313 research outputs found

    Proceedings of the Workshop on Models and Model-driven Methods for Enterprise Computing (3M4EC 2008)

    Get PDF

    A Geospatial Service Model and Catalog for Discovery and Orchestration

    Get PDF
    The goal of this research is to provide a supporting Web services architecture, consisting of a service model and catalog, to allow discovery and automatic orchestration of geospatial Web services. First, a methodology for supporting geospatial Web services with existing orchestration tools is presented. Geospatial services are automatically translated into SOAP/WSDL services by a portable service wrapper. Their data layers are exposed as atomic functions while WSDL extensions provide syntactic metadata. Compliant services are modeled using the descriptive logic capabilities of the Ontology Language for the Web (OWL). The resulting geospatial service model has a number of functions. It provides a basic taxonomy of geospatial Web services that is useful for templating service compositions. It also contains the necessary annotations to allow discovery of services. Importantly, the model defines a number of logical relationships between its internal concepts which allow inconsistency detection for the model as a whole and for individual service instances as they are added to the catalog. These logical relationships have the additional benefit of supporting automatic classification of geospatial services individuals when they are added to the service catalog. The geospatial service catalog is backed by the descriptive logic model. It supports queries which are more complex that those available using standard relational data models, such as the capability to query using concept hierarchies. An example orchestration system demonstrates the use of the geospatial service catalog for query evaluation in an automatic orchestration system (both fully and semi-automatic orchestration). Computational complexity analysis and experimental performance analysis identify potential performance problems in the geospatial service catalog. Solutions to these performance issues are presented in the form of partitioning service instance realization, low cost pre-filtering of service instances, and pre-processing realization. The resulting model and catalog provide an architecture to support automatic orchestration capable of complementing the multiple service composition algorithms that currently exist. Importantly, the geospatial service model and catalog go beyond simply supporting orchestration systems. By providing a general solution to the modeling and discovery of geospatial Web services they are useful in any geospastial Web service enterprise

    BPMN4sML: A BPMN Extension for Serverless Machine Learning. Technology Independent and Interoperable Modeling of Machine Learning Workflows and their Serverless Deployment Orchestration

    Full text link
    Machine learning (ML) continues to permeate all layers of academia, industry and society. Despite its successes, mental frameworks to capture and represent machine learning workflows in a consistent and coherent manner are lacking. For instance, the de facto process modeling standard, Business Process Model and Notation (BPMN), managed by the Object Management Group, is widely accepted and applied. However, it is short of specific support to represent machine learning workflows. Further, the number of heterogeneous tools for deployment of machine learning solutions can easily overwhelm practitioners. Research is needed to align the process from modeling to deploying ML workflows. We analyze requirements for standard based conceptual modeling for machine learning workflows and their serverless deployment. Confronting the shortcomings with respect to consistent and coherent modeling of ML workflows in a technology independent and interoperable manner, we extend BPMN's Meta-Object Facility (MOF) metamodel and the corresponding notation and introduce BPMN4sML (BPMN for serverless machine learning). Our extension BPMN4sML follows the same outline referenced by the Object Management Group (OMG) for BPMN. We further address the heterogeneity in deployment by proposing a conceptual mapping to convert BPMN4sML models to corresponding deployment models using TOSCA. BPMN4sML allows technology-independent and interoperable modeling of machine learning workflows of various granularity and complexity across the entire machine learning lifecycle. It aids in arriving at a shared and standardized language to communicate ML solutions. Moreover, it takes the first steps toward enabling conversion of ML workflow model diagrams to corresponding deployment models for serverless deployment via TOSCA.Comment: 105 pages 3 tables 33 figure

    Programming Service Oriented Agents

    Get PDF
    This paper introduces a programming language for service-oriented agents. JADL++ combines the ease of use of scripting-languages with a state-of-the-art service oriented approach which allows the seamless integration of web-services. Furthermore, the language includes OWL-based ontologies for semantic descriptions of data and services, thus allowing agents to make intelligent decisions about service calls

