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Abstract

The increasing demand for connectivity and broadband wireless access is leading to the fifth
generation (5G) of cellular networks. The overall scope of 5G is greater in client width and
diversity than in previous generations, requiring substantial changes to network topologies
and air interfaces. This divergence from existing network designs is prompting a massive
growth in research, with the U.S. government alone investing $400 million in advanced
wireless technologies. 5G is projected to enable the connectivity of 20 billion devices by
2020, and dominate such areas as vehicular networking and the Internet of Things. However,
many challenges exist to enable large scale deployment and general adoption of the cellular
industries.

In this dissertation, we propose three new additions to the literature to further the
progression 5G development. These additions approach 5G from top down and bottom up
perspectives considering interference modeling and physical layer prototyping. Heteroge-
neous deployments are considered from a purely analytical perspective, modeling co-channel
interference between and among both macrocell and femtocell tiers. We further enhance
these models with parameterized directional antennas and integrate them into a novel mixed
point process study of the network. At the air interface, we examine Software-Defined Radio
(SDR) development of physical link level simulations. First, we introduce a new algorithm
acceleration framework for MATLAB, enabling real-time and concurrent applications. FEx-
tensible beyond SDR alone, this dataflow framework can provide application speedup for
stream-based or data dependent processing. Furthermore, using SDRs we develop a localiza-
tion testbed for dense deployments of 5G smallcells. Providing real-time tracking of targets
using foundational direction of arrival estimation techniques, including a new OFDM based

correlation implementation.
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Chapter 1

Introduction

1.1 Motivation

Wireless communication and networks have become a dominant force in commercial
business, military operations, and everyday life of typical consumers. Such networks are
an essential component of modern societal infrastructure, and are continually expanding
to meet demand. Networks themselves have incrementally advanced over time starting
with first generation analog systems of the 1970’s [I] and reaching the high-speed digital
networks we know today in their third and fourth generations. However, the community at
large is a the beginning a new frontier in research where expectations of scale and capacity
will be without precedent, all to meet the massive projected hunger for connectivity. This
next evolution in cellular technology will be the fifth generation (5G) and is expected to be
deployed by 2020.

Unlike previous network generations, there will be a much wider and diverse user equip-
ment (UE) base to support with varying sets of new requirements in 5G. This growth is
driven by the higher connectivity of devices, convergence or transition of traditional Wi-Fi
targeted markets with cellular technology, and alternative deployment use cases. To meet
this demand 5G networks promise link speeds to reach tens of gigabits [2] and larger degrees
of connectivity. As shown in Figure 1.1, a hundred fold increase from existing LTE networks

and greater than four orders of magnitude increase from 3G networks.
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Figure 1.1: Speed comparison across generations of deployed digital cellular networks. Speed
is related to common tasks to provide perspective on user experience [(].

Comparatively to next generation networks, 3G and 4G have experienced limited ex-
posure to the Internet since cellular modems are rarely found outside of phones or tables.
However, this dynamic is estimated to change in 5G, with an expectation that smart-phone
traffic will exceed PC traffic by 2020 [3]. Unlike past networks with a major of growth
coming from human-centric communications machine-type or machine-to-machine (M2M)
applications will utilize an important portion of the available bandwidth, especially as in-
dustries become more vertically integrated and reliant on automation [4]. Overall, the
combined user and machine population is projected to reach 25 Billion connected devices
by 2020 [5].

This evolution in machine-type communications to this scale is not only driving 5G de-
velopment, but Wi-Fi and core networking architecture as well. This movement is more
generally known as the “Internet of Things” (IoT), as coined by Peter Lewis in 1985 [7],
and is a main driver behind 5G network design. IoT itself brings to light this concept that

both human devices and machines can be uniquely addressable through the Internet and in
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essence everything will be connected. Therefore, mobile and wireless communications will
be key enablers for the IoT. 5G in particular will enable IoT for new use cases and com-
mercial sectors where so far mobile communication has been nonexistent. Providing many
applications with the required minimal latency and throughput requirements, which are cur-
rently impractical at scale. Key examples are Cyber-Physical-Systems (CPS) where sensors,
people, and environments are integrated through communication network [4]. Hence, IoT
applications expand requirements of future deployments by demanding substantial increases
in supported connectivity.

Beyond simplistic sensors, 5G is already being targeted for vehicular networks to provide
both vehicle-to-vehicle (V2V) communications and vehicle-to-everything (V2X) as well [3].
V2V and V2X applications can leverage M2M protocols in 5G, as well as take advantage
of quality of service (QoS) designs for emergency communications. Unlike the Wi-Fi based
standard for vehicular networking IEEE 802.11p, which is more random access based [9], 5G
has a significant advantage due to advanced deterministic scheduling techniques along with
link directionality. Both these features becoming invaluable as network densities increase.

Besides mobile based clients, 5G is also being considered as a method for providing
general broadband access to communities. Taking over the proverbial “last mile”, cellular
deployments can be an obvious alternative to laying fiber close to communities for con-
nectivity. This is already a common paradigm in developing countries by companies like
Vanu [10] with GSM deployments. However, with 5G fiber-like speeds could be realized
with a similar deployment and similar remote areas to be easily connected. Besides the
general deployments, remote residencies which are serviced by hyperdirectional microwave
links could also be replaced by 5G as well. Overall, 5G “last mile” deployments would
reduce the cost and construction time required for increased speeds in residential areas.

In general, 5G hopes to touch many new areas that were traditional strongholds for
Wi-Fi and even wired networks. However, with this massive projected level of connectivity,
especially for alternatives to fiber deployments, 5G is not without many fundamental chal-
lenges. The center at many of these problems is the lack of spectrum or electromagnetic
real estate available. Due to the proliferation of wireless technology there has become pro-

nounced scarcity in the the UHF through SHF bands as seen by the frequency allocations in
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Figure 1.2: Frequency allocation of the United States for radio frequency bands [12].

Figure 1.2. Discussions into spectrum scarcity have been a focus of academic research, gov-
ernment regulation, and commercial business for the past decade [11]. As a result, much of
the research for 5G has begun to focus on new spectral efficiency strategies, hybrid network
topologies, and techniques requiring advanced radio designs and logic. Alternatively, there
is a departure from the traditional frequency bands to mm Wave ranges, where spectrum is
abundant. However, there are still many physical limitations that need to be overcome to
operate large networks at these frequencies.

Hybrid or heterogeneous topologies are not a new discussion in cellular networks, exist-
ing in both 3G and 4G networks in the form of pico, micro, and femto-cells. In 2013 98% of
mobile operators believed that smallcells would be essential for future networks [13]. How-
ever, the massive roll out of these smallcells has not been realized in either generation [14].
Nonetheless, dense deployment of these smallcells is a primary strategy in 5G networks to
allow for spatial reuse and macro-cell offloading through residential backbones. mm Wauve
equipment arrival may be the driving force behind these smallcells due to the limited range

and propagation limitations [15]. However, these propagation issues are still an area of
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Figure 1.3: MATLAB SDR platform connectivity for real-world signal analysis [21].

concern and require additional research by the community at large.

Uniquely positioned to accelerate this research at the air interface level, are Software-
Defined Radios (SDR) [16]. SDRs allow for faster development and testing of waveforms
and modems than traditional ASIC only implementations. Since SDRs actually allow for
physical simulations we can go beyond synthetic models and operate in these new unknown
realms. 5G is especially unique since the community has limited experience in mm Wave
bands, and multi-node networks are especially challenging to model correctly in the electro-
magnetic space. Therefore, synthetic simulations of environments for 5G networks will not
always be enough and practical implementations will be required to prove network feasibil-
ity. Nonetheless, even with SDRs prototyping hardware and software have matured slowly
in these areas and still present challenges [17]. Such software is particularly absent from
widely available or cost effective tools [18], and implementations rarely go beyond single
point-to-point (P2P) links. For example in Figure 1.3 MATLAB provides LTE standards
compliant reception, but is limited to non-real-time recovery and does not address medium
access control. Even so, this bar is being lowered through both closed and open-source
packages [19] with heterogeneous computing and natural development. However, SDRs
have become a staple in both academia and industry, but software frameworks for these
devices are not simply turnkey and require deep knowledge to provide efficient implementa-
tions. In general SDRs have become more capable since their introduction in the 1990’s [20],
but available software tools are limiting.

