
12

UNIVERSITY OF
BAMBERG
PRESS

Andreas Schönberger

The CHORCH Approach
How to Model B2Bi Choreographies
for Orchestration Execution

Schriften aus der Fakultät Wirtschaftsinformatik und
Angewandte Informatik der Otto-Friedrich-Universität Bamberg

Schriften aus der Fakultät
Wirtschaftsinformatik und Angewandte Informatik

der Otto-Friedrich-Universität Bamberg

Schriften aus der Fakultät
Wirtschaftsinformatik und Angewandte Informatik

der Otto-Friedrich-Universität Bamberg

Band 12

University of Bamberg Press 2012

The CHORCH Approach:
How to Model B2Bi Choreographies

for Orchestration Execution

Andreas Schönberger

University of Bamberg Press 2012

Bibliographische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliographie; detaillierte bibliographische

Informationen sind im Internet über http://dnb.ddb.de/ abrufbar

Diese Arbeit hat der Fakultät Wirtschaftsinformatik und Angewandte Informatik der
Otto-Friedrich-Universität Bamberg als Dissertation vorgelegen
1. Gutachter: Prof. Dr. Guido Wirtz, Otto-Friedrich-Universität Bamberg
2. Gutachter: Prof. Dr. Christian Huemer, Technische Universität Wien
Tag der mündlichen Prüfung: 22. März 2012

Dieses Werk ist als freie Onlineversion über den Hochschulschriften-
Server (OPUS; http://www.opus-bayern.de/uni-bamberg/) der
Universitätsbibliothek Bamberg erreichbar. Kopien und Ausdrucke
dürfen nur zum privaten und sonstigen eigenen Gebrauch
angefertigt werden.

Herstellung und Druck: docupoint GmbH, Barleben
Umschlaggestaltung: Dezernat Kommunikation und Alumni der
Otto-Friedrich-Universität Bamberg

© University of Bamberg Press Bamberg 2012
http://www.uni-bamberg.de/ubp/

ISSN: 1867-7401
ISBN: 978-3-86309-076-0 (Druckausgabe)
eISBN: 978-3-86309-077-7 (Online-Ausgabe)
URN: urn�nbn�de�bvb�ÚÝÙ-opusÚ-Ùß2Ú

http://dnb.ddb.de/
http://www.opus-bayern.de/uni-bamberg/)
http://www.uni-bamberg.de/ubp/

To Vera and Vinzenz

Acknowledgments

This thesis presents the results of my research as a member of the Distributed Systems
Group at the University of Bamberg. I am indebted to numerous people who directly
or indirectly have contributed to the results of my dissertation project.

First of all, I would like to thank my doctoral father Prof. Dr. Guido Wirtz
for giving me perfect freedom in choosing my research directions, for numerous
discussions and timely feedback, for supporting my publication efforts and for insights
into academic and non-academic life. I would also like to address the other members
of my doctoral thesis committee, Prof. Michael Mendler, PhD, and Prof. Dr. Tim
Weitzel, who offered support and shared interest in my research topic.

In addition, I would like to thank all the students who significantly contributed
to particular aspects of the research topic or just inspired improvements through
critical questions. Outstanding contributions were provided by the following students
which also resulted in joint scientific publications:
Christoph Pflügler and his translation of ebBP-ST into BPEL, Simon Harrer and
his model-driven approach for mapping ebBP BusinessTransactions to BPEL orches-
trations, Johannes Schwalb and his examination of WS-* interoperability, Matthias
Geiger and his SPIN validation of the ebBP BusinessTransaction execution model
as well as Jörg Lenhard and his evaluation of the expressiveness of orchestration
languages. Joint student results were produced during a software development
project in the summer of 2008, in particular by Johannes Schwalb, Matthias Geiger,
Simon Harrer and Thomas Benker. All student contributions are explicitly marked
throughout this thesis.

Furthermore, I would like to thank all my former and current colleagues for
collaboration. Sven Kaffille and Dr. Christof Simons in particular for introducing me
to the Distributed Systems Group, for motivation and friendship. Matthias Geiger,
Simon Harrer, Jörg Lenhard and Christian Wilms for support while I was writing
the thesis. Mostafa Madiesh, Stephan Scheele, Philipp Eittenberger, Dr. Daniel
Beimborn, Nils Joachim and Prof. Dr. Udo Krieger for discussions and motivation.
Special thanks go to Cornelia Schecher and Babette Schaible for all the organizational
support and for listening.

Moreover, I am particularly indebted to the members of the RosettaNet community
for providing me with use cases and real-life validation of my proposals. I especially
would like to thank Hussam El-Leithy, Nikola Stojanovic, and Dale Moberg for
listening to my proposals and for exchanging ideas. Special thanks also go to Debra
Praznik for organizational support and motivation. I also would like to thank all
other members of the RosettaNet MCC team for discussions and collaboration.

I am deeply grateful to all national and international colleagues who reviewed,

i

discussed and suggested improvements to my work. Special thanks go to Prof. Dr.
Christian Huemer and Dr. Marco Zapletal of the Vienna University of Technology, Dr.
Andreas Wombacher of the University of Twente and Oliver Kopp of the University
of Stuttgart for inspiring discussions.

Deepest thanks go to my family without whose support this thesis would not be
finished by now. Vera for patience and love. Vinzenz for lighting up my eyes every
day. My parents-in-law for tremendous support, in particular since Vinzenz was born.
My parents and family for always believing in me and motivation.

ii

Kurzfassung
Betriebsübergreifende Geschäftsprozessintegration ist eine logische Konsequenz all-
gegenwärtigen Wettbewerbsdrucks. In diesem Kontext fokussiert Business-To-
Business integration (B2Bi) auf die Informationsaustausche zwischen Unternehmen.
Eine B2Bi-Kernanforderung ist die Bereitstellung adäquater Modelle zur Spezifika-
tion der Nachrichtenaustausche zwischen Integrationspartnern. Diese werden im
Rahmen dieser Arbeit in Anlehnung an Service-orientierte Architekturen (SOA)-
Terminologie Choreographien genannt. Bestehende Choreographiesprachen decken
die Anforderungen an B2Bi-Choreographien nicht vollständig ab. Dedizierte B2Bi-
Choreographiestandards definieren inkonsistente Austauschprozeduren für grundle-
gende Interaktionen und nur unvollständige Semantiken für fortgeschrittene Interak-
tionen. Formale oder Technik-getriebene Choreographiesprachen bieten die benötigte
Präzision, lassen aber Domänenkonzepte vermissen oder operieren auf einer niedrigen
Abstraktionsebene. Angesichts solcher Mängel wird die Spezifikation valider und
vollständiger B2Bi-Choreographien zu einer echten Herausforderung. Gleichzeitig
sind mangelhafte Choreographiemodelle gerade im B2Bi-Bereich besonders prob-
lematisch, da diese nicht nur zwischen Fach- und IT-Abteilung, sondern auch über
Unternehmensgrenzen hinweg eingesetzt werden.

Der CHORCH-Ansatz schafft an dieser Stelle mittels maßgeschneiderter Chore-
ographien Abhilfe, welche die Vorteile von B2Bi-Choreographien und von formalen
Ansätzen kombinieren. Als Ausgangspunkt wird das ebXML Business Process
Specification Schema (ebBP) verwendet, das als B2Bi-Choreographiestandard Domä-
nenkonzepte wie zum Beispiel sogenannte BusinessTransactions (BTs) bietet. Eine
BT ist der Basisbaustein von B2Bi-Choreographien und spezifiziert den Austausch
eines Geschäftsdokuments sowie eines optionalen Antwortdokuments. Darüber hinaus
bietet ebBP ein Format zur Spezifikation von BT-Kompositionen zur Unterstützung
komplexer Interaktionen.

CHORCH erweitert ebBP wie folgt. Erstens, das Ausführungsmodell für BTs
wird neu definiert, um inkonsistente Ergebniszustände zu eliminieren. Zweitens, für
Entwicklungsprojekte werden zwei binäre Choreographieklassen definiert, die als
B2Bi-Implementierungskontrakt dienen sollen. Die Formalisierung beider Klassen
sowie formale operationale Semantiken gewährleisten Eindeutigkeit, während Va-
liditätskriterien die Ausführbarkeit entsprechender Modelle mittels BPEL-basierter
Orchestrationen garantieren. Drittens, zur Analyse der Synchronisationsbeziehungen
komplexer B2Bi-Szenarien wird eine Multi-Party-Choreographieklasse nebst Analyse-
framework definiert. Wiederum wird für diese Klasse eine Formalisierung definiert, die
mittels Standard-Zustandsautomatensemantik Eindeutigkeit gewährleistet. Ferner
garantieren Validitätskriterien die Anwendbarkeit der definierten Analysealgorithmen.

iii

Insgesamt bieten die Choreographieklassen des CHORCH-Ansatzes ein B2Bi-
adäquates, einfaches, eindeutiges und implementierbares Modell der Nachrichten-
austausche zwischen B2Bi-Partnern. B2Bi-Adäquatheit wird durch Verwendung von
B2Bi-Domänenkonzepten, Abstraktion von rein technischen Kommunikationsdetails
und Abdeckung der meisten praktisch relevanten B2Bi-Szenarien gewährleistet.
Einfachheit ist ein Ausfluss der Verwendung eines Zustandsmaschinen-basierten
Modellierungsparadigmas, das die Definition des Interaktionsfortschritts in Form
von Zuständen sowie einfache Kontrollflussstrukturen ermöglicht. Eindeutigkeit wird
durch die Verwendung formaler Semantiken garantiert, während Implementierbarkeit
(für die beiden binären Choreographieklassen) durch Angabe von Mapping-Regeln
auf BPEL-Orchestrationen sichergestellt wird.

Die Validierung der CHORCH-Choreographieklassen erfolgt in zweierlei Hinsicht.
Erstens, die Implementierbarkeit der binären Choreographieklassen mit Hilfe von

Web Services und BPEL wird durch die Definition entsprechender Mappingregeln
belegt. Weiterhin wird das Analyseframework der Multi-Party-Choreographieklasse
als Java-Prototyp implementiert.

Zweitens, für alle Choreographieklassen wird eine abstrakte Visualisierung auf
BPMN-Basis definiert, die von diversen technischen Parametern des ebBP-Formats
abstrahiert. Damit wird die Integrierbarkeit der CHORCH-Choreographieklassen in
Entwicklungsansätze, die ein visuelles Modell als Ausgangspunkt vorsehen, belegt.
CHORCH definiert, wie sogenannte BPMN-Choreographien zum Zweck der B2Bi-
Choreographiemodellierung zu verwenden sind und übersetzt die Validitätskriterien
der CHORCH-Choreographieklassen in einfache Modell-Kompositionsregeln.

In seiner Gesamtheit bietet CHORCH somit einen Ansatz, mit Hilfe dessen B2Bi-
Partner zunächst die Typen und zulässigen Reihenfolgen ihrer Geschäftsdokument-
austausche auf Basis eines abstrakten visuellen BPMN-Modells identifizieren können.
Im Fall von Multi-Party-Choreographien steht dann ein Framework zur Analyse der
Synchronisationsbeziehungen zwischen den Integrationspartnern zur Verfügung. Im
Fall von binären Choreographien können ebBP-Verfeinerungen abgeleitet werden,
welche die Modelle um technische Parameter anreichern, die zur Ableitung einer
Implementierung benötigt werden. Diese ebBP-Modelle sind in Web Services- und
BPEL-basierte Implementierungen übersetzbar.

Damit erlaubt CHORCH die schrittweise Überbrückung der semantischen Lücke
zwischen der Informationsaustauschperspektive von Geschäftsprozessmodellen und
den zugehörigen Implementierungen.

Ein beachtenswerter Aspekt des CHORCH-Ansatzes ist die Verwendung ein-
schlägiger internationaler Standards auf allen Abstraktionsebenen, im Einzelnen
BPMN, ebBP, Web Services und BPEL. Die Verwendung von Standards trägt dem
heterogenen Umfeld von B2Bi-Szenarien Rechnung. Zusätzlich wurden Kernergeb-
nisse des CHORCH-Ansatzes als internationale Standards der RosettaNet-B2Bi-
Community veröffentlicht. Dies belegt die praktische Relevanz des Ansatzes und
fördert die Verbreitung innerhalb der B2Bi-Community.

iv

Abstract
The establishment and implementation of cross-organizational business processes is an
implication of today’s market pressure for efficiency gains. In this context, Business-
To-Business integration (B2Bi) focuses on the information integration aspects of
business processes. A core task of B2Bi is providing adequate models that capture
the message exchanges between integration partners. Following the terminology used
in the SOA domain, such models will be called choreographies in the context of this
work. Despite the enormous economic importance of B2Bi, existing choreography
languages fall short of fulfilling all relevant requirements of B2Bi scenarios. Dedicated
B2Bi choreography standards allow for inconsistent outcomes of basic interactions
and do not provide unambiguous semantics for advanced interaction models. In
contrast to this, more formal or technical choreography languages may provide
unambiguous modeling semantics, but do not offer B2Bi domain concepts or an
adequate level of abstraction. Defining valid and complete B2Bi choreography models
becomes a challenging task in the face of these shortcomings. At the same time,
invalid or underspecified choreography definitions are particularly costly considering
the organizational setting of B2Bi scenarios. Models are not only needed to bridge
the typical gap between business and IT, but also as negotiation means among the
business users of the integration partners on the one hand and among the IT experts
of the integration partners on the other. Misunderstandings between any two negotia-
tion partners potentially affect the agreements between all other negotiation partners.

The CHORCH approach offers tailored support for B2Bi by combining the strengths
of both dedicated B2Bi standards and formal rigor. As choreography specification
format, the ebXML Business Process Specification Schema (ebBP) standard is used.
ebBP provides dedicated B2Bi domain concepts such as so-called BusinessTransac-
tions (BTs) that abstractly specify the exchange of a request business document and
an optional response business document. In addition, ebBP provides a format for
specifying the sequence of BT executions for capturing complex interaction scenarios.

CHORCH improves the offering of ebBP in several ways. Firstly, the execution
model of BTs which allows for inconsistent outcomes among the integration partners
is redefined such that only consistent outcomes are possible. Secondly, two binary
choreography styles are defined as B2Bi implementation contract format in order to
streamline implementation projects. Both choreography styles are formalized and
provided with a formal execution semantics for ensuring unambiguity. In addition,
validity criteria are defined that ensure implementability using BPEL-based orches-
trations. Thirdly, the analysis of the synchronization dependencies of complex B2Bi
scenarios is supported by means of a multi-party choreography style combined with
an analysis framework. This choreography style also is formalized and standard state

v

machine semantics are reused in order to ensure unambiguity. Moreover, validity
criteria are defined that allow for analyzing corresponding models for typical multi-
party choreography issues.

Altogether, CHORCH provides choreography styles that are B2Bi adequate, simple,
unambiguous, and implementable. The choreography styles are B2Bi adequate in
providing B2Bi domain concepts, in abstracting from low-level implementation
details and in covering the majority of real-world B2Bi scenarios. Simplicity is
fostered by using state machines as underlying specification paradigm. This allows
for thinking in the states of a B2Bi scenario and for simple control flow structures.
Unambiguity is provided by formal execution semantics whereas implementability (for
the binary choreography styles) is ensured by providing mapping rules to BPEL-based
implementations.

The validation of CHORCH’s choreography styles is performed in a twofold way.
Firstly, the implementation of the binary choreography styles based on Web

Services and BPEL technology is demonstrated which proves implementability using
relatively low-cost technologies. Moreover, the analysis algorithms for the multi-party
choreography styles are validated using a Java-based prototype.

Secondly, an abstract visualization of the choreography styles based on BPMN is
provided that abstracts from the technicalities of the ebBP standard. This proves
the amenability of CHORCH to development methods that start out with visual
models. CHORCH defines how to use BPMN choreographies for the purpose of B2Bi
choreography modeling and translates the formal rules for choreography validity into
simple composition rules that demonstrate valid ways of connecting the respective
modeling constructs.

In summary, CHORCH allows integration partners to start out with a high-level
visual model of their interactions in BPMN that identifies the types and sequences of
the BusinessTransactions to be used. For multi-party choreographies, a framework for
analyzing synchronization dependencies then is available. For binary choreographies,
an ebBP refinement can be derived that fills in the technical parameters that are
needed for deriving the implementation. Finally, Web Services and BPEL based
implementations can be generated. Thus, CHORCH allows for stepwise closing the
semantic gap between the information perspective of business process models and
the corresponding implementations.

It is noteworthy that CHORCH uses international standards throughout all relevant
layers, i.e., BPMN, ebBP, Web Services and BPEL, which helps in bridging the
heterogeneous IT landscapes of B2Bi partners. In addition, the adoption of core
CHORCH deliverables as international standards of the RosettaNet community give
testament to the practical relevance and promise dissemination throughout the B2Bi
community.

vi

Contents

List of Figures xiii

List of Tables xv

List of Listings xviii

List of Abbreviations xix

1. Introduction 1
1.1. Scope of Work . 8

1.1.1. B2Bi as SCM Component . 8
1.1.2. Relevant Abstraction Layers 10
1.1.3. Types of B2Bi . 12

1.2. Research Question . 13
1.3. Research Method . 19
1.4. Outline . 27

2. Technological Background 29
2.1. Web Services and WS-* . 29
2.2. Orchestration Technology . 40

2.2.1. Web Services Business Process Execution Language 43
2.3. Choreography Technology . 48

2.3.1. ebXML Business Process Specification Schema 51
2.3.2. BPMN Choreographies . 56
2.3.3. Alternative Business-to-Business integration (B2Bi) Choreog-

raphy Languages . 57
2.3.4. Alternative Services Choreography Languages 59
2.3.5. Alternative Conceptual Choreography Languages 60

2.4. ebXML . 65

3. Requirements and Design Choices 69
3.1. Approach of the Requirements Study 69
3.2. Results of the Requirements Study and Design Choices 72

4. Representing B2Bi Choreographies 83
4.1. ebBP Deficiencies . 85
4.2. Integration Architecture . 87

vii

Contents

4.3. ebBP BusinessTransaction Representation 89

4.3.1. Requirements Analysis . 90

4.3.2. Execution Model . 91

4.4. ebBP-ST Choreographies . 100

4.4.1. Use Case . 101

4.4.2. Informal ebBP Models . 107

4.4.3. Formal ebBP models . 110

4.4.4. Evaluation . 125

4.5. ebBP-Reg Choreographies . 130

4.5.1. Use Case . 130

4.5.2. Formalization of ebBP-Reg . 131

4.5.3. ebBP-Reg Semantics . 136

4.6. SeqMP Choreographies . 140

4.6.1. Definition . 141

4.6.2. Problems in Multi-Party Choreographies 144

4.6.3. SeqMP Algorithms . 145

4.7. Chapter Summary . 166

5. Implementation of Choreographies as BPEL Orchestrations 169
5.1. General Implementation Aspects . 176

5.2. Implementation of BusinessTransactions 186

5.3. Implementation of BusinessCollaborations 194

5.4. Chapter Summary . 209

6. Visualizing B2Bi Choreographies 211
6.1. Selection of BPMN Elements . 213

6.2. Representing Strict Choreographies 227

6.2.1. Strict Binary Choreographies 227

6.2.2. Strict Multi-Party Choreographies 236

6.3. Validation . 240

6.4. Chapter Summary . 245

7. Related Work 249
7.1. Requirements Analysis for B2Bi . 252

7.2. B2Bi Choreography Representation 254

7.3. Implementation of B2Bi Choreographies 264

7.4. Multi-Layer Approaches . 271

8. Conclusion and Future Work 275

A. B2Bi Requirements Sources and Classification 285

B. Algorithm for Translating ebBP-ST to BPEL 301

viii

Contents

C. WS-* Implementation of the Secure WS-ReliableMessaging Scenario 309
C.1. Policy Configuration . 312
C.2. SecRM Scenario Test Results . 315

D. SPIN Validation of the BT Execution Model 319
D.1. The BT Execution Model as Validation Input 319
D.2. Promela Representation of the BT Execution Model 321

D.2.1. Overall Process Structure and Global Resources 321
D.2.2. Promela Representation of the Requester Control Process . . . 323
D.2.3. Promela Representation of the Responder Control Process . . 329
D.2.4. Promela Representation of the Requester’s Backend Process . 332
D.2.5. Promela Representation of the Responder’s Backend Process . 334
D.2.6. Promela Representation of the Master Processes 334
D.2.7. Promela Representation of the ReceiptAcknowledgementCre-

ation Service . 335
D.3. BT Execution Model Simulation Using XSPIN 336
D.4. Validation of the BT Execution Model Using SPIN 337
D.5. Validation Results . 345

Bibliography 347

ix

List of Figures

1.1. Business Service Interface Implementation (adapted from [170]) . . . 2
1.2. Supply Chain Network Structure (taken from [90]) 9
1.3. B2Bi Schema (adapted from [187]) 11

2.1. SOAP Message Structure, taken from [225] 30
2.2. Sample Web Services Interaction between Heterogeneous Platforms . 33
2.3. Sample Web Services Stack, adapted from [196] 34
2.4. Sample WS-ReliableMessaging Protocol Run, taken from [143,196] . . 35
2.5. Web Services Choreography and Orchestration, taken from [159] . . . 41
2.6. Conceptual Visualization of a Web Services Business Process Execution

Language (BPEL) Process with PartnerLinks, taken from [137] 44
2.7. Sample Irreducible Loop Structure 46
2.8. Invalid Representation of Sample Loop 47
2.9. Generic Protocol Failure Results of a BusinessTransaction (BT), taken

from [134, page 85] . 56
2.10. UN/CEFACT Modeling Methodology (UMM)’s Views on B2Bi Sce-

narios, taken from [210] . 58
2.11. ebXML Business Process Specification Schema (ebBP) and Comple-

mentary Electronic Business using XML (ebXML) Standards, taken
from [134] . 66

3.1. Valid ebBP-ST Model . 77
3.2. ebBP+ Business Transaction and State Split 78

4.1. Modularized B2Bi Scenario . 88
4.2. Requester Control Process Machine 95
4.3. Responder Control Process Machine 96
4.4. Use Case for Evaluating the ebBP-ST 102
4.5. Alternative Modeling of an Excerpt of the Use Case Demonstrating

Control Flow Explosion . 106
4.6. Invalid: Shared State Overlap . 114
4.7. Invalid: BTA triggered from different STs 115
4.8. Valid Example WSTBC . 117
4.9. Seller Deciding upon Quote Request 126
4.10. Seller Entering State Contract . 126
4.11. ebBP-Reg Use Case ([true] guards left out) 131
4.12. Ultimate Supply Chain (taken from [112]) 140

xi

List of Figures

4.13. RosettaNet Order to Cash with Logistic Service Provider Scenario . . 141

4.14. SeqMP Model of the RosettaNet Use Case 142

4.15. SeqMP Model of a Complex Use Case (conflated visualization) 146

4.16. SELECTED Strategy Applied to the Use Case of Figure 4.15 151

4.17. RESOLVABLE Strategy Applied to the Use Case of Figure 4.15 . . . 153

4.18. Projection for the Customer Role (Use Case of Figure 4.15) 155

4.19. 1 out of 2 Possible Projections for the LSP Role (Use Case of Figure
4.15) . 155

4.20. 1 out of 2 Possible Projections for the FSP Role (Use Case of Figure
4.15) . 163

4.21. Projection of Figure 4.20 after Applying Reduction Rules 163

5.1. Interfaces for Interacting with a Top-Level Control Process 177

6.1. Sample PIP Representations . 214

6.2. Sample Start States . 215

6.3. Sample End States . 216

6.4. Types of Transitions . 217

6.5. Sample Usage of Transitions . 217

6.6. Representing Choreographies . 219

6.7. Representing Decisions . 220

6.8. Event-Based Choice Sample . 221

6.9. Representing Parallel Structures . 222

6.10. Sample Expanded Sub-Choreography with Implicit Role Mapping . . 222

6.11. Sample Expanded Sub-Choreography with Explicit Role Mapping . . 223

6.12. Sample Call Choreography with Explicit Role Mapping 223

6.13. Sample Scenario for an Interrupting Choreography Timer 225

6.14. Event-Based Choice Timer Scenario 225

6.15. Options for Starting Strict Binary Choreographies 229

6.16. Options for Continuing BusinessTransactions 230

6.17. Options for Continuing Component Choreographies 231

6.18. Options for Continuing Event-Based Choices 233

6.19. Parallel Structure with Virtual Sub-Choreography 234

6.20. Parallel Structure without Virtual Sub-Choreography 235

6.21. Sample SeqMP Choreography . 238

D.1. Resquester Backend Automaton . 320

D.2. Responder Backend Automaton . 321

D.3. Simulation Configuration for the Process System (Screenshot XSPIN) 336

D.4. Message Sequence Chart of a Successful Run (Screenshot XSPIN) . 337

D.5. Message Sequence Chart of an Erroneous Run (Screenshot XSPIN) 338

D.6. SPIN Configuration for Invalid End States Analysis (Screenshot XSPIN)339

D.7. Verification Result for Invalid End States Analysis (Screenshot XSPIN)340

xii

List of Figures

D.8. Verification Result for the Local Process State Variables (XSPIN
Linear Temporal Logic (LTL) Editor Screenshot) 344

xiii

List of Tables

2.1. ebBP QoS Attributes and Specification Levels 53

3.1. Overview of B2Bi Challenges . 73
3.2. CHORCH’s B2Bi Choreography Modeling Flavors 80

4.1. WSTBC/ESTBC Transition Relations 120
4.2. WSTBC/ESTBC Complexity Comparison (Use Case) 128

5.1. BT Protocol Messages Overview . 187
5.2. BC Control Messages Overview . 197

A.1. Sources of Requirements (part 1) . 290
A.2. Sources of Requirements (part 2) . 294
A.3. Requirements-Challenge Relation . 297
A.4. Requirements-Abstraction Layer Relation 300

B.1. BPEL Production Rules for ebBP BusinessTransactionActivity 306
B.2. BPEL Production Rules for ebBP RequestingBusinessActivity (1) . . 307
B.3. BPEL Production Rules for ebBP RequestingBusinessActivity (2) . . 308
B.4. BPEL Production Rules for ebBP Decision 308

C.1. Message Protection Requirements and Keys Required for Protection
Realization Defined by the Scenario Definitions 312

C.2. Message Protection and Keys Used for Protection Realization on the
GlassFish-openESB Platform . 317

C.3. Message Protection and Keys Used for Protection Realization on the
IBM WebSphere Platform . 317

xv

List of Listings

2.1. Definition of PartnerLinkType in a Web Service Description Language
(WSDL) File, taken from [137] . 44

2.2. Definition of PartnerLink in a BPEL Process, taken from [137] . . . 44
2.3. Sample PropertyAlias for Defining Process Identification Data . . . 45
2.4. RosettaNet-Based BT Example . 54

4.1. ebBP Compliant Model of a Shared State 108
4.2. Extension-based Model of a Shared State 108

5.1. Control Message Header . 180
5.2. Correlation Properties . 181
5.3. Sample Property Aliases for Extracting Correlation Information . . . 181
5.4. Rough Structure of the Requester Process 189
5.5. Implementation of Requester’s ‘Started’ State 191
5.6. Implementation of Requester’s ‘DeliverBizDoc’ State 192
5.7. Implementation of Requester’s ‘AwaitRA’ State 193
5.8. Sample Correlation Property Alias for Binding of Incoming Messages

from a Lower Level Control Process 195
5.9. Main loop of a BCA control process 198
5.10. Initiating a BTA if Collaboration Role Maps to BTA Requester . . . 200
5.11. Initiating a BTA if Collaboration Role Maps to BTA Responder . . . 202
5.12. Mapping of an Event-Based Choice for a Leader Control Process . . . 204
5.13. Mapping of an Event-Based Choice for a Non-Leader Control Process 205
5.14. Mapping of a Parallel Structure for a Leader Control Process 207
5.15. Mapping of a Terminal State . 209
5.16. Wrap up Code of a BusinessCollaboration (BC) control process . . . 209

B.1. BPEL Output of writeBPELHeader Function 301
B.2. BPEL Output of writeBPELStateProlog Function 303
B.3. BPEL Output of writeBTA+DECplaceholder Function 304
B.4. BPEL Output of writeBPELStateEpilog Function 305
B.5. BPEL Output of writeBPELTerminalCode Function 305
B.6. BPEL Output of writeBPELProcessEpilog Function 305

C.1. The WS-Policy for the SecRM Scenario 313
C.2. The sp:BootstrapPolicy of the sp:SecureConversationToken in

the SecRM Scenario . 314

xvii

List of Listings

C.3. The WS-Security Policy Protection Assertions for the Input Messages 315
C.4. The WS-Security Policy Protection Assertions for the Output Messages315

D.1. Promela Definition of Messages and Message Channels 322
D.2. Exemplary Usage of a Promela if Construct 324
D.3. The inline Definitions Used . 326
D.4. Promela Definition of the Requester Control Process 326
D.5. Promela Definition of the Responder Control Process 330
D.6. Promela Definition of the Requester Backend Process 333
D.7. Promela Definition of the Responder Backend Process 334
D.8. Promela Definition of the Master Processes 335
D.9. Promela Definition of the ReceiptAcknowledgementCreation Service

(RAC) . 335
D.10.LTL Formulas for Validating the Consistent Use of Local Process State

Variables . 343
D.11.LTL Formulas for Validating State Alignment 344

xviii

List of Abbreviations

AA AcceptanceAcknowledgement, ebBP business signal type

AAE AcceptanceAcknowledgementException, ebBP business signal type

API Application Programming Interface

AS2 Applicability Statement 2

BA BusinessActivity

B2B Business-to-Business

B2Bi Business-to-Business integration

BC BusinessCollaboration

BCA CollaborationActivity

BCL Business Choreography Language

BPEL Web Services Business Process Execution Language

BPM Business Process Management

BPMN Business Process Model and Notation

BSI Business Service Interface

BSP (WS-I’s) Basic Security Profile

BSPL Blindingly Simple Protocol Language

BT BusinessTransaction

BTA BusinessTransactionActivity

CCTS Core Components Technical Specification

CGV ConditionGuardValue, ebBP expression language

CPA Collaboration-Protocol Agreement

CPP Collaboration-Protocol Profile

xix

List of Abbreviations

CPPA Collaboration-Protocol Profile and Agreement, an ebXML standard

CPS Control Process State Machine

DOM Document Object Model

EAI Enterprise Application Integration

EDI Electronic Data Interchange

EU European Union

ebBP ebXML Business Process Specification Schema

ebBP-Reg ebBP Regular, a specification style for binary choreographies

ebBP-ST ebBP Shared State, a specification style for binary choreographies

ebBP+ Extended ebBP modeling

ebMS ebXML Messaging Services

ebRIM ebXML Registry Information Model

ebRS ebXML Registry Services and Protocol

ebXML Electronic Business using XML

EJB Enterprise JavaBeans

ESB Enterprise Service Bus

ERP Enterprise Resource Planning

FTP File Transfer Protocol

GE GeneralException, ebBP business signal type

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure (HTTP over SSL)

ICT Information and Communication Technology

IDE Integrated Development Environment

IOWF-Net Interorganizational Workflow Net

IS Information Systems

IT Information Technology

xx

List of Abbreviations

JAXB Java Architecture for XML Binding

JAX-WS Java API for XML-Based Web Services

JBI Java Business Integration

JEE Java Platform, Enterprise Edition, also Java EE, previously J2EE

JMS Java Message Service

JRE Java Runtime Environment

JSE Java Platform, Standard Edition

JVM Java Virtual Machine

LTL Linear Temporal Logic

LoST Local State Transfer

MCC Message Control and Choreography

MCM Message Choreography Modeling Language

MDA Model-Driven Architecture

MEP Message Exchange Pattern

MIME Multipurpose Internet Mail Extensions

MMS Multiple Messaging Services

MTOM SOAP Message Transmission Optimization Mechanism

NOF Notification of Failure

OAGi Open Applications Group

OASIS Organization for the Advancement of Structured Information
Standards

OFTP2 ODETTE File Transfer Protocol 2

OSGi Open Services Gateway initiative

OSOA Open Service Oriented Architecture

PIP Partner Interface Process

QName Qualified Name

QoS Quality of Service

xxi

List of Abbreviations

RA ReceiptAcknowledgement, ebBP business signal type

RAC ReceiptAcknowledgementCreator

RAE ReceiptAcknowledgementException, ebBP business signal type

REST Representational State Transfer

RIG RosettaNet Implementation Guide

RNIF RosettaNet Implementation Framework

RSP (WS-I’s) Reliable Secure Profile

SecRM Secure WS-ReliableMessaging (Scenario)

SeqMP Sequential Multi-Party, a specification style for multi-party
choreographies

SMTP Simple Mail Transfer Protocol

SOA Service-Oriented Architecture

SOAP SOAP

SPIN The SPIN model checker

SSL Secure Sockets Layer

StAX Streaming API for XML

SCM Supply Chain Management

SCO Supply Chain Orientation

TCP Transmission Control Protocol

TLS Transport Layer Security

TTP TimeToPerform

UDDI Universal Description, Discovery and Integration

UML Unified Modeling Language

UMM UN/CEFACT Modeling Methodology

UN/CEFACT United Nations’ Centre for Trade Facilitation and E-business

URI Uniform Resource Identifier

URL Uniform Resource Locator

xxii

List of Abbreviations

VAN Value Added Network

W3C World Wide Web Consortium

WAS IBM WebSphere Application Server

WSDL Web Service Description Language

WSIT Web Service Interoperability Technologies

WS-CDL Web Services Choreography Description Language

WS-I Web Services Interoperability Organization

WS-RM WS-ReliableMessaging

WS-RM-Pol WS-ReliableMessaging Policy

WS-Sec WS-Security

WS-SecConv WS-SecureConversation

WS-Sec-Pol WS-Security Policy

WS-Stack Web Services stack

WS-Trust WS-Trust

XML Extensible Markup Language

XMLNS XML namespace

XPath XML Path Language

XSD XML Schema Definition

XSLT Extensible Stylesheet Language Transformations

xxiii

1. Introduction

The integration of cross-organizational business processes, commonly referred to
as Business-to-Business integration (B2Bi), is an area of enormous importance to
today’s economy. The sheer number of B2Bi communities such as Open Applications
Group (OAGi)1, Odette2, papiNet3 or RosettaNet4, numerous business document
standards [95] and large-scale B2Bi standardization projects such as ebXML5 and
UMM [210] are testament to this fact. Considering some figures of RosettaNet,
a major B2Bi community which defines business document formats and exchange
procedures, show that B2Bi transactions implemented using RosettaNet’s Partner
Interface Processes (PIPs) alone are worth billions of dollars6. The importance of
B2Bi is also consistently reflected in academic research [1,51,90,124,231].

Unfortunately, the importance of the B2Bi domain is paired with its complexity.
The task of automating B2Bi scenarios, which is central to this thesis, is challenged
by both organizational and technical issues.

At the specification level, adequate support for modeling the types, sequences, and
effects of business document exchanges is required. Contrary to in-house software
implementation projects, this also concerns coordination between personnel from
enterprises with diverse cultural backgrounds, levels of knowledge, goals and domains
of control. For the good of enterprise, business experts have to agree upon the
content and meaning of business document exchanges whereas software engineers
have to agree upon the technical configuration of messaging facilities. Furthermore,
IT has to be aligned with agreed-upon business goals. In this organizational setting,
changes to either of the agreements would require extensive discussions among all
implementation team members and should thus be avoided.

At the implementation level, the distributed nature of B2Bi systems plays a major
role in terms of complexity. Legacy systems must be coupled, which is not only a prob-
lem of data formats and connectivity, but also a question for the processing model, for
example, batch-style or on demand. Heterogeneity between the integration systems
of B2Bi partners must be overcome and typical distributed computing problems such
as lost, duplicated, or delayed messages, as well as partial failures must be addressed.

1http://www.oagi.org/, last access: 12/20/2011
2http://www.odette.org, last access: 12/20/2011
3http://www.papinet.org/, last access: 12/20/2011
4http://www.rosettanet.org/, last access: 12/20/2011
5http://www.ebxml.org/, last access: 12/20/2011
6RosettaNet, RosettaNet Standards Assessment 2008, 2008, http://www.rosettanet.org.my/
Download/2009%20ImplementationStatistics%2005.26.09.pdf, last access: 12/20/2011

1

http://www.oagi.org/
http://www.odette.org
http://www.papinet.org/
http://www.rosettanet.org/
http://www.ebxml.org/
http://www.rosettanet.org.my/Download/2009%20ImplementationStatistics%2005.26.09.pdf
http://www.rosettanet.org.my/Download/2009%20ImplementationStatistics%2005.26.09.pdf

1. Introduction

Without adequate modeling support, business experts and software engineers are
likely to come up with integration designs that are not fit-for-purpose (on the chosen
platform) or may lead to inconsistencies in the participating information systems in
case of message transmission errors.

The traditional way of dealing with distributed computing issues in the B2Bi
domain is the application of so-called Business Service Interfaces (BSIs) that govern
the cross-organizational message exchanges. Figure 1.1, which is taken from the
RosettaNet Implementation Framework (RNIF) documentation [170] exemplifies
the use of BSIs by conceptualizing the exchange of business documents between
trading partners A and B (represented as shaded rectangles). The internal processes

Figure 1.1.: Business Service Interface Implementation (adapted from [170])

of the two integration partners are depicted on the outer edges of the diagram
as long vertical rectangles with rounded corners and are labeled ‘Private Process’.
These private processes are typically carried out by some business applications such
as Enterprise Resource Planning (ERP) systems and coordinate the consumption
of the respective company’s resources for accomplishing its business goals. For
cross-organizational communication, so-called ‘Public Processes’ are used that are

2

also depicted as long vertical rectangles with rounded corners (inner part of the
figure). The tasks that are fulfilled by those public processes are manifold. Company
internal data representations have to be converted into a message format that is
commonly understood by both partners. Furthermore, the data needs to be packaged
within message containers for transmission and these messages are to be exchanged
in a secure and reliable manner. Public processes also are in charge of unpacking
data and reconversion of data into internal formats. Supporting these tasks is a
typical application area of B2Bi standards. The use of some RosettaNet standards is
consistently represented by various symbols within the ‘Public Process’ rectangles,
which will be returned to later.

A BSI’s task is characterized by implementing public processes and integrating
these with private processes. However, integration between public and private
processes can be interpreted with a high degree of variance.

At one extreme, a BSI may be used as a simple messaging proxy that offers
nothing more than basic system connectivity and transport control. Internal business
applications therefore simply use it to transmit single messages as self-contained and
complete activities. Even the configuration of some messaging characteristics such as
communication endpoints or communication qualities like security or reliability may
be provided by business applications in this case. At the other extreme, a BSI takes
control of the cross-organizational processes, implementing part of the business logic
and steering the flow of message exchanges. Both extreme situations are undesirable
from a software engineering perspective. On the one hand, implementing integration
logic in business applications impedes the separation of concerns software engineering
principle and unnecessarily ties business software to distributed systems frameworks.
On the other hand, implementing part of the business logic outside of business
applications leads to scattered application landscapes with intricate dependencies
between system components.

In practice, the implementation and management of BSIs is frequently outsourced
to dedicated B2Bi solution providers such as Axway7, GXS8 or Seeburger9. Dedicated
B2Bi providers have significant expertise in overcoming issues of heterogeneity and
in integrating with a large set of different business application vendors. However, as
there is no common interface for coupling public processes with private processes,
such an outsourcing strategy bears the risk of moving part of the business logic into
the domain of B2Bi solution providers and thus losing control of cross-organizational
processes. Moreover, traditional Electronic Data Interchange (EDI) concepts such as
Value Added Networks (VANs) that ensure reliable, secure and auditable transmission
of business documents via private networks are in widespread use. At this juncture,
it is worth noting that the boundaries between VAN-offerings and fully hosted B2Bi
solutions that take over responsibility for integration with business applications

7http://www.axway.com/, last access: 12/20/2011
8http://www.gxs.com/, last access: 12/20/2011
9http://www.seeburger.de, last access: 12/20/2011

3

http://www.axway.com/
http://www.gxs.com/
http://www.seeburger.de

1. Introduction

are frequently blurred in practice. Furthermore, it does not make a big difference
conceptually whether a VAN is used for message transmission or a B2Bi vendor’s
solution that implements VAN-like communication qualities on top of Internet
connections. This said, a common characteristic is that these solutions tend to be
costly.

These cost concerns are backed up by the Odette organization, a European
automotive industry group for creating “standards for e-business communications,
engineering data exchange and logistics management” that has carried out a survey
among 607 IT responsibles and key users from the European automotive industry on
Data Exchange via Portals and EDI 10. In the survey, cost is identified as a significant
barrier to B2Bi. This finding corresponds to a complementary Odette analysis
on the Comparison of File Transfer Alternatives for Business-to-Business (B2B)
Data Exchanges11. Cost, security, reliability, implementation, and applicability are
the core criteria for this comparison. Internet-based solutions such as Applicability
Statement 2 (AS2) or ODETTE File Transfer Protocol 2 (OFTP2) [66] over the
Internet are judged to be:

“Globally available, cheap, used for multiple purposes, every company
connected. Bandwidth scalable. No built in security. Not possible to
apply SLA requirements end to end between partners. In practice there
is a growing acceptance of Public Internet services for many automotive
use-cases, with certain exceptions. Public Internet is available as a service
from a large number of providers (ISPs).” Odette, Comparison of File
Transfer Alternatives for B2B Data Exchanges, 201111

Beyond cost, a lack of process perspective is a frequent issue for implementing
BSIs. This problem is twofold. Firstly, the exchange of business documents may
not be integrated with internal business applications, which is to say, the exchange
of business documents between BSI and business applications is not implemented.
Secondly, the types of interactions may frequently not go beyond simple request-reply
interactions.

In the previously mentioned Odette study10, EDI is found to outperform web
portals due to the improved process integration facilities of EDI. In addition, this
study reveals that (except for EDI) web portals, e-mail, and even fax, the phone or
mail dominate the B2Bi landscape. The latter strongly discourage the automation
of process integration. The need for better process integration is also backed up
by the establishment of the European Union (EU)-funded auto-gration project12,
which “aims to improve the integration of SMEs in global digital automotive supply

10Odette, “Data Exchange via Portals and EDI”, 2009, https://forum.odette.org/

publications/b2b/Data_Exchange_Survey_Analysis_2009, last access: 12/20/2011
11Odette, “Comparison of File Transfer Alternatives for B2B Data Exchanges”, 2011,

https://forum.odette.org/publications/telecommunications/OP06_File%20Transfer%

20Alternatives.pdf/at_download/file, last access: 12/20/2011
12http://www.auto-gration.eu/, last access: 12/20/2011

4

https://forum.odette.org/publications/b2b/Data_Exchange_Survey_Analysis_2009
https://forum.odette.org/publications/b2b/Data_Exchange_Survey_Analysis_2009
https://forum.odette.org/publications/telecommunications/OP06_File%20Transfer%20Alternatives.pdf/at_download/file
https://forum.odette.org/publications/telecommunications/OP06_File%20Transfer%20Alternatives.pdf/at_download/file
http://www.auto-gration.eu/

chains”13. According to an eBusiness adoption survey14 performed during the
auto-gration project, “even in the best cases 2/3 of the business relationships are
still based on manual interaction”. It is to note here that the deliverables of the
Odette group or the auto-gration project goals are not targeting the provision of
advanced process description formats that could be used as contractual agreements
between integration partners for pinning down the set of admissible business doc-
ument exchange sequences. In these studies, the term “process integration” is not
used to refer to B2B interactions that include multiple business document exchanges
and leverage non-trivial control flow expressions. Rather, the automation of message
exchanges between BSIs and business applications is considered to be the paramount
objective. Similar gaps can be identified for other B2Bi communities like OAGi15,
papiNet16 or RosettaNet17. Note also that the RosettaNet Methodology for Creating
Choreographies [173] has been developed during this dissertation project to a large
extent and thus does not change the evaluation of the starting point for this work.

High cost and poor process integration call for the application of advanced process
management technologies in combination with low-cost Internet communication
technologies. The establishment of efforts such as RosettaNet’s Message Control
and Choreography (MCC) program18 to which a large subset of this thesis’ results
have been submitted, or the UMM standard [210] of the United Nations’ Centre for
Trade Facilitation and E-business (UN/CEFACT) substantiate this. In addition, a
large variety of process modeling techniques and languages ranging from process
algebras [58, 113] and Petri nets [70], through academic approaches like BPEL4Chor
[31] or Let’s Dance [245], to international standards like ebBP [134] and Business
Process Model and Notation (BPMN) [150] are adapted to or directly target B2Bi
processes. Furthermore, academic research [1, 124,231] explicitly postulates the need
for advanced process integration standards:

“Another critical issue that impedes the supply chain-wide adoption of
the [B2Bi] technologies is lack of stringent, vendor-independent business
process standards. Without them, implementations can remain costly
and incompatible, making a critical barrier to achieving the high level
alignment and flexibility for agile supply chains. Although the standards
are relatively stringent at the infrastructure-level such as with SOAP and
WSDL in the Web Services area, Messaging Services (MS) of ebXML,

13http://www.auto-gration.eu/The%20Project, last access: 12/20/2011
14auto-gration project, “Analysis Report on e-Business adoption in the automotive sector”, 2010,

http://www.auto-gration.eu/downloads/public-information/Analysis%20Report%

20on%20eBusiness%20adoption%20in%20the%20automotive%20sector.pdf/at_download/

file, last access: 12/20/2011
15http://www.oagi.org/, last access: 12/20/2011
16http://www.papinet.org/, last access: 12/20/2011
17http://www.rosettanet.org/, last access: 12/20/2011
18http://www.rosettanet.org/Standards/RosettaNetStandards/

MessageControlandChoreography/tabid/3367/Default.aspx, last access: 12/20/2011

5

http://www.auto-gration.eu/The%20Project
http://www.auto-gration.eu/downloads/public-information/Analysis%20Report%20on%20eBusiness%20adoption%20in%20the%20automotive%20sector.pdf/at_download/file
http://www.auto-gration.eu/downloads/public-information/Analysis%20Report%20on%20eBusiness%20adoption%20in%20the%20automotive%20sector.pdf/at_download/file
http://www.auto-gration.eu/downloads/public-information/Analysis%20Report%20on%20eBusiness%20adoption%20in%20the%20automotive%20sector.pdf/at_download/file
http://www.oagi.org/
http://www.papinet.org/
http://www.rosettanet.org/
http://www.rosettanet.org/Standards/RosettaNetStandards/MessageControlandChoreography/tabid/3367/Default.aspx
http://www.rosettanet.org/Standards/RosettaNetStandards/MessageControlandChoreography/tabid/3367/Default.aspx

1. Introduction

and RosettaNet Implementation Framework (RNIF) of RosettaNet, there
is a serious gap at the higher level for specific business processes that are
essential to achieve the plug-and-play style interoperability” [1]

Choreography and orchestration technology [159] as defined in the area of Service-
Oriented Architectures (SOAs) seems to provide immediate help in addressing the
aforementioned problem. While choreographies define the types and sequences of
publicly visible message exchanges between communication partners, orchestrations
define the executable local processes of each partner (for exact definitions, please
see section 2.3). This seems to perfectly fit the scenario of figure 1.1 by using
choreographies as a contractual agreement between B2Bi partners on the message
exchanges to be implemented and for providing the corresponding implementations by
means of partner-local orchestrations that collaboratively realize the choreographies.
This is especially true in light of the distinction between abstract and executable
processes in the leading orchestration standard Web Services Business Process
Execution Language (BPEL) [137]. An important application area of abstract
BPEL orchestrations is the definition of the publicly visible message behavior of one
interaction partner. Executable BPEL orchestrations are then used to complete the
integration logic for existing systems. Thus, an abstract (or public) orchestration can
be used to define the role of an interaction partner within a choreography, while an
executable (or private) orchestration provides the corresponding implementation. It is
however worth noting that there is a major difference in the relations between public
(or abstract) and private (or executable) orchestrations as described in the BPEL
standard, and public and private processes as described by RosettaNet (see figure
1.1). A private orchestration is a refinement of a non-executable public orchestration.
This contrasts to a private process which represents a set of business applications
that interact with an executable public process. In this respect, public and private
orchestrations are not a one-to-one replacement for public and private processes.
Rather, a public orchestration can be used to define the interface of a public process
and a private orchestration can be used to provide its implementation.

Despite this excellent conceptual fit, the application of choreography and orchestra-
tion technology to B2Bi settings is far from straightforward. The terms choreography
and orchestration were originally tied to Web Services [159] and early choreography
and orchestration languages focused on Web Services technology. Admittedly, the
distributed setting of Web Services based systems implies commonalities with B2Bi
systems in terms of system assumptions, failure models, available algorithms and
requirements. However, there are fundamental differences regarding the modeling
constructs and engineering methods applied to B2Bi systems on the one hand, and
service based systems on the other.

Traditional B2Bi is business document driven in the sense that business documents
are used as the central objects of coordination between integration partners. Interac-
tions are designed as sequences of business document exchanges and the exchange
of business documents is accompanied by dedicated concepts such as disposition
notifications or validity signals. From a business perspective, the choice of technology

6

for performing the actual business document exchanges is of minimal importance. In
practice, VANs, AS2 [116], File Transfer Protocol (FTP), and Simple Mail Transfer
Protocol (SMTP) all are popular methods for exchanging business documents with
diverse effects on integration systems. B2Bi solution providers mediate these effects
by providing dedicated integration solutions that support an array of transport tech-
nologies and target smooth integration with the existing IT landscape of integration
partners.

Conversely, service based systems are designed for general-purpose content. The
central object of coordination is the service which is described in a platform-
independent manner and can be delivered using virtually any protocol. The homoge-
nization of service delivery is a prerequisite for agile replacement and modification
of services and hence a prerequisite for SOAs which promise business alignment,
agile management as well as the reuse of IT resources. Standardization and inter-
operability are key enablers to homogeneous service delivery and hence foster the
straightforward design and implementation of service compositions as choreographies
and orchestrations. From a conceptual perspective, service based systems eliminate
the need for B2Bi gateway providers.

These identified differences between B2Bi systems and services systems are par-
ticularly relevant for the design of choreographies that represent the agreements
between integration partners on the business document exchanges to be implemented.
Business experts and software engineers need models for communication and agree-
ment that fit the domain. The choice and exact configuration of implementation
technology is then a problem to be addressed thereafter. The following is an outline
of the different classes of choreography languages that reflect B2Bi and services
technology differences:

• B2Bi Choreographies that offer B2Bi specific concepts like business docu-
ment based BusinessTransactions and which are semantically close to business
process models.

• Services Choreographies that offer Web Services technology specific con-
cepts and are close to orchestration models.

• Conceptual choreographies that offer concepts driven by the purpose of
analysis and may be used to complement/analyze business process models as
well as orchestration models.

The existence of these classes is discussed in [179] as well as in section 2.3 and there
are reputable examples for each class (cf. section 2.3).

There are few approaches today that leverage dedicated B2Bi choreography lan-
guages like ebBP or UMM to specify unambiguous descriptions of the admissible busi-
ness document exchanges between integration partners. Admittedly, approaches that
rely on services choreography languages like Web Services Choreography Description
Language (WS-CDL) [223] or BPEL4Chor [31] or conceptual choreography languages

7

1. Introduction

like Interorganizational Workflow Nets (IOWF-Nets) [214] or Let’s Dance [245] also
capture significant aspects of B2Bi scenarios. Some of these approaches also lend
themselves better to formal analysis and are more easily integrated with services
technology. However, as dedicated B2Bi concepts are not available, these have to
be modeled “by hand” which impedes streamlined automation of B2Bi scenarios.
Furthermore, to not take the typical use of BSIs for separating cross-organizational
message exchanges from business applications into account, would result in a poor
separation between integration logic and application logic.

While more services oriented and conceptual approaches tend to lack B2Bi domain
concepts, approaches that use dedicated B2Bi choreography languages tend to neglect
the formalization of process models and characterizations of control flow soundness,
which is indeed the central concern for this thesis:

This thesis sets out to support the automation of B2Bi scenarios with
both B2Bi concepts for streamlining modeling and implementation as
well as the formal underpinnings for ensuring control flow soundness.

At the specification level, this thesis provides unambiguous formal se-
mantics for B2Bi choreography models, the identification of classes of
choreography models that are tailored to common needs of B2Bi scenarios,
and rules for creating sound B2Bi choreography models.

At the implementation level, this thesis proposes a clear concept for
delineating integration logic and business logic and a prototypic imple-
mentation based on Web Services orchestrations that facilitates the usage
of low-cost Internet connections.

The following sections will derive the scope of this undertaking more precisely
(section 1.1), formulate the research question (section 1.2) and provide a review of
the applied research method (section 1.3). Finally, section 1.4 outlines the structure
of the thesis.

1.1. Scope of Work

The scope of this thesis is made more concrete by relating it to the larger domain
of Supply Chain Management (SCM), by identifying the abstraction layer of chore-
ography and orchestration technology and by identifying the type of B2Bi that the
proposed models and algorithms of this thesis are applicable to.

1.1.1. B2Bi as SCM Component

SCM as a research discipline covers all relevant aspects of interorganizational rela-
tionships between businesses and therefore is suited to specify the scope of this thesis.
According to [112] a supply chain is “a set of three or more entities (organizations
or individuals) directly involved in the upstream and downstream flows of products,

8

1.1. Scope of Work

services, finances, and/or information from a source to a customer.” [90] points out
that a supply chain is not a purely linear structure, but rather has the form of an

“uprooted tree”, as depicted in figure 1.2, which demonstrates that businesses are
connected directly and indirectly to a complex network of supply chain members
through their suppliers and customers. SCM can then be defined relative to the

Figure 1.2.: Supply Chain Network Structure (taken from [90])

concepts of supply chain or supply chain network. [112] breaks down the notion
of SCM by distinguishing the concept of Supply Chain Orientation (SCO) “as the
recognition by an organization of the systemic, strategic implications of the tacti-
cal activities involved in managing the various flows in a supply chain” from the
concept of actual SCM which “is the implementation of a supply chain orientation
across suppliers and customers”. The implementation of SCM requires a variety of
activities that go far beyond the technical implementation of message exchanges
using choreography and orchestration technology. Before the active management of
process links between members of a supply chain can even start, the configuration of
the supply chain network structure, as well as the selection of relevant supply chain
business processes, has to be performed (cf. [90]). Moreover, active management of
process links necessitates several distinct management components according to [112]
and [90] that range from more managerial components such as “Risk and Reward
Structure” or “Culture and Attitude” to more technical components such as “Planning
and Control Methods” or “Communication and Information Flow Facility Structure”.

This thesis exclusively focuses on the technical aspects of providing the communi-
cation and information flow facility structure. Managerial and organizational aspects
of SCM are deliberately neglected as the technical implementation of the information

9

1. Introduction

flow facility structure is a challenging research topic in and of itself. [90] points out
that “virtually every author indicates that the information flow facility structure is
key. The kind of information passed among channel members and the frequency of
information updating has a strong influence on the efficiency of the supply chain.
This may well be the first component integrated across part, or all, of the supply chain.”
However, this aspect is not only an SCM management component in its own right, it
is also a key enabler for several other management components. For example, current
forecasts and timely monitoring information are crucial for “Planning and Control
Methods” and the realization of “Work Flow/Activity Structure” is not conceivable
without adequate IT support.

For the purpose of this thesis, the term B2Bi is henceforth used to refer
to the design and implementation of information exchanges between
integration partners as one of the core activities of SCM.

1.1.2. Relevant Abstraction Layers

The design and implementation of IT artifacts that facilitate B2Bi are performed in
phases and differ in both purpose and level of abstraction. Therefore, the identification
of relevant abstraction layers that choreography and orchestration technology apply
to helps in setting the scope of this thesis. The B2Bi schema depicted in figure 1.3
has been developed [187] through analyzing the abstraction levels of B2Bi projects,
its development phases and the purpose of relevant B2Bi standards.

This B2Bi schema, which has evolved from the Open-edi reference model [69],
begins with the real world level that represents the business processes to be integrated.
In a perfect world, the business model for integration is first captured, which concerns
the exchange of values between partners on an abstract level [37]. This business
model is then further refined into a business process model that specifies all necessary
activities to successfully implement the business model. This includes physical and
financial activities as much as information processing activities. The next refinement
step leads to the choreography level which focuses on the overall message exchanges of
the integration partners. The differences between the latter two models are blurred,
in particular if business process models leave out details about physical and financial
activities. However, the level of technical detail of choreography models is typically
significantly higher in order to be suitable for a contractual agreement regarding the
admissible information exchanges. Depending on the type of choreography language,
technical improvements may even comprise the exact business message schemata
or communication quality attributes such as security or reliability parameters. The
B2Bi schema then foresees the definition of public orchestrations to capture the
message exchanges of the individual integration partners (for precise definitions
please see section 2.2). The three small rectangles within the public orchestration
rectangles of figure 1.3 represent major issues to address on the level of abstraction,
i.e., the definition of the control flow, the selection of communication standards and
the realization of transactions that keep the information systems of the integration

10

1.1. Scope of Work

Figure 1.3.: B2Bi Schema (adapted from [187])

partners consistent. Interoperability and consistency between public orchestration
models of the integration partners are of paramount importance. Therefore, public
orchestrations should be interpreted as contracts that define the obligations of
each integration partner. In order to simplify analysis and to hide internal details
from integration partners, the B2Bi schema allows public orchestrations to capture
only the externally observable message sequences whereas the integration with
backends is to be specified in private orchestrations. Finally, the runtime systems
level describes the deployment and execution of private orchestrations. This covers
aspects such as the configuration of endpoint information for accessing backend
systems, monitoring private orchestration instances and collecting runtime data for
performance management.

This thesis seeks to address the semantic gap between business process
models and private orchestrations of B2Bi scenarios by providing textual

11

1. Introduction

and visual models for choreography specification and showing how these
can be effectively performed using orchestration technology. However,
the identification and derivation of those choreography artifacts from
business process models is not covered. Therefore, the implementation
and management of backend systems as well as organizational aspects of
managing runtime systems are not within the scope of this work.

1.1.3. Types of B2Bi

Different types of B2Bi have been identified in literature, and this section will
introduce those that this study focuses on:

• [48] identifies two basic types of B2Bi , namely extended enterprise integration
and market B2Bi. Extended enterprise integration covers the relationships of
integration partners who know each other and have agreed to do business with
each other for an extended period of time (cf. [48]). They know in advance
that their partner can provide more or less the necessary services and thus are
willing to make partner-specific IT investments. Market B2Bi on the other
hand, covers relationships that do not allow for partner-specific IT investments,
because, at the extreme, integration partners do not know each other in advance
and potentially choose services from different partners for each transaction.
Clearly the boundaries between extended enterprise integration and market
B2Bi are fluid and [48] discovered that“market B2Bi primarily concerns indirect
integration through electronic marketplaces”.

• [194] identifies and evaluates three different strategies for “cross-organizational
service composition” which may be directly applied to B2Bi. These are “a
highly centralized solution (a central hub allows users to find potential business
partners, to collaboratively model service choreographies and to finally execute
them)[...,] a hybrid approach (which applies a decentralized service choreography,
but is supported by a central hub) [...and] a fully decentralized, peer-to-peer
architecture which works without any central entity.” Vital here is that the
latter two solutions both use separate orchestration engines for each integration
partner, but the hybrid approach employs a central server for, among others,
managing data and process templates as well as for collaborative modeling.
Finally, [194] propose an event-driven architecture based on the concept of a
so-called event bus for integration scenarios with “a huge degree of variability
and complexity”. The drawback of this solution is that all integration partners
are forced to use the proposed event bus, which serves as a kind of message
backbone similar to enterprise service buses.

• In [213], B2Bi is classified in accordance with the degree of human involve-
ment, i.e., Straight Through Processing19 without human involvement and Case

19The term Straight Through Processing actually stems from the banking sector and denotes

12

1.2. Research Question

Handling with human involvement. The goal of straight through processing
is the maximization of automation and thus the reduction of costs and cycle
times. Case handling pays tribute to the fact that “many processes are much
too variable or too complex to capture in a process diagram” [213].

Clearly, the requirements and solutions for applying choreography and orchestration
technology to B2Bi scenarios may vary heavily with the B2Bi type under consideration.
Case handling models the intended flow of execution of a case but, if not explicitly
forbidden, also allows other flows that skip authorizations or undo activities [213].
Case handling has therefore more challenges to overcome with respect to flexibility or
semantic constraint management than straight through processing. In addition, [48]
identifies that the use of standards or registries such as UDDI [130] is less important
for the extended enterprise integration type of B2Bi than for market B2Bi. On the
contrary, however, other requirements such as security are equally important for each
B2Bi type. This is not to be confused with the suitability of different architectural
styles for fulfilling particular requirements. [194] compares the different identified
integration strategies according to several criteria and finds that central orchestration
lends itself better to guaranteeing security than decentralized orchestration without a
hub.

This thesis focuses on the extended enterprise type of B2Bi by providing
precise choreography and orchestration models. As the majority of the
models is executable or at least has execution semantics, this corresponds
to straight-through processing. As integration partners are assumed to
be autonomous entities, the hybrid or fully decentralized architectures
as defined by [194] are supported. However, this work does not focus
on collaborative editing of choreography models, but rather identifies
choreography models that can be executed using orchestrations, or at
least can be validated using an analysis framework.

1.2. Research Question

This thesis is dedicated to the semantic gap between the abstraction levels of business
process models and private orchestrations as identified in section 1.1.2 (figure 1.3).
For the type of B2Bi systems identified, the application of process-based description
models, in particular choreographies and orchestrations, is proposed. Performance
and cost gains of such a process-based approach are assumed to outweigh initial
setup costs. This is in line with industry efforts such as RosettaNet’s MCC or the
EU-funded auto-gration project (cf. above), available B2Bi standards like ebBP and
UMM, and academic research [1, 51,90,120,124,231].

end-to-end automation of trading activities throughout the value chain [231]. This is different
from the usage of the term in [213] where the automation of the control flow between subsequent
activities of one focal role is denoted.

13

1. Introduction

The use of dedicated B2Bi choreographies is proposed for several reasons. Firstly,
the support of B2Bi concepts such as business documents makes this class of chore-
ographies accessible to the B2Bi community. Secondly, B2Bi choreographies tend to
be implementation technology agnostic, which is a prerequisite for being applicable
to the wider set of implementation technologies used in the B2Bi domain. Thirdly,
the semantic proximity to business process models on the one hand, and the message
exchange focus on the other hand, promise that B2Bi choreographies are amenable to
both business users and software engineers. Thus, this thesis should aid the seamless
transition of business requirements into implementation systems.

In addition, service based realizations of orchestration technology are proposed due
to the conceptual benefits of services technology in bridging heterogeneous platforms
and coupling legacy systems.

Taking all the aforementioned into account, this project aims to answer:

RQ 1 How can B2Bi choreographies be used as implementation contracts for services
orchestration based B2Bi systems?

This refers to the B2Bi abstraction layers identified in the last section, which provides
the methodological basis for splitting the research question up into smaller and more
manageable parts:

RQ 1.1 What is a suitable B2Bi choreography language?

This sub-question focuses on the choreography layer only. In particular, the relevant
concepts needed for modeling B2Bi choreographies have to be identified and the
composition of these concepts such that valid and implementable models result has to
be characterized. Furthermore, an unambiguous execution semantics of choreography
models is to be defined.

RQ 1.2 To what extent and how can services orchestrations be used to implement
valid B2Bi choreographies?

This sub-question looks at the transition from the choreography layer to the or-
chestration layer and concerns the soundness and completeness of implementing the
choreography execution semantics as well as the architectural fit of implementations
with B2Bi settings.

RQ 1.3 How can B2Bi choreographies be visualized?

This concerns the transition from the business process model layer to the choreog-
raphy layer and aims at the abstract visualization of the choreography’s business
document exchanges in order to support communication among business experts and
software engineers within and across company boundaries. However, the details of
deriving visual B2Bi choreography definitions that concentrate on the information
flow from business process models that also concentrate on physical and financial
flows is not considered here.

14

1.2. Research Question

Supporting background reading on the above is given in the Design Science re-
search method [50,57]. Design science suggests the research problem to “be defined
as the differences between a goal state and the current state of a system” [57]. The
following lists give an overview of the current and the goal state of B2Bi. What is
here provided concerns the above research questions either commonly or individually
and establishes a more refined view on the crucial aspects to be considered. While a
detailed discussion of the research questions according to design science guidelines is
presented here, a comprehensive methodological review of this work according to [57]
is provided in the next section.

The current state of B2Bi can be characterized as follows:

• No adoption of dedicated interoperability technologies that operate on low-cost
Internet communication protocols.
The data provided by the Odette survey on Data Exchange via Portals and
EDI 10 as well as the aims of the auto-gration project12 clearly show that low-cost
Internet communication protocols are not commonly used. This is particularly
true for WSDL-based Web Services. Although this technology is conceptually
a natural fit for integration scenarios that suffer from interoperability and
heterogeneity problems, it is not even mentioned as an implementation option
in the Odette analysis for File Transfer Alternatives for B2B Data Exchanges.
This observation is also backed by the analysis of [1].

• Integration is performed without using standardized process model formats for
agreements.
The lack of standardized process model formats is one of the key observations
of the study in [1] and is reflected by the fact that hardly any reputable B2Bi
community such as RosettaNet, Odette, OAGi or papiNet provide scenarios or
guidelines for using process model standards. When provided, B2Bi scenario
descriptions offer ad-hoc visualizations that may or may not be based on well-
known modeling languages and typically rely heavily on prose for clarifying
semantics. As a consequence, these descriptions typically lack common meaning
and any formal underpinning. This observation is also backed up by [68] that
identify standardization of modeling approaches as a core issue for business
process modeling in a survey among 64 business process modeling experts from
academia, tool vendors and practitioners.

• The generation of implementation artifacts from contractual process agreements
is not sufficiently supported.
A model-driven process execution is identified as another core business process
modeling issue in [68]. The lack of corresponding functions can be explained
by the fact that B2Bi communities do not so far adopt process-based modeling
at all. From an academic perspective, the generation of deployable artifacts
for process execution is not a solved problem either. There are approaches
that derive orchestration processes (in particular BPEL-based processes) from

15

1. Introduction

high level process descriptions (cf. [152, 217]). However, such orchestration
models still have to be completed with private integration logic manually before
they can be deployed on execution engines. Considering the complexity of
orchestration models, this is a challenging and error-prone task. The recently
released BPMN 2.0 specification [150] is frequently said to provide everything
needed to derive fully executable BPEL processes. However, there is so far
no conclusive evidence that this is the case. The abstraction level of BPMN
actually implies that further assumptions must be made for enabling the
executability of process models, and choreographies in particular.

• Integration architectures mix up business logic with control flow logic and thus
foster lock-in to specific B2Bi vendor products.
As long as control flow logic and business logic are not separated from each other,
integration partners will remain dependent on the integration functionalities of
ERP and BSI providers for connecting message endpoints to business applica-
tions. Breaking this dependency cycle would necessitate the standardization of
the relationship between cross-organizational message exchanges and business
applications so that the control flow logic can be separated seamlessly from the
business logic. This implies the use of process-based models as these provide
the foundation for capturing the control flow. However, B2Bi communities
still struggle with more basic communication technology problems or even do
not recognize the need for such a separation. Rules for governing the control
flow of message exchanges between BSIs and business applications is frequently
perceived to be a private issue for the integration partners and is eventually
left to B2Bi solution providers.

• Current process specification formats do not provide suitable abstraction levels
for cooperation between business users and software engineers.
Business process models created by domain experts focus on the actual business
logic and not on technical soundness criteria such as executability or absence
of deadlocks. Domain experts frequently do not even have the skills to think in
these categories and use prose to document the semantics of process models
in ambiguous ways. In contrast, deployment artifacts created by software
engineers focus on technical aspects such as data type definitions, message
endpoint bindings, or executable activity sequence specifications and thus fall
short in making sense to non-technical personnel. As a result, issues such as
Business-IT-Divide, Compliance and Modeling Level of Detail are identified
in [68].

• Limited visibility of the progress of B2Bi interactions.
In a poll performed by RosettaNet on the High Tech and Electronics Industry
in early 201120, visibility throughout the supply chain is identified as the

20RosettaNet, “High Tech and Electronics Industry”, 2011, http://www.rosettanet.org/dnn_
rose/DocumentLibrary/tabid/2979/DMXModule/624/Command/Core_Download/Method/

attachment/Default.aspx?EntryId=9851, last access: 12/20/2011

16

http://www.rosettanet.org/dnn_rose/DocumentLibrary/tabid/2979/DMXModule/624/Command/Core_Download/Method/attachment/Default.aspx?EntryId=9851
http://www.rosettanet.org/dnn_rose/DocumentLibrary/tabid/2979/DMXModule/624/Command/Core_Download/Method/attachment/Default.aspx?EntryId=9851
http://www.rosettanet.org/dnn_rose/DocumentLibrary/tabid/2979/DMXModule/624/Command/Core_Download/Method/attachment/Default.aspx?EntryId=9851

1.2. Research Question

most important integration challenge. However, visibility in terms of the
progress of active interaction instances as well as the calculation of performance
indexes implies the use of process models and requires the development of
implementation techniques that allow for such information visibility. The
adoption of process-based B2Bi systems is an enabler for this.

This thesis further strives to improve the current B2Bi landscape by achieving the
following goal state of B2Bi:

• The barrier for adopting process-based B2Bi is lowered.
The following factors contribute to eliminating process-based B2Bi adoption
barriers. Firstly, the use of low-cost Internet technologies is enabled by iden-
tifying options for providing necessary B2Bi communication qualities such as
security or reliability. As the B2Bi landscape is very diverse in terms of existing
communication protocols, message gateways software and ERP systems, dedi-
cated interoperability technologies, such as WSDL-based Web Services, are used
for tackling interoperability and heterogeneity problems. Moreover, the use of
stringent choreography and orchestration descriptions leveraging unambigu-
ous execution semantics enables the reduction of misunderstandings between
integration partners, faster implementation of B2Bi systems and improved
compliance between implementation systems and B2Bi process models.

• B2Bi choreographies can be used as standardized, technology-agnostic contrac-
tual obligations between integration partners.
The authors of [1] state that “without [..stringent, vendor-independent business
process standards], implementations can remain costly and incompatible, mak-
ing a critical barrier to achieving the high level alignment and flexibility for
agile supply chains”. Similarly, standardization is identified in [68] as the most
significant business process modeling issue by practitioners. Furthermore, the
author of [124], who reports on a survey analyzing the impact of Information
and Communication Technology (ICT) solutions on e-commerce with 5218
cases from ten industries in seven countries, states that “standardized data ex-
change with the trading partners has a positive influence on labor productivity”.
However, standardization alone is not sufficient for the definition of suitable
choreography models. In order to cater for the diverse set of BSI implementa-
tion options, choreography models must be implementation technology agnostic.
Yet the execution semantics of the choreography models must uniquely define
the set of valid message exchange sequences.

• B2Bi is facilitated by an integration architecture that enables separation of the
business logic from the control flow logic.
The business logic for creating, validating, and processing business documents as
well as the functionality for triggering such events can be assumed to be available
in existing business applications such as ERP systems. Isolating control flow
logic requires the definition of standardized interfaces for consuming application

17

1. Introduction

logic. Relying on such interfaces is a means to generate orchestration-based
control flow implementations that are ready for deployment and do not have
to be extended with business logic manually. Furthermore, an integration
architecture that isolates control flow logic and defines the interactions with
business applications provides a lever for better managing the control flow
of interactions. Thus, the dependency on ERP or B2Bi vendor offerings for
ensuring compliance between interaction implementations and choreography
models can be reduced. In that sense, separation of business logic from control
flow logic is an important means to reempowering the integration partners so
that they regain control of their business processes.

• B2Bi is facilitated by an integration architecture that enables tracking the
progress of business interactions.
Timely and agile management of B2Bi interactions requires tracking the progress
of business interactions. This includes applying process models that allow for
the retrieval of already completed activities as well as the identification of the
integration partner who is in charge of delivering the next message. In addition,
there must also be some means for alerting partners about dangling processes.

• Model-driven technologies can be used to derive orchestrations that govern the
control flow of message exchanges.
Leveraging model-driven technologies for deriving implementation artifacts
promises to provide the “quick establishment of Information Systems (IS) in-
tegration” as demanded by [1]. However, in order to be useful, orchestration
models must be generated in a way that these are ready for immediate de-
ployment. Otherwise, the effort for handcrafting automatically generated code
just might be too high. In addition, leveraging model-driven technologies is
not only advantageous in terms of time but also has the promise of cheaper
implementation and improved conformity in orchestrations and choreography
contracts. Even if automatically generated deployment artifacts do not fit
in arbitrary Information Technology (IT) landscapes, these may still be very
beneficial as reference implementations or testing systems.

• B2Bi models can be stringently visualized without a significant amount of
technical detail.
The business process modeling problems Business-IT-Divide, Modeling Level of
Detail and Ease of Use identified in [68] all call for the visualization of process
models. Whereas orchestration models consider implementation, choreography
models look at the definition of implementation contracts that serve as a
means of communication, not only between domain experts of the participating
integration partners, but also between domain experts and software engineers.
In light of this, the visualization of choreography models is a top priority. Some
technical agreement detail needs to be hidden because such visual models
should be amenable to domain experts. However, more technical choreography
representations must be derivable where software engineers only have to fill in

18

1.3. Research Method

technical detail without necessarily modifying the already agreed-upon message
exchange sequences.

Having now defined the research question explicitly and through contrasting the
current and goal state of B2Bi, the next section provides a review of the research
method applied to answer this question.

1.3. Research Method

The target of this thesis is to identify a way to close the gap between business process
models and private orchestrations of B2Bi systems. In considering the vast set of
implementation options and user requirements for the type of B2Bi systems identified
in section 1.1, enumerating all possible solutions to this problem and identifying the
optimal solution is next to impossible. Following the satisficing principle of [200],
it is the aim of this thesis to explore the use of choreography and orchestration
technology. Yet [104] asserts that the development of “IT solutions” is supposed to
follow “design theories”. The application of choreography and orchestration models
as well as methods for deriving orchestrations from choreographies can be suitably
supported by the design-science research method. The fundamental principle of
design science research “is that knowledge and understanding of a design problem
and its solution are acquired in the building and application of an artifact” [57].

Hevner et al. [57] recommend seven basic guidelines for performing high qual-
ity design-science research. In what follows, it will be outlined how this project
corresponds to these principles.

Guideline 1: Design as an Artifact According to [57], “design-science research
must produce a viable artifact in the form of a construct, a model, a method, or an
instantiation” that is “created to address an important organizational problem.”

The artifacts proposed in this thesis are models for specifying, executing and
visualizing B2Bi choreographies as well as methods for analyzing and processing
these.

A series of models is created in order to constrain and define the semantics of
the ebBP B2Bi choreography language more precisely. As a result, ebBP can be
used for the specification of unambiguous implementation contracts between B2Bi
partners (cf. chapter 4). Firstly, the tasks of the communication roles of ebBP
BusinessTransactions are captured as communicating state machines. Secondly,
ebBP Regular (ebBP-Reg) and ebBP Shared State (ebBP-ST) are defined as binary
ebBP choreography dialects that can be used as an implementation contract between
exactly two partners. Thirdly, Sequential Multi-Party (SeqMP) choreographies and
a corresponding framework are proposed for analyzing multi-party choreographies in
order to extend the use of ebBP beyond implementation contracts. The concept of
proposing more than one single language owes itself to conflicting requirements as
identified in chapter 3.

19

1. Introduction

The execution of binary choreographies is supported by means of an integration
architecture that separates the control flow logic from the business logic (cf. chapter
5). Furthermore, a mapping from binary ebBP choreographies to BPEL is defined
(also chapter 5).

Finally, guidelines for representing the different styles of choreographies using
BPMN are proposed. In addition, the technical details that have to be filled in when
deriving ebBP choreographies from visual models are identified.

Guideline 2: Problem Relevance Problem relevance is reformulated in [57] by
stating that “the objective of research in information systems is to acquire knowledge
and understanding that enable the development and implementation of technology-
based solutions to heretofore unsolved and important business problems.”

Beyond stressing once more that a lack of IT support endangers effective SCM
or indeed the survival of the organization [51,90], demonstrating problem relevance
essentially means proving that a problem actually exists. This essentially corresponds
to the identification of research questions as spelt out in the last section. The identified
research problem is given further credibility by the fact that industry as well as
academia are aiming to solve it. For example, RosettaNet has performed the so-called
Multiple Messaging Services (MMS) and MCC efforts that resulted in guidelines
for leveraging low-cost Internet technologies for message exchanges [171, 172] as
well as guidelines for creating visual B2Bi models [173]. With regard to the MCC
deliverables, core parts of their standards rely on the findings of this thesis. Moreover,
a series of B2Bi standards, as analyzed in chapter 3, that offer some support for the
identified research gap, are available. Furthermore, the second version of BPMN,
released in January 2011, has added a dedicated choreography section. Finally, there
is considerable academic research in the B2Bi field as discussed in chapter 7.

Guideline 3: Design Evaluation “A design artifact is complete and effective
when it satisfies the requirements and constraints of the problem it was meant to
solve” [57]. Thereby, “the business environment establishes the requirements upon
which the evaluation of the artifact is based” [57].

In order to capture the requirements of the B2Bi domain, important B2Bi standards
were included in an extensive literature review (cf. chapter 3) on B2Bi requirements.
The development of such standards is typically driven by practitioners and software
vendors and, therefore, can be assumed to contain commonly and frequently needed
functionality. As a result, the requirements identified can be argued to represent a
solid basis for shaping choreography models in order to fit business requirements.

Moreover, an analysis of 100 RosettaNet Implementation Guides (RIGs) of Roset-
taNet’s RIG library has been performed. “[A RIG] describes the specific business
scenario(s), usage notes and lessons learned [when implementing RosettaNet stan-
dards]”which is supposed to“help reduce implementation time and accelerate adoption
of the process scenario by sharing the experience of early implementers.”21 Control

21http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/

20

http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx

1.3. Research Method

flow requirements of RIGs can be deduced from the business scenario descriptions
and the overwhelming majority of RIGs is pretty simple in that regard. Only 44 out
of 100 RIGs use hierarchical decomposition, 15 RIGs describe multi-party scenarios,
12 RIGs use loops, and 8 RIGs have parallel activities. Contrasting the B2Bi chore-
ography models of this thesis with these RIG control flow requirements reveals that
common B2Bi control flow requirements are covered in this thesis pretty well.

The choreography models have been further challenged by submitting these to
the RosettaNet MCC team, which resulted in the acceptance of large parts of this
dissertation project’s results in two RosettaNet standards [172,173]. These standards
cover the execution of ebBP BusinessTransactions using Web Services [172] on the
one hand, and the representation of B2Bi choreographies using BPMN choreography
notation [173] on the other. The conceptual foundation for the BPMN visualization
is provided by the identified ebBP-Reg, ebBP-ST, and SeqMP choreography styles.
Using BPMN, choreography models that follow these styles can be presented in a
more user-friendly manner. Finally, the mapping of B2Bi choreographies to BPEL is
evaluated by checking whether or not the created BPEL processes can be deployed and
executed on the openESB22 BPEL engine without the need for further modification.

Guideline 4: Research Contributions In [57], it is pointed out that “effective
design-science research must provide clear contributions in the areas of the design
artifact, design construction knowledge (i.e., foundations), and/or design evaluation
knowledge (i.e., methodologies)”. In addition, [57] states that “most often, the
contribution of design-science research is the artifact itself.”

This holds particularly true for the artifacts described for guideline 1, which
constitute the main contributions of this thesis. In what follows, these are listed.
They can be categorized in the area of design construction and design evaluation
knowledge:

• Firstly, this thesis develops a formal execution semantics for subsets of ebBP
process models. To this point, no formal execution semantics has been available
for ebBP.

• Secondly, the mapping from ebBP models to BPEL allows for almost arbitrary
input graphs. In particular, irreducible loops are allowed for and hence the
modeler is not forced to design ebBP models in a structured manner [76].
This is different from other research initiatives that simply ignore the problem,
impose considerable limitations on the input models or leverage BPEL features
that are barely available in today’s engines. For example, [152] uses self-links to
resolve irreducible loops which is not largely supported among current BPEL
engines. Apart from allowing for almost arbitrary input models, the mapping
provided in this work (also described in [190]) is new in combining a graph-like
structure and threading-like process decomposition at the BPEL level. Such a

RosettaNetImplementationGuides/tabid/2985/Default.aspx, last access: 12/20/2011
22http://openesb-dev.org/, last access: 12/20/2011

21

http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://openesb-dev.org/

1. Introduction

strategy was not found in other research projects. In particular, the strategy is
not captured in the overview of translation strategies between graph-oriented
and block-oriented languages in [111].