    Automated Injection of Curated Knowledge Into Real-Time Clinical Systems: CDS Architecture for the 21st Century

    Get PDF
    abstract: Clinical Decision Support (CDS) is primarily associated with alerts, reminders, order entry, rule-based invocation, diagnostic aids, and on-demand information retrieval. While valuable, these foci have been in production use for decades, and do not provide a broader, interoperable means of plugging structured clinical knowledge into live electronic health record (EHR) ecosystems for purposes of orchestrating the user experiences of patients and clinicians. To date, the gap between knowledge representation and user-facing EHR integration has been considered an “implementation concern” requiring unscalable manual human efforts and governance coordination. Drafting a questionnaire engineered to meet the specifications of the HL7 CDS Knowledge Artifact specification, for example, carries no reasonable expectation that it may be imported and deployed into a live system without significant burdens. Dramatic reduction of the time and effort gap in the research and application cycle could be revolutionary. Doing so, however, requires both a floor-to-ceiling precoordination of functional boundaries in the knowledge management lifecycle, as well as formalization of the human processes by which this occurs. This research introduces ARTAKA: Architecture for Real-Time Application of Knowledge Artifacts, as a concrete floor-to-ceiling technological blueprint for both provider heath IT (HIT) and vendor organizations to incrementally introduce value into existing systems dynamically. This is made possible by service-ization of curated knowledge artifacts, then injected into a highly scalable backend infrastructure by automated orchestration through public marketplaces. Supplementary examples of client app integration are also provided. Compilation of knowledge into platform-specific form has been left flexible, in so far as implementations comply with ARTAKA’s Context Event Service (CES) communication and Health Services Platform (HSP) Marketplace service packaging standards. Towards the goal of interoperable human processes, ARTAKA’s treatment of knowledge artifacts as a specialized form of software allows knowledge engineers to operate as a type of software engineering practice. Thus, nearly a century of software development processes, tools, policies, and lessons offer immediate benefit: in some cases, with remarkable parity. Analyses of experimentation is provided with guidelines in how choice aspects of software development life cycles (SDLCs) apply to knowledge artifact development in an ARTAKA environment. Portions of this culminating document have been further initiated with Standards Developing Organizations (SDOs) intended to ultimately produce normative standards, as have active relationships with other bodies.Dissertation/ThesisDoctoral Dissertation Biomedical Informatics 201

    Slicing for architectural analysis

    Get PDF
    Current software development often relies on non trivial coordination logic for combining autonomous services, eventually running on different platforms. As a rule, however, such a coordination layer is strongly weaved within the application at source code level. Therefore, its precise identification becomes a major methodological (and technical) problem and a challenge to any program understanding or refactoring process. The approach introduced in this paper resorts to slicing techniques to extract coordination data from source code. Such data is captured in a specific dependency graph structure from which a coordination model can be recovered either in the form of an Orc specification or as a collection of code fragments corresponding to the identification of typical coordination patterns in the system. Tool support is also discussed.Fundação para a Ciência e a Tecnologia (FCT) - projeto Mondrian, PTDC/EIA-CCO/108302/200

    Behavioral types in programming languages

    Get PDF
    A recent trend in programming language research is to use behav- ioral type theory to ensure various correctness properties of large- scale, communication-intensive systems. Behavioral types encompass concepts such as interfaces, communication protocols, contracts, and choreography. The successful application of behavioral types requires a solid understanding of several practical aspects, from their represen- tation in a concrete programming language, to their integration with other programming constructs such as methods and functions, to de- sign and monitoring methodologies that take behaviors into account. This survey provides an overview of the state of the art of these aspects, which we summarize as the pragmatics of behavioral types

