192 research outputs found

    A comprehensive review on various non-isolated power converter topologies for a light-emitting diode driver

    Get PDF
    Light-emitting diode (LED) lighting applications aided by an electronic power control have become very attractive in the recent years. For LED lighting applications, it is essential to design a converter with single/multi-output for handling multiple loads. As the LED load is more sensitive to the change in input/converter parameters, it is necessary to regulate the current concerning the design specifications. In this paper, several LED topologies are reviewed with a focus on power density, single/multi-load operation, size, and reliability. Several converter topologies are reviewed and compared in terms of power rating, number of semiconductor switches, isolation, and efficiency. Various modulation techniques used for dimming control are described in brief. The salient features of each converter topology are discussed with the power rating and application for which the topology can be preferred. So, the selection of the power factor correction (PFC) and low source side harmonics converter topology is presented. This paper will be helpful to the researchers who are working on the development of LED drivers

    Advanced high frequency switched-mode power supply techniques and applications

    Get PDF
    This Thesis examines the operation and dynamic performance of a single-stage, single-switch power factor corrector, S4 PFC, with an integrated magnetic device, IM. Also detailed isthe development and analysis of a high power light emitting diode, HP LED, power factorcorrection converter and proposed voltage regulation band control approach.The S4 PFC consists of a cascaded discontinuous current mode, DCM, boost stage anda continuous current mode, CCM, forward converter. The S4 PFC achieves a high powerfactor, low input current harmonics and a regulated voltage output, utilising a singleMOSFET. A steady-state analysis of the S4 PFC with the IM is performed, identifying theoperating boundary conditions for the DCM power factor correction stage and the CCMoutput voltage regulation stage. Integrated magnetic analysis focuses on understanding theperformance, operation and generated flux paths within the IM core, ensuring the device doesnot affect the normal operation of the converter power stage. A design method for the S4 PFCwith IM component is developed along with a cost analysis of this approach. Analysis predictsthe performance of the S4 PFC and the IM, and the theoretical work is validated by MATLABand SABER simulations and measurements of a 180 W prototype converter.It is not only the development of new topological approaches that drives theadvancement of power electronic techniques. The recent emergence of HP LEDs has led to aflurry of new application areas for these devices. A DCM buck-boost converter performs thepower factor correction and energy storage, and a cascaded boundary conduction current modebuck converter regulates the current through the LED arrays. To match the useful operatinglifetime of the HP LEDs, electrolytic capacitors are not used in the PFC converter. Analysisexamines the operation and dynamic characteristics of a PFC converter with low capacitiveenergy storage capacity and its implications on the control method. A modified regulationband control approach is proposed to ensure a high power factor, low input current harmonicsand output voltage regulation of the PFC stage. Small signal analysis describes the dynamicperformance of the PFC converter, Circle Criterion is used to determine the loop stability.Theoretical work is validated by SABER and MATLAB simulations and measurements of a180 W prototype street luminaire.EThOS - Electronic Theses Online ServicePSU DesignsDialight LumidrivesGBUnited Kingdo

    Passive and Active Topologies Investigation for LED Driver Circuits

    Get PDF
    In this chapter, a survey of LED driver circuits is presented. The driver circuit is a crucial component in the LED light system. It provides the correct voltage and current values for the best brightness and long life. Furthermore, the driver circuits contribute to obtaining high efficiency and reliability light system. Several lighting applications need different driver topologies that meet the use requirement and the energy sources available. In actual applications, passive and active circuits are implemented to satisfy the LED driver electrical requirements and cost-effective demands. The LED driver circuits investigation evaluate the issues and the solutions in the LED lighting systems connected to a DC source such as a battery or AC line. The AC line connection requisites such as the power factor correction and the harmonic distortion are dealt with both the driver topology and control optimization. Also, the volume reduction need is examined in the circuitry choice. Moreover, the different topologies of the power converters isolated and not isolated used in the driver circuits based on both the power request and supply source are described and critically evaluated