• Thirdly, the visualization of B2Bi choreographies constitutes an evaluation of
BPMN 2.0 choreographies with respect to its suitability for B2Bi modeling.
The classes of ebBP-Reg, ebBP-ST and SeqMP were used to check BPMN’s
visualization capabilities by analyzing the availability of modeling constructs,
the implementability of choreography grammar rules and by modeling several
use cases. Some deficiencies such as missing role mapping features or missing
expressions for capturing collaboration results have been detected, as well
as the technical detail that has to be completed for deriving complete ebBP
serializations of BPMN choreographies has been identified. It is worth noting
that the usability of the visualization has not been an explicit goal of this thesis.
However, the acceptance of the visualization proposal by the RosettaNet MCC
team suggests that the visualization makes sense to practitioners and software
vendors.

• Fourthly, an integration architecture for performing binary B2Bi choreographies
that truly separates the control flow logic and the business logic is proposed.
This separation also enables the generation of fully deployable BPEL processes.
It is important to note here that this is not the same as conceptually identifying
public and private processes for B2Bi interactions, which can be considered to
be common knowledge in the B2Bi domain. It rather concerns the definition
of interfaces as well as interaction rules for coupling public processes to private
processes using orchestrations.

• Fifthly, the integration style proposed here combines asynchronous and syn-
chronous coordination semantics in a new way, where messages are transmitted
synchronously while the processing of messages is performed asynchronously.
Exchanging messages synchronously simplifies protocol design as the sender
of the message immediately knows the technical result of transmission. This
concept is particularly useful as it significantly reduces the effort required
for analyzing models using techniques such as model checking (see section
5.1). On the contrary, message processing that may require considerable time
is performed asynchronously in order to prevent tight coupling. Based on
these simple primitives, exchange protocols are defined that ensure consistent
outcomes for ebBP BusinessTransactions as well as a synchronized view of
integration partners on the progress of ebBP BusinessCollaborations. In order
to achieve synchronized BusinessCollaboration views when advanced control
flow features are used, messages that carry business semantics are distinguished
from messages that only serve as coordination messages. If needed, such coordi-
nation messages are used to align the views of the integration partners, which
allows for modeling scenarios that are disallowed in other approaches. However,

22

1.3. Research Method

it is vital to note that coordination messages do not affect the business outcome
of interactions.

Guideline 5: Research Rigor “Design-science research relies upon the applica-
tion of rigorous methods in both the construction and evaluation of the design artifact”
where “design-science research often relies on mathematical formalism to describe
the specified and constructed artifact” [57].

Rigor has been applied to this work in several ways.
Firstly, established technologies, languages and formalisms have been used that

provide a solid basis to begin research. Web Services have been designed as dedicated
interface technology and, therefore, promise to ideally match B2Bi requirements.
Furthermore, the models for representing choreographies and orchestrations have
been based on international standards. Moreover, state machines have been used
for formalizing the tasks of BusinessTransaction communication roles as well as
underlying paradigm for ebBP-Reg, ebBP-ST, and SeqMP. State machines have a
very long tradition in system formalization and give access to advanced analysis tools
such as model checkers.

Secondly, ebBP-Reg, ebBP-ST and SeqMP have all formally been captured and
practically modeled, which allows for reciprocal detection of design and formalization
errors. Similarly, a formal execution semantics for binary ebBP models has been
designed.

Thirdly, the mapping from ebBP models to BPEL has been validated by manually
deriving orchestrations from ebBP use cases according to the defined mapping rules.
Furthermore, subsets of the mapping rules have been implemented prototypically in
order to rule out manual bias in the application of the mapping rules.

Fourthly, the analysis framework for SeqMP has prototypically been implemented
and tested through real-world and artificial use cases.

Fifthly, the algorithm for deriving role projections for SeqMP choreographies has
been formally analyzed.

Finally, challenging artifacts by submitting them to an experts forum, in this case,
the RosettaNet community, is a further aspect of rigorous scientific investigation.

Guideline 6: Design as a Search Process This guideline is captured in [57] more
precisely as “the search for an effective artifact requires utilizing available means to
reach desired ends while satisfying laws in the problem environment”.

This dissertation project started with the exploration of simple B2Bi scenarios
and how these can be captured and implemented. From this it was clear that
standardization plays a key role in the B2Bi domain and that international standards
should be applied in as much as this is possible. An extensive literature review
then revealed a large set of diverse requirements and it was obvious that not all
requirements can be met by one single approach. Supporting communication between
integration partners and streamlining implementation is of paramount importance
for the selected type of B2Bi systems. As a consequence of this, the use of ebBP as
an implementation contract as well as Web Services technology including WS-* and

23

1. Introduction

BPEL was explored. The BPMN representation was finally created to demonstrate
how a visual notation for B2Bi choreographies may look and to ensure amenability
of this thesis’ B2Bi choreography styles to realistic development projects.

Guideline 7: Communication of Research According to [57], “design-science re-
search must be presented effectively both to technology-oriented as well as management-
oriented audiences.”

The technology-oriented audience is served in two different ways. Firstly, formal-
izations of B2Bi choreographies as well as formal execution semantics for binary B2Bi
choreographies are provided. Secondly, prototypic implementations of choreographies
and of the multi-party analysis framework are described. Thirdly, the following list
of technical reports as well as workshop, conference, and journal papers have been
published that cover much of the technical detail for this thesis (in chronological
order):

1. Andreas Schönberger, Modelling and Validating Business Collaborations: A
Case Study on RosettaNet, Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik, Nr. 65, Technical Report University of Bamberg,
2006; [177]

2. Andreas Schönberger and Guido Wirtz, Realising RosettaNet PIP Compositions
as Web Service Orchestrations - A Case Study, The 2006 International Confer-
ence on e-Learning, e-Business, Enterprise Information Systems, e-Government,
& Outsourcing (CSREA EEE’06), Las Vegas, Nevada, USA, 2006, 141-147; [185]

3. Andreas Schönberger and Guido Wirtz, Using Webservice Choreography and
Orchestration Perspectives to Model and Evaluate B2B Interactions, The
2006 International Conference on Software Engineering Research and Practice
(SERP’06), Las Vegas, Nevada, USA, 2006, 329-335; [186]

4. Andreas Schönberger and Guido Wirtz, Taxonomy on Consistency Requirements
in the Business Process Integration Context, Proceedings of 2008 Conf. on
Software Engineering and Knowledge Engineering (SEKE’2008), Knowledge
Systems Institute, 2008; [187]

5. Thomas Benker, Stefan Fritzemeier, Matthias Geiger, Simon Harrer, Tristan
Kessner, Johannes Schwalb, Andreas Schönberger and Guido Wirtz, QoS-
Enabled B2B Integration, Bamberger Beiträge zur Wirtschaftsinformatik und
Angewandten Informatik, Nr. 80, Technical Report, University of Bamberg,
2009; [16]

6. Thomas Benker, Stefan Fritzemeier, Matthias Geiger, Simon Harrer, Tristan
Kessner, Johannes Schwalb, Andreas Schönberger and Guido Wirtz, QoS-
Enabled Business-to-Business Integration Using ebBP to WS-BPEL Trans-
lations, Proceedings of the IEEE 2009 International Conference on Services
Computing (SCC), Bangalore, India, 2009; [181]

24

1.3. Research Method

7. Andreas Schönberger and Guido Wirtz, Using Variable Communication Tech-
nologies for Realizing Business Collaborations, Proceedings of the 5th 2009
World Congress on Services (SERVICES 2009 PART II), International Work-
shop on Services Computing for B2B (SC4B2B), Bangalore, India, 2009; [188]

8. Andreas Schönberger, Christian Wilms and Guido Wirtz, A Requirements Anal-
ysis of Business-To-Business Integration, Bamberger Beiträge zur Wirtschaftsin-
formatik und Angewandten Informatik, Nr. 83, Technical Report, University
of Bamberg, 2009; [184]

9. Christoph Pflügler, Andreas Schönberger and Guido Wirtz, Introducing Partner
Shared States into ebBP to WS-BPEL Translations, Proc. iiWAS2009, 11th In-
ternational Conference on Information Integration and Web-based Applications
& Services, 14.-16. December 2009, Kuala Lumpur, Malaysia, 2009; [160]

10. Andreas Schönberger, The CHORCH B2Bi Approach: Performing ebBP Chore-
ographies as Distributed BPEL Orchestrations, Proceedings of the 6th World
Congress on Services 2010 (SERVICES 2010), Second International Workshop
on Services Computing for B2B (SC4B2B), Miami, Florida, USA, 2010; [178]

11. Andreas Schönberger, Guido Wirtz, Christian Huemer and Marco Zapletal, A
Composable, QoS-aware and Web Services-based Execution Model for ebXML
BPSS BusinessTransactions, Proceedings of the 6th 2010 World Congress on
Services (SERVICES2010), Fourth International Workshop on Web Services
and Cloud Services Testing (WS-CS-Testing 2010), Miami, Florida, USA,
2010; [192]

12. Johannes Schwalb, Andreas Schönberger, Analyzing the Interoperability of WS-
Security and WS-ReliableMessaging Implementations, Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik, Nr. 87, Technical Report,
University of Bamberg, 2010; [196]

13. Andreas Schönberger, Christoph Pflügler and Guido Wirtz, Translating Shared
State Based ebXML BPSS models to WS-BPEL, International Journal of
Business Intelligence and Data Mining - Special Issue: 11th International Con-
ference on Information Integration and Web-Based Applications and Services
in December 2009, 2010, 5, 398 - 442; [182]

14. Andreas Schönberger and Guido Wirtz, Towards Executing ebBP-Reg B2Bi
Choreographies, Proceedings of the 12th IEEE Conference on Commerce and
Enterprise Computing (CEC’10), Shanghai, China, 2010; [190]

15. Johannes Schwalb, Andreas Schönberger and Guido Wirtz, Approaching In-
teroperability Testing of QoS based on WS-* Standards Implementations, The
4th Workshop on Non-Functional Properties and SLA Management in Service-
Oriented Computing (NFPSLAM-SOC’10), co-located with 8th IEEE European
Conference on Web Services (ECOWS 2010), Ayia Napa, Cyprus, 2010; [197]

25

1. Introduction

16. Andreas Schönberger and Guido Wirtz, Sequential Composition of Multi-Party
Choreographies, Proceedings of the IEEE International Conference on Service-
Oriented Computing and Applications (SOCA’10), Perth, Australia, 2010; [189]

17. Andreas Schönberger, Do We Need a Refined Choreography Notion?, Proceed-
ings of the 3rd Central-European Workshop on Services and their Composition
(ZEUS), Karlsruhe, Germany, February 21-22, 2011, CEUR-WS.org, 2011,
16-23; [179]

18. Jörg Lenhard, Andreas Schönberger and Guido Wirtz, Streamlining Pattern
Support Assessment for Service Composition Languages, Proceedings of the
3rd Central-European Workshop on Services and their Composition (ZEUS),
Karlsruhe, Germany, February 21-22, 2011, CEUR-WS.org, 2011, 112-119; [94]

19. Matthias Geiger, Andreas Schönberger and Guido Wirtz, A Proposal for Check-
ing the Conformance of ebBP-ST Choreographies and WS-BPEL Orchestrations,
Proceedings of the 3rd Central-European Workshop on Services and their Com-
position (ZEUS), Karlsruhe, Germany, February 21-22, 2011, CEUR-WS.org,
2011, 24-25; [45]

20. Matthias Geiger, Andreas Schönberger, and Guido Wirtz, Towards Automated
Conformance Checking of ebBP-ST Choreographies and Corresponding WS-
BPEL Based Orchestrations, Proceedings of 2011 Conf. on Software Engineering
and Knowledge Engineering (SEKE’2011), Miami, Florida, USA, Knowledge
Systems Institute, 2011; [46]

21. Simon Harrer, Andreas Schönberger and Guido Wirtz, A Model-Driven Ap-
proach for Monitoring ebBP BusinessTransactions, Proceedings of the 7th
World Congress on Services 2011(SERVICES2011), Washington, D.C., USA,
2011; [54]

22. Andreas Schönberger, Johannes Schwalb and Guido Wirtz, Has WS-I’s Work
Resulted in WS-* Interoperability?, Proceedings of the 9th 2011 International
Conference on Web Services (ICWS 2011), Washington, D.C., USA, 2011; [183]

23. Jörg Lenhard, Andreas Schönberger and Guido Wirtz, Edit Distance-based
Pattern Support Assessment of Orchestration Languages, Proceedings of On
the Move 2011 Confederated International Conferences: CoopIS, IS, DOA and
ODBASE, Hersonissos, Crete, Greece, Oct 19-21, 2011, Springer, 2011; [93]

24. Andreas Schönberger, Visualizing B2Bi Choreographies, Proceedings of the
IEEE International Conference on Service-Oriented Computing and Applica-
tions (SOCA’11), Irvine, California, USA, December 12-14 2011; [180]

25. Andreas Schönberger and Guido Wirtz, Configurable Analysis of Sequential
Multi-Party Choreographies, forthcoming in International Journal of Computer
Systems Science and Engineering, 2011; [191]

26

1.4. Outline

The perspective of the management-oriented audience is taken into consideration in
several ways. The benefits of this thesis are shown through the research question out-
lined previously as well as the requirements to be fulfilled in chapter 3. Furthermore,
the ebBP modeling styles are constructed in such a way that users can create almost
arbitrary graphs without threatening the derivation of BPEL-based implementations.
It is only for parallel control flow structures, which are pretty uncommon in B2Bi
scenarios, where a structured modeling approach is required. Limiting the number of
constraints on input models lowers the barrier for users to adopt a modeling or speci-
fication language. Furthermore, concepts that are well-known from the B2Bi domain
such as RosettaNet PIPs or ebBP BusinessTransactions are reused. In addition, the
visual BPMN representation of ebBP models provides a more user-friendly means
of specifying B2Bi interactions. Thereby, the formalizations of the respective ebBP
modeling styles are translated into examples on how to connect visual modeling
constructs. Moreover, a series of samples with gradually rising complexity is provided
so as to smooth the introduction of the BPMN representation. Moreover, this thesis
was partly presented during participation in the RosettaNet MCC effort where the
author of this work was leading the Web Services sub-team of MCC phase 1 and was
actively contributing content during MCC phase 2, which eventually resulted in the
release of two international RosettaNet standards:

1. RosettaNet, Message Control and Choreography (MCC) - Profile-Web Services
(WS), Release 11.00.00A, 2010; [172]

2. RosettaNet, RosettaNet Methodology for Creating Choreographies, R11.00.00A,
2011; [173]

Finally, managerial overview presentations of this dissertation project’s results
were given at 112th EDIFICE industry conference in Amsterdam in November 2010
and to the broader RosettaNet community through Web casts.

1.4. Outline

The rest of this thesis is structured as follows: Chapter 2 gives an overview of
relevant technologies. Chapter 3 describes the results of an extensive literature
review on B2Bi requirements. These were first collected for arbitrary B2Bi systems
and then tailored to the selected type of B2Bi systems as previously outlined.
Chapter 4 starts out with a discussion of ebBP as a choreography representation
format. Thereafter, different strategies for bridging the gap between business process
models and private orchestrations are discussed where choreographies are either
used as loose and imprecise identification of document exchange scenarios (which
will be denoted as cartography choreographies) or as unambiguous and complete
specifications of admissible message exchange sequences (which will be denoted as
strict choreographies). The basic integration architecture is then introduced, which
includes important assumptions about the execution environment. Following this,

27

1. Introduction

an execution model for ebBP BusinessTransactions (BTs) as an atomic building
block of B2Bi choreographies is outlined. ebBP-Reg, ebBP-ST as well as SeqMP are
then introduced as separate strict choreography modeling styles that accommodate
different combinations of the requirements identified in chapter 3. For all modeling
styles, a formal definition is given. For the binary modeling styles ebBP-Reg and
ebBP-ST, an execution semantics for streamlining implementation is given, while
an analysis framework for the multi-party modeling style SeqMP is provided. This
is due to the fact that B2Bi implementations are typically performed on a bilateral
basis whereas SCM suggests considering the effects of message exchanges on the
overall partner network. In chapter 5, the main software artifacts for realizing the
integration architecture are described as well as the implementation of the execution
model for ebBP BusinessTransactions. This is followed by a description of the
implementation of the execution semantics defined for B2Bi choreographies (ebBP
BusinessCollaborations) that are composed from BusinessTransactions. Chapter
6 presents the BPMN visualization of ebBP-Reg, ebBP-ST and SeqMP in a user-
friendly way and discusses compliance with the BPMN standard as well as deficiencies
detected. Chapter 7 extensively discusses related work structured along the topics
presented in chapters 3, 4, 5 and 6. Finally, chapter 8 concludes by discussing how
the identified research problem could be addressed and points out directions for
future work.

The appendices A, B, C and D complement the thesis with content that does not
fit into the main part because of the format or because the author of this thesis is not
the original author of the text. The author takes full responsibility for the contents
nonetheless. The relationship of the appendices with the main part is highlighted in
the respective chapters of the main part.

28

2. Technological Background

This chapter provides an overview of the most important technologies used in this
work, i.e., Web Services as communication technology (section 2.1), choreographies for
specifying publicly visible message exchanges between integration partners (section
2.3), and orchestrations as implementation technology (section 2.2). In addition
to BPMN, ebBP and BPEL, alternative choreography and orchestration languages
as well as the ebXML B2Bi framework (section 2.4) are briefly described. The
justification for choosing BPMN, ebBP and BPEL instead of these alternative
technologies is provided in the next chapter and throughout the chapters that cover
the respective abstraction layers.

2.1. Web Services and WS-*

It has become popular to denote almost any kind of activity as a service. In case
some computing is associated with the respective activity, the term “e-service” is
preferred. More accurate definitions associate the notion of value with an e-service:

“If you can imagine a way of electronically delivering something of value to a customer
that will solve some problem or provide some usefulness to make their life easier, you
have a viable example of an e-service” [203]. Such business-oriented characterizations
are helpful as an introduction to the field of electronic services. Unluckily, they
are frequently confused with “Web Services” in a technical sense and any kind of
value-generating service accessible via the Internet is denoted as a Web service.
However, this does not comply with the original definition of the term “Web Services”
as special kind of technology (given by the World Wide Web Consortium (W3C)):

“A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other
systems interact with the Web service in a manner prescribed by its
description using SOAP messages, typically conveyed using HTTP with an
XML serialization in conjunction with other Web-related standards.” [221]

The most important parts of this definition for the purpose of this work are the
machine-processable interface description and the prescribed interaction that complies
with this description. These two parts bear the declarative power of Web Services
technology offered to application developers who just provide a description of a
service interface and the actual generation and exchange of messages between service
provider and service consumer then is done by some Web Services frameworks. This

29

2. Technological Background

work adopts the definition of the W3C. The term “Web service”, used for referring
to a particular service, will always imply the use of WSDL (see below) for service
description, the use of SOAP (see below) as message container format, the use of
Extensible Markup Language (XML) for serializing contents, and the use of some
Internet protocol like Hypertext Transfer Protocol (HTTP) as transport medium.
The term “Web Services” will be used accordingly to refer to the technology itself,
i.e., using WSDL, SOAP, XML and an Internet protocol for implementing a Web
service.

While XML and Internet protocols like HTTP or FTP are assumed to be familiar
to the reader, SOAP and WSDL are briefly described.

Figure 2.1.: SOAP Message Structure, taken from [225]

SOAP [225] is a messaging format for conveying XML content specified by W3C.
The basic idea of SOAP is to define a message container that can be bound to a
variety of communication technologies such as HTTP, SMTP or even Java Message
Service (JMS) and still offers the possibility to introduce protocol aspects in the
message container’s header. Like that, transport features of existing communication
technologies can be used for implicitly defining protocol aspects of message exchanges
while application level messaging requirements still can be encoded into the SOAP
message header in case the existing features are not sufficient. Moreover, the

30

2.1. Web Services and WS-*

separation of the message container from communication technology enables using
multiple communication technologies during the exchange of one single message. The
benefit of SOAP therefore is not the definition of a full-featured communication
protocol, but rather the provision of a standardized format for reconciling application
level protocol requirements with existing communication protocols.

Figure 2.1 shows the basic structure of a SOAP message container that consists of
a header and a body. While the header is optional, inclusion of a body element is
compulsory. SOAP allows for carrying the body across multiple SOAP nodes from a
SOAP sender, via optional SOAP intermediaries to an ultimate SOAP receiver. The
body carries the actual payload and is assumed to be the same for one such end-to-end
exchange. Conversely, the header data may change from hop to hop. Moreover, it
is possible to use different communication protocols for each hop. Assume that a
message is supposed to travel from some sender A via some intermediary B to an
ultimate receiver C. Then, HTTP could be used for the exchange between A and B
who processes and alters the header and then uses SMTP to relay the message to C.
Note that not only the contents of the body element are optional, but the contents of
the header as well. So, depending on the application needs, some header elements
may require storing a message persistently while some other header elements may
require adding the processing time for each message to the header. Only some generic
attributes are defined for header elements such as mustUnderstand that requires
any SOAP node to emit an error in case the contents of a header element are not
understood. In consequence, adopters of SOAP have both the flexibility and the
burden to define how SOAP messages are processed, in other words, to define a
communication protocol using the SOAP format. However, defining a communication
protocol is far from trivial so that the average application developer is not the target
user group of SOAP. Instead, providers of advanced messaging solutions such as
standardization organizations or solution providers are the typical users that have
the resources to really leverage the flexibility of SOAP. Examples of how SOAP can
be leveraged to define higher-level messaging functionality are basic Web Services
technology itself, the various WS-* standards introduced below or ebXML Messaging
Services (ebMS) [129,136].

The WSDL language has been proposed by the W3C as description format for
Web Services. Although version 2 of the WSDL standard [226] already has been
released in 2007, the most important WS stack implementations such as Metro1

or Windows Communication Foundation2 still stick to version 1.1 [219]. More
importantly, other specifications that build upon WSDL also adopt version 1.1 such
as BPEL [137] or JAX-WS3. Consistently, this work relies on WSDL 1.1, too, and
therefore the term “WSDL” always will refer to version 1.1 throughout the rest of
this work. The WSDL language consists of six core elements: types, messages,
portTypes, bindings, services and ports. Types define the different types of

1http://metro.java.net/, last access: 12/20/2011
2http://msdn.microsoft.com/en-us/netframework/aa663324, last access: 12/20/2011
3http://jcp.org/en/jsr/summary?id=jax-ws, last access: 12/20/2011

31

http://metro.java.net/
http://msdn.microsoft.com/en-us/netframework/aa663324
http://jcp.org/en/jsr/summary?id=jax-ws

2. Technological Background

XML content that can be exchanged and the common format to describe those types
is XML Schema Definition (XSD) [222]. Although the WSDL standard theoretically
allows to adopt other type systems using extensibility mechanisms, today’s WS
stacks mainly rely on XSD definitions. WSDL messages consist of multiple message
parts where each part is assigned a particular XML type. Messages are the
basic primitive to define what kind of content can be exchanged between service
provider and consumer. WSDL operations then can be used to define the direction
and cardinality of message exchanges and optional fault messages. While one-way

operations define the possibility to send a single message to the service provider,
request-response operations define the exchange of a single request message to
the provider and a response message to the consumer [219, section 2.4]. Note that
indeed only one message may be exchanged per direction. If multiple parameters
are required for an operation call then multiple message parts are defined or these
are encoded as sub-elements of an XML type. WSDL also defines the solicit-

response and notification types of operations as symmetric counterparts to
request-response and one-way, but these are discouraged for practical use by
practitioner communities (cf. [237]). A portType consists of several operations and
captures the functionality of a service in the sense of message exchange capabilities.
Taken together, the types, messages and portType of a WSDL file can be referred
to as the interface definition part of a Web service. This part is abstract because
neither the transport protocol for exchanging messages nor the endpoint of a service
are known. This missing information is filled in by the WSDL binding, service
and port elements. A binding defines how the messages and operations of a
particular portType are to be transported. The most common binding for a Web
service is SOAP via HTTP, but FTP, SMTP or other protocols are eligible as well
(although barely supported in practice). A port definition then defines one endpoint
address for a particular service, typically as a Uniform Resource Locator (URL),
and the binding to be used (which indirectly also defines the portType). Finally, a
WSDL service definition is used to specify one or more ports of the same service.

As a dedicated interface technology, Web Services bear the potential to bridge
different platforms and programming languages, i.e., the types of messages and admis-
sible interactions between service consumer and service provider are specified, but not
the implementation of neither the consumer nor the provider. Consider the sample
Web Services interaction between a Microsoft .NET service client (or consumer) and
a Java service provider (or service) as depicted in figure 2.2. The service provider’s
platform, say, a GlassFish application server, provides an Enterprise JavaBeans (EJB)
container as runtime environment for the service implementation and publishes a
WSDL file that corresponds to the message exchanges offered by the implementation.
In addition, an endpoint for consuming incoming messages is installed using the Web
Services stack (WS stack) Metro which is integrated into the GlassFish server. Upon
receipt of a SOAP message, the WS stack deserializes the XML contents into a Java
representation and relays the message to the service implementation. If applicable,
the results of message processing are collected, serialized into XML representation and
then sent back as a SOAP message to the service consumer. The .NET client works

32

2.1. Web Services and WS-*

Figure 2.2.: Sample Web Services Interaction between Heterogeneous Platforms

symmetrically and also leverages a WS stack implementation to serialize/deserialize
platform specific message representations into/from XML and to perform the SOAP
communication on behalf of the client implementation. In order to produce messages
that are understood by the Java service, the .NET client uses the service’s WSDL file
(which may have been exchanged beforehand). The power of Web Services technology
in this scenario is leveraging standard tooling of solution providers to generate imple-
mentation skeletons for consumers and providers from WSDL descriptions as well
as having standard proxies implement the cross-platform message exchanges using
SOAP. In an ideal world, an application developer thus never is forced to process a
SOAP message manually. Therefore, pure SOAP messaging technologies like ebMS
are not true Web Services technologies because no machine-processable interface
description is available that could be leveraged for auto-generating message exchanges.

Obviously, the full potential of Web Services unfolds only if reasonable interop-
erability between different vendors’ implementations of Web Services standards is
provided [122]. This is not as easy as it may seem to be at first sight because Web
Services technology continuously grew in complexity. While early Web Services
standards were supposed to provide lightweight and stateless interactions between
systems, the wish to adopt interoperable communication for advanced application
areas like Enterprise Application Integration (EAI) or B2Bi quickly resulted in the
development of additional Web Services standards beyond WSDL and SOAP. Figure
2.3 shows the most important layers and standards that current WS stacks are
supposed to support where each box represents a standard or functionality.

At the lowest level (bottom of the figure), support for binding SOAP exchanges to
various existing (Internet) communication protocols like HTTP or SMTP is expected.
Note that these are not actual Web Services standards, but they are included as
crucial part of Web Services communication. Messages that are exchanged at this
level, e.g., an HTTP request, will be referred to as “transport level” messages in the
rest of this work.

33

2. Technological Background

Figure 2.3.: Sample Web Services Stack, adapted from [196]

Contrary to these transport protocols, all Web Services standards heavily rely
on the use of XML which is represented by the big rectangle labeled ‘XML’ that
contains the majority of standards.

The lowest-level layer of Web Services standards (lower part of the ‘XML’ rectangle)
is denoted ‘Messaging’ and contains SOAP as the core format for exchanging Web
Services messages. WS-Addressing [224] is a specialized format for referencing
Web Services endpoints, interaction instances and corresponding SOAP messages.
Typically, the format is used to define SOAP message headers for a particular
application scenario, e.g., the implementation of a reliability protocol. Similar to
SOAP, WS-Addressing does not define a protocol itself, but just a format for doing
so. Messages that are exchanged at this level, i.e., SOAP messages, will be referred
to as “messaging level” messages in the rest of this work.

The ‘Quality of Service (QoS)’ layer on top of the ‘Messaging’ layer contains a
series of standards that implement advanced communication qualities such as reliable
messaging (left box), transactions (center box), security (right box) and others (simply
denoted as ellipsis character). A common characteristic of these standards is that
they define processing instructions for SOAP messages in terms of defining the type,

34

2.1. Web Services and WS-*

sequence and/or transformations of SOAP header elements, SOAP body contents and
SOAP messages. For example, the WS-Reliable Messaging standard [143] defines how
to run a reliability protocol between a service consumer and service provider (over
possibly multiple SOAP intermediaries). Figure 2.4 shows a sample run of the WS-
ReliableMessaging protocol (each arrow represents a SOAP message) that consists
of the establishment of the reliable messaging sequence (first two messages), several
payload and acknowledgment messages (next six messages) and the termination
of the sequence (last two messages). Note that applying WS-ReliableMessaging
implies exchanging at least six SOAP messages per Web Services call, i.e., even if a
service consumer just sends a single application level message to the service provider
several SOAP messages are used for ensuring delivery (or detecting delivery errors
if not possible). Similarly, WS-Coordination [141], WS-AtomicTransaction [139]

Figure 2.4.: Sample WS-ReliableMessaging Protocol Run, taken from [143,196]

and WS-BusinessActivity [140] commonly provide a framework for implementing
short-term and long-running transaction support for Web Services interactions.

The ‘Security’ box shows the most important Web Services standards in terms of
securing message exchanges. WS-Security [135] defines how to apply existing ‘XML
Security’ standards, (box on the right edge), i.e., XML Encryption [220] and XML
Signature [228], to SOAP messages. WS-Trust [146] specifies the exchange of security

35

2. Technological Background

tokens across different trust domains and thus enables secure interactions without
exchanging digital security certificates beforehand manually. WS-SecureConversation
[144] finally builds upon WS-Trust for describing how security contexts can be
established that then serve for deriving session keys.

Note that all these different QoS standards are orthogonal to a large extent and
XML namespace technology can be used to combine the formats of the respective
standards within SOAP messages. Although there are some references among the
standards, whether or not, say, WS-ReliableMessaging is combined with WS-Security
is the application developer’s choice. While this concept fosters flexibility by allowing
(almost) arbitrary combinations of existing and ever emerging standards, it also
causes complexity by leaving the question of correct integration of standards open.
Consider the combination of WS-ReliableMessaging and WS-Security for providing
secure and reliable message exchanges. Simply implementing security on top of
a reliable channel is insufficient because security goals imply the existence of an
attacker who may try to break security goals by tempering with the underlying
reliability channel. Hence, a careful analysis of communication requirements and
intricate combination of WS-ReliableMessaging and WS-Security is necessary for
providing secure reliable communication which is far from trivial [4, 44].

The complexity of the various QoS standards calls for a convenient way for appli-
cation developers to assert the realization of QoS properties for their interactions.
This need is handled at the ‘Description’ layer on top of the ‘QoS’ layer of figure
2.3. The basic interaction of Web Services is covered by WSDL as described above
and the WSDL messages defined as input or output of a WSDL operation are
referred to as “application level” messages throughout the rest of this work. For
advanced communication requirements, the WS-Policy [227] framework can be used
to assert the necessary communication features. WS-Policy defines a format for
prescribing the rules of interaction with a service (on top of WSDL definitions) as
a so-called services policy. A services policy consists of one or mutually excluding
policy alternatives that are composed of one or more policy assertions in turn. A
policy assertion requires the application of a particular communication feature to
the SOAP message exchanges that implement a particular Web Services interaction.
For example, the so-called RMAssertion can be used to require the application of
the WS-ReliableMessaging protocol. The association of these assertions with service
operations is typically defined by including policy definitions within a particular
WSDL file and referencing the intended policy within the service binding using Pol-

icyReferences. Note that WS-Policy does not offer any specific assertions. Instead,
a series of additional standards defines the assertions for dedicated purposes. For ex-
ample, the Web Services Reliable Messaging Policy Assertion standard [142]
defines assertions for requiring the use of the WS-ReliableMessaging protocol, among
others the RMAssertion mentioned above. Similarly, WS-SecurityPolicy [145] offers
a set of assertions for requiring the application of WS-Security, WS-Trust and WS-
SecureConversation features. Note further that it is the task of the respective WS
stack in use to process WS-Policy assertions included in the WSDL description of

36

2.1. Web Services and WS-*

a Web service and to automatically generate and format the relevant SOAP mes-
sages. Again, the application developer just declaratively specifies the cross-platform
message exchange features and never is encountered with a SOAP message (in an
ideal world). Requiring application developers to manually add the features of QoS
standards like WS-ReliableMessaging or WS-Security to SOAP messages is not true
Web Services technology.

This observation also is the basis for pinning down the notion of “WS-*” that
frequently is just used to denote all Web Services standards that start with the string
“WS-”.

WS-* standard: For the purpose of this work, the term WS-* standard
is defined to be a Web Services extension that implements a QoS feature
for Web Services interactions by defining detailed SOAP message process-
ing instructions. Moreover, a set of WS-Policy expressions for asserting
the respective features is assumed to be available for a WS-* standard.

The last layer included in figure 2.3 is the orchestration layer with BPEL [137]
as the most prominent representative of orchestration languages. The orchestration
layer is used to define the sequences of application level message exchanges that
make up a process-based application. Note that this layer is not core functionality of
typical WS stack implementations and therefore makes up the upper boundary of the
stack description. The characteristics of orchestration technology will be discussed
in the next section.

Finally note that service discovery standards deliberately are not included in the
description of WS stack functionality. In the early days of Web Services, Universal
Description, Discovery and Integration (UDDI) [133] as means for implementing
service registries was frequently proposed to be used by the service consumer to look
up the description of a service from the registry and dynamically bind to the service.
This kind of interaction scenario is of minor importance for the type of B2Bi system
targeted in this work (cf. section 1.1) because integration partners are assumed
to interact in a more or less stable relationship where at least the type of service
interface to be used is known in advance (concrete endpoints still may be looked up
via a service registry). Therefore, service registries and dynamic binding will not
further be discussed in this work.

The features of a WS stack can be used to implement both synchronous and
asynchronous coordination styles. Thereby, the behavior of the actual application
client must be separated from the messaging proxy’s behavior. For characterizing the
application client’s behavior, the terms “synchronous interaction” and “asynchronous
interaction” will be used. For characterizing the messaging proxy’s behavior, the
terms “synchronous communication” and “asynchronous communication” will be
used. When sending a message, an application client basically can either wait
until an application response is returned by the receiver or can choose to perform
some other activities in between. In the former case, the interaction is synchronous

37

2. Technological Background

and asynchronous in the latter. This is to be separated from the communication
semantics that a messaging proxy offers. If the messaging proxy forces the application
client to block until the transmission of the message is accepted by the receiver
then the communication is synchronous. If the messaging proxy just takes over
the application message and transmits it (possibly) at a later point in time then
the communication is asynchronous. Asynchronous communication hence implies
that the sender does not exactly know when the application level message will be
delivered. A typical synchronous communication technology is HTTP as the sending
messaging proxy (typically) awaits an HTTP response code (for example “200” or

“202” for successful transmission) that is communicated to the application client.
A typical asynchronous communication technology is SMTP where an application
client submits its message and does not know when (if ever) the receiver will get the
message. The common binding for Web Services, SOAP via HTTP, also follows the
synchronous communication paradigm (cf. SOAP 1.14, SOAP 1.25). In practice, a
Web Services interaction typically is performed without SOAP intermediaries so that
synchronous communication also is available for a concrete Web service consumer or
provider. The choice of communication semantics fundamentally influences the design
of application level interactions. Knowing whether or not a message was transmitted
successfully is the basis for persisting transactions and controlling local systems. If
this kind of information is not provided by the messaging system and alignment
with respect to message transmission success is needed then complex reliability or
distributed commit protocols need to be performed at the application level which
typically is not acceptable.

Note that synchronous/asynchronous interaction and synchronous/asynchronous
communication can be combined almost orthogonally. For example, some application
client A can send some message X to service B using synchronous communication
and not expect any immediate application response. Hence, the benefit in using a
synchronous channel only is that information about transmission success is available
immediately. Then, B processes the message and sends back some response message
Y at a later point in time using a new synchronous transmission. In the meantime,
A may or may not perform other work. So, A and B interact asynchronously, but
they use synchronous communication. Conversely, A could use an asynchronous
transmission for sending X and not accept any other message until the response Y is
returned using another asynchronous transmission. Then the interaction would be
synchronous and the communication asynchronous.

Supporting interoperability throughout all WS stack layers is a strict requirement
for realizing the Web Services promise of bridging communication across different
platforms. In practice, this is not always true. Simple facts such as missing support
for WSDL version 2.0 or the solicit-response and notification operation types
of WSDL 1.1 by major WS stacks imply that even basic definitions may suffer from

4http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383526, last access: 12/20/2011
5http://www.w3.org/TR/soap12-part2/#soapinhttp, last access: 12/20/2011

38

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383526
http://www.w3.org/TR/soap12-part2/#soapinhttp

2.1. Web Services and WS-*

interoperability issues. The Web Services Interoperability Organization (WS-I)6

is dedicated to provide clarifications on such issues and to foster interoperability
of Web Services by creating so-called profiles which provide rules for creating and
processing WSDL files and SOAP messages. A WS-I profile documents “[..]clarifica-
tions, refinements, interpretations and amplifications of those specifications which
promote interoperability” [240]. The available profiles are the Basic Profile [238], the
Basic Security Profile [239] and the Reliable Secure Profile [240]. Some of the profile
contents refer to general aspects of Web Services communication, e.g., the Basic Pro-
file forbids the use of the solicit-response and notification operation types
and prescribes the use of WSDL 1.1. However, the majority of requirements defines
constraints on the level of SOAP messages, i.e., the existence, order and content of
XML elements within SOAP messages or the actual exchange of SOAP messages
is described. For example, requirement R3203 of the Basic Security Profile defines
that “A TIMESTAMP [element in a SOAP message] MUST contain exactly one
CREATED [XML element]”. In addition to the profiles, the WS-I provides testing
tools that take SOAP messages as input and check them for compliance to the profile
requirements, but the profiles are authoritative. A core problem of the WS-I profiles
in terms of security and reliability features is that that relation between WS-Policy
assertions and the corresponding SOAP messages is not provided. In its section 5.1.1,
the Basic Security Profile explicitly allows for out of band agreement for specifying
the use of WS-Security features. Moreover, it states in several sections (9, 10, 13.1)
that “[..]no security policy description language or negotiation mechanism is in scope
for the Basic Security Profile[..]”. The Reliable Secure Profile recommends (though
not requires) the use of WS-ReliableMessaging Policy for configuring the use of
WS-ReliableMessaging in its section 2.4, but it does not define the relation between
policy assertions and SOAP messages either. So, while WS-I for sure has contributed
significantly to Web Services interoperability, its deliverables are not sufficient to
guarantee interoperability in practice.

Corresponding systematic analyses [183,196] created during this work’s dissertation
project reveal that interoperability issues for security and reliability features indeed
are serious.

To summarize, the most important benefits and drawbacks of using Web Services
technology are given. The most important benefits are:

• Web Services offer the technical means to overcome heterogeneity issues in
cross-platform communication.

• Web Services offer the power of declaratively specifying the characteristics of
message exchanges for the application developer. The corresponding SOAP
message exchanges as well as the coupling of these exchanges to application
code is supposed to be performed automatically by WS stack implementations.

6http://ws-i.org/, now moved to OASIS, last access: 12/20/2011

39

http://ws-i.org/

2. Technological Background

• Web Services technology provides a considerable network effect by being sup-
ported on almost arbitrary platforms. So, providing a service as a Web service
widens its reach to virtually any client.

• Web Services descriptions, exchange formats, and message contents all are
described in XML. This makes the rich set of XML technologies accessible to
be applied to Web Services interactions, most notably XML Path Language
(XPath) and BPEL.

• Web Services enable the use of Internet protocols such as HTTP or SMTP as
transport medium. These are relatively pricey compared to VANs (cf. section
1.2).

The most important drawbacks are:

• Although Web Services technology crucially depends on interoperability, ad-
vanced features suffer from substantial interoperability issues [183, 196] and
may necessitate realizing QoS properties at the transport layer or manually
processing SOAP messages.

• Web Services technology impacts message throughput because using SOAP and
XML as message format results in a relatively bulky representation compared
to traditional B2Bi technologies such as EDI.

• Web Services technology may affect the maximum size of messages that
can be transmitted. Numerous Web Services libraries use Document Ob-
ject Model (DOM) as underlying processing model for XML which requires
loading complete XML trees into main memory. Considering that B2Bi mes-
sages may scale up to hundreds of Megabytes this may exceed the capacity of
interchange systems.

2.2. Orchestration Technology

Orchestrations are process-based compositions of Web services that govern the local
message flow of an integration partner or, more generally, a system component.
The purpose of an orchestration process is defining the types of messages that a
particular component is able to receive and send, the sequence of these messaging
events, and the mapping and processing of data between the messaging events. The
term “orchestration” (in the area of enterprise computing) was originally coined
in [159] where it is put into the context of the choreography-orchestration dichotomy
(choreographies will be discussed in the next section). The view taken in [159]
focuses on message exchanges of some interaction partners as depicted in figure 2.5
and distinguishes between external and internal Web services calls. The two green
boxes on the left-hand and right-hand side of figure 2.5 represent system components
that the interaction partners use to couple cross-partner message exchanges to local

40

2.2. Orchestration Technology

Figure 2.5.: Web Services Choreography and Orchestration, taken from [159]

systems. The arrows between the green boxes represent the cross-partner messages
while the interactions with local systems are not visualized. Following this basic
paradigm, orchestrations are defined in [159] as follows: “Orchestration refers to an
executable business process that can interact with both internal and external Web
services. The interactions occur at the message level” [159]. This definition fits well
with the purpose of this work. However, in order not to unnecessarily constrain the
reach of orchestration technology, orchestrations are defined as follows:

Orchestration: An orchestration is the executable definition of the
admissible sequences of Web Services-based message exchanges of a
system component as well as the data mapping and processing activities
between these message exchanges.

Apparently, this definition leaves out the distinction between external and internal
message exchanges of [159]. However, this distinction is crucial when using orches-
tration technology in the area of B2Bi for the implementation of cross-organizational
business document exchanges. In such a scenario, orchestrations cover two distinct
purposes. Firstly, the specification of admissible interactions with one or more inte-
gration partners and, secondly, the coupling of partner message exchanges to internal
business applications. From a purely technological perspective, this distinction may
seem to be artificial. However, the distinction is crucial from an organizational
perspective because the definition of partner interactions needs consent from entities
of independent units whereas the interactions with local systems are under the control
of one single unit. In order not to break communication links with partners and redo
agreement procedures, the definition of partner interactions is supposed to be stable.
Conversely, the coupling to local business applications is more flexible as orchestration
implementation and business applications are under the same sphere of control. As
long as the definition of partner interactions is complied with, it is also possible to
optimize the local interactions according to the goals of the respective integration
partner. This principle also has been recognized in the BPEL standard that defines

41

2. Technological Background

the so-called Abstract Process Profile for Observable Behavior [137, section 13.3]
for capturing the admissible interactions with integration partners. Therefore, an
abstract process only captures the types and sequences of message exchanges and
leaves out a detailed definition of data flow and (possibly) local interactions. “The
main application of this profile is the definition of business process contracts; that
is, the behavior followed by one business partner in the context of Web services
exchanges” [137, section 13.3].

This work adopts the concept of distinguishing external and internal interactions
as defined in [137] and [159]. In order to reflect the relation of this work to B2Bi the
terms “public orchestration” and “private orchestration” are defined to capture the
two different aspects of orchestrations as follows:

Public orchestration: A public orchestration defines the admissible
types and sequences of interacting with one particular role of a cross-
organizational integration scenario using Web Services. All message
exchanges contained in the public orchestration definition are publicly
visible, i.e., observable by the partners of the focal role.

Private orchestration: A private orchestration is a refinement of a
public orchestration that defines the data manipulations as well as interac-
tions with local systems between cross-organizational message exchanges
such that the orchestration definition is executable. No valid execution
trace of a private orchestration violates the defined message sequences of
its corresponding public orchestration.

An important characteristic that distinguishes public and private orchestrations is
executability. While private orchestrations explicitly are defined to be executable,
public orchestrations are not executable because the data flow perspective is missing.
Note further that a role in a cross-organizational integration scenario is not tied
to one particular partner link. In a multi-party scenario, an integration partner
is characterized by exactly one role that may interact with multiple partners. For
characterizing the interaction with one particular integration partner concepts such
as “link role” or “link type” could be introduced. This is basically unnecessary, because
the typical integration scenario in B2Bi is defined for exactly two partners anyway
(cf. chapter 3). In the end, whether an “integration role” is bound to exactly one
partner or multiple partners is just a choice of terminology.

The set of proposed orchestration languages has consolidated significantly during
the last years. Languages such as the Web Services Flow Language (WSFL)7 or
XLANG8 have been given up in favor of BPEL. The development of other languages
such as the Business Process Modeling Language (BPML)9 has been discontinued and

7http://xml.coverpages.org/wsfl.html, last access: 12/20/2011
8http://xml.coverpages.org/xlang.html, last access: 12/20/2011
9http://xml.coverpages.org/bpml.html, last access: 12/20/2011

42

http://xml.coverpages.org/wsfl.html
http://xml.coverpages.org/xlang.html
http://xml.coverpages.org/bpml.html

2.2. Orchestration Technology

the tooling for some academic approaches like JOpera [157] or XL [43] do not provide
the practical maturity needed for executing processes in an enterprise computing
context.

A mature platform for orchestration definition is provided by Windows Workflow10,
but its actual purpose is put more on classical workflow definition in .NET environ-
ments than on composition of Web Services. This becomes evident in the fact that a
mechanism for exporting a WSDL interface for particular activities is provided, but
defining workflows without any Web Services interaction is acceptable as well. This
is common for classical workflow languages and therefore a more detailed discussion
of these approaches is omitted.

The most widespread standard for public and private orchestration definition is
BPEL which builds the basis for executing the binary B2Bi styles of this work and
is described next.

2.2.1. Web Services Business Process Execution Language

BPEL is a standard published by the Organization for the Advancement of Structured
Information Standards (OASIS) group that covers the process-based composition of
Web Services as orchestrations. BPEL relies on WSDL 1.1 for defining the available
options for interacting with a particular process. The messages given in WSDL op-

erations are bound to “inbound” (BPEL constructs receive, onMessage, onEvent,
and pick) and “outbound” (BPEL constructs invoke and reply) message activities.
The binding between WSDL messages and BPEL message activities relies on the
concept of BPEL partnerLinks that take the role of the provider or consumer of
WSDL portTypes. Once these partnerLinks are defined, message activities can be
bound to the operations of a portType. The first step in defining partnerLinks is
the definition of a so-called partnerLinkType within a WSDL file that is used to give
a role name to one or two portTypes, i.e., for defining unidirectional or bidirectional
link types. In a BPEL process definition, a partnerLink element then is used to
associate the focal process with one of those role names. For specifying that the focal
BPEL process is the provider of the portType implied by a partnerLinkType role,
the respective partnerLink element carries a myRole attribute the value of which
is the role name. Conversely, if the focal BPEL process is proposed to consume a
corresponding portType then a partnerRole attribute is used. As example, consider
the sample BPEL process ‘purchaseOrderProcess’ depicted in figure 2.6 that defines
one unidirectional (‘purchasing’) and three bidirectional partnerLinks (‘invoicing’,
‘shipping’, and ‘scheduling’). For characterizing each communication direction of
each partnerLink a separate WSDL portType is used (‘purchaseOrderPT’, ‘com-
putPricePT’, ‘invoiceCallbackPT’ etc.). In listing 2.1, the partnerLinkType element
is used as described above for defining the undirectional link type ‘purchasingLT’
and the bidirectional link type ‘invoicingLT’.

10http://msdn.microsoft.com/en-us/netframework/aa663328, last access: 12/20/2011

43

http://msdn.microsoft.com/en-us/netframework/aa663328

2. Technological Background

Figure 2.6.: Conceptual Visualization of a BPEL Process with PartnerLinks, taken
from [137]

Listing 2.1: Definition of PartnerLinkType in a WSDL File, taken from [137]
1 <plnk:partnerLinkType name="purchasingLT">
2 <plnk:role name="purchaseService" portType="pos:purchaseOrderPT"/>
3 </plnk:partnerLinkType >
4

5 <plnk:partnerLinkType name="invoicingLT">
6 <plnk:role name="invoiceService" portType="pos:computePricePT"/>
7 <plnk:role name="invoiceRequester" portType="pos:invoiceCallbackPT"/>
8 </plnk:partnerLinkType >

The definition of the partnerLinkTypes in the corresponding WSDL file is the basis
for defining the actual partnerLinks in the BPEL process definition as exemplified
in listing 2.2. In order to define the provision of the operations of portType

‘purchaseOrderPT’ (listing 2.1) the partnerLink ‘purchasing’ in line 2 of listing 2.2
first references the partnerLinkType ‘purchasingLT’ and then references the link
type’s ‘purchaseService’ role using the myRole attribute. Similarly, the partnerLink

‘invoicing’ in the next line uses the myRole and partnerRole attributes to define the
provision of the ‘invoiceCallbackPT’ and the consumption of the ‘computePricePT’
portTypes. Although not shown in listings 2.1 and 2.2, the provision of unidirectional
partnerLinks for consumption of operations only is possible as well.

Listing 2.2: Definition of PartnerLink in a BPEL Process, taken from [137]
1 <partnerLink name="purchasing"
2 partnerLinkType="lns:purchasingLT" myRole="purchaseService"/>
3 <partnerLink name="invoicing" partnerLinkType="lns:invoicingLT"
4 myRole="invoiceRequester" partnerRole="invoiceService"/>

44

2.2. Orchestration Technology

The definition of several partnerLinks for the process in figure 2.6 also shows that
more than one WSDL file can be used to define the available interactions with a
BPEL process. This implies that a BPEL process can play several roles. In that
regard, note that a BPEL role defined by a WSDL portType is just a software engi-
neering level role and may or may not completely represent the role of an integration
partner within an integration scenario as described above.

While partnerLinks are sufficient to define the available types of interaction
with a BPEL process, the concept of “process correlation” is needed to distinguish
between different instances of the same BPEL process definition. BPEL offers so-
called correlationSets that can be interpreted as identifiers of a process instance.
An identifier, in turn, is a set of correlation properties that commonly determine
process instances. However, a single property is typically used in practice. This
property then is bound to the contents of WSDL message definitions using so-called
propertyAliases that are included in WSDL files. A propertyAlias conceptually is
a rule for extracting correlation properties from WSDL messages. Listing 2.3 shows
an example for how the correlation property ‘processId’ is supposed to be extracted
from a ‘poStatusQuery’ message that may be defined within the ‘purchaseOrderPT’
portType above. To do so, the part attribute is first used to identify the WSDL
message part. Then, an XPath query is used for capturing the XML element
that carries the content to be used as process identifier. At run-time, the BPEL
engine that executes the ‘purchaseOrderProcess’ then is in charge of applying the
propertyAlias extraction rule upon receipt of a ‘poStatusQuery’ message and to
route it to the corresponding process instance.

Listing 2.3: Sample PropertyAlias for Defining Process Identification Data
1 <vprop:propertyAlias propertyName="corr:processId" messageType="tns:poStatusQuery"

part="poStatusQueryPart">
2 <vprop:query >proc:ProcessData/proc:PurchaseId </vprop:query >
3 </vprop:propertyAlias >

The alternative to using correlationSets for identifying process instances is leaving
the problem to proprietary functionality of BPEL engines which typically relies
on some non-standardized SOAP header extensions. However, using proprietary
functionality is not acceptable in a B2Bi-setting.

The actual control flow definition of a BPEL process relies on scopes and control
flow activities. The most common purpose of scopes is the delineation of the
visibility of variables as well as fault and event handling routines which are defined
using faultHandlers and eventHandlers elements, respectively. Scopes can be
nested and the first (implicit) scope is defined by the root BPEL element process.
Within each scope, a series of control flow constructs like sequence, if, while and
pick are used to determine the order of message activities. In addition, the BPEL
assign activity can be included in the order of activities for the purpose of mapping
data between the process variables. XPath and Extensible Stylesheet Language
Transformations (XSLT) are available for data manipulation within assign activities.

45

2. Technological Background

The control flow definition of BPEL is basically block-structured which means that
control flow structures are hierarchically nested (note that this is not an issue that
results from nesting XML tags). This concept may be problematic if arbitrary
graph-like structures are supposed to be implemented [76]. For example, consider

Figure 2.7.: Sample Irreducible Loop Structure

the graph-based loop structure depicted in figure 2.7 that contains four activities
‘act1’ to ‘act4’ and loops between ‘act1’ and ‘act2’, ‘act2’ and ‘act3’, and ‘act3’
and ‘act4’ respectively. Obviously, execution traces that include the alternating
repetition of the activities of these loops are possible. As the loops overlap in nodes
‘act2’ and ‘act3’, execution traces also may include more complicated loop sequences
such as repetitions of ‘act1,act2,act3,act2’, but this is of minor importance for the
example. Now look at figure 2.8 that contains an attempt to represent the loop of
figure 2.7 in a block-structured manner. Each rectangle represents a BPEL control
flow element and nesting of rectangles corresponds to nesting of control flow elements.
Beyond that, the execution is performed top-down. This means that the while loop
‘while1’ repeats sequence ‘seq1’ where first while loop ‘while2’ is performed and
once ‘while2’ has terminated loop ‘while3’ is performed. Sequences ‘seq2’ and ‘seq3’
as well as (arbitrary) activities ‘act1’ to ‘act4’ are executed correspondingly. Loop
‘while2’ is able to produce alternating repetitions of ‘act1’ and ‘act2’ and loop ‘while3’
is able to produce alternating repetitions of ‘act3’ and ‘act4’. Furthermore, loop
‘while1’ is able to produce alternating repetitions of ‘while2’ and ‘while3’. However,
this does not include the alternating repetition of ‘act2’ and ‘act3’ which is possible
in the graph-based loop of figure 2.7. Including another BPEL while loop between
‘while2’ and ‘while3’ that contains ‘act2’ and ‘act3’ is not valid either because then a
trace ‘act1,act2,act2,act3’ is possible that is not part of the execution traces of figure
2.7. The problem boils down to the basic issue that alternating repetitions of ‘act1’
and ‘act2’ as well as ‘act2’ and ‘act3’ require the use of two BPEL while loops that
overlap in ‘act2’. However, as block-structures forbid overlapping elements, ‘act2’

46

2.2. Orchestration Technology

Figure 2.8.: Invalid Representation of Sample Loop

must be duplicated which is not valid either. Of course, the problem could be solved
by introducing auxiliary variables and if conditions for checking whether another
execution of some activity is eligible. Consider that control flags could be set after
performing ‘act3’ that exclude ‘act4’ from the current iteration of ‘while3’ and ‘act1’
from the next iteration of ‘while2’. Then, performing ‘act2’ after ‘act3’ would be
possible. Yet, such an approach relying on auxiliary variables corresponds to hand-
coding the control flow structure and is not a true block-structured representation of
the problem.

Note that not all BPEL elements are strictly block-structured in nature. BPEL
onEvent elements defined in the eventHandlers section of a scope can be used to
receive and process a message in parallel to the main execution thread of the scope.
By attaching multiple onEvents to a scope and including calls to other onEvents

in the event processing logic, i.e., having the BPEL process call itself from within
onEvent blocks, an arbitrary graph structure could be created (cf. [152]). However,
this concept of having a BPEL process invoke itself is not well-supported by current
BPEL engines. Moreover, a major drawback of this solution is performance impact
because it necessitates passing a message through the Web Services stack for the only
purpose of passing on control flow. A more direct way of offering graph-like control
flow without auxiliary variables is provided by the BPEL flow element that is used
to create parallel structures. Between two activities of different branches of a flow

47

2. Technological Background

element, BPEL links can be introduced. The semantics is such that the source
activity of the link must be performed before the target activity. By arranging all
activities of a process in the branches of a flow element and then inserting links

correspondingly, graph-based structures can be created. Therefore, [81] find that
BPEL is not block-structured. However, this concept of representing graph-like
structures in BPEL is very limited because no cycles are allowed by the standard: “A
<link> declared in a <flow> MUST NOT create a control cycle, that is, the source
activity must not have the target activity as a logically preceding activity. This implies
that such directed graphs are always acyclic” [137, section 11.6.1]. So, the claim that
BPEL is a predominately block-structured language is retained in this work.

Note that this quick overview of BPEL is by far not complete and covers the
most important elements that are used in this work only. If necessary, some more
detailed or use case specific information is provided throughout this work. For a
comprehensive treatment, the reader is referred to the BPEL standard [137].

2.3. Choreography Technology

Choreography is the second part in the orchestration-choreography dichotomy coined
by Chris Peltz in 2003 [159]. The last section defined orchestrations as the executable
definition of the admissible Web Services-based message exchange sequences of an
integration partner. Figure 2.5 (last section) visualizes the interaction between
two orchestrations and identifies the message exchanges between the orchestrations
as “choreography”. This concept is paraphrased by Peltz as follows: “Choreography
tracks the message sequences among multiple parties and sources-typically the public
message exchanges that occur between Web services- rather than a specific business
process that a single party executes” [159]. While this ties the notion of “choreography”
to Web Services, today, there are a number of Web Services agnostic choreography
languages such as UMM [208], ebBP [134] or Let’s Dance [245]. Notably, the
authors of the respective languages all claim to provide a choreography language.
Capturing publicly visible messages between entities has remained as common
characteristic of choreography languages. In this work, the idea of not tying the term

“choreography” to Web Services is followed because a choreography can be interpreted
as an abstract protocol that constrains the implementation of orchestrations. There is
no reason why a protocol definition should limit possible implementations in terms of
technology. Moreover, tying the term to Web Services would exclude a large number
of languages that have been used for protocol definition beforehand. Therefore, the
term “choreography” is defined for the purpose of this work as follows:

(Global) Choreography: A (global) choreography is the characteriza-
tion of the admissible types and sequences of message exchanges between
the partners of a cross-organizational integration scenario. This implies
that all message exchanges are visible to at least two partners.

48

2.3. Choreography Technology

Although not explicitly stated, the main purpose of defining choreographies is
facilitating “behavioral interoperability” between interacting parties (as opposed to
messaging interoperability discussed in section 2.1). So, if partner A is obliged to
first send message Y to B and then message Z, partner B should be obliged to
first receive Y and then Z correspondingly. The exact format of specifying such
constraints depends on the application purpose, but it can be observed that a global
choreography definition also may be projected to the local obligations of one particular
role. Therefore, some researchers make the distinction between global and local
choreographies [59] where a “global choreography” refers to the overall contract and

“local choreography” to the obligations of one single role. Therefore the term “local
choreography” is defined as follows:

Local Choreography: A local choreography defines the admissible
types and sequences of interacting with one particular role of a cross-
organizational integration scenario. All message exchanges contained in
the public orchestration definition are publicly visible, i.e., observable by
the partners of the focal role.

The attentive reader may have noticed that the only difference to the definition
of “public orchestration” is the missing reference to Web Services. Indeed, local
choreographies and public orchestrations serve the same purpose. The question just
is whether the local communication obligations of a particular role should be captured
more abstractly or in a Web Services specific manner. As this work primarily takes
a global view on choreographies, the term “choreography” if used without further
information always refers to a global choreography.

Specifying the message exchanges between integration partners or, more abstractly,
system components is a common task in computing which calls for a categorization
of the concept. Decker, Kopp and Barros [29] developed a categorization of chore-
ographies based on two pivotal properties of choreography languages. Firstly, they
distinguish between “interconnection” choreographies and “interaction” choreogra-
phies. Interconnection choreographies focus on the local send and receive actions
of individual partners as well as the interconnection of corresponding send/receive
actions. Conversely, interaction choreographies treat corresponding send and receive
events as atomic actions and define sequences of these actions. Secondly, they distin-
guish between implementation specific choreographies that capture implementation
level concepts like communication technology (say, Web Services) and implementation
independent choreographies that are agnostic to those concepts.

While this categorization for sure is pivotal it still captures languages with consid-
erable differences in the same category. For example, Let’s Dance and ebBP can both
be characterized as implementation-independent interaction choreographies. How-
ever, ebBP aims at specifying the business document exchanges between enterprises
while Let’s Dance targets supporting service interaction patterns [11] with a visual
choreography language. Although these two goals overlap, they result in substantially
different concepts. ebBP provides support for referencing existing business document
libraries as provided by B2Bi communities like RosettaNet and for specifying security

49

2. Technological Background

and reliability requirements. Moreover, it assumes a protocol consisting of several
message exchanges for implementing a business document exchange. Let’s Dance,
in turn, offers functionality for analyzing such protocols and provides a rich set of
features for modeling service interactions.

These differences are a first hint that a refined choreography notion is needed. This
question was investigated in [179] as part of this dissertation project and the analysis
framework for conceptual modeling languages proposed by Wand and Weber [229] was
used to derive B2Bi/Services/Conceptual Choreographies as distinct choreography
classes that are largely orthogonal to the categorization presented in [29].

The framework of [229] offers the components task factors and modeling grammar
that are relevant for establishing categorizations of languages. Task factors capture
the purpose of using a language whereas modeling grammar captures the constructs
and rules for creating models. While choreography languages may lend itself to a
variety of different purposes, it is striking that almost all choreography languages and
approaches underline their relevance for B2Bi. Publications such as [37] and [187]
that analyze the development phases of B2Bi and therefore are suited to identify task
factors reveal that choreography technologies typically are used to fill the semantic
gap between business process models and orchestration models. This can be done
by refining business process model concepts or by abstracting orchestration model
concepts. For example, BPEL4Chor [31] reuses a considerable part of BPEL concepts
which corresponds to abstracting orchestration model concepts. Conversely, ebBP uses
so-called BusinessTransactions to specify requirements of message exchanges which
corresponds to refining the business process model. Finally, for some choreography
languages it is not easily decidable whether they are semantically more close to the
business process layer or to the orchestration layer. For example, IOWF-Nets [214]
capture choreographies as interconnected Petri Nets. This resembles the concept of
composing a choreography by connecting orchestrations and therefore seems to imply
a close relationship to the orchestration layer. However, the business process layer
may contain partner-local models as well and as IOWF-Nets do not have technology
specific concepts, they could potentially be used for analyzing the business process
layer itself.

These differences are also reflected in the core building blocks of the various
choreography languages (cf. modeling grammar [229]). In BPEL4Chor, communi-
cation activities are used to capture the send and receive events of the individual
partners. The WSDL operation types one-way and request-response are adopted
to allow for “higher similarity between participant behavior descriptions and orches-
trations” [32, section 4.2]. So, although BPEL4Chor is defined such that it does not
technically depend on WSDL (by removing the partnerLink, portType, and operation
attributes from BPEL message activities), it can be concluded that BPEL4Chor is
designed for service based interactions. In ebBP, a BusinessTransaction represents
a B2Bi domain specific configuration of a business document exchange with B2Bi
parameters for a lower-level execution protocol. Finally, the core building blocks of
languages like IOWF-Nets or Let’s Dance neither rely on Web Services concepts nor
define B2Bi domain concepts.

50

2.3. Choreography Technology

On the basis of this analysis of tasks factors and modeling grammar as supposed
by [229], the three different classes of choreography languages (largely orthogonal to
the categorization in [29]) used in the introduction of this work can be identified (cf.
section 1.2):

• B2Bi Choreographies that offer B2Bi specific concepts like configurable
BusinessTransactions and which semantically are close to business process
models.

• Services Choreographies that offer Web Services technology specific con-
cepts and are close to the orchestration layer.

• Conceptual choreographies that offer concepts driven by the purpose of
analysis and may be used to complement/analyze the business process layer as
well as the orchestration layer.

There is a series of criteria that discriminate between these choreography classes
available in [179], but the selection of the choreography representation formats for
this work is aligned with the B2Bi requirements introduced in the next chapter. So,
instead of describing a comparison of choreography classes that is not aligned with
the purpose of this work the reader is referred to [179]. As core technologies used in
this work, ebBP and BPMN are introduced in sections 2.3.1 and 2.3.2, respectively.
Sections 2.3.3, 2.3.4, 2.3.5 then sketch the most relevant representatives of the above
choreography classes that may be suitable as alternatives to the technologies chosen.

2.3.1. ebXML Business Process Specification Schema

The initial version 1 of the XML format ebBP had its roots in UMM and RosettaNet
standards and was proposed as one of the results of the ebXML initiative. The
current version of ebBP [134] was released in 2006 and did not dramatically change
the base concepts. The most important new feature of ebBP version 2 probably is
the possibility of defining multi-party choreographies.

Basically, ebBP is an interaction-style, implementation-agnostic B2Bi choreography
language that is centered around the concept of business document exchanges. An
ebBP choreography is denoted as “BusinessCollaboration (BC)” in ebBP terminology
and characterized in the standard as follows: “A Business Collaboration consists of
a set of roles that collaborate by exchanging Business Documents through a set of
choreographed transactions” [134, line 436/437].

The core building block of BCs for specifying the exchange of business documents
are so-called BusinessTransactionActivitys (BTAs). A BTA specifies the execution
of a particular BusinessTransaction (BT) definition at a particular point of the
choreography, i.e., the same BT definition can be used several times within one
choreography. In turn, a BT is the technology-agnostic specification of the exchange
of a business document and an optional business document response between exactly

51

2. Technological Background

two partners. Depending on the number of business documents exchanged, BTs also
are denoted as “One-” or “Two-Action-BTs” or as “One-” or “Two-Way-BTs”. The
sender of the request document is referred to as the “requester role” or “requesting
role” and the receiver of the request document is referred to as the “responder role”
or “responding role”. Whether or not a response document is exchanged within a BT
is irrelevant for the denotation of those names. For the exchange of each business
document of a BT, so-called BusinessActivities (BAs) are used to specify the business
document to be exchanged together with additional business signals and business
related QoS properties. Business signals, namely ReceiptAcknowledgements (RAs)
and AcceptanceAcknowledgements (AAs), are designed to give the business doc-
ument sender information about the state of a business document’s processing
by the receiver. The purpose of a RA is characterized as follows: “The Receipt
Acknowledgement Business Signal, if used, signals that a message (Request or Re-
sponse) has been properly received by the BSI [business service interface] software
component. The property isIntelligibleCheckRequired allows partners to agree that
a Receipt Acknowledgement SHOULD confirm a message only if it is also legible.
Legible means that it has passed structure/schema validity check” [134, lines 1276-
1280]. The term “ReceiptAcknowledgement” is actually a misnomer because real
acknowledgment of receipt requires the use of reliable messaging protocols (see sec-
tion 2.1) or distributed commit protocols. Instead, the RA refers to rather static
validation procedures that not necessarily require involvement of business appli-
cations for querying master or process data. Conversely, sending AAs barely is
conceivable without prior involvement of business applications: “The Acceptance
Acknowledgement Business Signal, if used, signals that the message received (Request
or Response) has been accepted for business processing and that processing is complete
and successful by the receiving application, service or a receiving business application
proxy” [134, lines 1292-1295]. However, note that an AA does not imply business
level acceptance of a particular business document such as a purchase order. It
merely signals that the receiver of the document will be able to process it with a
very high probability. Actual acceptance at the business level, e.g., a purchase order
confirmation, requires the exchange of another business document or the implicit
convention that every valid purchase order will be accepted. In addition to the RA
and AA business signals, corresponding ReceiptAcknowledgementException (RAE)
and AcceptanceAcknowledgementException (AAE) exception signals are defined that
signal validation errors. For exceptions beyond RA and AA validation errors, the
GeneralException (GE) exception signal is defined [134, section 3.6.2.3].

According to the terminology of section 2.1, the exchange of business documents as
well as business signals all necessarily represent application level message exchanges.
Further QoS attributes are available for configuring BTs that may be implemented
at the messaging or transport level that are listed in table 2.1. Each attribute is
associated with its object of specification, i.e., whether it applies to the business
document (Doc), the BA, BT or BTA. Most of the ebBP QoS attributes are self-
explanatory, but hasLegalIntent and isConcurrent deserve additional explanation.
For “hasLegalIntent”, ebBP states that “The hasLegalIntent attribute could have

52

2.3. Choreography Technology

widely differing interpretations and enforceability depending on type of business,
process, and jurisdiction” ([134, section 3.4.9.7]). “isConcurrent” (cf. [134, section
3.4.10.1]) specifies whether multiple instances of a BT within the same process or in
different processes (with the same party) are allowed to be active at the same time.

QoS Attribute Level of Specification

isAuthenticated Doc

isConfidential Doc

isTamperDetectable Doc

isIntelligibleCheckRequired BA

isNonRepudiationRequired BA

isNonRepudiationReceiptRequired BA

timeToAcknowledgeReceipt BA

timeToAcknowledgeAcceptance BA

isAuthorizationRequired BA

retryCount BA

isGuaranteedDeliveryRequired BT

hasLegalIntent BTA

isConcurrent BTA

timeToPerform BTA

Table 2.1.: ebBP QoS Attributes and Specification Levels

Together, the selection of business documents, business signals and QoS attributes
makes up a “BT configuration”. The ebBP standard offers so-called “business transac-
tion patterns” (originally defined in UMM [207]) as associated concept that allows for
alignment with different business scenarios. For example, the “Commercial Transac-
tion” pattern describes a Two-Way-BT that establishes a “formal obligation between
parties” [134, lines 1162-1163] and the “Information Distribution” pattern “represents
an informal information exchange between parties” [134, lines 1173-1174]. Technically,
the different patterns represent different instantiations of a BT configuration. For
example, a “Commercial Transaction” defines the exchange of two business documents
and explicitly requires the exchange of a RA whereas an “Information Distribution”
defines the exchange of one business document and defines the exchange of a RA as
optional. One important benefit of those patterns therefore is a guideline in choosing
a BT configuration that fits the application purpose. The “DataExchange” pattern is
special in allowing for arbitrary changes of the BT configuration and therefore can be

53

2. Technological Background

interpreted to cover all other patterns in a technical sense. This pattern is provided
by the ebBP specification in order to allow for partner specific exchange semantics.

Listing 2.4 shows the ebBP format for a BT configuration that includes all possible
configuration options for a One-Way-BT. The example shows the specification
of the exchange of a purchase order confirmation (POC) using a “DataExchange”
business transaction type and the referenced business document is taken from the
RosettaNet business document library11. Alternative configurations could easily be
derived by omitting XML attributes or elements that represent business signals or
QoS attributes. Section 4.3 will show how a BT configuration can be represented as
a pair of protocol machines and section 5.2 will cover the actual implementation.

Listing 2.4: RosettaNet-Based BT Example
1 <DataExchange
2 name="bt-PIP3A20"
3 nameID="bt-PIP3A20"
4 isGuaranteedDeliveryRequired="true">
5 <RequestingRole name="POC sender"
6 nameID="PIP3A20 -role -sender"/>
7 <RespondingRole name="POC receiver"
8 nameID="PIP3A20 -role -receiver"/>
9 <RequestingBusinessActivity

10 name="Send POC"
11 nameID="PIP3A20 -ba-req"
12 isIntelligibleCheckRequired="true"
13 isNonRepudiationRequired="true"
14 isNonRepudiationReceiptRequired="true"
15 retryCount="3"
16 timeToAcknowledgeReceipt="PT3M"
17 timeToAcknowledgeAcceptance="PT6M">
18 <DocumentEnvelope
19 name="PIP3A20 POC"
20 businessDocumentRef="PIP3A20 -POC"
21 nameID="PIP3A20 -POC -de"
22 isAuthenticated="transient"
23 isConfidential="transient"
24 isTamperDetectable="transient"/>
25 <ReceiptAcknowledgement
26 name="ra" nameID="PIP3A20 -ra"
27 signalDefinitionRef="ra2"/>
28 <ReceiptAcknowledgementException
29 name="rae" nameID="PIP3A20 -rae"
30 signalDefinitionRef="rae2"/>
31 <AcceptanceAcknowledgement
32 name="aa" nameID="PIP3A20 -aa"
33 signalDefinitionRef="aa2"/>
34 <AcceptanceAcknowledgementException
35 name="aae" nameID="PIP3A20 -aae"
36 signalDefinitionRef="aae2"/>
37 </RequestingBusinessActivity >
38 </DataExchange >

Beyond BTAs, CollaborationActivities (BCAs) are available as building blocks of
a BC. A BCA defines the execution of a BC within another BC and thus enables
hierarchical decomposition of choreographies. Beyond providing a construct for
defining the point in control flow at which a BT or BC is supposed to be performed,
BTAs and BCAs are used to define “role mapping”. Role mapping defines the
association between the roles of BCs and the roles of BTAs and BCAs of the
respective BC. For example, assume that a particular BC defines the roles bc-vendor

11http://www.rosettanet.org/Standards/RosettaNetStandards/PIPDirectory/tabid/476/

Default.aspx, last access: 12/20/2011

54

http://www.rosettanet.org/Standards/RosettaNetStandards/PIPDirectory/tabid/476/Default.aspx
http://www.rosettanet.org/Standards/RosettaNetStandards/PIPDirectory/tabid/476/Default.aspx

2.3. Choreography Technology

and bc-purchaser and that some BT defines the exchange of a purchase order. Then,
ebBP’s BTA construct can be used to bind the bc-vendor to the requesting role of the
BT and the bc-purchaser to the responding role. If it is necessary to send a purchase
order in the opposite direction at a later point in time of the BC then another BTA
can be used to bind the bc-vendor to the responding role and the bc-purchaser to the
requesting role. In addition, so-called TimeToPerform (TTP) values are available for
the specification of BTA and BCA timeouts.

The control flow structure of a BC is an almost arbitrary graph that uses Forks,
Joins, Decisions and Transitions to describe the flow between BTAs and BCAs.
ebBP Forks can be of type OR or XOR and ebBP Joins carry a boolean waitForAll

attribute. In this work, Joins with waitForAll set to true are denoted as “AND-
Joins” and Joins with waitForAll set to false are denoted as “OR-Joins”. Forks

of type XOR (“XOR-Fork”) are allowed to trigger exactly one successor whereas an
arbitrary number of successors can be triggered by a Fork of type OR (“OR-Fork”).
If an OR-Fork is matched by an AND-Join then all Fork successors have to be
triggered [134]. The Fork of such a combination will be denoted as “AND-Fork”. If
an OR-Fork is matched by an OR-Join then an arbitrary number of Fork successors
may be triggered, but the behavior of the OR-Join is not precisely defined. ebBP
Decisions connect multiple BTAs/BCAs and choose between different paths by
assigning guards to the corresponding links whereas ebBP Transitions connect
exactly two BTAs/BCAs and also allow for the specification of guards.

The guards that are available for routing the control flow of ebBP choreogra-
phies are either predefined protocol outcomes or expressions on the exchanged
business documents. Generic protocol outcomes are captured using ebBP’s so-called
ConditionGuardValue (CGV) language. A CGV expression refers to typical results
of a BT execution and defines Success and Failure as general results. The available
failure results are depicted in figure 2.9. The expression AnyProtocolFailure is
used to capture a series of protocol failures such as a response document or busi-
ness signal that is not provided on time (ResponseTimeout or SignalTimeout) or
validation errors (e.g., a RequestReceiptFailure). If the result is not an AnyProto-

colFailure from a protocol perspective then it is a ProtocolSuccess. In addition
to the protocol perspective, the type (not the content) of the business document
exchanged may be considered in CGV expressions. If the BT execution was executed
successfully from a protocol perspective and a business document type (as agreed
by the integration partners) that indicates failure was exchanged, then the result
is a BusinessFailure. Conversely, if the business document type was agreed to
represent success then the CGV result expression is BusinessSuccess. Interestingly,
this leads to the situation that a BusinessFailure is considered to be a failure
although it implies ProtocolSuccess. Moreover, a result is not a generic result if it
requires use case specific agreements of integration partners such as the definition of
business document types that indicate failure or success. In consequence, only the
CGV expressions that refer to protocol outcomes are used in this work.

If a BT execution was successful (ProtocolSuccess) then the evaluation of the
business document contents may be sensible. ebBP allows for several languages for

55

2. Technological Background

evaluating document contents, in particular XPath versions 1 and 2, XSLT versions
1 and 2, CAM version 1, and XQuery version 1. Moreover, user-defined expression
languages can be defined as declared on page 65: “This specification does not limit
the type and number of languages a BSI [business service interface] MAY support for
variables or condition expressions” [134, page 65]. Note that ebBP does not define a
default expression language for capturing the results of BC executions.

Figure 2.9.: Generic Protocol Failure Results of a BT, taken from [134, page 85]

Again, this section just provides an overview of the most important ebBP constructs
that are relevant for this work. For a comprehensive introduction, the reader is
referred to the standard [134].

2.3.2. BPMN Choreographies

The BPMN choreography standard was released as a visual format for choreography
specification as new part of the BPMN 2.0 specification [150]. BPMN defines an XML
serialization format, but its purpose is rather diagram interchange than modeling.

The basic building block of BPMN choreographies are so-called “choreography
tasks” that “represent[] an Interaction, which is one or two Message exchanges
between two Participants” [150, section 11.4.1]. In addition, “sub-choreographies”
and “call choreographies” can be used for hierarchical decomposition and a wealth
of BPMN “gateways” and “events” can be used for routing the control flow between
these interactions. In so far, the basic underlying paradigm of BPMN choreographies
is very similar to ebBP choreographies. Consistently, BPMN choreographies can
be classified as interaction-centric choreographies. As the modeler is not forced

56

2.3. Choreography Technology

to include implementation technology specific artifacts, BPMN choreographies can
further be classified as technology agnostic.

The classification according to the three classes B2Bi choreographies, Services
choreographies and Conceptual Choreographies (cf. above) is not as easy.

Conceptually, BPMN choreographies are close to the Business Process Management
(BPM) layer due to its abstract business-oriented perspective on processes. However,
for the classification as B2Bi choreography, B2Bi concepts such as an explicit construct
for representing business documents or common B2Bi QoS parameters as defined in
table 2.1 are missing.

Some other elements indicate a semantical relation to services choreographies. The
introduction of the BPMN choreography chapter itself [150, section 11] indicates
that support for service interaction patterns [11] is a goal. Several constructs such as
choreography task markers for looping, parallel multi-instance or sequential multi-
instance execution as well as multi-instance markers for participants [150, section
11.4.1] also suggest that support for service interactions patterns was a design goal
of BPMN choreographies (cf. [32]). In addition, BPMN allows for deriving WSDL
operations for message exchanges (even if a visual syntax is not provided for that).
Note, however, that the user is deliberately not required to bind all kind of BPMN
constructs to Web Services concepts in order to retain implementation technology
independence. So, BPMN is not a true services choreography language either.

From a technological perspective, BPMN choreographies are neither a true B2Bi
choreography language nor a services choreography language. Yet, it can be adapted
to either use which is a typical indicator for conceptual choreographies. Hence,
BPMN choreographies are classified as conceptual choreographies that are used for
system specification rather than for formal analysis.

All BPMN choreography elements that are relevant for this work will be covered
in detail in chapter 6 where BPMN will be used and adapted for visualizing this
work’s B2Bi choreography styles. Therefore, a more detailed description of BPMN
choreographies is not provided in this section.

2.3.3. Alternative B2Bi Choreography Languages

The most important alternative B2Bi choreography language is the UN/CEFACT
Modeling Methodology (UMM) which is a standard of the United Nations’ Centre
for Trade Facilitation and E-business (UN/CEFACT) and is defined as a Unified
Modeling Language (UML) profile for modeling B2Bi scenarios. UMM has been
developed since (at least) 2001 [207] and has been updated to version 1 [208] in
2006 and version 2 [210] in 2011. The latest version of UMM adds considerable
enhancements to its predecessors. These include support for UML 2, technical
improvements in terms of business document definition or explicit modeling of
alternative document responses, and a reorganization of the various views on B2Bi
scenarios.

57

2. Technological Background

The integration of several views on B2Bi scenarios is a conceptual strength of
UMM as it allows for separation of concern and reciprocal cross-checks between the
views, i.e., the contents of one view may be used for checking the contents of another
view for completeness or for validation purposes. The Business Requirements View
for capturing requirements of B2Bi scenarios, the Business Choreography View for
specifying the actual message exchanges, and the Business Information View for
describing the exchanged documents are the three main views of UMM. Out of these
three views, the Business Choreography View provides the actual choreography
language of UMM. Again, this view is split up into three different views, i.e., the
Business Transaction View for modeling ebBP-like business transactions as activity
diagrams, the Business Collaboration View for modeling ebBP-like business collabo-
rations as activity diagrams (also), and the Business Realization View for assigning
business partners to collaboration roles. Figure 2.10 gives an overview of UMM’s
views on B2Bi scenarios. The concepts of UMM’s Business Choreography View and
ebBP are very similar which is due to the common roots in the ebXML project12.
Indeed, the semantic similarity is so high that UMM’s Business Choreography View
and ebBP can be interpreted as UML format and XML format of the same concepts
(see [60] for an in-depth comparison of early UMM and ebBP versions). Consis-
tently, the choreography part of UMM can be classified as interaction-centric and
implementation independent B2Bi choreography language.