In this section we have provided motivation and direction of 5G networks, including
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their relation to prototyping through use of SDR hardware. In the upcoming years both
academic research and commercial investment in 5G technologies will be significant. The
US government alone will be investing $400 million into 5G research [22] and the UK is even
going beyond that with a $740 million (1 billion pounds) investment [23]. These investments,
along with industry ventures, will begin to tackle the problems still left unsolved for the

next generation of networks.

1.2 State-of-the-Art

As discussed in the previous section, there is a wide range of applications in 5G net-
works and research trying to address challenges. However, in this dissertation we focus
on dense deployments in heterogeneous networks, and physical layer prototyping of these
dense networks with SDRs. In this section we will provide a brief overview of currently
adopted technologies that are foundational for 5G, as well as discussions on related topics.
This background will help frame the remaining chapters, providing perspectives on current
network designs and future enhancements researchers hope to make.

To provide this increased capacity and coverage requires new deployments models beyond
only traditional large cells. This introduces the main area of discussion and research of
this dissertation, where we investigate hybrid deployment models and network designs.
Heterogeneous networks (HetNets) are of specific interest, since they can provide significant
capacity gains over traditional networks by exploiting spatial reuse. Spatial reuse increases
the number of cells per geographical area through new BS deployments. These deployments
will be made up of smaller and less powerful BSs called Femtocell BSs (FBS) and Picocell
BSs (PBS), are placed within the transmission domain of larger Macrocell BSs (MBS).
However, due to this intracell overlap these deployment will not be without issues.

Figure 1.5 provides a simple example of a HetNet deployment with a single MBS and
many FBS. In this type of network, mobile users can be offloaded to nearby FBS instead
of all competing for MBS resources, thus drastically changing the user per cell ratio (UCR)
to be more favorable. Such network designs have existed in LTE-Advances releases [24],

but have yet to be densely commercially deployed as discussed in Section 1.1. However,
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Figure 1.4: Example intercell deployment of MBS with many FBS. FBS utilize Internet
backbones to communicate with the LTE Evolved Packet Core (EPC).

with 5G and the introduction of mm Wave communications, nearby smallcells have become
a network requirement for mobile connectivity. This is a direct result of mm Wave oper-
ational bands, which can have significant propagation loss [25] especially in moisture rich
environments. FBS can be deployed as Wi-Fi router replacements in consumer homes, or
even more generally in public places such as airports or congregation areas. However, their
topology compared with MBS is considered unstructured.

When considering traditional, or sub 10 GHz communications, as deployment densities
increase that provides new aspects to the network. First, with many more BS new ap-
plications can be implemented; such as multi-point communication links, localization, and
generally more resources at the BS can be spent on individual users. However, with many
more BS devices, co-channel interference will increase and due to the scheduled nature of cel-
lular access, primarily in the down-link, serious collisions can occur. Currently LTE releases
10 and 12 provide inter-cell interference coordination (ICIC) and evolved ICIC (eICIC) [20]
to help manage this inter-cell interference. ICIC primarily operates by uniquely scheduling
users with adjacent MBS on cell edges in pre-defined resource blocks. elCIC extends this
concept to utilize almost blank subframes (ABS) at different but known intervals so FBS
or PBS can schedule users on their edges into these resource blocks. However, co-tier inter-

ference remains in the lower tiers of HetNets and cell edge users can still be impacted by
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Figure 1.5: elICIC scheduling example using ABS between a single MBS and a single
FBS [25].

environmental conditions or miss-configurations [27]. Co-tier interference has a high proba-
bility in dense residential or apartment complexes with many closely deployed subscribers.
When we expand this discussion to 5G networks, the same problems exist but may be less
impact full because of mm Wave propagation issues. However, due to unknown deployment
strategies, control of these interference domains may become important.

The second aspect of this research is based in physical simulation prototyping, allowing
design verification and design proof of concept, which will become important due to the envi-
ronmental considerations in 5G. Currently, for link-level and local area physical simulations
there are three major products or projects for implementing system: MATLAB/Simulink,
GNURadio, and LabVIEW. All three provide varying levels of performance for P2P links,
and limited support for building up bidirectional communications. However, each platform
does provide a library of signal processing and data manipulation tools. These tools domi-
nate most of landscape for SDR prototyping, or at least early stage prototyping. MATLAB
specifically has extensive support for WLAN [29] and LTE standard waveform generation
and recovery [30]. However, real-time operational performance is almost nonexistent at min-
imum bandwidth specifications for the SDR hardware. Nonetheless, these platforms have
begun to expand into the heterogeneous computing architectures to offload computations
to FPGA or DSP devices [31]. With their current offerings such offloading are very time
consuming to implement and require domain specific knowledge. Therefore, even decades
old waveforms can be difficult to realize with the available tools for the common engineer
or researcher.

SDRs themselves have become more capable at lower costs. The market now includes
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such devices as the USRP [32], LimeSDR [33], FMComms [31], WARP [35], among many
others. However, most are supported by the same tool sets already discussed essentially
making them limited by those workflows and software capabilities. The obvious paradigm in
progressive designs is the use of heterogeneous processing units to enable higher processing
rates. To support modern standards and future waveform developments requires larger
bandwidth, and therefore more computational power. As a result, large FPGAs, DSPs,
and ARM based processors have begun to appear on these devices. However, these devices
can be vastly more difficult to utilize and program compared to general purpose processors.
Such accelerator type devices can also dramatically increase the cost of an SDR.

In summary, there exists several technical challenges when operating dense HetNets in
spite of the advantages associated with current LTE and LTE-A standards. The major
challenge is co-tier interference modeling and management in these non-traditional environ-
ments. Physical simulation of these links is also still difficult, even with modern advances in
SDR technology. Other technical challenges associated with HetNet and physical simulation

prototyping are:

e Dynamic loading between tiers and effectively selection of ABS length is difficult to

manage to maintain capacity requirements;

e Mobility and handover management with smallcells, specifically when FBS count is

high, makes adaptive scheduling computationally complex;

e Unstructured deployments of FBS makes intercell interference more complicated since
FBS cross MBS cell boundaries and localized interference can be unknown outside of

cell boundaries;

e Alternative resource management techniques such as channelization reduce overall ca-

pacity but decrease interference across tier levels but co-tier interference still remains.

e Network level physical simulations are scarce or even non-existent in commercial prod-

ucts utilizing SDR hardware;

e Bandwidth and latency control is difficult with general purpose processor-only designs
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and heterogeneous programming still remains non-mainstream or difficult in software

packages for SDRs.

In this research we focus on three specific technical challenges for enabling 5G technologies

and research:

e Prototyping difficulty of link level communications based on standardized systems for

physical simulation.

e Modeling of large deployments spatially with standards base feature set, and future

capabilities.

e Applications made possible by 5G dense deployments with a focus on localization.

1.3 Research Questions To Be Answered

The main objective of this dissertation is to advance research of 5G systems further from
two distinct perspectives. First, a top down analytical approach that examines interference
impacts in dense networks and techniques for reducing affects co-located links. Second,
practical implementations and tools for prototyping 5G applications with SDR devices.