    Sistema de teste auto-adaptativo baseado em modelo para SOA dinâmico

    Get PDF
    Orientadores: Eliane Martins, Andrea CeccarelliDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Arquitetura orientada a serviços (SOA) é um padrão de design popular para implemen- tação de serviços web devido à interoperabilidade, escalabilidade e reuso de soluções de software que promove. Os serviços que usam essa arquitetura precisam operar em um am- biente altamente dinâmico, entretanto quanto mais a complexidade desses serviços cresce menos os métodos tradicionais de validação se mostram viáveis. Aplicações baseadas em arquitetura orientada a serviços podem evoluir e mudar du- rante a execução. Por conta disso testes offline não asseguram completamente o compor- tamento correto de um sistema em tempo de execução. Por essa razão, a necessidade de tecnicas diferentes para validar o comportamento adequado de uma aplicação SOA durante o seu ciclo de vida são necessárias, por isso testes online executados durante o funcionamento serão usados nesse projeto. O objetivo do projeto é de aplicar técnicas de testes baseados em modelos para gerar e executar casos de testes relevantes em aplicações SOA durante seu tempo de execu- ção. Para alcançar esse objetivo uma estrura de teste online autoadaptativa baseada em modelos foi idealizada. Testes baseados em modelos podem ser gerados de maneira offline ou online. Nos testes offline, os casos de teste são gerados antes do sistema entrar em execução. Já nos testes online, os casos de teste são gerados e aplicados concomitantemente, e as saídas produzidas pela aplicação em teste definem o próximo passo a ser realizado. Quando uma evolução é detectada em um serviço monitorado uma atualização no modelo da aplicação alvo é executada, seguido pela geração e execução de casos de testes online. Mais precisamente, quatro componentes foram integrados em um circuito autoadap- tativo: um serviço de monitoramento, um serviço de criação de modelos, um serviço de geração de casos de teste baseado em modelos e um serviço de teste. As caracteristicas da estrutura de teste foram testadas em três cenários que foram executados em uma aplicação SOA orquestrada por BPEL, chamada jSeduite. Este trabalho é um esforço para entender as restrições e limitações de teste de soft- ware para aplicações SOA, e apresenta análises e soluções para alguns dos problemas encontrados durante a pesquisaAbstract: Service Oriented Architecture (SOA) is a popular design pattern to build web services be- cause of the interoperability, scalability, and reuse of software solutions that it promotes. The services using this architecture need to operate in a highly dynamic environment, but as the complexity of these services grows, traditional validation processes become less feasible. SOA applications can evolve and change during their execution, and offline tests do not completely assure the correct behavior of the system during its execution. There- fore there is a need of techniques to validate the proper behaviour of SOA applications during the SOA lifecycle. Because of that, in this project online testing will be used. The project goal is to employ model-based testing techniques to generate and execute relevant test cases to SOA applications during runtime. In order to achieve this goal a self-adaptive model-based online testing framework was designed. Tests based on models can be generated offline and online. Offline test are generated before the system execution. Online tests are generated and performed concomitantly, and the output produced by the application under test defines the next step to be performed. when our solution detects that a monitored service evolves, the model of the target service is updated, and online test case generation and execution is performed. More specifically, four components were integrated in a self-adaptive loop: a mon- itoring service, a model generator service, a model based testing service and a testing platform. The testing framework had its features tested in three scenarios that were performed in a SOA application orchestrated by BPEL, called jSeduite. This work is an effort to understand the constraints and limitations of the software testing on SOA applications, and present analysis and solutions to some of the problems found during the researchMestradoCiência da ComputaçãoMestre em Ciência da ComputaçãoCAPE

    Conceptual development of custom, domain-specific mashup platforms

    Get PDF
    Despite the common claim by mashup platforms that they enable end-users to develop their own software, in practice end-users still don't develop their own mashups, as the highly technical or inexistent user bases of today's mashup platforms testify. The key shortcoming of current platforms is their general-purpose nature, that privileges expressive power over intuitiveness. In our prior work, we have demonstrated that a domainspecific mashup approach, which privileges intuitiveness over expressive power, has much more potential to enable end-user development (EUD). The problem is that developing mashup platforms - domain-specific or not - is complex and time consuming. In addition, domain-specific mashup platforms by their very nature target only a small user basis, that is, the experts of the target domain, which makes their development not sustainable if it is not adequately supported and automated. With this article, we aim to make the development of custom, domain-specific mashup platforms costeffective. We describe a mashup tool development kit (MDK) that is able to automatically generate a mashup platform (comprising custom mashup and component description languages and design-time and runtime environments) from a conceptual design and to provision it as a service. We equip the kit with a dedicated development methodology and demonstrate the applicability and viability of the approach with the help of two case studies. © 2014 ACM