Figure 2.10.: UMM’s Views on B2Bi Scenarios, taken from [210]

Despite the conceptual benefits of multi-view modeling approaches, UMM is
sometimes criticized by practitioners for being too complex due to the number of views

12http://www.ebxml.org/, last access: 12/20/2011

58

http://www.ebxml.org/

2.3. Choreography Technology

that are supposed to be created. The Business Choreography Language (BCL) [248]
addresses this critique by merging the most important artifacts of the different UMM
views into a domain specific language that allows for modeling choreographies in
one single diagram. As BCL diagrams are aligned with UMM concepts, BCL can be
classified as interaction-centric and implementation independent B2Bi choreography
language, too. Although BCL is not an official standard like UMM, its potential use is
providing a simplified interface to UMM artifacts and thus enabling the participation
of integration partners in B2Bi scenarios that are not able to deal with UMM’s
complexity.

2.3.4. Alternative Services Choreography Languages

In the area of services choreographies, WS-CDL [223] and BPEL4Chor [31] are
outstanding.

WS-CDL is a candidate recommendation of the W3C since 2005 and defines
choreographies on the basis of WSDL. The definition of a WS-CDL choreography
comprises static definitions and the actual specification of publicly visible message
flow. The static definition comprises the definition of message types as either primitive
XML Schema types or as WSDL messages. The participating roles of a choreography
are defined as WSDL portTypes and some additional static declarations such as
the message exchange relations between roles and the extraction of correlation
information between participant instances can be defined.

The basic building blocks of the actual choreography definition are so-called
interactions that define the one-way or request-response message exchanges between
the roles defined beforehand. In order to specify the control flow between interactions,
constructs like parallel for concurrent execution of interactions or choice for
branching behavior can be used. Further, hierarchical decomposition is supported by
specifying the execution of other choreographies using a so-called perform construct.

WS-CDL is an interaction-centric choreography language that is similar to ebBP
in using a single- or two-message interaction as building block of potentially multi-
party choreographies that may be comprise other choreographies. Contrary to ebBP,
WS-CDL must be classified as implementation technology specific language due to
its tight integration with WSDL. Furthermore, typical B2Bi QoS attributes cannot
be attached to interactions.

BPEL4Chor already is briefly discussed in the introduction of this section. Con-
ceptually, BPEL4Chor can be interpreted as a choreography layer that is added to
BPEL and therefore supports the incorporation of existing BPEL definitions in a
bottom-up manner [31]. A BPEL4Chor choreography consists of participant behavior
descriptions, a participant topology and a participant grounding. The admissible
language for defining participant behavior descriptions essentially is a sub-class of the
BPEL Profile for Observable Behavior (cf. section 2.2) that disallows the definition of
partnerLink, portType, and operation attributes for BPEL messaging activities
like onMessage or receive. Like that, participant behavior descriptions do not

59

2. Technological Background

technically depend on WSDL. Furthermore, participant behavior descriptions specify
the sequence of messaging activities of one choreography role.

BPEL4Chor’s participant topology defines the communication links between the
participating choreography roles. Therefore, each participant behavior description
is interpreted as a participant type and one or more participants are defined per
type. In addition, so-called messageLinks define which kind of messaging activities
are allowed to be performed between particular participants. Note, however, that
this does not include the sequence of messaging activities that is implied by the
participant behavior descriptions.

Finally, BPEL4Chor’s participant grounding is used to bind messageLinks to
concrete WSDL operations and portTypes. As this grounding is not unique,
BPEL4Chor facilitates reuse of choreography definitions.

As the participant behavior descriptions are defined independently of each other
and then connected by means of a participant topology, BPEL4Chor is classified
as interconnection-centric choreography language. Interconnection-centric choreog-
raphy languages frequently provide more flexible means for control flow definition
because the behavior of the interacting roles can be specified independently (which
is an implicit requirement for some service interaction patterns [11]). However,
those languages do not lend themselves very well to hierarchical decomposition.
Furthermore, BPEL4Chor must be classified as implementation technology specific
choreography language. Although a BPEL4Chor choreography does not technically
depend on WSDL, its underlying interaction paradigm relies on WSDL. Moreover,
BPEL can be considered as implementation technology as well. Typical properties of
B2Bi choreographies such as B2Bi QoS attributes or support for business document
libraries are not available in BPEL4Chor.

2.3.5. Alternative Conceptual Choreography Languages

The largest set of alternative choreography languages is conceptual in nature and
neither offers the typical B2Bi concepts of B2Bi choreographies nor the Web Services
specific attributes of services choreographies.

BPMN “Collaborations” [150, section 9] represent the second choreography lan-
guage offered by the BPMN standard. Contrary to BPMN choreographies, BPMN
collaborations are interconnection centric and define the publicly visible message
exchanges between entities by first describing the message exchange behavior of the
individual participants (pools in BPMN terminology) and then defining so-called
message flows between the communication activities of the participants. The rich
set of constructs for defining BPMN processes [150, section 10] is available for the
definition of participant behaviors. However, defining the participant behavior as a
BPMN process is optional [150, section 9.5] and the message flows between partici-
pants may be attached to either activities within the participants’ pools or to the
pools directly (in case the behavior is hidden). Obviously, hiding the behavior of all
participants makes little sense as the control flow definition of BPMN collaborations
relies on participant behavior. Yet, hiding the behavior of all participants except

60

2.3. Choreography Technology

for one focal participant allows for the definition of public orchestrations that then
can be complemented with the behaviors of other participants. Another interesting
functionality of BPMN collaborations is the integration with BPMN choreographies,
i.e., the message flows between collaboration participants may be attached to the
choreography activities of BPMN choreographies. While integrating both choreogra-
phy styles of BPMN in one single diagram may be superfluous for the purpose of
system specification, the combination offers a valuable feature for validating BPMN
collaboration definitions against BPMN choreography definitions and vice versa.

Note that BPMN collaborations are fundamentally different from ebBP BCs.
Whereas BPMN collaborations provide an interconnection-centric view on choreogra-
phies, ebBP defines an interaction-centric view. Similarly to BPMN choreographies,
BPMN collaborations do not offer B2Bi specific concepts and can be specified inde-
pendently of implementation technology. Hence, BPMN collaborations are classified
as conceptual choreographies although they offer a notation that targets business
process definition and although communication activities may be bound to WSDL
(without visual presentation).

Petri nets [70] are a natural candidate for the specification of B2Bi scenarios due
to their convenient representation of concurrency by means of different places.

Interorganizational Workflow Nets (IOWF-Nets) [214] are one of the first Petri net
dialects that have been dedicated to inter-organizational processes. The basic concept
of an IOWF-Net is the distinction between places for representing message buffers
and places for reprensenting local states. Furthermore, receive and send transitions
are used to link message buffer places and local state places. A receive transition
consumes tokens from a message buffer place and a local state place and produces a
token in a local state place. Conversely, a send transition just consumes a token from
a local state place and produces a token in a message buffer place and another local
state place. An IOWF-Net choreography then can be described by arranging the
local states and communication transitions according to the participants (comparable
to BPMN pools without boundaries) and placing the message buffers in between.
Thus the message buffers link the corresponding send and receive transitions of the
participants. The attractiveness of this model is that it is relatively easy to produce
participant projections by interpreting send and receive transitions as interfaces for
external communication and refining the local state places and transitions of one
participant with private (i.e. invisible to other participants) places and transitions.
Furthermore, the rich set of Petri net theory, algorithms and tools can be used to
validate IOWF-Nets and its derivatives. Note that the work in [214] can be considered
to be representative for a series of other Petri net based models for interorganizational
systems such as the work in [35] that extends IOWF-Nets with refined notions of
participant behavior.

So-called Interaction Petri nets [33] represent a fundamentally different way of
applying Petri nets to B2Bi scenarios. Petri net transitions are not interpreted as local
send or receive events, but as combined send and receive events of two interacting
parties. In the terminology used in [33], transitions are denoted as interactions that

61

2. Technological Background

consist of two roles and a message type. Interaction petri net places represent the
overall progress of partner interactions (similar to concepts developed for the work at
hand [160,182,186]) and interactions consume a token of a place and produce a token
in another place. For example, assume that some place represents the agreement
between two partners about the purchase of some product. Then an interaction
that exchanges a delivery notification could be used to reach another place that
represents the delivery of the product and yet another interaction for exchanging
a payment advice could be used to reach a place that signifies successful payment.
A choreography modeled as an Interaction Petri net correspondingly consists of a
series of interactions that connect global choreography states.

IOWF-Nets as well as Interaction Petri nets, and therefore the numerous other
Petri net approaches that rely on the same basic concepts, both offer abstract models
for the specification of B2Bi scenarios. In consequence, B2Bi domain concepts or
services technology specific artifacts are missing and neither a classification as B2Bi
choreography nor as services choreography is justifiable. However, the models may
be useful for analyzing dedicated B2Bi or services choreography languages. The avail-
ability of both, interconnection-style (IOWF-Nets) and interaction style (Interaction
Petri nets) Petri net choreographies, promises that this is doable for most relevant
choreography languages.

In [232], the Message Choreography Modeling Language (MCM) is described as
choreography language that “seamlessly complements existing models at SAP” [232].
MCM defines choreographies between exactly two integration partners and tracks
the progress of the choreography using global states (similar to [160, 182, 186] and
Interaction Petri nets). Transitions between those global states represent message
transmissions (or interactions) that are characterized by the message type exchanged,
the message direction (between the two partners), and some guard that rules en-
abling of the transition. However, request-response interactions as available in ebBP,
UMM, WS-CDL or BPEL4Chor are not available. A specialty of MCM is that
the interpretation of choreography models requires the definition of so-called view-
points, i.e., whether the choreography definition represents (at least) all possible
send sequences of messages, (at least) all possible receive sequences of messages
or (at least) all possible sequences of monitoring messages in transit. These view-
points may deviate because asynchronous communication with message reordering
is allowed for. The definition of different viewpoints reflects the purpose of MCM
which is system analysis and testing rather than system specification (in the sense of
providing an interaction contract that is to be implemented). As B2Bi specific or
services specific concepts are missing, MCM clearly is an implementation-independent
conceptual choreography language and the communication focus is interaction-centric.

Let’s Dance [245] is a visual choreography specification language that claims not
to be “based on imperative programming constructs such as variable assignment,
if-then-else and switch statements, sequence, and while loops” [245]. The basic
building block again is an interaction between two roles that models the exchange

62

2.3. Choreography Technology

of a single message and an optional acknowledgment. Such an acknowledgment
is used for notifying the sender about message delivery only and does not carry
meaning. In particular, “the protocol used for acknowledging is an implementation
concern” [245]. Therefore, message exchanges in [245] are essentially one-way and are
not comparable to the request-response interactions of several choreography languages
discussed above. The flow between interactions in Let’s Dance is determined by
the concepts of dependencies, composition, loops, and guards. Three different types
of dependencies are available that enable a data flow-like execution description.
A precedes dependency with interaction X as source and interaction Y as target
expresses that Y only is admissible for execution if X has been performed before.
Conversely, the inhibits dependency expresses that Y may not be performed any
more once X has been performed. Finally, weak-precedes expresses that Y may
be performed if either X has been performed or if X has been inhibited. Defining
precedes and weak-precedes dependencies can be interpreted as means for passing on
control flow between interactions. As these relationships may be defined between
virtually arbitrary interactions (composition boundaries may not be crossed), Let’s
Dance can be said to support graph-like definition of choreographies. However, note
that precedes dependencies are different from the transitions typically available in
graphs. While a cycle of transitions is a loop, a cycle of precedes is a dead-lock.
Composition of interactions may be performed hierarchically by simply delineating
the corresponding interactions with a rectangle. Interactions within such a composite
interaction that are not connected via dependencies are performed in parallel. In
addition, guards can be used to restrict the eligibility of interactions for execution
and three different types of looping behavior can be defined. While the forEach
loop type may be used to iterate over sets of participants or variables, the while and
repeat until loop types may be used to implement top-controlled or bottom-controlled
loops using some variable-based condition expressions. Guards and loop constructs
are attached to the boundaries of basic or composite interactions. As composite
interactions may not overlap, this corresponds to a block-structured way of defining
control flow. In summary, the control flow definition of Let’s Dance indeed is different
from the above choreography languages regarding the use of dependencies. However,
the control of loops and the usage of variables is not unique and not really free of
imperative programming constructs as claimed by the authors.

Although Let’s Dance is designed such that the largest part of service interaction
patterns [11] is supported, it is not classified as a services choreography because
services technology constructs are missing. Similarly, B2Bi specific constructs as
offered by ebBP, UMM or BCL are not available.

The Blindingly Simple Protocol Language (BSPL) [201] is a textual format for
declaratively specifying interaction protocols between two or more roles that is
fundamentally different from the other approaches discussed above in not using
explicit constructs for representing control flow concepts such as repetition, parallel
composition or branching. Instead, the sequencing of message exchanges is based on
the availability of message parameters. Therefore, the definition of a message exchange

63

2. Technological Background

between two choreography roles includes a series of parameters that represent the
information items on which the dependencies between messages rely. For example,
the exchange of a purchase message sent from a buyer role to a seller role may
require parameters for a product and a price that must be produced by a quote
message from the seller to the buyer beforehand. In order to make dependencies
clear, parameters are adorned with in, out or nil labels. The label in attached to
a parameter means that the sender of the corresponding message must be aware
of the parameter value beforehand whereas the out label means that the sender
produces the value. The label nil means that the corresponding parameter is not
bound yet. So, if the parameters product and price would be adorned in in the
purchase message above and out in the quote message then the exchange of the quote
message necessarily would have to precede the purchase message. The nil adornment
is particularly useful for allowing different choreography roles to set the value of
a parameter. So, if a second quote message was defined with the price parameter
adorned with nil then the buyer could produce a value for the price parameter. Of
course, a second definition of the purchase message with an out adornment for price
would be necessary for this as well. Note that the sequence of message exchange
definitions in BSPL is irrelevant because the message dependencies are determined
via parameter adornments.
Beyond the definition of message exchanges, the only additional concept of BSPL is
protocol composition. For composing protocols, the roles of a superordinate BSPL
protocol are mapped to the roles of a subordinate BSPL protocol and the parameters
consumed and produced by the subordinate protocol must be given. So, BSPL is
indeed blindingly simply in terms of the number of modeling constructs used. Yet, it
may be hard to specify advanced control flow scenarios based on in-, out-, and nil-
adornments of messages only.
BSPL is classified as conceptual choreography language that particularly focuses
on capturing information dependencies between messages. Although the explicit
representation of message parameters in the sense of information items that determine
control flow make BSPL particularly interesting for business interactions, the lack of
B2Bi concepts such as QoS attributes forbids the classification as B2Bi choreography.
BSPL is deliberately implementation technology agnostic and centered around the
interactions of the partners.

Beyond BPMN collaborations, IOWF-Nets, Interaction Petri Nets, MCM, Let’s
Dance and BSPL, a myriad of languages can be interpreted to support choreography
aspects. Communication between system components is a core computer science
aspect and hence a wide variety of languages aims at or is adapted to this issue. For
example, process algebra languages such as the π-calculus [114,115], Communicating
Sequential Processes [58] or Calculus of Communicating Systems [113] provide sound
formalizations of interacting systems and therefore may lend themselves well for
analyzing cross-organizational processes. The adequacy of process algebras for
capturing cross-organizational message exchange relationships is consistently reflected
in the development of more recent languages such as the piX model [216], the
Lightweight Coordination Calculus [18, 167] or the Multiagent Protocols language [8]

64

2.4. ebXML

for the purpose of formalizing choreographies. However, process algebras do not
support the communication function of choreography models very well. Similarly,
UML activity diagrams or interaction diagrams [149] may be adapted to representing
cross-organizational processes, but their actual purpose rather is system specification.
So, this section just gives an overview of those languages that come closest to ebBP
in terms of practical relevance for specifying B2Bi choreographies.

2.4. ebXML

The initial version of ebBP was developed in the course of the ebXML project as part
of a comprehensive B2Bi framework. The Core Components Technical Specification
(CCTS) [209], the Collaboration-Protocol Profile and Agreement (CPPA) [128], the
ebXML Registry Information Model (ebRIM) [131], ebXML Registry Services and
Protocol (ebRS) [132], and the ebXML Messaging Services (ebMS) [129, 136] are
available for addressing core B2Bi issues not covered by ebBP.

Figure 2.11 visualizes the interplay of ebBP with these related standards. The box
labeled Business Process Definition in the upper-left corner of figure 2.11 represents
the actual application area of ebBP. ebBP specifies the exchange of business docu-
ments using BTs and BCs, but does not cover the definition of business documents.
These are assumed to be ready for import from business document libraries and CCTS
provides an implementation-neutral standard for defining so-called core components
as building blocks of business documents with unambiguous semantics (upper part
of figure 2.11). ebBP defines constructs for specifying different technical formats
of business documents and allows for an extensible set of expression languages for
defining choreography control flow based on the contents of the exchanged business
documents. While a basic set of constructs is needed for capturing the role of business
documents in B2Bi choreographies, the details of defining business documents are
irrelevant for choreography specification. Hence, CCTS is not further investigated in
the context of this work.

According to the ebXML deliverables, process definitions (or rather B2Bi choreog-
raphy definitions), business document definitions and core components are assumed
to be stored in some repository with an attached registry (center part of figure 2.11)
so that business partners can easily query and retrieve artifacts. ebRIM and ebRS
are available as standards for such repository and registry services. As this work is
not concerned with the retrieval of choreography or business document definitions
(cf. section 1.1), ebRIM and ebRS are not further discussed.

CPPA and ebMS are available for covering the more technical aspects of busi-
ness document exchanges. The CPPA standard specifies the definition of so-called
Collaboration-Protocol Profiles (CPPs) that describe the message exchange capabili-
ties of one partner and of so-called Collaboration-Protocol Agreements (CPAs) that
describe the message exchange capabilities that two particular partners have agreed
upon (center part of figure 2.11). CPPs and CPAs basically leverage the same set of
constructs, but obviously differ in the multiplicities of the used constructs. In order

65

2. Technological Background

Figure 2.11.: ebBP and Complementary ebXML Standards, taken from [134]

to describe the message exchange capabilities of an integration partner, the CPPA
standard refers to ebBP concepts. The capabilities of a particular integration partner
are described in a PartyInfo element that relates the partner to one or more of the
roles of (typically) ebBP BCs. Then, CanSend and CanReceive elements are used to
describe how the business documents or business signals defined within a BC are
supposed to be exchanged. For identifying the respective BC declarations, a so-called
ActionBinding is used in CPPA. Note that CPPA does not explicitly require the
use of ebBP for defining a collaboration context, but the technical concepts are tightly
integrated which is formulated in the CPPA standard as follows:

“A Party can describe the Business Collaboration using any desired al-
ternative to the ebXML Business Process Specification Schema. When

66

2.4. ebXML

an alternative Business-Collaboration description is used, the Parties
to a CPA MUST agree on how to interpret the Business-Collaboration
description and how to interpret the elements in the CPA that refer-
ence information in the Business-Collaboration description.” [128, section
8.4.4]

The actual technical configuration of the message exchanges within CanSend and
CanReceive elements is given by so-called DeliveryChannels. These, in turn,
consist of a Transport element for specifying the transport protocol to be used
(such as HTTP or FTP) and a DocExchange element for configuring the messaging
agents that perform business document/signal exchanges on top of the transport
protocols. The parameters that are available for a DocExchange element are defined
using so-called SenderBinding and ReceiverBinding elements. Although CPPA
allows for arbitrary types of such bindings for covering any messaging protocol, only
an ebXMLSenderBinding and ebXMLReceiverBinding are provided that are tied to
ebMS: “The ebXMLSenderBinding element describes properties related to sending
messages with the ebXML Message Service[ebMS]” [128, section 8.4.40].

ebMS defines the messaging level protocol for exchanging business documents and
business signals on top of SOAP. This is in line with the SOAP specification that does
not define a complete messaging protocol itself but rather a framework for defining
those. Several Web Services technologies such as WS-ReliableMessaging [143] or WS-
Security [135] are suggested to be used for implementing QoS features. However, note
that service descriptions based on WSDL are not available that make up the actual
power of Web Services technology (cf. section 2.1). Although WS-SecurityPolicy

and WS Reliable Messaging Policy Assertion are included in the normative
references section of ebMS version 3, the details of using these standards are not
given. So, ebMS is not a true Web Services technology, but rather a SOAP-based
messaging protocol for B2Bi.

ebMS version 2 [129] significantly relies on CPPA concepts which is reflected in
the standard itself as follows:

“As regards the MSH [ebMS Message Service Handler], the information
composing a CPP/CPA must be available to support normal operation.
However, the method used by a specific implementation of the MSH does
not mandate the existence of a discrete instance of a CPA” [129, section
1.2.3]

The dependency on CPPA becomes manifest in several required message headers
such as CPAId or PartyId although ebMS allows for filling in values that are taken
from other sources than a CPA. In ebMS version 3 [136], the dependency on CPPA
is further relaxed although some elements such as PartyInfo or CollaborationInfo
still are defined as required in message headers.

Summarizing the references defined in CPPA and ebMS to other ebXML tech-
nologies makes clear that significant conceptual dependencies between the ebXML
layers exist. Although ebXML is frequently said to allow for easy integration of

67

2. Technological Background

non-ebXML technologies, the tight dependencies between ebXML layers suggest that
this requires significant effort. In this work, ebBP as one of the most abstract ebXML
technologies will be used for defining choreographies and non-ebXML technologies
will be used for implementation. A discussion on why ebMS and CPPA in particular
have not been used for specifying and implementing the technical message exchanges
of B2Bi choreographies is provided in the introduction of chapter 5.

68

3. Requirements and Design Choices

This section presents the goals, method and results of the B2Bi requirements analysis
reported on in [184] and discusses how those requirements affect this work. In fact,
the results of the study help in narrowing down the types of B2Bi scenarios to be
supported. The intent of the requirements study [184] is

identifying and classifying requirements for the analysis, design, development and
maintenance of B2Bi information systems.

Different types of requirements sources are analyzed for enhancing both the
validity and the completeness of the requirements set. Firstly, the functionality
of dedicated integration standards such as ebBP, UMM or RosettaNet’s RNIF is
investigated [123,128,131,132,134,136,170,208]. Secondly, reference architectures
for B2Bi and BPM are examined [13, 87, 199]. Finally, scientific literature with
focus on SCM, BPM, B2Bi, enterprise integration, and language assessment is
investigated [3,9,34,47,88,89,100,101,125,126,148,161,162,176,187,193,213,234,
243]. The study results in 78 B2Bi requirements. This number calls for additional
classification in order to be beneficial. 7 core B2Bi challenges such as communication
among unequal personnel, management of complex associations or homogenization of
computing resources are identified that are typical for B2Bi scenarios. Requirements
are then classified according to their utility for overcoming those challenges. As
those challenges vary with different types of B2Bi systems (cf. section 1.1.3), such a
classification is helpful for selecting requirements to be addressed for a particular
B2Bi project. In addition, requirements are classified according to the abstraction
layers of the B2Bi schema of figure 1.3 (p. 12). Each requirement was evaluated
with respect to the abstraction layer on which it is supposed to be addressed. As
the abstraction layers of the schema tightly correlate with development phases of
B2Bi projects, such a classification helps in identifying the point in time when a
requirement should be addressed.

In the next two sections, the approach for performing the requirements study as
well as the results of the study are presented.

3.1. Approach of the Requirements Study

The approach taken for the study is aligned with three main goals. Firstly, a
list of requirements for the analysis, design, development and maintenance of B2Bi
information systems should be developed that helps researchers in identifying research
opportunities and assessing completeness of research plans as well as practitioners in

69

3. Requirements and Design Choices

evaluating B2Bi projects and tool sets. Secondly, this list should be comprehensive.
Thirdly, the list should be manageable.

The first goal pays tribute to the influence of B2Bi on today’s business world.
Moreover, it makes clear that the focus of this work is technical. The managerial
and strategic aspects of SCM are not considered as stated in section 1.1.1. Moreover,
project management and organizational issues during performing B2Bi projects are
disregarded. Project management typically comprises tasks like risk management,
human resource allocation or project scheduling, while organizational issues cover
aspects like cultural fit, implementing organizational change, level of support for IT
projects or the analysis of organizational capabilities. Exemplary publications that
are dedicated to these issues are [88] investigating EAI success factors, [119] defining a
capability assessment framework for the adoption of B2Bi Systems or [90] presenting
decisive components of a SCM framework. The second goal, comprehensiveness,
leads to the selection of different requirements sources as described below. Moreover,
as the scope of this work comprises the design and development of information
systems, generic requirements for models and implementations apply. Examples of
such requirements are coupling, cohesion, abstraction or reuse. However, this work
does not even attempt to define a comprehensive requirements list for arbitrary
models. Instead, a comprehensive list of B2Bi requirements that can be justified by
relevant B2Bi requirements sources is sought for. The third goal, manageability, con-
tradicts comprehensiveness to some extent and leads to the definition of aggregated
requirements. To further enhance manageability, the relation between requirements
and B2Bi challenges as well as the abstraction layers of the B2Bi schema (cf. figure
1.3; [187]) are also examined in more detail.

Three different types of sources are selected for deducing B2Bi requirements,
namely dedicated B2Bi standards, B2Bi/Business Process reference architectures
and scientific literature. Thus, different views on the same subject of investigation
can be consolidated which leads to a more comprehensive treatment of the topic.
The rationale behind choosing B2Bi standards is that requirements are driving im-
plementation artifacts. B2Bi standards are, in effect, used for implementing B2B
collaborations and thus the investigation of the functionality of these standards
leads to B2Bi requirements. Furthermore, B2Bi standards are usually developed by
domain experts and, therefore, this type of requirements source also enables access
to expert knowledge.
B2Bi/Business Process reference models/architectures are the second type of re-
quirements source selected. Reference models/architectures describe best practice
knowledge on which components to select for representing the subject under con-
sideration and on how to relate these components. The qualities of such reference
models/architectures may be used for evaluation purposes (cf. [89]) and define re-
quirements at the same time. Hence, examining the qualities of the components and
the relationships among these reveals the intended requirements.
The third type of requirements sources is scientific literature. The following rule
is used for eliciting B2Bi requirements from literature: Either the paper contains

70

3.1. Approach of the Requirements Study

an explicitly defined requirement or the authors describe some functionality/proper-
ty/method/concept/tool as particularly useful or not useful. The sheer description
of a functionality/property/method/concept/tool without valuation is not sufficient
for deducing requirements. For the work at hand, different categories of papers
have been searched for. The first category comprises surveys and reviews about
requirements for B2Bi. This category is scarcely occupied. Furthermore, B2Bi and
BPM surveys are considered. Thereby, the claim is made that BPM is tightly related
to B2Bi because business collaborations can be interpreted as enterprise-spanning
business processes. Third, papers that define requirements for some sub-category of
B2Bi and BPM are considered to be relevant. This category comprises topics like
Web Services compositions as technique for implementing B2Bi or EAI which is an
important BPM task. Finally, drivers and obstacles for adopting B2Bi are selected
as a category of focal publications.
The literature search itself has been performed using scientific search engines like
IEEE Xplore1, ACM Portal2 or Google Scholar3 and by systematically searching
relevant journals, conference proceedings and institutional homepages.

For eliciting requirements each reference, i.e., B2Bi standard, reference model/ar-
chitecture or publication has first been evaluated in isolation and all requirements
found have been written down separately. This unconsolidated list comprised several
hundred requirements which is caused by identical requirements defined in different
references and by very detailed requirements lists that can be deduced from some
sources such as [126] or [134]. Therefore, related requirements have been aggregated,
for example 11 consistency requirements identified in [187] have been merged to
simply consistency, and checked for semantic equivalence by investigating the related
references again. Eventually, 78 aggregated B2Bi requirements have been identified.
For enabling traceability of the origin of requirements, the related sources have been
associated in tables A.1 and A.2 (pages 290, 294). This matrix not only enhances
traceability but also gives an impression of how frequently a requirement is identified.
A true statistical analysis is not possible because the sample of requirements sources
is necessarily influenced by the background of the researchers and therefore not
random.

The classification of requirements according to B2Bi challenges and B2Bi schema
abstraction layers resulted from collaboration with my fellow researchers Christian
Wilms and Guido Wirtz in a two-step process. At first, all researchers, who all are
engaged in distributed systems, workflow and business process modeling, classified
the requirements individually. Then, the results of individual classification have
been compared and merged in several discussion sessions which lead to matrices A.3
(page 297) and A.4 (page 300). Please see appendix A for more details on how the
individual classifications were created and for instructions on how to read the tables.

1http://ieeexplore.ieee.org/Xplore/, last access: 12/20/2011
2http://portal.acm.org, last access: 12/20/2011
3http://scholar.google.com/, last access: 12/20/2011

71

http://ieeexplore.ieee.org/Xplore/
http://portal.acm.org
http://scholar.google.com/

3. Requirements and Design Choices

3.2. Results of the Requirements Study and Design
Choices

The surveyed standards, reference architectures and literature result in 78 B2Bi re-
quirements. Instead of discussing all 78 B2Bi requirements identified, the taxonomy
of 7 core B2Bi challenges that can be overcome by addressing those requirements is
presented. Note that not all requirements are relevant for the scope of this thesis (cf.
section 1.1) so that a restricted set of relevant requirements is presented subsequently.
Finally, the support of requirements by the core artifacts of this work, i.e., ebBP-Reg,
ebBP-ST and SeqMP is discussed.

Table 3.1 presents four original and three derived challenges that can been iden-
tified for B2Bi systems. The four original challenges represent the typical setting
of B2Bi scenarios and cover communication among unequal personnel, agreement,
management of complex associations and homogenization of computing resources.
Thinking about a simple “quote and order” scenario with personnel from two differ-
ent enterprises having to agree upon what data to exchange and when to perform
business tasks depending on the message exchanges while considering that a similar
process may have to be performed with different business partners using various
communication technologies, these challenges become obvious. But, these challenges
also come in different flavors. Agreement does not only concern the specification of
particular message formats and a business process that reacts to messaging events.
It is also a question of legal implications of message exchanges. Similarly, homoge-
nization of computing resources not only concerns differing computing platforms of
integration partners and interfacing with legacy systems. It is also about catering for
the characteristic issues of distributed systems like partial failure and lost/duplicated
messages.
The three derived challenges comprehensibility, feasibility and changeability are more
generic in nature and therefore also apply to other systems than B2Bi systems.
Nonetheless, they have been included as they are particularly challenging in the
B2Bi context. Comprehensibility is especially hard in the face of communication
among unequal personnel, management of complex associations and homogenization
of computing resources, but it is indispensable for achieving agreement. Similarly,
feasibility as a second precondition for agreement needs special attention when con-
sidering communication among unequal personnel and homogenization of computing
resources. Finally, the importance of changeability can be derived from management
of complex associations and homogenization of computing resources.
There may be different valid systematizations of B2Bi challenges. The systemati-
zation presented has been developed during the requirements study of [184] on the
basis of B2Bi experience of the authors. However, there is an empirical indicator
for the validity of the challenges scheme as 76 out of 78 B2Bi requirements can be
associated with a B2Bi challenge the requirement particularly helps solving in.

72

3.2. Results of the Requirements Study and Design Choices

Table 3.1 shows the challenges together with the respective variants and relations
between original and derived challenges.

Index Type Challenge Variants derived
from

essential
for

1 original Communication among
unequal personnel

- Across enterprises

- Business analyst to
IT expert

2 original Agreement - Legal

- Business

- Technical

3 original Management of complex
associations

- Dynamics with respect to
well-known partners and
partner links

- Dynamic binding to
unknown partners

- Multi-party collaborations

4 original Homogenization of
computing resources

- Legacy systems

- Platform heterogeneity

- Distributed computing

5 derived Comprehensibility 1,3,4 2

6 derived Feasibility - Business appropriateness

- System appropriateness

1,4 2

7 derived Changeability - Extensibility

- Replaceability

3,4

Table 3.1.: Overview of B2Bi Challenges

Considering the large variety of challenges and requirements, it is naive to think that
all requirements can be met by one single approach. The number of requirements
can be narrowed down by focusing on the research question of this thesis (cf. section
1.2) and by focusing on the type of B2Bi systems that define the scope of this work
(cf. section 1.1.3). The associations between requirements and core B2Bi challenges
as well as between requirements and B2Bi abstraction layers then help in selecting
relevant requirements.

Considering that the research question targets the semantic gap between business
process models and private orchestrations reveals that requirements that are particu-
larly important for the business model abstraction layer or the runtime abstraction

73

3. Requirements and Design Choices

layer may be of minor importance for the work at hand. Similarly, the core challenge
management of complex associations is less important when focusing on the extended
enterprise type of B2Bi because interactions with completely unknown partners
are rare and hence requirements that particularly help in overcoming this challenge
are candidates for being neglected. Likewise, focusing on decentralized execution of
choreographies implies that requirements that help in tackling the agreement chal-
lenge are particularly important and the focus on straight through processing implies
particular importance of requirements that help in overcoming the communication
among unequal personnel, agreement or feasibility challenges.

The derivation of requirements along those considerations results in the following
requirements list that should be met by this work.

1) Usage of standards. Standard choreography and orchestration languages are
to be used.

2) Language technical actor appropriateness. Choreography and orchestration
models should be amenable to automatic processing which has several implications:

a) Machine-processable format. The syntax of models is to be precisely defined,
e.g., using XML Schema technology.

b) Clear semantics. The meaning of language constructs must be precisely
defined.

c) No deviations from standards. The use of standard tools should not be
hindered by deviations from choreography or orchestration standards.

3) Support for business documents. The import for existing business document
definitions as defined by business document libraries like RosettaNet or Odette
is to be supported. For an extensive discussion of business document standards,
see [95].

4) Language domain appropriateness. Choreography and orchestration lan-
guages should reflect the characteristics of the B2Bi domain. This includes:

a) Support for business transactions. The concept of business transaction should
be used to abstractly define alignment of the integration partners’ IT systems
at the choreography level. At the orchestration level, the details of interaction
are to be specified.

b) B2Bi Quality-of-Service. B2Bi-related QoS features like security or reliable
messaging are to be supported.

c) Data oriented process definition. It should be possible to describe the routing
logic of the sequences of admissible business transactions using the data that
has been exchanged.

d) Support for roles. Roles should be supported to allow for the abstract definition
of tasks of integration partners that then can be mapped to concrete partner
instances.

74

3.2. Results of the Requirements Study and Design Choices

e) State-based modeling. Changing the state of the integration partners’ IT
systems is the goal of B2Bi processes and state typically influences the ap-
plicability of business transactions. State therefore should be adequately
represented in choreography and orchestration models.

f) Interfacing with business applications/communication interface. B2Bi projects
have to consider the integration with business applications and therefore the
corresponding interfaces should be defined.

5) Language comprehensibility appropriateness. Choreography and orches-
tration languages should be easy to understand.

6) Technology independence of process model. At the choreography level,
B2Bi processes should be defined in a technology-agnostic way in order to allow
for different messaging technologies like Web Services, ebMS [136] or AS2 [116].
This comes in two flavors:

a) Support for multiple communication technologies in new processes.

b) Support for multiple communication technologies when reusing existing inter-
actions.

7) Control flow definition. Reasonable expressiveness for control flow definition
is needed.

a) Hierarchical decomposition. Composing/decomposing complex interactions
should be possible.

b) Support for multi-party collaborations. The definition of interactions between
more than two integration partners should be supported.

c) Control flow/interaction patterns. Control flow/interaction patterns like those
defined in [174,211] or [11] should be supported.

8) Error handling. The handling of errors in performing B2Bi orchestrations must
be defined.

9) Extensibility. Business transactions should be extensible in order to allow for
new types of interactions.

10) Formalization. Formalization of choreography and orchestration models pro-
vides the foundation for automated translation, validation, simulation or semantic
constraint management.

a) Formalization of input models. The classes of valid choreography models have
to be defined formally.

b) Clear execution semantics. The semantics of executing choreographies should
be defined formally.

75

3. Requirements and Design Choices

The basic concept for meeting these requirements is to leverage a B2Bi chore-
ography format as contractual agreement between integration partners that then
can be used for deriving orchestration-based implementations or for analysis of the
interactions. However, the intent of this work is not to come up with completely new
languages to meet these requirements. Instead, existing standard languages should
be reused as is and complemented where necessary. For this purpose, ebBP as B2Bi
choreography language and BPEL as orchestration language are selected.

ebBP better suits the requirements defined above (index in parantheses) than the
choreography languages identified in section 2.3. ebBP allows for the import of exist-
ing business document definitions (3), the messaging technology agnostic definition of
business document exchanges using the concept of business transactions (4a, 6a/b),
routing expressions defined on business documents (4c) as well as the specification of
B2Bi relevant QoS parameters (4b). ebBP BusinessCollaborations can be used to
choreograph ebBP BusinessTransactions (and other BusinessCollaborations) using
control flow constructs like decisions, forks and joins (7a, partly 7c). Multiple roles
(7b) can be defined at the level of BusinessCollaborations that then are mapped to
the (exactly two) roles of BusinessTransactions (4d). As XML-based B2Bi standard,
ebBP naturally supports requirements 1 and 2a.

At the orchestration level, the decision of using BPEL as orchestration language is
driven by the choice of Web Services as most important messaging technology. At
the business transaction level, ebMS and AS2 are considered as relevant alternative
implementation technologies (6a/b), but interactions for implementing control flow
between business transaction executions as well as integration with business applica-
tions is assumed to be implemented using Web Services due to its interoperability
benefits. Business transaction implementations using Web Services and BPEL have
been researched in [172, 181, 192] and therefore the standards-based realization of
B2Bi-relevant QoS attributes as well as sufficient means for error handling can be
assumed to be realistic (requirements 1, 2a, 3, 4a/b/c/d, 8).

The discussion so far shows that important B2Bi requirements can be addressed
by simply selecting the ebBP-BPEL tool chain. The real challenge rather is defining
a precise semantics for ebBP which has neither been formalized nor unambiguously
described beforehand (2b, 10a/b), defining a suitable integration architecture for
performing B2Bi orchestrations (4f), allowing for more than one messaging technology
in the implementation of a single business collaboration (6a/b), and weighing up
comprehensibility (5) and standard compliance (2c) against state-based modeling (4e),
support for control flow features (7a/b/c) and extensibility (9). For example, multi-
party collaborations are harder to design and understand than binary collaborations
while explicitly representing state in B2Bi collaborations fosters comprehensibility
and impairs ebBP standard compliance. This work therefore defines different types of
ebBP modeling for satisfying different integration scenarios. In addition, visualization
of these modeling styles leveraging BPMN choreography notation is investigated

76

3.2. Results of the Requirements Study and Design Choices

because there are natural limits to comprehensibility and communication without
appropriate visualization. Below, the different styles of ebBP modeling are associated
with the requirements they fulfill.

Shared-state based ebBP modeling (ebBP-ST) targets comprehensibility and
state-based modeling by explicitly modeling so-called shared states and limiting
admissible ebBP models to business collaborations with exactly two roles and no
support for parallel task executions, advanced interaction patterns or hierarchical
decomposition. This leads to a state-machine like choreography definition as depicted

Figure 3.1.: Valid ebBP-ST Model

in figure 3.1 which can smoothly be translated into BPEL orchestrations4. Both
partners of an ebBP-ST model concertedly leave and enter shared states (rectangles
labeled ST<X> in figure 3.1) by performing business transactions (rounded rectan-
gles labeled BTA<X> in figure 3.1) that consistently align state between integration
partners. Every BTA is followed by a decision node (diamonds labeled DEC<X>) that
makes routing between BTAs explicit. In figure 3.1, arrows visualize transitions where
transitions that emerge from a shared state either are triggered by the execution
of a BTA or a distributed timeout (denoted [Timeout]). Transitions that emerge
from BTAs are triggered upon completion of the BTA and either directly link back
to the shared state the BTA was triggered from or link to a decision that evaluates
the BTA outcome. Finally, transitions that emerge from decision nodes immediately
are triggered and represent the different outcomes of a BTA (captured as boolean
guards in brackets).

4Figure 3.1 is an ad-hoc visualization of ebBP-ST chosen for reasons of compactness

77

3. Requirements and Design Choices

ebBP-ST fosters comprehensibility in a twofold way: Shared states allow for explicitly
reasoning about the applicability of performing business transactions and for reason-
ing about the results of business transaction executions while disallowing parallelism
allows for almost arbitrary graph structures. Note that this class of ebBP models
still is sufficient for capturing a large set of real-world B2Bi scenarios (cf. [166]).
ebBP-ST modeling requires the introduction of shared states to the ebBP standard.
Although shared states may be represented in an ebBP-compliant way, modeling
efficiency calls for an extension (cf. [160]). In so far, fulfillment of requirement 2c is
limited to some extent.

Regular ebBP modeling (ebBP-Reg) is CHORCH’s second proposed ebBP mod-
eling flavor that is more expressive in terms of control flow features than ebBP-ST.
Most notably, parallel task execution and hierarchical decomposition are allowed for.
In such an environment, the concept of shared states cannot easily be supported
without substantial modifications of the ebBP standard and therefore shared states
are dropped. In so far, ebBP-Reg can be considered to be a variation of ebBP-ST.
Most notably, the underlying modeling paradigm again is state-machine based. In
order to support this paradigm, ebBP-Reg imposes slight restrictions on standard
ebBP for solving semantics issues and ensuring translatability into BPEL. This
concerns clarifications of how to model the necessary information for routing after
having performed a business collaboration within a different collaboration and the
modeling of parallel structures (and only of parallel structures) as defined in [76].
These restrictions do not contradict the guidelines of the ebBP standard and therefore
can be considered to be standard compliant.

Figure 3.2.: ebBP+ Business Transaction and State Split

78

3.2. Results of the Requirements Study and Design Choices

Extended ebBP modeling (ebBP+) is CHORCH’s third proposed ebBP mod-
eling flavor and combines advanced control flow features with the concept of shared
states at the cost of dropping standards compliance. ebBP+ applies a Petri-net like
modeling technique that allows multiple collaboration partners to be in multiple
and/or different shared states (rectangles in figure 3.2). For controlling state align-
ment, the integration partners that must be in a shared state before performing a
BTA (rounded rectangles in figure 3.2) are explicitly modeled by adding the corre-
sponding role names to the incoming transition of business transactions. For example,
figure 3.2 (a) uses the text label (R1,R2,R3) to require ebBP partner roles R1, R2
and R3 to be in shared state ST1 before BTA1 can be triggered. Similarly, the result
of BTAs is also tied to participating integration partners by adding role names to
outgoing transitions. By expressing preconditions and results of business transaction
executions in terms of shared states, it is also possible to express interaction patterns
as defined in [11] or new transaction types (requirements 7c, 9). Furthermore, parallel
structures are supported by using Fork/Join nodes (visualized as black horizontal
bars labeled Fork/Join in figure 3.2 (b)) to split up/combine shared states into/from
sub-states that are modified by different BTAs (figure 3.2 (b)). Incoming transitions
of Fork/Join nodes immediately fire once the respective ebBP roles have entered
the source states (denoted as text labels on the transitions). Outgoing transitions
of Fork/Join nodes always immediately fire and associate the ebBP partner roles
specified on the transitions with the target states.
Note that ebBP+ is not further researched in this work due to the insight that the
vast majority of B2Bi processes are not multi-party choreographies with synchroniza-
tion between all participating roles. When analyzing 100 scenarios of the publicly
available RosettaNet implementation guides (for implementing B2Bi processes), the
majority of interactions was discovered to be binary (84 scenarios), i.e., performed
between exactly two integration partners. This is in line with academic research,
e.g., [79, 232]. Yet, the sheer existence of SCM implies that business processes touch
more than just two roles. The SeqMP choreography style below is designed to cater
for this paradox.

Sequential Multi-Party Modeling (SeqMP) is both, an ebBP modeling style
and an analysis framework. The underlying paradigm is the implementation of
a business process as a sequence of binary (component) choreographies between
changing integration partners. Thereby, very limited assumptions are made about
component choreographies. The results of these component choreographies are
assumed to be synchronized between the participating roles and results are assumed
to be distinguishable from each other by a set of names. This could easily be provided
by defining and labeling several end states for component choreographies. Expressions
defined on result names of a component choreography are then used for determining
the follow-on component choreography. In so far, routing between component
choreographies is based on data, but there is no elaborate data model (requirement
4c). Component choreographies are not assumed to be processable in parallel as this
may result in intricate synchronization problems within backend systems. Hence,

79

3. Requirements and Design Choices

SeqMP can be interpreted as a state-machine where each component choreography
is a state and the transitions correspond to the switch between two subsequent
component choreographies (requirements 4e and 5). Hierarchical decomposition is
supported in the sense that binary choreographies are the components of multi-party
choreographies (requirement 7a). However, SeqMP choreographies are not eligible as
components of other choreographies because the results of multi-party choreographies
cannot simply be assumed to be synchronized between the participating roles. This,
in turn, may result in deviating states of each role at the multi-party level.

Requirement ebBP-ST ebBP-Reg SeqMP ebBP+5

1. Usage of standards 0 + + -

2 a. Machine-processable + + + +

2 b. Clear semantics + + + +

2 c. No standards extensions 0 + + -

3. Business documents + + % +

4 a. Business transactions + + % +

4 b. B2Bi QoS + + % +

4 c. Data orientation + + 0 +

4 d. Roles + + + +

4 e. State-based modeling + 0 + +

4 f. Interfacing with backend systems + + % +

5. Comprehensibility + 0 + -

6 a/b. Technology independence + + + +

7 a. Hierarchical decomposition - + 0 +

7 b. Multi-party collaborations - - + +

7 c. Control flow/interaction patterns 0 0 % +

7 d.∗ Parallelism - + - +

8. Error Handling + + 0 +

9. Extensibility - - + +

10 a. Formalization of input models + + + +

10 b. Formal execution semantics + + + +

Table 3.2.: CHORCH’s B2Bi Choreography Modeling Flavors

The focus of SeqMP modeling is not implementation, but analysis. The target
of the analysis are so-called synchronization deficits of integration partners that
may result from erroneous execution of component choreographies. Assume that

5Not covered in this work

80

3.2. Results of the Requirements Study and Design Choices

some role C still expects to participate in some component choreography, but that a
preceding component choreography between roles A and B fails due to some business
disagreement. C may not be notified about this circumstance which constitutes a
synchronization deficit. Depending on the structure of the multi-party choreography,
this situation is both realistic and hard to analyze. The analysis framework of
SeqMP allows for identifying synchronization deficits and for configuring the analysis
algorithm in terms of how synchronization deficits are established and resolved.
However, while the identification of synchronization deficits is supported, the actual
handling of the deficits is not addressed (requirement 8).

Note that the atomic building block of a SeqMP choreography is a binary compo-
nent choreography where ebBP-Reg or ebBP-ST are available as specification format.
Therefore, lower level requirements such as business document/business transaction
support, interfacing with backend systems or control flow/interaction pattern support
are not applicable. SeqMP deliberately abstracts from these details and although an
ebBP representation is available for ensuring machine-processability (requirement
2a), SeqMP is defined independently of ebBP. That is why SeqMP is extensible
in the sense of allowing for different component choreography models as long as
these fulfill the basic assumptions made above. In particular, the algorithms for
analyzing SeqMP models are designed such that they work for multi-party component
choreographies as well, provided that the results are synchronized.

Table 3.2 summarizes the support of B2Bi requirements by CHORCH’s choreogra-
phy modeling flavors. The commonalities are due to the inherent advantages of using
ebBP and BPEL as B2Bi choreography/orchestration language and by the need
for a suitable integration architecture as well as for support of multiple messaging
technologies in a single business collaboration.

Having given an overview of how CHORCH’s choreography styles address the
identified B2Bi requirements, the next chapter will introduce the styles in detail.

81

4. Representing B2Bi
Choreographies

The representation of B2Bi choreographies decisively depends on the integration sce-
nario and on the underlying development process model. B2Bi choreography models
may be used in an informal and imprecise way which serves as basis for discussion dur-
ing implementation or as stringent specification that uniquely determines part of the
implementation. In this work, the former type of choreography models is referred to
as cartography choreographies whereas the latter is referred to as strict choreographies.

Cartography choreographies primarily help in supporting comprehensibility and
communication between different personnel (cf. B2Bi challenges of table 3.1), in par-
ticular between the business experts of the interacting parties. These use cartography
choreographies for identifying the types of business documents to be exchanged, the
ideal flow of message exchange sequences and relevant communication roles. However,
not all admissible message exchange sequences are determined. The exact control
flow logic for handling technical or business errors may be left out and/or some
part of control flow logic may just be captured in prose. Consistently, cartography
choreographies do not have an exact operational semantics and intensive interaction
between business experts and software engineers is needed for deriving the imple-
mentation. The advantage of using such choreographies is separation of business
discussion from technical discussion so that the evaluation of business appropriateness
does not interfere heavily with the evaluation of systems appropriateness (cf. table
3.1).

There are three major drawbacks of cartography choreography modeling. Firstly,
lacking systems appropriateness may necessitate complete rework of choreography
models. Software engineers may detect irresolvable control flow definition flaws or
reveal to business experts that choreography models contain unintended behavior.
Secondly, it is hard to tell in how far the implementation of B2Bi systems conforms
to requirements. As cartography choreographies do not have an exact semantics,
software engineers may be tempted to just make assumptions about intended behav-
ior or simply misunderstand requirements. In both cases, the result is unintended
behavior of the implementation. Even worse, the lack of semantics impedes the
application of tools that help in detecting deviations of the implementations from
the choreography specification. Thirdly, interoperability between BSIs is threatened
by deviating interpretations of the choreography models by the software engineers of
the interacting parties. To prevent this, extensive discussions are needed to align
the BSI implementation of the interacting parties which may result in retriggering

83

4. Representing B2Bi Choreographies

discussions between business experts and software engineers and in the end may
require the respecification of the choreography models by the interacting business
experts.

Strict choreographies are different from cartography choreographies in offering
a precise operational semantics that uniquely determines the set of admissible
choreography executions. Beyond communication between business experts and
comprehensibility, strict choreographies thus also support agreement about the
meaning of interaction specifications and system appropriateness as a feasibility
aspect (cf. B2Bi challenges of table 3.1). For offering a precise operational semantics,
strict choreographies not only identify the ideal flow through the B2Bi interaction,
but also all paths for handling technical and business errors. Such a complete
specification of control flow facilitates agreement and system appropriateness in
several ways. Resolving ambiguity means enabling the automatic derivation of
implementation artifacts. Although model-driven generation of BSIs may be too
ambitious in real-world settings, such generated artifacts still may serve for testing the
actual implementation or as reference implementation. In addition, an unambiguous
semantics enables formal analysis which may be useful for statically checking the
soundness of choreography models. Control flow defects like deadlocks or livelocks
may be prevented and unimplementable models may be excluded [177,186]. Moreover,
formal techniques may be leveraged for checking conformance of implementations to
choreography models [46].

The downside of strict choreographies is that more complicated rules must be re-
spected during choreography modeling which may be accessible to software engineers
only. Moreover, compliance to stringent modeling rules may hinder creativity and
discussion and thus even be counterproductive to communication between business
experts. In addition, rules for ensuring implementability and soundness may impose
limits on control flow expressiveness so that some valid types of models may unnec-
essarily be excluded.

Both types of choreographies need additional technical detail such as communica-
tion endpoint configuration to be filled in for implementation. This is the nature of
gradually refining models and turning these into implementations. However, strict
choreographies are designed such that adding detail does not necessarily change the
semantics of the choreography. In so far, note that the choice between cartography
and strict choreographies is a choice of modeling approach and not a choice between
textual or visual models. Visual models may be defined such that their semantics is
unambiguous, too (cf. chapter 6).

Both types of choreographies, cartography and strict, have valid use cases depending
on the implementation scenario, development process and employees’ skills. It
may even be sensible to create both types of choreographies subsequently where
cartography choreographies are specified first to build a common basis between
business experts and strict choreographies are derived afterwards as implementation
contract. Note, however, that this work is not about the optimal development process
model but about the technical use of choreographies and orchestrations.

84

4.1. ebBP Deficiencies

Therefore, this work focuses on the definition of strict B2Bi choreographies as
motivated in the last chapter. Note that the ebBP specification itself postulates
the need for strict choreographies by pointing out that “[..] the specification of
choreography definition and the Business Transaction protocol defines unambiguously
which business message (DocumentEnvelope or Business Signal) is expected by any
of the parties.” [134, lines 1966-1968]. This raises the question why the ebBP spec-
ification is not just used as is. Section 4.1 discusses in how far ebBP falls short
in providing precise semantics for B2Bi choreographies. Section 4.2 subsequently
introduces the integration architecture as representation of the execution environment.
Then, section 4.3 focuses on the specification of BTs as atomic building block of
B2Bi choreographies whereas sections 4.4 and 4.5 introduce and define in detail
ebBP-ST and ebBP-Reg. Finally, section 4.6 introduces SeqMP as multi-party B2Bi
choreography model that allows for the analysis of synchronization dependencies.

4.1. ebBP Deficiencies

The goal of ebBP is the definition of a B2Bi choreography format that is centered
around the concept of BTs and BCs as defined in section 2.3. However, “it [ebBP] is
not intended to incorporate a methodology, and does not directly prescribe the use
of a methodology” [134, lines 380-381]. For the specification of strict choreographies,
some methodology covering execution environment details must at least implicitly
be defined. Hence, it is a natural thing that clarifications on ebBP are needed for
being amenable to the purpose of this thesis. This section specifies which aspects of
the ebBP specification need clarification for using it as strict choreography definition
format.

At the level of BTs, six concrete BT patterns are defined that vary in their BT
configurations (cf. section 2.3 for the concept of BT configuration). These patterns
originate from the UMM specification where they are used for identifying different
interaction scenarios between business partners. While this may have some effect on
the partner internal processing of BTs, the influence on choreography and orches-
tration of interactions is captured in the BT configurations. The semantics of BT
configurations is defined informally in [134, section 3.4.9.1] and some considerations
on implementation are made. However, the description is not precise enough to
uniquely determine message flow at runtime. In particular, “how [.. QoS] parameters
translate to implementation decisions is unspecified” [134, lines 1605-1606]. Yet,
the implementation of QoS parameters such as reliability or security may heavily
influence message flow. Just assume that reliability cannot be assumed as a quality
of the transport channel which would require the implementation of complex reliable
messaging protocols at the application layer and hence significantly influence message
flow.

In order to precisely specify the execution semantics of BTs, the implementation
of QoS has to be taken into consideration and an execution model has to be defined
on top of those considerations (cf. section 4.3).

85

4. Representing B2Bi Choreographies

It is vital to note that the Web Services based execution model of section 4.3
is not covered by the ebBP Operation Mapping for WSDL [134, section 3.4.9.8].
This mapping is based on so-called interface operations that are added to ebBP
documents. Interface operations can be interpreted as abstract operation names
that have to be mapped to actual WSDL operations later on: “An ebBP definition
does not itself contain a reference to a WSDL file, but rather references to abstract
operation names, which can be de-referenced with specific WSDL files, specified at
the Collaboration Protocol Profile” [134, lines 1620-1622]. However, the definition
of such syntactic relationships alone does not substitute a full-fledged execution
model because behavioral aspects beyond simple request-reply interactions are left
out. Furthermore, a complete Web Services based execution model can be specified
without ebBP operation mappings based solely on BT configurations so that this
part of the specification is not further considered.

The lack of precise assumptions about the execution environment also becomes
evident in figure 13 of the ebBP specification that details the “Computation of the
Status of a Business Transaction Activity” [134]. This specification is supposed to
define the message exchange sequences for arbitrary BT configurations by defining
the message receipt and send obligations of the BT requester and responder (cf.
2.3). However, the ebBP BTA status computation definition allows for at least four
scenarios in which the requester and responder end up in different end states:

1. In a request-only scenario without RA and AA, the sender determines ‘Success’
immediately after having sent the business document. However, the responder
may end up in end state ‘Failure’ if the document is detected to be invalid.

2. In a request-only scenario with a RA, assume the business document and the RA
are exchanged successfully and hence the requester determines ‘Success’. Then,
if the backend system does not accept the business document, the responder is
supposed to end up in state ‘Failure’ as given by the protocol specification.

3. In a request-response scenario with RAs, if the responder determines a timeout
in state ‘Wait for Receipt from Requestor’ and the message exchange is asyn-
chronous and the sender still sends the requested RA afterwards then there is
a deviating end state.

4. In a request-response scenario with RAs and AAs, if the requester determines
a timeout in state ‘Receive Business Signal or Business Document’ and the
message exchange is asynchronous and the sender still sends the AA then there
is a deviating end state.

Moreover, it is striking that there are 4 different types of results defined for the
requester (‘Success’, ‘Failure’, ‘BusinessSuccess’ and ‘BusinessFailure’) whereas
there are only two for the responder (‘Success’ and ‘Failure’).

At the level of BCs, the ebBP standard defines rules for composing sequences of
BTs and other BCs. However, no formal execution semantics for such BCs is defined

86

4.2. Integration Architecture

nor grammar rules that ensure soundness of resulting choreographies. Again, this is
a natural thing as the precondition for defining execution semantics and soundness
is the definition of an execution model so that implementability can be taken into
consideration.

It is noteworthy, though, that ebBP does define some constraints on how to
compose models. However, these are not always consistently defined throughout the
standard. For example, in [134, line 2990] the constraint is defined that “an XOR
Fork MUST be followed with a Join where waitForAll = false”. However, [134, lines
2012-2014] defines that “The semantics of Fork and Join are such that for instance a
Fork MAY be defined without a corresponding Join. In this case, the TimeToPerform
element MUST NOT be used”. Similarly, [134, lines 1996-1997] says that “an XOR
Fork may be designed to operate like a Decision” where there is no constraint that a
decision node must be followed by a join node. The first statement and the latter
two statements cannot coexist without further ambiguous interpretation.

Moreover, [134, lines 2895-2906] defines constraints on the use of the fromBusi-
nessStateRef and toBusinessStateRef attributes of FromLink and ToLink elements
saying that these may not point to control flow nodes or end states. However, these
constraints are broken in several examples by pointing to Success and Failure states
using toBusinessStateRef attributes (cf. [134, page 62 and 66]). Similar syntactic con-
straints that complicate the representation of shared states are discussed in section 4.4.

Remember that ebBP explicitly postulates the need for atomic BT execution and
for unambiguous choreography definition. How the execution environment for such
choreographies and the choreographies themselves may look like is demonstrated in
the remainder of this chapter.

4.2. Integration Architecture

The integration architecture presented in this section reflects the underlying ap-
proach of this work which is about implementing B2Bi choreographies by means of
orchestrations. As a shared central hosting unit among B2Bi partners is frequently
not available or not wanted, each integration partner is assumed to implement an
orchestration process on its own that then implements the choreography in coopera-
tion with its peers. To implement this, an underlying publication of this thesis [188]
proposes a corresponding distributed integration architecture for performing ebBP
choreographies. Its core characteristics are modularization and separation of control
flow logic from business logic. For each ebBP BT/BC a separate set of so-called
control processes (BSI implementations) handle control flow and deal with distributed
computing issues. In order to handle legacy systems, business logic is assumed to
be encapsulated by backend systems. The backend systems signal the need for new
BT/BC executions to the control processes which in turn call back the backends’
business document creation and validation facilities. The interaction between control

87

4. Representing B2Bi Choreographies

processes and backends of an integration partner is assumed to be safe in the sense
that messages do not get lost due to unreliable media or system crashes.

Figure 4.1.: Modularized B2Bi Scenario

Figure 4.1 shows a modularized integration scenario of two integration partners A
and B. At the BC level, there is a backend component as well as a control process for
each integration partner (long vertical boxes). Partner A starts out with detecting
the need for performing the agreed-upon BC. A’s backend correspondingly sends a
Start message to A’s control process which, in turn, initiates the BC together with
B’s control process. B’s control process notifies B’s backend that a new BC instance
has been started. Subsequently, A’s backend gets notified that the collaboration
initialization has been finished and then requests the execution of a lower level BTA.
The control processes then negotiate BTA parameters like an instance identifier or a
time limit and pass on control to the lower level BTA control processes (presented

88

4.3. ebBP BusinessTransaction Representation

within the oval forms) which eventually produce a result value. This result value is
then used for routing the control flow. In this fashion, BTAs defined in the ebBP
choreography will be performed until an end state has been reached.
While this scenario leaves out several details about BC level control process interac-
tion, it provides the principle setting for understanding the execution models of BTs
as well as ebBP-ST, ebBP-Reg and SeqMP. The software artifacts for implementing
the architecture as well as guidelines for deriving these are given in chapter 5.

4.3. ebBP BusinessTransaction Representation

The ebBP specification postulates the need for executing BTs as atomic units of
work:

“The Business Transaction is an atomic unit of work. All of the interactions in a
Business Transaction MUST succeed or each party MUST revert their state to the
state prior to the start of the BTA.” [134, lines 2232-2234]

An execution model for BTs must respect several challenging circumstances when
implementing transactional semantics. Firstly, the incorporation of the business
signals RA and AA may require tasks that cannot immediately be performed. For
example, the necessary validation activities for sending an AA may require loading
the exchanged business document into a business application which is not directly
accessible from the BSI. This is even more true if response business documents
have to be exchanged which frequently requires the involvement of human decisions.
Hence, locking data items similarly to the implementation of database transactions
is not acceptable. Furthermore, the distributed nature of a BT implementation
has to be catered for. Integration partners are likely to operate heterogeneous inte-
gration systems so that interoperability problems have to be solved. Moreover, an
adequate failure model that includes lost or duplicated messages and partial failures
has to be applied. Finally, the execution of BTs in the context of superordinate
BCs as described in the last section has to be respected as well as the integration
setting that not only comprises the two interacting BSIs but also the backend systems.

The execution model presented here has also been presented in [192] and is defined
in terms of communicating state-machines. The model is flexible, composable and
QoS-aware as it allows for different BT configurations (cf. section 2.3.1), enables
composition and reflects the implications of Web Services based QoS realization.
Although implementability and validity have been checked for Web Services and
BPEL by means of a prototype (see section 5.2), the model is abstract in allowing
for different communication technologies. The basic paradigm of the model is to
consider the business documents of a BT as exchanged and valid if and only if all
defined business documents and business signals of the BT have been exchanged, the
communicating partners have achieved agreement about that and all configured QoS
parameters have been applied.

The next two sections first discuss the requirements for defining an execution
model in more detail and then present the actual model.

89

4. Representing B2Bi Choreographies

4.3.1. Requirements Analysis

The core requirement for a BT execution model is to be compliant with the ebBP
specification of a BT as presented in section 2.3.1 which includes the configuration of
business documents, business signals and QoS. Additional requirements concerning
result computation and realization of QoS, configuration options of the ebBP model
as well as the surrounding BC’s control flow are described in sections 4.3.1.1, 4.3.1.2
and 4.3.1.3.

4.3.1.1. Mutual Agreement and QoS

Technically speaking, the very purpose of executing BTs is aligning state between
integration partners. If a BTA is performed within a collaboration then the result of
the BTA must be mutually agreed upon once the BTA execution has terminated.
Otherwise, the state of integration partners may diverge. Clearly, the business
implications of a BT execution depend on the business logic applied to the exchanged
documents. As ebBP only defines technical aspects of BTs, the model used in
this work defines the result of a BT execution as the exchange state of business
documents and business signals as well as fulfillment of ebBP QoS requirements.
Fulfillment of ebBP QoS requirements is necessary because these may affect the
exchange state of a business document. For example, if authentication is required
then a business document must not be considered to have been successfully exchanged
in case authentication information is missing. Furthermore, QoS attributes have
to be implemented in a mutual way, i.e., both requester and responder must be
authenticated, sure about integrity et cetera. Finally, QoS has to be equally applied
to business documents and business signals because business signals influence the
result of a BT execution. For example, using an unauthenticated RA to acknowledge
legibility of an authenticated business document is not sensible.

4.3.1.2. Configurability

Different integration scenarios have different requirements with respect to state
alignment and QoS. Transmitting RA and AA signals as well as defining strict
security requirements may be required for the exchange of a purchase order while
a RA may be sufficient for the exchange of a catalog. The different ebBP busi-
ness transaction patterns [134, section 3.4.9.1] like Notification, QueryResponse or
CommercialExchange having different QoS needs give testament to this fact. The
patterns originate from the UMM standard and reflect different types of integration
scenarios, but for the purpose of this thesis these are simply distinguished by means
of their different BT configurations (cf. section 4.1). The rationale of this concept is
that the BT configurations are the result of the analysis of the integration scenarios
in UMM. Thereby, some of the configuration parameters are optional. For example,
the Notification pattern requires using a requesting BA as well as a RA signal while
the use of an AA as well as some QoS attributes are optional.

90

4.3. ebBP BusinessTransaction Representation

The ebBP DataExchange pattern is conceived by ebBP as an extensibility pattern
and hence is the most flexible pattern in allowing either one or two BAs and defining
no constraints upon the use of RAs, AAs or QoS parameters. In so far, the remaining
ebBP business transaction patterns can be interpreted as instantiations of the
DataExchange parameterization options. Therefore, supporting the DataExchange
pattern is selected as a requirement for the ebBP BT execution model.

4.3.1.3. Composition Context

The invention of the isConcurrent parameter for ebBP BTs shows that its context, i.e.,
the way a BT is used within BCs, influences the BTs’ implementation. Considering
the integration setting described in section 4.2, the following requirements can be
derived:
Concurrent execution At one point in time, more than one instance of a BT could
be active.
Multiple execution Concurrent execution is one form of executing a BT several
times. Moreover, a BT may be repeatedly executed in a loop, in sequence or
in different control flow branches. This implies that routing of the collaboration
needs more information than simply protocol success or failure. In order to enable
flexible routing, a BT implementation should not only propagate a generic protocol
outcome to the superordinate collaboration but also hand over the business documents
exchanged.
Reconfiguration Multiple execution of BTs within a BC (using BTAs) implies that
execution parameters may vary as well. The ebBP model provides isConcurrent,
hasLegalIntent and timeToPerform as configuration options at the BTA level.

4.3.2. Execution Model

This section presents the execution model for ebBP BTs by defining communicating
state machines for BT control processes. The model is composable, flexible, QoS-
aware and abstract.
Composability is facilitated in two ways. Firstly, a consistent BT execution result
with respect to the state of business document/signal exchanges and the fulfillment
of QoS is ensured. Secondly, requirements emerging from the composition context as
described in section 4.3.1.3 are respected. Furthermore, the execution model is flexible
by allowing for almost arbitrary instance values of the DataExchange parameters.
Moreover, the model is QoS-aware as the influence of QoS realization (sec. 4.3.2.1)
on control flow (sec. 4.3.2.2) explicitly has been respected, most notably whether
or not mutual agreement upon message delivery can be expected to be available at
the messaging level. In so far, section 4.3.2.1 only analyzes QoS realization up to
the point that is decisive for building the control flow model. Finally, the execution
model is abstract in not prescribing a concrete implementation of control processes.
This is due to the fact that the implementation of control processes highly depends
on the IT landscape of integration partners. Although a Web Services and BPEL-

91

4. Representing B2Bi Choreographies

based prototype has been implemented, partners may not want to implement control
processes on top of BPEL or not even use Web Services. Other communication
technologies that meet the assumptions about QoS realization may be chosen as well.

4.3.2.1. Realization of Quality-of-Service

Realization of ebBP QoS requirements necessitates the combination of distributed
algorithms targeting security or reliability goals. Simply implementing a security
layer on top of a reliability layer is not possible for two reasons:
1) Mutual realization of security-related QoS properties may create a new
reliability problem. In practice, security properties like authentication or integrity
are frequently implemented by means of attaching asymmetric digital signatures to
the message payload. The receiver then can verify the authenticity of the sender,
but the sender cannot be sure about authenticity of the receiver. Sending a signed
acknowledgment with a hash value of the original message does not help because
then the sender of the acknowledgment cannot be sure who has received the acknowl-
edgment.
2) A malicious attacker must be assumed. A malicious attacker basically may
try to manipulate any message exchanged between integration partners. This not
only holds true for the message payloads but for lower-level transport messages as
well. This means that an attacker may try to manipulate communication by means
of tampering with unsecured reliability messages. While an attacker may not be able
to break arbitrary security goals like that, the reliability property is endangered.

Put short, mutual realization of security and reliability properties calls for algo-
rithms that implement a secured reliable messaging layer.
The complexity of such algorithms raises the question which implementation com-
ponents should perform QoS algorithms. In general, these algorithms may be
implemented at the protocol level, i.e., by the control processes, or at the messaging
level, i.e., by the messaging technology used for communication. Note that control
processes are application level protocols. In practice, the complexity of distributed
algorithms barely is acceptable at the application level.
Fortunately, realization of QoS at the messaging level is available for Web Services,
especially the combination of reliable messaging and security. [4] and [19] both report
the successful verification of the so-called “Secure WS-ReliableMessaging Scenario”.
In particular, [4] report successful verification of “mutual authentication between client
and service on all security-relevant messages.” If Web Services are used, reliabil-
ity (ebBP attribute isGuaranteedDeliveryRequired), confidentiality (isConfidential),
integrity (isTamperDetectable) and authentication (isAuthenticated) therefore can
be assumed to be implementable at the messaging level. The same holds true for
authorization (isAuthorizationRequired) that can easily be implemented once that
authentication is available.
Concurrency (isConcurrent) cannot be implemented at the messaging level as it
concerns the separation of BT execution instances as well as synchronization of access

92

4.3. ebBP BusinessTransaction Representation

to backend systems. If BPEL is used for control process implementation then BPEL
correlations [137, section 9] can be used for enabling concurrent control process
instances. If not, WS-Addressing [224] could be used. Finally, if neither BPEL
correlations nor WS-Addressing are appropriate, a BPEL correlations like mechanism
can be implemented at the application level. As regards the synchronization of access
to backends the assumption is made that functionality that is exposed to integration
processes must be able to deal with concurrency. If necessary, the backends can be
informed about the isConcurrent value by means of a flag.
hasLegalIntent cannot directly be implemented because its semantics are not clearly
defined (cf. section 2.3.1). As far as BT control processes are concerned, integration
partners may choose to map the hasLegalIntent value to different instantiations of
other ebBP QoS attributes. Moreover, the hasLegalIntent value should be passed on
to the backend applications.
isNonRepudiationRequired and isNonRepudiationReceiptRequired are special in imply-
ing a very hard error model. Non-repudiation usually is defined as the property that
the sender of a particular message cannot deny having sent the message. The attempt
to deny having sent/received a message implies that an integration partner cannot
be assumed to behave as defined in a protocol specification. If so, the possibility of
implementing two-way non-repudiation is questionable, i.e., the sender cannot deny
having sent a message while the receiver cannot deny having received it. Consistently,
no WS-* standard could be found that implements non-repudiation in a mutual
way. Therefore, non-repudiation is proposed to be implemented in an asymmetric
way by simply attaching a signature to business documents and business signals and
archiving these messages upon arrival. Once the non-repudiated message has been
archived the receiver can claim to have successfully received the message. If a BT
execution succeeds (which should be the standard case) then having implemented
non-repudiation in an asymmetric way does not do any harm. If it fails, the receiver of
the non-repudiated message may assert a claim based on the message. The remaining
QoS features listed in table 2.1 can easily be implemented at the control process level
and are discussed in the next section.

4.3.2.2. Control Flow

This section presents the control flow of control processes using a state machine
based model. A core design decision is the choice of communication style between
automata, i.e., synchronous or asynchronous. [24] find that assuming synchronous
communication allows for easier automata design than asynchronous communication.
Consistently, synchronous communication has frequently been assumed for model
design and analysis (for example [15, 107, 235, 241]). The last section spelled out
that the realization of QoS properties also is possible for this communication style.
Therefore, the work at hand also adopts a synchronous communication model. Note
that synchrony as used here only concerns one single message exchange, i.e., the
sender of a message only blocks until the message is delivered. Processing of the

93

4. Representing B2Bi Choreographies

message is then performed asynchronously. Technically speaking, this corresponds to
messaging with a buffer length of 0.
From a software engineering point of view, assuming synchronous communication
between control processes imposes more strict requirements in terms of availability
and throughput than asynchronous communication. This limitation can be justified
because the control processes’ only task is controlling the interaction between in-
tegration partners. At the same time, control processes can be used to implement
decoupling between the integration partners’ backend systems. For example, incom-
ing business documents could be stored in a message queue by the control process
and then be picked up by the backend when appropriate.

State Machine Model This paragraph describes the control processes based on
the running example of listing 2.4 on page 54. The paragraph Configurability on
page 98 illustrates how to derive control processes for different instances of an ebBP
BT configuration. For formalization, the notion of a control process state machine
(CPS) is defined as follows:

Definition 4.3.1 (Control Process State Machine)
A control process state machine (CPS) is a 7-tuple (S,s0,F,E,I,G,δ) consisting of the
following elements:

• S a finite set of states and s0 ∈ S the initial state.

• F ⊆ S a non-empty set of final states.

• E = M ∪ L a set of events where M is a set of message exchange events and L
is a set of local events. Every m ∈ M consists of a communication partner p, a
direction d ∈ {!, ?} and the actual message type t. ‘p!t’ denotes an outgoing
message t to partner p and p?t denotes an incoming message t from partner p.

• I a set of counters with domain N0.

• G a set of guards with G ⊆ N0 × {<,≤,=, >,≥}× I

• δ is a partial transition function δ : S× E× 2G ⇀ S× 2I

�

The following communication partners are used for the definition of CPSs that can
be combined pairwise, i.e., the communication between two CPSs is not visible to
a third CPS. REQ and RES denote the requestor and responder control process
implementing an ebBP BT. BE1 and MA1 denote the backend and the master process
of the requestor party where BE1 implements business logic like validation of business
documents while MA1 implements the superordinate ebBP BC. Correspondingly,
there are BE2 and MA2 roles for the responder party. In addition, RAC denotes

94

4.3. ebBP BusinessTransaction Representation

a component implementing business document legibility validation (e.g., schema
validation) which is needed by the responder control process. The state diagrams
depicted in figures 4.2 and 4.3 denote the transition relation of the REQ and RES
CPSs.

Figure 4.2.: Requester Control Process Machine

Note that the integration of control processes with backend systems is private
logic of the integration partners and therefore is not a formal element of the ebBP
BT execution model. Nonetheless, the BEk, MAk and RAC parties are included for
showing one valid way of integration. Clearly, any implementation that accepts the
same set of communication sequences between control processes is acceptable.
The message types (set M of a CPS) selected for interaction between control processes
are aligned with the ebBP specification:

95

4. Representing B2Bi Choreographies

Figure 4.3.: Responder Control Process Machine

• bizDoc is an abstract type denoting the business document to be exchanged.

• ra and aa denote ebBP’s ReceiptAcknowledgement and AcceptanceAcknowl-
edgement, respectively, while rae and aae denote the corresponding exceptions.

• ge denotes GeneralException that is used by ebBP for conveying exception
information that is not covered by rae and aae.

• start (containing initialization information), solBizDoc (for soliciting the busi-
ness document to be exchanged), cancel (for giving the backend the opportunity
to cancel the BT run) and persist (for specifying that the message exchange
succeeded) are only needed for modeling interaction with the remaining parties.

96

4.3. ebBP BusinessTransaction Representation

The following local events (set L of a CPS) have been defined. For any message
type m ∈ M, there is a <m>Fail event that models the case that the sending
CPS could not deliver the message of type m to the receiving CPS. The event
is modeled as local because the receiving CPS might not even realize that the
message exchange failed. There are no <m>Fail events defined for the interaction
between control processes and BEk, MAk, RAC processes because this interaction is
assumed to be safe (cf. section 4.2). toTTP, toRA, toAA model timeout events for
the timeToAcknowledgeReceipt, timeToAcknowledgeAcceptance and timeToPerform
parameters of an ebBP BT definition. Basically, these timeout events are controlled by
the REQ CPS in order to avoid concurrent timeouts. Only in the AwaitBizDoc state
of the RES CPS, a toTTP event is defined in order to avoid that the RES CPS waits
forever. I is defined as {errCount, maxRetries} for implementing ebBP’s retryCount
parameter. isIntelligibleCheckRequired is not explicitly reflected in the control
flow. ebBP provides Receipt/AcceptanceAcknowledgements and the corresponding
exception types for conveying legibility information. The details of the validation
checks required are to be defined by the integration partners. The Success and Failure
states in figures 4.2 and 4.3 represent the state machines’ final states. These states
represent purely technical results, i.e., whether all necessary messages successfully
have been exchanged or not. As a business transaction implementation may be
reused in several contexts (cf. section 4.3.1.3), the computation of a business level
result, e.g., whether or not a document exchange represents the obligation to pay an
invoice, is to be done at the level of the calling collaboration implementation. This
implies that the protocol result together with the exchanged business document are
propagated to the calling implementation upon reaching a final state (not explicitly
modeled in the state machines).
For presentation purposes, two visual simplifications have been introduced in figures
4.2 and 4.3 that are not reflected in the CPS definition. Composite states have been
introduced for limiting the number of transitions. The actual automaton can be
derived by adding a copy of each transition emerging from a composite state to every
(non-pseudo-) state contained in the composite state. Moreover, when a transition
carries two events separated by a semicolon, then there actually are two transitions
defined (and guards and increments only apply to the last event). Finally, note that
the names of states do not contribute to the semantics of the state machines and
therefore are not explicitly explained.

Semantics Common state machine semantics do not assume a synchronous commu-
nication model (like in [38]) or do not consider local events (like in [15]). Therefore,
the semantics of a CPS is defined operationally as follows (remember that the model
definition is non-hierarchical):
Consider a pair of CPS machines (CPS1,CPS2). Let Mp be the set of all message types
that can be exchanged between CPS1 and CPS2. Furthermore, let a configuration c
be defined as c ∈ C = S1 × E∗1 ×V1 × S2 × E∗2 ×V2 where V is the set of all possible
values of the counters of a CPS: V= 2I→N0 . Finally, let ψ : G × V → {tt, ff} be

97

4. Representing B2Bi Choreographies

the boolean function that evaluates guards under given counter values to true (tt)
or false (ff) and φ the function that extracts the communication partner from a
messaging event. The semantics of a pair of CPS machines CPS1 and CPS2 is then
defined by the relation ` on C × C that captures communication between automata
(comm) or local behavior of one automaton (local). Rules 1 and 2 describe a message
exchange from CPS1 to CPS2 and a local event of CPS1, respectively. For brevity,
symmetric rules for CPS2 are left out:

1: (s1, CPS2!m1υ1, v1, s2, CPS1?m2υ2, v2) `comm

(s′1, υ1, v
′
1, s
′
2, υ2, v

′
2) iff

m1 = m2 ∈ Mp ∧
δ(s1, CPS2!m1, α1) = (s′1, β1) ∧
α1 = {} ∧ ∀i ∈ β1 : v′1(i) = v1(i) + 1 ∧
δ(s2, CPS1?m2, α2) = (s′2, β2) ∧
α2 = {} ∧ ∀i ∈ β2 : v′2(i) = v2(i) + 1

2: (s1, e1υ1, v1, s2, e2υ2, v2) `local

(s′1, υ1, v
′
1, s2, e2υ2, v2) iff

(e1 ∈ L1 ∨ φ(e1) 6= CPS2) ∧
δ(s1, e1, α1) = (s′1, β1) ∧
∀g ∈ α1 : ψ(g, v1) = tt ∧
∀i ∈ β1 : v′1(i) = v1(i) + 1

Configurability Section 4.3.1 mandates that the ebBP BT execution model should
be freely configurable. The implementation of the execution parameters as listed in
table 2.1 has been discussed above. Yet, there could be different selections of control
messages, i.e., whether Receipt/AcceptanceAcknowledgements are to be used or if a
second business document is to be exchanged. The correct CPSs when leaving out a
Receipt/AcceptanceAcknowledgement can be derived by first removing all transitions
triggered by an ra/rae/aa/aae and then removing all states that do not have outgoing
transitions triggered by message exchanges anymore and then adjusting dangling
transitions correspondingly. For example, if RA and AA would have to be removed
from the REQ CPS, the RES!bizDoc transition would have to be connected to the
Propagate state. The correct REQ CPS for an ebBP two-action BT can be derived by
appending the RES state machine to the REQ state machine. When appending, the
Start state of the RES CPS replaces the Propagate state of the REQ state machine.
The two-action RES state machine then can be derived correspondingly. Note that
the responsibility for monitoring the overall timeToPerform then must be switched
from the REQ CPS to the RES CPS after finishing the first BusinessAction.
Configurability also raises the question of dependencies between configuration pa-
rameters. For example, defining a timeToAcknowledgeReceipt requires that a Re-

98

4.3. ebBP BusinessTransaction Representation

ceiptAcknowledgement is exchanged. A discussion of such dependencies is provided
in [172] that has been contributed to during the dissertation project of this thesis.

99

4. Representing B2Bi Choreographies

4.4. ebBP-ST Choreographies

ebBP Shared State (ebBP-ST) choreographies have been proposed in chapter 3
as choreography class that particularly targets comprehensibility and state-based
modeling by explicitly modeling so-called shared states. The motivation for explicitly
representing state is the insight that the very purpose of B2Bi interactions is the
alignment of the partner systems’ states. The basic concept for using state in
choreographies has been proposed in [186] which is a conceptual predecessor of this
thesis leveraging UML activity diagrams as choreography representation. There, the
concept of so-called shared states concertedly reached/left by integration participants
is used for explicitly modeling the state changes realized by performing BTs. However,
ebBP does not naturally support the explicit representation of state. This section
shows how state can explicitly be represented in ebBP1.