    Multiple-output DC–DC converters: applications and solutions

    Get PDF
    Multiple-output DC–DC converters are essential in a multitude of applications where different DC output voltages are required. The interest and importance of this type of multiport configuration is also reflected in that many electronics manufacturers currently develop integrated solutions. Traditionally, the different output voltages required are obtained by means of a transformer with several windings, which are in addition to providing electrical isolation. However, the current trend in the development of multiple-output DC–DC converters follows general aspects, such as low losses, high-power density, and high efficiency, as well as the development of new architectures and control strategies. Certainly, simple structures with a reduced number of components and power switches will be one of the new trends, especially to reduce the size. In this sense, the incorporation of devices with a Wide Band Gap (WBG), particularly Gallium Nitride (GaN) and Silicon Carbide (SiC), will establish future trends, advantages, and disadvantages in the development and applications of multiple-output DC–DC converters. In this paper, we present a review of the most important topics related to multiple-output DC–DC converters based on their main topologies and configurations, applications, solutions, and trends. A wide variety of configurations and topologies of multiple-output DC–DC converters are shown (more than 30), isolated and non-isolated, single and multiple switches, and based on soft and hard switching techniques, which are used in many different applications and solutions.info:eu-repo/semantics/publishedVersio

    Controladores LED eficientes para aplicações de iluminação geral

    Get PDF
    Mestrado em Engenharia Eletrónica e TelecomunicaçõesThe ever growing energy consumption trends and its impact on the environment has triggered worldwide attention. This has motivated several measures, such as the Kyoto protocol, or the 20 20 20 European strategy, aiming at the reduction of energy consumption. Globally, these measures defend a better and efficient usage of the available energy. This in turn is strongly linked to public awareness and the introduction of efficient electronic equipment. Public street lighting is a good example of these trends, where both aspects are of the utmost importance. The introduction of power LEDs as future lighting devices has motivated several advances coping with these strategies. On one side, LEDs are able to deliver higher efficiency when compared to conventional lighting devices. This has triggered the replacement of old style luminaires by LED based ones. However, their high cost has prevented full adoption and at the present stage, is acting as a slowing down force against this replacement trend. Better solutions are under research on the framework of several European projects. Power LEDs are solid-state devices able to support fast switching, a feature which was not fully supported by conventional lighting devices. Combining this feature with environmental sensing and intelligent control may lead to better power savings. A simple approach would be to consider the that the actual lighting demands depend on the street usage and surrounding lighting levels. For this purpose, the combination of twilight sensors, motion detectors and intelligent control schemes may provide a suitable approach. This way, the real lighting demands can be effectively taken into consideration, providing luminaires able to consume the least possible energy. For this to become a reality several challenges have to be addressed. One of the most important challenges is the LED driver design. Modern lighting systems based on LEDs, replace the traditional ballasts by LED drivers. When efficiency is a major concern, such as in public street lighting, these drivers have to be designed in order to be the most robust and efficient as possible. Recurring solutions resort to switched mode power supplies, able to support light dimming. One of the major problems with these drivers is the fact that their efficiency decreases for lower dimming levels. This is of the utmost importance for public street lighting, as most of the time during night, the luminaires are on a low lighting level (as changes to high lighting conditions depend on street usage). Thus, in order to promote better power savings, the efficiency of the driver should be high