    The CHORCH Approach: How to Model B2Bi Choreographies for Orchestration Execution

    Get PDF
    The establishment and implementation of cross-organizational business processes is an implication of today's market pressure for efficiency gains. In this context, Business-To-Business integration (B2Bi) focuses on the information integration aspects of business processes. A core task of B2Bi is providing adequate models that capture the message exchanges between integration partners. Following the terminology used in the SOA domain, such models will be called choreographies in the context of this work. Despite the enormous economic importance of B2Bi, existing choreography languages fall short of fulfilling all relevant requirements of B2Bi scenarios. Dedicated B2Bi choreography standards allow for inconsistent outcomes of basic interactions and do not provide unambiguous semantics for advanced interaction models. In contrast to this, more formal or technical choreography languages may provide unambiguous modeling semantics, but do not offer B2Bi domain concepts or an adequate level of abstraction. Defining valid and complete B2Bi choreography models becomes a challenging task in the face of these shortcomings. At the same time, invalid or underspecified choreography definitions are particularly costly considering the organizational setting of B2Bi scenarios. Models are not only needed to bridge the typical gap between business and IT, but also as negotiation means among the business users of the integration partners on the one hand and among the IT experts of the integration partners on the other. Misunderstandings between any two negotiation partners potentially affect the agreements between all other negotiation partners. The CHORCH approach offers tailored support for B2Bi by combining the strengths of both dedicated B2Bi standards and formal rigor. As choreography specification format, the ebXML Business Process Specification Schema (ebBP) standard is used. ebBP provides dedicated B2Bi domain concepts such as so-called BusinessTransactions (BTs) that abstractly specify the exchange of a request business document and an optional response business document. In addition, ebBP provides a format for specifying the sequence of BT executions for capturing complex interaction scenarios. CHORCH improves the offering of ebBP in several ways. Firstly, the execution model of BTs which allows for inconsistent outcomes among the integration partners is redefined such that only consistent outcomes are possible. Secondly, two binary choreography styles are defined as B2Bi implementation contract format in order to streamline implementation projects. Both choreography styles are formalized and provided with a formal execution semantics for ensuring unambiguity. In addition, validity criteria are defined that ensure implementability using BPEL-based orchestrations. Thirdly, the analysis of the synchronization dependencies of complex B2Bi scenarios is supported by means of a multi-party choreography style combined with an analysis framework. This choreography style also is formalized and standard state machine semantics are reused in order to ensure unambiguity. Moreover, validity criteria are defined that allow for analyzing corresponding models for typical multi-party choreography issues. Altogether, CHORCH provides choreography styles that are B2Bi adequate, simple, unambiguous, and implementable. The choreography styles are B2Bi adequate in providing B2Bi domain concepts, in abstracting from low-level implementation details and in covering the majority of real-world B2Bi scenarios. Simplicity is fostered by using state machines as underlying specification paradigm. This allows for thinking in the states of a B2Bi scenario and for simple control flow structures. Unambiguity is provided by formal execution semantics whereas implementability (for the binary choreography styles) is ensured by providing mapping rules to BPEL-based