The presentation begins with clarifying why the explicit modeling of shared states
is beneficial:

• Shared states explicitly capture the effect of performing BusinessTra
nsactions.
This is helpful for communication and agreement among personnel of different
enterprises. For example, the sequences of BusinessTransaction executions that
lead to a valid contract document can be deduced from analyzing the execution
paths that lead to an explicitly modeled shared state Contract.

• Shared states enable intelligible communication of progress.
Monitoring of B2Bi processes requires intelligible communication of progress.
An executive overview of progress can be achieved more easily by signaling the
current shared state, e.g., whether a Quote or Contract state has been reached,
than by signaling the sequence of BusinessTransaction executions together with
the business documents exchanged and the business document evaluation rules
for assessing the implications of a business document’s content.

• Shared states allow for the specification of distributed timeouts.
B2Bi is the connection of business processes that run on scarce resources. Con-
sistently, resource reservations frequently have a limited time horizon. Release
of resources without requiring successful execution of BusinessTransactions can
be specified by attaching timeouts to shared states. For example, a shared
state Quote could be specified to be left after 3 days if no BusinessTransactions
lead to a follow-on state.

• Shared states provide natural synchronization points for specifying
control flow.
The selection of BusinessTransactions that are admissible at a particular point
in time typically depend on the integration partners’ system states, e.g., whether
a valid contract document is available or not. It is easier to control the execution

1published as [160,182]

100

4.4. ebBP-ST Choreographies

paths that emerge from an explicitly modeled shared state than controlling
all execution paths that continue all possible execution paths that lead to a
particular state.

As shared states are not naturally supported by ebBP, a workaround for represent-
ing shared states in an ebBP compliant way is presented first. In order to allow for
more straightforward and intuitive modeling, an ebBP schema extension for modeling
shared states is described as well. Based on the concept of shared states, ebBP-ST is
introduced as modeling style for a restricted set of ebBP collaborations that enable
real-world size B2Bi processes. The class of collaborations that comply with this
style is concisely characterized by a formalization of shared state based ebBP models.
This formalization also lays the foundation for describing the conversion of shared
states modeled by means of an ebBP schema extension into ebBP compliant models,
for precisely capturing the meaning of shared state based collaborations by means of
an operational semantics, and as foundation for specifying a distributed BPEL-based
implementation of ebBP models. A prototypic translation engine that generates
BPEL implementations from ebBP choreographies has been developed by Christoph
Pflügler as part of his diploma thesis which has been supervised in the context of this
work’s dissertation project. This prototype proves the realizability of the operational
semantics defined and a real-world sized use case is applied for evaluating practical
relevance. The interested reader is referred to [160,182] for details on the generation
of BPEL processes from ebBP-ST. In addition, the translation algorithm is given in
appendix B.

The rest of this chapter is organized as follows. Section 4.4.1 presents the use
case for evaluating ebBP-ST and exemplifies the benefits of shared state based
modeling. An ebBP schema compliant XML model of shared states as well as the
corresponding schema extension based model is presented in section 4.4.2. Moreover,
an intuitive description of valid shared state-based collaborations is given that is
formalized in section 4.4.3. The formalization is accompanied by an algorithm
for converting shared state-based collaborations modeled by means of the ebBP
extension into ebBP compliant models as well as the operational semantics of shared
state-based collaborations. The evaluation of ebBP-ST is presented in section 4.4.4
by discussing the results of implementing the proposed integration architecture and
an ebBP2BPEL translator, by analyzing the complexity of the algorithms presented,
and by investigating the complexity reduction achieved by using the ebBP schema
extension for shared states instead of the ebBP compliant workaround.

4.4.1. Use Case

The use case for evaluating ebBP-ST is based on RosettaNet PIPs. PIPs, classified
in clusters like cluster 3 Order Management and segments like segment 3A Quote
and Order Entry, describe the application context, the content and the parameters
for the electronic exchange of one or two business documents. A use case consisting

101

4. Representing B2Bi Choreographies

Figure 4.4.: Use Case for Evaluating the ebBP-ST

of nine shared states and nine PIPs has been created exemplifying shared state-based
modeling. The RosettaNet document type definitions have been imported by means
of ebBP BusinessDocuments and their flow has been remodeled using ebBP BT.
How a PIP can be represented as an ebBP BT has been contributed to and described
in [172]. The use case is taken from RosettaNet PIP segment 3A (Quote and Order
Entry) and models a process for negotiating a contract. The size of standard pro-
cesses as defined by the Northern European Subset (cf. http://www.nesubl.eu/,
last access: 12/20/2011) (NES) is comparable to the use case of this section, so the
use case’s size can be considered to be practically relevant.
The use case represents a binary collaboration. The two business partners take
the roles of buyer and seller throughout the whole collaboration. The overall goal
of the composition is the negotiation of a contract and of contract changes. The
collaboration terminates as soon as the buyer has received the goods and services he

102

http://www.nesubl.eu/

4.4. ebBP-ST Choreographies

requested. The description of the use case starts with explaining the usage of the
selected PIPs.
PIP 3A1: Request Quote
This PIP is used to start the collaboration. The buyer requests a quote for some
particular goods or services. The seller answers with a response document either
representing a BusinessSuccess or a BusinessFailure. (ebBP allows for associating the
BusinessSuccess or BusinessFailure result values with types of response documents).
In the former case the seller may reserve resources for the buyer, but the buyer is
not obliged to accept the quote. In the latter case the collaboration is terminated
immediately.
PIP 3A10: Notify of Quote Acknowledgement
If the buyer has received a valid quote she is obliged to use this PIP to inform the
seller whether the quote is generally acceptable or not. If not, the collaboration is
terminated immediately. Otherwise the seller extends the reservation of resources
and waits for an order. The buyer is still not obliged to accept the quote.
PIP 3A4: Request Purchase Order
This PIP can either be used to start the collaboration or to sign a contract after
having confirmed a quote to be acceptable with the help of PIP 3A10. The buyer
sends a quote to the seller that can be answered with either an Accepted, a Rejected
or a Pending message in corresponding ebBP DocumentEnvelopes (ebBP allows for
capturing the result of a BTA by referring to the DocumentEnvelope types of the
exchanged messages). If the answer is Accepted the parties have signed a legally
binding contract. If the answer is Rejected the collaboration terminates immediately.
If the answer is Pending the buyer waits until the seller notifies her about the decision
using PIP 3A7 or the buyer queries the decision with PIP 3A5.
PIP 3A5: Query Order Status
The buyer can use this PIP if there is a valid contract, if the decision of the seller
about a quote (PIP 3A4) is still pending, or if the decision of the seller about a
contract change request (PIP 3A8) is still pending. The answer of the seller has to
be evaluated depending on which of these situations applies.
In the first case, the seller can either provide new information about order progress or
just tell that no progress has been achieved. In case of the other two situations, the
seller can either send an Accepted, a Rejected or a Pending message. If an order has
not yet been decided upon, a new contract is signed (Accepted), the collaboration is
terminated immediately (Rejected) or the decision is further postponed (Pending). If
a contract change request has not yet been decided upon, either the current contract
is replaced by a new one (Accepted), the current contract remains valid (Rejected) or
the decision is further postponed (Pending).
PIP 3A6: Distribute Order Status If there is a valid contract, the seller can use
this PIP to communicate information about order progress to the buyer.
PIP 3A7: Notify of Purchase Order Update The seller must trigger this PIP
if she has sent a Pending message in PIP 3A4 or 3A8 before. The seller may reply
using an Accepted or a Rejected message. By analogy with PIP 3A5, a new contract

103

4. Representing B2Bi Choreographies

is then signed (Accepted) or the collaboration is terminated/the current contract
remains valid (Rejected).
Furthermore, the seller can use PIP 3A7 to request contract changes. As PIP 3A7
is a Single-Action Activity, i.e., only one business message can be exchanged, the
buyer cannot directly answer such a request. To answer a contract change request,
the buyer must either use PIP 3A8 or PIP 3A9.
PIP 3A8: Request Purchase Order Change. This PIP is usually used by the
buyer to request a contract change. The seller can then either send Accepted to
confirm the change, Rejected to keep the current contract or Pending to postpone
the decision.
Furthermore, this PIP is used to answer a contract change request initiated by the
seller with PIP 3A7. If the buyer wants to reject the change request, she sends
a Purchase Order Change Request message that exactly contains the data of the
current contract. The current contract then remains valid no matter what the seller
answers. To be concise, the seller should send a Rejected message. If the buyer is
about to accept the change request of the seller (with modifications), she sends a
Purchase Order Change Request message (with modifications). The seller may then
only respond with an Accepted message to sign a new contract or with a Rejected
message to keep the current contract.
PIP 3A9: Request Purchase Order Cancellation
This PIP is usually used by the buyer to cancel a current contract. Moreover, the
buyer can offer the cancellation of a contract instead of a contract change requested
by the seller (PIP 3A7).
In both cases the seller can only send an Accepted message to rescind the contract or
a Rejected message to keep the current contract.
PIP 3A13: Notify of Purchase Order Information
The buyer uses this PIP to notify the seller about processing updates or the fulfillment
of the contract.

The use case is visualized in a state machine-like manner in figure 4.4. The start
of the collaboration is represented by the unique start element. Each shared state
is represented as a state and the executions of PIPs as BTAs are represented as
transitions. Note that, for presentation purposes, this representation deviates from
the actual semantics defined below where a BTA is a special type of control flow state
that consumes time. The event part of a transition in figure 4.4 is used to name the
BTA (PIP) to be executed and the guard part of a transition is used to capture the
outcome of BTAs. As decisions are not explicitly visualized, there may be multiple
transitions for the same shared state that are triggered by the same event. The
condition guards of the particular transitions, however, are mutually exclusive. The
permissible ebBP guard values for the use case are AnyProtocolFailure (denoted TF),
BusinessFailure or BusinessSuccess. AnyProtocolFailure captures arbitrary technical
problems during performing BTAs. If no such problems occur, BusinessSuccess
indicates that integration partners did achieve their goals from a business point of
view whereas BusinessFailure indicates they did not. Finally, guard values based on

104

4.4. ebBP-ST Choreographies

DocumentEnvelopes (denoted with a leading DE:) that relate to the content of the
latest business document exchanged using suitable XPath expressions are allowed as
well. Two final states are used to represent an ebBP Failure state (on the left-hand
side) and an ebBP Success state (on the right-hand side). Although the execution
of PIP_3A9 in state PendingContractChangeSI(SellerInitiated) may terminate
with a BusinessSuccess guard value, it still represents a failure from the overall
collaboration perspective.

Using this use case the benefits of shared state based modeling can easily be
demonstrated:
Shared states explicitly capture the effect of performing BusinessTrans-
actions.
Obviously, the business contents exchanged in BTAs govern the state alignment
actions to be performed in participating integration systems. Shared states can be
used to represent the result achieved by having exchanged corresponding content. For
example, PIP 3A4’s request document may be answered by different DocumentEn-
velopes inidicating Pending, Accepted or Rejected. Using shared states, collaboration
partners can express that a Pending message results in a PendingOrder state and
not in state Contract.
Shared states allow for intelligible communication of progress.
Process visibility and analysis are fostered by communication of progress information
about active business processes. As the effect of BTAs may depend on the actions
taken previously, communicating the type and content of a BTA is not necessarily
sufficient for uniquely determining progress. In the use case scenario, having per-
formed PIP 3A5 with result DE:Pending may lead to shared states PendingOrder or
PendingContractChangeBI, depending on the previous state.
Shared states allow for the specification of distributed timeouts.
B2Bi collaborations may necessitate the reservation of resources, for example, in
shared states Quote and AcceptableQuote of the use case. By attaching timeout
values to these shared states, a time limit for resource release may be defined in case
collaboration partners do not trigger BTAs in a timely manner.
Shared states provide natural synchronization points for specifying con-

trol flow.
As BTAs depend on and modify system state, shared states are a natural way for
specifying control flow, i.e., the sequences of business document exchanges that lead
to the same state and the business document exchanges that require the same state as
precondition. For example, assume that the collaboration depicted in figure 4.4 has
progressed to state Contract. Then, the sequence of PIP 3A8 and PIP 3A5 (change
initiated by the buyer role) may lead to a new contract as well as the sequence of
PIP 3A7 and 3A8 (change initiated by the seller role). Conversely, PIP 3A5 is only
admissible in state PendingContractChangeBI but not in PendingContractChangeSI.
In case such commonalities need to be expressed, alternative modeling approaches
without constructs for joining/splitting control flow may lead to far more complex
models. Figure 4.5 depicts an alternative model for the states StartWith3A1, Quote,

105

4. Representing B2Bi Choreographies

Figure 4.5.: Alternative Modeling of an Excerpt of the Use Case Demonstrating
Control Flow Explosion

AcceptableQuote and PendingOrder of figure 4.4 only. In figure 4.5, control flow is
specified only by connecting BTAs (rounded boxes) and decision nodes (diamonds)
and attaching guards to the transitions. The complexity explosion due to removing
shared states can be explained by the fact that an extra transition must be introduced
for each BTA that is allowed for in a particular shared state. For example, BTAs
3A10 and 3A4 are admissible in AcceptableQuote. Therefore, after having performed
3A10 successfully (in shared state Quote), two paths have to be specified for allowing
both 3A10 AND 3A4. Note that extra control flow links also are a result of different
possible BTA results and BTAs that are applicable in different states. For example,
there are two links from BTA 3A4 to a 3A7 node in figure 4.5. This is due to the
fact that 3A7 may be performed in state PendingOrder (i.e., result Pending for 3A4)
as well as in state Contract (i.e., result Accepted for 3A4).

106

4.4. ebBP-ST Choreographies

An obvious way for working around this situation without shared states is using pure
control flow pseudo-nodes like ebBP Join for merging alternative paths and ebBP
Fork for splitting up alternative paths. Therefore, one would only have to create
transitions from the ebBP Decision nodes to the matching Join nodes and then
using Fork nodes as needed for splitting up control flow again. Unfortunately, this is
not permitted by ebBP because transitions may only reference BTAs or BCAs (cf.
toBusinessStateRef/fromBusinessStateRef constraints in [134, sec. 3.8.2]).

4.4.2. Informal ebBP Models

A shared state of a B2Bi collaboration as introduced in [186] is a synchronization
point that represents alignment of information items among integration partners
and captures the progress of a collaboration. Integration partners use BTAs to
consistently align information and thus concertedly leave and reach shared states.
While the preceding sections motivated the use of shared states, this section discusses
the modeling of shared states using ebBP.

4.4.2.1. ebBP Compliant Shared State Model

There is no ebBP construct that directly matches the concept of a shared state
so these have to be emulated. Generally speaking, a state can be modeled with
an ebBP Join construct followed by a Fork construct. However, ebBP prohibits
directly linking Joins and Forks as the corresponding fromBusinessStateRef and
toBusinessStateRef attributes may only reference BTAs or BCAs [134, sec. 3.8.2].
To overcome this constraint in a standard compliant manner, a workaround can be
used. The concept of an EmptyBTA based on the extensible ebBP transaction type
DataExchange is introduced that serves as a target for linking to a shared state and
for connecting the Join and Fork of a shared state.

Listing 4.1 shows the ebBP representation of the shared state Quote (cf. above
and figure 4.4). The EmptyBTA before the shared state’s Join is used as target
of ebBP Decisions that are not allowed to directly link to Joins [134, sec. 3.8.2].
The shared state’s Join links to another EmptyBTA that is connected to the shared
state’s Fork. This Fork then specifies a ToLink for every BTA that is permissible to
be performed from this shared state. Shared state timeouts, i.e., the point in time
when shared states should be left without performing a BTA, can also be specified
on this Fork. In case such a timeout occurs, it has to be switched to the EmptyBTA
defined in the ToLink that carries the corresponding timeout ConditionExpression.

Employing two EmptyBTAs allows for different semantics when linking to a shared
state with respect to timeouts: In case of linking to the EmptyBTA before a shared
state, its timeout is reset whereas linking to the EmptyBTA within the shared state
does not have this effect. The latter case is particularly useful if protocol failures occur
during performing a subsequent BTA which means that the shared state actually has
not been left. Note that ebBP Joins and Forks are only used for modeling states
and are not allowed elsewhere in the collaboration description.

107

4. Representing B2Bi Choreographies

Listing 4.1: ebBP Compliant Model of a Shared State
1

2 <!-- State Quote -->
3 <BusinessTransactionActivity businessTransactionRef="empty"
4 nameID="empty_before_Quote">
5 <TimeToPerform ></TimeToPerform >
6 <Performs currentRoleRef="Buyer" performsRoleRef="empty1"/>
7 <Performs currentRoleRef="Seller" performsRoleRef="empty2"/>
8 </BusinessTransactionActivity >
9

10 <Join waitForAll="false" nameID="Quote">
11 <FromLink fromBusinessStateRef="empty_before_Quote"/>
12 <FromLink fromBusinessStateRef="empty_before_Quote"/>
13 <ToLink toBusinessStateRef="
14 empty_in_Quote"/>
15 </Join>
16

17 <BusinessTransactionActivity businessTransactionRef="empty"
18 nameID="empty_in_Quote">
19 <TimeToPerform ></TimeToPerform >
20 <Performs currentRoleRef="Buyer" performsRoleRef="empty1"/>
21 <Performs currentRoleRef="Seller" performsRoleRef="empty2"/>
22 </BusinessTransactionActivity >
23

24 <Fork nameID="fork_Quote" type="XOR">
25 <TimeToPerform duration="P3D"/>
26 <FromLink fromBusinessStateRef="empty_in_Quote"/>
27 <ToLink toBusinessStateRef="BTA_3A10_NotifyOfQuoteAck"/>
28 <ToLink toBusinessStateRef="BTA_3A10_NotifyOfQuoteAck"/>
29 <ToLink toBusinessStateRef="empty_before_FAILURE">
30 <ConditionExpression
31 expressionLanguage="XPath1"
32 expression="timeout"/>
33 </ToLink >
34 </Fork>

4.4.2.2. ebBP Extension for Shared States

The motivation for providing an ebBP extension and hence dropping compliance is
complexity reduction. In the workaround presented in section 4.4.2.1, four different
control flow nodes have to be used for specifying a shared state and its outgoing
transitions. Using the proposed extension, the same information can be represented
by only one node. The new SharedState construct (depicted in listing 4.2) that has
been defined is similar to an ebBP Fork node with the type attribute set to XOR.

Listing 4.2: Extension-based Model of a Shared State
1

2 <!-- State Quote -->
3 <SharedState nameID="Quote">
4 <TimeToPerform duration="P3D"/>
5 <FromLink
6 fromBusinessStateRef="DECISION_3A10_NotifyOfQuoteAck"
7 stTimeoutReset="false">
8 <ConditionExpression
9 expressionLanguage="ConditionGuardValue"

10 expression="AnyProtocolFailure" />
11 </FromLink >
12 <ToLink toBusinessStateRef="BTA_3A10_NotifyOfQuoteAck" />
13 <ToLink toBusinessStateRef="Collaboration_FAILURE">
14 <ConditionExpression
15 expressionLanguage="XPath1"
16 expression="timeout" />
17 </ToLink >
18 </SharedState >

108

4.4. ebBP-ST Choreographies

It reuses the ebBP definitions of TimeToPerform, FromLink and ToLink, but removes
the cardinality constraints on the number of FromLinks and ToLinks completely.
Thus, a logical link between any control flow node and a SharedState can syn-
tactically either be specified within the SharedState, within the control flow node
under consideration, or using a separate ebBP Transition element. For enabling
the distinction between resetting a timer when linking to a shared state or not, the
optional boolean flag stTimeoutReset has been added to FromLinks and ToLinks.
Note that the proposed ebBP schema extension for representing share states does
not render existing ebBP models obsolete. Only the ebBP constraint requiring
fromBusinessStateRef and toBusinessStateRef attributes to exclusively reference
BTAs or BCAs [134, sec. 3.8.2] is dropped. ebBP neither describes the rationale
behind that constraint nor defines a semantics that relies on that constraint. Section
4.4.3 defines a semantics for shared state based ebBP collaborations that works
without that constraint.

4.4.2.3. Shared State-based Collaborations

This section informally describes the class of shared state-based ebBP collaborations
(ebBP-ST) proposed for B2Bi process specification. Basically, a shared state is
entered by reaching the EmptyBTA before the shared state. The Fork of the shared
state then links to all BTAs that are permissible for the respective shared state.
Each of these BTAs (except EmptyBTAs) must be followed by an ebBP Decision
that evaluates the outcome of the BTA. Predefined ebBP ConditionGuardValues and
user-defined DocumentEnvelopes are used for determining the follow-on shared state
of a Decision. In case an ebBP AnyProtocolFailure is detected, the Decision must
link back to the EmptyBTA within the shared state the BTA to be evaluated was
started from. Otherwise, it is linked to the EmptyBTA before the same or another
shared state.
The restrictions chosen are aligned with two goals. Firstly, a large part of real-
world processes should be representable in a straightforward manner. Secondly,
distributed BPEL implementations should be automatically derivable from the
specified collaborations.

In a multi-case study, [166] report the results from an investigation of 16 business
processes from six Dutch organizations: “One of the striking observations was that
out of the 16 processes considered none of these processes incorporated concurrent
behavior, i.e. parallel processing of single cases. Business processes turned out to
be completely sequential structures. Their routing complexity was only determined
by choice constructs and iterations.” This finding is further backed by the B2Bi
models created for the eBIZ-TCF project (http://www.moda-ml.net/moda-ml/
repository/ebbp/v2008-1/en/, last access: 12/20/2011) that also do not specify
concurrent behavior. In so far, ebBP-ST can be assumed to cover a large part of
real-world processes.

Achieving the second goal, that means, deriving BPEL-based implementations
from ebBP-ST is shown in appendix B.

109

http://www.moda-ml.net/moda-ml/repository/ebbp/v2008-1/en/
http://www.moda-ml.net/moda-ml/repository/ebbp/v2008-1/en/

4. Representing B2Bi Choreographies

Informally, ebBP-ST can be characterized as a subset of the class of multi-
transmission interactions as defined in [11] with the special restriction that only
two collaboration partners are allowed. Before a formal model of ebBP-ST will be
presented, the main characteristics are summarized:

• A choreography is modeled as a single ebBP BusinessCollaboration. Hierarchical
compositions are not supported.

• Only binary collaborations are supported, i.e., the number of integration
partners within the collaboration is limited to two.

• A collaboration starts with an ebBP Start that immediately links to the initial
shared state of the collaboration.

• ebBP Decisions are only allowed directly after BTAs.

• Alternative paths are realized by ebBP Decisions and by ebBP Forks used for
representing shared states.

• Looping is realized by Decisions that link back to shared states that have been
visited before.

• The only case in which a Decision branch does not link to a shared state is
when process termination is detected. In this special case a Decision links to
an EmptyBTA before an ebBP Success or Failure state.

• A choreography ends when a final state, i.e., an ebBP Success or Failure state
is reached. Multiple Success and Failure states are allowed per collaboration.
As multiple instances of BTAs are not allowed for and as state is synchronized
after each BTA (there are only two participants), a choreography immediately
ends when a final state is reached.

• At any point in time, there is at most one active BTA (no multiple instances).
In order to ensure this, ebBP Forks have to set the type attribute to XOR and
ebBP Joins must have the waitForAll attribute set to false.

• An EmptyBTA may only link to one single ebBP Join or Fork element.

The formalization of this informal description is given next.

4.4.3. Formal ebBP models

The formalization of the informally defined class of shared state-based ebBP collabo-
rations serves several purposes. Above all, it is used for precisely defining the set of
valid models that is accepted for translation into distributed BPEL implementations.
Furthermore, it is used as concise basis for describing the translation of shared states
modeled using the ebBP-ST schema extension into ebBP compliant shared states.

110

4.4. ebBP-ST Choreographies

Therefore, the formalization closely reflects the main different ebBP element types
for specifying BusinessCollaborations. In the following, ‘STBC’ will be used to
abbreviate a shared state based ebBP BusinessCollaboration. STBCs that contain
shared states modeled by means of the schema extension will be denoted ESTBC
(Extension-type STBC) whereas STBCs that employ ebBP complaint shared states
will be denoted WSTBC (Workaround-type STBC).
Finally, as ebBP does not provide a formal semantics, another major motivation
for providing a formalization is an unambiguous and comprehensible description
of STBC semantics. Section 4.4.3.1 introduces the formalization of WSTBCs and
section 4.4.3.2 presents the semantics. Section 4.4.3.3 then discusses the formalization
of ESTBCs and an algorithm for translating ESTBCs to WSTBCs.

4.4.3.1. WSTBC

Definition 4.4.1 (WSTBC)
A workaround-type shared state-based ebBP BsinessCollaboration (WSTBC) is
an extension of a directed graph defined as a 5-tuple (R,N,G,φ,θ) consisting of the
following elements:

• R = {r1,r2} is the set of collaboration participant roles where r1 is statically
declared to be the leader of the collaboration.

• N = {s0}∪FORK∪JOIN∪DEC∪SBTA∪SEBTA∪T is a set of nodes where
the components of the union are pairwise disjoint.

– s0 is the initial node.

– T being the non-empty set of terminal nodes.

– FORK is a set of ebBP Fork elements with the type attribute set to
‘XOR’.

– JOIN is a set of ebBP Join elements with the waitForAll attribute set to
‘false’.

– DEC is a set of ebBP Dec elements.

– SBTA is a set of ebBP BusinessTransactionAcitivities.

– SEBTA is a set of EmptyBTAs as described in section 4.4.2.1.

• G = (L×EL)∪{(XPath1, ‘timeout’)}∪{tt} is a set of guards defined as either
a pair of a language l ∈ L and expression exp ∈ El defined in l, the special
purpose pair (XPath1, ‘timeout’) for specifying a shared state’s timeout, or the
boolean constant true (tt).
Out of the admissible ebBP expression languages, ConditionGuardValue (CGV)
and DocumentEnvelope (DE) are supported where ECGV is an enumeration
of generic ebBP protocol outcomes and EDE is the set of ebBP DocumentEn-

velopes defined for the directly preceding BusinessTransaction.

111

4. Representing B2Bi Choreographies

• The function φ : FORK → N0 ∪ {−1} that assigns a timeout value to every
Fork node. ‘-1’ is used for denoting an undefined timeout value.

• θ is a transition relation θ : N× 2G ×N with the constraint that θ is the union
of the following components:

– →Start⊆ {s0} × {tt} × SEBTA and
∣∣→Start

∣∣ = 1.

– →ST1⊆ SEBTA× {tt} × JOIN

– →ST2⊆ JOIN× {tt} × SEBTA

– →ST3⊆ SEBTA× {tt} × FORK

– →Terminal⊆ SEBTA× {tt} × T

– →Trigger⊆ FORK× {tt} × SBTA

– →Eval⊆ SBTA× {tt} × DEC

– →Update⊆ SBTA× {tt} × SEBTA

– →Route⊆ DEC× 2G \ {(XPath1, timeout)} × SEBTA

– →T imeout⊆ FORK× {(XPath1, timeout)} × SEBTA

Note that all components of θ except for→Trigger are partial functions N×2G ⇀
N. Furthermore, a workaround-based shared state (cf. section 4.4.2.1) may
result in two identical elements t1 = t2 = (n1,{tt},n2) that would have to be
added to either →ST1 or →Trigger. In that case, t2 is discarded. �

Two nodes nk, nl are directly connected in a WSTBC if there is a triple (nk,g,nl)
or (nl,g,nk) ∈ θ. For (nk,g,nl), nk directly precedes nl and nl directly follows nk.
Furthermore, two nodes nk, nl are connected in a WSTBC if there is a triple (nk,g,nl)
or (nl,g,nk) ∈ θ∗ where θ∗ is the reflexive-transitive closure of θ. A sequence of nodes
[n1, .., nx] is defined such that for any i, 1 ≤ i < x: ∃(ni, g, ni+1) ∈ θ.

Moreover, several functions defined on the components of a WSTBC are needed
(for later use in the translation algorithms):

• in : N → 2N computes the set of input nodes of a particular node ni in WSTBC
such that in(ni) = {x|∃(x, g, ni) ∈ θ}.

• out : N → 2N computes the set of output nodes of a particular node ni in
WSTBC such that out(ni) = {x|∃(ni, g, x) ∈ θ}.

• requestor : SBTA→ R determines which of the collaboration participant roles
takes the ebBP RequestingRole of a particular BTA.

• responder : SBTA→ R determines which of the collaboration participant roles
takes the ebBP RespondingRole of a particular BTA.

In the definitions so far there is no shared state construct. That is due to the fact
that the ebBP elements that make up a shared state are explicitly emulated. This is
necessary for being able to provide a concise conversion algorithm from ESTBCs to
WSTBCs. The following definition characterizes shared states within WSTBCs.

112

4.4. ebBP-ST Choreographies

Definition 4.4.2 (Shared State)
A shared state (ST) is defined for a WSTBC as 5-tuple STWSTBC(eb,j,ei,f,θST) such
that

• eb ∈ SEBTA

• j ∈ JOIN

• ei ∈ SEBTA

• f ∈ FORK

• θST = {(eb, {tt} , j), (j, {tt} , ei), (ei, {tt} , f)} ⊂ θ

• @(nk, g, nl) ∈ θ \ θST : nk = j ∨ nl = j ∨ nl = f

A WSTBC is said to contain a STWSTBC if it conforms to the above definition.
For dealing with STs, some additional functions are needed. Let SHWSTBC be the set
of all STWSTBC(eb,j,ei,f,θST) contained in a WSTBC. Then, the following functions
are defined:

• nodeb, nodej, nodei, nodef, trans, nodeset are functions on SHWSTBC× N
that compute the first, second, third, fourth, fifth or union of the first four
components of a given STWSTBC .

• parentST : N → SHWSTBC ∪ {⊥} computes the STWSTBC for a given node
(the existence of such a function follows from fact 4.4.2).

• ctrlFlow computes the control flow relation ϑ of a WSTBC such that
ϑ = θ \

⋃
st∈SHWSTBC

trans(st).

• (nk, g, ST) denotes that there is a (nk, g, nl) ∈ ϑ ∧ nl ∈ nodeset(ST) and

• (ST, g, nl) denotes that there is a (nk, g, nl) ∈ ϑ ∧ nk ∈ nodeset(ST).

Now, the ebBP language restrictions are presented that reflect the rationale of ST
based modeling. The first restriction says that EmptyBTAs that link to a Fork or
Join always are part of a shared state ST.

Restriction 4.4.1 (ST linking)
From definition 4.4.2 it is already clear that, for a particular st ∈ SHWSTBC , there are
no elements in ϑ that link to nodej(st) or nodef(st) or from nodej(st). Moreover:

• Iff for any ebta ∈ SEBTA,
∃(ebta, tt, j) ∈ θ : j ∈ JOIN⇒ ∃st ∈ SHWSTBC : ebta = nodeb(st).

• Iff for any ebta ∈ SEBTA,
∃(ebta, tt, f) ∈ θ : f ∈ FORK⇒ ∃st ∈ SHWSTBC : ebta = nodei(st).

113

4. Representing B2Bi Choreographies

The following fact clarifies that Forks and Joins exclusively are used for modeling
STs.

Fact 4.4.1 (No Joins/Forks outside STs)
∀n ∈ JOIN ∪ FORK : n ∈

⋃
st∈SHWSTBC

nodeset(st)

Proof 4.4.1
From definition 4.4.1, and in particular the definition of θ it is clear that for all
nodes e that directly precede a node n ∈ JOIN∪ FORK, holds: e ∈ SEBTA. From
restriction 4.4.1 follows that for all e ∈ SEBTA that directly precede a node n
∈ JOIN ∪ FORK:
e ∈

⋃
st∈SHWSTBC

nodeset(st). The fact then follows from the definition of θ and the

definition of STs (def. 4.4.2). �

The next fact points out that STs in a WSTBC do not overlap, i.e., a structure as
depicted in figure 4.6 is forbidden.

Figure 4.6.: Invalid: Shared State Overlap

Fact 4.4.2 (Disjoint STs)
For any st1, st2 ∈ SHWSTBC such that st1 6= st2 holds:
nodeset(st1) ∩ nodeset(st2) = {}

Proof 4.4.2
Assume the opposite for st1, st2 ∈ SHWSTBC. If nodeb(st1) 6= nodeb(st2) then
nodeset(st1) ∩ nodeset(st2) = {} because of the definition of ST (def. 4.4.2) and
→ST1,→ST2 and →ST3 being partial functions.
Similarly, if nodeb(st1) = nodeb(st2) then nodeset(st1) = nodeset(st2). �

EmptyBTAs are used for solving ebBP schema constraints only. This implies that
EmptyBTAs shall not contain any business logic and therefore shall always link to
exactly one successor node.

114

4.4. ebBP-ST Choreographies

Fact 4.4.3 (No Logic in EmptyBTAs)
∀e ∈ SEBTA : ∀(e, {tt} , nk), (e, tt, nl) ∈ θ : nk = nl

Proof 4.4.3
Directly follows from the definition of →ST1,→ST3 and →Terminal �

The following language restriction highlights that in case a ST can be left by a
timeout then the following EmptyBTA shall precede a terminal node or be part of a
different ST.

Restriction 4.4.2 (Leaving ST by timeout)
∀(f, g, e) ∈ θ, f = nodef(stx), stx ∈ SHWSTBC , f ∈ FORK,
e ∈ SEBTA holds:
g = (XPath1, timeout) ∧ (∃(e, tt, t) ∈→Terminal ∨
(e ∈ nodeset(sty), sty ∈ SHWSTBC ∧ sty 6= stx))

The next language restriction makes clear that a particular BTA may not be
triggered from different STs. If the same ebBP BusinessTransaction were to be
admissible in different STs then multiple BTAs of that type would have to be
specified. A model that contains a structure like that depicted in figure 4.7 is invalid.

Figure 4.7.: Invalid: BTA triggered from different STs

Restriction 4.4.3 (Unique source ST of a BTA)
∀(fk, tt, b), (fl, tt, b) ∈→Trigger : fk = fl

The function btaSrc : BTA→ SHWSTBC is used to compute the shared state st with
(nodef(st), tt, b) ∈→Trigger.

The result of a BTA determines the next ST of a collaboration. Consistently, the
control flow routing decision for determining the next ST shall either be explicitly
represented in the ebBP definition or the ST shall not be left. This is ensured by
facts 4.4.4 and 4.4.5 as well as restrictions 4.4.4 and 4.4.5 that are presented next.

115

4. Representing B2Bi Choreographies

Fact 4.4.4 (Unique BTA result processing)
∀b ∈ BTA : ∀(b, tt, nk), (b, tt, nl) ∈ θ : nk = nl

Proof 4.4.4
Directly follows from the definition of →Eval and →Update. �

Restriction 4.4.4 (Unprocessed BTA result)
∀(b, tt, e) ∈→Update: e ∈ nodeset(btaSrc(b))

In order to be clear which BTA’s result a Decision node processes, the following
restriction is defined.

Restriction 4.4.5 (Unique BTA reference)
∀(bk, tt, d), (bl, tt, d) ∈→Eval: bk = bl

Fact 4.4.5 (Unique source ST of a Dec)
∀(fk, tt, bm), (fl, tt, bn) ∈→Trigger and
(bm, tt, d), (bn, tt, d) ∈→Eval holds: fk = fl

Proof 4.4.5
Directly follows from restrictions 4.4.3, 4.4.5 and fact 4.4.4. �

The function decSrc : DEC→ SHWSTBC is used to compute the shared state st with
(nodef(st), tt, b) ∈→Trigger and (b, tt, d) ∈→Eval.

Apart from explicit representation of routing rules in collaborations, the require-
ment of state alignment for reaching new STs is important. The next restriction says
that in case an error is detected during performing a BTA, a new state may not be
reached.

Restriction 4.4.6 (No ST exit without alignment)
∀(d, g, e) ∈→Route holds:
g = (CGV, exp) ∧ exp ‘indicates a protocol failure’ ⇒
e ∈ nodeset(decSrc(d))

Finally, if the result of a BTA has been agreed upon then there is no room for
non-determinism to decide about the next ST to reach which is highlighted by fact
4.4.6.

Fact 4.4.6 (Unique BTA result)
For any result of a given BTA b with(b, tt, d), d ∈ DEC, holds:
∀(d, gk, ek), (d, gl, el) ∈→Route: gk = gl ⇒ ek = el

Proof 4.4.6
Directly follows from the definition of →Route �

Figure 4.8 visualizes the main control flow options for STBCs when respecting all
restrictions. Now that the main syntactical constraints of WSTBCs have been defined,
the WSTBC execution semantics can be made precise.

116

4.4. ebBP-ST Choreographies

Figure 4.8.: Valid Example WSTBC

4.4.3.2. WSTBC Execution Semantics

ebBP does not define a formal semantics on its own. So, the execution of BTAs and
BCAs has to be defined. The details of BTA execution are formalized in section 4.3
and therefore are not repeated for the formalization of this section. So, the assumption
is used that performing a BTA takes some time and eventually either leads to an
agreed-upon result or a protocol failure. Essentially, the following semantics describes
how to iteratively perform the BTA execution model of section 4.3 as defined by the
links between shared states, BTAs and Decisions.
Let C ∈ N × O × Vt × Vth be the configuration of a WSTBC where N is the set
of nodes as in definition 4.4.1, O is the set of all possible outcomes of all BTAs of
a WSTBC, Vt represents all possible timer values, and Vth represents all possible
timer threshold values. As t is defined to be a discrete timer, let the domain of Vt

and Vth be N0 ∪ {−1}. Note that although there are multiple timeouts defined (for
different STs), at one point in time, there is at most one timer active. Let χ be the
function that computes the outcome of a BTA that has just finished. Furthermore,
ψ : 2G × N × O × Vt × Vth → {true, false} is the function that evaluates a given
set of guards under a given configuration to one of the boolean constants true or

117

4. Representing B2Bi Choreographies

false. In particular, ψ(tt, C) = true for arbitrary C. Any element t = (nk, g, nl) ∈ θ
is said to be enabled for a given C = (nc, o, vt, vth) iff nc = nk ∧ ψ(g, C) = true. It
directly follows that all t = (nk, g, nl) ∈→Start ∪ →ST1 ∪ →ST3 ∪ →Terminal ∪ →ST2

∪ →Trigger ∪ →Eval ∪ →Update are always enabled once a configuration C contains
nk as the first component.
The semantics is defined operationally by the relation `⊆ (N × O × Vt × Vth) ×
(N ×O × Vt × Vth). The initial configuration of a WSTBC is C = (s0, {} ,−1,−1),
where −1 for the timer and timer threshold values indicates that there is neither a
current timer nor a corresponding threshold. All transitions in t = (nk, g, nl) ∈→Start

∪ →ST1 ∪ →ST3 ∪ →Terminal ∪ →ST2 immediately fire once they are enabled, their
processing is assumed to take zero time and the new configuration C ′ differs from
the preceding C only in switching from nk to nl. This kind of ` transitions reflects
the fact that →Start ∪ →ST1 ∪ →ST3 ∪ →Terminal ∪ →ST2 have been introduced for
creating ebBP compliant models only and that there is no logic in empty BTAs. The
remaining elements of ` can be derived using the set of rules below that represent
triggering BTAs (`→Trigger

), finishing BTAs (`→Eval
,`→Update

), evaluating BTAs
(`→Route

), leaving STs by timeout (`→Timeout
) and the elapse of time (`clock).

1: Trigger a BTA

(n, o, vt, vth) `→Trigger

(n′, o, vt, vth) iff

(n, g, n′) ∈→Trigger ∧
ψ(g, (n, o, vt, vth)) = true ∧
((vth = −1) ∨ (vt < vth))

2: Finish a BTA and start result evaluation

(n, o, vt, vth) `→Eval

(n′, o′, vt, vth) iff

(n, g, n′) ∈→Eval ∧
ψ(g, (n, o, vt, vth)) = true ∧
o′ = χ(n)

3: Finish a BTA and ignore result

(n, o, vt, vth) `→Update

(n′, o, v′t, v
′
th) iff

(n, g, n′) ∈→Update ∧
ψ(g, (n, o, vt, vth)) = true ∧
((n′ = nodeb(btaSrc(n)) ∧ v′t = 0 ∧
v′th = φ(nodef(btaSrc(n)))) ∨
(n′ = nodei(btaSrc(n)) ∧ v′t = vt ∧ v′th = v′th))

118

4.4. ebBP-ST Choreographies

4: Evaluate a BTA result

(n, o, vt, vth) `→Route

(n′, o′, v′t, v
′
th) iff

(n, g, n′) ∈→Route ∧
ψ(g, (n, o, vt, vth)) = true ∧
o′ = {} ∧
((parentST (n′) = ⊥ ∧ v′t = vt ∧ v′th = −1) ∨
(parentST (n′) 6= ⊥ ∧ n′ = nodei(decSrc(n)) ∧
v′t = vt ∧ v′th = v′th) ∨
(parentST (n′) 6= ⊥ ∧ n′ 6= nodei(decSrc(n)) ∧
v′t = 0 ∧ v′th = φ(nodef(parentST (n′)))))

5: Leave ST by timeout

(n, o, vt, vth) `→Timeout

(n′, o, v′t, v
′
th) iff

(n, g, n′) ∈→T imeout ∧
ψ(g, (n, o, vt, vth)) = true ∧
((vth > −1) ∧ (vt >= vth)) ∧
((parentST (n′) = ⊥ ∧ v′t = vt ∧ v′th = −1) ∨
((parentST (n′) 6= ⊥) ∧ v′t = 0 ∧
v′th = φ(nodef(parentST (n′)))))

6: Elapse of time

(n, o, vt, vth) `clock

(n, o, v′t, vth) iff

v′t = vt + 1

Finally, a WSTBC is defined to be valid if and only if every node n ∈ N is connected
to the initial node and one terminal node and there exists a configuration such that
the terminal node is reachable by a sequence of transition steps as defined above.

Definition 4.4.3 (Validity)
Let `∗ be the transitive closure of `. A WSTBC is valid iff

(i) Each n ∈ N is connected to both {s0} and at least one t ∈ T, and

(ii) ∀n ∈ N : ∃C = (n, o, vt, vth) :
(n, o, vt, vth) `∗ (n′, o′, v′t, v

′
th) ∧ n′ ∈ T

4.4.3.3. ESTBC

The core idea of the extension-type STBC (ESTBC) model is replacing the 4 nodes
that represent a shared state in the WSTBC model by a single special-purpose node.

119

4. Representing B2Bi Choreographies

This is a change at the syntactical level and instead of rephrasing large parts of the
WSTBC definitions, the core differences between ESTBC and WSTBC models are
presented. Language restrictions, facts and semantics then hold analogously.
The node set N of an ESTBC is defined as the union {s0} ∪ ST ∪DEC ∪ SBTA ∪ T
where ST denotes a set of shared states as introduced in section 4.4.2.1. Compared to
the definition of WSTBC, the node sets FORK, JOIN and SEBTA are missing as these
are needed only for representing a shared state in an ebBP compliant way. Conflating

Table 4.1.: WSTBC/ESTBC Transition Relations

WSTBC ESTBC

→Start →Start⊆ s0 × {tt} × ST and
∣∣→Start

∣∣ = 1

→ST1 No correspondence

→ST3 No correspondence

→Terminal via →Route′ and →T imeout′

→ST2 No correspondence

→Trigger →Trigger⊆ ST× {tt} × SBTA

→Eval Identical

→Update →Update⊆ SBTA× {tt} × F× ST

→Route →Route⊆ DEC× 2G \ gto × F× ST

→Route →Route′⊆ DEC× 2G \ gto × T

→T imeout →T imeout⊆ ST× gto × ST

→T imeout →T imeout′⊆ ST× gto × T

the WSTBC-based shared state components to a single element also influences some
other elements. In particular, ebBP’s toBusinessStateRef/fromBusinessStateRef
constraint [134, sec. 3.8.2] has been dropped in order to allow for linking to shared
states. Consistently, empty BTAs are not needed for linking to final states (T) any
more. Instead, terminal nodes are reached in ESTBCs directly from STs or Decision
nodes. Moreover, as the reset of timeout values cannot be deduced any more from
whether the first or third node of a shared state component is the target of a link,
this information is explicitly encoded into the links. Some elements therefore have
an additional flag f ∈ F = {tt, ff} that indicates whether the targeted final state
shall reset its timer or not. Table 4.1 compares the WSTBC and ESTBC transition
relations where the left column names the WSTBC relations and the right column
describes the corresponding ESTBC definition The relation names have not been
changed for emphasizing the semantic similarity and ‘gto’ is used as abbreviation

120

4.4. ebBP-ST Choreographies

for {(XPath1, timeout)}. Finally, the φ function that maps every shared state to
its corresponding timeout value is now defined on ST → N0 ∪ {−1} instead of
FORK→ N0 ∪ {−1}.
The translation of ESTBCs into WSTBCs is presented using a pseudo-algorithm
(algorithm objects 1, 2 and 3). The basic idea of the algorithm is first translating
the input ESTBC’s shared states and terminal nodes and associating these with
the EmptyBTAs that have been generated during translation. During translation of
the transition relation elements, references to the input ESTBC’s shared states and
terminal nodes then are mapped correspondingly.

121

4. Representing B2Bi Choreographies

Algorithm 1: ESTBC to WSTBC Conversion: part 1

input : A valid ESTBC ebc to be transformed
output : A valid WSTBC wbc
// map data structures for already mapped nodes

variables : stMap<ST,SEBTA>; tMap<T,SEBTA>
algorithm :

// copy components that remain unchanged

1 wbc.R = ebc.R;
2 wbc.s0 = ebc.s0;
3 wbc.DEC = ebc.DEC;
4 wbc.SBTA = ebc.SBTA;
5 wbc.T = ebc.T;
6 wbc.G = ebc.G;
7 wbc.→Eval = ebc.→Eval;

// Create empty BTAs before terminal nodes

8 foreach t in ebc.T do
9 et = createEmptyNode();

10 tMap.add(t,et);
11 wbc.→Terminal.add((et,{tt},t));

12 end

// Translate shared states

13 foreach st in ebc.ST do
14 eb = createEmptyNode();
15 ei = createEmptyNode();
16 j = createJoinNode();
17 f = createForkNode();
18 f .th = st.th;
19 wbc.SEBTA.add(eb);
20 wbc.SEBTA.add(ei);
21 wbc.JOIN.add(j);
22 wbc.FORK.add(f);
23 wbc.→ST1.add((eb,{tt},j));
24 wbc.→ST2.add((j,{tt},ei));
25 wbc.→ST3.add((ei,{tt},f));
26 stMap.add(st,eb);

27 end
// continue...

122

4.4. ebBP-ST Choreographies

Algorithm 2: ESTBC to WSTBC Conversion: part 2

// ...continue

// Translate Transitions

1 foreach (n1,g,n2) in ebc.→Start do
2 eb = stMap.get(n2);
3 wbc.→Start.add((n1,g,eb));

4 end

5 foreach (n1,g,n2) in ebc.→Trigger do
6 f = nodef(parentST(stMap.get(n1)));
7 wbc.→Trigger.add((f ,g,n2));

8 end
9 foreach (n1,g,r,n2) in ebc.→Update do

10 if r == true then
11 e = nodeb(parentST(stMap.get(n2)));
12 else
13 e = nodei(parentST(stMap.get(n2)));
14 end
15 wbc.→Update.add((n1,g,e));

16 end
17 foreach (n1,g,r,n2) in ebc.→Route do
18 if r == true then
19 e = nodeb(parentST(stMap.get(n2)));
20 else
21 e = nodei(parentST(stMap.get(n2)));
22 end
23 wbc.→Route.add((n1,g,e));

24 end

// ...continue

123

4. Representing B2Bi Choreographies

Algorithm 3: ESTBC to WSTBC Conversion: part 3

// ...continue

1 foreach (n1,g,n2) in ebc.→Route′ do
2 e = tMap.get(n2);
3 wbc.→Route.add((n1,g,e));

4 end
5 foreach (n1,g,n2) in ebc.→T imeout do
6 f = nodef(parentST(stMap.get(n1)));
7 e = nodeb(parentST(stMap.get(n2)));
8 wbc.→T imeout.add((f ,g,e));

9 end

10 foreach (n1,g,n2) in ebc.→T imeout′ do
11 f = nodef(parentST(stMap.get(n1)));
12 e = tMap.get(n2);
13 wbc.→T imeout.add((f ,g,e));

14 end
15 return wbc;

124

4.4. ebBP-ST Choreographies

4.4.4. Evaluation

The evaluation of this work concerns three main areas. Most important is the practical
feasibility of the ebBP-2-BPEL translation algorithm assuming the integration
architecture introduced in section 4.2. Furthermore, the computational complexity
of the ESTBC-WSTBC conversion and ebBP-2-BPEL translation algorithms is
analyzed. Finally, the possible reduction of extensional complexity using ESTBCs
instead of WSTBCs is discussed. Note again that the implementation of the ebBP-
2-BPEL translation algorithm stems from Christoph Pflügler’s diploma thesis and
therefore just a high-level overview of the implementation is given. Details are
available in [160,182] and the algorithm itself is given in appendix B.

For evaluating the feasibility of the proposed ST-based ebBP-BPEL translation
approach a translator has been written in the Java language; the main API used for
that was the Streaming API for XML (StAX (cf. http://jcp.org/en/jsr/detail?
id=173, last access: 12/20/2011)). StAX does not require to load the complete XML
document to be processed into memory and therefore it is theoretically possible to
process arbitrarily large ebBP choreographies. In practice, this is only helpful in
case the generated BPEL processes can still be executed on BPEL engines. On the
other hand, the application of StAX is more laborious than using DOM based APIs
like JAXB (cf. http://jcp.org/en/jsr/detail?id=222, last access: 12/20/2011).
Approximately 14000 method lines of code have been written to implement the
translator. Less code may have been needed using other libraries like DOM or other
technologies like XSLT. For the approach presented here, the choice of technology
for implementing the translator is of minor importance.
As regards the feasibility of translating arbitrary valid WSTBCs, please note that
directed graphs without concurrency basically are state machines with multiple types
of nodes. A valid WSTBC only contains Fork nodes of type ‘XOR’ and therefore
is a directed graph without concurrency. The implementing BPEL processes use a
global while loop for switching across a WSTBC’s STs using a global variable for
determining the current ST. Once a timeout occurs or a BTA has been performed
that results in a ST change, this global variable is assigned correspondingly and
the new ST is reached in the next iteration of the global while loop. Such a BPEL
process essentially amounts to the implementation of a state machine. The use
case of section 4.4.1 can be translated in full and produces fully BPEL compliant
process descriptions. Translating the use case takes approximately 45 seconds using
a Centrino duo 1,8 GHz machine with 2 GB RAM. Note that the produced BPEL
processes are immediately ready for deployment as the incorporation of business
logic is allowed for by predefined interfaces for accessing backend systems. The
BPEL processes created have been tested using the Apache ODE 1.2 BPEL engine
and the Apache Axis2 1.4 Web Services stack. For the backend services described
above, dummy Web services have been implemented that emulate business logic by
forwarding decisions to the user. Figure 4.9 shows the Seller role deciding whether to
accept an order in full (Accepted) or to defer its decision (Pending). Once the user
selects the DE 3A4 Accepted option and the BT protocol terminates successfully,

125

http://jcp.org/en/jsr/detail?id=173
http://jcp.org/en/jsr/detail?id=173
http://jcp.org/en/jsr/detail?id=222

4. Representing B2Bi Choreographies

the ST Contract is reached which is displayed in figure 4.10. The use case from

Figure 4.9.: Seller Deciding upon Quote Request

Figure 4.10.: Seller Entering State Contract

section 4.4.1 could not be performed on the selected platform in full due to an ODE
bug in handling whiles in combination with picks which resulted in the situation
that a shared state’s while element can only be entered once. Thus, though every
shared state of the use case could be reached there were two states that could not be
followed-on with a “normal” termination of the process.
In practice, an important question is the validity of the defined assumption that
performing a BTA “either leads to an agreed-upon result or a protocol failure” defined
in section 4.4.3. This is problematic because integration partners are assumed to
perform BTAs collaboratively using separate BPEL processes. This introduces the
problem of communication over unreliable media. Even worse, BTAs may require the
realization of several B2Bi-related security features. Note that this topic conceptually
has been discussed in section 4.3.

For the platform selected for ebBP-ST implementation, the use of WS-ReliableMes-
saging (using Apache Sandesha2, cf. http://ws.apache.org/sandesha/sandesha2/,
last access: 12/20/2011) and WS-Security (using Apache Rampart, cf. http:

//ws.apache.org/rampart/, last access: 12/20/2011) has been considered for im-
plementing QoS features. Though it was possible to offer BPEL processes as secure

126

http://ws.apache.org/sandesha/sandesha2/
http://ws.apache.org/rampart/
http://ws.apache.org/rampart/

4.4. ebBP-ST Choreographies

and reliable Web Services, invoking other Web Services from BPEL processes in a
reliable and secure manner was not possible. So the application of these standards
has been canceled for the ebBP-ST target platform. Chapter 5 and appendix C
discuss the realization of reliability and security using the WS-* implementations of
GlassFish and IBM WebSphere Application Server. As a result, the assumption of
mutually agreed upon BTA results using Web Services technology can be assumed
to be realistic for selected homogeneous environments.

The main algorithm proposed for ebBP-ST is the ESTBC-WSTBC (section 4.4.3.3)
conversion algorithm. As regards the ESTBC-WSTBC algorithm, the computational
complexity is fairly low. If a hash-map data structure which provides linear time
access can be used and the number of nodes of an ESTBC is n then the complexity of
translating an ESTBC into a WSTBC is linear, i.e., O(n). In practice the complexity
of parsing an input XML file and writing an output XML file must be considered as
well. The first one can easily be done using standard tools. The second one is trivial
as well because the ebBP schema does not impose any restrictions on the ordering of
Forks, Joins, BTAs, Decisions and terminal nodes.

The ebBP-BPEL translation algorithm (see appendix B) developed by Christoph
Pflügler also scales well. As Joins and Forks are used for the representation of
shared states only, the identification of shared states takes at most one iteration
across a WSTBC’s nodes. For creating each resulting BPEL’s global while loop (lines
2-13 of algorithm 11 on page 302) each ST is then visited once. Afterwards, the
placeholders for BTAs and the corresponding Decisions can be processed in the order
they have been written to the BPEL output processes and looking up the matching
BTAs and Decisions of the input WSTBC takes linear time as well if these have been
stored in the first iteration in a hashmap-like data structure. This means that this
algorithm also has linear time complexity O(n) in terms of the number of nodes n.
Finally, the complexity reduction achievable by using the ebBP-ST schema extension
is assessed. Replacing the ebBP schema compliant representation of a ST with the
more compact extension-based model as described in section 4.4.2.2 obviously leads
to much more compact XML code. Table 4.2 summarizes the reduction of extensional
complexity for this section’s use case. The lines of code (LOC) metric refers to
the representation of the ebBP BusinessCollaboration element and disregards
the declaration of DocumentEnvelope definitions as well as BusinessTransaction
type definitions that is the same for both types of ST representation. A more valid
approach to measure complexity that is not as dependent on formatting is counting
the ebBP elements needed for representing nodes and transitions. The first column
of table 4.2 names the complexity metric/ebBP element considered and the other
columns contain the measured values for this section’s use case as well as the ratio
of reduction. Note that the element reduction ratio depends on the collaboration’s
process structure. Considering the selected elements above, the node reduction ratio
can exactly be calculated in terms of node sets via
(3*|SHWSTBC | + |T|) / (|SBTA| + |SEBTA| + 2*|SHWSTBC | + |T| + |DEC|). Ob-
viously, the reduction ratio depends on the ratio of |SBTA| to |SHWSTBC |. In the
worst case, if there is only one ST component and a very high number of BTAs that

127

4. Representing B2Bi Choreographies

Table 4.2.: WSTBC/ESTBC Complexity Comparison (Use Case)

Metric WSTBC ESTBC Reduction

LOC 787 591 ∼ 0.249

BTA 31 15 ∼ 0.516

Fork 7 0 1

Join 7 0 1

Decision 13 13 0

Success 1 1 0

Failure 1 1 0

ST 0 7 undefined

Sum of nodes 60 37 ∼ 0.383

ToLink 67 58 ∼ 0.134

FromLink 38 15 ∼ 0.605

Sum of links 105 73 ∼ 0.305

all are admissible for that ST and either link back to that ST or to a terminal node
then the reduction ratio tends to 0. In the best case, if there is only one BTA for
some initialization and a very high number of STs that are reachable via timeouts
then the reduction ratio tends to (3*|SHWSTBC |) / (|SEBTA| + 2*|SHWSTBC |).
The reduction ratio of ToLinks/FromLinks cannot exactly be calculated in terms of
node sets because Decisions may have a varying number of branches and a ST may
or may not have a timeout configured. Moreover, for STs without timeout and with
only one admissible BTA the ToLink to the following BTA must be configured twice
to conform with ebBP schema restrictions. Removable links can be calculated as
(4*|SHWSTBC | + |T|). For the calculation of the overall number of links assume that
every ST has a timeout configured and that each Decision has three branches. Due
to ebBP’s toBusinessStateRef/fromBusinessStateRef restriction every ToLink/From-
Link must reference a BTA for WSTBCs. The number of FromLinks then is (|SBTA|
+ |SEBTA| + |SHWSTBC |) because in every ST the first component is connected
twice. The number of ToLinks can be derived by considering the different types
of elements that link to BTAs or EmptyBTAs, i.e., (1 + |SHWSTBC | + |JOIN| +
|SBTA| + 3*|DEC| + (|BTA|-|DEC|)). The number of ToLinks in Fork elements is
captured by |SBTA| and (|SBTA|-|DEC|) captures the number of BTAs that directly
link back to the source ST. Considering the relation between STs and its components,
the link reduction ratio can be calculated as (4*|SHWSTBC | + |T|) / (1 + 3*|SBTA|
+ 5*|SHWSTBC | + |T| + 2*|DEC|). The best case/worst case analysis then is similar
to the analysis for the node reduction ratio.

128

4.4. ebBP-ST Choreographies

This section has shown how to represent shared states in binary ebBP choreog-
raphy models using either an ebBP extension or an ebBP compliant workaround.
ebBP-ST has been introduced as choreography style for capturing such models and
a formal model for ebBP-ST has been given. Restrictions have been defined for
characterizing valid ebBP-ST models and a formal operational execution semantics
for valid ebBP-ST models has been given. In addition, a translation algorithm
from extension-based ebBP-ST models to workaround-based ebBP-ST models has
been defined. The implementability of the ebBP-ST execution semantics has been
demonstrated in [160,182] and will not be discussed in full here. The corresponding
ebBP-ST to BPEL translation algorithm developed by Christoph Pflügler is given
in appendix B.

The next section will focus on ebBP-Reg that does not explicitly offer the concept
of shared states. However, ebBP-Reg models do neither rely on an ebBP extension
nor on a corresponding workaround. Moreover, ebBP-Reg offers parallel composition
and hierarchical decomposition.

129

4. Representing B2Bi Choreographies

4.5. ebBP-Reg Choreographies

In chapter 3, regular ebBP choreographies (ebBP-Reg, published in [190]) have
been proposed as the ebBP choreography style that strictly conforms to the ebBP
XML schema and supports hierarchical decomposition as well as parallelism for
binary collaborations. Conceptually, ebBP-Reg is a variation of ebBP-ST that trades
simplicity for control flow expressiveness. However, the concept of allowing for almost
arbitrary control flow graphs in order not to impose too tight restrictions upon
modelers is retained.

The most important differences between ebBP-Reg and ebBP-ST concern explicit
shared states, hierarchical decomposition and parallelism. Explicit modeling of
shared states is given up in order to ensure strict standard compliance. Parallelism
and hierarchical decomposition are introduced in order to enhance control flow
expressiveness. Hierarchical decomposition is achieved by means of allowing for
BCAs at (almost) the same control flow points as BTAs. Parallel structures are
represented in a special way in order to allow for intuitive control flow definition
that may include irreducible loops. Basically, a parallel structure is defined to be a
state that consists of one or more non-overlapping control flow branches. In order
to keep up the state paradigm, all branches must be activated together in order to
be executed and all branches must have terminated before control flow may leave
the parallel structure. From a modeler’s perspective, this can easily be facilitated by
representing each branch as a separate BCA.

The presentation of ebBP-Reg is split up as follows. Section 4.5.1 introduces
a use case that covers all control flow elements of ebBP-Reg to demonstrate its
expressiveness. Section 4.5.2 then presents the formalization of ebBP-Reg as well
as a characterization of validity. The execution semantics of ebBP-Reg is described
in section 4.5.3. The validation of ebBP-Reg has been performed by means of
creating a BPEL mapping for the ebBP-Reg language elements and a prototype that
implements the use case of section 4.5.1. Both is described in section 5.3 so that a
dedicated evaluation sub-section is left out here.

4.5.1. Use Case

For giving an impression of ebBP-Reg’s expressiveness and for validation purposes,
the artificial RosettaNet PIPs (conceptually equivalent to BTs) based purchasing use
case depicted in figure 4.11 is used. The use case starts out with a parallel structure
for concurrently exchanging purchase order requests (PIP 3A19) within two BCAs of
the same type (BC-single3A19-1, BC-single3A19-2) that, again, specify seller and
buyer roles. For BC-single3A19-1, the root level seller role takes the BC-single3A19
seller role and for BC-single3A19-2, the root level seller role takes the BC-single3A19
buyer role. After the concurrent purchase order requests, a single purchase order
confirmation (PIP 3A20, denoted ‘BT-3A20’) is exchanged using a BTA. In case of a
protocol failure (denoted ‘P-F’) or a negative confirmation message (denoted ‘Stop’),
the process is terminated. Otherwise, the process is continued and multiple actions

130

4.5. ebBP-Reg Choreographies

may be taken. The root level buyer role may try to change (PIP 3A21) or cancel
(PIP 3A23) the purchasing process or the root level seller role may try to finish the
process by sending an invoice (PIP 3C3). Depending on whether or not these BTAs
succeed (‘[P-S]’ transitions) or fail (‘[P-F]’ transitions) and depending on the result
of additional BTAs (BT-3A22/3A24 for replying to change/cancellation requests) the
process eventually terminates. The different final states denote the different overall
results of the purchasing process.

It is worth noting that the use case captures the main types of process components
(parallel structures, loops, event-based choices) that can be created from the rules
of the next section. This use case has also been used to validate the mapping of
ebBP-Reg to BPEL as described in section 5.3.

Figure 4.11.: ebBP-Reg Use Case ([true] guards left out)

4.5.2. Formalization of ebBP-Reg

First, a superset of the eligible ebBP-Reg processes is defined that is restricted by
means of wellformedness rules afterwards.

Definition 4.5.1 (ebBP-Reg Process)
An ebBP-Reg process is a five-tuple RP (s0,F,A,C,T) with the following elements:

• s0 the start node.

• F a non-empty set of final states.

131

4. Representing B2Bi Choreographies

• A = SBTA ∪ SBCA with SBTA a non-empty set of BTAs and SBCA a set of
BCAs.

• C = SXORF ∪ SANDF ∪ SANDJ with SXORF a set of XOR-Forks, SANDF
a set of AND-Forks and SANDJ a set of AND-Joins.

• T the union of the following transition sets

– Tstart = {(s0,true,e)}, e ∈ (A ∪ SXORF ∪ SANDF)

– Tend = A × G × F

– TctrlIn = A × G × C

– TctrlOut = C × {true} × A

– Tstraight = A × G × A

where G = Gbta ∪Gbca a set of boolean guards defined on the results of BTAs
and BCAs, respectively. �

Furthermore, the following auxiliary functions are defined.

Definition 4.5.2 (Auxiliary Functions)

• .-notation/#-notation is used for accessing the components of a tuple by
name/index.

• A path between two nodes a,b ∈ {s0}∪A∪C∪F is a sequence of nodes a,n1..x,b
such that for all i=1...x-1, (ni,gi,ni+1) and (a,ga,n1) and (nx,gx,b) ∈ T. Let
Path(a,b) be the set of all paths between a and b. �

Considering the ebBP control flow constructs introduced in section 2.3.1, OR-Forks,
OR-Joins and Decisions are missing in the definition of ebBP-Reg processes. The
functionality of OR-Forks to perform an arbitrary selection of follow-on activities
is not supported. Consequently, OR-Joins are not needed because any node n ∈
A∪C \ SANDJ then can serve as join node for an XOR-Fork and AND-Joins can be
used for joining AND-Forks. The functionality of ebBP Decisions is provided using
the guards on ebBP Transitions in order to circumvent referential constraint problems
when linking from Decisions to other control flow nodes (cf. toBusinessStateRef/
fromBusinessStateRef constraints in the ebBP standard [134, section 3.8.2]).
The following production rules describe how to create a syntactically valid ebBP-Reg
model step by step. The production rules are chosen such that any syntactically
valid ebBP-Reg model can be performed using BPEL (cf. section 5.3) later on.

The first rule characterizes an elementary valid ebBP-Reg process that consists of
a single activity.

Rule 4.5.1 (Elementary Process 1)
Any process rp = (s0, {f}, {a}, ∅, {(s0, true, a), (a, true, f)}) is a valid RP. �

132

4.5. ebBP-Reg Choreographies

The second rule characterizes an elementary valid ebBP-Reg process that starts
with a so-called event-based choice that selects from a series of activities. Each
activity is followed by a separate final state.

Rule 4.5.2 (Elementary Process 2)
Let ebc = (xorF, F, A, TctrlOut, Tend) be an ‘event-based choice component’ that
chooses from a set of BTAs/BCAs at run-time as requested by a backend/partner
process with:

• xorF an XOR-Fork.

• F = {f1,...,fn} a set of final states.

• A = {a1,...,an} a set of BTAs and BCAs with at least one BTA.

• TctrlOut = xorF × {true} × A.

• Tend ⊆ A × {true} × F such that A × {true} → F is a bijective function.

Then, rp = (s0, ebc.F, ebc.A, {ebc.xorF}, {(s0, true, ebc.xorF)} ∪ ebc.TctrlOut ∪
ebc.Tend) is a valid RP. �

The third rule represents an elementary valid ebBP-Reg process that starts with a
parallel structure. The process terminates in a final state after the parallel structure.

Rule 4.5.3 (Elementary Process 3)
Let rp1,...,rpn be a set of valid RPs and PCA = bcarp1,...,bcarpn be a set of BCAs for
executing each RP. Let andF, andJ be an AND-Fork and an AND-Join and let Tfork

= {andF} × {true} × PCA and Tjoin = PCA × {true} × {andJ}.
Then, rp = (s0, {f}, PCA, {andF,andJ}, {(s0, true, andF),(andJ, true, f)} ∪ Tfork

∪ Tjoin) is a valid RP. �

The fourth rule shows how to add a BTA to the end of a valid ebBP-Reg process,
that means immediately before an existing final state.

Rule 4.5.4 (Add BTA)
Let rp be a valid RP, bta a BTA /∈ rp.A.SBTA, and pred = (pred#1,pred#2,pred#3)
∈ rp.Tend.
Then rp’= (rp.s0, rp.F, rp.A.SBTA ∪ {bta}, rp.C, rp.T ∪ {(pred#1, pred#2, bta),
(bta, true, pred#3)} \ {(pred#1, pred#2, pred#3)}) is a valid RP. �

The fifth rule shows how to add a sub-process to the end of a valid ebBP-Reg
process.

133

4. Representing B2Bi Choreographies

Rule 4.5.5 (Process Composition)
Let rp1, rp2 be valid RPs, pred ∈ rp1.Tend, bcarp2 be a BCA executing rp2, and bcarp2

/∈ rp1.A.SBCA.
Then rp’ = (rp1.s0, rp1.F, rp1.A.SBCA ∪ {bcarp2}, rp1.C, rp1.T ∪ {(pred#1, pred#2,
bcarp2), (bcarp2, true, pred#3)} \ {(pred#1, pred#2, pred#3)}) is a valid RP. �

The sixth rule shows how to add an event-based choice together with a series of
activities for each branch of the event-based choice to the end of a valid ebBP-Reg
process.

Rule 4.5.6 (Event-Based Choice)
Let rp be a valid RP and pred ∈ rp.Tend. Let ebc = (xorF, F, A, TctrlOut, Tend) be an
‘event-based choice component’ that chooses from a set of BTAs/BCAs at run-time
as requested by a backend/partner process with:

• xorF an XOR-Fork.

• F = {f1,...,fn} a set of final states.

• A = {a1,...,an} a set of BTAs and BCAs with at least one BTA.

• TctrlOut = xorF × {true} × A.

• Tend ⊆ A × {true} × F such that A × {true} → F is a bijective function.

Furthermore, let ebc.xorF /∈ rp.C ∧ (rp.F \ {pred#3}) ∩ ebc.F = ∅ ∧ ebc.A ∩ rp.A
= ∅.
Then rp’ = (rp.s0, (rp.F \ {pred#3}) ∪ ebc.F, rp.A ∪ ebc.A, rp.C ∪ {xorF}, rp.T
∪ ebc.TctrlOut ∪ ebc.Tend ∪ {(pred#1,pred#2,xorF)} \ {(pred#1, pred#2, pred#3)})
is a valid RP. �

The seventh rule shows how to add a parallel structure to the end of a valid
ebBP-Reg process.

Rule 4.5.7 (Parallel)
Let rpx be a valid RP and pred ∈ rpx.Tend. Let rp1,...,rpn be a set of valid RPs and
PCA = bcarp1,...,bcarpn be a set of BCAs for executing each RP and for all bcarpi

with i in [1;n] holds: bcarpi /∈ rpx.A. Let andF, andJ /∈ rpx.C be an AND-Fork and
an AND-Join and let Tfork = {andF} × {true} × PCA and Tjoin = PCA × {true}
× {andJ}.

Let for any rpi,rpj with i,j in [1;n], i 6= j: All constituent sets of rpi and rpx as
well as rpi and rpj are pairwise disjoint.
Then, rp’ = (rpx.s0, rpx.F, rpx.SBCA ∪ PCA, rpx.C ∪ {andF, andJ}, rpx.T ∪
Tfork ∪ Tjoin ∪ {(pred#1,pred#2,andF), (andJ,true,pred#3)} \ {(pred#1, pred#2,
pred#3)}) is a valid RP. �

134

4.5. ebBP-Reg Choreographies

For the following rules, let rp.A.PCA denote the set of BCAs within any paral-
lel structure of a given valid RP rp as defined in rule 4.5.7.
The ninth rule shows how to add a transition between some activity (outside of any
parallel structure) of a valid ebBP-Reg process and any other state of the ebBP-Reg
process. In that regard, it is vital to note that a parallel structure is interpreted as a
state of the surrounding process.

Rule 4.5.8 (Add Transition)
Let rp be a valid RP, d ∈ (rp.A \ rp.A.PCA) ∪ rp.C.SXORF ∪ rp.C.SANDF ∪
rp.F, padd ∈ rp.A \ rp.A.PCA, and Tpadd =

{
t ∈ rp.T | t#1 = padd

}
.

Furthermore, let newT = (padd,newG,d) be a transition, R be a function that
computes a new set of transitions from Tpadd by assigning a new valid guard to each
element of Tpadd such that (newG ∨

∨
t∈R(T

padd
) t#2) evaluates to true and

∀ t1,t2 ∈ newT ∪ R(Tpadd), t1 6= t2: (t1#2 ∧ t2#2) evaluates to false.
Then, (rp.s0, rp.F, rp.A, rp.C, (T \ Tpadd) ∪ {newT} ∪ R(Tpadd)) is a valid RP. �
Note that this rule also is valid for d ∈ rp.F and therefore also covers new transitions
to final nodes.

The tenth rule shows how to add a final node immediately after some activity of a
valid ebBP-Reg process where the respective activity must not be contained within
any parallel structure.

Rule 4.5.9 (Add Final Node)
Let rp be a valid RP, padd ∈ rp.A \ rp.A.PCA, and Tpadd =

{
t ∈ rp.T | t#1 = padd

}
.

Furthermore, let newF /∈ rp.F be a final node, newT = (padd,newG,newF) be a
transition, R be a function that computes a new set of transitions from Tpadd by
assigning a new valid guard to each element of Tpadd such that (newG ∨

∨
t∈R(T

padd
)

t#2) evaluates to true, and ∀ t1,t2 ∈ newT ∪ R(Tpadd), t1 6= t2: (t1#2 ∧ t2#2)
evaluates to false.
Then, rp’ = (rp.s0, rp.F ∪ newF, rp.A, rp.C, (T ∪ {newT} \ Tpadd) ∪ R(Tpadd)) is
a valid RP. �

The eleventh rule shows how to remove a final node from a valid ebBP-Reg process.
This rule is needed in order to allow the branches of an event-based choice to terminate
in the same final state.

Rule 4.5.10 (Remove Final Node)
Let rp be a valid RP, f ∈ rp.F, PREDf =

{
t ∈ rp.T end | t#3 = f

}
, and Hf be the

set of sets of outgoing transitions of predecessors of f such that: PREDf ⊆
⋃

h∈Hf
h

∧ ∀ hx,f ∈ Hf : (∀ t ∈ hx,f : t#1 = x) ∧ (@ t ∈ rp.T \ hx,f : t#1 = x) ∧ hx,f∩ PREDf

6= ∅.

135

4. Representing B2Bi Choreographies

Furthermore, let DEST ⊆ (rp.A \ rp.A.PCA) ∪ rp.C.SXORF ∪ rp.C.SANDF ∪
rp.F \ {f}.

Furthermore, let R be a function that computes a new set of transitions from each
hx,f ∈ Hf by assigning to each t ∈ hx,f a new valid guard and replacing t#3 with
some d ∈ DEST such that:

∨
t∈R(h

x,f
) t#2 evaluates to true ∧ ∀ t1,t2 ∈ R(hx,f), t1

6= t2: (t1#2 ∧ t2#2) evaluates to false, and for each hx,f ∈ Hf : ∃ Path(x,e) 6= ∅
with e ∈ rp.F \ {f}.
Then, rp’ = (rp.s0, rp.F \ {f}, rp.A, rp.C, (T \

⋃
h∈Hf

h) ∪
⋃

h∈Hf
R(h)) is a valid

RP. �

4.5.3. ebBP-Reg Semantics

The paradigm for ebBP-Reg modeling is a state-machine that can hierarchically be
decomposed and that allows for parallelism by means of structured AND-Fork/AND-
Join combinations the branches of which are executed in a threading-like manner.
ebBP-Reg can be interpreted as an evolution of ebBP-ST. Both B2Bi choreography
styles are state-machine based and ebBP-Reg’s XOR-Forks are very similar to
shared states from a control flow perspective (except for timeouts). Yet, there are
considerable syntactic and conceptual differences. The concept of shared states has
been given up in ebBP-Reg so that several components of the ebBP-ST transition
relation can be ignored. Conversely, the processing of parallel structures cannot
directly be derived from the ebBP-ST semantics. Therefore, a new operational
execution semantics for ebBP-Reg is given instead of describing how to derive it from
the ebBP-ST semantics.

The execution semantics of ebBP-Reg defines the control flow of BCAs. For BTAs
(similar to the ebBP-ST semantics), the assumption is made that performing a BTA
takes some time and eventually either leads to an agreed-upon result or a protocol
failure. The actual execution model for BTAs is described in section 4.3.

Let C ∈ EN ×EX ×R be the configuration of an ebBP-Reg choreography where
N=A ∪C ∪ F is the set of choreography nodes as defined in definition 4.5.1, EN=2N

is the set of sets of currently enabled nodes, EX=2N is the set of sets of currently
active nodes, and R=2A×O is the set of sets of nodes paired with the result of their
latest execution. O is the set of all possible outcomes of all BTAs and BCAs of an
ebBP-Reg choreography. Let χ be the function that computes the outcome of a
BTA or BCA that has just finished. Furthermore, ψ : G× R→ {true, false} is the
function that evaluates a given guard under a given set of activity results to one of
the boolean constants true or false. In particular, ψ(true, r) = true for arbitrary r ∈
R. Any node n ∈ N is enabled for some configuration C = (en, ex, r) if n ∈ en.

The execution semantics of an ebBP-Reg process is defined operationally by the
relation `⊆ C × C. The initial configuration of an ebBP-Reg process is (s0, ∅, ∅) and
immediately transitions to (e, ∅, ∅) following the definition of the start transition Tstart

= {(s0, true, e)}. The execution of an ebBP-Reg process terminates upon reaching a
final configuration (n, ∅, r) with n ∈ F. The remaining elements of ` are defined by the

136

4.5. ebBP-Reg Choreographies

set of rules below that represent starting an activity (`actStart
), finishing an activity

(`actTerm
), leaving an XOR-Fork or AND-Join (`xorOut

), processing an AND-Fork
(`parStart

), activating a branch of a parallel structure (`parBranch
) or terminating a

branch of a parallel structure (`parTerm
).

For the definition of the execution rules, par1 and par2 are defined as auxiliary
functions such that:
par1: SANDF → SBCA such that par1(andf) =

{
bca|(andf, g, bca) ∈ T ctrlOut

}
for

any andf ∈ SANDF.
par2: SANDJ → SBCA such that par2(andj) =

{
bca|(bca, g, andj) ∈ T ctrlIn

}
for

any andj ∈ SANDJ.

1: Start an activity

(en, ex, r) `actStart

(en′, ex′, r′) iff

en = {n} ∧ n ∈ A ∧ ex = ∅ ∧
en′ = ∅ ∧ ex′ = {n} ∧ r′ = r ∧
(@ andF ∈ SANDF. n ∈ par1(andF))

2: Finish an activity

(en, ex, r) `actTerm

(en′, ex′, r′) iff

en = ∅ ∧ ex = {n} ∧ n ∈ A ∧
en′ = {n′} ∧ r′ = {(n, χ(n))} ∧
∃(n, g, n′) ∈ T end ∪ T ctrlIn ∪ T straight.ψ(g, χ(n)) = true

3: Leave XOR-Fork or AND-Join

(en, ex, r) `xorOut

(en′, ex′, r′) iff

en = {n} ∧ n ∈ SXORF ∪ SANDJ ∧ ex = ∅ ∧
en′ = {n′} ∧ ex′ = ∅ ∧ r′ = ∅ ∧
∃(n, true, n′) ∈ T ctrlOut

137

4. Representing B2Bi Choreographies

4: Process AND-Fork

(en, ex, r) `parStart

(en′, ex′, r′) iff

en = {andF} ∧ andF ∈ SANDF ∧ ex = ∅ ∧
en′ = par1(andF) ∧ ex′ = ∅ ∧ r′ = ∅

5: Activate branch of parallel structure

(en, ex, r) `parBranch

(en′, ex′, r′) iff

en′ = en \ {n} ∧ ex′ = ex ∪ {n} ∧ r′ = r ∧
∃(andF, true, n) ∈ T ctrlOut. andF ∈ SANDF ∧ n ∈ en

6: Terminate branch of parallel structure

(en, ex, r) `parTerm

(en′, ex′, r′) iff

∃(n, true, andj) ∈ T ctrlIn. andj ∈ SANDJ ∧ n ∈ ex ∧
(((en 6= ∅ ∨ ex 6= {n}) ∧ en′ = en ∧ ex′ = ex \ {n}) ∨
(en = ∅ ∧ ex = {n} ∧ en′ = {andj} ∧ ex′ = ∅)) ∧
r′ = r ∪ {(n, χ(n))}

The interested reader will have noticed that there is no rule for decomposition.
Indeed, the execution semantics defined does not unfold hierarchies of BCAs. However,
as each BCA must be performed independently of other BCAs, the semantics can
simply be reapplied to each BCA of an ebBP-Reg process.

Furthermore, comparing the execution semantics to the definition of ebBP-Reg
reveals that it is actually not strictly necessary to define both, `actStart

and `actTerm
,

because no other rule can be fired when an activity is in execution. Similarly, keeping
track of the result values of activities as part of C is not strictly necessary as this
component of the configuration is not used for deciding upon firing rules. Both add-
ons deliberately have been chosen. The two distinct rules for performing activities
outside of parallel structures explicitly model that activity execution takes time.
Hence, if timeout processing is needed in the future, the semantics will not prevent it.
By analogy with the ebBP-ST definition, adding timeouts to XOR-Forks or BCAs
is conceivable. Similarly, the explicit calculation of result values allows for adding
expression based routing where it has not been defined so far. As the visualization
of section 6.2 will reveal, this may be desirable for routing after AND-Joins.

This section has introduced ebBP-Reg as binary choreography style that can be
expressed as strictly compliant ebBP. In particular, a formalization of ebBP-Reg has
been defined and the validity of ebBP-Reg models has been characterized. Moreover,

138

4.5. ebBP-Reg Choreographies

a formal execution semantics of ebBP-Reg has been defined the implementability of
which based on BPEL processes will be shown in chapter 5. Before that, the next
section will introduce SeqMP as multi-party choreography style.