Therefore, both approaches provide several research questions to be answered, namely:

e What is the affect of co-channel interference in NetNets? What techniques can be

used to reduce this interference and what is their effectiveness?

e What are shortcoming in existing tools for prototyping wireless devices and wave-
forms? How can we provide acceptable performance to such tools without making

them difficult or time-consuming to use?

e Can client offloaded tasks to the network be performed reliably and on reasonable
hardware? What kind of performance can we expect of real-world applications for

clients in these dense networks?
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1.4 Research Contributions

Based on the understanding of the state-of-the-art, this PhD dissertation will provide
novel strategies for modeling of HetNets stochastically and link level prototyping of physical

simulations. The contributions of the research so far are the following:

e A dataflow algorithm acceleration framework for MATLAB (Chapter 3):
A proposed framework for algorithm acceleration for real-time signal processing and
communications. Here, a function level general concurrency environment is imple-
mented, taking advantage of multi-core CPU architectures, made available to MAT-
LAB user-space. A real-time 802.11a receiver was built with this framework using

Software-Defined Radios (SDR) to recover real-world signals.

e Modeling of K-Tier HetNets using stochastic techniques (Chapter 4): Net-
works of MBSs and FBSs are spatially modeled jointly, and coverage performance is
evaluated for connected users. Heterogeneous transmit powers and tier densities are
contrasted for a growing FBS population. Finally, directional antennas are explored

to reduce interference effect of new FBS on MBS.

e Prototyping of localization in dense FBS networks (Chapter 5): SDR pro-
totype is implemented for real-time direction finding and localization through coor-
dination. Traditional direction of arrival (DoA) are contrasted against an OFDM
based architecture, both implemented and tested with real world signals. Indoor and

idealized chamber based measurements are explored.

1.5 Dissertation Outline

Chapter 2 discusses the current state-of-the-art for cellular network modeling, and phys-
ical simulation techniques and rapid prototyping in SDR. In Chapter 3, a novel prototyping
framework for real-time signal processing is presented. First, a theoretical analysis of con-
currency in computation is provided for two parallel paradigms. Next, implementation
details are explained which include MATLAB integration, as well as the programming in-

terface from MATLAB. Followed by performance analysis of the framework itself and a
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demonstration of gains over serialized code. Finally, a case study of a 802.11a receiver built
with this framework is discussed.

In Chapter 4, stochastic network modeling is discussed for HetNets. A new mixed point
process model is developed specifically for MBS/FBS tiering scenarios. Model descriptions
and reasoning is provided for the following analysis using stochastic geometry techniques.
Overall derivations for coverage are provided for two point process (PP) models, which
include directional antennas, and network tiering. Then, spatial capacity is discuss with this
network model certain network scenarios focused on MBS and FBS deployments. Finally,
deployment strategies are discussed based on the results of this analysis.

In Chapter 5, a prototype real-time localization system is constructed and evaluated.
The analysis focuses on development strategies and numerical performance of different com-
ponents as well as the overall SDR system. An automated phase synchronization harness
was developed to provided the required phase coherence of different SDR receiver chains.
Additional antenna compensation provides calibration using transmitters at known posi-

tions.
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Chapter 2

Background Fundamentals

The overarching topics discussed in this work focus around smallcells or FBS. This work
examines the effects that small-cells have on an existing network, their use in different sens-
ing strategies, and architectures for performing physical simulation link level analysis. This
chapter provides some background knowledge on the existing literature and tooling in these
research areas, for which will be expanded upon in the following chapters. Furthermore,
since SDR prototyping is the dominant platform for radio development and testing two of
the three subjects discussed in this dissertation focus on the SDR area. These SDR. topics
are approached from two perspectives: the first addresses algorithm acceleration for SDR,
and the second uses SDR to perform real-time direction finding and localization. The third
topic is a pure analytical analysis of HetNets using stochastic geometry techniques. In
general, this research approaches HetNets from a top down and bottom up perspectives,
pushing the literature and prototyping capability closer together. Due to the complexity
of current network designs and new technologies to be integrated, these perspectives are

logical.

2.1 Software-Defined Radio Prototyping Technologies

In this section, prototyping of wireless radio technologies is addressed from a computa-
tional perspective. Communication systems in general have been at the forefront of compu-

tational speed and efficiency, and even today development of capable hardware and software
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is of great interest to commercial and industrial applications. However, software and hard-
ware do not always go instep with one another. Therefore, in this work current software
frameworks and how they take advantage of hardware designs are discussed. In Chapter 3
a new framework will be introduced to help reduce this disparity, while reducing developer
overhead. As mentioned previously, SDR development will be an overarching theme in this
work and is more importantly itself highly focused on computational complexity.

With modern consumer CPU architectures growing in core count instead of higher core
clocks, system throughput can be efficiently maximized by expanding an algorithm over
many cores. The applications of interest are with respect to areas signal processing, but such
ideas can be expanded to other high performance compute applications, such as machine
learning, data science, financial analysis, and other similar applications. Signal processing
naturally fits into this coding architecture for applications such as signal recovery, track-
ing, and decoding. In these applications, the tasks can be pipelined, providing increased
throughput or reduced output latency, assuming the algorithm is spanned over many cores
instead of a single thread.

Parallelism can be performed in computation at many different levels: At the lowest
level, modern single CPU cores can execute several basic operations simultaneously with
single instruction, multiple data (SIMD) specialized commands [36], or more generically
known as vector commands. Programming with a domain-specific language (DSL) provides
fast development and natural problem formulation, but can be limiting on actual compu-
tational features. In this dissertation we focus primarily on MATLAB [37], but other DSLs
such as R [38] and Octave [39] share in the fact that they provide limited multicore ex-
ploitation. This can be even difficult to realize in more general languages that maintain
scientific libraries such as Python [10] with SciPy [11]. It is important to note that behind
many functions in these languages/products are implementations of external BLAS (level 3)
libraries that use multiple threads to do parts of basic vector and matrix operations in par-
allel [12], and even higher level functionality is available through OpenMP or pthreads [13]
in these products. However, essentially all general purpose programming languages increase
performance with two categorical parallelism approaches, which are vectorization and con-

currency /threading. Unfortunately, these implementations require knowledge of the under-
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lying hardware, and in many cases are not portable between platforms. Although, if these
approaches can be exploited significant gains can be made. An example of this results is
in Figure 2.1, where we examine the computation time of a square matrix multiplication
of OpenBLAS [11] versus generic loop code. As the matrix size increases, there is obvious

performance benefit of vectorization provided by OpenBLAS.
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Figure 2.1: Comparision of matrix multiplication of two square matrices (A = B x ('), with
loops (red) vs. BLAS (blue) vector calls (dgemm).

With the growth of research areas such a Big Data and Machine Learning, it has become
more important to utilize parallelism when possible. As a result, we have seen the introduc-
tion of Google’s TensorFlow project [15], Apache Beam [16], and migrations to functional
programming languages that naturally fit into flow based architectures [17]. Algorithmic ac-
celeration has seen explosive growth in the hardware sectors with GPU and FPGA accelera-
tors becoming more common, and their software architectures (CUDA, OpenCL, HDL/Ver-
ilog) becoming easier to use [1&]. Such accelerators naturally fit into these flow paradigms,
since they operate in tandem with existing general purpose processor operations. As a re-
sult, developers can partition algorithms appropriately where highly parallelized task can

run on accelerators and more complex serial computations can be general purpose processor
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targeted.

However, even though dataflow architectures do exist in many implementations, their us-
ability is questionable. A comparison is made in Figure 2.2 between several of the discussed
platforms, primarily those used for signal processing. GNURadio is an extremely capable
tool, but has a very large learning curve. In direct contrast to GNURadio is LabVIEW,
which relies on a large number of built-in functions to perform process, and technically
requires no programming to perform similar processing. However, if built-in functions do

not exist, they can be very challenging to be implemented by the user. Therefore, we can

A

GNURadio

TensorFlow
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LabVIEW
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Figure 2.2: Comparision of dataflow architectures in terms of complexity to use vs. their
capability as a platform to implement general mathematical processing.

observe this trade-off of capability and usability. DSLs lean toward the side of usability,
will frameworks or tools exposing the underlying languages have vastly more capability and
control. Now since these tools do not exist in isolation, most developer or scientists tend
to design in one platform and deploy in another. It can be challenging for DSLs specif-
ically to cross the boundary into this deployment stage. General languages just tend to

inconvenience users, require more work or code to accomplish the same goals.
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Focusing on MATLARB specifically, parallelism exploitation has been introduced in many
forms but can be categories into two main areas. First are highly data independent im-
plementations, where work can be spread over many cores and many machines. The two
main projects in this area include pMATLAB [19] and MathWorks’ own Parallel Computing
Toolbox [50]. Second are alternative MATLAB language compilers, which convert MAT-
LAB code into C/C++, fortran, or specialized kernels which are parallelized. Such designs
include MATISSE [51], MEGHA [52], and StencilPaC [53]. Additional extensions have
been added to MEGHA introducing runtime thread management with Intel’s Threading
Building Blocks [51].