for both lighting conditions. Commercially available drivers, exhibit efficiencies on the 90% range for the high lighting conditions, with only 40% to 60% under the low lighting. On the framework of this master dissertation it was investigated the problem of LED driver design aiming at the highest possible uniformity of the efficiency curve, under different loading and dimming conditions. The selected approach was based on quasi-resonant flyback converter, backed up by an active power factor correcting block. The designed driver supports remote configuration and monitoring as well as sensor integration. The archived results show that this driver achieves a peak efficiency of 93% under maximum load and 100% duty-cycle. The efficiency for low dimming conditions (10% duty-cycle) achieves 75%.As tendências de consumo de energia cada vez maior e seu impacto sobre o meio ambiente tem captado a atenção a nível mundial. Isso tem motivado várias medidas, tais como o Protocolo de Quioto, ou a estratégia Europeia 20 20 20, visando a redução do consumo de energia. Globalmente, estas medidas defendem um uso melhor e eficiente da energia disponível. Este, por sua vez, está fortemente ligado à consciência pública e à introdução de equipamento eletrónico eficiente. A iluminação pública é um bom exemplo dessas tendências, em que ambos os aspetos são de extrema importância. A introdução de LEDs como dispositivos de iluminação tem motivado vários avanços que lidam com essas estratégias. De um lado, os LEDs são capazes de oferecer uma maior eficiência quando comparados com dispositivos de iluminação convencionais. Isso provocou a substituição de luminárias convencionais por luminárias baseadas em LED. No entanto, o custo elevado destes dispositivos tem impedido a adoção plena e na fase atual, está mesmo a atuar como uma força negativa contra esta tendência de substituição. Melhores soluções estão sob investigação no âmbito de vários projetos europeus. Os LEDs são dispositivos de estado sólido, capazes de suportar a comutação rápida, uma característica que não é totalmente suportada por dispositivos de iluminação convencionais. Combinando esta característica com sensores ambientais e controlo inteligente pode-se ambicionar melhores poupanças energéticas. Uma abordagem simples seria a de considerar o que as exigências de iluminação reais dependem do uso das ruas e os níveis de iluminação circundantes. Para este efeito, a combinação de sensores de crepúsculo, detetores de movimento e regimes de controlo inteligentes podem propiciar uma abordagem adequada. Desta forma, os requisitos reais de iluminação podem ser efetivamente considerados, fornecendo luminárias capazes de consumir apenas a energia necessária. Para que isto se torne uma realidade vários desafios têm de ser vencidos. Um dos desafios mais importantes é o projeto LED driver. Nos sistemas de iluminação modernos baseados em LEDs, substitui-se os balastros convencionais por LED drivers. Quando a eficiência é importante, como no caso da iluminação pública, O LED driver têm de ser concebido de forma a ser o mais robusto e eficiente possível. Soluções recorrentes usam a fontes de alimentação comutadas, capazes de suportar o escurecimento adaptativo do fluxo luminoso. Um dos problemas principais no projeto destes drivers é o facto de a sua eficiência diminuir para níveis de regulação mais baixos. Isto é de extrema importância para a iluminação pública, pois na maioria dos casos durante a noite, as luminárias estão num nível de iluminação de baixo. Assim, com a finalidade de promover uma melhor economia de energia, a eficiência do driver deve ser elevada para ambas as condições de iluminação. Drivers comercialmente disponíveis, exibem eficácias na gama de 90% com elevado fluxo luminoso, e apenas 40% a 60% na condição de baixo fluxo luminoso. No âmbito desta dissertação de mestrado foi investigado o problema do projeto de driver LED visando a maior uniformidade possível da curva de eficiência, sob diferentes condições de carga e de fluxo luminoso. A abordagem escolhida foi baseada no conversor flyback quasi-ressonante, apoiado por um bloco de correção de fator de potência ativa. O driver projetado suporta configuração e monitorização remota, bem como de integração de sensores. Os resultados alcançados mostram que este driver atinge um pico de eficiência de 93% na condição de carga máxima e máximo fluxo luminoso. A eficiência em condições de baixo fluxo luminoso é superior a 75%