139

4. Representing B2Bi Choreographies

4.6. SeqMP Choreographies

SeqMP choreographies have been proposed in chapter 3 as an B2Bi choreography style
and an analysis framework that targets multi-party choreographies. The contents of
this section, published in [189, 191], motivate the need for SeqMP, give its formal
definition and define algorithms for solving common multi-party choreography issues.

Figure 4.12.: Ultimate Supply Chain (taken from [112])

In the B2Bi domain, many approaches (for example [79,186,190,232]) focus on
strictly binary choreographies, i.e., on interactions between exactly two integration
partners for very valid reasons (cf. sections 1.3, 4.4 and 4.6.1). While binary chore-
ographies cover the majority of current B2Bi scenarios, multi-party scenarios actually
are an implication of the concepts of supply chains/supply networks. Supply Chain
Management (SCM) is the management of different types of business processes across
the complete supply chain, not only point-2-point [90]. This is also reflected in the
concept of the so-called ‘Ultimate Supply Chain’ as given in figure 4.12 from [112]
where supply chain partners interact with two or more other partners. Huemer and
Hofreiter consistently argue [59] that interactions with more than one business partner
at least have to be defined locally. Moreover, there are some real world examples
that are not binary. For example, RosettaNet defines the so-called “Order-To-Cash
With Logistics Service Provider Scenario”4 depicted in figure 4.13. In this scenario, a
Customer, a Supplier and a Logistics Service Provider (LSP) role (represented by
BPMN 1.1 pools) are using RosettaNet PIPs (visualized as small cuboids labeled
3A4, 3A8 and so on) for exchanging business documents. Moreover, the local actions
of each role for processing the business documents exchanged via PIPs are given.
However, figure 4.13 only describes the intended flow of interactions and leaves out
what happens if communication errors occur or if, for example, the Supplier and LSP
role are not able to agree upon the provision of transportation services. Note that
such technical/business errors only affect two of the three roles immediately (send
and receive actions are defined for one role only). This raises the question whether or
not erroneous behavior may have an effect on the remaining roles and how to detect
problematic execution paths.
In order to provide a widely applicable solution to this problem, this section defines
how multi-party choreographies can be composed from existing binary choreographies
(section 4.6.1). Furthermore, the negative effect of technical/business errors between

4http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/

eBusinessProcessScenarioLibrary/OrdertoCash/tabid/3320/Default.aspx,
last access: 12/20/2011

140

http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/eBusinessProcessScenarioLibrary/OrdertoCash/tabid/3320/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/eBusinessProcessScenarioLibrary/OrdertoCash/tabid/3320/Default.aspx

4.6. SeqMP Choreographies

Figure 4.13.: RosettaNet Order to Cash with Logistic Service Provider Scenario
(taken from RosettaNet4)

two partners3 on the remaining partners is captured as the so-called partial termina-
tion problem (section 4.6.2) and a configurable algorithm for identifying problematic
execution paths is sketched (section 4.6.3). A second algorithm for deriving role
projections from multi-party choreographies is given for fostering straightforward
systems development. In addition, an algorithm for merging multiple projections (if
existent) of the same role is given as well as rules for simplifying projections.

4.6.1. Definition

The class of SeqMP choreographies is tailored to the needs of B2Bi. By analyzing
100 scenarios of the publicly available RosettaNet implementation guides (for imple-
menting B2Bi processes), the majority of interactions was discovered to be binary (84
scenarios), i.e., performed between exactly two integration partners. This is in line
with academic research (cf. chapter 3). The remaining multi-party interactions of the
analysis can be split up into binary interactions. Two factors can be identified that
foster decomposability into binary interactions. Firstly, the atomic building blocks of
many B2Bi processes are binary transaction-like concepts for the exchange of request
business documents and optional response business documents. In the case of Roset-
taNet, PIPs are these atomic building blocks and despite the simple structure of PIPs
the economic value exchanged using PIPs is worth billions of dollars (RosettaNet Stan-
dards Assessment 20084). Remember that similar ‘atomic building blocks’ can also be

3The terms ‘partner’ and ‘role’ will be used interchangeably
4http://www.rosettanet.org.my/Download/2009ImplementationStatistics05.26.09.pdf,

last access: 12/20/2011

141

http://www.rosettanet.org.my/Download/2009 ImplementationStatistics 05.26.09.pdf

4. Representing B2Bi Choreographies

found in ebBP, UMM [208] or BCL [248]. Secondly, the control flow defined typically
is fairly simple, i.e., does not apply concepts like parallel structures or hierarchical
decomposition. This, in turn, is in line with a multi-case study of Reijers et al. [166]
who report the results of an investigation of 16 business processes from six Dutch
organizations: “Business processes turned out to be completely sequential structures.
Their routing complexity was only determined by choice constructs and iterations.”
This finding is also backed by the B2Bi models created for the eBIZ-TCF project
(http://www.moda-ml.net/moda-ml/repository/ebbp/v2008-1/en/) that do not
use concurrent behavior (cf. section 4.4).
Now, as control flow of B2Bi interactions tends to be simple and the atomic building
blocks are binary, multi-party choreographies can be viewed as sequences of binary
choreographies, that means, as binary BCAs.
Figure 4.14 shows how binary BCAs can be used to model the use case of figure

Figure 4.14.: SeqMP Model of the RosettaNet Use Case

4.13 in BPMN 2.0 [150] choreography notation (cf. chapter 6). Each binary BCA
is composed of 1 to 3 PIPs as given in the original RosettaNet model (cf. figure
4.13). The binary choreographies (BCAs) are modeled as so-called BPMN Collapsed
Call Choreographies and visualized as rounded rectangles with a ‘+’ at the bottom.
The two bands at the top and at the bottom contain the integration partner roles
participating in the call choreographies. The text in the middle contains an id
(c1...c4), a name and the PIP types contained in the call choreographies (3A4, 3A8
and so on). Using the PIP types, it is easy to identify which call choreography
corresponds to which part of the original RosettaNet choreography definition of figure
4.13. For defining the detailed structure of each binary call choreography, ebBP-ST
and ebBP-Reg are ready for use.

The advantage of using binary BCAs as building blocks for multi-party choreogra-
phies is that integration partners can be assumed to have agreed upon the result of
the binary BCA. Moreover, both partners start and terminate the BCA more or less
in lock-step. Consequently, the result of the binary BCAs can be used for routing
the control flow of the multi-party choreography. In figure 4.14, this is indicated by
guards (expressions placed in brackets) that are attached to the transitions. The
guard [PO-confirmed] after BCA c1 captures confirmation of the purchase order

142

http://www.moda-ml.net/moda-ml/repository/ebbp/v2008-1/en/

4.6. SeqMP Choreographies

exchanged whereas [PO-rejected] captures rejection. The corresponding transitions
of these guards link to BCA c2 or end state f1 respectively. The annotations in curly
braces are explained later. This concept of defining multi-party choreographies as
sequentially performed binary BCAs with branching structures for defining control
flow is reflected in the following definition.

Definition 4.6.1 (SeqMP Choreography)
A SeqMP choreography is a directed graph SeqMP (s0,F,SBCA,T,R,RA) with the
following elements:

• s0 the (unique) start state.

• F a non-empty set of final states.

• SBCA a non-empty set of binary BCAs.

• T the union of the following transition sets

– Tstart = {(s0,true,bca)}, bca ∈ SBCA

– Tend ⊆ SBCA × G × F

– Tflow ⊆ SBCA × G × SBCA

where G is a set of boolean guards consisting of the constants {true, else} and
any disjunction of terms that consist of the names of the possible results of
the BCA just performed. A term is evaluated upon termination of a BCA and
becomes true when the BCA produces the corresponding result. ‘else’ becomes
true if all guards of all other transitions with the same source become false.

• R the set of roles of the SeqMP process.

• RA: SBCA → R2, a role assignment function that assigns exactly two roles to
each BCA. �

Note that, due to the fact that BCAs are executed sequentially, a SeqMP choreography
basically is a state machine so that standard state machine semantics can be used to
interpret it.

For characterizing the validity of SeqMP choreographies, the following auxiliary
functions are defined.

Definition 4.6.2 (SeqMP Auxiliary Functions)

• .-notation/#-notation is used for accessing the components of a tuple by
name/index.

• namesB is the function that computes the names of the results of a BCA.

• namesG is the function that computes the names contained in a guard.

143

4. Representing B2Bi Choreographies

• A path path(a,b) between two nodes a,b ∈ {s0} ∪ F ∪ SBCA is a sequence of
nodes a,n1..x,b such that for all i=1...x-1, (ni,gi,ni+1) ∪ (a,ga,n1) ∪ (nx,gx,b)
⊆ T. The length of a path(a,b) length(path(a,b)) is the number of nodes in the
sequence. Let Path(a,b) be the set of all paths between a and b. �

Based on this definition, it is possible to characterize the validity of SeqMP processes
using the following three conditions.

Definition 4.6.3 (Valid SeqMP Choreography)
A SeqMP choreography smp is valid iff the following three conditions hold:

1. Subsequent role participation:
∀ (s1, g, s2) ∈ smp.Tflow: RA(s1) ∩ RA(s2) 6= ∅, i.e., for two subsequent
BCAs at least one of the assigned roles must be the same (hence enabling
synchronization between terminating one BCA and starting the next).

2. Guard validity:
Let SUCCbca ⊆ smp.T be the set of outgoing transitions from some bca ∈
smp.BCA with: ∀ t (t#1, t#2, t#3) ∈ SUCCbca: t#1 = bca. Then, the guards
of bca are valid iff:
(|SUCCbca| = 1 ∧ for {t} = SUCCbca: t#2 = true) ∨
(∀ t ∈ SUCCbca: t#2 6= true ∧
((
⋃

t∈SUCCbca
namesG(t#2) = namesB(bca))∨ (

⋃
t∈SUCCbca

namesG(t#2) ⊂
namesB(bca) ∧ ∃ t1 ∈ SUCCbca: t1#2 = else ∧ @ t2 ∈ SUCCbca, t1 6= t2:
t2#2 = else)) ∧
∀ t3, t4 ∈ SUCCbca, t3 6= t4: namesG(t3#2) ∩ namesG(t4#2) = ∅)

3. Connectedness:
(∀ f ∈ smp.F: Path(smp.s0, f) 6= ∅) ∧ ∀ bca ∈ smp.SBCA: Path(smp.s0, bca)
6= ∅ ∧ ∃ f ∈ smp.F: Path(bca, f) 6= ∅. �

Actually, it would not be hard to extend this definition to using multi-party BCAs as
building blocks (and even the algorithms in section 4.6.3 would work) as long as an
agreed-upon result among all participants of the BCAs would be guaranteed. This,
however, does not seem to hold true for many real-world scenarios.

4.6.2. Problems in Multi-Party Choreographies

Remodeling the RosettaNet Order-To-Cash use case as depicted in figure 4.14
immediately reveals two important problems, partial termination and creation of
role projections.
Partial termination becomes obvious when looking at the transitions that lead into
final states f3, f4 and f5 of figure 4.14. As the source states of these transitions are
binary BCAs, only those roles participating in the respective BCA will be aware of
the termination of the overall SeqMP choreography. However, the Customer role (in
case of BCA c2 Arrange Shipping) or the Supplier role (in case of BCA c3 Perform

144

4.6. SeqMP Choreographies

Shipping) may still wait for some interaction to happen. This may not be a problem
in case the individual BCAs of a SeqMP choreography are independent of each
other, but the business semantics of RosettaNet’s Order-To-Cash scenario contradicts
independence of, for example, c1 and c4. One possibility to attack this problem
is adding additional BCAs implementing exception handling routines. However,
modeling such multi-party choreographies may be hard because such exception
handling BCAs may fail as well and suitable business documents for communicating
exception handling semantics are not always available in business document libraries.
Furthermore, a business level problem like disagreeing on the conditions of shipping
between Supplier and LSP may require business escalation routines between Supplier
and Customer that are not intended to be implemented using business-document
based choreographies. In essence, not defining explicit handling routines for arbitrary
exceptional circumstances is a natural thing in process specification and hence partial
termination is an integral problem of multi-party processes. Note that the different
representations of the same use case in figures 4.13 and 4.14 do not have an influence
on the actual existence of the partial termination problem. It is just not as obvious
in the original RosettaNet representation of figure 4.13 because only the intended
flow of interactions is modeled.
Creation of role projections is an obvious problem when considering that some roles
may not participate in every BCA of a SeqMP choreography. Hence, the possible
sequences of BCA executions with participation of a particular role r must be derived
from the overall choreography and the BCAs without participation of r must be
suitably abstracted.
Both problems are not hard to solve if the use case is as simple as in figure 4.14.
However, other SeqMP choreographies such as the artificial use case depicted in
figure 4.15 may be more challenging. The use case depicts a multi-party order-to-cash
choreography between a Customer, a Seller, a Logistics Service Provider (LSP),
a Financial Service Provider (FSP) and an Escort Service Provider (ESP). For
compactness, the BPMN choreography notation has been conflated in an ad-hoc
manner by only showing the participating roles and an id for each call choreography.
The business semantics of the use case may be derived to some extent from the
guards on the transitions, but, for the purpose of discussing SeqMP, the control flow
of the use case is decisive. One striking observation is that partial termination is not
a problem associated to final states only, but actually to transitions that partition a
SeqMP choreography in parts with or without possible participation of a particular
role. For example, by firing the transition between c6 and c8 as depicted in figure
4.15, there is no possibility that the FSP role will become active in the particular
SeqMP instance anymore whereas participation still would be possible in c6.

4.6.3. SeqMP Algorithms

This section presents algorithms for dealing with the partial termination and the
role projection problem identified in the last section. Note that the algorithms are
defined for SeqMP choreographies which are based on binary BCAs as building

145

4. Representing B2Bi Choreographies

Figure 4.15.: SeqMP Model of a Complex Use Case (conflated visualization)

blocks. However, the algorithms themselves also would work for multi-party BCAs
as building blocks. For validation, the algorithms for calculating escalation sets as
well as role projections have been implemented for an abstract model of SeqMP in
Java. The prototype implementation together with the test graphs for figure 4.14
and 4.15 are available5.

4.6.3.1. Computing Escalation Sets

As really safe multi-party choreographies that specify exception handling logic in
full (cf. above) are hard to design, the computation of so-called escalation sets is
proposed for tackling the partial termination problem. Intuitively, escalation sets
are sets of participation expectations that cannot be fulfilled any more upon firing
a particular transition. Consider the transition (c2-f4) of figure 4.14 again. The
Customer has participated in BCA c1 and then waits for BCA c4 to begin. So, a
participation expectation has been created for the Customer. When firing (c2-f4),
this expectation cannot be satisfied any more, but it could in c2. In addition, the
Customer does not participate in c2 and so she is not informed about that. Hence,
firing (c2-f4) creates a partial termination problem for the Customer and the string
‘Customer’ is added to the escalation set of (c2-f4) (represented as curly braces added
to the transition in figure 4.14) to specify that fact. For analogous reasons, ‘Customer’

5http://www.uni-bamberg.de/pi/confSeqMP-Algorithms, last access: 12/20/2011

146

http://www.uni-bamberg.de/pi/confSeqMP-Algorithms

4.6. SeqMP Choreographies

is added to (c2-f3) and ‘Seller’ is added to (c3-f5). To capture this intuition more
precisely, the concepts of ‘Expectation’ and ‘Escalation Assignment’ are defined.

Definition 4.6.4 (Expectation)
An expectation is a 2-tuple E(r,en) where r ∈ smp.R for some SeqMP choreography
smp and en is a name for the expectation. �

Definition 4.6.5 (Escalation Assignment)
An escalation assignment is a function ESA: smp.T → 2E that, for a SeqMP chore-
ography smp and a set of expectations E, assigns to each transition t ∈ smp.T a set
of expectations se ⊆ E. �

Then, informally, escalation sets can be characterized as follows:

If an expectation (r,en) may have been created on some path to BCA
bca and if the expectation still may be satisfied by some reachable BCAs
and transitions and if the expectation may not be satisfied any more by
taking a particular outgoing transition of bca and if r /∈ RA(bca) (because
r would have full information otherwise) then the expectation goes into
the escalation set of that transition.

Note that this informal definition does not refer to the concrete path that is
taken at run-time for determining expectations. Instead, all paths that may have
been taken for reaching bca are considered. That means that the participants of a
SeqMP choreography can find out at design time which transitions potentially suffer
from the partial termination problem at runtime. Based on this information, they
may agree on appropriate actions for dealing with this issue, e.g., informing their
integration partners via mail or phone. In so far, escalation sets are a means for
analyzing the partial termination problem in multi-party choreographies, but not
a fully automatic solution to the problem. Furthermore, when firing a problematic
transition at runtime the defined escalation set has to be compared to the actual
expectations created during that particular process instance (which could easily be
implemented by some logging feature).

So far, the details of when expectations are created and when these are satisfiable
have not been discussed. Three distinct strategies (or modes), namely ‘ALWAYS’,
‘SELECTED’, and ‘RESOLVABLE’, can be identified for accomplishing this task.
The escalation sets then can be computed according to the ‘Escalation Set Compu-
tation’ algorithm as specified in algorithm objects 4, 5 and 6. Below, the different
strategies are discussed in more detail:

Strategy ALWAYS:

This strategy basically assumes that an expectation is created whenever a role
r participates in a BCA and that it is satisfiable as long as r may still participate
in some future BCA. The escalation criterion is (relative to some SeqMP smp) for

147

4. Representing B2Bi Choreographies

Algorithm 4: Compute Escalation Set: Part1

input :
smp, a valid SeqMP choreography;
mode, the operating mode;
rsa, a role selection assignment //SELECTED mode;
epa, an expectation assignment //RESOLVABLE mode;
rea, a resolution assignment //RESOLVABLE mode;

output :
esa, an escalation assignment;

variables :
// Maps for capturing reachable states/transitions;
Map<State,Set<State>> mapStFwd, mapStBwd;
Map<State,Set<Trans>> mapTrFwd, mapTrBwd;
// Result map for mapping transitions to expectations;
Map<Trans,Set<Expectation>> mapEsc;

procedure : compExpect(State s) :
1 if mode = ALWAYS then
2 Set<State> bwds = mapStBwd.get(s);
3 return

⋃
st∈bwdsRA(st) × {‘ALWAYS’};

4 else if mode = SELECTED then
5 Set<Trans> bwdtr = mapTrBwd.get(s);
6 return

⋃
t∈bwdtrrsa(t) × {‘SELECTED’} × t.id();

7 else if mode = RESOLVABLE then
8 Set<Trans> bwdtr = mapTrBwd.get(s);
9 return

⋃
t∈bwdtrepa(t);

10 end

11 end procedure // continue...

some t ∈ smp.T:
ESA(t(t#1,t#2,t#3)) = {(r,‘ALWAYS’) | (∃ path(s1, t#1), s1 ∈ smp.SBCA, length(path)
> 1: r ∈ RA(s1)) ∧ (∃ path(t#1, s2), s2 ∈ smp.SBCA, length(path) > 1: r ∈ RA(s2))
∧ (∀ path(t#3, s3), s3 ∈ smp.SBCA, length(path) > 1: r /∈ RA(s3)) }
The advantage of this strategy is that users can apply this strategy to a valid SeqMP
choreography as is, i.e., no additional configuration is needed. The disadvantage is
that the strategy ignores that the execution of some BCAs does not create expecta-
tions whereas others do.
The result of applying this strategy is reflected in the use cases of figures 4.14 and
4.15 where the escalation sets are attached to each transition by enumerating the
corresponding roles in curly braces. For figure 4.15, only the initial letters of each role
are given and the string ‘ALWAYS’ is left out for presentation purposes. For example,
the escalation set {F} of the transition between c6 and c9 of figure 4.15 says for the
Financial Service Provider (FSP) role that it may have participated in an instance

148

4.6. SeqMP Choreographies

Algorithm 5: Compute Escalation Set: Part2

// continue...

procedure : compResolve(Set<Expectation> resolveSet, State s, Trans t) :
1 Set<Expectation> theRes = new Set();
2 State search = s;
3 if t 6= null then search = t #3;
4 foreach Expectation e in resolveSet do
5 if mode ∈ {ALWAYS,SELECTED} OR (mode = RESOLVABLE AND rea(e)

= ∅) then
// check resolution via role participation

6 Set<State> fwds = mapStFwd.get(search);
7 if t 6= null then fwds.add(t #3);
8 Set<Role> roles =

⋃
st∈fwdsRA(st);

9 if e #1 ∈ roles then theRes.add(e);

10 else if mode = RESOLVABLE AND rea(e) 6= ∅ then
// check resolution via reachable transitions

11 Set<Trans> fwdtr = mapTrFwd.get(search);
12 if t 6= null then fwdtr.add(t);
13 if ∃ res ∈ rea(e). res ⊆ fwdtr then
14 theRes.add(e)
15 end

16

17 end
18 return theRes;

19 end procedure // continue...

of the depicted SeqMP graph (if c2 or c5 were on the path to c6), that the FSP role
still could be triggered (via the path (c6,c10,c12,c13,c3,c5)) and that it cannot be
triggered any more when the transition has been fired (because from c9 no BCA with
participation of FSP can be reached). This may or may not be an issue depending on
whether or not the FSP considers each BCA c5 instance as a completely independent
business case. The LSP role, in turn, is not included in the escalation set between
c6 and c9 because it knows from the [shipped] outcome and the global SeqMP
model that there is no way of being involved in the current SeqMP instance any more.

For the next strategy the concept of ‘Role Selection Assignment’ is introduced:

Definition 4.6.6 (Role Selection Assignment)
A role selection assignment is a function RSA: smp.T → 2smp.R that, for a SeqMP
choreography smp, assigns to each transition t ∈ smp.T the set of roles sr ⊆ {r| r ∈
RA(t#1)} for which the expectation to participate once more during the choreography
is created upon firing t. �

149

4. Representing B2Bi Choreographies

Algorithm 6: Compute Escalation Set: Part3

algorithm :

// continue...

1 foreach State s in in a traversal of smp do
// Compute states/transitions reachable in forward/backward direction; s is not part of

the reachability set

2 mapStFwd.put(s,compStateFwd(s));
3 mapStBwd.put(s,compStateBwd(s));
4 mapTrFwd.put(s,compTransFwd(s));
5 mapTrBwd.put(s,compTransBwd(s));

6 end
// Actual escalation assignment calculation

7 foreach State s in in a traversal of smp do
8 Set<Expectation> eSet = compExpect(s);

// Remove entries of roles participating in s
9 foreach (r,e) ∈ eSet do

10 if r ∈ RA(s) then eSet = eSet \ {(r,e)};
11 end

// Determine resolvable expectations from s onwards

12 Set<Expectation> allRes = compResolve(eSet,s,null);
// Compare allRes to resolvable expectations of outgoing transitions

13 foreach Trans t ∈ SUCCs do
14 Set<Expectation> trRes = compResolve(allRes,null,t);
15 if allRes = trRes then
16 mapEsc.put(t,new Set());
17 else
18 Set<Expectation> noRes = copy(allRes);
19 noRes = noRes \ trRes;
20 mapEsc.put(t,noRes);

21 end

22 end

23 end

24 return mapEsc;

Strategy SELECTED:

This strategy is similar to the ‘ALWAYS’ strategy but not every outgoing tran-
sition of a BCA creates an expectation but only those transitions that the user
configures by specifying a role selection assignment. In addition, the user has the
option to specify for which of the participating roles of a BCA a particular outgoing
transition creates an expectation. Expectations are satisfiable as long as r may still
participate in some future BCA. The escalation criterion is (relative to some SeqMP
smp and role selection assignment RSA) for some t,t′ ∈ smp.T:
ESA(t(t#1,t#2,t#3)) = {(r,‘SELECTED’+t.id()) | (∃ path(s1, t#1), s1 ∈ smp.SBCA:

150

4.6. SeqMP Choreographies

r ∈ RSA(t′) with t′#3 = s1) ∧ (∃ path(t#1, s2), s2 ∈ smp.SBCA, length(path) > 1:
r ∈ RA(s2)) ∧ (∀ path(t#3, s3), s3 ∈ smp.SBCA, length(path) > 1: r /∈ RA(s3)) }
The advantage of this strategy is that it imposes a moderate configuration burden
on the user while offering the possibility to exclude transitions from expectation
creation. The disadvantage of this strategy is that the user has no control about the
events that lead to the satisfaction of an expectation.

Figure 4.16.: SELECTED Strategy Applied to the Use Case of Figure 4.15

Figure 4.16 shows the result of applying the SELECTED strategy to the complex
use case of figure 4.15 with the following role selection assignment RSA:
RSA = {(c1-c3,{customer, seller}), (c3-c6,{esp, seller}), (c4-c7,{lsp, seller})}
There are three major differences to observe when comparing this result to the result
of the ALWAYS strategy as shown in figure 4.15: Firstly, the Customer role is not
included in the escalation sets of transitions (c2-f3), (c4-f6) and (c4-f7) because only
transition (c1-c3) is configured to create an expectation for the Customer and this
transition is not reachable in backward direction of those transitions. Secondly, as
there are no expectations configured for the Financial Service Provider this role
is not included in any escalation set. Thirdly, multiple expectations are created
for the Seller role. The transitions have been added to the role names in figure
4.16 to distinguish between the various expectations, e.g., ‘S(c1-c3)’, ‘S(c3-c6)’ or
‘S(c4-c7)’. The escalation sets then reflect which of those expectations potentially
are violated. So, there are three violated Seller expectations for (c11-f16) whereas
there are only two violated Seller expectations for (c12-f17). Note that these results

151

4. Representing B2Bi Choreographies

highly depend on the role selection assignment provided by the user and therefore the
business meaning of escalation sets is heavily influenced by the user. For example,
not configuring an expectation for the FSP role may mean that the BCAs with FSP
participation are completely independent of other BCAs or it may mean that the
user just did not want to focus on the FSP role.

For the last strategy, the definitions of ‘Expectation Assignment’ and ‘Resolution
Assignment’ are needed:

Definition 4.6.7 (Expectation Assignment)
An expectation assignment is a function EPA: smp.T → 2E that, for a SeqMP
choreography smp and a set of expectation names EN, assigns to each transition t
∈ smp.T the set of expectations se ⊆ E={(r,en)| r ∈ RA(t#1), en ∈ EN} that is
created upon firing t. �

Definition 4.6.8 (Resolution Assignment)
A resolution assignment is a function REA: E → 22smp.T

that, for a SeqMP choreog-
raphy smp and a set of expectations E, assigns to each expectation e ∈ E the set of
sets of transitions setRes ⊆ 2smp.T for which each element resolves e. �

Strategy RESOLVABLE:

The last strategy offers the possibility to create multiple expectations per role
upon firing a transition and to define sets of sets of transitions that need to be fired
to satisfy an expectation. The escalation criterion is (relative to some SeqMP smp,
expectation assignment EPA and resolution assignment REA) for some t,t′ ∈ smp.T:
ESA(t(t#1,t#2,t#3)) = {ep ∈ EPA(t′) | (∃ path(s1, t#1), s1 ∈ smp.SBCA: t′#3 =
s1) ∧ (∃ a sequence of transitions t1,...,tn ∈ rp.T. (t1#1 = t#1 ∧ ∃ reSet ∈ REA(ep).
reSet ⊆ t1,...,tn)) ∧ (@ a sequence of transitions t1,...,tn ∈ rp.T. (t1#1 = t#3 ∧ ∃
reSet ∈ REA(ep). reSet ⊆ t1,...,tn)) }
While this strategy places considerable burden upon the user to define comparatively
complex expectation and resolution assignments, it allows for fine-grained configura-
tion possibilities to define when expectations are created and satisfied. In addition,
users may choose to avoid the specification of complete expectation and resolution
assignments by focusing in on only selected expectations and resolutions.

Figure 4.17 shows the result of applying the RESOLVABLE strategy to the complex
use case of figure 4.15 with the following expectation assignment EPA and resolution
assignment REA:
EPA =
{(c1-c3,{(Customer,ReceiveProduct), (Customer,PayProduct)}),
(c1-c2,{(Customer,EscortedProduct)}),
(c6-c10,{(Customer,ResolveDamage)}),
(c10-c12,{(Customer,SendBack)}),
(c8-c7,{(Customer,ReceiveEscort)})}

152

4.6. SeqMP Choreographies

Figure 4.17.: RESOLVABLE Strategy Applied to the Use Case of Figure 4.15

REA =
{((Customer,ReceiveProduct),{{(c6-c8)},{(c6-c9)}}), ((Customer,PayProduct),{{(c9-
f13)}}),
((Customer,EscortedProduct),{{(c11-c9),(c9-f13)}}),
((Customer,ResolveDamage),{{(c6-c8)},{(c6-c9)}}),
((Customer,SendBack),{{(c12-c13)}}),
((Customer,ReceiveEscort),{{(c11-c9)}})}

When comparing the RESOLVABLE strategy to the first two strategies observe the
following extensions: Firstly, there may be multiple expectations per transition for the
same role. For example, upon firing (c1-c3) the expectations named ‘ReceiveProduct’
and ‘PayProduct’ are created for the Customer role. Secondly, the resolution
of expectations is configurable and does not depend on role participation during
BCAs. For example, transition (c9-f13) is configured to resolve the PayProduct
expectation whereas either (c6-c8) or (c6-c9) can resolve ReceiveProduct. Therefore,
(Customer, PayProduct) is part of the escalation set of (c7-f10) whereas (Customer,
ReceiveProduct) is not. The reason is that neither (c6-c9) or (c6-c8) are reachable
in forward direction from BCA c7. So firing (c7-f10) does not cut off any resolution
of ReceiveProduct and therefore ReceiveProduct does not go into the escalation set
of (c7-f10). Note that the result of the RESOLVABLE strategy highly depends on
the expectation and resolution assignment provided by the user and thus allows a
fine-grained analysis of SeqMP choreographies.

153

4. Representing B2Bi Choreographies

4.6.3.2. Computing Role Projections

Role projections of multi-party choreographies are useful for focusing on the relevant
behavior of a particular role r. The approach for computing projections of a SeqMP
smp for r is based on abstracting interactions without participation of r using so-
called event-based choices (EBCs). So, if a BCA without participation follows a BCA
with participation of r then the second BCA is replaced by an EBC. The EBC then
is the new target of the transition between the two BCAs. Conversely, if a BCA with
participation of r follows a BCA without participation then the transition between
the two BCAs is removed and a new transition between the EBC for abstracting the
former BCA and the BCA with participation of r is created. In figures 4.18, 4.19, 4.20
and 4.21, black vertical bars are used to represent EBCs. Consider figure 4.18 which
shows the projection of the use case of figure 4.15 for the Customer role. As the
Customer does no participate in BCA c3, it is abstracted by EBC ebc1 and transition
(c1-c3) is linked to ebc1. c5 is then conflated with ebc1 because the Customer does
not participate in c5 either. ebc1 then is linked to BCA c6 as this is the next BCA
with participation of the Customer. The guard of this transition is "true" because it
is transparent for the Customer what happens in the meantime. Note that EBCs
may also be created if the predecessor is not a BCA with participation of the focal
role. For example, BCAs c2 and c4 are represented by ebc4. When processing
transition (c4-c7) an extra EBC (ebc3) is created because c7 is reachable via c8 as
well. Merging ebc4 and ebc3 would put the behavioral integrity of the projection at
risk because then all outgoing transitions of ebc4 would be reachable via c8 as well.
Note that in [189], EBCs were merged in such a case and an additional EBC simply
was introduced for the path via c8. The behavior of the algorithm was changed
because the new algorithm creates more compact projections and provides that the
projection of a state is independent of the path through which it is discovered.
Definitions 4.6.9 and 4.6.10 formally capture role projections and some auxiliary

functions.

Definition 4.6.9 (Role Projection)
A role projection rpr for role r of a SeqMP choreography smp is a directed graph Proj
(s0, S,T) with the following elements:

• s0 = smp.s0 the (unique) start state.

• S = s0 ∪ EBC ∪ F ∪ SBCA the states of the projection with EBC a set of
event-based choice states, F ⊆ smp.F, SBCA ⊆ smp.SBCA with ∀ bca ∈ SBCA.
r ∈ smp.RA(bca).

• T ⊆ S × smp.G × S the set of transitions where for each t ∈ T. t ∈ EBC ×
{true} × EBC ∨ t ∈ smp.T ∨ (∃t′ ∈ smp.T. (t=(t′#1,t′#2,e) ∨ t=(e,true,t′#3))
∧ e ∈ EBC). �

Definition 4.6.10 (Projection Auxiliary Functions) The auxiliary functions
defined for SeqMP choreographies in definition 4.6.2 are correspondingly defined for

154

4.6. SeqMP Choreographies

Figure 4.18.: Projection for the Customer Role (Use Case of Figure 4.15)

Figure 4.19.: 1 out of 2 Possible Projections for the LSP Role (Use Case of Figure
4.15)

role projections. In particular, a pathr(a,b) is a path between two nodes a and b in
projection rp and Pathr(a,b) is the set of all paths between a and b in projection rp.
If rp.s0 links to an event-based choice then rp.initEBC can be used to refer to that
event-based choice. �

The role projection algorithm presented in algorithm objects 7, 8 and 9 gives the
details of computing role projections. Note that there may be more than one projec-
tion per role. Multiple projections of a particular SeqMP smp for a particular role r
are deliberately allowed for because different branches of a multi-party choreography
potentially may comprise completely unrelated BCAs of r. Consider figure 4.15 and
the LSP role. If an instance of the choreography began with BCAs c1, c2 and c4 then
only the BCAs of figure 4.19 would be possible for the LSP role. Assume further
there was no transition between c8 and c7. Then, depending on whether transition
(c2-c4) or (c2-c3) is taken, completely disjoint sets of BCAs with LSP-participation
are possible. In that situation, integration participants should not be forced to

155

4. Representing B2Bi Choreographies

view unrelated BCAs as part of a single collaboration. Algorithm 7 can be used for
identifying potentially disjoint projections for a particular role r. Once the first BCA
with participation of r is found that could be the starting point of such a projection,
the computation of a role-specific projection at a particular state is started (algorithm
objects 8 and 9). For the case of the LSP role of the use case of figure 4.15, this
approach leads to two individual projections that overlap. In this case, the individual
projections still may be considered to be two different use cases or may be merged
which depends on the system setting of the integration participant. Algorithm object
10 shows how two distinct projections of the same role can be merged such that the
individual projections and the corresponding merge are behaviorally equivalent. The
algorithm is defined for two projections, but it can be applied iteratively to cover
the case of more than two projections.

Algorithm 7: Projection Computation

input :
A valid SeqMP smp to be analyzed
output :
A mapping of roles to their projections: smp.R → Set<State>
variables :
Set<State> computed;
//initially maps each role of smp to an empty set of projections;
Map<Role,Set<State>> projs;
Boolean processBegin;

algorithm :

1 processBegin = true;
2 foreach State s of each path without loop in a depth first traversal of smp do
3 Set<Role> known =

⋃
r∈states on the current path \ sRA(r);

4 Set<Role> curr = RA(s);
5 curr = curr \ known;
6 if curr 6= ∅ ∧ s /∈ computed then
7 foreach Role r in curr do

// Add role projection for r starting at s

8 projs.get(r).add(doProjection(r, s, processBegin));

9 end
10 computed.add(s);

11 end
12 if processBegin then processBegin = false;

13 end
14 return projs;

156

4.6. SeqMP Choreographies

Algorithm 8: Role Projection - State s: Part 1

input :
State s and Role r of a valid SeqMP smp;

boolean first, true if s is the first BCA in smp
output :
The first state of the role projection sout
variables :
Map<String, State> proj //state ids to projected states;
Map<State,State> visitMap //source states to projected states;

procedure : walk(State curr) :
1 State mSelf = visitMap.get(curr);
2 foreach Trans t =(t #1,t #2,t #3) in SUCCcurr do
3 State mTarg = visitMap.get(t #3);
4 if mTarg 6= null then
5 if mSelf is an EBCState AND mTarg /∈ SUCCmSelf then //define transition

between #1 and #3 with guard #2

6 trans(mSelf, "true", mTarg);
7 else
8 trans(mSelf, t #2, mTarg);
9 end

10 else
11 if t#3 is a FinalState ∨ r ∈ RA(t#3) then //copy state
12 State nextCopy = t#3.scopy();
13 visitMap.put(t#3, nextCopy);
14 proj.put(t#3.id(), nextCopy);
15 if mSelf is an EBCState then
16 trans(mSelf, "true", nextCopy);
17 else
18 trans(mSelf, t#2, nextCopy);
19 end

20 else //abstract by event-based choice
21 if mSelf is an EBCState then

// alternative path to t #3?
22 if ∃ bca ∈ smp.BCA. r ∈ RA(bca) ∧ Path(bca,t #3) 6= ∅ then
23 EBCState ebc = new EBCState(); visitMap.put(t#3, ebc);
24 proj.put(ebc.id(), ebc);
25 trans(mSelf, "true", ebc);

26 else
27 visitMap.put(t#3, mSelf);
28 end

29 else
30 EBCState ebc = new EBCState(); visitMap.put(t#3, ebc);
31 proj.put(ebc.id(), ebc);
32 trans(mSelf, t#2, ebc);

33 end

34 end
35 walk(t#3);

36 end

37 end

38 end procedure // continue...

157

4. Representing B2Bi Choreographies

Algorithm 9: Role Projection - State s: Part 2

algorithm :

// ...continue

1 sout = new StartState("s1");
2 State currCopy = s.scopy() // copy s without transitions

3 proj.put("s1", sout);
4 proj.put(s.id(), currCopy);
5 if first then
6 trans (proj.get("s1"), "true", proj.get(s.id()));
7 else
8 proj.put("ebc0", new EBCState("ebc0"));

// define transition between #1 and #3 with guard #2

9 trans (sout, "true", proj.get("ebc0"));
10 trans (proj.get("ebc0"), "true", proj.get(s.id()));

11 end
12 visitMap.put(s, currCopy);
13 walk(s);
14 return sout;

158

4.6. SeqMP Choreographies

Algorithm 10: Projection Merge

input :
State rp1, rp2, two projections of the same role;

output :
State rpm, the merged role projection;

algorithm :

1 rpm = rp1.deepCopy()// copy of complete projection of rp1

// insert extra leading event-based choice to avoid new traces by loops back to rp1.initEBC
2 State mergeEBC = new() EBCState();
3 rpm.S.add(mergeEBC);

// use prj(state) to get the copy of state

4 rpm.T.del((prj(rp1.s0),"true",prj(rp1.initEBC)));
5 rpm.T.add((prj(rp1.s0),"true",mergeEBC));
6 rpm.T.add((mergeEBC,"true",prj(rp1.initEBC)));

// prepare adding rp2

7 rpm.T.add((mergeEBC,"true",rp2.initEBC.copy()));
8 foreach Trans t =(t #1,t #2,t #3) in a breadth first traversal starting from

rp2.initEBC do
9 if t #3.id() /∈ rpm.S.ids() then

10 rpm.S.add(t #3.copy());

11 end
// copy transitions

12 rpm.T.add({(prj(t #1),t #2,prj(t #3))});
// Stop upon encountering an overlap node

13 if t #3.id() ∈ rp1.S.ids() then
14 stopTraversalBranch();

15 end

16 end

17 return rpm;

159

4. Representing B2Bi Choreographies

For reasoning about behavioral equivalence, definitions 4.6.11 and 4.6.12 introduce
the concepts of ‘Boundary Overlap Node’ and ‘Execution Traces’. Theorem 4.6.1
then formally captures behavioral equivalence and lemmata 4.6.2, 4.6.3 and 4.6.4 are
used during its proof.

Definition 4.6.11 (Boundary Overlap Node)
A boundary overlap node of two role projections rp1 and rp2 is a BCA bca such that
bca ∈ rp1.SBCA ∧ bca ∈ rp2.SBCA ∧
(
(@bca′ ∈ rp2.SBCA. ∃ path(rp1.s0,bca′), path(bca′,bca). bca ∈ path(rp1.s0,bca′)) ∨
(@bca′ ∈ rp1.SBCA. ∃ path(rp2.s0,bca′), path(bca′,bca). bca ∈ path(rp2.s0,bca′))
). �

A boundary overlap node also can be informally characterized as a node that is part
of both projections under consideration that is not preceded on any path from the
respective start states to itself by another node shared by the two projections.

Definition 4.6.12 (Execution Traces)
An execution trace trace(a,b) between two states a and b of a role projection rp is a
sequence of states a,st0,...,stn,b that is derivable from some path(a,b) by removing
all event-based choices. Let Trace(a,b) be the set of all traces between a and b. For
some state s ∈ rp.S of projection rp, the set of leading traces is Tracelead(s) =
Trace(rp.s0,s) and the set of trailing traces is Tracetrail(s) =

⋃
f∈rp.FTrace(s,f). �

Theorem 4.6.1 (Behavior Preservation of Merge) Consider two non-identical
projections rp1 and rp2 for the same role r of a valid SeqMP choreography smp and
the merge rpm of rp1 and rp2 as derived by algorithm 10. Then Tracetrail(rpm.s0) =
Tracetrail(rp1.s0) ∪ Tracetrail(rp2.s0). �

Proof 4.6.1
The proof is split up into two parts:
Part 1: rpm produces all traces contained in rp1 and rp2.
By lemma 4.6.4 and the definition of execution traces, it is sufficient to consider the
forward subgraphs of rp1, rp2 starting with rp1.initEBC, rp2.initEBC respectively.
The subgraph starting with rp1.initEBC is a subgraph of rpm. So, rpm produces all
traces of rp1. Furthermore, let B be the set of boundary nodes of rp1 and rp2. By
algorithm 10, lines 9 to 12, all states and transitions not connected to a boundary
node are copied to rpm without modification. Otherwise, consider an arbitrary path
p = rp2.initEBC,...,bca′,...,b with b ∈ B. If bca′ ∈ rp1.SBCA then bca′ is not copied
to rpm (line 9 of algorithm 10). However, by lemma 4.6.3, the forward graph of bca′

is already contained in rpm.
Conversely, if bca′ /∈ rp1.SBCA then bca′ /∈ Path(b′,f) for any b′ ∈ B and f ∈ smp.F
because every forward reachable state is visited in a projection of b′. Then @ bca′′. (∃
path(rp2.initEBC,bca′′),path(bca′′,bca′) ∧ bca′′ ∈ Path(b′,f) for any b′ ∈ B and f ∈

160

4.6. SeqMP Choreographies

smp.F). Then all states and transitions visited on p between rp2.initEBC and bca′

are copied to rpm. �
Part 2: rpm produces no trace that is neither contained in rp1 nor rp2.

For part 2, assume the opposite. Then, there would have to be some BCA or transition
in rpm that adds to a new trace and that is neither contained in rp1 nor in rp2.
During copying rp1 (line 1), no new states or transitions are created. As long as no
boundary node is encountered, copying transitions and states of rp2 just reproduces rp2.
For a boundary node b, however, Path(rp2.initEBC,b) is retained without structural
modification in rpm and Tracetrailrpm (b) = Tracetrailrp2

(b) by means of lemma 4.6.3 �

Lemma 4.6.2 (Path Independent State Mapping) Consider some state s ∈
smp.s0 ∪ smp.SBCA ∪ smp.F of a valid SeqMP choreography smp. Then, its
mapping to a state s’ ∈ rp.S of some role projection rp of smp created according to
the projection algorithm (algorithm objects 8 and 9) does not depend on the path on
which s is discovered. �

Proof 4.6.2
When creating a projection rp of SeqMP choreography smp for role r, the following
types of transitions have to be considered. Thereby, note that upon processing
transitions of cases 2-7, the source state already has been mapped.
Case 1: t(smp.s0,"true",bca), bca ∈ smp.SBCA
There is no path that starts before smp.s0, so the claim holds for smp.s0 and bca.
Case 2: t(bca1,t#2,bca2), bca1,bca2 ∈ smp.SBCA ∧ r ∈ RA(bca1) ∧ r ∈ RA(bca2)
If bca2 has not been mapped before, then a copy of bca2 is created. Otherwise, its
copy is retrieved (cf. algorithm objects 8 and 9). So, the mapping of bca2 and of t is
unique.
Case 3: t(bca1,t#2,f), bca1 ∈ smp.SBCA ∧ f ∈ smp.F ∧ r ∈ RA(bca1)
By analogy with case 2.
Case 4: t(bca1,t#2,bca2), bca1,bca2 ∈ smp.SBCA ∧ r ∈ RA(bca1) ∧ r /∈ RA(bca2)
Assume bca2 is not reachable via a second path. Then an event-based choice is created
for bca2. Otherwise, if bca2 has not yet been mapped then a dedicated new event-based
choice is created as well. If bca2 already has been mapped then by line 22 of algorithm
8 a dedicated new event-based choice has been created for bca2 as well. Transition
t then is created between the mapping of bca1 and the event-based choice. So, the
mapping of bca2 and t is unique.
Case 5: t(bca1,t#2,bca2), bca1,bca2 ∈ smp.SBCA ∧ r /∈ RA(bca1) ∧ r ∈ RA(bca2)
If bca2 has not been mapped before, then a copy of bca2 is created. Otherwise, its
copy is retrieved and a transition between the event-based choice for abstracting bca1
and the copy of bca2 with t#2 as guard is created. So, the mapping of bca2 and t is
unique.
Case 6: t(bca1,t#2,f), bca1 ∈ smp.SBCA ∧ f ∈ smp.F ∧ r /∈ RA(bca1)
By analogy with case 5.
Case 7: t(bca1,t#2,bca2), bca1,bca2 ∈ smp.SBCA ∧ r /∈ RA(bca1) ∧ r /∈ RA(bca2)
Assume, bca2 is not reachable via a second path. Then bca2 is mapped to the event-
based choice used for abstracting bca1, t is not mapped, and the mapping is unique.

161

4. Representing B2Bi Choreographies

Otherwise, if bca2 has not yet been mapped then by line 22 of algorithm 8 a dedicated
new event-based choice is created. If it already has been mapped a dedicated new
event-based choice has been created for bca2 by the same argument. So, the mapping
of bca2 and t is unique. �

Lemma 4.6.3 (Isomorphic Subgraph Mappings) Consider some state s ∈ smp.s0

∪ smp.SBCA ∪ smp.F of a valid SeqMP choreography smp. Then the graph that
results from mapping the forward reachable subgraph of s during some role projection
rp of smp is isomorphic for all paths on which s may be discovered. �

Proof 4.6.3
Iteratively apply lemma 4.6.2 during a forward traversal of the graph. �

Lemma 4.6.4 (Unique Projection Start Pattern)
Consider multiple projections rp1,...,rpn of a valid SeqMP choreography smp for the
same role r. Then, all of these projections rpi start with the initial state linking only
to an event-based choice:
rpi.s0 = smp.s0 ∧ (∃ t(s0,"true",e) ∈ rpi.T. e ∈ rpi.EBC ∧ (@t′ ∈ rpi.T. t′ 6= t1 ∧
t′#1 = rpi.s0)). �

Proof 4.6.4
If there are multiple projections rp1,...,rpn for role r then r does not participate in
the first BCA of smp and hence smp.s0 is connected to an event-based choice as of
algorithm 9. Otherwise, there would be only a single projection as every state of a
valid SeqMP choreography is reachable via the first BCA. �

While all BCAs without participation of the focal role are abstracted away by
means of the projection algorithm, the representation of projections still can be
optimized. Figure 4.20 shows one out of two possible projections for the FSP role
of the use case depicted in figure 4.15. It contains only one BCA, but five EBCs
and thirteen final states are included to describe permissible behavior. The following
five reduction rules have been identified to simplify projections. Rules 4.6.1, 4.6.2
and 4.6.3 do not affect the set of execution traces in the strict formal sense. Rules
4.6.4 and 4.6.5 do affect the set of execution traces because final states are removed
from the projections and final states are accounted for in execution traces. However,
this can be justified by the following consideration: If an EBC links to multiple final
states then the focal role is not aware of which final state is reached at runtime
(without notification outside the choreography definition). So, the focal role just has
the information that the process may be terminated, but it does not know when
and with which result. As a consequence, all the focal role needs to know is that
the process may be terminated after an event-based choice and hence multiple final
states after an EBC can be conflated.

162

4.6. SeqMP Choreographies

Figure 4.20.: 1 out of 2 Possible Projections for the FSP Role (Use Case of Figure
4.15)

Figure 4.21.: Projection of Figure 4.20 after Applying Reduction Rules

By applying the following reduction rules the projection depicted in figure 4.20
with five EBCs and thirteen final states can be reduced to the projection depicted in
figure 4.21 with only two EBCs and two final states.

Rule 4.6.1 (Subsequent Event-Based Choices)
Let ebc1, ebc2 be event-based choices of a role projection rp of some role r,
Tinter = {t ∈ rp.T | (t#1 = ebc1 ∧ t#3 = ebc2) ∨ (t#1 = ebc2 ∧ t#3 = ebc1)},
Tfwd

ebc1
= {t ∈ rp.T | t#1 = ebc1} \ Tinter,

Tfwd
ebc2

= {t ∈ rp.T | t#1 = ebc2} \ Tinter such that
@ t ∈ rp.T \ Tinter. t#3 = ebc2.
Then, rp can be simplified without affecting the execution traces of r by performing
the following modifications in order (to be interpreted as assignments, not equations):

1. rp.T = rp.T \ Tinter

2. ∀ t ∈ Tfwd
ebc2

:
rp.T = rp.T ∪ {(ebc1,t#2,t#3)}

163

4. Representing B2Bi Choreographies

3. rp.T = rp.T \ Tfwd
ebc2

4. rp.EBC = rp.EBC \ ebc2

This reduction rule can be applied to conflate ebc1 and ebc2 of figure 4.20. The
informal argument for its correctness is that firing transitions between ebc1 and ebc2
is transparent to the user.

Rule 4.6.2 (Multiple Event-Based Choices)
Let MEBC = ebc1,...,ebcn be a set of event-based choices of a role projection rp of
some role r indexed by I = [1;n],
Tinter = {t ∈ rp.T | t#1 = ebci ∧ t#3 = ebcj ∧ i,j ∈ I ∧ i6=j},
Tfwd

ebci
= {t ∈ rp.T | t#1 = ebci} \ Tinter for i ∈ I such that

(∀ i ∈ [2;n]. ∃ t ∈ Tinter. t#1 = ebc1 ∧ t#3 = ebci) ∧
(∀ i ∈ [2;n]. @ t ∈ rp.T \ Tinter. t#3 = ebci).
Then, rp can be simplified without affecting the execution traces of r by performing
the following modifications in order (to be interpreted as assignments, not equations):

1. rp.T = rp.T \ Tinter

2. ∀ t ∈
⋃

i∈[2;n] Tfwd
ebci

:

rp.T = rp.T ∪ {(ebc1,t#2,t#3)}

3. rp.T = rp.T \
⋃

i∈[2;n] Tfwd
ebci

4. rp.EBC = rp.EBC \ (MEBC \ {ebc1})

This reduction rule can be applied to conflate ebc1, ebc3 and ebc4 of figure 4.20 and
the argument for its correctness is analogous to rule 4.6.1. Strictly speaking this rule
is the generalized form of rule 4.6.1.

Rule 4.6.3 (Loop)
Let bca be a BCA and MEBC = ebc1,...,ebcn be a set of event-based choices of a role
projection rp of some role r indexed by I = [1;n], PREDbca = {t ∈ rp.T | t#3 =
bca},
Tinter = {t ∈ rp.T | t#1 = s1 ∧ t#3 = s2 ∧ s1, s2 ∈ MEBC ∪ {bca} ∧ s1 6= s2},
Tfwd

ebci
= {t ∈ rp.T | t#1 = ebci} \ Tinter for i ∈ I such that

(∀ i ∈ [2;n]. ∃ t ∈ Tinter. t#1 = ebc1 ∧ t#3 = ebci) ∧
(∀ i ∈ [2;n]. ∃ t ∈ Tinter. t#1 = ebci ∧ t#3 = ebc1) ∧
(∀ i ∈ [2;n]. ∃ t ∈ Tinter. t#1 = bca ∧ t#3 = ebci) ∧
(∃ t ∈ rp.T. t#1 = ebc1 ∧ t#3 = bca) ∧
(∀ i ∈ [2;n]. @ t ∈ rp.T \ Tinter. t#3 = ebci).
Then, rp can be simplified without affecting the execution traces of r by performing
the following modifications in order (to be interpreted as assignments, not equations):

1. rp.T = rp.T \ ((Tinter \ PREDbca) \ SUCCbca)

164

4.6. SeqMP Choreographies

2. ∀ t ∈
⋃

i∈[2;n] Tfwd
ebci

:

rp.T = rp.T ∪ {(ebc1,t#2,t#3)}

3. ∀ t ∈ (SUCCbca ∩ Tinter)
rp.T = rp.T ∪ {(t#1,t#2,ebc1)}

4. rp.T = rp.T \
⋃

i∈[2;n] Tfwd
ebci

5. rp.T = rp.T \ (SUCCbca ∩ (Tinter \ {t ∈ Tinter | t#3 = ebc1}))

6. rp.EBC = rp.EBC \ (MEBC \ {ebc1})

This rule is not reflected in the projections of figures 4.18, 4.19, 4.20.

Rule 4.6.4 (Multiple Final States)
Let ebc be an event-based choice of a role projection rp of some role r, Tf a set of
transitions such that ∀ t ∈ Tf . t#1 = ebc ∧ t#3 ∈ rp.F ∧ (@ t′ ∈ rp.T. t′ 6= t ∧
t′#3 = t#3, and Talt a non-empty set of transitions such that ∀ t ∈ Talt. t#1 = ebc
∧ t#3 /∈ rp.F.
Then, rp can be simplified by performing the following modifications in order (to be
interpreted as assignments, not equations):

1. rp.T = rp.T \ Tf

2. rp.F = rp.F \ {f| ∃ t ∈ Tf . t#3 = f}

3. rp.F = rp.F ∪ f, f a new FinalState

4. rp.T = rp.T ∪ {(ebc,"true",f)}

This reduction rule can be applied to conflate all final states of figure 4.20 connected
to ebc1, ebc2, ebc3 and ebc4 after having applied rules 4.6.2 and 4.6.1. The rationale
for doing so has been explained above.

Rule 4.6.5 (Event-Based Choice and Final States) Let ebc be an event-based
choice of a role projection rp of some role r, PREDebc = {t ∈ rp.T | t#3 = ebc},
Tfinal = {t ∈ rp.T | t#1 = ebc ∧ t#3 ∈ rp.F} such that @ t′ in rp.T \ Tfinal. t′#1
= ebc ∨ t′#3 = t#3 for some t ∈ Tfinal.
Then, rp can be simplified by performing the following modifications in order (to be
interpreted as assignments, not equations):

1. rp.T = rp.T \ Tfinal

2. rp.F = rp.F \ {s| ∃ t ∈ Tfinal. t#3 = s}

3. rp.F = rp.F ∪ f, f a new FinalState

165

4. Representing B2Bi Choreographies

4. ∀ t ∈ PREDebc:
rp.T = rp.T ∪ {(t#1,t#2,f)},
rp.T = rp.T \ {t}

5. rp.EBC = rp.EBC \ {ebc}

This rule can be applied to conflate ebc1, f12, f13, and f14 of figure 4.19.

4.7. Chapter Summary

This chapter introduced CHORCH’s choreography styles for B2Bi choreography
modeling. The definition of these styles, in particular the definition of ebBP-Reg
and ebBP-ST, is based on the ebBP format. ebBP is used as choreography format
for the reasons described in chapter 3. The two most important reasons are the
suitability of ebBP as B2Bi choreography exchange format (due to its XML syntax)
and the availability of B2Bi domain concepts like BTs that allow the modeler to
leverage common knowledge.

Yet, there are some deficiencies in using ebBP as is for the purpose of choreog-
raphy modeling that provide the motivation for the definition of CHORCH’s B2Bi
choreography styles:

• Amendments of ebBP Section 4.1 describes a series of shortcomings in the
ebBP specification. Most notably, the exchange procedures that are supposed
to implement ebBP BTs allow for inconsistent results of the integration part-
ners. This thesis provides an improvement in that regard by providing an BT
execution model in section 4.3 that is formally defined, has formal execution
semantics, is formally validated by means of model checking techniques (see
appendix D) and is implementable using Web Services and BPEL technology
(see next chapter).

• Unambiguous execution semantics ebBP does not define a formal execu-
tion semantics for B2Bi choreography models. As the definition of an execution
semantics (if implementability is a requirement) is necessarily affected by the
available primitives of the execution environment, this is not a very surprising
fact. ebBP is deliberately technology-agnostic and therefore limited in making
assumptions about the execution environment.

CHORCH defines ebBP-Reg, ebBP-ST and SeqMP as choreography styles that
are aligned with specific modeling requirements (cf. chapter 3). This styles are
formally defined and provided with a formal operational execution semantics.
While the execution semantics for ebBP-Reg and ebBP-ST is defined explicitly,
the SeqMP execution semantics is simply defined to comply with state machine
semantics. This is acceptable as SeqMP is not conceived as implementation
contract, but rather as a model for the analysis of multi-party choreographies
where the crucial information is the sequence of component BCAs. The

166

4.7. Chapter Summary

formal execution semantics of ebBP-Reg and ebBP-ST is the precondition for
unambiguous interpretation of choreography models and the development of
tooling for modeling, analysis and translation into implementation artifacts.

Note that the defined execution semantics is applicable to CHORCH’s choreogra-
phy styles only and not to arbitrary ebBP models. As CHORCH’s choreography
styles are known to cover the majority of integration scenarios for the identified
type of B2Bi (cf. chapter 3), this is a minor limitation.

• Characterization of model validity The characterization of model validity
requires the definition of the term “validity”. CHORCH defines a B2Bi chore-
ography model to be valid if and only if it is an instance of either ebBP-Reg,
ebBP-ST or SeqMP. Validity in this sense implies that a corresponding model
can either be translated into a Web Services and BPEL-based implementation
(see next chapter) or that it can be analyzed using the SeqMP framework. The
rules for defining valid models are given in sections 4.4.3, 4.5.2 and 4.6.1.

As ebBP does neither define concrete choreography styles that are aligned with
specific modeling requirements nor formal execution semantics, an advanced
characterization of model validity as provided by CHORCH is missing.

Beyond these benefits it is worth noting that CHORCH’s choreography styles are
both simple and sufficient.

Simplicity of CHORCH’s B2Bi choreography styles is fostered by using state
machines as underlying paradigm for the specification. This enables an intuitive
modeling approach where the user is allowed to connect interaction activities in an
almost unconstrained way. In particular, there is no need to think in structured
control flow definitions [76] that heavily constrain modeling. Furthermore, the
execution semantics of ebBP-ST, ebBP-Reg and SeqMP as well as the corresponding
BPEL implementation and analysis framework ensure that the global perspective
on choreographies is also retained for the local views of the integration partners.
This is different from other approaches such as [28,33,232] where the local view of
integration partners on the actual message exchanges may deviate from the global
choreography definition due to the use of asynchronous messaging facilities.

Sufficiency of CHORCH’s B2Bi choreography styles is given by means of alignment
with the requirements derived from this work’s underlying literature review and a
significant set of real-world use cases (cf. chapter 3).

The validation of CHORCH’s B2Bi choreography styles is provided in several ways.
Firstly, the formal definition of each ebBP dialect together with the definition of
formal execution semantics as well as modeling concrete use cases in ebBP allows
for reciprocal detection of design and formalization errors. Secondly, the sanity of
the SeqMP model is validated using a prototypic implementation of the analysis
algorithms and by proving the correctness of the SeqMP role projection algorithm.
Thirdly, the implementability of ebBP-ST and ebBP-Reg on top of the integration
architecture introduced in section 4.2 using Web Services and BPEL technology is
given.

167

4. Representing B2Bi Choreographies

As the binary choreography styles are supposed to be used as implementation
contract between integration partners, the derivation of corresponding implemen-
tation artifacts is of particular interest. The next chapter will therefore provide a
more detailed description of the integration architecture, spell out the technology
assumptions made about the environment, and describe the BPEL mapping rules
for the corresponding ebBP models.

168

5. Implementation of Choreographies
as BPEL Orchestrations

This chapter shows how the execution model for ebBP BTs as well as ebBP-Reg can
be implemented using Web Services and BPEL technology and thus demonstrates
the implementability of the corresponding execution semantics. As a by-product,
guidelines for automatically generating BPEL-based implementations are presented.
However, note that one valid way of implementing the semantics is described and not
the only valid way. By choosing ebBP-Reg instead of ebBP-ST the more demanding
model in terms of control flow is presented. Moreover, the mapping of ebBP-ST to
BPEL is covered in [182] and given in appendix B so that the mapping of the binary
choreography styles of the previous chapter can be considered to be complete. SeqMP
is not covered in this chapter because it is designed as a framework for the analysis
of multi-party choreographies and not as an abstract implementation specification.

For the discussion of the implementation, remind that the purpose of B2Bi chore-
ographies is the specification of the message exchanges between the BSIs of the
interacting parties in order to facilitate interoperable implementation. Therefore, a
description of B2Bi system implementation requires a precise description of the mes-
sage send and receive events of each individual interaction partner. In the following,
using public orchestrations, private orchestrations or so-called control processes for
this purpose is discussed.

Non-executable public orchestration processes (cf. section 2.2) could be specified
that have to be refined with business logic later on in order to derive fully executable
processes. Such a public orchestration approach is disadvantageous in several ways.
Firstly, implementability of public orchestrations and the effort needed for implemen-
tation is unknown. Secondly, depending on the public orchestration language, refining
public orchestrations may be hard if not impossible from a practical point of view.
During the course of this thesis, prototypic BPEL-based implementations of BTs
and BCs comprised hundreds to thousands of lines of BPEL code. If auto-generated,
manually editing such BPEL definitions is cumbersome and error-prone. Thirdly,
refining public orchestrations may impede compliance of the BSI implementation to
the choreography definition due to unintended control flow modifications when filling
in business logic.

Alternatively, the description of the message send and receive events of each
individual interaction partner could be given by means of complete implementations
of BSIs in the sense of private orchestrations (cf. section 2.2). However, such an
approach limits reuse of orchestration definitions as these are tailored to one spe-

169

5. Implementation of Choreographies as BPEL Orchestrations

cific environment. Moreover, automatic generation of implementations is impeded
if complete private orchestrations need to be defined. Firstly, taking the heavily
varying IT systems in the B2Bi domain into account of a model-driven approach
adds tremendous complexity. Secondly, integration partners or their IT partners may
be reluctant to adopt automatically generated private orchestrations because the
interleaving of business document exchanges with internal processes may be a source
of (perceived) competitive advantage. Finally, giving complete private orchestration
definitions blurs the boundaries between control flow logic and private business logic
so that it is not clear what kind of modifications are admissible without affecting
protocol interoperability.

Thus, this work proposes specific control processes as a hybrid approach for
characterizing the admissible message send and receive actions of each integration
partner. Control processes are fully executable orchestrations that implement the
control flow of choreography definitions and import business logic by means of
standardized interfaces that are derived from the choreography definition. Control
processes are like public orchestrations in the sense of unambiguously capturing
the admissible public message exchange sequences of an integration partner and
not specifying private logic in full detail. At the same time, control processes
are like private orchestrations in the sense of being fully executable. For better
understanding the concept of control processes, reconsider the basic integration
architecture as depicted in figure 4.1 on page 88 that describes the interaction
between two integration partners. Furthermore, assume that the interactions are
supposed to follow a predefined choreography specification. The application logic of
both partners such as detecting the need for a new collaboration instance, the creation
of business documents or the validation of business documents is encapsulated in
the business applications or backend systems depicted as white boxes. Conversely,
the shaded boxes depict the control processes that ensure adherence of the message
exchanges to the choreography specification on the one hand and agreement upon
the result of message exchanges on the other. In order to ensure adherence to
the choreography specification, control processes associate messages with process
instances, check whether incoming or outgoing messages are admissible at a particular
point in time, and technically coordinate the selection of one out of many concurrent
events if need be. For example, if each integration partner tries to trigger a separate
BTA, then the control processes make sure that these are not executed at the same
time. Figure 4.1 shows multiple gray boxes for representing control processes due
to the fact that a modularized structure of control processes is proposed where a
separate pair (one for each interaction partner) is used for each BTA or BCA of a
BC. In how far different systems for providing backend functionality are used and,
in consequence, whether or not multiple white boxes are adequate for representing
backends in figure 4.1 is actually left to the integration partners. The details of
message exchanges between control processes of interacting parties on the one hand
and control processes and backend systems of the same partner on the other are given
in the next sections. For comparison to the pubic orchestration approach and the

170

private orchestration approach, note the following advantages of the control process
approach that result from separating business logic and control flow logic:

• The definition of control processes is fully executable. Hence, cumbersome and
error-prone modification of process definitions once these have been derived
from choreography definitions is not needed.

• Control processes ensure strict compliance to the choreography definition
and as there is no need for modifying control processes, strict compliance
is not endangered. Note that local optimizations are possible nonetheless.
For example, if an integration partner has the option to decide between two
alternative BTAs at a particular point of the choreography definition, then
the backend may choose to always trigger the same BTA. Moreover, control
processes provide a protocol specification that completely is in the domain of
one integration partner. So, if local optimizations are to be analyzed, these
can be tested against the local control process and not against the partner’s
remote BSI. This basically amounts to moving the protocol interoperability
problem into the “safe” environment of one partner.

• The automation of orchestration derivation compared to complete private
orchestrations is simple because a set of standard interfaces can be used for
abstracting away business logic.

• Control process definitions can be reused more easily as standard interfaces
are used for accessing business logic. This basically means that adapting a
control process definition to a different IT environment can be done by means
of providing different implementations of the backend interfaces.

• Control processes can be used as reference implementation. Performance
optimizations and reuse of existing implementations can be valid reasons for
adopting proprietary BSI implementations instead of auto-generated control
processes. Even if integration partners are not willing to implement their
interactions by means of auto-generated control processes, then these can still
be used as reference for the actual BSI implementations. As control processes
are executable, these could be used for generating sample message exchange
sequences. Of course, some dummy implementations of backend interfaces
would be needed for that.

The downside of using standardized control process implementations is performance
impact. The association of messages with process instances upon receipt of messages,
coordination of control flow paths as well as checks for the admissibility of particular
message types takes some time. Contrarily, traditional B2Bi gateways tend to just
treat messages as process-agnostic content and relay these to some business appli-
cations that will do the process association. In consequence, traditional gateway
technology (beyond having matured for decades) should by far outperform control pro-
cess based BSI implementations in terms of throughput and scalability. However, this

171

5. Implementation of Choreographies as BPEL Orchestrations

work’s focus of mapping B2Bi choreographies to control processes clearly is a matter
of improving functionality instead of performance optimization and a detailed anal-
ysis of the performance impact of adopting control processes therefore is not provided.

Web Services and BPEL are selected as technological basis for implementing
control processes. The heterogeneous setting of B2Bi scenarios clearly calls for a
dedicated interface technology such as Web Services that is able to bridge different
computing platforms and programming languages. Moreover, Web Services are
a natural candidate for wrapping existing IT systems and therefore promise easy
provision of standardized interfaces for accessing business applications (as required
for control processes). Finally, Web Services offer the potential of cost gains by using
open Internet protocols instead of VANs and make related XML-based technologies
accessible (cf. sections 1.2 and 2.1). In particular, BPEL as standardized orches-
tration language relies on the use of Web Services. While basic Web Services are
used for bridging the heterogeneous systems of integration partners and for wrapping
existing systems, BPEL is used for implementing control processes as orchestra-
tions. Obviously, control processes not necessarily have to be implemented using
BPEL. Proprietary B2Bi frameworks or plain enterprise computing platforms such
as Microsoft’s .NET1 or the Java Enterprise Edition2 may be convenient depending
on the IT landscape of the interacting parties. The list below motivates why a
standardized orchestration language should be used nonetheless. The arguments
reflect the availability of an explicit process description format that offers constructs
at the orchestration level such as capturing message send and receive events. Hence,
proprietary B2Bi frameworks that offer a corresponding format offer those advantages
as well. However, note that proprietary formats tend to be disadvantageous in terms
of portability and open accessibility.

1. Easy reuse of process definitions. BPEL process definitions can directly be
deployed onto BPEL engines so that reuse of control process implementations
basically amounts to copying the BPEL process definitions together with the
corresponding WSDL interfaces. In theory, this also holds true for porting
process definitions to process engines of different vendors. In practice, the use of
proprietary extensions and the non-uniform implementation of BPEL features
may significantly impact portability. However, porting a process definition
to a different engine that has been written for the standard still promises to
be easier than porting an application between two independently developed
frameworks.

2. Use of standard tools for logging, monitoring, testing and manage-
ment. Several implementations of BPEL such as IBM’s Business Process

1http://www.microsoft.com/net/, last access: 12/20/2011
2http://jcp.org/en/jsr/detail?id=316, last access: 12/20/2011

172

http://www.microsoft.com/net/
http://jcp.org/en/jsr/detail?id=316

Manager3, Oracle’s BPEL Process Manager4 or Apache ODE5 are available.
Moreover, the open accessibility of BPEL fosters the development of indepen-
dent solutions for logging, monitoring, testing and management in general.
Note that a BPEL process essentially can be interpreted as a Web service so
that generic Web Services tools can be used for managing BPEL processes as
well. For example, soapUI6 can be used for sending test messages to BPEL
processes or for providing mock-up services.
Of course, management tools are available for enterprise computing platforms
as well, but these typically are not tailored to the orchestration level as required
for the management of control processes.

3. Conformance checks and analysis. BPEL enables an explicit represen-
tation of control flow which is the basis for checking conformance of control
process implementations to the agreed-upon choreography definitions. Prelimi-
nary results for testing the control flow conformance of control processes to
choreography definitions by means of model checking are available in [45,46].
Apart from that, explicit process definition as provided by BPEL is the basis
for a wealth of (frequently scientific) approaches for generating, analyzing,
reorganizing, visualizing and managing orchestrations.

In recent time, Web Services technology and to some extent BPEL are blamed for
being overly complex and not living up to the promises that have been made upon
their invention. Indeed, there are issues concerning interoperability, performance,
portability and complexity.

Regarding Web Services, the fact that the WS-I profiles significantly constrain
the WSDL, SOAP and other related Web Services standards (cf. section 2.1) shows
that some functionality of those standards is either superfluous or not captured
precisely enough. The results of the next section will acknowledge this fact by
demonstrating that interoperable implementation of WS-* functionality by WS
stacks cannot be relied upon. Moreover, it is not always clear how using the
wealth of SOAP functionality is supposed to be asserted at the WSDL level which
challenges the concept of declaratively specifying the message exchanges between
service consumer and service provider. Moreover, the DOM-based implementation of
some Web Services and XML libraries impedes the exchange of large payloads due
to memory constraints. However, the size of business documents may amount to
several hundred megabytes which rules out DOM-based processing in practice.

Regarding BPEL, homogeneous support for BPEL features cannot be assumed.
For example, the openESB BPEL engine used in this work does not support control
links between the activities of a BPEL flow construct or the parallel execution of the

3http://www-01.ibm.com/software/integration/business-process-manager/, last access:
12/20/2011

4http://www.oracle.com/technetwork/middleware/bpel/overview/index.html, last access:
12/20/2011

5http://ode.apache.org/, last access: 12/20/2011
6http://www.soapui.org/, last access: 12/20/2011

173

http://www-01.ibm.com/software/integration/business-process-manager/
http://www.oracle.com/technetwork/middleware/bpel/overview/index.html
http://ode.apache.org/
http://www.soapui.org/

5. Implementation of Choreographies as BPEL Orchestrations

BPEL foreach construct. Conversely, it offers extensions for logging, date and time
manipulation as well as error handling that go beyond standard BPEL functionality.
In practice, this is problematic when porting BPEL applications to different engines
although this still can be done as shown by the port of BT implementations to the
Oracle BPEL Process Manager for the approach in [54]. Apart from that, BPEL is
blamed to be a rather bulky format. On the one hand, this critique is not always
justified because the orchestration of XML messages that may stem from different
domains in a standardized format bears inherent complexity. On the other hand,
even simple tasks such as variable assignments may require several XML tags and it
is hard to create syntactically valid BPEL processes without considerable tooling
support.

While the criticism of Web Services and BPEL technology is justified to some
extent the question for alternatives cannot be answered satisfactorily if the aspects of
interoperability, cost, process awareness, visibility and reuse are taken into account.

Traditional B2Bi technologies such as EDI or AS2 solve the problem of transmit-
ting large messages with high performance, but typically also require more costly
implementations and leave the problem of controlling conformance to choreographies
to the business applications. However, the modular integration architecture proposed
for this work conceptually supports using traditional B2Bi technologies for performing
business document exchanges while using Web Services technology for controlling
BCAs. A concept for how this can be achieved has been published in [188].

Representational State Transfer (REST)-style interactions [42] frequently are
mentioned as alternative style for Web Services based interactions. However, REST
implies a contract-less way of designing interactions between some user agent and
a server in which the user agent discovers valid ways of interacting with the server
from the content provided by the server. A predefined set of URLs as convention
for interfaces that need to be called in a predefined sequence (for implementing a
protocol) actually contradicts the REST paradigm. The format of the delivered
content must comply with some conventions so that it can be rendered by the user
agent, but predefined semantics of content are not foreseen by REST. In the end,
some kind of intelligence which is typically provided by a human user must be
available for making sense of the transmitted content. Moreover, “the application
state is controlled and stored by the user agent and can be composed of representations
from multiple servers” [42]. This contradicts the concept of a shared protocol state of
B2Bi partners that reflects the series of business documents that already have been
exchanged in the course of a process instance. In summary, a truly REST-based
realization of a bidirectional protocol-based implementation of a B2Bi choreography
definition is inadequate. REST is an architectural paradigm that describes the
scalable and flexible design of web application architectures and not a framework for
enterprise computing. This judgment is in line with the inventor of REST who states
that “The REST interface is designed to be efficient for large-grain hypermedia data
transfer, optimizing for the common case of the Web, but resulting in an interface
that is not optimal for other forms of architectural interaction” [42] as well as [158]
who advise “[..]to use RESTful services for tactical, ad hoc integration over the Web

174

(à la Mashup) and to prefer WS-* Web services in professional enterprise application
integration scenarios with a longer lifespan and advanced QoS requirements”.

Finally, the question why the ebXML framework technologies ebMS and CPPA are
not used must be answered. While ebMS is an alternative communication technology
that could be used instead of Web Services, CPPA is a format for specifying the
technical details of interactions such as transport protocols or endpoints. The ebMS
versions 2.0 [129] as well as 3.0 [136] both are based on SOAP (as much as Web
Services) but do not use WSDL for providing an interface for interactions. Hence,
while the performance issues of SOAP-based interactions would remain when using
ebMS, the power of generating artifacts and protocol stubs from WSDL interfaces
by means of standard WS stacks would be lost. Similarly, the lack of an interface
definition format would impede the use of BPEL that relies on the explicit description
of interfaces. Moreover, ebMS libraries are by far not as commonly available as WS
stack implementations. Consistently, ebMS is the only technology of RosettaNet’s
MMS7 program that has not been validated so far.
Instead of using CPPA for the configuration of transport level details, the B2Bi
choreography styles of this work are mapped to BPEL and WSDL assuming stan-
dard values for the WSDL protocol binding. The core reason for this is that the
BPEL mapping is supposed to demonstrate the feasibility of implementing this
work’s B2Bi choreography styles and not to define a comprehensively configurable
implementation framework. Moreover, WSDL separates the protocol binding part
from the interface definition part so that other protocol configurations can replace
the existing definitions relatively easy. In addition, the current version 2.0 [128]
of CPPA is tailored to ebMS and requires considerable rework to be amenable to
alternative communication technologies. Version 3.0 [127] of CPPA adds the so-called
WSSenderBinding and ediintSenderBinding for leveraging Web Services and ediint8

as alternative communication technologies to ebMS. However, this version of CPPA
is still in an incomplete state and the latest draft is more than two years old.

In summary, Web Services and BPEL technology may not represent the optimal
technology mix for implementing B2Bi interactions. But, if interoperability, cost,
process awareness, visibility and reuse are of major importance then there is barely
an alternative.

The chapter proceeds as follows. Section 5.1 discusses the general aspects of the
implementation such as the realization of advanced security and reliability features
based on Web Services. Section 5.2 describes the BPEL-based implementation of BTs
and section 5.3 describes the BPEL-based implementation of BCs. The feasibility of
automatically deriving such implementations has been shown in [54] and in [182].

7http://www.rosettanet.org/Standards/RosettaNetStandards/

MultipleMessagingServices/tabid/474/Default.aspx, last access: 12/20/2011
8http://www.ietf.org/wg/concluded/ediint.html, last access: 12/20/2011

175

http://www.rosettanet.org/Standards/RosettaNetStandards/MultipleMessagingServices/tabid/474/Default.aspx
http://www.rosettanet.org/Standards/RosettaNetStandards/MultipleMessagingServices/tabid/474/Default.aspx
http://www.ietf.org/wg/concluded/ediint.html

5. Implementation of Choreographies as BPEL Orchestrations

5.1. General Implementation Aspects

The general aspects of implementing this work’s B2Bi choreography styles concern
the underlying WS stack and BPEL engine, the identification of interacting software
components, message header and process correlation information, the combination of
synchronous and asynchronous coordination styles, and the availability of advanced
security and reliability features.

Implementation Platform As implementation platform, the Integrated Develop-
ment Environment (IDE) NetBeans 6.7.1, the application server GlassFish 2.1.1 and
the enterprise service bus openESB 2.6.1 available in an all-in-one distributable as
GlassFish ESB bundle 2.2 have been used. While openESB provides, among others,
a BPEL engine and an XSLT library, GlassFish provides Metro as an advanced Web
Services stack and EJB as well as servlet technology for Web Services implementation.
Moreover, NetBeans provides a comfortable interface for developing, testing and de-
bugging all relevant implementation artifacts. At the time selected, this combination
outperformed alternative technology combinations either in terms of functionality
or usability. IBM’s WebSphere platform as well as Apache’s Axis2 stack do not
provide sufficient support for WS-Policy based security and reliability realization (cf.
appendix C and [16]). In turn, Oracle’s Business Process Manager provides limited
debugging and logging support for BPEL process definitions. However, the choice of
implementation platform is of minor importance as long as the core artifacts of the
implementation concept can be tested which is the case for the selected platform.
Since Oracle acquired SUN, the combination of NetBeans, GlassFish and openESB
is not provided any more. While Oracle explicitly announced further support for
NetBeans and GlassFish in a white paper9, the future of openESB has not been
clarified at all and its fate is left to the open source community. As the choice of
implementation platform is of minor importance, lacking support for openESB by
Oracle does not limit the validity of this work’s results. In that regard, note that the
implementation of BTs has been ported to Oracle Business Process Manager for the
approach in [54].

Identification of Software Components For the identification of interacting soft-
ware components reconsider the scheme of this work’s modularized integration
architecture as given in figure 4.1 on page 88. Control processes are used to control
and implement the cross-organizational message exchanges of integration partners,
but explicitly do not contain application logic which is accessible by means of well-
defined interfaces. Furthermore, remember that the implementation is designed for
exactly two integration partners. A separate pair of control processes for each BCA
and BTA of a BC is used in order to modularize the implementation. Based on this
basic structure, the following terminology will be used throughout this chapter.

9http://www.oracle.com/us/038563.pdf, last access: 12/20/2011

176

http://www.oracle.com/us/038563.pdf

5.1. General Implementation Aspects

The term “top-level control process” refers to one of the BPEL processes of the
interaction partners that controls the control flow of the root BC that has been
agreed upon by the interaction partners. As the implementation is designed for
binary choreographies, there are exactly two top-level control process definitions for
a particular root BC. A “BC control process” refers to a BPEL process that controls
the control flow of a particular type of BCA for one of the interaction partners. As
choreographies may be composed hierarchically, several types of BC control processes
may exist for a particular partner choreography. Note that the top-level control
processes are BC control processes as well. Similarly, the term “BT control process”
refers to one of the BPEL processes that controls the control flow a particular BT.
Again, there are exactly two BT control process definitions per type of BT and as
the roles “requester” and “responder” (cf. section 2.3.1) are statically defined for BTs,
the terms “requester control process” and “responder control process” may be used to
refer to the requester’s and responder’s control process, respectively. Whenever the
relationship between a superordinate and subordinate control process is referred to,
the terms “master/parent control process” and “child control process” may be used to
refer to the superordinate and subordinate control process, respectively.

Figure 5.1.: Interfaces for Interacting with a Top-Level Control Process

In addition, “helper services” denote any kind of Web services that provide static
functionality that does not rely on the process or master data stored in the integration
partners’ business applications and can easily be provided in the same deployment

177

5. Implementation of Choreographies as BPEL Orchestrations

package as a control process. A typical example for such a helper service is an
XPath expression evaluation service for evaluating an XPath expression against a
given business document. Finally, the term “backend” will be used to refer to any
kind of business logic that is provided by existing business applications. Although
the structure of those business applications may be quite complex and the backend
functionality for a particular BC may be provided by a multitude of systems, the
term backend will be used as if it would refer to a monolithic block. Thus, the
backend component abstracts away the complexity of the existing IT landscape.