implementations. The validation of CHORCH's choreography styles is performed in a twofold way. Firstly, the implementation of the binary choreography styles based on Web Services and BPEL technology is demonstrated which proves implementability using relatively low-cost technologies. Moreover, the analysis algorithms for the multi-party choreography styles are validated using a Java-based prototype. Secondly, an abstract visualization of the choreography styles based on BPMN is provided that abstracts from the technicalities of the ebBP standard. This proves the amenability of CHORCH to development methods that start out with visual models. CHORCH defines how to use BPMN choreographies for the purpose of B2Bi choreography modeling and translates the formal rules for choreography validity into simple composition rules that demonstrate valid ways of connecting the respective modeling constructs. In summary, CHORCH allows integration partners to start out with a high-level visual model of their interactions in BPMN that identifies the types and sequences of the BusinessTransactions to be used. For multi-party choreographies, a framework for analyzing synchronization dependencies then is available. For binary choreographies, an ebBP refinement can be derived that fills in the technical parameters that are needed for deriving the implementation. Finally, Web Services and BPEL based implementations can be generated. Thus, CHORCH allows for stepwise closing the semantic gap between the information perspective of business process models and the corresponding implementations. It is noteworthy that CHORCH uses international standards throughout all relevant layers, i.e., BPMN, ebBP, Web Services and BPEL, which helps in bridging the heterogeneous IT landscapes of B2Bi partners. In addition, the adoption of core CHORCH deliverables as international standards of the RosettaNet community give testament to the practical relevance and promise dissemination throughout the B2Bi community.Betriebsübergreifende Geschäftsprozessintegration ist eine logische Konsequenz allgegenwärtigen Wettbewerbsdrucks. In diesem Kontext fokussiert Business-To-Business integration (B2Bi) auf die Informationsaustausche zwischen Unternehmen. Eine B2Bi-Kernanforderung ist die Bereitstellung adäquater Modelle zur Spezifikation der Nachrichtenaustausche zwischen Integrationspartnern. Diese werden im Rahmen dieser Arbeit in Anlehnung an Service-orientierte Architekturen (SOA)-Terminologie Choreographien genannt. Bestehende Choreographiesprachen decken die Anforderungen an B2Bi-Choreographien nicht vollständig ab. Dedizierte B2Bi-Choreographiestandards definieren inkonsistente Austauschprozeduren für grundlegende Interaktionen und nur unvollständige Semantiken für fortgeschrittene Interaktionen. Formale oder Technik-getriebene Choreographiesprachen bieten die benötigte Präzision, lassen aber Domänenkonzepte vermissen oder operieren auf einer niedrigen Abstraktionsebene. Angesichts solcher Mängel wird die Spezifikation valider und vollständiger B2Bi-Choreographien zu einer echten Herausforderung. Gleichzeitig sind mangelhafte Choreographiemodelle gerade im B2Bi-Bereich besonders problematisch, da diese nicht nur zwischen Fach- und IT-Abteilung, sondern auch über Unternehmensgrenzen hinweg eingesetzt werden. Der CHORCH-Ansatz schafft an dieser Stelle mittels maßgeschneiderter Choreographien Abhilfe, welche die Vorteile von B2Bi-Choreographien und von formalen Ansätzen kombinieren. Als Ausgangspunkt wird das ebXML Business Process Specification Schema (ebBP) verwendet, das als B2Bi-Choreographiestandard Domänenkonzepte wie zum Beispiel sogenannte BusinessTransactions (BTs) bietet. Eine BT ist der Basisbaustein von B2Bi-Choreographien und spezifiziert den Austausch eines Geschäftsdokuments sowie eines optionalen Antwortdokuments. Darüber hinaus bietet ebBP ein Format zur Spezifikation von BT-Kompositionen zur Unterstützung komplexer Interaktionen. CHORCH