    Novel Offline Switched Mode Power Supplies for Solid State Lighting Applications

    Get PDF
    In recent years, high brightness light emitting diodes (HBLEDs) have increasingly attracted the interest of both industrial manufacturers and academic research community. Among the several aspects that make LED technology so attractive, the most appreciated characteristics are related to their robustness, high efficiency, small size, easy dimming capability, long lifetime, very short switch-on/switch-off times and mercury free manufacturing. Even if all such qualities would seem to give to solid state lighting a clear advantage over all the other kinds of competing technologies, the issues deriving from the need of LED technology improvement, on one hand, and of the development of suitable electronic ballasts to properly drive such solid state light sources, on the other, have so far hindered the expected practical applications. The latter problem, in particular, is nowadays considered the main bottleneck in view of a widespread diffusion of solid state technology in the general lighting market, as a suitable replacement of the still dominant solutions, namely halogen and fluorescent lamps. In fact, if it is true that some aspects of the devices’ technology (e.g. temperature dependent performance, light quality, efficiency droop, high price per lumen, etc…) still need further improvements, it is now generally recognized that one of the key requirements, for a large scale spread of solid state lighting, is the optimization of the driver. In particular, the most important specifications for a LED lamp ballast are: high reliability and efficiency, high power factor, output current regulation, dimming capability, low cost and volume minimization (especially in domestic general lighting applications). From this standpoint, the main goal is, therefore, to find out simple switched mode power converter topologies, characterized by reduced component count and low current/voltage stresses, that avoid the use of short lifetime devices like electrolytic capacitors. Moreover, if compactness is a major issue, also soft switching capability becomes mandatory, in order to enable volume minimization of the reactive components by increasing the switching frequency in the range of the hundreds of kHz without significantly affecting converter’s efficiency. It is worth mentioning that, in order to optimize HBLED operation, also other matters, like the lamp thermal management concern, should be properly addressed in order to minimize the stress suffered by the light emitting devices and, consequently, the deterioration of the light quality and of the expected lamp lifetime. However, being this work focused on the issues related to the research of innovative driving solutions, the aforementioned thermal management problems, as also all the topics related to the improvement of solid state devices’ technology, will be left aside. The main goal of the work presented in this thesis is, indeed, to find out, analyze and optimize new suitable topologies, capable of matching the previously described specifications and also of successfully facing the many challenges dictated by the future of general lighting. First of all, a general overview of solid state lighting features, of the state of the art of lighting market and of the main LED driving issues will be provided. After this first introduction, the offline driving concern will be extensively discussed and different ways of approaching the problem, depending on the specific application considered, will be described. The first kind of approach investigated is based on the use of a simple structure relying on a single power conversion stage, capable of concurrently ensuring: compliance with the standards limiting the input current harmonics, regulation of the load current and also galvanic isolation. The constraints deriving from the need to fulfil the EN 61000-3-2 harmonics standard requirements, when using such kind of solution for low power (<15W) LED driving purposes, will be extensively discussed. A low cost, low component count, high switching frequency converter, based on the asymmetrical half bridge flyback topology, has been studied, developed and optimized. The simplicity and high compactness, characterizing this solution, make it a very good option for CFL and bulb replacement applications, in which volume minimization is mandatory in order to reach the goal of placing the whole driving circuitry in the standard E27 sockets. The analysis performed will be presented, together with the design procedure, the simulation outcomes and the different control and optimization techniques that were studied, implemented and tested on the converter's laboratory prototype. Another interesting approach, that will be considered, is based on the use of integrated topologies in which two different power conversion stages are merged by sharing the same power switch and control circuitry. In the resulting converter, power factor correction and LED current regulation are thus performed by two combined semi-stages in which both the input power and the output current have to be managed by the same shared switch. Compared with a conventional two-stages configuration, lower circuit complexity and cost, reduced component count and higher compactness can be achieved through integration, at cost of increased stress levels on the power switch and of losing a degree of freedom in converter design. Galvanic isolation can be provided or not depending on the topologies selected for integration. If non-isolated topologies are considered for both semi-stages, the user safety has to be guaranteed by assuring mechanical isolation throughout the LED lamp case. The issue, deriving from the need of smoothing the pulsating power absorbed from the line while avoiding the use of short lifetime electrolytic capacitors, will be addressed. A set of integrated topologies, used as HBLED lamp power supplies, will be investigated and a generalized analysis will be presented. Their input line voltage ripple attenuation capability will be examined and a general design procedure will be described. Moreover, a novel integrated solution, based on the use of a double buck converter, for an about 15W rated down-lighting application will be presented. The analysis performed, together with converter design and power factor correction concerns will be carefully discussed and the main outcomes of the tests performed at simulation level will be provided. The last kind of approach to be discussed is based on a multi-stage structure that results to be a suitable option for medium power applications, like street lighting, in which compactness is not a major concern. By adopting such kind of solution it is, indeed, possible to optimize converter’s behavior both on line and on load side, thereby guaranteeing both an effective power factor correction at the input and proper current regulation and dimming capability at the output. Galvanic isolation can be provided either by the input or the output stage, resulting in a standard two stage configuration, or by an additional intermediate isolated DC-DC stage (operating in open loop with a constant input/output voltage conversion ratio) that namely turns the AC/DC converter topology into a three stage configuration. The efficiency issue, deriving from the need of multiple energy processing along the path between the utility grid and the LED load, can be effectively addressed thanks to the high flexibility guaranteed by this structure that, relaxing the design constraint, allows to easily optimize each stage. A 150W nominal power rated ballast for street solid state lighting applications, based on the latter (three stage) topology, has been investigated. The analysis performed, the design procedure and the simulations outcomes will be carefully described, as well as the experimental results of the tests made on the implemented laboratory prototype

    Bridgeless PFC Topology Simplification and Design for Performance Benchmarking

    Get PDF
    corecore