For each control process a series of interfaces is used for interaction. For each
component a control process interacts with, two interfaces are used, one for each
direction of communication. The naming of the interfaces follows a simple scheme
that takes the types of interacting components into account. The interfaces that a
corresponding pair of control processes offer each other just carry the names of the
respective control processes, i.e, if a control process carries the name “X” then the
interface the control process offers its peer is named “X” as well. For interaction
with the backend, the interface that the control process offers for the backend is
named “X-BE-Client” and the interfaces that the control process uses for consuming
backend functionality is named “X-BE-Callback”. Similarly, a control process offers
an interface “X-MS-Client” to a superordinate master control process and uses the
interface“X-MS-Callback” for communication to the master control process. Although
this kind of naming scheme could also be applied to the interaction between a BC
control process and a BT control process, the corresponding interfaces are called

“<nameofBT>-REQ-Client”, “<nameofBT>-REQ-Callback”, “<nameofBT>-RES-
Client”, and “<nameofBT>-RES-Callback” for better readability.

Figure 5.1 shows the set of interfaces that is used for implementing B2Bi chore-
ographies as a UML component diagram. The use case of section 4.5.1 is used as
example. Each control process is depicted as a separate component with the stereo-
type <<CtrlProc>> and for each type of component a control process interacts with
the interfaces described above are used for interaction. The seller’s control process
BC-controlFlowTestS (the center component of figure 5.1) implements the top-level
collaboration of the use case, i.e., it coordinates the sequence of executing the specified
BCAs and BTAs. Using interfaces cftS-BE-Client and cftS-BE-Callback, the
BC-controlFlowTestS process receives the trigger for starting the overall collaboration
as well as for starting BTAs and it sends back acknowledgements to the backend once
the requested BTAs have been started. Before such acknowledgements can be sent
to the seller’s backend, the BC-controlFlowTestS control process informs the buyer’s
top level control process BC-controlFlowTestB that a new BTA is needed, waits
until BC-controlFlowTestB signals that a new instance of the requested BTA’s buyer
control process has been created, and then sets a up a new instance of the requested
BTA’s seller control process. For example, for starting the use case’s BTA BT-3A20,
BC-controlFlowTestS would wait until BackendS requests this BTA, request a new
instance via interface BC-controlFlowTestB and await the acknowledgement via
BC-controlFlowTestS, then inform the backend that the BTA control process has
been set up and finally create a new instance of BT-3A20Requestor. Note that the

178

5.1. General Implementation Aspects

seller’s BTA control process indeed is created after informing the backend because
the first message exchange between BT-3A20Requestor and BackendS is initiated
by the BTA control process. Conversely, when a new BCA has to be started, e.g.,
BC-single3A19-2 of the use case, the top level control processes would first start
the BCA’s control processes and then inform the backends because the first message
exchange between backends and BC control processes is initiated by the backend
components.
Figure 5.1 only shows control processes for one type of BTA (BT-3A20) and BCA
(BC-single3A19-2), but for any additional type of BTA/BCA additional control
process components would have to be installed. Once the pair of control process
instances has been created for a new BCA/BTA via the corresponding *-Client
interfaces, control is passed on to these control processes which, again, interact with
each other for coordinating more deeply nested activities and with the respective
backends for including business logic. Once the lower level control processes have
performed the work, control is returned to the higher level control processes via
the *-Callback interfaces. Note that figure 5.1 does not include the interfaces for
interacting with the buyer’s backend.

Message Header and Process Correlation Information In this work, a dedicated
payload-level message header is used to carry processing information to be used by
backends and control processes. In particular, process identification information
for automatically routing messages to the intended BPEL instance using BPEL’s
content-based correlation mechanism is contained. In theory, the SOAP header
format as underlying Web Services message format could have been used for this
purpose. However, the full power of Web Services technology only is exploited if
SOAP messages are generated automatically by WS stacks. Using the SOAP header
for carrying the relevant information would imply modifying and processing the
exchanged SOAP messages by hand at some point during the WS stack processing
cycle which would generate additional effort and impede general applicability of the
approach. Note that WS-Addressing [224] does not help in this situation either. WS-
Addressing just offers a SOAP-level format for endpoint information, but it does not
define any kind of application-specific way for identifying process instances. Although
some BPEL engines offer automatic correlation of BPEL instances and use the
WS-Addressing format for describing corresponding information, the corresponding
correlation mechanisms do not follow any specific standard and therefore tie the
solution to the BPEL engine under consideration.

The ‘commonMetaBlockType’ definition of listing 5.1 shows the information that
is used for transporting process identification information. ‘RootIdentifier’, ‘ParentI-
dentifier’, and ‘InstanceIdentifier’ all are assumed to be globally unique and help in
identifying the top-level control process of one interaction partner, the master control
process of the control process that receives the message, and the control process that
actually receives the message itself. Strictly speaking, the ‘ParentIdentifier’ and the
‘InstanceIdentifier’ would be sufficient for enabling BPEL process instance correlation.

179

5. Implementation of Choreographies as BPEL Orchestrations

The ‘RootIdentifier’ as well as the ‘ProcessDepth’ property that gives the nesting
level according to the BC structure are just included in order to optimize retrieval of
relevant information by the backend applications. The two additional type definitions
of listing 5.1, ‘transactionMetaBlockType’ and ‘collaborationMetaBlockType’, basi-
cally just reuse the header information and provide containers for adding additional
BT specific or BC specific information. For example, the ‘hasLegalIntent’ as well
as ‘isConcurrent’ BT configuration parameters as explained in section 4.3.2.1 are
included in the BT header for use by the backend.

Listing 5.1: Control Message Header
1 <xsd:complexType name="commonMetaBlockType">
2 <xsd:sequence >
3 <xsd:element name="RootIdentifier" type="xsd:string"
4 minOccurs="1" maxOccurs="1"/>
5 <xsd:element name="ParentIdentifier" type="xsd:string"
6 minOccurs="1" maxOccurs="1"/>
7 <xsd:element name="InstanceIdentifier" type="xsd:string"
8 minOccurs="1" maxOccurs="1"/>
9 <xsd:element name="ProcessDepth" type="xsd:int"

10 minOccurs="1" maxOccurs="1"/>
11 </xsd:sequence >
12 </xsd:complexType >
13

14 <xsd:complexType name="transactionMetaBlockType">
15 <xsd:complexContent >
16 <xsd:extension base="commonMetaBlockType">
17 <xsd:sequence >
18 <xsd:element name="hasLegalIntent" type="xsd:boolean"
19 minOccurs="1" maxOccurs="1"/>
20 <xsd:element name="isConcurrent" type="xsd:boolean"
21 minOccurs="1" maxOccurs="1"/>
22 </xsd:sequence >
23 </xsd:extension >
24 </xsd:complexContent >
25 </xsd:complexType >
26

27 <xsd:complexType name="collaborationMetaBlockType">
28 <xsd:complexContent >
29 <xsd:extension base="commonMetaBlockType">
30 <xsd:sequence/>
31 </xsd:extension >
32 </xsd:complexContent >
33 </xsd:complexType >

Listing 5.2 shows the definition of an abstract correlation property for BPEL
process instance identification that then has to be mapped to concrete elements
of messages such as those of listing 5.1. The element prefix ‘vprop’ is bound to
the namespace http://docs.oasis-open.org/wsbpel/2.0/varprop as required by
the BPEL specification. For easy reuse the correlation properties are defined in
a separate WSDL file ‘Correlation-composable.wsdl’ that then is imported by the
actual interface WSDL files such as ‘<nameofBT>Requestor.wsdl’ or ‘<nameofBT>-
MS-Client.wsdl’ for the purpose of mapping the correlation properties to message
elements (by means of propertyAliases as shown in listing 5.3). The actual
correlation sets are then defined in the BPEL definitions that refer to correlation
properties. When actual message exchanges take place, the BPEL engines are then in
charge of retrieving concrete values for correlation properties from messages according
to the propertyAlias mapping information. For this work, a correlation set consists
of exactly one string-based correlation identifier.

180

5.1. General Implementation Aspects

Listing 5.2: Correlation Properties
1 <vprop:property
2 name="prop_CollaborationIdentifier"
3 type="xsd:string"/>

Listing 5.3 shows three different examples of how the identifier for a control
process can be mapped. The propertyAliases are taken from a ‘BT-requester’,
a ‘BT-MS-Client’ and a ‘BT-BE-Client’ interface. The first property alias shows
how to extract a collaboration identifier from an ebBP RA message (the ns prefix
is bound to http://docs.oasis-open.org/ebxml-bp/ebbp-signals-2.0) where
a concrete RA instance must carry the corresponding identifier in the ‘Collabora-
tionIdentifier’ field. The attentive reader may have noticed that the header block
defined in listing 5.1 is not used for carrying instance identifier information. This
just shows that, at the BT level, the header does not necessarily have to be used
as long as alternative properties can be used for instance identification. This may
be convenient in case some existing BT implementations shall be reused. For new
implementations, the use of the defined message header also is desirable for the ex-
change of business documents and business signals which can easily be accomplished
by wrapping the header together with the actual payload within an additional XML
tag. The second and third propertyAlias of listing 5.3 shows how the message
header can be used to extract process instance information from a ‘txStartMsg’ and
a ‘DropPip3A20PurchaseOrderConfirmationNotificationMsg’ WSDL message. First
the WSDL part of the respective WSDL message is identified by means of the part

attribute of the propertyAlias and then the query is run against that part. The
type of the part is the XML container that wraps the header block as well as the actual
payload and the XPath expression ‘mb:TransactionMetaBlock/mb:InstanceIdentifier’
then retrieves the actual instance identifier from the header information where
the prefix ‘mb’ refers to the header block namespace (which has been set to
urn:rosettanet:specification:interchange:composable:xml:header:1.0 for
the RosettaNet example).

Listing 5.3: Sample Property Aliases for Extracting Correlation Information
1 <!-- BT -requester interface -->
2 <vprop:propertyAlias
3 propertyName="corr:prop_CollaborationIdentifier"
4 messageType="tns:ReceiptAcknowledgementMsg"
5 part="ReceiptAcknowledgementPart">
6 <vprop:query >ns:CollaborationIdentifier </vprop:query >
7 </vprop:propertyAlias >
8

9 <!-- BT -MS -Client interface -->
10 <vprop:propertyAlias
11 propertyName="corr:prop_CollaborationIdentifier"
12 messageType="tns:txStartMsg"
13 part="txStartPart">
14 <vprop:query >mb:TransactionMetaBlock/mb:InstanceIdentifier </vprop:query >
15 </vprop:propertyAlias >
16

17 <!-- BT -BE -Client interface -->
18 <vprop:propertyAlias
19 propertyName="corr:prop_CollaborationIdentifier"
20 messageType="tns:DropPip3A20PurchaseOrderConfirmationNotificationMsg"
21 part="DropPip3A20PurchaseOrderConfirmationNotificationPart">
22 <vprop:query >mb:TransactionMetaBlock/mb:InstanceIdentifier </vprop:query >
23 </vprop:propertyAlias >

181

5. Implementation of Choreographies as BPEL Orchestrations

Combination of Synchronous and Asynchronous Coordination Styles This work
combines synchronous and asynchronous coordination between integration partners.
Thereby, the terms synchronous/asynchronous communication and synchronous/asyn-
chronous interaction are used as defined in section 2.1.

In general, communication is synchronous in this work and both communication
partners achieve agreement with respect to the success of the message transmission
immediately. This agreement is reached by means of messaging level functionality
the availability of which is discussed in the next paragraph. This paradigm of
immediately agreeing upon success of communication simplifies protocol design
enormously because transitions in the BT protocol machines of the communication
partners (cf. figures 4.2 and 4.3 in section 4.3) can be fired in lock-step. Similarly,
the exchange of control messages needed for coordinating control flow of BCs can be
specified more easily.

The alternative to this communication paradigm is asynchronous communication
of messages which significantly complicates protocol design because the state of the
communication channel then must be respected and agreement protocols are needed
for computing a consistent outcome between integration partners. Remember that
the BT protocol machines specify the exchange of business signals and business
documents within one transaction scope which cannot completely be covered on the
messaging level. However, as discussed in section 4.3, the complexity of performing
agreement protocols at this level is not acceptable. Note also that the validation
of the full BT protocol machines using the SPIN10 model checker (cf. appendix D)
was relatively easy due to the synchronous communication design. Conversely, a
conceptual predecessor of this work used protocol machines based on asynchronous
communication for BT execution and the analysis of these (which aim at exactly the
same purpose) proved to be pretty hard in SPIN in the sense that only a restricted
version of the BT protocol machines could be validated (cf. [177,185]).

Asynchronous interaction is used as paradigm for the generation and processing of
business signals or business documents in the BT protocol machines. While the suc-
cess of message transmission is agreed upon immediately between the communication
partners using one messaging level interaction, the processing of messages and the
potentially related transmission of subsequent messages is performed in separate steps.
This is represented in the BT protocol machines by inserting dedicated states that
capture the processing of business content and new transitions for new communication
events. For example, the transmission of a business document from BT requester to
BT responder is performed as One-Way Web Services call that corresponds to one
transition in the protocol machine. BT requester and BT responder then enter a new
protocol machine state that signifies that the business document has been exchanged.
Once the BT responder has validated the business document and is ready to send a
RA back, a new Web Services call (which corresponds to another protocol machine
transition) is used to transmit the RA.

10http://spinroot.com/, last access: 12/20/2011

182

http://spinroot.com/

5.1. General Implementation Aspects

In summary, the design of the BT execution model is a mix of synchronous and
asynchronous coordination in order to allow for simple protocol design on the one
hand and decoupled processing of business content on the other hand. Only some
calls to helper services may leverage the synchronous interaction style because its
processing time can be assumed to be negligible.

At the BC level, transitions in the choreography model may correspond to several
Web Services calls (see section 5.3). Similarly, BC level states such as BTAs and
BCAs may represent the execution of several non-trivial interactions. Therefore,
the distinction between synchronous and asynchronous communication as well as
the distinction between synchronous and asynchronous interaction is inadequate
for characterizing the execution concept of BCs. However, the basic paradigm that
integration partners take transitions together in lock-step and agree upon the result
of their interactions remains. In so far, denoting the execution semantics of BTs and
BCs as synchronous is basically correct, but it refers to a higher-level concept than
synchronous communication.

Availability of Advanced Security and Reliability Features For maintaining the
synchronous communication paradigm as just described, the assumption of agreement
upon the result of message transmissions at the messaging level must be validated. In
addition, the availability of the security features that are assumed on the messaging
level according to section 4.3 must be shown.

The Secure WS-ReliableMessaging (SecRM) scenario as defined in [44] provides
the messaging-level implementation of the following BT configuration parameters
(cf. section 4.3) in a mutual way: reliability (ebBP attribute isGuaranteedDeliv-
eryRequired), confidentiality (isConfidential), integrity (isTamperDetectable) and
authentication (isAuthenticated). The provision of the SecRM scenario’s properties
has formally been validated by two independent groups ([4] and [19]), but the practi-
cal availability cannot be taken for granted because it was not designed for the latest
versions of WS-ReliableMessaging (WS-RM) [143], WS-Security (WS-Sec) [135],
WS-Trust (WS-Trust) [146], WS-SecureConversation (WS-SecConv) [144], WS-
ReliableMessaging Policy (WS-RM-Pol) [142] and WS-Security Policy (WS-Sec-Pol)
[145] (although the features used do not deviate significantly). Moreover, the complex-
ity of the protocol as well as the standards used is significant so that interoperability
across WS stacks does not come easy. Even if interoperability is considered to be
pivotal for Web Services according to [117,122] this does not necessarily mean that
implementations of WS-* standards indeed are implemented in an interoperable
manner. Consistently, [106] stress that “although one of the main purposes of the
standard [i.e., a WS security standard] is to guarantee the interoperability between
different platforms, it might be necessary to test it on the field.”

During the dissertation project of this work, the diploma thesis of Johannes Schwalb
has been supervised who analyzed the implementability of the SecRM scenario and
the interoperability of the corresponding WS-* standard implementations.

For analyzing the implementability of the SecRM scenario, he derived a current
version of the corresponding WS-Policy assertions and tested the implementation

183

5. Implementation of Choreographies as BPEL Orchestrations

for the GlassFish-openESB platform (as described above) and IBM’s WebSphere
platform. The detailed description of the scenario, the policy-based implementation
as well as the test results are given in appendix C. While the relevant functionality
is available for the GlassFish-openESB platform in a satisfactory manner, support
on the IBM platform is insufficient. Even if using the proprietary features of the
IBM platform instead of the WS-Policy based implementation (cf. appendix C) may
reveal availability of the relevant functionality, the use of proprietary features in
itself is unacceptable for a B2Bi setting.

Furthermore, the interoperable implementation of the underlying WS-Sec-Pol
and WS-RM-Pol features between the GlassFish-openESB platform and the IBM
WebSphere platform was tested. 169 test cases were analyzed ([183, 196]) and
only 28 test cases proved to be implemented and fully interoperable. Even worse,
it is not possible to exchange a SOAP message between the two platforms that is
both, confidentiality and integrity protected. The GlassFish-openESB platform does
not support XPath for identifying the SOAP message elements to be encrypted.
Instead, it relies on using the EncryptedParts assertion of WS-Sec-Pol and assumes
an IncludeToken value of Never for using X509 tokens (which is the only basic
token type supported across both platforms). The WebSphere platform ignores any
IncludeToken value and always inserts the token into the SOAP messages which
is then rejected by the GlassFish-openESB platform. In addition, IBM WebSphere
does not support the TransportBinding assertion of WS-Sec-Pol so that Transport
Layer Security (TLS) encryption cannot be asserted either (see [183,196] for details).

Note that these interoperability issues are not simply due to having tested WS
stacks that were released before the publication of the latest versions of WS-I’s
Basic Security Profile (BSP) [239] and Reliable Secure Profile (RSP) [240] in late
2010. Basically, those profiles do not help in avoiding the interoperability problems
described in [183,196] (see below). The profiles are complemented by test tools and
sample applications, but the profiles are authoritative. In the standard document
itself, the purpose of the BSP is described as follows:

“This document defines the WS-I Basic Security Profile 1.1, based on a set
of non-proprietary Web services specifications, along with clarifications
and amendments to those specifications which promote interoperability.”
[239]

Those clarifications and amendments become manifest in so-called requirements
together with some explaining text and, in case of the RSP, test expressions for
evaluating SOAP messages. In [6], one of the BSP editors explains that by using
the requirements “the BSP limits the set of common functionality that vendors must
implement and thus enhances the chances for interoperability. This in return reduces
the complexities for the testing of Web Services security.” Moreover, she explains
that “the security consideration statements provide guidance that is not strictly
interoperability related but are testable best practices for security.”

For example, requirement R2001 of the BSP says that “A SENDER MUST NOT
use SSL 2.0 as the underlying protocol for HTTP/S”. The explanatory text justifies

184

5.1. General Implementation Aspects

the requirement by pointing out that “SSL 2.0 has known security issues and all
current implementations of HTTP/S support more recent protocols”.

A common characteristic of those requirements is that they define constraints on
the level of SOAP messages, i.e., the existence, order and content of XML elements
within SOAP messages or the actual exchange of SOAP messages is described.
Consequently, the testing tools of the WS-I take SOAP messages as input and check
them for compliance to the BSP and RSP requirements. From the perspective of
facilitating interoperability, this amounts to replacing actual interoperability testing
as described in [197] by checking standard compliance of SOAP messages. However,
checking standard compliance itself is subject to errors and therefore merely an
add-on to true interoperability testing but not a replacement. Even worse, the
relation between WS-Sec-Pol/WS-RM-Pol assertions and the corresponding SOAP
messages exchanged is not described in the BSP and RSP at all. In section 5.1.1,
the BSP explicitly allows for out of band agreement for specifying the use of WS-Sec.
Moreover, it states in several sections (9, 10, 13.1) that “[..]no security policy
description language or negotiation mechanism is in scope for the Basic Security
Profile[..]”. The RSP recommends (though not requires) the use of WS-RM-Pol for
configuring the use of WS-RM in its section 2.4, but it does not define the relation
between WS-RM-Pol assertions and SOAP messages either.
A detailed discussion in how far the BSP/RSP requirements could have helped
in alleviating the detected interoperability issues between the GlassFish-openESB
platform and the IBM WebSphere platform is available in [183], but, all in all, none
of the core interoperability problems detected is due to violating WS-I profiles. Only
1 issue out of 10 core interoperability issues is reinforced by the BSP.

In summary, neither interoperable implementation of the relevant SecRM scenario
functionality across different platforms nor a satisfactory implementation of the
SecRM scenario on arbitrary platforms is available. Therefore, an alternative to using
the GlassFish-openESB platform is needed. For the security part, tunneling HTTP via
TLS is an option as TLS is a commonly available protocol and the properties of TLS
have been validated in various scientific publications. Among others, Paulson [156]
was the first to formally validate TLS in terms of authentication, privacy and message
integrity. However, the reliability features of Transmission Control Protocol (TCP)
which is typically the basis of TLS implementations cannot be taken for granted
because TCP messages are at lower protocol level than TLS and an attacker must be
assumed to try to attack lower protocol levels as well. Of course, arbitrary security
goals cannot be broken like that, but the reliability feature of TCP is at risk. Paulson
consistently states in his analysis of the matter that “once session keys are established,
the parties have a secure channel upon which they must run a reliable communication
protocol” [156]. For this purpose, running bare WS-RM on top of TLS is an option
as WS-RM is significantly less complex than the SecRM scenario. In consequence,
the availability of the necessary security and reliability features for maintaining the
synchronous communication semantics as postulated above can be taken for granted,
even if it does not come cheap.

185

5. Implementation of Choreographies as BPEL Orchestrations

5.2. Implementation of BusinessTransactions

This section describes how the BT execution model of section 4.3 together with the
defined execution semantics that ensures consistent outcome between the requester
and responder role can be implemented. Of course, this is not the only valid way of
implementing the model, but it demonstrates the feasibility of implementing the BT
execution model using BPEL-based control processes.

As example, the implementation of a One-Action-BT that exchanges a RosettaNet
Pip3A20PurchaseOrderConfirmationNotification business document and makes use
of a RA, AA, and the retryCount BT configuration parameter is shown. As much
as the execution model introduced in section 4.3 can be extended for alternative
BT configurations, the implementation proposed here can be extended as well. The
description below will show how to explicitly represent the states of the BT protocol
machines in BPEL so that deriving implementations for different BT configurations
essentially is just a matter of adding/removing state representations and adjusting
some variables.

For implementation, additional design choices beyond those of the last section
and section 4.3 have to be made. Firstly, the message header defined in listing 5.1
may be applied to local message exchanges only, i.e., between the backend, master
and BT control process of one integration partner, or additionally to the message
exchanges between the requester and the responder control process. Not using the
message header for cross control process messages necessitates the availability of
message fields for mapping correlation information within those messages. For the
RosettaNet business documents like Pip3A20PurchaseOrderConfirmationNotification
as well as for business signals and business signal exceptions as defined in the ebBP
standard, such fields are available. The advantage of not using the message header
for cross control process communication is that existing implementations can be
migrated without breaking existing partner interfaces. However, the correct usage of
correlation information must be ensured. As not applying the message header to cross
control process communication is the more challenging strategy, the implementation
proposal below only applies the message header to local exchanges. Therefore, the
message types of section 4.3’s execution model may be transmitted in either wrapped
form, i.e., with message header, or in raw form.

The second design choice to be taken is whether superordinate master control
processes should be assumed for the BT level control processes. As a single BT
execution does not make up a complete B2Bi choreography, such master control
processes are assumed. If the B2Bi choreography only consists of one single BT
execution, then either the backend can take over the master role or the simplified
execution models developed for the MCC phase 1 Web Services profile [172] can be
adopted.

Before the structure of the BPEL control process implementations is described,
the most important concepts for mapping the BT execution model elements are

186

5.2. Implementation of BusinessTransactions

Msg. Type Usage

TxStart Used by master control processes to start the requester and responder control
processes.

SolBizDoc Used by the requester to solicit the business document from the backend.

BizDoc Carries the business document and is transmitted by the requester backend
to the requester control process and by the responder control process to the
responder backend in wrapped form. Sent in raw form from the requester control
process to the responder control process.

RA Carries the ReceiptAcknowledgement and is transmitted by the RAC service
to the responder control process and from the requester control process to
the requester backend in wrapped form. Sent in raw form from the responder
control process to the requester control process.

RAE Carries the ReceiptAcknowledgementException and is transmitted by the RAC
service to the responder control process and from the requester control process
to the requester backend in wrapped form. Sent in raw form from the responder
control process to the requester control process.

AA Carries the AcceptanceAcknowledgement and is transmitted by the responder
backend to the responder control process and from the requester control process
to the requester backend in wrapped form. Sent in raw form from the responder
control process to the requester control process.

AAE Carries the AcceptanceAcknowledgementException and is transmitted by the
responder backend to the responder control process and from the requester
control process to the requester backend in wrapped form. Sent in raw form
from the responder control process to the requester control process.

GE Carries the GeneralException and is transmitted between the requester control
and responder control process in raw form in both directions. Transmitted by
the requester control process to the requester backend and by the responder
control process to the responder backend in wrapped form.

Cancel Transmitted by the requester backend to the requester control process and from
the responder backend to the responder control process for canceling the BT
execution.

TxResult Used by control processes to report the result of a BTA to the master processes.
The result is a generic protocol result as defined by ebBP’s ConditionGuardValue
language or, in case of ProtocolSuccess, the generic protocol result and the
exchanged business document.

Table 5.1.: BT Protocol Messages Overview

introduced. The states of the BT protocol machines of section 4.3 define what kind
of events are admissible. For each of the states, either a single message receive event,
a single message send event, concurrent receive events, or one send event and one or
more concurrent receive events can be admissible. An additional variant for each of
these cases may be defined by adding one or more concurrent timeouts.

Send events are implemented using BPEL’s invoke construct and single receive
events by means of BPEL receives. In case of concurrent receive events and time-
outs, BPEL’s pick construct is used to discriminate between the concurrent events
where onMessage branches are used for incoming messages and onAlarm branches for

187

5. Implementation of Choreographies as BPEL Orchestrations

timeouts. Concurrent send and receive events as well as timeouts are implemented
by enabling the send event on the one hand and the receive events and timeouts
on the other in an alternating manner (see below). BPEL partnerLinks are used
for identifying communication partners based on WSDL interfaces and for each
communication partner defined in the protocol machines two WSDL files (cf. last
section) and two partnerLinks are defined in order to cover each communication
direction separately. Except of the wrapped/raw distinction introduced above, the
message types used for the BPEL implementation correspond to the message types
of section 4.3’s execution model. Thus, instead of discussing all defined WSDL
interfaces, table 5.1 summarizes the types of messages used as well as which format
is used for which communication relationship. Note that message types that are only
exchanged locally, always use the message header of listing 5.1. Messaging failure
events are captured using BPEL faultHandlers and catch elements. Beyond that,
control flow definition is based predominately on BPEL’s sequence, if and while

constructs. All in all, a subset of common BPEL constructs is used the availability
of which can be taken for granted on virtually any BPEL engine.

Listing 5.4 shows the rough BPEL structure that implements the requester control
process. For discussing this BPEL process under consideration, the term focal BPEL
process will be used. First, some structural definitions are made beginning with
several import tags for importing the WSDL interfaces that define the commu-
nication options with the backend, master control process and responder control
process as well as the correlation set properties. Based on the partnerLinkType

definitions in the WSDL files, the partnerLinks that the focal BPEL process uses
for communication are defined. For example, the partnerLink ‘FromMaster’ in
line 4 defines, by using the myRole attribute, that the focal BPEL process takes the
‘PIP3A20RequestorMasterClientPortTypeRole’ and is able to consume the messages
defined in the associated WSDL portType (the partnerRole tag would imply the op-
posite communication direction). Subsequently, several variables for storing messages
and controlling control flow are defined and ‘corrSetTransaction’ is defined as the
only correlation set of the BPEL process based on the ‘prop CollaborationIdentifier’
property of listing 5.2. Then, the BPEL faultHandlers construct is used to define
global BPEL catch elements for installing different error handling routines that
cover the various types of errors defined in the requester protocol machine. In line
14 a user-defined ‘deliveryException’ is caught that is thrown when the business
document could not be delivered several times. Whenever an error occurs throughout
the process definition and is not handled by lower-level faultHandlers, then it
is propagated to the faultHandlers definition of the root process. By throwing
user-defined exceptions the logic contained in the respective catch blocks can be
used whenever needed. This is used as a convenient way for implementing states
‘RES-GE’, ‘CP-GE’, ‘CP-GE2’, ‘BE-GE’, ‘DelRAE’ and ‘DelAAE’ of the requester’s
protocol machine (cf. figure 4.2). These states essentially capture the various failure
paths of the requester’s control process that arise from TTP, TTRA and TTAA
timeouts (cf. BT execution model), from repeated business document delivery errors,

188

5.2. Implementation of BusinessTransactions

from exception messages sent by the responder (RAE, AAE, GE) and cancel messages
sent by the backend.

Thereafter, the root sequence ‘mainSeq’ follows that covers the actually intended
path of a BT execution. First, the ‘TxStart’ message of the master control process
that initializes the ‘corrSetTransaction’ correlation set is awaited in line 20. Then
several variables are initialized (omitted in listing 5.4) and the ‘DeadlineCreator’
helper service is used to calculate the deadline for the TimeToPerform (TTP) value
of the current process instance, i.e., the TTP value is simply added to the current
time by the helper service. This deadline then will be used in several deadline-based
onAlarm constructs. Note that this does not cause any problems with respect to
the execution semantics as typical TTP values range from several minutes to hours
and the calculation of such a deadline is a matter of milliseconds. The following
BPEL while construct named ‘processLoop’ starting in line 28 is used to switch
across the states of the requester protocol machine that make up the intended flow
of interaction, i.e., ‘Started’, ‘AwaitBizDoc’, ‘DeliverBizDoc’, ‘AwaitRA’, ‘DelRA’,
‘AwaitAA’, ‘DelAA’ and ‘Propagate’. A simple string variable ‘procState’ is used
to represent the current state of the requester’s protocol machine and a series of
BPEL if constructs is used to check for the admissible states. If the condition for a
particular state is true, e.g., if the requester is in state ‘Started’ as checked in line 32,
then the implementation of the respective state is included within the if structure
(see listings 5.5, 5.6 and 5.7 for examples).

Note that, for the purpose of conciseness, some details of XML tags in listing 5.4
and the following listings are hidden. So, attributes such as namespace declarations
or the several attributes for determining a WSDL operation that corresponds to a
receive/send event frequently are left out. Moreover, incomplete tags are sometimes
represented as <tagname> to show that one or more lower level tags of tagname are
missing and <tagname>* in case multiple occurrences of tagname are to be inserted.
Obviously, these conventions violate the XML standard. Moreover, please note that
the name attribute included in several BPEL tags is irrelevant for the control flow of
the process and has been added for the sole purpose of enhancing readability.

Listing 5.4: Rough Structure of the Requester Process
1 <process name="composablePIP3A20 -Requestor">
2 <import >* <!-- Import various WSDL files for interface / correlation definition -->
3 <partnerLinks >
4 <partnerLink name="FromMaster" myRole="

PIP3A20RequestorMasterClientPortTypeRole" ..> <!-- One partnerLink per
peer service and communication direction -->

5 <partnerLink >*
6 </partnerLinks >
7 <variables >
8 <variable >* <!-- Variables for storing messages and BT configuration parameters

are defined at process scope -->
9 </variables >

10 <correlationSets >
11 <correlationSet name="corrSetTransaction" properties="

ns0:prop_CollaborationIdentifier"/>
12 </correlationSets >
13 <faultHandlers >
14 <catch faultName="procFaults:deliveryException">
15 ...
16 </catch>

189

5. Implementation of Choreographies as BPEL Orchestrations

17 <catch>* <!-- Fault handlers for the other five exception types like ttarErr ,
ttaaErr etc. -->

18 </faultHandlers >
19 <sequence name="mainSeq">
20 <receive createInstance="yes" partnerLink="FromMaster" operation="txStartOp">
21 <correlations >
22 <correlation set="corrSetTransaction" initiate="yes"/>
23 </correlations >
24 </receive >
25 ... <!-- Initialize some variables -->
26 <invoke partnerLink="DeadlineCreator" operation="createDeadline">
27 <assign name="setTTP"> <!-- set the global variable for the TTP deadline -->
28 <while name="processLoop">
29 <condition >$processNotDone </condition >
30 <sequence name="processSeq">
31 <if name="If-Started">
32 <condition >$procState = ’Started ’</condition >
33 ... <!-- Implementation of Started state -->
34 </if>
35 <if name="If-AwaitBizDoc">
36 <condition >$procState = ’AwaitBizDoc ’</condition >
37 ...
38 </if>
39 ... <!-- Implementations of the other protocol machine states -->
40 </sequence >
41 </while>
42 </sequence >
43 </process >

Listings 5.5, 5.6 and 5.7 exemplify the most important types of combining send,
receive and timeout events and therefore give a good overview of how states of a BT
protocol machine are to be implemented. The trivial cases of an isolated send or an
isolated receive event are left out.

Listing 5.5 shows the implementation of the requester’s started state where sending
the ‘SolBizDoc’ message to the backend, receiving the ‘GE’ message from the
responder and the TTP timeout are admissible. Apparently, the implementation of
the ‘Started’ state only consists of an invoke for sending the ‘SolBizDoc’ message
to the backend (line 4) and an assign for switching to the next state in the next
iteration of the ‘processLoop’ (line 5). That means, that receiving the ‘GE’ message
and firing the ‘TTP’ timeout is disabled as long as the ‘SolBizDoc’ message is tried
to be delivered.

Note that this is well acceptable for the BT execution semantics. Most importantly,
the consistent outcome of a BT execution across integration partners is not threatened
for two reasons. Firstly, message transmission failures explicitly are part of the model
and thus disabling receive events temporarily does not do any harm. Secondly,
timeouts are controlled by one partner and then communicated to the corresponding
control process.

Beyond not threatening the consistency property of the BT execution model,
temporarily disabling receive and timeout events also is not harmful from a practical
perspective. Firstly, the transmission of a message typically does not take a lot
of time. So, the message transmission of a communication partner typically will
not time out before the message of the focal partner is transmitted. If the message
transmission of the communication partner is not admissible in the next state any
more, then it is as if the message send event of the focal process occurred beforehand
which is valid. Secondly, if a timeout occurs before the message transmission of the

190

5.2. Implementation of BusinessTransactions

focal process is completed then it will immediately be fired once the corresponding
onAlarm of the next pick is activated (cf. [137, section 11.5]). If the timeout is not
admissible in the next state any more, then it is as if the message send event of the
focal process occurred beforehand which is valid again. Note, in that regard, that
firing a timeout some seconds sooner or later does not do any harm because of the
typical time horizon of BT timeouts.

Finally, note that BPEL’s eventHandlers construct deliberately is not used,
although it seems to be an obvious solution for dealing with concurrent events. The
reason is that an event handler is executed in parallel to the scope (cf. [137, section
12.7]) it is attached to (parent scope in the following). Let’s assume that some event
X is enabled in some scope and that some event Y is enabled by means of a message
event handler attached to the scope. If Y fires and the child scope of the event
handler starts then X is still enabled (even if this is for a very short time because
a throw construct is used in the event handler to interrupt its parent scope). If X
then is fired the BT execution semantics is broken because events are defined to
mutually exclude each other. For example, assume that the requester control process
is in state ‘AwaitAA’ and that X corresponds to the receipt of the responder’s ‘AA’
message. Furthermore, assume that Y corresponds to the receipt of the backend’s
Cancel message. If both messages are accepted and backend and responder control
process terminate in a very short time (which would be admissible according to the
BT execution model) then the interacting parties would end up in inconsistent states.

Listing 5.5: Implementation of Requester’s ‘Started’ State
1 <if name="If-Started">
2 <condition >$procState = ’Started ’</condition >
3 <sequence name="Sequence -Started">
4 <invoke partnerLink="ToBackend" operation="txSolicitBDOp">
5 <assign name="Assign -Started">
6 <copy>
7 <from>’AwaitBizDoc ’</from>
8 <to variable="procState"/>
9 </copy>

10 </assign >
11 </sequence >
12 </if>

Listing 5.6 shows the implementation of the requester’s ‘DeliverBizDoc’ state where,
again, a send event competes with receive events and timeout events. The difference
to listing 5.5 is that the protocol message (‘BizDoc’) is sent to the responder control
process instead of the backend. For cross control process communication, the retry
count of the BT configuration must be considered and therefore the invoke construct
for sending the business document (line 42) is included in a while loop (line 4). In
case of a communication error, the openESB BPEL engine raises a ‘systemFault’
that is caught in line 8 in a BPEL faultHandlers/catch declaration. Then the
‘errCount’ variable that represents the number of retries is incremented (line 10)
and checked against the maximum number of retries (line 12). If the maximum
number of retries has been exceeded a user-defined exception is thrown (line 13)
which causes the ‘retry’ while loop to be left and is eventually caught by one of the
root level fault handlers of listing 5.4. Otherwise, the next send try is not launched

191

5. Implementation of Choreographies as BPEL Orchestrations

immediately, but a backoff strategy is applied to circumvent temporary unavailability
of the responder control process. During this time the other competing events of state
‘DeliverBizDoc’ are enabled and a BPEL pick construct is used to select exactly one
of these (cf. [137, section 11.5]). Thus, standard BPEL functionality is used to comply
with the execution semantics for BTs that only allows one event to be processed for
a particular state. Two onMessage constructs and one onAlarm construct are used
to allow for a ‘GE’ of the responder, a ‘Cancel’ of the backend and a ‘TTP’ timeout.
In each case, a throw construct (lines 20, 25 and 29) is used to raise a user defined
exception that then is caught and processed by the root process’ fault handlers. The
last onAlarm in line 31 implements the back-off strategy of waiting for 60 seconds
before trying the next delivery of the ‘BizDoc’ message. When this onAlarm is fired
nothing particular is done and thus just the default semantics of a fault handler is
applied which is terminating the parent scope (the ‘bizDocDeliveryScope’ scope of
line 6 in this case). Then a new iteration of the ‘retry’ while loop is started. The
alternative to leaving this while loop by means of an error is successfully delivering
the ‘BizDoc’ message. If so, the ‘bizDocDelivery’ variable for controlling the ‘retry’
loop is set correspondingly, the deadline for ‘TTAR’ and ‘TTAA’ are calculated and
the next state is switched to (line 45 onward).

Listing 5.6: Implementation of Requester’s ‘DeliverBizDoc’ State
1 <if name="If-DeliverBizDoc">
2 <condition >$procState = ’DeliverBizDoc ’</condition >
3 <sequence name="Sequence -DeliverBizDoc">
4 <while name="retry">
5 <condition >not($ bizDocDelivery)</condition >
6 <scope name="bizDocDeliveryScope">
7 <faultHandlers >
8 <catch faultName="sxeh:systemFault">
9 <sequence name="errCountSeq">

10 <assign name="incErrCount"> <!-- increment errCount variable -->
11 <if name="If1">
12 <condition >$errCount >= $maxRetries </condition >
13 <throw name="throwDelError" faultName="procFaults:deliveryException"/>
14 <else>
15 <pick name="Pick -DeliverBizDoc">
16 <onMessage partnerLink="FromResponder" operation="ExceptionOp">
17 <correlations > <!-- use corrSetTransaction correlation set -->
18 <sequence name="DealWithPartnerErrSeq">
19 <assign name="copyErrSrc"> <!-- Copy error details -->
20 <throw name="throwPartnerEx" faultName="procFaults:partnerException"/>
21 </sequence >
22 </onMessage >
23 <onMessage partnerLink="Backend2Self" operation="txCancelOp">
24 <correlations > <!-- use corrSetTransaction correlation set -->
25 <throw name="throwCancel" faultName="procFaults:cancelException"/>
26 </onMessage >
27 <onAlarm >
28 <until>$deadlineTTP </until>
29 <throw name="throwTTP" faultName="procFaults:ttpException"/>
30 </onAlarm >
31 <onAlarm >
32 <for>’P0Y0M0DT0H0M60 .0S’</for>
33 <empty name="backOff"/>
34 </onAlarm >
35 </pick>
36 </else>
37 </if>
38 </sequence >
39 </catch>
40 </faultHandlers >
41 <sequence name="deliverySeq">

192

5.2. Implementation of BusinessTransactions

42 <invoke partnerLink="ToResponder" operation="
Pip3A20PurchaseOrderConfirmationNotificationOp">

43 <correlations > <!-- use corrSetTransaction correlation set -->
44 </invoke >
45 <assign name="setCommSuccess"> <!-- No exception means success -->
46 <copy>
47 <from>true()</from>
48 <to variable="bizDocDelivery"/>
49 </copy>
50 </assign >
51 ... <!-- Compute deadlines for ttAA and ttAR -->
52 <assign name="Assign -DeliverBizDoc"> <!-- Switch to AwaitRA state -->
53 </sequence >
54 </scope>
55 </while>
56 </sequence >
57 </if>

Listing 5.7 shows the implementation of the requester’s ‘AwaitRA’ state where
several receive events compete with several timeout events. From a conceptual point
of view, there is no difference to the pick construct of listing 5.6 and listing 5.7. Note
however, that the same variable ‘deadlineTTP’ for controlling the ‘TTP’ timeout is
used. This is possible by calculating the deadline once the corresponding timer is
activated (cf. listing 5.4) and using an onAlarm/until combination instead of an
onAlarm/for combination.

Listing 5.7: Implementation of Requester’s ‘AwaitRA’ State
1 <if name="If-AwaitRA">
2 <condition >$procState = ’AwaitRA ’</condition >
3 <sequence name="Sequence -AwaitRA">
4 <pick name="Pick -AwaitRA">
5 <onMessage partnerLink="FromResponder" operation="ReceiptAcknowledgementOp">
6 <correlations > <!-- Use corrSetTransaction correlation set -->
7 <sequence >
8 <assign name="prepReceiptAck"> <!-- Store RA -->
9 <assign name="Assign -AwaitRA"> <!-- Switch to DelRA state -->

10 </sequence >
11 </onMessage >
12 <onMessage partnerLink="FromResponder" operation="ExceptionOp">
13 <!-- Deal with PartnerError -->
14 <onMessage partnerLink="Backend2Self" operation="txCancelOp">
15 <!-- Deal with backend ’s cancel -->
16 <onAlarm >
17 <until >$ deadlineTTP </until >
18 <throw name="throwTTP -AwaitRA" faultName =" procFaults:ttpException "/>
19 </onAlarm >
20 <onAlarm >
21 <until >$ deadlineTTAR </until >
22 <throw name=" throwTTAR" faultName =" procFaults:ttarException "/>
23 </onAlarm >
24 <onAlarm >
25 <until >$ deadlineTTAA </until >
26 <throw name=" throwTTAA" faultName =" procFaults:ttaaException "/>
27 </onAlarm >
28 </pick >
29 </sequence >
30 </if>

Note that the description of implementing the sample requester control process for
the PIP3A20-based BT easily can be adapted to other BT configurations. Moreover
the concept for implementing a responder control process is strikingly similar as the
underlying paradigm for specification, a communicating state machine, is exactly the
same.

193

5. Implementation of Choreographies as BPEL Orchestrations

Testing the requester and responder control processes on the GlassFish-openESB
platform is relatively easy because only a common and non-intricate subset of BPEL
constructs is used for implementation. For example, control links between the
activities of a flow construct or a parallel forEach construct that are not supported
by all contemporary BPEL engines are not used. Backend and Master callback
interfaces have been implemented using EJBs and soapUI mock servics as convenient.
The only problem that was detected was a bug in the openESB binding between
its BPEL engine and HTTP component. In case a receive event is enabled in two
subsequently activated picks or, more generally, incoming messaging activities, then
the second receive event may not get activated on a nondeterministic basis. While
this increases the testing burden to some extent, it does not affect the validity of
the proposed implementation. Additional tests revealed that this behavior is not
existent on Oracle’s BPEL engine. Note that the state machine model of BT control
processes on the one hand and explicitly representing states as if constructs in a
while loop greatly simplifies testing because the reachability of each state and the
possibility of firing each enabled transition then can easily be derived.

Apart from the practical validation of the BT execution model, a formal analysis
of the BT execution protocol has been done using the SPIN model checker. The
protocol machine definitions in Promela (SPIN’s input language) as well as the
consistency property formalization and analysis have been performed by Matthias
Geiger during his diploma project that has been supervised in the course of this
work’s dissertation project. Therefore, the results of the SPIN validation are available
in appendix D.

5.3. Implementation of BusinessCollaborations

This section demonstrates how the execution semantics of ebBP-Reg can be imple-
mented using BPEL. As discussed in the introduction of this chapter, ebBP-Reg
is the more demanding model compared to the other binary choreography style
ebBP-ST (SeqMP is not supposed to serve as model for generating implementations).
However note that the underlying paradigm of both, ebBP-Reg and ebBP-ST, is
a state machine so that adapting the implementation guidelines of this section to
ebBP-ST is not very hard. Moreover, a prototypic translator of ebBP-ST models
has been presented in [160,182] and the corresponding mapping rules are given in
appendix B.

Differences between Implementing ebBP-Reg Models and BTs The implemen-
tation of BTs is similar to the implementation of BCs in the sense of implementing a
state machine-based model. However, there are fundamental differences with respect
to the variability of models, implementation details and content to be exchanged.

The set of ebBP-Reg models is unbounded whereas the number of ebBP BT
configuration instantiations is limited (except for timeout and retry values). Therefore,

194

5.3. Implementation of BusinessCollaborations

mapping rules for the individual ebBP-Reg constructs are needed instead of an
implementation template that can be adapted to the individual BT configuration
instantiations. As a consequence, using a fixed set of global variables is inadequate
for mapping ebBP-Reg models and BPEL scopes are used for defining locally visible
variables per ebBP-Reg construct.

Implementing process correlation also is slightly different from the BT strategy.
Firstly, the message header of listing 5.1 is applied to all collaboration level message
exchanges including cross-organizational message exchanges (whereas business docu-
ments and signals may be exchanged in raw form for BTs). This is valid because
ebBP-Reg is a new model that requires a dedicated set of message types that have to
be exchanged in a certain order. As existing collaboration level message exchanges
are likely to be built upon a different set of message types and exchange orders,
including the message header of listing 5.1 in the adaptation of existing collabora-
tion level implementations is acceptable. Secondly, the hierarchical organization of
ebBP-Reg models affects binding of correlation properties. For BT execution, the
assumption is that backend, master and partner control processes all use the same
instantiation of the message header for communicating with a particular control
process. Incoming messages then all are mapped to the intended BPEL process
by mapping the ‘InstanceIdentifier’ field of the message header. For ebBP-Reg,
messages from a lower-level process must be considered that use the message header
instantiation of the lower nesting level. Hence, an incoming message of a lower-level
process must be mapped using the ‘ParentIdentifier’ field of the message header as
shown in listing 5.8 instead of the ‘InstanceIdentifier’ field as shown in listing 5.3.

Listing 5.8: Sample Correlation Property Alias for Binding of Incoming Messages
from a Lower Level Control Process

1 <vprop:propertyAlias
2 propertyName="corr:prop_CollaborationIdentifier"
3 messageType="tns:bc -single -3 A19CbResultMsg"
4 part="bc-single -3 A19CbResultPart">
5 <vprop:query >mb:CollaborationMetaBlock/mb:ParentIdentifier </vprop:query >
6 </vprop:propertyAlias >

The last major difference in implementing ebBP-Reg models compared to BTs
is the type of content to be exchanged. Collaboration level messages do not carry
business content. At best, the need for exchanging business relevant content is
communicated via collaboration level messages, but all relevant business documents
and business signals that carry meaning from a business point of view are exchanged
within BTs. The purpose of collaboration level messages is exchanging technical
details like correlation information and coordinating upon collaboration control flow
in order to ensure strict compliance to the respective ebBP-Reg model. This is done
by means of applying so-called “micro-protocols” that are specific for each ebBP-Reg
control flow construct and range in complexity from basically trivial for sequential
structures and complex for event-based choices. Note that those micro-protocols do
not trigger activities on their own, but just serve as technical arbitrators for backend
triggers. The backends actually request the execution of particular activities and the
micro-protocols implement these across all related parties in a consistent manner. In

195

5. Implementation of Choreographies as BPEL Orchestrations

case of concurrent requests, micro-protocols ensure a global order of trigger events
so that diverging control flow is avoided. In order to do so, one out of each pair of
BC control processes for implementing a BC is assigned the “leader” role whereas
its peer is assigned the “non-leader” role (see below for examples). This is a merely
technical decision and, as there is no global time in distributed systems anyway, does
not affect validity.

As collaboration level messages do not carry business information, the assumptions
about the communication channel can be rethought as well. From a reliability point
of view, loosing such a message is not really serious because the worst thing that
can happen is a stalled process. However, if an attacker is part of the failure model,
the application of the SecRM scenario or similar means as discussed in section 5.1 is
advisable.

Overview of Implementing ebBP-Reg Models The implementation of ebBP-Reg
models follows the pairwise control process modularization scheme described in section
5.1, in particular figure 5.1, and the WSDL interfaces are designed correspondingly
(one WSDL definition for each direction of a communication link). Instead of
discussing all those WSDL interfaces, table 5.2 summarizes the collaboration level
message types exchanged.

The basic interaction style for exchanging these messages is asynchronous except for
three synchronous interactions that are used by BC control processes for requesting
new ids for lower level control processes (messages ‘idReq’, ‘idRes’), for requesting
TimeToPerform values (messages ‘ttpReq’, ‘ttpRes’), and for evaluating expressions
against BT results (messages ‘evalReq’, ‘evalRes’). Note that these interactions do
not require human interaction and are performed within the safe local environment
of one partner. Hence, they can be assumed to take very little time.

Conversely, the communication style again is synchronous for simplifying micro-
protocol design.

The derivation of BPEL control processes from ebBP-Reg choreographies is de-
scribed below by first discussing how the overall process structure looks like and then
describing how the various ebBP-Reg structures are translated into this structure.

The various listings are taken from the implementation of the use case depicted
in figure 4.11 of section 4.5. This use case covers all major control flow constructs
of ebBP-Reg and therefore also provides reasonable validation of the mapping rules
described. For conciseness, the same violations of XML syntax used in the last
section are reapplied again.

For setting up a BC control process, similar static configurations in terms of WSDL
imports, BPEL partnerLink definitions and correlation sets are needed as for
BT processes. A more detailed description therefore is omitted. For starting the
behavioral definition of a BC control process, the implementing BPEL process uses
a BPEL receive to await a cbStart message from either a parent control process

196

5.3. Implementation of BusinessCollaborations

Ctrl. Msg. Explanation

cbStart Used by a BC control process to start a child control process.

initFail Used by a child BC control process to signal to a parent control process that
the peer BC control process is not reachable.

reqAct Used by either a backend or a partner BC control process to request the
execution of an activity at the leader control process.

actChoice Sent by a BC control process to signal that a new lower level activity shall
be started. If both BC control processes may start a lower level activity, only
the leader process is allowed to send this message. If concurrent requests of
backends are possible, the control processes use this message to inform the
backends about the chosen activity.

initAct Used by a BC control process to distribute the instance id of a new activity to
its peer control process.

initAck Used by a BC control process to acknowledge the start of an activity to the
partner control process.

idReq Used by a BC control process to request a new activity id at the backend.

idRes The synchronous reply message to an idReq message.

ttpReq Used by a BC control process to request the ebBP timeToPerform value for a
new activity (if not statically assigned) at the backend.

ttpRes The synchronous reply message to a ttpReq message.

evalReq Used by a BC control process to request the evaluation of a given expression
against the result document of a BT execution at the backend.

evalRes The synchronous reply message to a evalRes message.

actReady Used by a BC control process to inform its backend that a BTA will be set up
immediately or that a child BCA has been set up. The distinction with respect
to sending the actReady message before or after setup is aligned with the first
message to be exchanged for the respective activity. In BT executions, the first
message between control processes and backends is sent by the control processes.
Conversely, the first message exchanged between backends and control processes
for a BC execution is sent by the backend.

bcResult Upon termination, used by a BC control process to report the BC result to its
backend and its parent control process (if existent).

txResult Used by a BT control process to report the BT result to its parent control
process.

txStart Used by a BC control process to start a child BT control process.

Table 5.2.: BC Control Messages Overview

(if existent) or from the backend. In the latter case (which means the process under
consideration is a root level process), the cbStart message is forwarded to the
corresponding partner control process which in turn informs its backend component

197

5. Implementation of Choreographies as BPEL Orchestrations

about the new collaboration instance. Upon receipt of the cbStart message, the
correlation sets for identifying the process instance are set up (cf. section 5.1). In
case the partner control process is not reachable, an initFail message is returned
to the initiator and the BC control process is terminated. If the collaboration level
ebBP timeToPerform value has been set to runtime the BC control process requests
a ttpRes message from its backend using a ttpReq message and propagates it to its
peer.

Then, the main BPEL scope of the process is entered that carries a BPEL onAlarm

event handler for controlling the collaboration’s timeToPerform timer. If the timeout
occurs, the event is stored in a boolean variable (‘interrupted’ in listing 5.9) and once
the next activity completes, the control process terminates and sends a corresponding
bcResult message to its initiator informing it about the technical failure (see listing
5.16). The content of the main BPEL scope consists of a BPEL while that continues
until a final state is reached. Within this loop, a series of BPEL ifs are used to
determine the state the collaboration currently is in (variable ‘cbState’). Any BCA,
BTA, parallel structure, event-based choice and final state that is not located within
a parallel structure is considered to be a state (cf. section 4.5). Looking at the use
case depicted in figure 4.11, the parallel structure at the top or the BTA BT-3A21

would be considered as states, but not BCAs BC-single3A19-1/2. In each of these
states, i.e., within the BPEL if tags, the code for the respective ebBP-Reg language
constructs is mapped. Listing 5.9 exemplifies the concept.

Listing 5.9: Main loop of a BCA control process
1 <while name="cbWhile">
2 <condition >not($ inEndState) and not($ interrupted)</condition >
3 <sequence name="cbSwitchSeq">
4 <if name="cbSwitch -fk-parallel">
5 <condition >$cbState = ’fk-parallel ’</condition >
6 <scope name="scope -fk-parallel">
7 ... code implementing the parallel structure ...
8 </scope>
9 </if>

10 <if name="cbSwitch -bta -bt-PIP3A20">
11 <condition >$cbState = ’bta -bt-PIP3A20 ’</condition >
12 <scope name="scope -bta -bt-PIP3A20">
13 ... code implementing PIP 3A20 ...
14 </scope>
15 </if>
16 ... switch across other ’states ’ ...
17 </sequence >
18 </while>

Eventually, when a final state has been reached (businessSuccess, techFail or busi-
nessFail for the above use case) or an interrupt has occurred then the global loop
condition is set to false, the parent control process and/or the backend process are
informed about the result and the process is terminated.

Mapping Rules for ebBP-Reg Models The two BPEL control processes that are
derived for each nesting level of an ebBP-Reg model by applying the below mapping
rules are not identical. Some mapping rules depend on whether the BPEL process
to be generated takes the leader role or the non-leader role as discussed above.
This implies that the leader role is fixed at build-time, but the rules could easily be

198

5.3. Implementation of BusinessCollaborations

extended such that a particular process implements both roles and then a leader
election algorithm could be used at run-time. Remind further that decisions and
loops in an ebBP-Reg model are implicitly covered by the evaluation of the outgoing
transition guards of BTAs and BCAs. Hence, there are no mapping rules for decisions
and loops. Also note that, by leveraging standard component interfaces as described
in section 5.1, the resulting BPEL processes are fully executable.

Mapping Rule 5.3.1 (Start)

Essentially covered in the description of the process setup above. This rule does not
depend on the leader/non-leader distinction.

Mapping Rule 5.3.2 (BTA)

This rule is applied if only one single BTA is eligible for execution and does not
depend on the leader/non-leader distinction. However, the BPEL mapping depends
on whether the focal control process takes the requester or the responder role of the
BT. Listings 5.10 and 5.11 show the BPEL mapping for the former and the latter
case, respectively. Remember that the BPEL code described has to be inserted into
one of the BPEL if branches of the main process while loop as described in listing
5.9. Consistently, both listings start out with the definition of a BPEL scope and
the definition of several local variables that are needed for the implementation of the
micro-protocol that ensures control flow (trivial for this case).

If the control process maps to the requester role of the BT (listing 5.10), then
the first messaging activity corresponds to waiting for the backend to request the
execution of the respective BTA (BT-3A20 in this case) using a reqAct message (see
line 10 of listing 5.10). Upon receipt of the reqAct message, the control process
synchronously queries a new activity id for the BTA (line 16), informs the partner
control process that the execution of the BTA has been requested using an actChoice
message (line 18), and then distributes the BTA’s activity id to the partner control
process (line 20). Then the initAck message of the partner is waited for that is
only sent if the partner has set up the BTA’s responder control process. This
sequence is not harmful because the responder control process waits for the requester
control process of a BT to send the first cross-organizational message at the BT
level. Moreover, introducing the exchange of the initAck message enables BC level
routing even for BT protocol failures because the BT responder protocol process will
eventually determine a protocol failure in case that the requester control process
does not send a message. As the BT execution protocol is known to always produce
a consistent outcome (cf. appendix D), the focal BC control process can take routing
operations as defined in the ebBP-Reg model even in case of errors. Note that this
is different from other approaches that do not have separate initiation and execution
phases because an execution phase error then may not be detected by both interacting
parties. For example, the responder may not even notice that the requester tried to
perform a BT in these alternative approaches.

199

5. Implementation of Choreographies as BPEL Orchestrations

Therefore, once the focal control process has received the initAck message of its
partner, the backend is informed about the setup of the BT level control process.
Subsequently, the BT level requester control process is started. This order of first
informing the backend and then setting up the requester control process is sensible
because, in the good case, the requester control process first solicits the business
document from the backend and then receives the corresponding message from the
backend. Note that starting the BT requester control process is a local action
and therefore is unlikely to fail. Upon termination, the requester control process
sends back a txResult message to the parent control process (line 31 of listing 5.10).
This result then is evaluated in lines 33 to 71 where the generic protocol outcome
according to ebBP ConditionGuardValue semantics is evaluated first. In case any
kind of protocol failure is detected (lines 34 to 36) then the ‘cbState’ variable is set to
‘techFail’ which is the label of an end state in figure 4.11. The corresponding scope
of that end state then is reached in the next iteration of listing 5.9’s while loop. If
no protocol failure is detected a helper service is used to evaluate the content-based
expressions of the ebBP-Reg model against the business document exchanged during
the BT execution (the business document is part of the result variable). As BPEL
engines are required to support the XPath 1 standard, a separate helper service is
actually not always necessary. However, for better debugging and better flexibility
in choosing alternative expression languages, a dedicated service is advisable. The
assumption is that the evaluation of expressions results in a boolean value and the
next state of the ebBP-Reg model is switched to if the respective expression evaluates
to true. If no expression evaluates to true, a corresponding exception is thrown
(line 62). Note that ebBP-Reg requires the set of condition guards attached to the
outgoing transitions of a BTA to be complete and disjoint. Therefore, the nested
structure of BPEL ifs for evaluating content-based expressions could be replaced by
a sequence of ifs as well. However, this would unnecessarily waste computing time.

Listing 5.10: Initiating a BTA if Collaboration Role Maps to BTA Requester
1 <scope name="scope -bta -bt-PIP3A20">
2 <variables > <!-- provide local variables for implementation of micro protocol

message exchanges -->
3 <variable name="initAck -bta -bt-PIP3A20 -FromPartner"
4 messageType="tns:cbInitAckMsg"/>
5 <variable name="reqAct -bta -bt-PIP3A20 -FromBackend"
6 messageType="tns:cbRequestActivityMsg"/>
7 <variable >*
8 </variables >
9 <sequence name="seq -bta -bt-PIP3A20">

10 <receive partnerLink="FromBackend" operation="cbRequestActivityOp">
11 <correlations >
12 <correlation set="corrCollaboration" initiate="no"/>
13 </correlations >
14 </receive >
15 <assign name="assPrepId -bta -bt-PIP3A20"> <!-- prepare idReq call to backend -->
16 <invoke partnerLink="ToBackend" operation="cbIdRequestOp"/> <!-- get id using

synchronous call -->
17 <assign name="assPrepActChoice -bta -bt-PIP3A20"> <!-- prepare actChoice call to

partner; choiceType is PartnerChoice -->
18 <invoke partnerLink="ToPartner" operation="cbActivityChoiceOp"/>
19 <assign name="assPrepInit -bta -bt-PIP3A20"> <!-- prepare initAct call to partner

-->
20 <invoke partnerLink="ToPartner" operation="cbInitActivityOp" />
21 <receive partnerLink="FromPartner" operation="cbInitAckOp">

200

5.3. Implementation of BusinessCollaborations

22 <!-- wait for initAck -->
23 <correlations ><!-- use corrCollaboration correlation set -->
24 </receive >
25 <assign name="assPrepActReady -bta -bt-PIP3A20"> <!-- prepare actReady call to

backend -->
26 <invoke partnerLink="ToBackend" operation="cbActivityReadyOp"/>
27 <assign name="assPrepStart -bta -bt-PIP3A20"> <!-- prepare txStart call to BTA

control process -->
28 <!-- assign this process ’ InstanceIdentifier to BTA’s ParentIdentifier -->
29 <!-- assign the id requested from backend to BTA’s InstanceIdentifier -->
30 <invoke partnerLink =" ToPIP3A20Requestor" operation =" txStartOp"/>
31 <receive partnerLink =" FromPIP3A20Requestor" operation =" txResultOp">
32 <!-- use corrCollaboration correlation set -->
33 <if name=" switchState -bta -bt-PIP3A20 -1">
34 <condition >$ txResult .../ ns4:genericProtocolResult = ’AnyProtocolFailure ’ or
35 $txResult .../ ns4:genericProtocolResult = ’RequestReceiptFailure ’ or ...
36 </condition > <!-- capture generic BT protocol result -->
37 <assign name="route1 -bta -bt-PIP3A20"><!-- Switch to next collaboration state

-->
38 <copy >
39 <from >’techFail ’</from >
40 <to variable =" cbState"/>
41 </copy >
42 </assign >
43 <else > <!-- evaluate the business document exchanged; evaluation order is

irrelevant -->
44 <sequence name=" switchStateEvalSeq1 -bta -bt-PIP3A20">
45 <assign name="assEval1 -bta -bt-PIP3A20"> <!-- prepare call to XPath evaluation

service -->
46 <invoke partnerLink =" ToXPath2Evaluator" operation =" evaluateExpression "/>
47 <if name=" switchState -bta -bt-PIP3A20 -2">
48 <condition >$evalResp1 -bta -bt-PIP3A20 -FromXPath2Eval.

xpath2EvaluationResponsePart </condition >
49 <assign name="route2 -bta -bt-PIP3A20"><!-- Switch to next collaboration state

-->
50 <copy >
51 <from >’businessFail ’</from >
52 <to variable =" cbState"/>
53 </copy >
54 </assign >
55 <else >
56 <sequence name=" switchStateEvalSeq2 -bta -bt-PIP3A20">
57 <assign name="assEval2 -bta -bt-PIP3A20"> <!-- prepare call to XPath

evaluation service -->
58 <invoke partnerLink =" ToXPath2Evaluator" operation =" evaluateExpression "/>
59 <if name=" switchState -bta -bt-PIP3A20 -3">
60 <condition >$evalResp2 -bta -bt-PIP3A20 -FromXPath2Eval.

xpath2EvaluationResponsePart </condition >
61 <assign name="route3 -bta -bt-PIP3A20"><!-- Switch to next collaboration

state -->
62 <else > <!-- set of expressions must be disjoint AND complete -->
63 <throw name=" unknownResult -bta -bt-PIP3A20" faultName ="

cbFaults:UnknownResultException "/>
64 </else >
65 </if>
66 </sequence >
67 </else >
68 </if >
69 </sequence >
70 </else >
71 </if>
72 </sequence >
73 </scope >

If the control process maps to the responder role of the BT, then BPEL code that
is basically symmetric to listing 5.11 needs to be inserted. After setting up local
variables, first the actChoice message of the partner control process is awaited. From
a protocol perspective, this message is not strictly necessary, but it is included for
easier generation of processes. Then, the initAct message of the partner control
process is received and the backend is informed about the new BT execution using

201

5. Implementation of Choreographies as BPEL Orchestrations

an actReady message. Subsequently, the BT responder control process is started
using a txStart message. Again, the order of actReady and txStart message is aligned
with the fact that the responder control process is supposed to send a message to
the backend before the backend sends a message to the responder control process.
Then, the start of the BT control process is acknowledged to the partner BC control
process using an initAck message. After the result of the BT execution has been
received from the responder control process, the evaluation of the result is performed
exactly as in lines 33 to 71 of listing 5.10.

Listing 5.11: Initiating a BTA if Collaboration Role Maps to BTA Responder
1 <scope name="scope -bta -bt-PIP3A20">
2 <variables ><!-- provide local variables for implementation of micro protocol

message exchanges -->
3 <sequence name="seq -bta -bt-PIP3A20">
4 <receive partnerLink="FromPartner" operation="cbActivityChoiceOp"> <!-- not

strictly needed in this case -->
5 <correlations > <!-- use corrCollaboration correlation set -->
6 </receive >
7 <receive partnerLink="FromPartner" operation="cbInitActivityOp">
8 <correlations > <!-- use corrCollaboration correlation set -->
9 </receive >

10 <assign name="assPrepActReady -bta -bt-PIP3A20"> <!-- prepare actReady call to
backend -->

11 <!-- take over BTA instance identifier provided by partner -->
12 <invoke partnerLink="ToBackend" operation="cbActivityReadyOp"/>
13 <assign name="assPrepStart"> <!-- prepare txStart call to BTA responder process

-->
14 <invoke partnerLink="ToPIP3A20Responder" operation="txStartOp"/>
15 <assign name="prepInitAck -bta -bt-PIP3A20"> <!-- prepare initAck call to partner

-->
16 <invoke partnerLink="ToPartner" operation="cbInitAckOp"/>
17 <receive partnerLink="FromPIP3A20Responder" operation="txResultOp">
18 <correlations > <!-- use corrCollaboration correlation set -->
19 </receive >
20 <if name="switchState -bta -bt-PIP3A20 -1"> <!-- implement result evaluation ;

corresponds to requester mapping -->
21 </sequence >
22 </scope>

Mapping Rule 5.3.3 (BCA)

This rule is applied if only one single BCA is eligible for execution and is the same as
mapping rule 5.3.2 except for four differences. Firstly, the BCA is started immediately
once it is enabled. Secondly, it is always the leader control process that initiates
the BCA. Thirdly, first the lower level control processes are set up using a cbStart
message and then the backends are informed about the BCA using an actReady
message. This is different from the BTA strategy because at the collaboration level
the first message exchanges are triggered by the backends and not by the control
processes. Fourthly, the evaluation of BCAs is based on the end state labels of
the corresponding ebBP-Reg model and not on ebBP ConditionGuardValues and
expressions on business documents.

Mapping Rule 5.3.4 (Event-Based Choice)

The mapping rule for event-based choices depends on the distinction between leader
and non-leader control processes. The basic idea is that the leader control process

202

5.3. Implementation of BusinessCollaborations

waits for either a backend request or a partner control process request and then starts
the initiation of the requested activities. In case of concurrent requests, one out of
two requests is selected in a non-deterministic manner. Conversely, the non-leader
control process just relays the potential request of its backend and then awaits the
decision of the leader control process. Note again that this is just a technical issue
and does not affect business logic.

Listing 5.12 shows the structure of the leader mapping of an event-based choice
(for the ‘XOR-Fork’ of figure 4.11). After the definition of local variables, a BPEL
while is executed until one of the event-based choice branches has been selected.
In each iteration, a BPEL pick (starting in line 8) is used to choose from either a
backend request or a partner request.

If a reqAct is received from the backend, a new scope (line 11) is installed. Within
this scope, the validity of the requested activity is checked, i.e., the authorization of
the backend to trigger the respective activity is evaluated. If the request is valid,
actChoice messages are sent to the partner and to the backend to inform them about
the selected branch of the event-based choice. Then, the while loop for repeating the
event-based choice is broken by setting the corresponding boolean variable and the
actual initialization of the selected activity is done in the next iteration of the global
process while loop of listing 5.9. If the backend’s request is not valid an actChoice
message is prepared to be sent to the backend to reject the request later (see below).
In order to support the different functions of the actChoice message, three different
choiceTypes are included, ‘Accept’ for accepting an activity request, ‘PartnerChoice’
for transmitting the name of an activity chosen by the partner, and ‘Invalid’ for
invalid requests. Note that the scope starting in line 11 also defines an eventHandler

for consuming actReq messages of the partner control process (lines 13 to 18) that is
used to store the partner’s request. This scope is necessary to avoid the situation
that the partner tries to deliver an actReq message while the focal control process
tries to deliver an actChoice message (remember that the communication style is
synchronous). As the underlying Web Services calls for delivering the messages
eventually would time out, the mutual blocking would not constitute a classical
deadlock, but the eventHandler is installed to avoid unnecessary waiting times.

The processing of the second onMessage branch of the pick for consuming a
partner request is symmetric.

After the pick has been processed, the determination of an event-based choice
branch is evaluated. If no branch has been chosen yet and if a backend or partner
request is still stored then these stored requests are processed. There are basically
two instantiations of this situation. Either the backend delivered an invalid reqAct
message first and the partner reqAct was received while performing the backend’s
request or the other way round. Therefore, the BPEL if constructs in lines 39 and
57 are used to cover those two cases. The BPEL code for doing this is essentially
the same as for the onMessage branches of the event-based choice pick, but no
eventHandlers are used to consume concurrent requests. This is not necessary,
because the partner control process and backend are still waiting for an actChoice
message. For the if construct starting in line 39, this is the case because the invalid

203

5. Implementation of Choreographies as BPEL Orchestrations

request of the backend was not rejected immediately, but only after the potential
concurrent request of the partner has been evaluated (cf. above). If both requests,
the backend request and the partner request, are invalid then the if structures in
lines 58 and 62 are used to deliver the missing actChoice messages and the next
iteration of the event-based choice loop waits for the next requests.

Listing 5.12: Mapping of an Event-Based Choice for a Leader Control Process
1 <scope name="scope -fork -continue">
2 <variables > <!-- provide local variables for implementation of micro protocol

message exchanges -->
3 <sequence name="seq -fork -continue">
4 <assign name="initVar -fork -continue"> <!-- some initializations -->
5 <while name="while -fork -continue">
6 <condition >not($decided -fork -continue)</condition > <!-- while no branch

selected -->
7 <sequence name="seqWhile -fork -continue">
8 <pick name="mPick -fork -continue">
9 <onMessage partnerLink="FromBackend" operation="cbRequestActivityOp">

10 <correlations > <!-- use corrCollaboration correlation set -->
11 <scope name="scopeBeNeed -fork -continue">
12 <eventHandlers >
13 <onEvent partnerLink="FromPartner" operation="cbRequestActivityOp">
14 <correlations > <!-- use corrCollaboration correlation set -->
15 <scope name="scopeLatePartner -fork -continue">
16 <assign name="assStoreLatePartner -fork -continue"> <!-- store partner

request -->
17 </scope>
18 </onEvent >
19 </eventHandlers >
20 <if name="ifValidReqBe -fork -continue">
21 <condition >’bta -bt-PIP3A23 ’ = $reqAct .../ ns4:activityName </condition > <!--

if valid request -->
22 <sequence name="seqBeNeed -fork -continue">
23 <assign name="assPrepBeNeed -fork -continue"> <!-- prepare actChoice calls

to backend and partner -->
24 <invoke partnerLink="ToPartner" operation="cbActivityChoiceOp"/>
25 <invoke partnerLink="ToBackend" operation="cbActivityChoiceOp"/>
26 <assign name="switchStateBeNeed -fork -continue"> <!-- break ebc while and

switch to preparing selected activity -->
27 </sequence >
28 <else>
29 <sequence name="seqBeInvalid -fork -continue">
30 <assign name="assBeNeedInvalid -fork -continue"> <!-- prepare actChoice

call to backend -->
31 </sequence >
32 </else>
33 </if>
34 </scope>
35 </onMessage >
36 <onMessage partnerLink="FromPartner" operation="cbRequestActivityOp">
37 <!-- symmetric to onMessage for backend reqAct -->
38 </pick>
39 <if name="ifLatePa -fork -continue">
40 <condition >not($decided -fork -continue) and $concPaNeed -fork -continue </

condition >
41 <if name="ifValidReqPaLate -fork -continue">
42 <condition >’bta -bt-PIP3A21 ’ = $reqAct .../ ns4:activityName or ’bta -bt-PIP3C3 ’

= $reqAct .../ ns4:activityName </condition >
43 <sequence name="seqPaNeedLate -fork -continue">
44 <assign name="assPrepPaNeedLate -fork -continue"> <!-- prepare actChoice

calls to backend and partner -->
45 <invoke partnerLink="ToBackend" operation="cbActivityChoiceOp"/>
46 <invoke partnerLink="ToPartner" operation="cbActivityChoiceOp"/>
47 <assign name="switchStatePaNeedLate -fork -continue"> <!-- break ebc while

and switch to preparing selected activity -->
48 </sequence >
49 <else>
50 <sequence name="seqPaInvalidLate -fork -continue"> <!-- in case of invalid

request -->

204

5.3. Implementation of BusinessCollaborations

51 <assign name="assPaNeedInvalidLate -fork -continue"> <!-- prepare actChoice
call to partner -->

52 <invoke partnerLink="ToPartner" operation="cbActivityChoiceOp"/>
53 </sequence >
54 </else>
55 </if>
56 </if>
57 <if name="ifLateBe -fork -continue"> <!-- symmetric to ifLatePa -fork -continue --

>
58 <if name="ifBeInvalid -fork -continue">
59 <condition >not($decided -fork -continue) and $beInvalid -fork -continue </

condition >
60 <invoke partnerLink="ToBackend" operation="cbActivityChoiceOp"/>
61 </if>
62 <if name="ifPaInvalid -fork -continue"> <!-- symmetric to ifBeInvalid -fork -

continue -->
63 <assign name="assClearConcurRequests"> <!-- clean up for next iteration -->
64 </sequence >
65 </while>
66 </sequence >
67 </scope>

The code for the non-leader implementation of an event-based choice given in
listing 5.13 is much simpler compared to the leader mapping. Basically, another
while loop (line 5) is used to iteratively wait for an actChoice message of the partner
control process or a reqAct message of the backend using a BPEL pick (line 8). In
case a reqAct message from the backend is received (BPEL onMessage construct
starting in line 9) this message is relayed to the leader control process and then the
leader’s actChoice message is awaited. The type of the actChoice message may be
either ‘Invalid’ if the backend’s request was invalid, ‘Accept’ if the backend’s request
was granted or ‘PartnerChoice’ if the leader’s backend requested an activity slightly
before the non-leader’s backend. In the latter case the onEvent construct starting in
line 13 of listing 5.12 would have been used to consume the reqAct relayed by the
non-leader control process. In any case, the contents of the leader’s actChoice is sent
to the backend and if the type is not ‘Invalid’ (checked in the if structure starting
in line 19) then the event-based choice while is left.

The second onMessage of the non-leader’s pick starting in line 25 consumes an
unsolicited actChoice of the leader control process that corresponds to a granted
reqAct message of the leader’s backend. This actChoice is relayed to the backend
and then the while for controlling the event-based choice is left. A check for the
actChoice type is left out because the ‘Invalid’ type is only possible if the non-leader
control process transmitted a reqAct beforehand. Note that an eventHandler for
consuming a potential reqAct from the non-leader backend while processing the
actChoice of the leader control process is installed (starting in line 29) in order to
resolve concurrent requests.

Listing 5.13: Mapping of an Event-Based Choice for a Non-Leader Control Process
1 <scope name="scope -fork -continue">
2 <variables > <!-- provide local variables for implementation of micro protocol

message exchanges -->
3 <sequence name="seq -fork -continue">
4 <assign name="initVar -fork -continue"> <!-- set while variable -->
5 <while name="while -fork -continue">
6 <condition >not($decided -fork -continue)</condition >
7 <sequence name="seqWhile -fork -continue">
8 <pick name="pick -fork -continue">
9 <onMessage partnerLink="FromBackend" operation="cbRequestActivityOp">

205

5. Implementation of Choreographies as BPEL Orchestrations

10 <correlations > <!-- use corrCollaboration correlation set -->
11 <sequence name="seqReqAct -fork -continue -BE">
12 <assign name="prep -reqAct -fork -continue -ToPartner"> <!-- prepare reqAct

call to partner -->
13 <invoke partnerLink="ToPartner" operation="cbRequestActivityOp"/>
14 <receive partnerLink="FromPartner" operation="cbActivityChoiceOp">
15 <correlations > <!-- use corrCollaboration correlation set -->
16 </receive >
17 <assign name="prep -actChoice -fork -continue -ToBackend"> <!-- prepare

actChoice call to backend -->
18 <invoke partnerLink="ToBackend" operation="cbActivityChoiceOp"/>
19 <if name="decContinue -actChoice -fork -continue"> <!-- check type of

actChoice -->
20 <condition >’PartnerChoice ’ = $actChoice .../ ns4:choiceType or ’Accept ’ = $

actChoice .../ ns4:choiceType </condition >
21 <assign name="SetDone -actChoice -fork -continue"> <!-- break ebc while and

switch to preparing selected activity -->
22 </if>
23 </sequence >
24 </onMessage >
25 <onMessage partnerLink="FromPartner" operation="cbActivityChoiceOp">
26 <correlations > <!-- use corrCollaboration correlation set -->
27 <scope name="scopeActChoice -fork -continue">
28 <eventHandlers >
29 <onEvent partnerLink="FromBackend" operation="cbRequestActivityOp">
30 <correlations > <!-- use corrCollaboration correlation set -->
31 <scope name="actChoiceUnSol -resolveBECall">
32 <empty name="resolveCall"/> <!-- just forget this reqAct; the partner ’s

actChoice will resolve -->
33 </scope >
34 </onEvent >
35 </eventHandlers >
36 <sequence name=" seqActChoice -fork -continue">
37 <assign name="prep -actChoiceUnSol -fork -continue -ToBackend"> <!-- prepare

actChoice call to backend -->
38 <invoke partnerLink =" ToBackend" operation =" cbActivityChoiceOp "/>
39 <assign name="SetDone -actChoiceUnSol -fork -continue"> <!-- break ebc while

and switch to preparing selected activity -->
40 </sequence >
41 </scope >
42 </onMessage >
43 </pick >
44 </sequence >
45 </while >
46 </sequence >
47 </scope >

Two simplifications of the event-based choice mapping are possible depending on
the type of outgoing activities that can be triggered. If all BTAs the event-based
choice links to map the focal control process’ role to the BT requesting role and
there is no link to an BCA then all that needs to be done is waiting for a reqAct
of the backend, validate it and forward it as an actChoice to the partner control
process. Conversely, if all BTAs the event-based choice links to map the focal control
process’ role to the BT responding role then the mapping consists of waiting for the
partner control process’ actChoice and forwarding it to the backend. Note that, in
both cases, the initiation of the respective activities is performed by analogy with
mapping rule 5.3.2 in the next iteration of the process level while loop.

Mapping Rule 5.3.5 (Parallel)

For the mapping of a parallel structure remember that each branch consists of exactly
one BCA and that no interaction between the branches is defined. Moreover, the
mapping rule for a parallel structure depends on the distinction between leader and

206

5.3. Implementation of BusinessCollaborations

non-leader control processes. Listing 5.14 shows the mapping of the leader control
process that starts initiating all the connected BCAs once the parallel structure
has been selected in the process level while loop described in listing 5.9. For the
use case of figure 4.11 two instances of a collaboration centered around PIP 3A19
are performed. Apparently, the mapping does not consist of one single BPEL flow

but starts out with a series of micro protocol message exchanges organized in a
sequential structure. The reason for this is that the actChoice, initAct and initAck
messages have to be correlated with the partner control process instance. Hence the
BPEL process correlation mechanism is used for process identification and as the
partnerLink, portType, operation and correlationSet used for the exchange of
two micro protocol messages of the same type are identical, enabling such receive
events concurrently in a BPEL flow would result in a BPEL conflictingReceive

error (cf. [137, section 10.4]). Consistently, the initAck messages for acknowledging
the setup of the lower level BC control processes by the partner control process are
received in sequence (lines 13 and 16 of listing 5.14). Note that initiating the BCAs
of a parallel structure does not violate the ebBP-Reg execution semantics because
there is no order imposed on the branches of a parallel structure. In addition, the
time for exchanging micro protocol messages typically is a matter of seconds whereas
performing BCs typically takes hours to days due to human involvement. Once the
initAck messages for all branches have been received from the partner control process,
the child BC control processes are set up within a BPEL flow structure where each
BPEL sequence within the flow constitutes a BPEL level parallel branch (starting
in lines 20 and 25). In each of these branches, a cbStart message is used to create a
new child BC control process the creation of which is then signaled to the backend
using actReady messages. In case the backend is not able to deal with concurrently
receiving two actReady messages then the initiation of the child BC control processes
could be performed in sequence as well for the reasons just explained. Finally,
another BPEL flow (starting in line 31) is used to collect the results of the child
collaborations. In this case, the use of concurrently active branches for collecting
results is strictly required because the sequence of result messages from the child
BC processes is not known in advance. However, as different partnerLinks and
correlationSets are used for receiving these messages, using the same operation
does not do any harm (cf. lines 33 and 38). The mapping of a non-leader control
process is symmetric and omitted for reasons of conciseness. The basic structure of
initiating an activity that is necessary for creating the non-leader process mapping
is shown in mapping rule 5.3.2.