In Chapter 3, we will present an architecture to expand MATLAB in order to enable DF
based parallelism and general concurrency for the purpose of stream processing acceleration
and task concurrency. Helping MATLAB cross the gap into more real-time operations. We
provide a user configurable flowgraph, where functions produced from MATLAB are run
concurrently and pass data between one another. The goal of this framework is to handle
the threading and data passing between MATLAB functions, such that developers can focus
on algorithmic aspects of their code rather than handling data flow. MATLAB itself is a
dominant tool in data sciences, engineering, and many other fields, reaching the top ten
of IEEE Spectrum’s programming languages [11]. Currently, MATLAB does not offer any
DF or simpler cascaded tasked based parallelism that are available to the user. Expanding
MATLAB to include this framework can provide significant acceleration of current scientific

work, without difficulties of other languages/frameworks that do provide this capability.

2.2 Stochastic Network Models

In this section, stochastic network modeling is discussed to provide additional motivation
and background for Chapter 4 where we will examine HetNets at a macro-level. In general
stochastic analysis for cellular networks has been heavily studied, but can be considered a
rather minute area of research with a small group of prolific authors. However, results can
invaluable for network designers trying to understand network wide effects.

Nonetheless, with the ever increasing demand for wireless capacity and coverage [57]
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it is important that the wireless community understands all aspects of wireless resources.
Reaching the limits of spectral efficiency only provides a fraction of available capacity in
current cellular network topologies. For instance, the capacity enhancement for next gener-
ation HetNets comes from the exploitation of aggressive spatial reuse and tiered networks.
Furthermore, the densification of base stations from additional deployments of picocells and
femtocells can provide significant additional capacity without radical changes to current air
interfaces. Such densification comes at the cost of challenging deployment scenarios, as well
as significantly increased co-channel interference. In such networks, interference becomes
the capacity limiting factor rather than the traditional environmental noise. Fortunately,
unlike environmental noise, interference can be controlled or reduced with the help of other
technologies, such as directional antennas. Using beam steering, operators can reduce in-
terference to spatially close nodes, or providing a higher degree of densification.

The modeling of such networks can be difficult due to spatial correlations and variance
of existing network topologies/configurations. Over the past last decade stochastic geom-
etry (SG), with its rich analytically tool-set, has proven to be an invaluable method for
modeling both cellular and Wi-Fi networks [56]. Uncoupled from the deficiencies of fixed
spatial configurations, stochastic geometrical models can capture the randomness of cellu-
lar deployments instead of utilizing the fixed unrealistic hexagonal model. This is visually
compared in Figure 2.3 and 2.4, with a perfect hexagonal deployment and a random/more
realistic deployment respectively. This can have significant impact on coverage, and SG
allows modeling of these spatial effects.

SG is simply a tool for applying spatial average for the positions of nodes. It possesses
a strong basis in applied probability, and general randomness across spatial places across
many dimensions. However, most of the literature on wireless network particularly has
focused on two or three dimensions only. The analysis itself is technically a branch of
point process (PP) theory, which is a natural abstraction for a network of many or infinite
nodes. Although most of the growth in the literature has occurred in the late 2000s, the
application of percolation theory, a subset of SG, to wireless networks has been seen as
early as 1961 [57]. Percolation theory itself is a extremely analytical field of mathematics,

with other uses in Fractal Geometry and Graph Theory.
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Figure 2.3: Hexagonal cell layout of Figure 2.4: Realistic cell layout,
an ideal network, maximizing spatial with cell exhibiting some visible
coverage. structure.

A majority of the fundamental application of SG in wireless networks has been concen-
trated in a a few monographs, primarily by a relatively small group of researchers working
in the area [58-60]. Covering the fundamental theory with a focus on modeling based on
the Poisson PP (PPP). However, in our own work in Chapter 4 we extend to other PP and
applications of communication system details applied to PP theory.

The current related literature to Chapter 4 in this dissertation can be classified into
three areas. The first is applications of directional antennas in wireless network-level anal-
ysis. Under the stochastic geometry (SG) framework, only PPP type network models have
been studied with directional antennas. In [61], ad-hoc networks were studied, where PPP
nodes transmit to a desired receivers at fixed distances with fixed patterns. Unique antenna
patterns were utilized, and significant effort was spent understanding direction of interfer-
ence, which is important in ad-hoc and multi-hop type networks. In [62], orientation error
was introduced to model beam misalignment, thus providing some insight into capacity
reduction for such scenarios. Earlier works include [63], which derived coverage probability
for K-tier PPP network with fixed directional antennas in an open access network.

Research focused on tiering network include [64] where open-subscriber PPP networks
are considered. Closely related is [65], which uses a more tractable but inaccurate at low

SINR PPP model. Most K-tier work utilizes PPP, primarily since they are tractable and
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tiers can be modeled independently. The dominant model is called the heterogeneous in-
dependent process (HIP) model, which utilizes a coloring concept to model multiple PPP
tiers as a single large PPP. Other modifications include cross tier dependence models [(6],
where MBS have exclusion regions preventing FBSs from being located closely to a MBS.
Such models rely on cluster PP (CPP) or hardcore PP (HCPP).

For works focused on soft-core processes in wireless networks, much of the fundamental
theory has only been published within the last few years. The literature has focused on the
application of determinantal PP (DPP), which have foundations in quantum mechanics for
modeling fermions [67]. These PP are useful since they exhibit repulsive properties, provide
more regularity to their arrangements. In this work, we focus on two deployment models,
the first based upon the PPP, and the second a DPP the Ginibre Point Process (GPP).
The PPP is a common model in SG due to its tractability. It can be considered appropriate
for femtocell tier networks due to their absence of deployment strategy. However, the
PPP is not appropriate for macrocell, or even picocell, base stations [(8]. Therefore, we
utilized the GPP, which has become popular recently in the literature for modeling more
structured deployments. The original work for modeling wireless networks using the GPP
were developed here [(9], and extended by [08] to include a more general SGPP case. For
other DPPs, [70] provided coverage analysis in a comparative study against real deployment
data sets. To our knowledge no existing work has been published on integrating the topics of
directional antennas with GPP, or more generally, soft-core point process network models,

as well as mixed PP types.

2.3 Real-Time Localization

In this section the application of direction finding and localization is discussed, applied
specifically for dense deployments of femtocells. As discussed in Section 2.2 future cellular
networks will take advantage of spatial reuse in-order to increase capacity, which provides
opportunities to take advantage of this increased ratio of tower to mobile. Such conclusions
for applications can be drawn from future looking white papers [71,72]. The application

chosen to take advantage of this densification is localization, precisely support for “always
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Figure 2.5: Beam-steering in localization-aware network providing pro-active resource man-
agement of spectrum in order to reduce interference. Resulting in less congested links. [73]

on” highly accurate positioning user locations, making them available at any given moment
without draining the user equipment batteries. However, this presents challenges since
traditional networks, or more accurately smallcell deployments, have limited resources to
accomplish localization. This research focuses on understanding the real-world requirements
for such smallcells, and specifically how direction finding and localization can be performed
in practice.