erweitert ebBP wie folgt. Erstens, das Ausführungsmodell für BTs wird neu definiert, um inkonsistente Ergebniszustände zu eliminieren. Zweitens, für Entwicklungsprojekte werden zwei binäre Choreographieklassen definiert, die als B2Bi-Implementierungskontrakt dienen sollen. Die Formalisierung beider Klassen sowie formale operationale Semantiken gewährleisten Eindeutigkeit, während Validitätskriterien die Ausführbarkeit entsprechender Modelle mittels BPEL-basierter Orchestrationen garantieren. Drittens, zur Analyse der Synchronisationsbeziehungen komplexer B2Bi-Szenarien wird eine Multi-Party-Choreographieklasse nebst Analyseframework definiert. Wiederum wird für diese Klasse eine Formalisierung definiert, die mittels Standard-Zustandsautomatensemantik Eindeutigkeit gewährleistet. Ferner garantieren Validitätskriterien die Anwendbarkeit der definierten Analysealgorithmen. Insgesamt bieten die Choreographieklassen des CHORCH-Ansatzes ein B2Bi-adäquates, einfaches, eindeutiges und implementierbares Modell der Nachrichtenaustausche zwischen B2Bi-Partnern. B2Bi-Adäquatheit wird durch Verwendung von B2Bi-Domänenkonzepten, Abstraktion von rein technischen Kommunikationsdetails und Abdeckung der meisten praktisch relevanten B2Bi-Szenarien gewährleistet. Einfachheit ist ein Ausfluss der Verwendung eines Zustandsmaschinen-basierten Modellierungsparadigmas, das die Definition des Interaktionsfortschritts in Form von Zuständen sowie einfache Kontrollflussstrukturen ermöglicht. Eindeutigkeit wird durch die Verwendung formaler Semantiken garantiert, während Implementierbarkeit (für die beiden binären Choreographieklassen) durch Angabe von Mapping-Regeln auf BPEL-Orchestrationen sichergestellt wird. Die Validierung der CHORCH-Choreographieklassen erfolgt in zweierlei Hinsicht. Erstens, die Implementierbarkeit der binären Choreographieklassen mit Hilfe von Web Services und BPEL wird durch die Definition entsprechender Mappingregeln belegt. Weiterhin wird das Analyseframework der Multi-Party-Choreographieklasse als Java-Prototyp implementiert. Zweitens, für alle Choreographieklassen wird eine abstrakte Visualisierung auf BPMN-Basis definiert, die von diversen technischen Parametern des ebBP-Formats abstrahiert. Damit wird die Integrierbarkeit der CHORCH-Choreographieklassen in Entwicklungsansätze, die ein visuelles Modell als Ausgangspunkt vorsehen, belegt. CHORCH definiert, wie sogenannte BPMN-Choreographien zum Zweck der B2Bi-Choreographiemodellierung zu verwenden sind und übersetzt die Validitätskriterien der CHORCH-Choreographieklassen in einfache Modell-Kompositionsregeln. In seiner Gesamtheit bietet CHORCH somit einen Ansatz, mit Hilfe dessen B2Bi-Partner zunächst die Typen und zulässigen Reihenfolgen ihrer Geschäftsdokumentaustausche auf Basis eines abstrakten visuellen BPMN-Modells identifizieren können. Im Fall von Multi-Party-Choreographien steht dann ein Framework zur Analyse der Synchronisationsbeziehungen zwischen den Integrationspartnern zur Verfügung. Im Fall von binären Choreographien können ebBP-Verfeinerungen abgeleitet werden, welche die Modelle um technische Parameter anreichern, die zur Ableitung einer Implementierung benötigt werden. Diese ebBP-Modelle sind in Web Services- und BPEL-basierte Implementierungen übersetzbar. Damit erlaubt CHORCH die schrittweise Überbrückung der semantischen Lücke zwischen der Informationsaustauschperspektive von Geschäftsprozessmodellen und den zugehörigen Implementierungen. Ein beachtenswerter Aspekt des CHORCH-Ansatzes ist die Verwendung einschlägiger internationaler Standards auf allen Abstraktionsebenen, im Einzelnen BPMN, ebBP, Web Services und BPEL. Die Verwendung von Standards trägt dem heterogenen Umfeld von B2Bi-Szenarien Rechnung. Zusätzlich wurden Kernergebnisse des CHORCH-Ansatzes als internationale Standards der RosettaNet-B2Bi-Community veröffentlicht. Dies belegt die praktische Relevanz des Ansatzes und fördert die Verbreitung innerhalb der B2Bi-Community
    corecore