Listing 5.14: Mapping of a Parallel Structure for a Leader Control Process
1 <scope name="scope -fk-parallel">
2 <variables > <!-- provide local variables for implementation of micro protocol

message exchanges -->
3 <sequence name="seq -fk-parallel"> <!-- coordinate execution of BCAs -->
4 <assign name="assPrepIds -fk-parallel"> <!-- prepare idReq calls to backend -->
5 <invoke name="invGetID -ba-bc-single -3A19 -1" partnerLink="ToBackend" operation="

cbIdRequestOp"/>
6 <invoke name="invGetID -ba-bc-single -3A19 -2" partnerLink="ToBackend" operation="

cbIdRequestOp"/>

207

5. Implementation of Choreographies as BPEL Orchestrations

7 <assign name="assPrepActChoice -fk-parallel"> <!-- prepare actChoice calls to
partner -->

8 <invoke name="invActChoice -ba-bc -single -3A19 -1" partnerLink="ToPartner"
operation="cbActivityChoiceOp"/>

9 <invoke name="invActChoice -ba-bc -single -3A19 -2" partnerLink="ToPartner"
operation="cbActivityChoiceOp"/>

10 <assign name="assPrepInit -fk-parallel"> <!-- prepare initAct calls to partner --
>

11 <invoke name="invInit -ba-bc-single -3A19 -1" partnerLink="ToPartner" operation="
cbInitActivityOp">

12 <invoke name="invInit -ba-bc-single -3A19 -2" partnerLink="ToPartner" operation="
cbInitActivityOp">

13 <receive name="recInitAck -ba-bc-single -3A19 -1" partnerLink="FromPartner"
operation="cbInitAckOp">

14 <correlations > <!-- use corrCollaboration correlation set -->
15 </receive >
16 <receive name="rec -ba-bc-single -3A19 -2- FromPartner" partnerLink="FromPartner"

operation="cbInitAckOp">
17 <correlations > <!-- use corrCollaboration correlation set -->
18 </receive >
19 <flow name="flow1 -fk-parallel"> <!-- start the child control processes -->
20 <sequence name="seq -ba-bc-single -3A19 -1">
21 <assign name="assPrep -ba-bc-single -3A19 -1"> <!-- prepare cbStart/actReady

calls to child control processes /backend -->
22 <invoke name="invStart -ba-bc-single -3A19 -1" partnerLink="ToBcSingle3A191"

operation="cbStartOp">
23 <invoke name="invActReady -ba-bc-single -3A19 -1" partnerLink="ToBackend"

operation="cbActivityReadyOp">
24 </sequence >
25 <sequence name="seq -ba-bc-single -3A19 -2">
26 <assign name="assPrep -ba-bc-single -3A19 -2"> <!-- prepare cbStart/actReady

calls to child control processes /backend -->
27 <invoke name="invStart -ba-bc-single -3A19 -2" partnerLink="ToBcSingle3A192"

operation="cbStartOp">
28 <invoke name="invActReady -ba-bc-single -3A19 -2" partnerLink="ToBackend"

operation="cbActivityReadyOp">
29 </sequence >
30 </flow>
31 <flow name="flow2 -fk-parallel"> <!-- collect child collaboration results -->
32 <sequence name="seq -collect -ba-bc-single -3A19 -1">
33 <receive name="collect -ba-bc-single -3A19 -1" partnerLink="FromBcSingle3A191"

operation="bc-single -3 A19CbResultOp">
34 <correlations > <!-- use corrCollaboration correlation set -->
35 </receive >
36 </sequence >
37 <sequence name="seq -collect -ba-bc-single -3A19 -2">
38 <receive name="collect -ba-bc-single -3A19 -2" partnerLink="FromBcSingle3A192"

operation="bc-single -3 A19CbResultOp">
39 <correlations > <!-- use corrCollaboration correlation set -->
40 </receive >
41 </sequence >
42 </flow>
43 <assign name="switchState -fk-parallel"> <!-- switch to next collaboration state

-->
44 </sequence >
45 </scope>

Mapping Rule 5.3.6 (Terminal)

The last rule describes the mapping of an ebBP-Reg terminal state and does not
depend on the leader/non-leader distinction. Listing 5.15 shows the mapping of the
terminal state ‘businessSuccess’ of figure 4.11 that consists of a simple assignment
for breaking the process level while loop. The actual propagation of the result then
is done in a separate scope that follows the process level while loop which is shown
in listing 5.16. In this scope, it is first checked whether the control process has been
interrupted (line 8 of listing 5.16) due to a TimeToPerform timeout (cf. discussion

208

5.4. Chapter Summary

of listing 5.9). If so, a technical error is reported to the backend and the value of the
‘cbState’ variable is reported otherwise.

Listing 5.15: Mapping of a Terminal State
1 <!-- breaks the main loop ‘cbWhile ’ -->
2 <if name="cbSwitch -businessSuccess">
3 <condition >$ cbState = ’businessSuccess ’</condition >
4 <sequence name="Seq -businessSuccess">
5 <assign name="Ass -businessSuccess">
6 <copy >
7 <from >true() </from >
8 <to variable =" inEndState "/>
9 </copy >

10 </assign >
11 </sequence >
12 </if>

Listing 5.16: Wrap up Code of a BC control process
1 <!-- propagates the results to the backend in a final scope -->
2 <scope name="FinalScope">
3 <variables >
4 <variable name="bcResult -ToBackend"/> <!-- result variable -->
5 </variables >
6 <sequence name="FinalSeq">
7 <if name="FinalIf">
8 <condition >$interrupted </condition >
9 <assign name="prepReply">

10 <copy>
11 <from>$CbStartOpIn .../ ns3:CollaborationMetaBlock </from>
12 <to>$bcResult -ToBackend .../ ns3:CollaborationMetaBlock </to>
13 </copy>
14 <copy>
15 <from>’techFail ’</from>
16 <to>$bcResult -ToBackend .../ ns2:bc -controlFlowTestResult </to>
17 </copy>
18 </assign >
19 <else>
20 <assign name="prepReplyReg"> <!-- copy cbState value into reply message -->
21 </else>
22 </if>
23 <invoke partnerLink="ToBackend" operation="bc-controlFlowTestCbResultOp">
24 </sequence >
25 </scope>

5.4. Chapter Summary

This chapter demonstrated the implementation of ebBP BTs and BCs using Web
Services and BPEL technology. The implementation of BTs as core building block
for B2Bi choreographies is covered in section 5.2 whereas the implementation of
ebBP-Reg as the more demanding bilateral choreography model is described in section
5.3. The underlying assumptions for using Web Services communication technology
(such as implementability of mutual authentication) are extensively discussed and
validated. In addition, the conceptual benefits of choosing Web Services and BPEL
as well as the flexible integration architecture based on the control process concept
are highlighted.

Although the actual purpose of the implementation concept for BTs and BCs is the
validation of the B2Bi choreography styles and the associated execution semantics,
deriving a production level framework for automatically deriving BT and BC control

209

5. Implementation of Choreographies as BPEL Orchestrations

processes is highly desirable. The implementation template for BTs and the BPEL
mapping rules for BCs provide the foundation and reference for deriving such tooling.
In that regard, note that a subset of commonly available BPEL elements is used which
simplifies supporting multiple BPEL platforms. The sanity of the given artifacts is
proven by means of prototypic implementations for the GlassFish-openESB platform
(cf. section 5.1). In addition, a formal validation for the BT execution model is
given in appendix D. Note further that some joint work was carried out during this
dissertation project that demonstrates the feasibility of implementing such translation
tooling at both, the BT level [54] and the BC level [160,182]. The work published
in [160,182] further provides guidelines for implementing ebBP-ST.

Yet, the implementation of a production level ebBP-BPEL tool chain would require
considerable effort. Support for BPEL elements varies from BPEL engine to BPEL
engine and there are considerable interoperability problems in applying policy-based
WS-* features [183]. Furthermore, the variety of technical configuration options
for communication platforms would have to be taken into account. These factors
taken together with the need of testing the integration with the large variety of
internal business applications used in the B2Bi domain call for a concerted project
of major B2Bi adopters and communities such as RosettaNet or EDIFICE. However,
the benefits of adopting the control process-based integration architecture (cf. in-
troduction of this chapter) and providing a framework with unambiguous execution
semantics seem to justify such an effort. The separation of control flow and business
logic enables automatically deriving fully executable process definitions. Moreover,
the modular structure of control processes facilitates the use of traditional B2Bi
technologies like EDI and AS2 at the BT level for supporting high-volume data. But
most significantly, B2Bi partners would regain control over the cross-organizational
processes and would not have to rely blindly on the service of B2Bi solution vendors.

This chapter evaluated the sanity of the proposed B2Bi styles at the implementation
level and gave guidance for implementers. The next chapter will show a visualization
of these B2Bi styles that abstracts from ebBP details and serves as communication
tool for the business perspective.

210

6. Visualizing B2Bi Choreographies

The contents of this chapter have been produced by the author during his participation
in the RosettaNet MCC effort1 with the target of providing a choreography format
for specifying complex B2Bi interactions based on RosettaNet PIPs. Due to the tight
conceptual relationship between RosettaNet PIPs and ebBP BusinessTransactions
as well as the results of MCC phase 1 [172] that specifies how to implement PIPs
using Web Services such that mutual agreement is guaranteed, the applicability
of ebBP-ST, ebBP-Reg and SeqMP is given. The visualizations of those B2Bi
choreography styles produced during this work eventually got accepted by the
RosettaNet MCC team and were contributed to the RosettaNet Methodology for
Creating Choreographies standard [173]. The author is deeply grateful and indebted
to the RosettaNet MCC team for all the support, feedback and discussion during
creating the BPMN visualization. The contents below exclusively are based on the
author’s own contributions to [173].

Technically speaking, the specification of B2Bi choreographies using ebBP is
sufficient to precisely capture the business document exchanges of integration partners
and to derive implementation artifacts from that. However, good practices of design
science demand for communication of research results to non-technical audiences as
well (cf. section 1.3). The visualization of ebBP-Reg, ebBP-ST and SeqMP using a
compact notation helps in making the results of this work accessible to non-technical
audiences. At the same time, the specification of ebBP dialects alone would have
raised questions with respect to the suitability of this work because ebBP is a rather
verbose and bulky format for choreography specification. The BPMN visualization
provided here demonstrates that the B2Bi choreography styles identified can be
embedded into B2Bi development approaches that leverage visual abstractions as
input models.

The choice of BPMN as visual choreography notation is motivated by the desire
of representing complete choreography definitions in one single diagram on the one
hand and using an international standard on the other hand. Other choreography
notations either require the definition of multiple views for choreography specification
(UMM [208]), or are not a standard (BCL [248], BPEL4Chor [31], Let’s Dance [245]).
However, this does not mean that these notations are not usable for B2Bi choreography
definition at all. In particular, the multi-view approach of UMM is promising when
it comes to establishing a comprehensive framework that includes tasks such as the
definition of business documents. However, this task is not in the scope of the work

1http://www.rosettanet.org/dnn_rose/Standards/RosettaNetPrograms/

FoundationalPrograms/ActiveFoundationalPrograms/MessageControlChoreography/

tabid/3096/Default.aspx, last access: 12/20/2011

211

http://www.rosettanet.org/dnn_rose/Standards/RosettaNetPrograms/FoundationalPrograms/ActiveFoundationalPrograms/MessageControlChoreography/tabid/3096/Default.aspx
http://www.rosettanet.org/dnn_rose/Standards/RosettaNetPrograms/FoundationalPrograms/ActiveFoundationalPrograms/MessageControlChoreography/tabid/3096/Default.aspx
http://www.rosettanet.org/dnn_rose/Standards/RosettaNetPrograms/FoundationalPrograms/ActiveFoundationalPrograms/MessageControlChoreography/tabid/3096/Default.aspx

6. Visualizing B2Bi Choreographies

at hand. Furthermore, the BPMN visualization contained in the ebBP standard
itself is not applicable to this work as it is incomplete in terms of grammar rules,
outdated in using version 1.0 of BPMN, and inadequate in defining an interconnection
choreography style instead of interaction choreography style (see section 2.3) as ebBP
does.

The BPMN visualization here concentrates on strict choreographies (instead of
cartography choreographies) as discussed in chapter 4 and therefore reflects the
design of ebBP-ST, ebBP-Reg and SeqMP. In addition, building the visualization
upon these B2Bi choreography styles helps in selecting the modeling concepts that
are relevant for the most common B2Bi scenarios from the huge wealth of BPMN
functionality and in ensuring that the corresponding visual models have unambiguous
semantics. Note that the RosettaNet Methodology for Creating Choreographies
also allows for using the full set of BPMN functionality to specify cartography
choreographies of arbitrary complexity and meaning. However, this is not relevant
for the scope of this work.

For B2Bi choreography visualization, BPMN is restricted and amended in two
ways. Firstly, the set of BPMN elements is reduced to those that are needed for
representing B2Bi choreographies. Secondly, the rules for connecting those elements
such that the choreography styles of chapter 4 are representable are given. For
both parts, special emphasis is put on accessibility to a non-technical audience
while maintaining technical completeness and soundness as far as possible. For the
definition of grammar rules, the formal representations of chapter 4 are replaced with
visual examples that demonstrate legal uses of concepts. However, the visualization
of all illegal uses is not given in order to keep complexity low.

For technical validation, several use cases of RosettaNet’s RIG library as well
as eBusiness Process Scenario library have been used that leverage the different
control flow constructs of this work’s B2Bi choreography styles. In addition, the
corresponding BPMN models manually have been translated into ebBP models and
the technical detail that needs to be filled in for defining complete ebBP models has
been identified. These resources are available as part of the RosettaNet Methodology
for Creating Choreographies deliverables2. Validation in terms of usability is provided
by submitting the deliverables to the RosettaNet MCC team that also comprised
non-technical oriented members. Indeed, some modeling concepts such as a new
visual element for representing shared states were given up due to missing support in
the MCC team. However, it is vital to note (again) that usability is not the core goal
of this work and therefore an elaborate scientific framework for assessing usability
has not been leveraged.

Taken the scientific underpinning of B2Bi choreography styles together with the
validation by means of real-world use cases, the adaptation of BPMN to represent

2http://www.rosettanet.org/dnn_rose/DocumentLibrary/tabid/2979/DMXModule/624/

Command/Core_Download/Method/attachment/Default.aspx?EntryId=9858, last access:
12/20/2011

212

http://www.rosettanet.org/dnn_rose/DocumentLibrary/tabid/2979/DMXModule/624/Command/Core_Download/Method/attachment/Default.aspx?EntryId=9858
http://www.rosettanet.org/dnn_rose/DocumentLibrary/tabid/2979/DMXModule/624/Command/Core_Download/Method/attachment/Default.aspx?EntryId=9858

6.1. Selection of BPMN Elements

these choreography styles as presented in this chapter can be said to define a
kind of B2Bi choreography profile of BPMN.

The remainder of this chapter is organized as follows. Section 6.1 describes the
selection of BPMN elements and how these are used for representing ebBP elements.
The composition of those elements in a manner such that this work’s choreography
styles can be represented then is described in section 6.2. Finally, section 6.3
discusses in how far the contents of this chapter comply with the BPMN standard,
the suitability of BPMN for B2Bi choreography modeling, and the technical gap
between BPMN models and corresponding ebBP models.

6.1. Selection of BPMN Elements

This section describes the “BPMN Choreography” [150, section 11] constructs that
are used for representing B2Bi choreographies using a series of so-called “Construct
Advices”. Although some samples in this section will comprise more than one
construct, the actual interplay of constructs as well as composition rules are contained
in section 6.2. In particular, constraints on the use of elements or names of elements
may be tightened for ensuring executability or analyzability.

It is essential to note that these advices have been created for the RosettaNet
Methodology for Creating Choreographies standard where PIPs are used as atomic
building blocks instead of ebBP BTs. For the purpose of visualization as presented
below, the terms “PIP” and “BT” can be used interchangeably. This is particularly
true because a protocol for performing PIPs using Web Services technology such that
mutual agreement between integration partners is ensured has been contributed to
RosettaNet MCC Web Services profile [172]. Therefore, the figures are created using
RosettaNet PIP terminology, but the descriptions refer to ebBP BTs.

Construct Advice 6.1.1 (Representing BusinessTransactions)

An execution model for ebBP BTs based on visual communicating state machines
has been defined in section 4.3. As the number of BT configurations is finite and
as BT configurations focus on technical detail it is not sensible to remodel that
execution model in BPMN. Instead, BTs are modeled as atomic building blocks and
only those parts of the BT configuration that are relevant on a business level are
visually represented. The most important aspects to be represented for a BT within
a choreography are its type, its activity id as well as the role assignment.

The BT type identifies a particular BT configuration and its name can be defined as
needed in ebBP. Therefore, the label for the BT type must comply with those naming
rules. If RosettaNet PIPs are used, the type corresponds to the PIP identifier as
defined in RosettaNet’s cluster/segment/PIP taxonomy (cf. section 2.4). The activity
id is a name for identifying a particular BTA that represents the execution of a
particular BT configuration at a particular control flow point within the choreography.
In addition, the role mapping as well as an upper time limit can be defined for a
BTA. The activity id is important for distinguishing between several uses of the same

213

6. Visualizing B2Bi Choreographies

Figure 6.1.: Sample PIP Representations

BT type within the same choreography. For example, the exchange of a purchase
order (PIP 3A19) may be used for different purposes (placing a purchase order to
be answered within 3 days and placing an additional order to be answered within
12 hours) within the same choreography. In this situation, the activity id helps in
distinguishing the two different uses. Finally, the mapping of the choreography roles
to the BT roles must be defined, i.e., it must be clear which of the choreography
roles is assigned the requester role or responder role of the BT, respectively.

For the following explanations, note that a PIP definition distinguishes the commu-
nication role (requester or responder) from the functional role (say, Buyer or Seller).
Whereas the communication role determines the sender and receiver of the business
document, respectively, the functional role characterizes the business meaning of deal-
ing with the document (the Buyer commits to buying the items listed in the business
document whereas the Seller commits to delivering the items). In the RosettaNet
methodology, there is a one-to-one relationship between the communication roles and
the functional roles of a PIP, i.e., a functional role is assigned either the requester
role or the responding role. Note that statically defining communication role and
functional role is different from the ebBP conception where only the communication
role is predefined. As ebBP allows for giving alternative names to the requester
and responder role, i.e., defining a use case specific functional role, capturing PIP
functional roles is possible nonetheless.

Figure 6.1 (a) shows an abstract characterization of how to represent a BT as
a BPMN 2.0 choreography task. The center of the rounded rectangle carries the
activity id followed by the actual type of the BT in parentheses (in this case a PIP
type identifier). The two choreography roles that perform a BT are listed within
two bands at the top and at the bottom of the rectangle. The functional roles that
the choreography roles play can be listed after a slash character within parentheses.
The communication role that a choreography role takes is specified by coloring the
bands. The white band identifies the requester role whereas the gray band identifies
the responder role. The position of the bands is insignificant, i.e., you could have
a gray band at the top and a white band at the bottom as well. As there is a
one-to-one relationship between functional roles and communication roles (either
statically defined by RosettaNet PIPs, or defined by the ebBP modeler), the mapping
to functional roles within the bands can be omitted. For example, look at Figure 6.1

214

6.1. Selection of BPMN Elements

(b) that exemplifies the specification of performing PIP 3A19. The choreography role
‘Customer’ is mapped to the PIP functional role ‘Buyer’. But, as the Buyer role is
defined to take the requester role in the definition of PIP 3A19 and as the Customer
role is assigned the requester role in Figure 6.1 (b) by being put into the white band,
it is clear that the Customer role takes the Buyer role. Hence, the labels “Customer
/ (Buyer)” and “Supplier / (Seller)” in figure 6.1 (b) could be reduced to the labels

“Customer” and “Supplier” without losing information.
Figure 6.1 (c) and (d) express the exact same information as figure 6.1 (b). The

only difference is the style of specification. Instead of “anonymous” choreography
roles such as Customer and Supplier, “scenario specific” roles such as ‘Axway’ and
‘Cisco’ are used. From a technical perspective, this does not make a difference. If
‘Software AG’ was to interact with ‘Cisco’ then Software AG could either be declared
to take the Customer role or the Axway role. From a modeling perspective, however,
assigning Software AG the Axway role may be confusing for the reader. Similarly,
there is no technical reason why choreography role names should be required to be
distinct from PIP role names. It is perfectly acceptable to map a choreography Seller
role to a PIP Seller role.

For the definition of activity ids, any string that does not contain special characters
is admissible. In addition, activity ids must be unique relative to the enclosing
choreography (in order to ensure translatability of ebBP choreographies, cf. section
6.3).

If PIPs are used, additional restrictions in terms of naming must be respected
(cf. [173]).

Construct Advice 6.1.2 (Representing Start States)

Start states represent the entry points into choreographies and are visualized using
BPMN Start Event nodes as depicted in figure 6.2. By following the outgoing
transitions of start states the initially admissible BTs of a particular choreography
can be identified.

Figure 6.2.: Sample Start States

Note that it is advisable to assign a name to start states that begins with ‘Start’
for better readability although neither the use of a name nor a particular format is
necessary for defining valid models. Therefore (a), (b) and (c) of figure 6.2 all are
acceptable. The only limitation is that special characters must not be used.

215

6. Visualizing B2Bi Choreographies

Construct Advice 6.1.3 (Representing End States)

End states represent the termination of choreographies and may indicate different
outcomes. End states as used in this work do not express any actions, but just define
that no more BTs will be performed. Therefore, basic BPMN End Events are used
for representing end states. End states can be distinguished from start states by the
following two properties:

• In conformance to the BPMN specification, end states have ‘thick’ lines [150,
section 11.5.3] whereas start states have ‘thin’ lines.

• End states only have incoming transitions whereas start states only have
outgoing transitions.

Figure 6.3.: Sample End States

There are no naming rules for end states except that special characters must not be
used. Moreover, end state ids must be unique relative to the enclosing choreography.
Hence, the labels in figure 6.3 (a) - (c) all are acceptable end state representations.

Construct Advice 6.1.4 (Representing Transitions)

Transitions connect the various states or nodes of choreographies and are crucial for
specifying control flow. The interpretation of transitions is essential for defining the
semantics of a visual language. The semantics defined in chapter 4 are adopted for
specifying control flow. Therefore, Sequence Flows as defined in the BPMN standard
are used for connecting the various choreography elements, but the way transitions
are represented does not fully comply with BPMN general considerations [150, section
8.3.13] and choreography considerations [150, section 11.3.1] for Sequence Flows. The
details of interpreting transitions are formally defined in chapter 4 and informally
presented in the next section whereas the visual representations of different transition
types are described here.

Figure 6.4 shows the four basic types of transitions that are used in this work. All
types of transitions are directed which implicitly means that the source state is left
and that the target state is entered upon “firing” the transition. A transition of type
(a) may be fired when the subsequent BT or choreography is started, when a related
timer runs out or when leaving any state is to be specified without elaborating on
the conditions for moving from one state to another. Transitions of type (b) and (c)
carry condition expressions that are used to evaluate the result of a BT execution.
That means that a transition only can fire if the expression evaluates to true. The

216

6.1. Selection of BPMN Elements

Figure 6.4.: Types of Transitions

definition of a condition expression consists of the name of the expression language
separated from the actual expression by means of a colon. Either the ebBP CGV
language is used to capture generic protocol outcomes such as ‘AnyProtocolFailure’
or ‘ProtocolSuccess’ or expression languages for evaluating the contents of the
exchanged business documents are used. Note that evaluating the contents of a
business document only is valid if the BT succeeded from a protocol perspective.
Following the concept outlined in ebBP, XPath2 is suggested as evaluation language
of XML based content. However, as Figure 6.4 (c) indicates, XPath2 expressions
may be way too complex to be included in a visual model. Therefore, the problem of
visualizing valid and complete XPath2 expressions is left to tool implementations.
Apart from CGV and XPath2, the use of alternative expression languages can be
agreed upon by integration partners.

The CBRes (short for CollaborationResult) language consistently is used for
evaluating the result of choreographies (or collaborations in terms of ebBP and
UMM). The admissible results of a choreography are defined to be the names of the
end states of the choreography. Transitions that evaluate the result of a choreography
additionally may carry an escalation set definition in curly braces (as defined in
section 4.6).

Figure 6.5.: Sample Usage of Transitions

Finally, this work leaves it open to integration partners to define project specific
labels. For example, the Trigger-Guard-Effect notation as defined in the UML
standard [149, section 15.3.14] (sometimes referred to as Event-Condition-Action
notation) could be agreed upon by the partners.

217

6. Visualizing B2Bi Choreographies

Figure 6.5 shows a basic example of using transitions. The incoming transition on
the left-hand side of the PIP 2A1 choreography task is fired when the ‘InfoDistributor’
triggers the PIP (as the InfoDistributor is assigned the “initiator band” of the task).
On the right-hand side, two transitions are used to evaluate the PIP result using the
CGV expressions ‘AnyProtocolFailure’ or ‘ProtocolSuccess’. The determination of
such CGV expressions has been defined in [172]. Depending on the result of PIP
2A1, either the end state called ‘ProtocolFailure’ or the end state ‘ProtocolSuccess’ is
entered upon completion of the BT execution protocol. Note that both choreography
roles follow the same transition as the result of a BT is always synchronized by means
of the execution model of section 4.3.

Construct Advice 6.1.5 (Representing Choreographies)

The BPMN standard does not offer a dedicated construct for visualizing choreogra-
phies. In particular, there is no “framing” mechanism to delineate the constructs
of choreographies from other choreographies’ constructs and no naming mechanism.
This task is to be implemented by tools. In consequence, choreographies essentially
are identified by identifying start and end states that are interconnected via series of
control flow states, PIPs, component choreographies and transitions. Figure 6.6 (a),
(b) and (c) show different ways of representing a basic choreography that consists of
two subsequent BT choreography tasks and does not contain any branching logic.
Note that all three options basically express the same business information. In
particular, it does not make a difference whether or not the choreography roles
‘Customer’ and ‘Supplier’ are explicitly mapped to PIP functional roles or not (confer
Construct Advice 6.1.1). However, the benefit of separating choreography roles from
PIP functional roles is evident. By means of choreography roles it is clear that the
very same ‘Supplier’ role takes the ‘Seller’ role in PIP 3A19 and the ‘Shipper’ role of
PIP 3B2 in figure 6.6.

As the BPMN standard does not constrain the labeling of choreographies, this
thesis proposes to either assign the name of the choreography to its start state or
to a text box placed in the “proximity” of the start state. If no visualization of the
choreography’s name is needed not visualizing the name is acceptable as well.

Construct Advice 6.1.6 (Representing Decisions)

Decisions are needed in choreographies to realize alternative control flow paths
based on the result of BTs or choreographies. This thesis visualizes such decisions
either implicitly by means of the set of outgoing transitions of a BT or component
choreography or by means of BPMN Exclusive Gateways [150, section 11.6.1] that
are represented as a diamond. Figure 6.7 (a) gives a sample for the former and figure
6.7 (b) gives a sample for the latter way of visualization. The condition expressions
defined in “Construct Advice 6.1.4: Representing Transitions” are admissible for
transitions. Modelers should use only one single incoming transition into BPMN
exclusive gateways because condition expressions are defined relative to the preceding

218

6.1. Selection of BPMN Elements

Figure 6.6.: Representing Choreographies

BT or component choreography. For example, XPath expressions are to be evaluated
against the business documents exchanged during the latest BT instance.

It is good practice to define the condition expressions of the branches of a particular
decision such that they are complete and disjoint. Completeness means that there
is at least one condition expression that evaluates to true for any outcome of the
preceding BT or component choreography. Disjointness means that there is no
outcome of the preceding BT or component choreography for which more than one
condition expression of the decision evaluates to true.

There is no evaluation order for the separate condition expressions of the branches
of a decision because condition expressions have no side effects. The only exception
is that CGV-based condition expressions are evaluated before any other condition
expressions.

Exclusive gateways can but do not have to carry names. If names are assigned
these should not contain spaces or special characters.

Construct Advice 6.1.7 (Representing Event-Based Choices)

An event-based choice is used within choreographies to realize alternative control
flow paths based on events rather than based on the result of preceding activities.

219

6. Visualizing B2Bi Choreographies

Figure 6.7.: Representing Decisions

The initiation of BTs and component choreographies or timeouts may be such events.
BPMN Event-Based Gateways [150, section 11.6.2] that take the shape of a diamond
with a double circle and a pentagon inside are used to represent event-based choices.
Admissible events are timeouts, represented by BPMN timer symbols, and BT and
component choreography initiations, represented by the corresponding visualizations.
The semantics is such that the first event fired out of the events connected to the
event-based choice triggers leaving the event-based choice. The implementation of this
semantics is described in chapter 5. The BPMN standard makes restrictions about
the types of events that can be combined after an event-based choice, for example,
multiple follow-on choreography tasks are constrained to share a common requesting
role. However, this work does not impose such restrictions upon modelers. Figure 6.8
demonstrates that it is perfectly acceptable to associate two BT choreography tasks
with distinct initiators with the same event-based choice. Note that an event-based
choice can be the target of one or more transitions as well as the source of one or
more transitions.

Event-based choices can carry names. If names are assigned these must not
contain special characters and must be unique relative to the enclosing choreography.
Modelers may want to use this feature to document the progress of choreographies
by assigning meaningful names (similar to the functionality of shared states). For
example, the event-based choice of figure 6.8 carries the name ‘Accepted’ to highlight
that a prior purchase order has been accepted. In this ‘Accepted’ state, either PIP
3B2 or 3A21 can be triggered or a timeout will be fired after 14 days.

220

6.1. Selection of BPMN Elements

Figure 6.8.: Event-Based Choice Sample

Construct Advice 6.1.8 (Representing Parallel Structures)

Parallel structures may be used to define the possibility that two or more BTs or
component choreographies can be performed at the same time. BPMN Parallel
Gateways [150, section 11.6.4] visualized as diamonds with black, solid crosses inside
are used to define parallelism. The semantics of this type of pseudo states depends on
the number of transitions. It joins incoming flows if there is more than one incoming
transition and it forks control flow if there is more than one outgoing transition
or both. If a parallel pseudo state joins multiple incoming flows then no outgoing
transition is fired until all preceding parallel activities have completed. Similarly, all
outgoing transitions are fired and not only a subset thereof. In that sense, parallel
pseudo states have “AND” semantics. It is good modeling practice to combine forking
and joining gateways in pairs and not to define control dependencies between the
individual branches. Note that it is considered to be acceptable to define a parallel
pseudo state with only one single incoming and one single outgoing transition in this
work.

Parallel gateways can but do not have to carry names. If names are assigned these
must not contain special characters and must be unique relative to the enclosing
choreography.

Construct Advice 6.1.9 (Representing Component Choreographies)

Component choreographies (BCAs in ebBP terminology) are used for encapsulating
choreography logic and reusing it within larger parent choreographies. Using com-
ponent choreographies, hierarchical decomposition of complex choreography models
can be facilitated. BPMN offers two different options for visualizing component

221

6. Visualizing B2Bi Choreographies

Figure 6.9.: Representing Parallel Structures

choreographies, so-called sub-choreographies [150, section 11.4.2] and so-called call
choreographies [150, section 11.4.3]. While BPMN defines expanded and collapsed
versions of both types only expanded sub-choreographies and collapsed call chore-
ographies are used in this work for avoiding unnecessary complexity. Figure 6.10
and figure 6.11 both show the visualization of the component choreography named
‘subchor’ as an expanded sub-choreography. In these visualizations, the full definition
of ‘subchor’ is given. Figure 6.12 shows the visualization of a component choreog-
raphy as a call choreography task. The ‘Invoicing’ choreography of figure 6.11 is
incorporated into the choreography of figure 6.12 by referring to its name ‘Invoicing’
within parentheses. While the full definition of the component choreography is
available, it is not displayed within the parent choreography. The call choreography
task itself carries a separate identifier ‘c4’ for being able to distinguish separate
‘Invoicing’ instances within the parent choreography (which are not displayed).

Figure 6.10.: Sample Expanded Sub-Choreography with Implicit Role Mapping

222

6.1. Selection of BPMN Elements

Figure 6.11.: Sample Expanded Sub-Choreography with Explicit Role Mapping

Figure 6.12.: Sample Call Choreography with Explicit Role Mapping

For component choreographies, the full set of constructs described in this section is
available. However, some restrictions may apply depending on the choreography style
(see next section). The semantics of component choreographies is such that when a
transition to a sub-choreography or call choreography state is fired then the start state
of the component choreography becomes activated and the parent choreography’s
state can only be left upon termination of the component choreography (except for
timers, see Construct Advice 6.1.10).

In addition, the role definitions of the parent choreography must be mapped to the
roles of the component choreography. Note that there always are distinct roles for
the parent choreography and its component choreographies even if the same names
are used. Therefore, in figure 6.10, there are ‘Seller’ and ‘Buyer’ roles at the parent
‘Invoicing’ choreography level and at the component choreography ‘subchor’ level.
As no explicit role mapping is provided, the parent level roles are matched with
the component level roles by means of string equality. The choreography of figure
6.11 semantically is identical to the one of figure 6.10 except for different parent
level role names. Due to this difference the parent level roles are mapped explicitly
to the component level roles using the notation introduced in Construct Advice
6.1.1. Explicit and implicit role mapping are available for call choreographies as well,
although only the explicit version is exemplified in figure 6.12. Note that, from a
technical perspective, the ‘Cisco’ role indeed is just a role definition that can be
mapped to.

223

6. Visualizing B2Bi Choreographies

The results of component choreographies can be used to specify the control flow of
parent choreographies by leveraging the CBRes expression language introduced in
Construct Advice 6.1.4. Basic CBRes expressions refer to the names of the end states
of component choreographies and become true when the corresponding end state is
reached. More complex expressions can be created by using the standard Boolean
operators to combine basic CBRes expressions. The use of CBRes expressions is
exemplified in each of the figures 6.10, 6.11 and 6.12. At this point, it is noteworthy
that figure 6.12 indeed has four choreography levels, namely the outermost choreog-
raphy level depicted in figure 6.12, the ‘Invoicing’ and ‘subchor’ choreography levels
of figure 6.11, and the choreography level for performing BTs according to the BT
execution model of section 4.3.

For component choreographies with more than two roles, additional participant
bands are added to the top or the bottom of the sub-choreography or call choreography
shapes. In this case, it may be necessary to map one parent role to more than one
component role. This is explicitly notated as follows:

ParentRole / (ComponentRole1, ComponentRole2, ...)

There are no constraints with respect to the sub-choreography or call choreography
id names except for that special characters must not be used. In addition, those id
names must be unique relative to the enclosing choreography. In case of global call
choreographies, this means that its id name must be distinct from all other top-level
choreography id names.

Construct Advice 6.1.10 (Representing Timeouts)

Timers come in two flavors, component choreography timers and event-based choice
timers. These two types of timers reflect ebBP functionality and BPMN interrupting
as well as non-interrupting timer shapes [150, table 10.90] are used to represent the
corresponding events.

Component choreography timers are added to the boundary of sub-choreography or
call choreography shapes and specify a time interval or a date and time that complies
with the ISO 8601 standard. A component choreography timer has a follow-on node
that is reached when a timer runs out. If the timer is interrupting (solid outer
line of the shape) then the currently active task of the component choreography
(if any) is interrupted and the timer’s follow-on node is immediately reached. If
the timer is non-interrupting (dotted outer line of the shape) then the completion
of the currently active task of the component choreography is waited for before
the timer’s follow-on state is reached. Figure 6.10 above shows a non-interrupting
component choreography timer that is attached to the ‘subchor’ sub-choreography
shape and specifies a timeout after 7 days after the start of the sub-choreography
(‘P7D’ is the ISO 8601 definition for Period-7-Days). Similarly, figure 6.13 shows an
interrupting component choreography timer that is attached to call choreography

224

6.1. Selection of BPMN Elements

task ‘c4’ and specifies a timeout after 12 hours (‘PT12H’ stands for Period-Time-12-
Hours). Note that interrupting timers can be associated with sub-choreographies
and non-interrupting timers with call choreographies as well.

Figure 6.13.: Sample Scenario for an Interrupting Choreography Timer

Event-based choice timers (ebc timer) may be used as an alternative to choreography
tasks after event-based choice states. ebc timers specify a time interval or a date
and time and if the timer runs out before any of the alternative outgoing transitions
of the respective event-based choice is fired then the follow-on state of the timer is
reached. Figure 6.14 shows an ebc timer that is triggered if the ‘Buyer’ role does not
initiate PIP 3A21 within 3 days.

Figure 6.14.: Event-Based Choice Timer Scenario

In this scenario, the event-based choice ‘Accepted’ can be entered multiple times in
case the Buyer initiates one or more PIP 3A21 executions. If such iterative behavior
is part of a choreography definition it has to be decided whether or not an ebc timer
is to be reset in case it is not reached for the first time. The default semantics is

225

6. Visualizing B2Bi Choreographies

that an ebc timer is not reset. If reset is needed then a reset flag has to be added to
the transition that enters the corresponding event-based choice. If an ebc timer runs
out while some successor state of an alternative outgoing transition of the respective
event-based choice is active then the event is not processed until the event-based
choice is reached again. That means that ebc timers always are non-interrupting.

Note that ebc timers must not be confused with the TimeToPerform parameters
of BTs. While ebc timers are controlled at the level of the surrounding choreography,
the BT TimeToPerform parameters are controlled at the BT level.

It is required that labels of timers start with the string “Timer:” and then are
followed by an ISO 8601 compliant definition of an absolute or relative date and
time.

226

6.2. Representing Strict Choreographies

6.2. Representing Strict Choreographies

This section presents the rules for composing the BPMN elements introduced above
such that resulting models correspond to the B2Bi choreography styles of chapter
4. Note that the RosettaNet Methodology for Creating Choreographies additionally
specifies some basic rules for composing cartography style choreographies. However,
these are not in the scope of this work. The presentation of model ‘composition’
rules is split up into section 6.2.1 for binary choreographies and section 6.2.2 for
multi-party choreographies.

6.2.1. Strict Binary Choreographies

The following composition rules allow for choreography models that represent the
superset of ebBP-ST and ebBP-Reg models. As ebBP-Reg represents the more
expressive choreography style, the ebBP-Reg semantics of section 4.5.3 are the first
choice for interpreting these models. Explicit modeling of shared states in the
ebBP-ST spirit was discussed with the RosettaNet MCC team, but a completely
new modeling element would have been necessary for that which was rejected for the
sake of being able to use standard BPMN tools. Moreover, note that a strict binary
choreography that uses event-based choices instead of shared states and refrains from
using decomposition and concurrency can be interpreted as an ebBP-ST choreography
from a control flow point of view. In consequence, the visualization still supports
ebBP-ST models.

Note again that the following composition rules target a non-technical audience.
For a formal characterization of valid B2Bi models, see chapter 4.

Strict Binary Chor. Rule 6.2.1 (Bilaterality)

Strict binary choreography models must define exactly two top-level choreography
roles.

Strict Binary Chor. Rule 6.2.2 (Eligible Constructs)

Strict binary choreography models are restricted to the constructs described in the
construct advices of section 6.1.

Strict Binary Chor. Rule 6.2.3 (Transition Coordination)

The processing of transitions is crucial for the execution semantics of process models.
For strict binary choreography models, an outgoing transition of any node represents
one option to continue the choreography. Two preconditions must be met for a
transition to really fire.

Firstly, the transition must be enabled, i.e., the source of the transition must be a
member of the set of the choreography’s currently active states and if the transition
carries a guard then this guard must evaluate to true.

227

6. Visualizing B2Bi Choreographies

Secondly, depending on the target of the transition, firing must be coordinated
between the integration partners by means of requesting and confirming firing.
Coordination ensures that only one out of multiple enabled transitions is fired.
Furthermore, by means of coordination on starting BTs as well as component
choreographies, both partners are aware of the fact that activities have been started.
As a consequence, even protocol failures are valid activity outcomes to take routing
decisions upon. Details on how such coordination may be implemented is described
in section 5.3. The following list describes which transitions require coordination
depending on the target state of the transitions:

• PIP/BT:
Firing the transition must be coordinated.

• Component Choreography:
Firing the transition must be coordinated.

• Fork state node:
If the transition under consideration is the only enabled transition then firing
may be coordinated. Otherwise, firing must be coordinated.

• Join state node:
Firing the transition is performed immediately and must not be coordinated.

• Event-Based Choice:
If the transition under consideration is the only enabled transition then firing
may be coordinated. Otherwise, firing must be coordinated.

• Decision state:
Firing the transition is performed immediately and must not be coordinated.

• End state:
Firing the transition is performed immediately and must not be coordinated.

Strict Binary Chor. Rule 6.2.4 (Start States of Choreographies)

Strict binary choreography models must define exactly one start state as defined
in construct advice 6.1.2. Figure 6.15 enumerates the different options, (a) to
(e), for using start states to define the entry point into executable choreographies.
Although not explicitly specified, the same options are available when defining a
sub-choreography, i.e., in figure 6.15 (e) the three dots can be replaced with any of the
listed options. Note that the start state of a strict binary choreography has exactly
one outgoing transition that does not carry any guard and therefore immediately is
enabled. Actual firing depends on the type of the target state as described in strict
binary choreography rule 6.2.3.

228

6.2. Representing Strict Choreographies

Figure 6.15.: Options for Starting Strict Binary Choreographies

Strict Binary Chor. Rule 6.2.5 (End States of Choreographies)

Strict binary choreography models must define one or more end states as defined in
construct advice 6.1.3. Upon reaching an end state, strict binary choreographies ter-
minate. In case the choreography under consideration is a sub-choreography of some
superordinate choreography, the name of the end state immediately is propagated to
the superordinate choreography and represents the result of the sub-choreography
execution. The next state to be entered then is computed according to the semantics
presented in strict binary choreography rule 6.2.7. If the choreography under consid-
eration is a top-level choreography then no further activities are admissible. Note
that due to the set of rules presented here, strict binary choreographies do not allow
for multiple threads of the same choreography instance that terminate in separate
top-level end states.

Strict Binary Chor. Rule 6.2.6 (BusinessTransaction Evaluation)

BTs are performed according to the execution model of section 4.3 and take time. A
BT can only be left upon termination of the execution protocol which ensures that
both integration partners have agreed upon the result of the BT execution, may it
be a protocol failure or the contents of the exchanged business document. This result
may be used for control flow routing purposes, i.e., to determine the follow-on state
of the BT.

However, specifying unconditional progress without evaluating the outcome of a
BT as depicted in figure 6.16 (c) is acceptable as well. Although that particular
transition is immediately enabled upon completion of the BT, actual firing depends
on the target state as described in strict binary choreography rule 6.2.3.

If the BT result is used for routing purposes then a set of ‘decision transitions’ is
used to represent the branches of a decision that determines the follow-on state. Each
of these decision transitions must carry a guard that complies with construct advice
6.1.4. Decision transitions are either added directly to the BT choreography task itself
or to a dedicated decision state node. It is acceptable to combine both possibilities

229

6. Visualizing B2Bi Choreographies

Figure 6.16.: Options for Continuing BusinessTransactions

for adding decision transitions (see figure 6.16 (a) and (b)). However, it is advisable
to either exclusively add decision transitions directly to the BT choreography task
or exclusively to a decision node. Note that a transition from a BT to a decision
node does not carry any guard and is not in the set of decision transitions. Whether
or not and when a decision transition is fired depends on the value of its guard and
transition coordination as described in strict binary choreography rule 6.2.3.

Note that the BT configuration option TimeToPerform is controlled at the BT level
and therefore not explicitly visualized using some timer construct at the choreography
level. Therefore, timer constructs must not be added to BT choreography tasks.

Strict Binary Chor. Rule 6.2.7 (Component Choreography Evaluation)

Component choreographies either are call choreographies or sub-choreographies ac-
cording to construct advice 6.1.9. The necessary steps for determining the follow-on
states of component choreographies (evaluation) are identical for both types. More-
over, these steps are very similar to the rules for BTs (cf. strict binary choreography

230

6.2. Representing Strict Choreographies

rule 6.2.6). Therefore, the considerations for unconditional progress and the optional
use of dedicated decision nodes hold true correspondingly.

Figure 6.17.: Options for Continuing Component Choreographies

However, the guards of decision transitions are restricted to Boolean expressions
built from the names of the end states of the component choreography (cf. construct
advice 6.1.4). Figure 6.17 demonstrates how such guards can be used. Evaluation of
the guards takes place upon component choreography termination. Again, the guard
of a transition must evaluate to true for a particular transition to be enabled. Actual
firing depends on the target of the transition and follows strict binary choreography
rule 6.2.3. Component choreographies allow for the specification of interrupting and
non-interrupting timers that are added to the boundary of the respective construct
and that must comply with construct advice 6.1.10. In addition, timers have exactly
one outgoing transition without a guard. A timer becomes enabled when a component
choreography gets started and disabled when it terminates. If the timer runs out
in between, the processing depends on whether the timer is interrupting or non-
interrupting. In the former case, completion of the component choreography’s
currently active state is awaited for whereas the state is interrupted in the latter.

231

6. Visualizing B2Bi Choreographies

It is recommended that integration partners track the progress of the timed out
component choreography in order to negotiate the business effect of timeouts that
may go beyond determining the next state of choreographies. The following list
discusses processing of timeout events for both cases for the respective types of states
that may be the currently active state of a component choreography:

• Start state:
The outgoing transition of the start state is immediately deactivated indepen-
dent of whether the timer is interrupting or non-interrupting. This also holds
true in case the integration partners already have begun coordinating upon the
start of the start state’s successor.

• BT:
If the timer is non-interrupting, completion of the BT protocol is awaited for
and processing of the component choreography is stopped thereafter. Then, the
outgoing transition of the timer is activated. If the timer is interrupting, a cancel
signal is sent to the BT execution protocol defined in section 4.3.2. If the cancel
signal is accepted, the result of the BT execution is an AnyProtocolFailure. If
the cancel signal is not accepted, which may be the case as the BT execution
protocol may be in its finalization phase, then completion of the BT execution
protocol’s finalization phase is awaited for. Afterwards the outgoing transition
of the timer is activated.

• Component choreography:
This rule is applied recursively.

• Parallel structure:
This rule is applied to each of the branches of the parallel structure.

• Event-Based Choice:
All outgoing transitions of the event-based choice state are immediately deacti-
vated independent of whether the timer is interrupting or non-interrupting.

• Decision state:
Not applicable because the processing of decisions is assumed to take zero time.

• End state:
Not applicable because the component choreography timers are deactivated
upon reaching one of its end states.

If a timer runs out, the follow-on state of the choreography is determined by its
outgoing transition. The point in time when the transition is fired complies with
strict binary choreography rule 6.2.3.

232

6.2. Representing Strict Choreographies

Strict Binary Chor. Rule 6.2.8 (Event-Based Choice States)

Figure 6.18.: Options for Continuing Event-Based Choices

Event-based choice states are used to select one out of multiple possible events. For
strict binary choreography models, all outgoing transitions do not carry guards and
therefore immediately are enabled. Except for timers, the integration partners are
the source of events that trigger firing one of the transitions. As both integration
partners may detect the need to take different transitions at the same time, they
coordinate on which transition actually is taken. Therefore, specifying multiple BTs
with different BT initiator roles as successors of an event-based choice is perfectly
acceptable. One of the two integration partners takes the task of controlling a possible
timer successor. If the timer runs out, this partner is responsible for coordinating
with its partner that the event-based choice has been left by means of a timeout.

Strict Binary Chor. Rule 6.2.9 (Parallel Composition)

Parallel Structures in strict binary choreography models always are defined by means
of a pair of fork and join states. One or more branches are defined between a fork
state and a join state that are processed in parallel. Each branch is interpreted as a
component choreography. However, this does not necessarily require the use of call
choreography tasks or sub-choreographies as shown in the middle branch and the
right-hand branch of the parallel structure of figure 6.19. If alternative constructs

233

6. Visualizing B2Bi Choreographies

are used to start a branch of a parallel structure then the respective construct is
interpreted as the first state after the start state of a virtual sub-choreography.
So, for figure 6.19, the choreography task with instance id “PIP-Id1” is considered
to be the initial state after a virtual component choreography’s start state. The
grammar rules for creating choreographies then are applicable for creating the virtual
sub-choreography. The only restriction of the rules is that exactly one transition
to an end state of the virtual sub-choreography is replaced by a transition to the
join state of the parallel structure. The virtual sub-choreography is assumed to be
performed as if a dedicated sub-choreography construct was used. This means that
multiple end states may be specified and that reaching any end state of the virtual
sub-choreography results in reaching the join state of the parallel structure afterwards.
For clarification, it is vital to note that figure 6.19 and figure 6.20 semantically are
equivalent.

Figure 6.19.: Parallel Structure with Virtual Sub-Choreography

Although the use of virtual sub-choreographies for defining branches of a parallel
structure may be convenient for modeling, the use of dedicated call choreography
tasks or explicit sub-choreographies is advisable in order to avoid confusion about
the interpretation of virtual sub-choreographies.

Note that the incoming and outgoing transitions to the component choreographies
that make up the branches of a parallel structure do not carry any guards and

234

6.2. Representing Strict Choreographies

immediately are fired. Moreover, transitions between the branches of a parallel
structure must not be defined.

Figure 6.20.: Parallel Structure without Virtual Sub-Choreography

Finally, there may be the need for evaluating the results of a parallel structure’s
activities to determine the control flow after its join state. Therefore, the “Par”
expression language is defined to be available for the outgoing transitions of a join
state. Basically, “Par” expressions are built from the result expressions for the
component choreographies that make up the branches of a parallel structure. So,
basic Par expressions are 2-tuples, denoted as “Par:(Branch-Id;CBRes-Exp)”, where
Branch-Id is the id of such a component choreography and CBRes-Exp is a valid
CBRes expression for the component choreography as described in construct advice
6.1.4. In case a virtual sub-choreography is to be evaluated, the Branch-Id refers to
the id of the first construct of the sub-choreography. For example, the Par expression
“Par:(PIP-Id1;CBRes:BranchFailed2)” is valid for the parallel structure depicted in
figure 6.19. Moreover, the standard Boolean operators can be used to create complex
Par expressions from basic Par expressions.

Strict Binary Chor. Rule 6.2.10 (Connectedness)

Not considering the direction of transitions, any state of a strict binary choreography
model must be connected to the start state and all the end states of the same model.

235

6. Visualizing B2Bi Choreographies

Strict Binary Chor. Rule 6.2.11 (Guard Constraints)

For the set of decision transitions as used in strict binary choreography rules 6.2.6
and 6.2.7 the following must hold true:

• Completeness:
The disjunction of the guards of all decision transitions must evaluate to true
for any result of the evaluated activity.

• Disjointness:
No two guards of decision transitions may both evaluate to true for the same
result of the evaluated activity.

• BT ProtocolSuccess:
If the evaluated activity is a BT then any non-CGV guard implicitly is AND
connected with the expression “CGV:ProtocolSuccess”.

Strict Binary Chor. Rule 6.2.12 (Producibility)

Strict binary choreography models must be producible according to the rules of this
section.

6.2.2. Strict Multi-Party Choreographies

This section defines the composition rules for SeqMP choreographies as introduced in
section 4.6. Remind that the purpose of SeqMP choreographies not only is defining
multi-party choreographies (for an arbitrary large, but fixed set of roles) but in
particular the analysis of synchronization deficits. The following rules that must
be followed for defining valid SeqMP choreographies reflect this focus on analysis
features:

SeqMP Rule 6.2.1 (Eligible Constructs)

SeqMP choreography models are restricted to start states, end states, transitions,
decisions and component choreographies as described in section 6.1. The follow-
ing rules abstract from whether component choreographies are represented as call
choreographies or sub-choreographies. However, the component choreographies of
SeqMP models must be valid strict binary choreography models as defined in section
6.2.1. Integration partners only may agree to use different types of component
choreographies if they make sure that the end states of the respective component
choreography is commonly reached by all component choreography roles. As a conse-
quence, standard SeqMP models must not be used as component choreographies of
other SeqMP choreographies.

SeqMP Rule 6.2.2 (Subsequent Role Participation)

In SeqMP choreography models, any two subsequent top-level component choreogra-
phies must share at least one top-level choreography role.

236

6.2. Representing Strict Choreographies

SeqMP Rule 6.2.3 (Transition Coordination)

Two preconditions must be met for a transition to really fire.
Firstly, the transition must be enabled, i.e., the source of the transition must be

the SeqMP choreography’s currently active state and if a guard is defined on the
transition then this guard must evaluate to true.

Secondly, depending on the target of the transition, firing must be coordinated
between the integration partners by means of requesting and confirming firing.
Concrete coordination may be designed according to the definitions in section 5.3.
The following list describes which transitions require coordination depending on the
target state of the transitions:

• Component Choreography:
Firing the transition must be coordinated.

• Decision State:
Firing the transition is performed immediately and must not be coordinated.

• End State:
Firing the transition is performed immediately and must not be coordinated.

SeqMP Rule 6.2.4 (Start States)

SeqMP choreography models must define exactly one start state as defined in con-
struct advice 6.1.2. This start state has exactly one outgoing transition the target of
which must be a component choreography.

SeqMP Rule 6.2.5 (End States)

SeqMP choreography models must define one or more end states as defined in
construct advice 6.1.3. Upon reaching an end state, executable choreographies
terminate. As SeqMP choreographies are not composable (see SeqMP rule 6.2.1),
result propagation to higher-order choreographies is not applicable.

SeqMP Rule 6.2.6 (Component Choreography Evaluation)

The rules for determining the follow-on state of component choreographies in SeqMP
models are very similar to the rules for determining the follow-on state of component
choreographies in strict binary choreography models (cf. strict binary choreography
rules 6.2.6 and 6.2.7). Therefore, the considerations for unconditional progress, for
the use of the CBRes expression language and the optional use of dedicated decision
nodes hold true correspondingly. However, decision transitions may only point to
either component choreographies or end states.

237

6. Visualizing B2Bi Choreographies

Figure 6.21.: Sample SeqMP Choreography

SeqMP Rule 6.2.7 (Escalation Assignment)

SeqMP choreographies are designed to analyze synchronization deficits that result
from activities without participation of a particular top-level SeqMP choreography
role. Consider the SeqMP choreography depicted in figure 6.21. The choreography
starts out with an ‘OrderPlacement’ call choreography performed between the ‘Cus-
tomer’ and the ‘Seller’ role. If the follow-on call choreography between the Seller
and the Shipper fails, then the Customer is not automatically informed about that.
However, the Customer may expect to participate once more in the overall SeqMP
choreography, i.e., receive the product and invoice. Without explicit notification, the
Customer may wait unnecessarily long which constitutes a synchronization deficit.
SeqMP choreographies are not designed to avoid or automatically resolve such deficits.
Instead, they provide a sound framework for identifying these. Therefore, so-called
escalation sets may be added to transitions (using curly braces) to identify roles that
may suffer from synchronization deficits upon firing the respective transition. Escala-
tion sets are sets of top-level choreography roles and can intuitively be characterized
as follows:

238

6.2. Representing Strict Choreographies

“If a role has already participated in the overall choreography and may participate in
the future and is not participating in the current component choreography and if a
transition is taken that excludes that particular role from further participation, then

the role is to be included in the escalation set of that particular transition.”

For example, figure 6.21 shows the escalation set ‘Customer’ for the decision
transition after component choreography ‘c2’ with guard ‘CBRes:ShippingImpossible’.
This escalation set basically says that the Customer is the only one that may suffer
(in the sense of having an information deficit) from the premature termination
of the overall choreography upon firing this transition. The Seller and Supplier
role do not have synchronization deficits because they participate in the source
component choreography and therefore both have knowledge about the component
choreography’s result.

More details on the standard framework for analyzing information deficits, cor-
responding algorithms as well as precise rules for calculating escalation sets are
described in section 4.6.

SeqMP Rule 6.2.8 (Connectedness)

Without considering the direction of transitions, any state of a SeqMP choreography
model must be connected to the start state and all the end states of the same model.

SeqMP Rule 6.2.9 (Guard Constraints)

For the set of decision transitions as used in SeqMP rule 6.2.6 the following holds
true:

• Completeness:
The disjunction of the guards of all decision transitions must evaluate to true
for any result of the evaluated component choreography.

• Disjointness:
No two guards of decision transitions may both evaluate to true for the same
result of the evaluated component choreography.

SeqMP Rule 6.2.10 (Producibility)

SeqMP choreography models must be producible according to the rules of this
section.

239

6. Visualizing B2Bi Choreographies

6.3. Validation

The visualization of this work’s B2Bi choreography styles serves two main pur-
poses: Communicating B2Bi choreography construction guidelines to non-technical
audiences and proving the amenability of this work to a model-driven software
development approach that starts out with an abstract visual specification of the
partner interactions. The discussion of validity is split up into two subsequent steps
correspondingly.

Communication to non-technical audiences Concerning communication to non-
technical audiences, the choice of BPMN choreographies as visual notation limits
freedom of optimizing the visualization in terms of usability to a large extent.
However, using an international standard such as BPMN in a B2Bi setting is more
important than perfect specialized usability so that an empirical evaluation of the
visualization is left out. Yet, acceptance of the visualization guidelines of this chapter
by RosettaNet’s MCC team indicates that a reasonable level of usability is given.
In that regard, note that RosettaNet’s MCC team included several non-technical
members.

The contribution of this chapter is not choosing BPMN as choreography notation,
but rather restricting BPMN choreographies to a set of constructs and grammar rules
that is adequate for B2Bi. The methodological foundation for restricting BPMN is
given by [229] who identify four main grammatical deficiencies of languages compared
to the ontological domain these are applied to:

• “Construct overload:
Several ontological constructs map to one grammatical construct.

• Construct redundancy:
Several grammatical constructs map to one ontological construct.

• Construct excess:
A grammatical construct might not map to any ontological construct.

• Construct deficit:
An ontological construct might not map to any grammatical construct.”

While BPMN choreographies provide the grammatical constructs for such an
analysis, the B2Bi choreography styles of this work provide the ontological domain.
Declaring the choreography styles of this work as ontological domain of B2Bi (at
least from a control flow perspective) is backed by a comprehensive literature study
on the one hand (cf. chapter 3) and an analysis of 100 RIGs of RosettaNet’s RIG
library on the other. “[A RIG] describes the specific business scenario(s), usage
notes and lessons learned [when implementing PIPs]” which is supposed to “help
reduce implementation time and accelerate adoption of the process scenario by sharing

240

6.3. Validation

the experience of early implementers.” 3 Control flow requirements of RIGs can be
deduced from the business scenario descriptions and the overwhelming majority of
RIGs is pretty simple in that regard. Only 44 out of 100 RIGs use hierarchical
decomposition, 15 RIGs describe multi-party scenarios, 12 RIGs use loops, and 8
RIGs have parallel activities. As a consequence, the B2Bi choreography styles of this
work cover the scenarios of the RIG library pretty well.

The visualization of B2Bi choreographies as presented in this chapter consists of
just 10 construct advices, 12 rules for creating strict binary choreographies and 10
rules for creating SeqMP choreographies. Compared to the wealth of functionality
available in the BPMN standard, this implies a considerable amount of construct
excesses or construct redundancies in BPMN for the purpose of B2Bi choreography
modeling. Nonetheless, some construct deficits were detected as well. Instead of
discussing each BPMN element or modeling rule in isolation, a summary of deviations
from the BPMN standard is given below. Note that restrictions and amendments to
the BPMN choreography standard for the purpose of B2Bi choreography modeling
are a natural thing because BPMN choreographies have not been designed as dedi-
cated B2Bi choreography language.

The following BPMN extensions are defined:

1. Choreography tasks are interpreted as BTs that require the execution protocol
defined in section 4.3 (cf. construct advice 6.1.1).

2. Expression languages for evaluating the result of BT executions are imported
from ebBP (cf. construct advice 6.1.4).

3. Expression languages for capturing the result of component choreographies
and parallel structures are defined (cf. construct advice 6.1.4 and strict binary
choreography rule 6.2.9).

4. Basic rules for labeling top-level choreographies are defined (cf. construct
advice 6.1.5).

5. A notation for role mapping from choreography roles to subordinate choreogra-
phy roles is defined (cf. construct advices 6.1.1, 6.1.5 and 6.1.9).

6. A reset semantics for timers that may be entered from an event-based choice
several times is defined (cf. construct advice 6.1.10).

The following BPMN rules are violated:

1. Guards are allowed to be added to transitions without a so-called“mini-diamond
marker” which contradicts the following BPMN rule:

“A conditional outgoing Sequence Flow from an Activity MUST be drawn with a

3http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/

RosettaNetImplementationGuides/tabid/2985/Default.aspx, last access: 12/20/2011

241

http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx
http://www.rosettanet.org/Support/ImplementingRosettaNetStandards/RosettaNetImplementationGuides/tabid/2985/Default.aspx

6. Visualizing B2Bi Choreographies

mini-diamond marker at the beginning of the connector” [150, section 8.3.13].
Not forcing the user to add “mini-diamond markers” to conditional guards
follows the rationale that a guard represents its own existence itself, that means
by attaching a guard to a transition it is already clear that the sequence flow is
conditional. It is noteworthy that this does not exclude adding “mini-diamond
markers” if intended by the user.

2. For an exclusive gateway, no evaluation order of conditions (except for that CGV
expressions are evaluated first) is prescribed which contradicts the following
BPMN rule:

“In order to determine the outgoing Sequence Flows that receives the token, the
conditions are evaluated in order” [150, section 13.3.2].
As BPMN choreography diagrams are two-dimensional there is no obvious
way for determining the execution order of multiple conditions with the same
source. Moreover, the BPMN standard does not define how to determine such
an order. Finally, the validity of the condition expressions of this thesis’ B2Bi
choreography styles do not rely on an execution order because they do not
cause side effects.

3. There is no distinction between collapsed (expanded) sub-choreographies and
collapsed (expanded) call choreographies by means of “line thickness” as de-
fined in BPMN. Instead, only the shapes for collapsed call choreographies
and expanded sub-choreographies are defined. There is only the concept of
component choreography that unifies the concepts of call choreographies and
sub-choreographies. The use case of just defining part of a larger choreography
is supported by implicit role mapping whereas the use case of using a compo-
nent choreography in several other choreographies is supported by explicit role
mapping. However there is no need to define two different types of component
choreographies for that.
Therefore, the following visualization rules of BPMN are disregarded:

“If the Call Choreography calls a Choreography, then there are two options:
- The details of the called Choreography can be hidden and the shape will be the
same as a collapsed Sub-Choreography, but the boundary of the shape MUST
have a thick line (see Figure 11.25).
- The details of the called Choreography can be shown and the shape will be the
same as an expanded Sub-Choreography, but the boundary of the shape MUST
have a thick line (see Figure 11.26)” [150, section 11.4.3]

4. Conditional expressions after join nodes (parallel gateways) are allowed for
in order to capture the result of a parallel structure. This contradicts the
following BPMN rule:

“A source Gateway [of a conditional sequence flow] MUST NOT be of type
Parallel or Event” [150, section 8.3.13].
As the branches of parallel structures may produce results that are relevant for
the subsequent activities of the respective choreography, evaluating these results

242

6.3. Validation

must be possible and hence conditional expressions after join nodes should
be allowed for. In case the modeling tool in use disallows multiple outgoing
transitions of a parallel gateway then a decision gateway can be interposed.

5. The follow-on BTs of an event-based choice may have different senders and
receivers. For example, there could be two BTs A and B where role1 is assigned
the requester role of A and the responder role of B whereas role2 is assigned the
responder role of A and the requester role of B. This contradicts the following
BPMN rule:

“On the right side of the [event-based] Gateway: either - the senders MUST to
be the same; or - the receivers MUST to be the same.” [150, section 11.6.2]
Choreographies in which two parties may concurrently trigger the next BT
are common in practice and the execution of such structures is supported by
CHORCH. Hence, these structures are allowed for.

It is vital to note that the above restrictions and modifications of the BPMN
choreography standard are well-motivated by the choreography styles of this thesis
which, in turn, are motivated by the requirements analysis of chapter 3. Moreover,
no new shapes have been defined for the visualization of CHORCH’s choreography
styles. As only a few labeling rules for representing B2Bi domain concepts have
been added to standard BPMN choreographies, modelers should be able to leverage
existing BPMN tools for creating visual B2Bi choreography models. The amenability
of such models to model-driven software development is investigated next.

Amenability to model-driven software development Concerning amenability of
this work to a model-driven software development approach that starts out with
an abstract visual specification of the partner interactions, the coverage of relevant
control flow constructs, the derivation of lower-level artifacts, and the applicability
of the formal execution semantics need to be investigated.

Concerning the coverage of relevant control flow constructs, 11 use cases taken
from the RosettaNet RIG library as well as the RosettaNet “Order to Cash eBusiness
Scenarios” have been modeled using the modeling guidelines introduced above. The
use cases have been selected such that the different control flow constructs of the
guidelines are covered. For demonstration purposes, some additional use cases have
been selected that only cover very simple control flow. As this use case analysis was
part of the development of the above modeling guidelines, all use cases could be
modeled and the result is publicly available together with the corresponding ebBP
models4.

Those ebBP models were generated by hand with the following two purposes.
Firstly, to find out whether or not ebBP skeletons can be derived automatically from
the information available in the BPMN model and, secondly, to analyze the detail that

4http://www.rosettanet.org/dnn_rose/DocumentLibrary/tabid/2979/DMXModule/624/

Command/Core_Download/Method/attachment/Default.aspx?EntryId=9858, last access:
12/20/2011

243

http://www.rosettanet.org/dnn_rose/DocumentLibrary/tabid/2979/DMXModule/624/Command/Core_Download/Method/attachment/Default.aspx?EntryId=9858
http://www.rosettanet.org/dnn_rose/DocumentLibrary/tabid/2979/DMXModule/624/Command/Core_Download/Method/attachment/Default.aspx?EntryId=9858

6. Visualizing B2Bi Choreographies

has to be added in order to create a complete ebBP specification from such a skeleton.
As the above BPMN modeling guidelines are based on the B2Bi choreography styles
of this work, ebBP skeletons were found to be derivable automatically for all use
cases (by means of some simple nameId derivation schemes). Only some naming rules
for modeling element labels had to be adjusted. As technological gap between ebBP
skeletons and full ebBP specifications, the following details have been identified:

1. Selection of business signals:
A BT can either have no business signals, a RA, an AA or both. This con-
figuration has to be filled in depending on the information to be exchanged.
The identification of a BT pattern as defined in ebBP may be helpful for
that [134, section 3.4.9.1].

2. Selection of QoS characteristics:
Ten QoS parameters such as reliability, authentication or integrity protection
have to be filled in for completing a BT configuration (cf. section 2.3.1).
Again, the identification of a BT pattern as defined in ebBP may be helpful
for that [134, section 3.4.9.1].

3. BT TimeToPerform Value:
Whereas timeouts for leaving event-based choices or for interrupting component
choreographies are part of the choreography definition and therefore explicitly
visualized, the maximum time to perform a BT is part of the BT execution
model and therefore not visualized. A static value has to be defined or the

“TimeToPerform” parameter must be configured to be negotiated at runtime.

4. Business document version:
While a BT type exactly identifies the semantics of the business documents to
be exchanged, there typically still are several versions of it in business document
libraries like RosettaNet or OAGi. The exact version of the business documents
to be used has to be filled in.

5. BT functional role names:
The ebBP format requires the definition of a “nameId” for the requester and
the responder role of a BT. For RosettaNet PIPs, the functional role name of
requester and responder role can be looked up in the PIP directory and used as
nameId. If such a mapping is not available, an auto-generated id can be used.

Note that the visualization of this work is aligned with the B2Bi choreography
styles of this work and not with the complete ebBP specification. In that sense,
the visualization of this chapter is not a true ebBP visualization as required by the
standard itself:

“Any methodologies and/or metamodels used for the creation of ebBP definitions
MUST at a minimum support the production of the elements and relationships
contained in the XML representation of the ebBP technical specification and defined
in the ebBP schema” [134, lines 603-605]. However, it is noteworthy that the

244

6.4. Chapter Summary

purpose of visualization is enabling users to model B2Bi choreographies and not
ebBP documents.

Finally, the applicability of the semantics defined in chapter 4 is discussed. As
the visualization rules for SeqMP are strictly aligned with the SeqMP definition,
applicability is not an issue. However, strict binary choreographies are a superset
of ebBP-ST and ebBP-Reg. There are strict binary choreographies that can be
interpreted using the execution semantics of ebBP-ST while the majority of models
can be interpreted using the execution semantics of ebBP-Reg. However, if the full
set of control flow constructs of strict binary choreographies is used, the semantics of
ebBP-Reg has to be slightly extended as follows:

• Condition expressions after parallel structures must be allowed for. Therefore
the semantics rule 3: Leave XOR-Fork or AND-Join on page 137 would have
to be split up into two rules where the rule for leaving XOR-Forks could be
retained unmodified and the rule of AND-Joins would have to evaluate condition
expressions against the component R of an ebBP-Reg configuration that already
keeps track of all the outcomes of BCAs (component choreographies).

• By analogy with the ebBP-ST semantics, timeouts processing must be added.
The application of the ebBP-ST timeout processing style is easily possible
because both, ebBP-ST and ebBP-Reg, share state machines as underlying
paradigm.

In addition, virtual component choreographies as described in strict binary chore-
ography rule 6.2.9 have to be converted into explicit component choreographies by
means of a preprocessing step.

6.4. Chapter Summary

This chapter introduced the visualization of CHORCH’s B2Bi choreography styles
using the BPMN notation. Using BPMN as visual format is beneficial because it
provides a notation that abstracts from the technical detail that is irrelevant for
identifying the types and sequences of business document exchanges. Moreover,
using a standardized notation has the promise of tool availability and accessibility
to a large audience. Finally, the interaction-centric choreography paradigm of
BPMN choreographies that is centered around choreography tasks lends itself well
to visualizing the similarly interaction-centric choreography paradigm of ebBP that
is centered around BTs.

The adaptation of BPMN choreographies to B2Bi choreography modeling takes the
benefits of the CHORCH B2Bi choreography styles (cf. section 4.7) to an abstraction
level that is closer to business process models:

• Amendments of BPMN As much as ebBP has been amended in chapter 4
in terms of redefining exchange procedures for BTs, the BPMN choreography
notation is amended in adding B2Bi semantics and restricting the set of

245

6. Visualizing B2Bi Choreographies

constructs used for choreography modeling. This enables B2Bi choreography
modelers to reuse familiar concepts such as BTs on the one hand and reduces the
number of modeling constructs and rules to bear in mind on the other. These
two factors taken together promise a low barrier for adopting the proposed
visual B2Bi choreography guidelines (cf. [126, 229]). It is worth noting that
this thesis does not introduce any new visual constructs for modeling B2Bi
choreographies. Only the semantics and labels of visual constructs are changed.
As a consequence, the amendments made to BPMN choreographies do not
challenge the availability of modeling tools.

• Unambiguous execution semantics Similar to ebBP, BPMN is a notation
rather than a full-fledged modeling methodology. BPMN consistently does
not define model classes such as ebBP-Reg, ebBP-ST or SeqMP that are
aligned with specific modeling requirements (cf. chapter 3). However, BPMN
defines the so-called common executable conformance sub-class “that focuses
on what is needed for executable process models” [150, section 2.1.1]. This
conformance sub-class prescribes the use of WSDL as service interface definition
language [150, section 2.1.2]. However, WSDL belongs to a lower abstraction
level than, for example, ebBP BTs the execution model of which is built on top
of individual Web Services calls. As a consequence, an execution semantics for
abstract B2Bi choreography models is not available in the BPMN standard.

This thesis provides the BPMN world with such B2Bi choreography semantics
by visualizing CHORCH’s B2Bi choreography styles. The formal execution
semantics of these styles can be reapplied to the visual choreography models
defined in this chapter because the BPMN modeling constructs used can be
mapped to ebBP modeling constructs one-by-one. Only technical configuration
data has to be added for deriving complete ebBP models from visual BPMN
models. Hence, a BPMN to ebBP transformation as proposed in this chapter
does not challenge the defined control flow between BTs and BCs. In so far,
the difference between the BPMN B2Bi choreographies introduced here and
the ebBP choreographies of chapter 4 is more a matter of format conversion
than model transformation.

• Characterization of model validity Consistent with the discussion in sec-
tion 4.7 the term “validity” for the visual B2Bi choreography models of this
chapter is tied to the ebBP-ST, ebBP-Reg and SeqMP choreography styles
of chapter 4. As the BPMN models of this chapter correspond to the ebBP
models of chapter 4, the validity criteria given in sections 4.4.3, 4.5.2 and 4.6.1
can be reapplied.

However, these criteria are not very helpful for non-technical audiences. There-
fore, the composition rules of section 6.2 present an informal characterization
of model validity by defining admissible compositions of BPMN choreography

246

6.4. Chapter Summary

constructs for the purpose of B2Bi choreography modeling. The figures con-
tained in section 6.2 consistently strive for enumerating all valid successors of
particular B2Bi choreography constructs.

The validity of this chapter’s guidelines for creating visual B2Bi choreographies is
given by relying on the B2Bi choreography styles of chapter 4. These, in turn, rely
on the literature review described in chapter 3 and the analysis of 100 use cases taken
from the RosettaNet RIG library. In order to check that the choreography styles
of chapter 4 indeed can be modeled, 11 use cases that cover all relevant modeling
elements have been modeled using the proposed BPMN choreography adaptation.
Furthermore, these BPMN models have been mapped to ebBP by hand for ensuring
that this translation step can be automated and for analyzing the semantic gap
between BPMN models and ebBP models. Indeed, only technical configurations
such as exact business document versions or security and reliability parameters have
to be filled in for deriving ebBP models. This, in turn, implies that control flow
structures that have been defined using the proposed BPMN visualization can be
retained during the transition to B2Bi choreography implementations.

The visual notation presented in this chapter demonstrates that CHORCH’s B2Bi
choreography styles can be taken to an abstraction layer that is close to business
process modeling. Conceptually, this is a step from the choreography layer as
depicted in figure 1.3 of section 1.1.2 in an upward direction. On the contrary,
chapter 5 shows how the binary CHORCH B2Bi choreography styles can be turned
into implementations which is a step from the choreography layer towards the
orchestration layer in a downward direction. In this sense, the contents of chapter 5
and this chapter validate the B2Bi choreography styles of chapter 4 by exemplifying
the integration with surrounding technologies and abstraction layers. This shows
that CHORCH’s B2Bi choreography styles are amenable to software development
approaches that begin with abstract visual models and then derive more and more
concrete implementation artifacts.

The next chapter will discuss related work that is relevant for such approaches.

247

7. Related Work

The content of this chapter predominately covers analyses, concepts and approaches
that compete with CHORCH or with particular concepts leveraged for CHORCH. In
addition, some contributions that provide the background for CHORCH or comple-
ment CHORCH are discussed. The discussion of several alternative choreography
languages and technologies contained in the previous chapters is not repeated here.
This concerns the following topics:

• The description of several choreography languages that are not tailored to the
needs of B2Bi as well as the discussion of UMM or BCL as alternative B2Bi
choreography languages. Both aspects have been discussed in section 2.3.

• The reasons for not making use of additional ebXML standards, in particular
ebMS and CPPA, the reasons for not leveraging REST, and the discussion
of general purpose programming frameworks as alternative implementation
platform. These aspects have been tackled in the introduction of chapter 5.

The discussion of related work starts out with some selected papers that provide
additional background for this thesis.

In [14], Beimborn et al. give an overview of Web Services and ebXML standards
relevant in 2002 and propose the integration of these two technology stacks. Beimborn
et al. are among the first who suggest this integration. Furthermore, the discussion
of [14] also implies the combination of high-level B2Bi specific description formats such
as ebBP with general purpose implementation technologies such as Web Services. This
backs up the levels of abstraction for representing choreographies and orchestration-
based implementations as chosen by CHORCH. In so far, this work can be interpreted
as a precise and detailed implementation of the high-level suggestions of [14].

Similarly, Khalaf et al. [73] suggest the use of BPEL and WS-Policy for imple-
menting business processes which supports the choice of technologies in chapter
5.

In [249], Zapletal et al. give an overview of UMM version 2.0 and suggest the
use of choreography languages that are tailored to B2Bi. Moreover, the need for
incorporating a notion of state within B2Bi choreographies as well as the amenability
of choreography models to automatic analysis and execution machinery is highlighted.
This is very similar to CHORCH as it also follows the idea of applying a B2Bi-specific
choreography format (ebBP). The state machine paradigm for CHORCH’s B2Bi
choreography styles as well as the concept of explicit shared-state nodes for ebBP-ST
pay tribute to the importance of representing state in B2Bi choreographies. As
CHORCH’s B2Bi choreography styles are formally defined, have formalized execution

249

7. Related Work

semantics and can be serialized into ebBP, applicability of analysis and execution
methods is guaranteed. It is worth noting that the content of [249] focuses on
the language concepts of UMM and not on the methodology for applying UMM to
concrete B2Bi scenarios. This is different from CHORCH that puts its emphasis on
the application of existing B2Bi formats such that the semantics is unambiguous and
executable. The authors of [249] have significant contributions in that domain as
well which are discussed in section 7.2 and 7.3.

Further background for CHORCH is given by Naujok and Huemer in [121] by
presenting an overview of the historic evolution of ebXML and corresponding successes
and deficits. They find that the implementation features of ebXML have been
outperformed by Web Services technologies and therefore achieved minor acceptance.
To some extent, this is also true for the more abstract ebBP layer of ebXML.
CHORCH dissociates ebBP from the ebXML stack and paves the way for applying
Web Services technology to the execution of ebBP choreographies.

In that regard, Papazoglou discusses the relationship between Web Services technol-
ogy and business transactions at length in [155]. A large part of the paper discusses
the application of established transaction models such as short-lived ACID trans-
actions and long-running business transactions. However, the details of leveraging
these models for really performing business transactions are not defined. Instead, a
high-level discussion of several deliverables of B2Bi communities such as RosettaNet
is provided and a sample specification of a business transaction in a “free XML
syntax” [155, figure 3] is given. That specification significantly resembles concepts of
ebBP version 1 [147] (released two years before [155]) which is not fundamentally
different from ebBP version 2 [134] in terms of the BT definition. In contrast to
CHORCH, [155] does not provide a full-fledged execution model, execution semantics
or a mapping to implementation artifacts for business transactions.

Another early discussion of B2Bi implementations is provided in [195] by Schulz
and Orlowska. In particular, the separation of public integration logic from private
integration logic and the use of process-based implementations is suggested. Although
precise rules for creating process models or a definition of process model validity is
not given, [195] captures important design drivers for B2Bi.

Another series of scientific approaches is concerned with choreography issues that
typically are of minor concern for top-down approaches such as CHORCH. For
example, Wombacher presents an approach in [235] for decentrally analyzing the
consistency of multi-party interaction scenarios. Therefore, Wombacher captures
the public behavior of communication partners as communicating state machines.
Then, compatibility between public behavior definitions of communication partners is
checked on a bilateral basis. A core contribution presented in [235] is the derivation of
a criterion according to which checking the process compatibility between integration
partners in a pairwise manner ensures overall compatibility of all integration partners
in the sense that the cooperation between multiple partners may reach an end state.
A tool for performing this analysis is presented by Wombacher et al. in [236]. Among
others, the authors describe the derivation of the individual partners’ state machines
from BPEL processes. The contributions of [235, 236] are particularly useful for

250

analyzing the compatibility of potential existing integration partners without having
to build a global multi-party choreography. This, in turn, implies a bottom-up
approach rather than a top-down approach as applied by CHORCH. Moreover, B2Bi
scenarios have been found to be mainly implemented on a bilateral basis (cf. chapter
3) so that the issue of creating a global multi-party model is of less concern for
CHORCH anyway.
Several other approaches focus on the generation of adapter components in case
a particular communication partner is found to be incompatible from a control
flow point of view. In [71], Jung et al. present a rather informal approach for
coupling the executable processes of two integration partners. To do so, one of the
integration partners is suggested to externalize its publicly visible behavior as a
so-called contract process and the other partner is supposed to adapt to this contract
process. For bridging between executable processes and contract processes, the use
of so-called interface processes is suggested. Although a state-machine like notation
is used in [71] for visualizing sample processes, neither a formal definition of the
various process types is given nor an algorithm for generating contract or interface
processes. More formal in nature and sound in analysis are the adapter generation
approaches presented in [241] leveraging communicating state machines and [21, 198]
that are based on process execution trees. In a somewhat similar manner, the authors
of [98] use Petri net technology for generating communication partners for sets of
BPEL processes. Such approaches are of less concern for CHORCH because a global
choreography definition is assumed to be defined collaboratively by the integration
partners. Compatible processes using such a global choreography as input then can
be generated as shown in chapter 5. This obviates the need for generating adapters or
synthesizing communication partners. However, it is noteworthy that the concept of
a process adapter bears some similarity with CHORCH’s concept of control processes
which underlines its validity from a software engineering point of view.