With localization-based information, many optimizations can be made from the per-
spective of the network. Two obvious applications are interference reduction and load
balancing. Through the use of beam-steering smallcell can reduce their transmission foot-
print to cover only the appropriate areas. This concept is demonstrated in Figure 2.5, where
beam overlapping is limited and even handover is optimized by reduce coverage dead-zones.
Load balancing can be achieved by turning off individual smallcells or lowering their power,
freeing up channels for other nearby smallcells with significant user connections. Since
smallcells are likely to be place in a suboptimal way or non-regular way, these techniques
will become important since MAC control is more strict than in random access networks

like Wi-Fi. Beyond traffic and capacity other possible application include security through
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localization, removing spoofing on client side positioning. Driver assisted navigation, with
significant applications for smart/autonomous cars. Enabling position information on the
network side can provide many benefits to many more applications.

Depending on the sophistication of the localization performed, intrinsically it can be
thought of as an extension to time of arrival (ToA) or direction of arrival (DoA) estimation.
As the number of estimating nodes increases so does the dimension of the localization
planes for which a transmitting node can be tracked. Historic DoA and ToA estimation
have been based in radar processing, applied to arrays with large numbers of antenna
elements. However arrays are not always required for localization, primarily for ToA or
time difference of arrival (TDoA). A common inexpensive method of localization is with
received signal strength indicators (RSSI). RSSI data requires no fancy arrays or even
specialized receiver hardware, and many of these measurements can be accessed directly
through user space APIs. Two primary methods exist for performing localization with
RSSI, ranging and fingerprinting. Ranging, as implemented [74], simply estimates the
distance based on transmit power. Alternatively, fingerprinting, as shown in [75], requires
a mapping of individual locations to specific power levels or RSSI values before hand.
However, utilizing RSSI from commercial network interfaces can be inaccurate. There is no
standardized relationship of any particular physical parameter to the RSSI value produce
by an individual network card. For Wi-Fi, the IEEE 802.11 standard does not define any
relationship between RSSI value and measured power level units [76]. One subtlety of the
IEEE 802.11 RSSI metric comes from how it is sampled. RSSI is acquired during only the
preamble stage of receiving an 802.11 frame, not over the full frame [76]. Therefore results
can be questionable depending on estimation technique used.

Now considering modern Wi-Fi and cellular hardware with multiple antennas, more
accurate estimation methods can be implemented. Radar DoA algorithms can be imple-
mented around these hardware models, and those of particular interest here are classical and
subspace methods. Different DoA methods are related in Figure 2.6, outlining search and
algebraic based. It is important to known that search based algorithms are usually appli-
cable to any array structure, unlike algebraic versions which rely on specific arrangements.

For example, Root-MUSIC can only be applied to uniform linear arrays (ULA) [79], unlike
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Figure 2.6: Breakdown of common DoA methods including classical, subspace, and Alge-
braic [77,78].

MUSIC, which can by applied to any array structure. However, Root-MUSIC provides
only single numerical outputs for an estimate, where as MUSIC provides a vector of angles
and their likelihoods. These must be searched through, as the name suggests. Classical,
also referenced as beamformer algorithms, utilize correlation based approaches rather than
subspace processing and handle general array structures [79].

Implementations of these algorithms have historically been limited to military research
due to their generally expensive designs with many receivers. However, with new additions
in the SDR market these experimental setups are becoming more feasible to academic
institutions or even small businesses [30]. Nonetheless, no off-the-shelf implementation
exist for real-time DoA or localization. In Chapter 5, real-time DoA estimation is examined
with two different methods. First, through traditional work-horse MUSIC algorithms a
performance baseline is provided. Then an EADF-FFT algorithm which utilizes channel
estimates of a existing communication system is explored. Significant emphasis on physical

requirements of the hardware is outlined, along with how these issues were solved with
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common SDR hardware and software. Overall, this work is used to present a realistic

physical layer for localization in a real-world environmental focused in DoA estimation.
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Chapter 3

Data-Flow Algorithm Acceleration

To enable prototyping of modern waveforms requires significant computational power
and complex signal processing. From previous work developing communication applications
here [31], it became obvious that architectural changes needed to be made to accommodate
expansion into more advanced signal processing techniques and network simulation. This
chapter addresses this computational bottleneck in MATLAB specifically for SDR prototyp-
ing, and provides a unique solution that is applicable also beyond real-time signal processing.
This work in general enhances the signal processing libraries of MATLAB to provide real-
time performance during development of many applications. Such enhancements help drive
faster development for new standards, such as 5G, reducing translation time from MAT-
LAB simulation to physical testing. We have developed the proposed framework for our
own SDR development to provide real-time receiver designs. However, the proposed frame-
work is generic and can be applied to any problem with large computational requirements
looking to exploit both data dependent and independent parallelism. Such applications
include phased array processing, machine learning, data analytics, image processing, and

many more.

3.1 Architecture Overview

This Chapter provides the following contributions to existing tools and literature:
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Implementation of a novel DF framework via the MATLAB environment with signif-

icant language support.

e Performance analysis of the proposed framework itself and application level speedups

possible over current serial code.

e A simplified workflow designed to fit algorithms and current MATLAB code into this

framework, including load distribution over the cores of a given machine.

e Discussions on the limitations of the proposed framework and the drawbacks of uti-

lizing some of the associated tooling.

e Presentation of a case study application of a 802.11a receiver implemented using this

proposed framework.

3.2 Parallel Architecture Systems

This work focuses on providing a DF parallelism framework to MATLAB, which we call
MATLAB Data-Flow (MLDF). The goal of MLDF is to provide increase computational
performance, but also limit latency through careful thread orchestration. DF, which can
have several meanings in computing, is defined in this work as the division of computational
stages into concurrent tasks that can have dependent or independent execution. DF from
a simplistic viewpoint is a combination of task and data based parallelism, utilizing both
techniques in a cascaded arrangement to increase numerical computation through concur-
rency. First, it is important to understand the differences between task parallelism (TP)
and the more commonly implemented data parallelism (DP). In DP applications, we assume
the same operations are performed on different sets of data in parallel across multiple cores.
DP traditionally does not share state or handle data dependence across threads or pro-
cesses, and such operations are considered very computationally expensive. In task-based
parallelism, each concurrently running operational unit can have a different function. Gen-
erally TP is the simultaneous execution on multiple cores of many different functions across
the same or different datasets. Unlike data parallel functions, task parallel functions can

be cascaded together in series, essentially pipelining operations, analogous to an assembly
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line. Existing frameworks such as OpenMP [13] provide this functionality through parallel
for-loops in the case of DP, and as jobs or spawns in the case of TP, data handling can
be limited or expensive in these libraries, with projects like GNURadio [19] or Cilk [32]
providing more finely controlled data passing during concurrency. Such problems have been
researched extensively in the literature for more general languages (C/C++) with special-
ized implementations [33—85]. The goal in this work is to leverage this knowledge for an
appropriate integration with MATLAB.

However, since this research is targeted at MATLAB users specifically, it is important to
understand the performance benefits of DF. We approach is from the extreme perspectives
of DP and TP. Each implementation has their advantages and drawbacks, but for fairness
when comparing DP to TP we assume that the number of DP cores is equal to the number
of TP functions, unless otherwise specified. When core communication is overlooked, DP
and TP will always meet or outperform non-parallel implements, but this will be considered
later in this work as well.

To provide a better understanding between these parallel architectures, let us consider
a simple example. Note that in a real-world scenario the operations would be much more
computationally intense. Figure 3.1 and Figure 3.2 contrast the different structures of

parallelism for an evaluation of a simple example equation:
f(x) =3(z+1)* -4, (3.1)

where we wish to compute four realizations given different input values (z). As you can
see in Figure 3.2, we split the work of each core to be a specific mathematical operation.
Therefore, all data passes through each core. In Figure 3.1, we instead supply different data
to each core. The design or selection of parallel sections is not always simple to address or
optimize due to mismatches in core count and available operations. Therefore, depending
on the computational requirements of the algorithms, implementations of TP and DP can
perform differently. From an implementers perspective, DP can be more easily applied to
problems due to its lack of additional communication required between cores.

