

both between primary and secondary users, as well as between a diversity of secondary

users. The FCC currently mandates the use of a spectrum database that maintains a list

of unoccupied frequencies in each geographic location to ensure that secondary users do

not interfere with primary users [146]. However, the exact mechanism by which different

secondary users will share spectrum amongst themselves remains an open question. This

is especially challenging since secondary users can use a variety of modulation techniques,

frequency bands, transmission protocols etc.. A possible solution will be to develop a spec-

trum sharing etiquette that allows secondary users to adaptively probe the spectrum they

are interested in a la SWIFT, and determine which parts of the spectrum they can use.

Such a spectrum sharing etiquette would be useful not just for whitespaces, but for the

large chunks of spectrum that are soon expected to become available for dynamic access

by unlicensed devices.

This dissertation has presented systems such as FARA, SourceSync and MegaMIMO

that synchronize wireless systems in frequency, time, and phase. The techniques pre-

sented in these systems can be used to build a unified wireless architecture that allows

multiple wireless nodes to cooperate at the physical layer. Such a system could be useful,

for instance, in wireless LANs or cellular networks, where the diversity of network con-

ditions across space and time will require dynamically adopting different techniques and

protocols for different transmitters and receivers. For instance, such a cooperative wireless

system could use a mechanism like SourceSync for users in dead spots, while leverag-

ing MegaMIMO to scale network throughput to users with good connectivity. Further,

an architecture that coordinates multiple transmitters as a first order primitive simplifies

handling of network functions like mobility. Building such a wireless network requires ad-

dressing various additional questions over and above the work in this dissertation: What

are the different network components in such an architecture? What is the API presented

by transmitting and receiving nodes to the network, both to expose physical layer informa-

tion to the network, and for the network to control transmission and reception algorithms

at the nodes? What are the algorithms and heuristics that the network should use to switch

between different transmission and reception schemes?
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With the increasing diversity of wireless devices and traffic patterns, it has become cru-

cial that agility be a primary consideration in the design of wireless networks. In partic-

ular, wireless networks need to exploit opportunities for higher spectrum utilization aris-

ing from variations in spectral occupancy and channel conditions across time and space.

This dissertation demonstrates practical wireless systems that do so using cross-layer al-

gorithms for cooperation and cognition. The ideas underlying these systems will form the

foundation of future high-throughput wireless systems.
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