If all data to be process is available at the start of the simulation, then DP has an

obvious advantage, since there is no startup latency. This provides a direct speedup of
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. -

= Add Square | Multiply | Subtract | Core 2

Figure 3.1: Data parallelism realization for equation (3.1) on a four core system. In the
case of a streaming application the buffer block will be utilized to delay input data until
four samples are available.

| » Add Add [ Add Add | Core 0
Square | Square (s Square Hsf Square |- Core 1
» Multiply fsf Multiply [Hsf Multiply Hsl Multiply Core 2

Figure 3.2: Cascaded task parallelism realization for equation (3.1) on a four core system.
If we condition on each core having a different function, this realization is the most efficient.
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~ N, over the single core alternative where IV, is the number of available cores. However,
this type of scenario is not always possible. For example, streaming applications generate
data over time and tend to have latency or data dependency requirements. The amount
of data to be processed in these types of applications can also be unknown. First, let us
assume that the overall system stream based and is able to operate in real-time. Therefore,
with TP the time between new data arrivals At, and the largest processing time of any
individual core/function for that much data Atrparax must have the following relation:
Aty > Atrpayax + Atrpon, where Atrpop is the overhead for block data passing. For
DP, the processing time of any individual core for that much data Atpp must have the
following relation: At, > Atpp/N.+ Atppomn, where Atppop is the DP overhead. This
is true since DP is able to buffer at most N, data units. Now, the combined TP stages have
equal latency as a single DP thread/process Zszl Atrpy = Atpp, where K is the number
of TP stages, but the per data unit latency is different.

Furthermore, under these real-time requirements we can determine the average latency
to process a unit of data. Note, for real-time applications the overall system throughput
is bound by the data arrival rate. For the DP and TP cases where K = N., the mean

processing latencies for data processed by the system are:

NAtrpon + Atpp TP
tLAT,RT = (3.2)
N% Zﬁfil(n —1)At, + Atpp + Atppon  DP.

In Equation (3.2) we observe the startup or buffering latency of DP as (N. — 1)At, +
Atppom-

Now, in the case of non-streaming applications with a fixed dataset that is entirely
available at the start of a simulation, we provide a processing comparison to streaming
applications in Figure 3.3 and Figure 3.4. In Figure 3.3, DP needs to buffer inputs while TP
can use them right away providing lower latency on average. In Figure 3.4, the throughputs
are purely bound on Atpp and for equal comparison we define Atpp = N.Alrpyax.
When bounded by At,, the average throughput is better for TP, but when unbounded DP
is better performing. This discrepancy in performance purely comes from the buffering that

occurs in the system and processing lengths.
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Figure 3.3: Processing analysis for a streaming type application comparing the performance
of three implementation: data parallel (blue), task parallel (green), and single threaded
where no parallelism is exploited (black). Data arrives at the system every one time unit
and takes two unit to be processed.
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Figure 3.4: Processing analysis for a off-line type application, where all data is available
initially. Three implementations are compared: data parallel (blue), task parallel (green),
and single threaded where no parallelism is exploited (black). Data parallelism can utilize
all processing units (four) initially.
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3.2.1 Limitations

Given these insight on the structures and relative performance of DP and TP to non-
parallel operations, we can consider the disadvantages of these implementations. The first
and most obvious is the overhead required, which is depicted as the grey sections between
blocks in Figures 3.1 and 3.2. Due to the asynchronous nature of threads, data must be
passed between them in a safe method. This safety comes at the cost of speed. To reduce
these overheads, we can either reduce the number of independent threads or increase the
data passed at a given time. These have two downsides, first by reducing the number
of threads we may not effectively utilize all processing cores. Second, by increasing the
data passed between threads we increase the per-data unit latency. To provide gains over
non-parallel implementations, for processing B data units we must maintain the following

relation:

BAtpp > AtLAT,RT(TP)+
(3.3)

(B —1)(Atrpx + Atrpon).

For useful applications the system should handle a large amount of data units (B > 1).

When comparing DP and TP, DP implementations tend to be more load confining, but
have a reduced communication overhead. From Figures 3.1 and 3.2, we have 8 and 14
communications, respectively. In applications where we have an inherent data dependency,
it may not be possible to have efficient data sizes evenly passed to DP threads. TP provides
more flexibility and naturally handles data dependency. In particular, TP performs well
when data passing between blocks is event driven and not deterministic, such as when
streams of data have task boundaries that have time dependence. This is obvious for
communication receiver algorithms which rely on all past data in order for perform actions.
Such state sharing is difficult with DP, and comes with a significant performance penalties.

Since MLDF is a combination of TP and DP, we can utilizes the advantages of each.
Primarily, we can cascade blocks where data dependency exists, and arrange other operation
concurrently where there is no dependence. independent task for additional speedup. This

independence did not exist in the first example we looked at in Equation (3.1), but instead
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Figure 3.5: Mixed parallel flow for Equation (3.4), exploiting data parallel and task parallel
advantages.

becomes obvious in an alternative example:
f(z) =222+ 2 — 1. (3.4)

Here in Equation (3.4), we can compute the squaring operation and multiplication concur-
rently with the subtraction, but the final addition can only be done once all others have com-
pleted. This concurrency flow is illustrated in Figure 3.5. The considered Equations (3.1)
and (3.4) are used here as simple examples to demonstrate concurrency of mathematical op-
erations, and in our implementation we restrict these parallel components to the MATLAB
functions only. In a realistic implementation, the operations outlined in Figure 3.5 should be
replaced by computationally intensive functions, since passing data between these concur-
rency/threaded domains is not without penalty. This measured penalty will be discussed
later in Section 3.4.1 of this paper. The defining aspect of this comparison comes down
to data dependency. Whenever data dependence is required that portion of an algorithm

should use TP, but without that requirement DP can be used.

3.3 Implementation

Now that we have a general understanding of the certain parallel architectures, we will
examine how DF was implemented through the MATLAB language. This will include
the underlying threading model, cross-thread data sharing, and integration with MATLAB
Coder. Once the implementation details have been provided we will move on to the perfor-

mance analysis of applications and the underlying architecture.
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3.3.1 MATLAB Integration and Related Work

In this work, we expand MATLAB through the code generation tool to provide DF.
As stated before, since DF is a super set of TP and DP, we get those extreme cases for
free. However, the general DF framework provided here can take advantage of both TP
and DP within the same implementation using this framework. To provide concurrency
with efficient data sharing, this DF framework must implement threading. Nonetheless,
since MATLAB does not inherently have threading tools that are exposed to users in the
MATLAB language', and MATLAB’s interpreter is not thread safe an alternative approach
or language domain must be considered. Existing approaches in the literature have utilized
external or custom compilers of the MATLAB language, where single vector operations are
scaled across cores [54]. Alternatively, code replacement has been used to speedup individual
functions or a language subset [51,53], and even with targeting of hardware [52,86], these
approaches do provide significant speedup. However they only provide an extremely limited
subset of MATLAB’s functionality. This is especially true when considering MATLAB’s
toolboxes, which have extensive system object use [$7]. The usage of such toolboxes has
become the main use cases of the product, beyond just matrix math.

All of the discussed approaches for providing DF-like parallelism to MATLAB involve
C/C++ generation/translation, which we utilize here in this framework. However, instead
of relying on a custom compiler we utilize MATLAB Coder, which has extensive (but
not complete) support for the MATLAB language. Inspirationally, this is how MATLAB
provides data parallelism for one other built-in function dspunfold. Therefore, like dspunfold
in this proposed framework, all functions must support Code Generation (CG) [38]. This
framework only utilizes threading at the function level, since that is the minimum entry
point for CG with MATLAB Coder. Building on top of MATLAB Coder has a clear
advantage over custom compilers such as MEGHA and MATISSE, since it is developed by
MathWorks and will grow with the ever changing MATLAB language.

From the generated code, we provide C++ libraries, additional code, and tooling to

automatically generate wrappers around these MATLAB generated functions (MGF). The

Lpar-for relies on process forking for concurrency and cannot be used for general concurrency.
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resulting code is tied together with a single source file describing the flow of data between
functions, which we call the flowgraph. The C/C++ flowgraph is also automatically gener-
ated from a custom MATLAB class, which allows users to specify function level interactions,
namely which functions pass to data to and receive data from which functions. This work
utilizes the build systems already present within MATLAB Coder, providing even Makefiles
when custom code needs to be edited or manipulated out of the scope of the auto gener-
ation process. From the perspective of a user, there is no necessary interaction required
outside of MATLAB itself. Therefore, no knowledge of thread handling and efficient data
transfer is required. However, function per thread separation is solely up to the user and
will more than anything determine performance. Overall this framework provides function
level parallelism, which is defined by the user. This function level point of parallelism is
very different than the existing literature, which focuses on more instruction parallelism.
We believe that this function level parallelism can be desirable since it limits latency and
overhead compared with a more granular level of parallelism with a larger number of thread
interactions. However, this can be application specific.

It is important to discuss other existing tools within MATLAB in order to differentiate
their functionality from this work. Those tools are primarily par-for and dspunfold. par-for
is an extremely useful simulation tool for data parallel tasks, and will scale to clusters of
computers. par-for relies on process forking and requires strict data independence between
operations. Utilizing these tools also disables some of the built-in thread spawning functions
such as fft and eig in favor of their single threaded options. Data communication is also
rather expensive when working directly in MATLAB but is reduced when CG is applied over
these functions. On the other hand, dspunfold is purely thread based but is only for data
parallel tasks like par-for. dspunfold can automatically take advantage of data independence
for the operation to be threaded, but only applies to a single function. That function must
also support CG. dspunfold does not create free-running threads, instead they are explicitly
launched for each call to a function utilizing dspunfold, thus relying on OpenMP under the
hood. Both dspunfold and par-for are very useful tools that can provide significant speedup
in DP applications. In the proposed implementation, threads only join the main thread at

end of execution. Since this work desires to limit latency, and in essence thread overheads,
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%% Simple Flowgraph

g = GraphGenerator;

oe

Add Blocks To Graph
.AddBlock ('src',0,1)
.AddBlock ('awgn',1,2)

.AddBlock ('filter',1,1)

Q@ Qu 9 9

.AddBlock ('sink',2,0)

Connect Blocks In Desired Order

o

.Connect ('src.0',0, "awgn_0"',0)
.Connect ('awgn_0',0, "sink_0",0)

.Connect ('awgn_0',1,"'filter 0',0)

Q@ Qo 9 Q9

.Connect ('filter 0',0,"'sink.0"',1)

.DrawGraph(); % Visualize Graph

Q

g.Build(); % Compile Graph

g.Run(); % Run Flowgraph

Figure 3.6: MATLAB flowgraph code for implementation of a simple noise filtering exam-
pling. The MATLAB class GraphGenerator only contains five user visible methods, all of
which are shown here.



Chapter 3 37
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Figure 3.7: Flowgraph visualization shown when invoking the DrawGraph method as shown
in Figure 3.6. The end result is provided in a MATLAB figure.

this is an alternative to thread re-spawning. [32] can be used to implement threading in a
similar way. However, to limit dependencies the threading model used was developed in
house from boost [89] primitives, which are already a MATLAB dependence. This provided

us with full knowledge of thread interaction without relying on external tools.

3.3.2 Code Architecture

Similar to other DF architectures, MLDF is completely characterized by a top-level
flowgraph. This flowgraph completely describes function boundaries in the form of blocks,
data passing between blocks in the form of connections, as well as sources and sinks in-
herently. Blocks without connections are called floating blocks. Application examples will
focus on signal processing tasks, but as stated previously, can be extended to other appli-
cations. Figure 3.7 provides a simple flowgraph that generates a signal, adds noise, filters
the signal, and finally saves it to a file. run the eventual graph. The visual flowgraph was
also automatically generated from line 16 of MATLAB code in Figure 3.6, implemented by
Graphviz [90].

Each of the blocks in the graph runs in their own thread, making them free-running.
Blocks themselves can be considered identical from the perspective of the graph except
for three properties: (1) the processing algorithm the block is assigned, (2) the number
of inputs ports, and (3) the number of output ports. These three parameters, which are
provided by the user, allow for automatic parsing of the MGF’s function prototypes for
template generation. Ports are simply protected FIFO queues of object pointers that are
shared between blocks. The queues are type agnostic, which is generally a requirement

when working with code produced by MATLAB Coder, due to its heavy use of custom
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type definitions. The queues only handle data pointers and never perform expensive data
copies. Additionally, queue access was implemented in two flavors, a locking and a non-
locking style in order to reduce contention. Due to the fact that the queue model here
is a single consumer and single producer between all blocks, we were able in include an
efficient non-locking scheme based on [91]. In essence, we are taking advantage of memory
barriers and ring buffers. Not all processors support such instructions, therefore the locking
implementation is more portable. During operation when data is added to a queue by a
block, that block is responsible for signaling downstream blocks. This prevents wasteful
polling, as well as queue backlogging.

The graph itself manages block startup, shutdown, and any runtime management that
is required, such as benchmarking. However, to limit overhead or performance penalties the
graph does not interact with the blocks during runtime by default. Additional flags need
to be set with the GraphGenerator class in order to enable these runtime options. Other
projects, such as GNURadio, utilize the graph to help manage flow between blocks during
startup. The overall goal of this work is to minimize graph work, as well as latency between
block information passing. Therefore, significant effort was put into optimizing inter-thread
data passing. As a result, the blocks themselves can have only three states: waiting for
new data, processing data, and passing data forward. State transitions only occur when
all inputs or outputs are available, depending on the state. Again, when we utilize non-
locking queues there should never be contention based waiting. A significant difference
between this architecture and others, such as OpenMP jobs, is that this framework does
not continually launch threads. This occurs once at the start of the flowgraph, and all
threads are maintained for the life of the flowgraph.

In this framework, it is possible to implement scenarios where the producer block can run
faster than the consumer block. If left unchecked, this would create an ever increasing input
queue for the consumer block, consuming all of the system memory. To prevent this, back-
pressure is provided at a configurable queue depth. Again, this is also provided through
the GraphGenerator interface. When queues reach this level, the producer block will sleep
periodically and poll the queue until space have freed up. This empirically has proven to

be more performant than relying on conditional variable signaling between threads.
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3.3.3 MATLAB Code Generation

Since 2011, MATLAB has been able to generate C/C++ code for a large portion of
their functions [92], providing ISO compliant full C/C++ source code with no obfuscation
through compiled libraries. However, CG is not simple to utilize, and has caveats of its own.
This is especially true if the source MATLAB code is not strict about memory management.
To help you handle that level of complexity, we have a recommended workflow that we have

used to guide code to fit into the eventual MLDF architecture:

1. Confirm current MATLAB code has been tested and provides correct numerical re-

sults.

2. Split all code into separate functions that you wish to be individually threaded. Utilize
assertions for all function inputs. Make sure again that this code provides desirable

results.

3. Utilizing coder.screener, evaluate each function to check for CG compatibility. Make
necessary corrections where necessary. Again check numerical outputs of functions for

correctness.

4. Now that the functions are ready for CG, the flowgraph can be formed with the
custom classes provided. These classes utilize the MATLAB build system and generate
additional files used for wrapping MLGF’s and connecting them together. This class

also provides a visual representation of the flowgraph by utilizing Graphviz.

5. Generate all code and build executable using the simple interface from the custom
provided classes. The end product is a single executable, which again is addressed

through the Run method of the GraphGenerator class.

Making code viable for CG primarily involves making memory allocation strict and removal
or replacement of certain functions. It is also important to note that each function will
be re-entered, therefore persistence should be utilized for additional speedup. This is true
of code executed in MATLAB as well. In summary, this process involves only writing

MATLAB code and enforces the CG of functions.
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3.4 Testing and Evaluation

As mentioned in Section 2.1, we primarily focus on signal processing and communication
applications. Therefore, much of our testing focuses around these type of computations.
This work originally provided a mechanism for providing concurrent operations for a com-
munications system rather than a performance framework. However, when spreading work
over threads we learned that significant performance enhancements could be gained, and
attention was shifted to a more general framework. Therefore, to understand the speedup
possible from this framework we provide testing from two perspectives. The first is from
the top-level application of a flowgraph and the speedup provided over a non-concurrent
implementation. The second is from under the hood of the framework itself, showing the
consequences of managing concurrency. All tests outline in this sections are run on a Dual

Xeon E5-2690v3, with 24 physical cores (48 Threads) at 2.60 GHz.

3.4.1 Framework Testing

We first examine the latency between blocks, specifically how long it takes for data to
be added to the shared queue object between a pair of blocks and then popped off the
same queue. In this scenario, we use a simple flowgraph with two blocks, a producer, and
consumer sharing one connection. This is tested under two scenarios, the first where the
source block produces data at a much slower rate than the downstream block can process
it. Second, the source block processing time load is equivalent to the downstream block.
Examining a case where the downstream block is much slower provides no perspectives
on the framework, since the performance is solely gated on the processing time of the
downstream block. Under the condition that the shared queue has already been filled. It is
also a poor design where downstream blocks are slower than upstream blocks in a constant
streaming data scenario. For an additional comparison, we provide results from our generic
lock-based implementation to understand the benefits of the non-locking model.

Now given the implemented tests described above, these provide performance informa-
tion relative to contention conditions between blocks. Since queues between blocks are

shared resources, there is always a natural contention. Data manipulation between blocks
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only involves pointer movement, therefore no data copies occur. As a result, the transfer
latency between blocks is not dependent on actual size or type of the data transfered. With
this knowledge, Figure 3.8 provides the results of 10® transfers for each of the test scenarios
using the locking-queues. We utilize the chrono library within the C+4 Standard Library
to provide high resolution time information for these tests. For reference, we computed the
average time to complete 100 , 10* and 2 x 10* double precisions additions to the same
memory location on the same machine averaged over 10 iterations. The transfer times for
the Fast Source (FS) are almost deterministic and better performing than the Slow Source
(SS). At first, this is counter intuitive since there is less contention between blocks in the
SS case. The reasoning behind this slowdown comes from the signaling delay that occurs
when the downstream block sleeps if no data exists in the queue. Therefore, the sleeping
block must wait for a signal from the conditional variables associated with the monitored
mutexs. In the F'S case, the block does not enter this sleep state as often, since the queue
will have data ready to be process more often initially. Similarly, Figure 3.9 provides the
results for the non-locking case, and performs two orders of magnitude faster on average.
In this case, the F'S has more variation as expected due to the additional contention, but
the SS is almost deterministic. The cases considered here are the most optimal since each
block only has one port. The performance here will degrade since exiting the waiting for

data state will require data from multiple threads.

3.4.2 Flowgraph Testing

Now that we have an understanding of the low level thread interaction between con-
current functions, we can explore top-level speedup over single threaded non-concurrent
versions. The goal is to understand system performance, in the form of data throughput,
under significant computational tasks. To examine this we considered an FFT of length 21°
over complex double precision data as the basic unit of computation. Chosen to represent
an intensive workload over a large amount of data.

To evaluate the performance of this function, testing measured the processing time of

10° randomly generated complex vectors of length 2'° (matching the FFT size). Across the

tests we cascaded additional copies of the FFT baseline function to increase complexity of
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on average. These reference are provide as vertical lines since on a modern CPU the are

roughly deterministic operations.
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Figure 3.10: Throughput testing of cascaded FFT operations in the single threaded mode
(bottom) and the MLDF implementation (top). These tests were run for two cascaded FFTs
to twenty-two FFTs. The random vector generation (Vec Gen) was put into an independent
thread to remove the additional computation required for those operations.

the problem, ranging from 2 to 22. To remove the effects of the random vector generation,
both the single threaded (ST) and multi-threaded (MT) versions were written in the MLDF
framework. In the ST case, one block contained the random vector generation code, and
a second contained a loop over multiple FFTs. In the MT case, the additional FFTs are
applied in additional blocks. This comparison between the ST and MT implementation
is shown in Figure 3.10, with each block representing an individual thread. Figure 3.11
provides the results of this test averaged over several iterations for each number of FFTs
cascaded. Showing almost no variance in the results in both ST and MT cases. As can be
seen, the MT scales significantly better than the ST version. As the number of FFTs does
increase, but so does the processing time and individual overhead between blocks. Since the
test machine does have 24 physical cores, no bottlenecks are observed. As the flowgraphs
become more complex and threads outnumber cores, performance evaluation will become
difficult to predict. The ST case simply scales linearly with the increased workload, and
will be independent of core count.

The speed advantage in Figure 3.11 is substantial, but it is important to discuss side
effects of the speedup. TP will have a constant latency through the system equal to the
required N computations plus communication overhead between threads. On the other
hand, if DP was applied to this problem, each input vector would have a varying latency.
This was theoretically presented in Section 3.2. The single thread case grows in latency
since each subsequent vector must wait for each preceding vector to pass through all N

FFTs before beginning computation.
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Figure 3.11: This test compares an increase in cascaded FFT operations in the MLDF
case and the single threaded standard case. At each number of cascaded FFTs the system
processed 10° random complex double precision vectors of length 2'°. Each test was run
four times, with little variance between them.

3.5 Designing For DataFlow

We examined the low-level consequences of using the MLDF architecture and the top-
level performance gains it can provide. However, when implementing algorithms within this
framework special consideration and thought needs to be provided to function placement
and division. Multiple DP and TP sections of algorithms can exist but their implementation
is not always necessary, since DF does have overhead. In Figure 3.8 it was demonstrated
under the best circumstances we can incur a penalty of ~ 250ns per block transfer. Further
synchronization of multiple port blocks can substantially increase this delay. Therefore, to
minimize this effect computations of an individual block should take considerably longer
than the data transfers. If the computation is not complex, in practice we will increase the
amount of data passed per transfer to the block. Since this penalty is fixed, increasing the
data to be processed will only increase the computation time of the block.

A second important aspect to consider is load distribution and gating that can occur. For

cascade blocks specifically, when upstream blocks are significantly slower than downstream
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Figure 3.12: Complex flowgraph for WLAN 802.11a receiver, based upon the current design
available in MATLAB. Significant resources where put into the packet detection phase of
the flowgraph, which consists of six threads (Abs, Moving AverageSP, Moving AveragePP,
Normalize, Peak Detect, Delay). This design was able to run in real-time and decode beacon
frames from commerical routers. DecodePacket contains the majority of the code, but is
called drastically less frequent than the upstream blocks.

blocks this creates block starvation conditions. This will limit core utilization. A similar
effect can happen in reverse when downstream blocks are much slower, causing upstream
blocks to wait on full queues. Implementations should strive to balance work across blocks as
much as possible, but at the same time without thread flooding and choking the processor.
We typically approach this by first setting a target throughput rate, and then distributing
the algorithm among more blocks until we reach our target.

A final note on implementation details, Based on our second aspect discussed, in scenar-
ios where block operation is conditional, such as those that require existence of specific data
in a stream, resource trade-offs can be made. For example, if a piece of code is computation-
ally intensive but called infrequently, it can be beneficial not to pipeline those operations.
Reducing contention for available cores, or allowing cores to be more intelligently allocated,

this may also reduce latency among those operations.

3.5.1 Limitation