In order to round up the overview of approaches that roughly relate to CHORCH,
it is worth noting that the choreography-orchestration dichotomy as coined by Chris
Peltz [159] is mistakingly interpreted as choice of integration architecture from time
to time. This means that some authors interpret choreography and orchestration
as two distinct options for implementing the same task where choreography then is
used to refer to the decentralized collaborative implementation of a common goal
whereas orchestration is used to refer to the centrally controlled implementation. For
example, McIlvenna et al. [107] present an approach for replacing the decentralized
realization of an integration scenario with an equivalent realization that leverages
a central process that serves as a kind of message hub between the interaction
partners. The decentralized realization is declared to be a choreography whereas the
centralized realization is declared as orchestration. In [7], Barker et al. compare the
performance of a decentralized realization of a Data-Intensive Computing benchmark
scenario to a centralized version. Again the decentralized realization is referred
to as choreography whereas the centralized version is referred to as orchestration.
There is a series of evidence that the concept of choreography vs. orchestration as
an integration architecture choice is a misunderstanding. Chris Peltz states that

251

7. Related Work

“executable [BPEL] processes model orchestration while abstract [BPEL] processes
model the choreography of services” [159]. However, as an abstract BPEL process
does not collaboratively solve any task, this would not be a choreography according
to [7, 107]. In addition, the concept of local choreography as used in [59] would not
make any sense for the same reasons. Finally, following the concept of McIlvenna et
al. and Barker et al. would allow for defining choreographies based on BPEL4Chor or
BPMN collaborations that are orchestrations. All that needs to be done is building
a BPEL4Chor model in which one BPEL process serves as message hub for the other
BPEL4Chor participants.

The remainder of the related work discussion is aligned with the structure of this
thesis. Section 7.1 presents related work for the requirements analysis (chapter 3).
Section 7.2 discusses related work in terms of representing choreographies (chapters 4
and 6). Section 7.3 compares the implementation strategy of chapter 5 to alternative
implementation approaches for choreographies and section 7.4 discusses approaches
that target multiple abstraction layers of CHORCH.

7.1. Requirements Analysis for B2Bi

Related work for the requirements analysis of chapter 3 stems from the areas of
Business Process Management, Supply Chain Management, Enterprise Application
Integration, Information Systems Design, B2Bi and lots of more specialized domains
that target specific integration technologies such as Web Services.

The discussion of that work is performed in two steps. At first, literature that
targets the scope of the requirements analysis in full or partially is discussed. As
pointed out in the underlying technical report [184], the scope of the requirements
study used here is the derivation of requirements for the analysis, design, development
and maintenance of B2Bi information systems. In a second step, the research areas
that reside on the boundaries of this scope are identified.

Considering the first category of related work, the literature identified deviates
from the analysis in chapter 3 with respect to scope or with respect to diversity of
requirements sources or both. Basically, any of the requirements sources listed in
tables A.1 and A.2 could be cited here. Instead, only those publications that come
closest to the style of the requirements study are discussed.

Medjahed et al. discuss in [109] issues and enabling technologies of Business-to-
Business interactions. Firstly, B2Bi interactions are split up into a communication,
content and business process layer and, then, coupling among partners, heterogeneity,
autonomy, external manageability, adaptability, security and scalability are identified
as evaluation dimensions. Secondly, B2Bi technologies, XML-based B2Bi frameworks
and Web Services, Research Prototypes, and Deployment Platforms are contrasted
with these layers and evaluation dimensions. Finally, some open issues are specified.
The work of Medjahed et al. is different from this study in offering a less elaborate
B2Bi schema and in defining a less comprehensive set of B2Bi requirements where
both the evaluation dimensions and open issues identified in [109] can be considered

252

7.1. Requirements Analysis for B2Bi

to define B2Bi requirements. Instead, the authors of that paper concentrate on a
more detailed presentation of the technologies/frameworks/prototypes/platforms,
but do not use these for gathering requirements.

In [242], Yu et al. study issues, solutions and directions in deploying and managing
Web Services. That paper is related to the requirements study of chapter 3 in dealing
with an important B2Bi implementation technology, but, as B2Bi is not the only
application domain of Web Services, B2Bi specific characteristics are not treated
comprehensively. Moreover, the focus of the paper is put more on the analysis of
implementation concepts and technologies than on deriving requirements.

In [213], van der Aalst et al. survey business process management and therefore are
relevant as well. They define the BPM lifecycle and put important related concepts
like Workflow Management, Business Activity Monitoring and Business Process
Analysis into context. In doing so, they also identify several important requirements
for B2Bi, but they do not derive a comprehensive requirements list nor classify them
according to a B2Bi schema.

In [3], Androutsellis-Theotokis et al. present a requirements analysis and design
proposal for performing peer-to-peer e-business transactions. That paper focuses
mainly on the market B2Bi type as identified in [48] and therefore is not as compre-
hensive in scope as the analysis discussed here. Moreover, the authors do not classify
their requirements according to B2Bi challenges or abstraction layers.

In [176], Scheithauer and Wirtz present the results of a case study in business
process management. This comprises a list of requirements that is less comprehensive
than the one of this thesis. Moreover, only a single source for requirements, i.e., the
case study, is considered for deriving requirements.

An Enterprise Integration (EI) Methodology is described by Lam and Shankarara-
man in [89] and they explicitly declare B2Bi to be a special EI scenario. The focus
of that paper are the envisioned project phases of the integration methodology, but
lists of integration requirements and qualities of integration architectures are also
presented. Whereas the integration requirements only deal with issues related to
technical communication like response time and volume/throughput, the qualities of
integration architectures are boiled down to five abstract qualities such as openness
and feasibility. Methodologically, that paper is different from the requirements
analysis of this thesis in using Lam’s and Shankararaman’s experience in EI projects
as requirements source instead of using different types of literature as done in [184].

Apart from the papers just discussed that have a more or less global B2Bi scope,
there are lots of publications that are different from the requirements analysis of this
thesis in focusing on selected aspects of B2Bi or BPM systems, e.g., process modeling
languages [100], simulation [47], process flexibility [193] or semantic constraint
management [101].

Finally, the B2Bi schema taken from [187] (see figure 1.3) is a source of requirements
on its own. In particular the B2Bi schema layers are not explicitly declared to be
a requirement, although it is obvious that there is a need for ‘business process
modeling’ (BPM layer) or ‘the definition of message exchange between partners’
(public orchestration layer). These requirements are not included in the requirements

253

7. Related Work

set of tables A.1 and A.2 because they are part of the proposed B2Bi schema.
The second step in discussing related work of the requirements study consists of

identifying research areas at the boundaries of its scope. It is vital to note here that
the requirements study explicitly does not look at requirements of these areas.

The first area comprises project management and organizational issues during
performing B2Bi projects. Project management typically comprises tasks like risk
management, human resource allocation or project scheduling, while organizational
issues cover aspects like cultural fit, implementing organizational change, level of
support for IT projects or the analysis of organizational capabilities. Exemplary
publications that are dedicated to these issues are [88] investigating EAI success
factors or [119] defining a capability assessment framework for the adoption of B2Bi
systems. This area is also considered to be important in research work with a different
focus like [49,90,126].

Another neighboring area is the business perspective on B2Bi that drives the
design and development of B2Bi information systems. Supply Chain Planning is a
major part of the B2Bi business perspective and comprises long-term decisions such
as the strategic design of an enterprise’s supply chain network to mid- and short-term
planning tasks such as collaborative planning, forecasting and replenishment (CPFR)
or master planning. The definition, measurement and monitoring of performance
figures also belongs to the business perspective of B2Bi. Clearly, all these tasks
heavily influence the functional and non-functional requirements for a particular
integration system, but the domain problems themselves first have to be solved
using methods of logistics and supply chain management, corporate management and
others. These domain problems are discussed, for example, in [163] that targets inter-
domain master planning in supply chains, in [52] targeting performance measures for
supply chains and in [175] dealing with the strategic design of supply networks.

Finally, as the scope of the requirements study comprises the design and develop-
ment of information systems, generic requirements for models and implementations
apply. Examples of such requirements are coupling, cohesion, abstraction or reuse.
The requirements study for this thesis [184] does not attempt to define a comprehen-
sive requirements list for arbitrary models. Instead, the goal is a comprehensive list
of B2Bi requirements that can be justified by relevant B2Bi requirements sources.

7.2. B2Bi Choreography Representation

The related work in this section does not only cover approaches based on B2Bi chore-
ography languages. It is interesting to note that virtually any choreography approach
claims relevance for interorganizational systems or B2Bi. The main differences lie
in the languages chosen for representing choreographies and the actual aim. While
approaches based on languages with a strong formal background frequently strive for
analyzing the soundness of choreographies, approaches based on standard languages
rather strive for supporting the communication function of choreography models and
streamlining implementation. The paragraphs below are structured according to the

254

7.2. B2Bi Choreography Representation

languages used for representing choreographies. Remember, though, that publications
that predominately aim at introducing a new choreography language such as [248]
(that introduces BCL) are covered in section 2.3. In addition, there are numerous
publications that focus on the soundness of the service compositions of individual
choreography participants. For example, the consistency between executable and
abstract processes is investigated in [105] and a Petri net-based algebra for modeling
Web Services compositions is presented in [53]. Such approaches are not further
discussed here. Finally, approaches that target the derivation of implementation
artifacts from choreographies are covered in the next section.

Petri Net-Based Choreography Approaches There is a significant number of
choreography approaches that leverage Petri Nets1 for modeling choreographies.
These can be classified into interconnection choreography models and interaction
choreography models (cf. section 2.3 and [29]).

In [214], van der Aalst and Weske present the Public-to-Private approach as one of
the first interconnection choreography approaches based on Petri nets. The approach
starts out with a global model in which places are used to either represent message
buffers between interaction partners or the local state of an interaction partner.
Transitions correspondingly represent receive and send actions that consume or
produce tokens in message buffer places and local state places. The local state places
and send/receive transitions of individual partners are arranged in (imaginary) lanes
and thus represent participant specific behavior. The approach of [214] then provides
guidelines for dissecting such a global model into the public participant behaviors
and deriving private orchestration models of these public behaviors such that the
overall defined choreography remains unchanged. Such a local Petri net model of a
participant then can be used to derive implementations (not presented in [214]).

In [212], van der Aalst et al. provide a refined inheritance notion for deciding
upon conformance of private orchestration models (expressed as Petri nets, too) to
public participant behaviors. Dijkman and Dumas present an approach in [35] that
allows for a more fine-grained modeling of public behavior. In addition to the global
(choreography) model and the public participant behaviors of [214], Dijkman and
Dumas define the concepts of interface behaviors and provider behaviors. An interface
behavior describes the public behavior of a communication partner with respect to
one particular other communication partner. In so far, the global choreography model
of the Public-to-Private approach can be interpreted as a set of interface behaviors.
A provider behavior as defined in [35] can be used to describe the public behavior of a
communication partner with respect to all relevant other communication partners. In
so far, a provider behavior in [35] is somewhat equivalent with the public participant
behavior of [214]. Finally, Dijkman and Dumas envisage the implementation of a
provider behavior by one or more orchestrations whereas [214] does not elaborate on
this distinction.

1The reader is assumed to have a working understanding of Petri nets

255

7. Related Work

Petri net-based choreography approaches such as [35,212,214] are different from
CHORCH in several ways. Firstly, CHORCH provides interaction style choreogra-
phies whereas [35, 212,214] provide interconnection style choreographies. Interaction
style choreographies are said to suffer from the possibility of unenforceable models
whereas interconnection style choreographies are said to suffer from the possibility of
incompatible participant behaviors. Realizability of interaction choreographies can be
ensured by a set of rather simple composition and execution rules as CHORCH shows.
On the other hand, leveraging a formalism like Petri nets with its rich set of theory and
analysis features allows for checking compatibility of interconnection choreographies.
Hence, the choice between interaction and interconnection choreographies is rather
dependent on modeling adequacy. A core motivation for choosing interaction style
choreographies is the fact that all major B2Bi choreography notations, in particular
UMM and ebBP, provide the interaction choreography style. Secondly, CHORCH
provides B2Bi domain concepts such as BTs and business document version configu-
rations which make it more appropriate for practical implementation. Thirdly, the
abstraction level of CHORCH choreographies is higher than the abstraction level of
these Petri net based approaches. CHORCH introduces additional control messages
in order to provide exactly the control flow defined by the global choreography at
runtime. This is different from these Petri net approaches that only allow for the
business messages defined in the choreography model that are exchanged using asyn-
chronous communication. Due to concurrent access to the communication channel
and overtaking messages, certain communication scenarios hence are hard to realize.
For example, assume that two communication partners should be allowed to send a
business message at a particular point in the control flow that mutually exclude each
other. Simply modeling two send transitions for both partners would not be enough
because these send actions are local activities that cannot be synchronized without
further communication. CHORCH abstracts from such rather system-level problems
and hence does not force the modeler to think in message buffers and synchronization
procedures. Fourthly, the bilateral choreography styles of CHORCH are tailored to
a more specific integration scenario and therefore allow for automatically deriving
fully executable participant behavior implementations based on BPEL. To the best
of my knowledge there is no Petri net choreography approach such as [35,212,214]
that allows for translating participant behaviors into fully executable process defini-
tions based on a production level orchestration language. Instead, behavior stubs
(see several publications below) are generated that have to be completed manually.
Considering the extensional complexity of CHORCH’s orchestration models, manual
completion of such process stubs may be far from practically doable.

In [33], Decker and Weske present Interaction Petri nets as interaction style
choreography language. In Interaction Petri nets, transitions represent a message
exchange between exactly two interaction partners. Places are used to represent
the pre-/postcondition of such message exchanges so that these places can be inter-
preted as capturing the progress of the interaction. Multi-party choreographies are
represented by assigning different roles to different transitions. In addition, Decker
and Weske present an algorithm for deriving projections for interaction partners and

256

7.2. B2Bi Choreography Representation

an algorithm for deciding upon local enforceability. In that regard, it is important
to note that the global choreography model of [33] models transitions (messaging
events) as if they were synchronous, but assumes asynchronous communication for
the interaction partner projections which leads to the same issues as discussed for
the interconnection-style Petri net choreographies above. The local enforceability
notion characterizes global models that do not suffer from such problems. In so
far, the above argument that CHORCH preserves the modeler from having to think
in such technical dimensions by ensuring the modeled control flow by means of
introducing additional control messages applies. Moreover, the algorithm for deriving
participant projections is of interest (when comparing with SeqMP models) which will
be discussed below. Furthermore, the arguments of lacking B2Bi domain concepts as
well as the derivation of implementation skeletons of participant behaviors instead of
fully executable processes (when compared to CHORCH bilateral choreographies)
applies again. These arguments also apply to [27], where Decker and Barros present
a similar choreography model called iBPMN based on BPMN 1.0. In particular, an
informal mapping to Interaction Petri nets is defined for leveraging the participant
projection algorithm. The concepts of iBPMN as choreography language itself have
been superseded by the BPMN 2.0 standard. Alternatively, iBPMN could be said
to have inspired choreography concepts of BPMN 2.0. As regards the suitability
of BPMN as B2Bi choreography notation, please see chapter 6. Finally, Decker et
al. point out in [28] again that the projection of global Interaction Petri nets to
participant behaviors may result in misbehaving interactions due to asynchronous
communication. In addition, they define a correctness criterion of Interaction Petri
nets by relating these to weakly terminating desynchronized nets where the desynchro-
nization of an Interaction Petri net results in a Petri net model that is similar to the
global choreography model in [214]. Moreover, Decker et al. propose three strategies
for resolving misbehaving interactions. These comprise defining priorities on messages
so that conflicting messages are locally reordered upon receipt, temporally allowing
for inconsistencies that then are resolved automatically, and negotiating about incon-
sistency resolution upon inconsistency detection. This is different from CHORCH
that introduces additional control messages in order to avoid inconsistencies. In that
regard, it is essential to note that these control messages are technical in nature and
do not affect business semantics because they just ensure a globally consistent order
of concurrent messaging events.

A further Petri net-based choreography approach is proposed by Lohmann and
Wolf in [99]. The difference to the above Petri net approaches is that Lohmann and
Wolf begin with the lifecycle of artifacts that are involved in a cross-organizational
workflow and not with the workflow itself. Examples for such artifacts are orders
or debits and Petri nets are used to define the lifecycle of these artifacts where
the Petri net transitions correspond to operations on the artifacts. This is in
line with approaches that formalize the behavior of objects or components such
as [233,241] and then analyze the interactions between objects/components. Lohmann
and Wolf focus on the composition of a global choreography from the artifact
Petri nets. These global choreographies then can be used as contract between

257

7. Related Work

the integration partners (where [99] does not elaborate on the implementation).
A global choreography as generated in [99] uses Petri net places to represent the
preconditions and postconditions of operations on artifacts. Petri net transitions are
correspondingly used to specify which integration partner is in charge of performing
a particular operation on a particular artifact. The difference to approaches such
as [35,212,214] with respect to the global choreography model is that the activities of
one particular integration partner are not automatically arranged in (imaginary) lanes
and that there is no distinction between message buffer places and local state places.
When compared to CHORCH, the above arguments about providing B2Bi domain
concepts, abstracting from low-level interaction semantics and automatically deriving
fully executable participant implementations apply. However, it is noteworthy that
Lohmann and Wolf consider the data perspective of interactions that is disregarded
in CHORCH choreographies. Checking CHORCH choreographies for consistency
with respect to the evolution of involved data objects is a desirable goal for future
extensions.

State Machine-Based Choreography Approaches Another well-known formalism
that is frequently used for representing choreographies are state machines, in particular
communicating state machines. A clear distinction between interconnection and
interaction style choreographies for state machine-based approaches is sometimes
hard to make (cf. [24,72,108]). In such approaches, the messaging behavior of each
interaction participant is represented as a separate communicating state machine.
A tuple of such state machines then can be interpreted as an interconnection style
choreography. In addition, a global state machine where each state represents an
overall state of the choreography progress (in essence a tuple of participant state
machines’ states) may be synthesized from the participant state machines which
would imply an interaction choreography. Therefore, the approaches below are not
categorized according to the interconnection-interaction dichotomy. Moreover, it is
worth noting that several approaches discussed in the introduction of this chapter
are based on state machines as well [235,236,241].

In [15], Benatallah et al. represent choreographies as protocol machines that are
composed from the state machines that represent the messaging behavior of individual
participants. The fact that a transition in the global protocol machine corresponds
to a send and a receive action in the local state machines implies the assumption of
synchronous communication. Furthermore, the fact that messaging actions in the
local models have polarity only, that means whether they represent a send or a receive
action, but no role association implies that bilateral interactions are focused on. In
so far, the choreography model represented by protocol machines as defined in [15] is
similar to the choreography model of CHORCH’s bilateral B2Bi choreography styles.
However, the purpose of the approach of Benatallah et al. is different. They focus on
issues such as compatibility and replaceability of interaction partners and not on the
streamlined implementation of B2Bi choreographies. In addition, they begin with the
local models of participants which corresponds to a bottom-up approach rather than a

258

7.2. B2Bi Choreography Representation

top-down approach. B2Bi domain concepts as provided by CHORCH are consistently
missing. Moreover, as the composition of state machines is performed for the purpose
of analyzing compatibility and replaceability, the abstraction level of these protocol
machines is lower than ebBP-Reg’s and ebBP-ST’s abstraction level. In [15], no
additional control messages are considered for enforcing the control flow defined by
global protocol machines. Finally, no mapping to an implementation language is
provided in [15]. Instead, the authors refer to [5] that contains a proposal for deriving
BPEL implementations from such protocol machines. The BPEL generation strategy
in [5] is limited in not providing fully executable BPEL processes (only stubs are
created) and in mapping the state machine structure to a BPEL flow element with
control links between the states. Hence, the mapping is limited to acyclic graphs.

In [72], Kazhamiakin and Pistore also provide a state machine-based choreography
approach that targets analysis instead of implementation. They create a kind of
state machine composition of multiple local state machine models in order to analyze
the compliance of interactions to a choreography model aligned with the WS-CDL
specification. As the purpose is analysis, the comparison to CHORCH’s features is
similar to the comparison between CHORCH and [15]. However, [72] explicitly aim
at multi-party interactions.

The lack of B2Bi domain concepts, missing abstraction from low-level interaction
issues as well as the derivation of implementation stubs (if any) instead of fully exe-
cutable processes also distinguish the following approaches from CHORCH. However,
it is noteworthy that all of these are aligned with analysis goals rather than with
implementation of B2Bi scenarios. In [232], Wieczorek et al. introduce the Message
Choreography Modeling Language (MCM) that represents bilateral interactions as
a global state machine. In order to support testing of MCM models, the authors
analyze the different views that interaction partners experience during the execution
of MCM models in case asynchronous communication across FIFO or non-FIFO
queues is applied. In [85], local enforceability and absence of inconsumable messages
are analyzed for the same communication model. Similarly, Bultan et al. analyze the
problem of realizability for a state machine based choreography model that allows
for multiple interaction partners in [24]. In addition, they coin the notion of syn-
chronizability that characterizes the model property that the set of possible message
exchange sequences between several communicating machines does not change if
asynchronous communication is used instead of synchronous communication. Finally,
McNeile claims to investigate the problem of realizability for synchronous and asyn-
chronous communication in [108]. Again, a global state machine model where the
transitions represent message exchanges between partners is taken as input for such
an analysis.

Additional Non-B2Bi Choreography Approaches The series of choreography mod-
eling approaches in this paragraph does not use a formalism such as state machines
or Petri nets as primary modeling formalism. Industry languages such as BPMN or
proprietary languages such as Let’s Dance [245] are used instead. It is interesting

259

7. Related Work

to note that this coincides with a different aim of these approaches which is more
about streamlining the implementation of choreographies than analysis of message
exchange sequences. However, none of the approaches in this section makes use of
a dedicated B2Bi choreography language which results in a lack of B2Bi domain
concepts. This particular fact will not be repeated when comparing the approaches
of this paragraph with CHORCH.

At first, a series of interconnection-based approaches will be discussed.
In [22], Bruno makes use of UML activity diagrams for modeling the behavior of
individual choreography participants and attaches send and receive events to the
activities of the corresponding diagrams. Several activity diagrams taken together
then make up an interconnection choreography. However, no notion of model validity
nor formalized execution semantics as CHORCH provides are given. In addition, a
mapping to BPEL is provided neither.
In [77], Kim models the message flow of ebBP BT patterns as interacting BPMN
1.0 collaborations. In so far, [77] competes with the BT execution model defined in
section 4.3. However, Kim neither defines a formalized execution semantics, nor a
validation based on model-checking, nor a mapping to BPEL as CHORCH does.
In [30], Decker et al. also model choreographies based on BPMN collaborations. A
restricted set of these BPMN collaborations then can be mapped to BPEL4Chor.
For the mapping of BPMN collaborations to the abstract BPEL processes that define
BPEL4Chor participant behaviors, Decker et al. suggest to make use of the algorithm
defined in [153]. The drawback of the translation strategy defined in [153] will be
discussed below. An extended treatment of the topic is provided by (almost) the
same authors in [32]. There, a detailed comparison to other choreography languages,
among others ebBP, is given. Apart from subsuming ebBP as bilateral choreography
format, which is wrong since the release of ebBP version 2 in 2006, the authors
claim to support more service interaction patterns. Indeed, this judgment is correct.
However, the requirements analysis of chapter 3 reveals that control flow for the type
of B2Bi systems targeted by CHORCH is rather simple and therefore this can be
considered to be a minor limitation. On the other hand, the more focused scope of
CHORCH allows for deriving fully executable BPEL processes that implement the
control flow of the respective partners whereas Decker et al. only provide abstract
BPEL processes. Moreover, Decker et al. do not provide simple rules for creating
valid models such as provided in chapter 6 nor do they define a formal execution
semantics.
Hettel et al. [56] derive BPMN collaborations using the so-called Semantic Object
Model (SOM) [41]. SOM is a methodology for systematically deriving the structural
and behavioral views on business processes. A business process model as derived
by SOM identifies the interacting roles, the dependencies between the activities
of the role behaviors and the message exchange relationships between roles. A
similar approach to [56] is presented in [164] where the emphasis on deriving BPMN
collaborations according to the SOM methodology is put more on the meta models
of the respective model representations. In that regard, it is interesting that Pütz
and Sinz [164] subsume BPMN collaborations rather as workflow model language

260

7.2. B2Bi Choreography Representation

than business process model language. Indeed, the number of low level specification
and modeling constructs such as WSDL interfaces in BPMN’s common executable
conformance sub-class [150, section 2.1.1] suggests a lower abstraction level than
typically applied for business process modeling. CHORCH does not address the
problem of systematically deriving business process models, but assumes that the
interaction partners already have a corresponding model (at least in their minds). In
so far, the integration of CHORCH with the SOM methodology similar to [56,164] is
an interesting area of future work. However, as CHORCH has a strong focus on the
interactions between integration partners, the derivation of BPMN choreographies
instead of BPMN collaborations is desirable.

In the next part of this paragraph, interaction style choreographies are discussed.
In [244], Zaha et al. use Let’s Dance as starting point for deriving participant
behavior implementations based on BPEL. A special focus is put on enforceability
of the overall choreography control flow by the interacting participant behaviors,
in particular in the face of asynchronous communication. This is similar to sev-
eral approaches above. As a consequence, the difference to CHORCH is that such
problems are not circumvented by leveraging technical control messages as done by
CHORCH. In addition, Zaha et al. define a mechanism for deriving BPEL skeletons
only whereas CHORCH provides fully executable BPEL processes.
Finally, Bultan and Fu [23] use UML collaboration diagrams for specifying service
conversations (which may be interpreted as choreographies). Again, they put the
focus on realizability of such a global choreography model if executed using asyn-
chronous communication. In so far, this approach again adopts a lower abstraction
level for the purpose of analysis than CHORCH does for the purpose of abstracting
implementation. In addition, Bultan and Fu do not provide a mapping to implemen-
tation artifacts at all.

B2Bi Choreography Approaches The discussion of approaches that target B2Bi
choreography modeling/specification starts out with [78], in which Kim uses UML
1.x activity and scenario diagrams to specify the control flow of B2Bi choreographies.
However, [78] provides neither a formalization of models, nor a notion of model
validity, nor a formalized execution semantics, nor a mapping to implementation
artifacts. On the other hand, Kim uses UML class diagrams for capturing the data
modeling perspective of collaborations which is not addressed by CHORCH.
In [67], Ilger and Zapletal transform UMM revision 12 collaborations into ebBP 1.1
models. This underlines that the integration of UMM and ebBP is highly desirable,
in particular for complex integration scenarios that require the alignment of data
modeling and control flow perspectives. However, as pointed out in chapter 6, the
representation of B2Bi choreographies in one single diagram was a major requirement
for the MCC project. As a consequence, BPMN choreographies have been selected
as visualization of CHORCH’s choreography styles. Apart from that, [67] do not
provide a formal model of B2Bi choreographies.
Huemer et al. show in [64] how UMM modeling can be supported by means of
so-called worksheets that capture UMM stereotypes and tagged values (for details,

261

7. Related Work

please see the UMM specification [208, 210]). These worksheets can then be used
to generate UMM models. In addition, an XML dialect for representing the layout
and content model of worksheets is proposed in order to support customizations. As
regards BPEL code generation, Huemer et al. refer to [61] which will be discussed in
the next section. However, model validity in terms of well-formedness rules as given
in chapter 6, formal execution semantics or a BPEL mapping for BCs and not only
BTs is not provided.

Structured Modeling Approaches This paragraph does not contain choreography
approaches, but process modeling approaches that are of particular interest in terms
of model validity. The authors of [26,76,165] advocate the use of structured modeling
of workflow processes, that means process models in which control flow nodes of
matching types occur in proper nestings. Structured modeling of processes is typically
applied in order to avoid misbehaving models that contain deadlocks or multiple
instances of the same activity. In addition, structured modeling allows for a rather
straight-forward mapping to block-structured languages such as BPEL2.
CHORCH does not require the modeler to specify choreographies in a block-structured
manner. While this complicates the mapping to implementation artifacts, it allows
for an almost unconstrained specification of control flow and hence promises a user-
friendlier way of choreography specification. This pays tribute to the CHORCH
principle of valuing user requirements higher than infrastructure concerns.

Related Work for SeqMP’s Information Deficit Analysis and Role Projection
Algorithm The previous paragraphs of this section focused on comparing approaches
to CHORCH’s bilateral choreography styles. SeqMP choreographies are different
because they are conceived as analysis framework and not as implementation contracts.
In what follows, approaches that are relevant for SeqMP’s information deficit analysis
and role projection algorithm are analyzed. This comprises selected approaches
already discussed above.

Generally speaking, SeqMP choreographies belong to the domain of business
process management. In this domain, research on developing implementations or
analyzing artifacts at the implementation level as presented in [84,91,168] is very
common. However, SeqMP is substantially different. SeqMP choreographies provide
a framework for analyzing multi-party choreographies at an abstract level. This study
hence neither strives for automatically solving the partial termination problem nor
for deriving implementations of the choreographies or of choreography projections.
The problems identified in section 4.6.2 are quite different from several problems
identified in related choreography research. In reports such as [24,28,85,244], problems
like enforceability or realizability are researched. The corresponding approaches have
in common that the atomic building blocks of choreographies are single message
exchanges and it is then researched whether or not the message sequences in the
choreographies can be enforced by the local role-specific projections of interaction

2BPEL is predominately block-structured because only acyclic control flow graphs are allowed for.

262

7.2. B2Bi Choreography Representation

partners, and whether or not the sequence of message exchanges is the same for
synchronous or asynchronous communication. For SeqMP choreographies, these
problems are not relevant. By using BCAs instead of single message exchanges,
it is ensured that the state of integration partners is aligned at the end of each
BCA (cf. [160, 190]). BCAs are performed using corresponding protocol machines
that ensure alignment and therefore are not comparable to single messages in some
communication buffer that may cause diverging states or deadlocks. Moreover, due
to the Subsequent role participation condition, valid SeqMPs do not suffer from a
local enforceability problem. To the best of my knowledge, partial termination as
defined in section 4.6.2 has first been identified as multi-party choreography problem
in [189].
However, deriving role projections of multi-party interactions has been a research
topic for a long time. For example, the Public-to-Private approach of van der Aalst
and Weske [214] (cf. above) dissects Petri Nets that contain role specific behavior.
However, communication between participants is modeled as send - and receive-
transitions that already are associated with roles. This corresponds to dissecting
interconnection style choreographies and is representative for other interconnection
style choreographies. However, SeqMP choreographies raise the problem of deriving
role projections from interaction style choreographies. At first sight, the proposal for
deriving role projections of Let’s Dance models as described in [244] is comparable
to that problem. However, Let’s Dance applies a block-structured approach for
modeling loops which is different from the class of SeqMP models with arbitrary
loops. In [33], so-called Interaction Petri nets that enable multi-party interactions by
modeling binary message exchanges as transitions of Petri nets, are analyzed. The
model of [33] therefore can be considered to be comparable for the role projection
problem of the work at hand and an algorithm for calculating role projections is
presented as well. However, the solution in [33] is defined for Petri Nets and therefore
the algorithm is not directly amenable to SeqMP models. Furthermore, the algorithm
in [33] introduces duplicate transitions for flattening parallelism. However, transitions
correspond to message exchanges in [33] and to BCAs for SeqMP. The business
semantics of duplicate message exchanges (or duplicate BCAs for SeqMP) is not
clear, though.
Apart from that, interesting choreography work has been presented in [59] where
so-called local choreographies are used to model the sequence of interactions of one
integration partner in multiple global choreographies. The perspective is different
from the work at hand by focusing on a partner that participates in more than one
choreography. The participants of the respective choreographies, in turn, may only
know the focal integration partner. A typical scenario for that type of integration is
a manufacturer that employs a sub-contractor producing parts of a product without
the customer knowing the sub-contractor. While there may be valid reasons for not
revealing the interactions with a particular business partner to different business
partners, the type of integration in [59] leaves out the opportunity to perform analyses
like escalation set computation that rely on a global view on choreographies.

263

7. Related Work

7.3. Implementation of B2Bi Choreographies

In this section, the emphasis is put on related work that makes use of interacting pro-
cesses for implementing choreography descriptions. This is the approach of CHORCH,
too. In that regard, the most important category is the translation of choreographies
into orchestrations. As CHORCH’s choreography styles are graph-structured and
BPEL is predominately block-structured, the first paragraph is dedicated to the
translation of graph based control flow definitions into block structured definitions.
Thereafter, approaches concerned with deriving orchestrations from non-B2Bi chore-
ographies and B2Bi choreographies, respectively, are discussed. Finally, selected
approaches that leverage significantly different execution concepts are compared to
CHORCH.

Translation of Graph Structures into Block Structures In the last section, struc-
tured modeling of process definitions is identified as one way to smooth out the
derivation of implementation artifacts from these process definitions. The basic idea
is that matching control flow nodes of graphs are arranged in proper nestings so
that each pair of control flow nodes delineates a block of control flow. If properly
nested, the delineating control flow nodes are the only way to enter or leave the
respective block. Hence, such blocks can be folded or represented by the constructs
of a block-structured language. For a more detailed overview on block-structured
modeling, see [76]. In [97], Liu and Kumar identify a series of unstructured process
types (or graphs) that can be (or not) converted into structured ones. However, it
turns out that not all unstructured graphs can be transformed into structured graphs.
In particular, graphs that contain irreducible loops cannot be turned into block-
structured languages by just folding control flow blocks (cf. section 2.2). In [111],
Mendling et al. try to identify a taxonomy of translation concepts for turning graphs
into block-structured language representations and vice versa. However, the strategy
applied for translating ebBP-Reg into BPEL (cf. section 5.3) is not identified in [111].
The ebBP-Reg translation strategy emulates a state machine at the BPEL process
level by means of a global while loop in which the current state is selected using
a switch (which will be called the state machine controller strategy from now on)
on the one hand and combines this with a threading-like execution strategy for the
purpose of process decomposition. In addition, the taxonomy of Mendling et al. is
incomplete in leaving out the translation strategy of Hauser and Koehler which will
be presented next.

Hauser and Koehler present in [55, 80] an approach for automatically deriving
BPEL code from arbitrary graphs that is based on a goto elimination algorithm
provided by Ammarguellat [2]. Hauser and Koehler also identify the state machine
controller strategy, but refuse to use it for two reasons. On the one hand, Hauser
and Koehler are concerned about the performance impact implied by having to check
the current node in each iteration of the global while loop used for implementing the
state machine controller strategy. This is of minor concern for CHORCH because

264

7.3. Implementation of B2Bi Choreographies

B2Bi choreographies typically are not very large and state switches typically occur
every few hours (when BTs terminate). In such a scenario, the linear time complexity
of having to check n/2 guards on average per state machine controller iteration is
negligible. In addition, the computing power consumed for checking a simple state
variable typically is orders of magnitude lower than the computing power consumed
for serializing or deserializing XML messages that are exchanged by business service
interfaces. So, checking the current state of a choreography is not the bottleneck of
B2Bi choreography implementations. The second reason based on which Hauser and
Koehler reject the state machine controller strategy is that process structure is not
visible in BPEL processes. However, the comprehensibility of fully executable BPEL
processes is pretty limited anyway so that adequate visualization strategies have to
be applied. Moreover, the goto elimination method proposed by Hauser and Koehler
encodes part of the control flow in boolean flags which may become very complicated
if irreducible loops are supposed to be translated. In so far, the readability of these
BPEL representations is limited as well.

In [250], Zhao (and Hauser) et al. combine the mentioned goto elimination
algorithm and the state machine controller strategy. For irreducible parts of a
graph the state machine controller strategy is used whereas the goto elimination
algorithm is used for the remaining graph. It is vital to note that the work presented
in [55,80,250] is not about translating a choreography into interacting processes, but
about turning a control flow description into its corresponding implementation. In so
far, a BT execution protocol or coordination protocols for synchronizing control flow
as offered by CHORCH are not in the scope of these contributions. Moreover, the
rather general setting of these approaches does not allow for deriving fully executable
BPEL process definitions as CHORCH does. These arguments also hold true for the
remaining approaches of this paragraph and therefore will not be repeated.

In [151], Ouyang et al. propose the translation of arbitrary graphs into BPEL
based on so-called local partnerLinks. A BPEL process sends a message to itself
via such a local partnerLink. Then, defining BPEL event handlers that pass on
control flow among each other by means of sending messages via local partnerLinks
allows for encoding arbitrary graphs. The drawback of this approach is that local
partnerLinks are not supported by all contemporary BPEL engines. Moreover,
the strategy of Ouyang et al. requires sending a SOAP message from the BPEL
process to itself every time a transition of the underlying graph has to be fired.
The performance impact of passing a message through the Web Services stack is
typically significantly higher than checking a global state variable as required for
the state machine controller strategy. So, if the performance concern of Hauser
and Koehler [55, 80] is of any relevance then the strategy in [151] is not a viable
way for deriving BPEL implementations of graph-based process definitions. Finally,
a local partnerLink as defined in [151] does not comply with the BPEL standard
because it is used for incoming and outgoing BPEL messaging activities alike. This
is not admissible because the local partnerLink definition in [151] uses the myRole

attribute to identify the portType in the corresponding WSDL file. This should be
done via the partnerRole attribute for outgoing messaging activities according to

265

7. Related Work

the BPEL standard. However, this problem can easily be circumvented by defining
two partnerLinks.

Another strategy for translating graph-based process structures is trying to identify
foldable blocks within graphs. Lassen and van der Aalst [92] use this strategy to
translate Workflow nets (a Petri net dialect) into BPEL and try to identify components
in the Petri net that can be implemented using BPEL sequence, switch3, pick,
while or flow components. In case the input graph contains irreducible fragments,
these are suggested to be translated manually. Eshuis and Grefen apply a similar
strategy in [40] but rule out irreducible graphs as input for their algorithm. Better
readability is said to be the benefit of identifying control flow blocks in graphs and
representing these by corresponding elements in block-structured languages. However,
as discussed above, the size of executable BPEL process definitions severely impedes
readability so that adequate visualization strategies have to be provided anyway. So,
if really needed, this feature still could be added to BPEL implementations that have
been derived from B2Bi choreographies according to the CHORCH approach.

There are more approaches that target the translation of graphs into block-
structured languages that leverage similar ideas as [92] or [151]. In [215], van
der Aalst and Lassen provide exactly the same algorithm as in [92], but embed the
strategy in a larger context. Other approaches provide optimizations by incorporating
the local partnerLink strategy for irreducible components within a block folding
algorithm or by providing a block identification algorithm that produces the same
result independent of the order of applying folding rules [152–154,217].

Finally, note that the mapping of graphs to a BPEL flow element with links

between the individual branches (as proposed in several approaches) is very limited
because such BPEL structures must not contain cycles [137, section 11.6.1].

Translation of Non-B2Bi Choreography Languages The most important non-
B2Bi choreography language that is a frequent input for deriving interacting processes
is WS-CDL. The advantage of using WS-CDL is that control flow definition is basi-
cally block-structured. In that regard, the translation of WS-CDL is less demanding
than translating ebBP choreographies. On the other hand, some special constructs
such as silent actions make the translation particularly challenging. To the best of
my knowledge there is no approach that produces fully executable BPEL processes
from WS-CDL. For example, Mendling and Hafner [110] create interacting BPEL
skeletons from WS-CDL specifications. Weber et al. claim in [230] to provide a
mapping of WS-CDL to fully executable BPEL processes. However, this approach
relies on looking up implementation artifacts (BPEL snippets and WSDL definitions)
from a knowledge base. This is an integral part of the translation strategy and hence
fully executable BPEL processes are not derived from a WS-CDL definition alone.
This is different from CHORCH’s approach for translating ebBP choreographies
that achieves executability by means of leveraging standard interfaces for consuming
business logic. In addition, the work of Weber et al. is similar to CHORCH in

3Although the switch element has been removed from BPEL version 2, it can be easily emulated.

266

7.3. Implementation of B2Bi Choreographies

defining BPEL processes that integrate cross-organizational message exchanges with
local business applications. This resembles the concept of control processes. However,
CHORCH systematically derives control processes based on the information given in
ebBP specifications and hence ensures strict conformance of control processes to the
given choreographies. Conversely, Weber et al. use patterns looked up from some
knowledge base which does not ensure conformance. In [102], Madiesh and Wirtz
propose a development model for deriving abstract BPEL processes from WS-CDL
that incorporates compatibility (between interacting BPEL processes) and confor-
mance (of BPEL processes to WS-CDL) checking phases. However, they also rely on
manual completion of the generated BPEL processes. Some additional approaches
focus on introducing QoS properties into WS-CDL choreographies. The WS-CDL-
to-BPEL approach of [102] is proposed to be extended with security annotations
by Madiesh and Wirtz in [103]. This is somewhat similar to the specification of
security requirements in ebBP BT configurations. The difference is that Madiesh
and Wirtz specify security requirements in terms of implementation primitives such
as “usernameToken, signature and encrypt” [103] whereas ebBP BT configurations
contain intentional security goals such as authentication or confidentiality. This
difference reflects the slightly differing abstraction layers of ebBP and WS-CDL.
ebBP is semantically close to business process models whereas WS-CDL is closer to
orchestration models. Furthermore, Madiesh and Wirtz use a proprietary format
for specifying choreography security requirements which impedes applicability in
practice to some extent. Rosenberg et al. [169] also extend WS-CDL with QoS
attributes. However, the set of QoS attributes they support targets performance
metrics which is fundamentally different from the QoS attributes contained in ebBP
BT configurations. This is also reflected in the style of QoS attribute processing. The
performance attributes of [169] typically are monitored for particular services which
may result in replacing these services (using approaches like [118]). Conversely, the
security and reliability attributes of ebBP BT configurations are rather implemented
for the corresponding services (cf. appendix C). Finally, it is worth noting that none
of the above WS-CDL approaches comes up with a formalization of choreography
models, formalized execution semantics or the definition of validity criteria that
ensure executability of models. Admittedly, as the control flow definition primitives
of WS-CDL are more constrained than ebBP primitives the need for formalization is
less pressing for WS-CDL.

Beyond WS-CDL, BPEL4Chor and Let’s Dance have been used for deriving
interacting BPEL processes. For the discussion of the corresponding approaches
[32,244] please see the previous section.

Approaches Dedicated to B2Bi Scenario Execution This paragraph is dedicated
to approaches that use dedicated B2Bi artifacts as input for deriving interacting
BSIs.

In [36], Dogac et al. report on one of the first ebXML execution frameworks. The
B2Bi server of [36] takes ebBP version 1.x and CPPA definitions as input and per-

267

7. Related Work

forms these using ebMS version 1. However, the approach is rather informal compared
to CHORCH. There is no definition of process-based choreography implementations
using orchestration definitions or anything similar. Hence, a lever for checking the
conformance of the BSI implementations to the choreography definition is missing.
The formalization of choreography models, a formalized execution semantics or a
characterization of model validity is consistently missing as well. Architecture-wise,
Dogac et al. also propagate the isolation of the control flow logic from the business
logic, but they do not provide standard interfaces that enable a clean separation as
CHORCH does.

Khalaf presents an approach for implementing RosettaNet PIPs based on inter-
acting BPEL processes in [74,75]. As PIP definitions resemble ebBP BT definitions
very closely (RosettaNet even provides ebBP representations for several PIPs), this
work is highly relevant for the ebBP execution model of section 4.3 and the corre-
sponding implementation in section 5.2. However, Khalaf actually does not provide
an abstract execution model with formalized execution semantics. Moreover, she
does not validate assumptions about the QoS properties provided by a Web Services-
based communication channel as CHORCH does. Instead, she proposes to start
out with BPEL templates (underspecified abstract BPEL processes) that capture
the synchronous/asynchronous and One-Action/Two-Action distinction of PIPs (cf.
RNIF [170]). As RosettaNet decided (after Khalaf’s papers) to implement no new
Two-Action PIPs and has converted existing Two-Action PIPs into corresponding
One-Action PIPs, the One-Action/Two-Action distinction is obsolete today. The
integration partners are supposed to create fully specified abstract BPEL processes
as refinements of the BPEL templates corresponding to the PIP configuration pa-
rameters (almost identical to BT configuration parameters). Finally, executable
BPEL processes are supposed to be created. This approach of starting out with
interacting BPEL templates is different from CHORCH in not providing an abstract
representation of a BT as CHORCH does. Yet, such an abstract representation facil-
itates communication about the interaction requirements. In addition, CHORCH’s
execution model provides a lever for deriving fully compliant BPEL processes. As the
soundness of the execution model has been validated by means of model checking (cf.
appendix D), compatibility between the interacting BPEL processes of CHORCH
BT implementations can be taken for granted. Khalaf also identifies the problem of
process compatibility and suggests corresponding analysis, but she does not perform
the analysis. Furthermore, Khalaf’s approach is highly manual whereas CHORCH
proposes an automatic translation procedure. Finally, Khalaf also proposes to define
an interface for integrating the interacting BPEL processes with business applications.
However, she does not come up with a clean interface proposal except for mirroring
the WSDL interfaces that the BPEL processes use for cross-organizational communi-
cation. Simply mirroring these interfaces leaves out the potential of enhancing BSI
facilities with cancellation features as CHORCH does.

In [79], Huemer and Kim propose a model-driven process for creating BPEL
orchestrations from ebBP BTs and BCs. Furthermore, they provide some guidelines
for the BPEL mappings. However, the mapping for the BT requester and BT

268

7.3. Implementation of B2Bi Choreographies

responder roles is rather simple as RAs and AAs are not considered. For the mapping
of BCs, they suggest the use of BPEL’s flow construct together with control links
that reflect the respective BC’s graph structure. Hence, this mapping is limited to
acyclic processes. Furthermore, they do not provide formalized choreography models,
formalized execution semantics or a characterization of model validity. Architecture-
wise, the work of Huemer and Kim constitutes an early precursor of the integration
architecture proposed by CHORCH. The modularization of BPEL processes according
to the nesting hierarchy of ebBP BCs is suggested as well as the separation of control
flow logic from business logic. However, the architecture is not fully worked out as
has been done in CHORCH later on.

In [61], Hofreiter et al. present an approach for mapping UMM BTs to BPEL.
The concept is similar to CHORCH’s translation of ebBP BTs into interacting BPEL
processes. CHORCH’s proposal outperforms the approach in [61] in terms of a
thorough analysis of available Web Services QoS features and in offering a formalized,
model-checked execution model together with a corresponding formal execution
semantics. Furthermore, the CHORCH BT execution model allows the backend
systems to cancel a running BT unless the BT is just coordinating upon transaction
success. Finally, the model of Hofreiter et al. depends on timing for determining
transaction success. The sender of the last business signal determines success after
having waited until the latest valid point in time for sending the signal has been
reached. In between, the opposite party still may send an exception that implies
failure of the transaction. However, as there are no strict assumptions about the
communication channel, this exception message may be delayed. Hence, the two
interacting parties may end up in different states. Admittedly, this is an unlikely,
but nonetheless possible, scenario.

Finally, the work presented in [59] that has been discussed as part of the previous
section is of relevance for this paragraph.

Alternative Execution Concepts This paragraph contains approaches that provide
alternatives to particular aspects of CHORCH’s choreography execution concept.

A central XML hub instead of interacting BPEL processes as implementation of
a B2Bi choreography is proposed by Trappey et al. in [206]. Such an approach
simplifies the derivation of choreography implementations because a central entity
controls the progress of the interactions and hence state alignment is not as critical.
Yet, Trappey et al. do not define any kind of process-based implementation of B2Bi
choreographies. So, a major drawback of the approach in [206] is the missing lever
for ensuring compliance of the implementation with the corresponding choreography.
Moreover, a central entity that executes a B2Bi choreography is not an option in
many real-world settings because no central IT infrastructure is available or even
wanted. This is reflected by B2Bi community deliverables such as RNIF [170] and
by the B2Bi approaches discussed above. Eshuis et al. also provide a central hub for
animating ebXML transactions [39]. The focus of this approach is put on simulation
rather than production level execution of B2Bi choreographies and hence is not really

269

7. Related Work

comparable to CHORCH. Technically speaking, the solution of Eshuis et al. may
be extensible to a full-fledged execution framework. Organizationally speaking, the
inappropriateness of central IT infrastructure disallows this direction.

Several other approaches target the implementation of classical transaction pro-
tocols for ensuring consistency between integration partners [82, 83, 96]. This is
different from CHORCH’s concept for synchronizing the state of BT requesters and
BT responders. The BT execution concept relies on the combination of reliable
messaging, synchronous communication and an application level message exchange
protocol for ensuring consistency. All message types of the BT execution model
already are available in the B2Bi domain which fosters compatibility with existing
implementations. Applying a transaction protocol to a BT execution that consists of
several application messages without modifying the set of application level messages
may be doable (a similar concept has been proposed in preliminary work [185]).
Therefore, the SOAP level messages exchanges would have to adjusted and the WS-
Coordination [141] and WS-BusinessActivity [140] standards provide functionality
for that. However, the large variety of business application products used in B2Bi
scenarios bears the risk of producing an interoperability nightmare if this approach
was followed. Instead, the strategy of completing and correcting existing BT ex-
change procedures and enhancing these with reliability features that are applied per
application message transmission and do not span several application messages was
followed for CHORCH.

Finally, Singh introduces Local State Transfer (LoST) in [202] as execution frame-
work for BSPL choreographies (introduced in section 2.3). LoST is significantly
different from all the above execution approaches that leverage a rather imperative
style of control flow definition. Conversely, LoST proxies accept messages of com-
munication partners or of business applications depending on the locally available
parameter values that are defined as BSPL message components. For example,
if the value of an in-parameter of a message to be transmitted on behalf of the
business application was missing in the LoST adapter, then the LoST adapter would
throw an error because the in adornment requires that the parameter must be
available beforehand. Essentially, LoST adapters enforce BSPL protocols rather
than executing them. Business applications and communication partners drive the
protocol by submitting messages. In such a scenario, it would be interesting to
see how timeout management similar to event-based choices is performed. For the
communication channel in use, Singh makes the assumption that any message will
eventually be delivered which could be implemented using a lower-level protocol.
This could result in duplicate application level messages but as parameter values are
bound only once, duplicate message transmissions do not do any harm. All in all,
LoST is interesting because it respects the characteristics of distributed systems very
closely, that means a protocol can only progress if the relevant parameters have been
communicated beforehand. Hence, progress cannot be made without having sent a
message. However, it also requires that this distributed system property becomes
somewhat evident in the protocol definition. This, in turn, requires the protocol
designer to configure the message parameter dependencies correctly. Whether or

270

7.4. Multi-Layer Approaches

not this is easier than specifying the control flow of B2Bi interactions directly in
terms of imperative processes is still to be investigated. For CHORCH, the strategy
was taken to provide choreography modelers with concepts they already know and
then to implement it on available IT infrastructure even if this may result in more
complicated implementation constructs than those leveraged for LoST.

7.4. Multi-Layer Approaches

This section discusses approaches that are relevant throughout several layers of the
CHORCH approach.

In [20], Bianchini et al. present the from process to services (P2S) approach for
turning their BPMN collaborations-based model of an interorganizational system
into Web Services in several steps. Therefore, a data dependency and control flow
graph derived from a BPMN model have to be semantically annotated and then
heuristics are used to identify candidate composite services for implementing the
BPMN activities. Metrics like coupling and cohesion are used to evaluate the derived
service design. The work of Bianchini et al. (and similar approaches) is different from
CHORCH in leveraging semantic technologies for service identification and design.
The derivation of implementation artifacts such that compliance to choreography
models or compatibility between interacting processes is ensured is of minor concern.
The implementation of coordination protocols is consistently not elaborated.

In [10], Barros et al. propose an approach for Multi-staged and Multi-viewpoint
Service Choreography Modelling. Role-based, milestone-based, and scenario-based
views on choreographies are provided in [10]. The role-based view is used to capture the
relationships between roles leaving out the control flow perspective. This corresponds
to the information typically contained in BPMN conversation diagrams. Then the
authors suggest to define so-called milestones to represent the major states of the
choreography while leaving out the details of necessary message exchanges that are
needed for reaching these milestones. In an additional step, these details can be
completed. In so far, the work of Barros et al. reflects the concept of ebBP-ST
choreographies where shared states represent the progress of choreographies and BTs
and BCs are executed to reach these. The approach in [10] also significantly resembles
a precursor of ebBP-ST that I have published in [186] one year before [10]. In [186],
so-called micro-choreographies are used to abstract from the message exchanges that
are necessary for reaching shared states (milestones). However, BPMN conversation
style diagrams for capturing role relationships from a static point of view are not
part of [186].

In [204], Telang and Singh use so-called commitment-based modeling to capture
the business model of PIP patterns (and hence ebBP/UMM transaction patterns).
A commitment characterizes an obligation that some role commits to some other
role if some precondition becomes true. For example, the exchange of a quote
request can be used to establish the commitment of a seller to provide some product
if the customer provides the payment. Furthermore, the creation of additional

271

7. Related Work

commitments can be the obligation of a commitment as well. Modeling commitments
and relationships between commitments allows for modeling the value exchange
relationships between multiple roles. For example, a seller may offer the obligation to
request shipping from a shipping provider if the customer sells the goods. It is vital
to note that Telang and Singh do not define an operational model for exchanging the
messages that establish commitments. Instead, they just capture the value exchange
relationships between roles so that their approach is relevant for business modeling
and not for business process modeling. Consistent with that, Telang and Singh
present in [205] an approach for checking the implementation of a business model as
defined in [204]. They use UML sequence diagrams for specifying operationalizations
of business models and NuSMV for checking compliance of the operationalizations
to the business models. This clearly shows that commitment-based modeling of BTs
is a complementary approach to CHORCH and it would be interesting to investigate
the integration of commitment-based modeling with CHORCH.

In [86], Kramler et al. also propose to capture the business model of interactions
first. Although they focus on Web Services collaborations in general, their approach is
highly relevant for B2Bi as well. Kramler et al. propose to first capture the business
model of interactions using UML 2 collaboration diagrams which is somewhat similar
to the work of Telang and Singh which has been developed some years later. Then,
Kramler et al. define an operational refinement of the business model using UML
activity diagrams. Finally, the implementation of these activity diagrams is to be
specified using UML scenario diagrams. The last two types of models of [86] are
similar to deriving BPEL implementations of B2Bi choreographies as CHORCH
does. However, Kramler et al. do not define mappings for this transition, nor do
they provide a formalization of models, a characterization of validity or a formalized
execution semantics. Furthermore, there is no obvious way how the approach in [86]
could be used to derive fully executable BPEL processes. On the other hand, Kramler
et al. outline the modeling of the data perspective of interactions and a concept
for capturing the business model of choreographies which is not in the scope of
CHORCH.

In [63], Huemer et al. propose the Business Semantics on top of process technology
(BSopt) approach that is similar to [86] in advocating the integration of B2Bi models
throughout several abstraction layers. In contrast to [86], Huemer et al. rely on UMM
for capturing B2Bi choreographies which bears the promise of wider adoption by the
B2Bi community because UMM provides B2Bi domain concepts and is promoted by
UN/CEFACT. Huemer et al. also provide a concept for business modeling as well
as a data perspective on B2Bi choreographies which is not part of CHORCH. The
content in [63] is rather an overview of the BSopt approach so that a comparison with
this thesis is difficult. However, all known contributions of the authors have been
discussed above. The distinctive features of CHORCH are a thorough investigation of
the message channel qualities that can be assumed for Web Services communication,
a validation of the BT implementation based on model checking, a mapping for
BC collaborations and not only for BTs as well as the formalization of models and
execution semantics together with the characterization of model validity.

272

7.4. Multi-Layer Approaches

Finally, the PhD thesis of Marco Zapletal [247]4 has significant overlap with this
study. Firstly, Zapletal defines a state machine based execution model for UMM BTs.
As UMM and ebBP BTs are almost identical, his execution model is directly relevant
to the execution model defined in section 4.3. The most important differences to
CHORCH are the following. CHORCH provides a formalized execution semantics
that is aligned with the communication qualities of Web Services technology. Fur-
thermore, the execution model of CHORCH has been validated by means of model
checking which guarantees that the interaction partners always produce consistent
outcomes, that means either both partners (eventually) result in a success state or in
a failure state. In addition, CHORCH’s execution model allows for canceling running
BTs whereas the execution model in [247] does not. Occasionally, the execution
model in [247] may produce inconsistent outcomes. Consider the exemplary notifier
state machine in [247]. The notifier determines success some time after having sent
the last business signal (called processing acknowledgment which corresponds the
acceptance acknowledgment of ebBP BTs). Therefore, the timeout value for sending
the processing acknowledgment is added to the time of receipt of the last business doc-
ument. When this deadline has been reached, the notifier state machine determines
success. “Until this time the notifiee - as the responder within the transaction - may
still signal a time-out exception or a failed business control” [247]. However, such a
failed business control message may be delayed and the notifier may determine success
before the message has been received. According to the state machine definitions, the
notifiee would then end up in a failure state nonetheless so that both partners would
fail on agreeing on the BT outcome. It is vital to note that this does by no means
render the contribution of Zapletal useless because the probability of having such
an error sequence is not very high for well-behaving systems. In the end, the user
must decide whether having inconsistent outcomes in rare cases is acceptable or not.
Architecture-wise, the state machines of Zapletal correspond to CHORCH’s control
processes and hence also facilitate separation of control flow logic from business logic.
In contrast to [247], however, CHORCH also takes this concept to the level of BCs
and defines mapping rules for creating higher-level control processes. In addition,
CHORCH provides formal definitions of B2Bi choreographies, their formal execution
semantics and a characterization of valid models. On the other hand, the work of
Zapletal also comprises an approach for business modeling and the data perspective
of B2Bi choreographies. So, in practice, users may want to combine the strengths of
both approaches which would essentially result in an integration of CHORCH with
UMM.

To summarize, the discussion of this chapter shows that the CHORCH approach is
different from existing work in combining the strengths of dedicated B2Bi approach-
es/languages with formal rigor. While existing formal approaches to choreography
specification and execution lack B2Bi domain concepts, existing B2Bi approaches
and languages lack formal underpinning. CHORCH provides the B2Bi choreography

4The contents of [65,246] are reflected in his thesis and are therefore not discussed separately.

273

7. Related Work

modeler with the domain concepts she is used to and defines unambiguous formal
semantics as well as validity notions on top. Based on CHORCH’s B2Bi choreography
model, execution and analysis support is provided that goes beyond existing ap-
proaches. In addition, a tool-chain is defined that allows for precise semantics of even
abstract visual B2Bi choreographies that subsequently can be enriched with technical
parameters and finally be turned into services-based orchestrations without violating
compliance with the initial control flow agreement. Throughout all abstraction levels
under consideration, only international standard languages and formats are used for
specification and implementation. All these facts taken together make CHORCH
unique with respect to the current scientific landscape.

The next chapter gives a more detailed summary of this thesis.

274

8. Conclusion and Future Work

The overall research question of this thesis postulated in section 1.2 asks for“how B2Bi
choreographies can be used as implementation contracts for services orchestration
based B2Bi systems?” This question then has been split up into the three more
manageable questions that have been elaborated on mainly in chapters 3, 4, 5 and
6. In what follows the contributions made by this thesis during working out the
respective research questions are presented (see also section 1.3):

• RQ 1.1 What is a suitable B2Bi choreography language? The rough
scope for answering this question is given by the type of B2Bi systems that
this thesis is dedicated to as outlined in section 1.1. In chapter 3, the core
requirements for B2Bi choreography languages are discussed and some initial
design choices such as the usage of ebBP as choreography specification language
and BPEL as orchestration language are discussed. Building upon these require-
ments, chapter 4 presents this thesis’ proposal for a suitable B2Bi choreography
language that is based on the ebBP standard. The ebBP standard constitutes
an implementation technology agnostic choreography format that offers B2Bi
domain concepts. This thesis then amends the ebBP concepts where necessary
and defines ebBP-ST, ebBP-Reg and SeqMP as distinct B2Bi choreography
styles that address conflicting requirements of chapter 3. The most important
amendment of ebBP is the definition of the BT execution model together with
formalized execution semantics described in section 4.3. Formalized execution
semantics also are given for the identified B2Bi choreography styles. Further-
more, validity criteria for the choreography styles are defined that ensure either
translatability into BPEL based implementations according to the definitions
of chapter 5 and appendix B (ebBP-Reg, ebBP-ST) or amenability to analysis
using the framework defined in section 4.6 (SeqMP).

The core contribution of this thesis concerning choreography definition is
twofold: Firstly, a formal operational execution semantics is defined for ebBP
models that covers BTs as much as BCs. Such a semantics has not been
available so far. Secondly, the identified B2Bi choreography styles allow for
almost unconstrained definition of control flow between the BTs and BCs of a
choreography. The basis for this is using state machines as underlying control
flow definition paradigm. The applicability of this rather simple paradigm is
backed up by the requirements definition of chapter 3 that reveals the coverage
of the overwhelming majority of targeted B2Bi scenarios by the identified
choreography styles. This is different from other choreography approaches that
either constrain the available control flow primitives significantly, for example,

275

8. Conclusion and Future Work

require block-structuredness, or focus on control flow primitives that are of
minor importance to the B2Bi domain.

• RQ 1.2 To what extent and how can services orchestrations be used
to implement valid B2Bi choreographies? Again the rough scope for
this question as well as the relevant requirements are given in section 1.1
and chapter 3. Furthermore, the B2Bi choreography styles given in chapter
4 define the “valid B2Bi choreographies” to be implemented using services
orchestrations. Based on the integration architecture described in section 4.2,
chapter 5 describes how Web Services and BPEL technology can be used for the
implementation of B2Bi choreographies. In particular, the mapping rules for
deriving BPEL processes from ebBP-Reg as the more demanding binary B2Bi
choreography style are given (a mapping algorithm for ebBP-ST developed
during a diploma thesis project is given in appendix B). There is no mapping
for SeqMP choreographies because this multi-party choreography style is not
supposed to serve as implementation contract, but rather for the purpose of
analyzing synchronization deficits in advanced multi-party scenarios.

The focus of the choreography implementation described in chapter 5 is put on
supporting the identified B2Bi choreography styles while leveraging dedicated
interoperability technologies like Web Services and BPEL as well as an integra-
tion architecture based on control processes. Therefore, the contribution of this
thesis in that regard is not outperforming established B2Bi systems in terms
of traditional communication qualities such as throughput, but the following:

Firstly, the integration architecture based on control processes separates the
control flow logic from the application logic of B2Bi choreography implementa-
tions. This allows for the derivation of fully executable BPEL processes that
govern the cross-organizational message exchanges while importing business
logic from business applications when needed. Furthermore, the integration
architecture is organized in a modular manner that reflects the hierarchical
organization of ebBP choreographies. This conceptually enables leveraging
established B2Bi communication protocols such as AS2 for selected business
document exchanges by wrapping the corresponding messaging subsystems
using Web Services technology.

Secondly, the mapping from ebBP to BPEL is unique in allowing for irreducible
loops within the choreography input graphs and in producing fully executable
BPEL process definitions (cf. chapter 7).

Thirdly, the implementation strategy for B2Bi choreographies combines syn-
chronous and asynchronous coordination (cf. section 2.1) in an innovative way
where messages are transmitted synchronously and the processing of messages
is performed asynchronously. In this regard, it is worth noting that the avail-
ability of advanced security goals such as mutual authentication as well as
reliability is analyzed for Web Services technology. The availability of these

276

communication qualities on the transport channel obviates the need for incor-
porating intricate security and reliability mechanisms at the application level.
Taken together, synchronous communication and the availability of relevant
security and reliability on the transport channel greatly simplify the design
of the given interaction procedures that guarantee consistent results of B2Bi
choreography executions across integration partners. This is different from
other approaches that assume either asynchronous communication or do not
check the available communication qualities of the selected communication
technology at all. Frequently, the problems of realizing B2Bi security and
reliability goals are just ignored in those approaches. Finally, it is vital to note
that technical control messages are used to serialize concurrent requests for BT
executions. This enables the use of control flow structures that are forbidden
in other approaches (cf. chapter 7).

• RQ 1.3 How can B2Bi choreographies be visualized? The answer to
this question builds upon the results of chapter 4 and defines an abstract
visual notation for CHORCH’s B2Bi choreography styles based on the BPMN
choreography notation. In order to adapt BPMN choreographies to B2Bi
choreography modeling, the semantics and labeling rules for several BPMN
constructs are changed. In addition, a significant set of BPMN constructs
not needed for representing B2Bi choreographies is forbidden. It is vital to
note that no new modeling symbols are introduced which allows for leveraging
standard tools for modeling CHORCH’s B2Bi choreography styles in BPMN.

The contribution of this thesis in that regard is defining a kind of B2Bi profile
for BPMN choreographies that offers B2Bi domain concepts such as BTs and
disregards unnecessary modeling primitives. Section 6.3 further shows that
ebBP models can be derived from such visual models without affecting the
control flow definition. Thus, this thesis’ B2Bi choreography visualization
allows business users to focus on the type and sequence of business document
exchanges while the corresponding ebBP models then allow software engineers
to complete the relevant technical configuration data.

Splitting the research problem of this thesis up into three research questions is
methodologically underpinned by the relationship of the research questions to the
abstraction layers as depicted in figure 1.3 of section 1.1.2. The first research question
targets the choreography abstraction layer and the relevant concepts and semantics
for defining B2Bi choreographies. The second research question asks for how the
identified B2Bi choreographies can be integrated with the lower level orchestration
layer and the third research question asks for how the identified B2Bi choreographies
can be integrated with more abstract perspectives on business document exchanges.

Beyond the formulation of the research problem as explicit research questions,
section 1.3 characterizes it by defining a goal state of B2Bi technology. In what
follows, the reachability of this goal state using the results of this thesis is discussed:

277

8. Conclusion and Future Work

• The barrier for adopting process-based B2Bi is lowered.
The first factor for lowering the barrier is enabling the usage of low-cost Internet
protocols. This thesis provides guidelines on how to use Web Services technol-
ogy, which leverages Internet protocols, for implementing B2Bi choreographies.
The analysis not only concerns the definition of BPEL based processes that
orchestrate individual Web Services calls, but also treats the implementation of
advanced communication qualities that are needed for B2Bi settings such as mu-
tual authentication or reliable messaging. In particular, the implementability of
the Secure WS-ReliableMessaging Scenario [4,44] using Web Services technology
is checked. While such advanced features are available for the selected platform
(cf. section 5.1 and appendix C), they cannot be assumed to be available in
heterogeneous settings, i.e., when integration partners make use of WS stacks of
different vendors (see discussion of section 5.1, appendix C and [183,196,197]).
In this regard, the concern of Werner Vogels (CTO of Amazon.com and core
designer of the Amazon Web Services cloud facilities) highlighted in 2003 seems
to become reality: “The greatest threat to Web Services’ large-scale success is
vendor politics” [218]. Hence, in practice, B2Bi integration partners who want
to leverage Web Services technology will have to stick to Hypertext Transfer
Protocol Secure (HTTPS) for securing the communication channel and running
a reliability layer (for example, based on WS-ReliableMessaging) on top of that.
Beyond security and reliability qualities, B2Bi based on Web Services may
be problematic if very large business documents or binary business content is
supposed to be exchanged. In this case, the use of DOM-based XML libraries
may result in memory errors or the attachment mechanism for transporting
binary data may not be interoperable across different WS stacks. Then, at
least Web Services can be used for the coordination of the control flow between
individual BTs and established B2Bi communication protocols such as AS2
can be used to perform the business document exchanges.

The second factor in lowering the barrier for adopting process-based B2Bi is the
availability of a comprehensive approach supporting B2Bi choreographies from
visual models through technical configuration to process-based implementations.
This is exactly what this thesis provides. In particular, existing standards are
amended and clarified where needed, unambiguous execution semantics are
defined and model validity is characterized.

So, for this thesis the claim is made that the barrier for adopting process-based
B2Bi is indeed lowered even if immediate applicability to concrete B2Bi projects
requires the development of production quality tooling.

• B2Bi choreographies can be used as standardized, technology-agnostic contrac-
tual obligations between integration partners.
From the perspective of the technologies used, this thesis relies exclusively
on standard languages, namely BPMN, ebBP and BPEL. The BPMN and
ebBP models are indeed technology agnostic. Furthermore, the definition of

278

ebBP-Reg and ebBP-ST shows how to use choreographies as implementable
contractual obligation. Moreover, chapter 5 describes how an implementation
can be derived in an automated manner by means of ebBP to BPEL mapping
rules. Admittedly, these rules imply several assumptions about the messaging
configuration options such as Web Services bindings and endpoints. However,
the goal of this thesis in that regard is not the development of a comprehensive
execution framework that takes all kinds of different messaging options into
account, but showing that the identified binary B2Bi choreography styles can
be implemented using services orchestrations.

In a practical setting, a format for managing messaging configuration data would
be needed. The CPPA standard in version 2 [128] provides partial support for
this, but it is tied to ebMS too tightly for really being of use for Web Services
based integrations. Version 3 [127] of CPPA promises to offer the required
functionality, but it is still in an immature state. During this dissertation
project, some initial results have been produced for how CPPA can be used for
specifying the relevant data [188], in particular for incorporating alternative
B2Bi communication technologies. However, a comprehensive treatment of
all relevant communication protocols as well as prototypic implementations
would be required for practical settings. It is vital to note here that such a
comprehensive aim calls for a concerted project of major B2Bi communities
and B2Bi adopters.

• B2Bi is facilitated by an integration architecture that enables separation of the
business logic from the control flow logic.
The separation of the business logic from the control flow logic of a B2Bi
scenario is facilitated by the integration architecture described in sections 4.2
and 5.1. Control processes represent the central concept for enabling this sepa-
ration. They are responsible for performing the cross-organizational message
exchanges according to the agreed-upon choreography definition and import
existing business logic from business applications using standard interfaces.
These interfaces, in turn, are derived based on a fixed set of technical control
messages as well as the BT configuration data and BC definitions of a given
choreography. As control processes do not contain business logic, they can be
generated as completely executable BPEL processes. Automated generation
facilities (based on the assumption that the corresponding mapping rules are
correct) ensure compliance of control processes to choreography definitions
because the generated process definitions do not have to be modified manually
afterwards (as opposed to other approaches, cf. chapter 7).

While any kind of business logic can be separated from control processes, the
connected business applications necessarily contain elements of control flow
logic. This concerns, for example, detecting the need for triggering the execu-
tion of a particular BT or BC. Such an activity bears aspects of both business

279

8. Conclusion and Future Work

logic and control flow logic. On the one hand, the assessment whether or
not a new business document exchange is to be triggered clearly is a business
decision. On the other hand, when interpreted as an event, triggering a business
document exchange is a concern of control flow logic. Moreover, dependencies
between business document exchanges such as the availability of order line
items for creating invoice line items may be controlled by business applications
which affects control flow logic as well.
In this regard, it is vital to note that even if business applications may contain
aspects of control flow logic and may even take over the task of displaying
admissible control flow paths to the application user, they still cannot change
the control flow of the cross-organizational message exchanges. This is a logical
implication of interposing control processes in the communication between
business applications of the integration partners. Whatever kind of control flow
logic is encoded in the business applications, it cannot modify the agreed-upon
cross-organizational message exchange flow as implemented by the control
processes. This concept moves the process interoperability problem from the
unsafe environment of cross-organizational communication to the safe environ-
ment of communication between control processes and business applications
(which is performed using the IT resources of one partner).

• B2Bi is facilitated by an integration architecture that enables tracking the
progress of business interactions.
Process-based implementation of BSIs is an important enabler for tracking
the progress of business interactions. Firstly, the progress of the interactions
can be interpreted relative to the overall process model. Secondly, the log
messages that are needed for collecting progress data can be created such that
log messages make sense from a process model perspective. Otherwise, it may
be hard to associate log message contents with the process model constructs.
State machine based process models as defined in this thesis are particularly
well suited for tracking progress because the corresponding states can be used
as point of reference. In that regard, it is worth noting that the execution of
a BT or BC is to be interpreted as a state of choreography models as well.
Furthermore, the hierarchical organization of ebBP-Reg allows for aggregated
states (that means BCs) that represent several lower level states (that means
the BTAs and BCAs of the respective BC).

In [54], a method that relies on the results of this thesis for generating BT control
processes such that progress messages are reported to a central monitoring
service is presented. This demonstrates the feasibility of tracking progress using
automated procedures. However, it would still require considerable effort to
implement an analogous approach for complete ebBP-ST and ebBP-Reg models.
Moreover, aggregated performance data such as maximum, minimum or average
execution times of the individual activities of a choreography definition would
have to be taken into account.

280

• Model-driven technologies can be used to derive orchestrations that govern the
control flow of message exchanges.
This goal predominately is supported by this thesis based on the mapping
from ebBP to BPEL as described in chapter 5. This is indeed a model-driven
approach. The computation independent model of a BT or BC is specified
more precisely using the execution models for BTs and coordination protocols
for BCs (platform independent model) that then can be translated into a
Web Services and BPEL based implementation (platform specific model). The
validity of the translation procedures given in this thesis has been demonstrated
by manually performing the proposed translation rules and by implementing
part of the translation rules for ruling out manual bias [54,182].

However, B2Bi partners still may be reluctant to adopt such a model-driven
technology for reasons of maintaining existing implementation approaches,
enabling low-level process customizations or performance optimizations. In this
case, the mapping rules are still beneficial for generating implementation arti-
facts that then are used as reference for the actual, hand-coded implementation
or for testing purposes, for example, as part of a testbed.

Moreover, leveraging the proposed mapping rules in a practical model-driven
approach would require the incorporation of CPPA like technical configuration
data as discussed above.

Another characteristic of model-driven technologies is that more than one plat-
form specific model may be leveraged. This issue has not been elaborated on in
this work because the core focus was put on the choreography definition. The
translation to implementation artifacts is more of a validation of the choreogra-
phy models than the actual research problem. Yet, the results of a master thesis
supervised during this dissertation project [93] show that Windows Workflow1

may be eligible as alternative implementation platform because it is similarly
expressive as BPEL. However, the generation of Windows Workflow based
BC implementations is still an open research problem. Moreover, potential
interoperability problems between BPEL-based and Windows Workflow-based
B2Bi choreography implementations calls for additional research.

Compared to the derivation of BPEL implementations, the transformation from
BPMN models to ebBP models as suggested in chapter 6 is more of a format
conversion. The manual derivation of ebBP processes from the BPMN use cases
developed for the RosettaNet Methodology for Creating Choreographies [173]
reveals that the semantic gap between both choreography representations
is characterized by technical configuration data. However, the control flow
definition remains unchanged. It is worth noting at this point that the two
representations thus enable business users to focus on the type and sequence

1http://msdn.microsoft.com/en-us/netframework/aa663328, last access: 12/20/2011

281

http://msdn.microsoft.com/en-us/netframework/aa663328

8. Conclusion and Future Work

of business document exchanges while software engineers then are allowed to
complete the relevant technical configuration data.

• B2Bi models can be stringently visualized without a significant amount of
technical detail.
This goal is catered for by this thesis in chapter 6. Based on the B2Bi
choreography styles defined in chapter 4, the BPMN choreography notation
is used to provide an abstract view on the corresponding ebBP models. All
technical configuration data such as the exact business document versions
or security and reliability attributes are left out. Moreover, there are no
implementation technology dependent artifacts like WSDL interfaces, endpoint
addresses or protocol bindings.

The BPMN based B2Bi choreography visualization is stringent for two main
reasons. Firstly, there are informal, yet precise rules for creating complete
and valid choreography models (cf. section 6.2) that correspond to the ebBP
based B2Bi choreography styles proposed in this work. Secondly, the derivation
of ebBP models does not change control flow (cf. section 6.3) and hence the
generated classes of ebBP models have the unambiguous semantics of ebBP-ST,
ebBP-Reg and SeqMP.

BPMN has been used as visual notation because the B2Bi choreography visu-
alization was developed in the context of the RosettaNet MCC project and
representing complete choreography definitions in one diagram was a major
requirement. Instead of BPMN, UMM could have been used as visual notation.
Indeed, UMM is a dedicated B2Bi notation and therefore outperforms BPMN in
terms of offering domain concepts. However, it requires multiple views to be de-
fined (cf. section 2.3.3). While this was a barrier in the MCC project, it should
be a feature for large-scale B2Bi projects. In particular, the information mod-
eling view of UMM for focusing on the content of the exchanged business data
is relevant. The explicit view on business information allows for checking the
control flow definitions against the business data that is exchanged which fosters
detection of modeling errors. In so far, the application of UMM visualization
features to CHORCH’s choreography styles is a logical extension of this thesis.
Note that this would also be in line with [68] that identifies Multi-perspective
modeling and view integration as important business process modeling concerns.

Finally, it is worth noting that optimizing usability of the visualization was
greatly limited by selecting CHORCH’s B2Bi choreography styles as reference
on the one hand and BPMN choreographies as notation on the other. This
significantly constrains the freedom of selecting usability-optimized shapes and
composition rules so that an empirical usability study has not been performed.

Beyond the desirable extensions of this thesis highlighted throughout the above
discussion, the following research problems have not been considered.

282

The performance impact of using the proposed control process based integration
architecture as well as Web Services technology is not thoroughly analyzed. It seems
to be obvious, though, that there is a performance impact (cf. discussion in the
introduction of chapter 5). To not compare the performance of the proposed imple-
mentation guidelines for B2Bi choreographies to traditional B2Bi messaging solutions
is acceptable for two main reasons. Firstly, the primary purpose of deriving a BPEL
based implementation for B2Bi choreographies is validating the implementability of
the B2Bi choreography styles of this thesis and not providing a generic execution
framework that serves all kinds of B2Bi scenarios. Secondly, the proposed integration
architecture has a clear focus on improved functionality compared to more or less
process-agnostic BSI implementations and not on performance improvements. So, an
implicit assumption of this thesis is that there is a class of B2Bi scenarios for which
the expected performance impact of using the CHORCH approach is outweighed by
enhanced visibility and improved control.

As there apparently is a trade-off between performance and functionality, an
interesting open research issue is the development of a decision model for selecting
between the CHORCH approach that guarantees process compatibility and enables
high process visibility on the one hand and more traditional B2Bi solutions that
foster high throughput but tend to suffer from vendor lock-in on the other.

Finally, the formalization of the execution semantics for CHORCH’s B2Bi chore-
ography styles provides the basis for creating simulation features. These could be
used, among others, for explaining the permissible choreography execution traces to
unexperienced users and for analyzing the message sequences that may have to be
consumed or produced by corresponding implementation artifacts.

The above discussion shows that the CHORCH approach indeed can be said
to improve the state of the art of B2Bi by providing a top-down style framework
throughout several abstraction layers. BPMN choreography notation can be used
to abstractly capture B2Bi choreographies. Such visual representations then can be
turned into corresponding ebBP models that allow for adding technical parameters
such as business document versions or security and reliability attributes. Finally,
these ebBP models can be transformed into BPEL-based implementations.

The validity of this thesis’ results is not only given by following rigorous research
methods and external validation through workshop, conference and journal program
committees. It is also reflected in the acceptance of core results in two international
RosettaNet standards:

• The execution model for BTs (section 4.3) as well as corresponding imple-
mentation guidelines of chapter 5 have been contributed to the RosettaNet
Message Control and Choreography (MCC) - Profile-Web Services (WS), Re-
lease 11.00.00A standard [172].

• The visualization of B2Bi choreographies using BPMN choreography notation
of chapter 6 has been contributed to the RosettaNet Methodology for Creating
Choreographies, R11.00.00A standard [173].

283

8. Conclusion and Future Work

Beyond validity of research results, the cooperation with RosettaNet also fosters
timely dissemination of research results. The quality of the research results is also
reflected by a linkedin recommendation2 of Dale Moberg, the lead editor of the ebBP
specification and co-worker within the RosettaNet MCC team, on my contributions
to the RosettaNet Methodology for Creating Choreographies [173]:

“[..]The result [of Andreas Schoenberger’s work] was an exceptional blend
of theory and practice, and will serve as the basis for future business pro-
cess management initiatives for RosettaNet. It will be consulted by other
initiatives seeking to enhance process descriptions with QoS, visibility,
and manageability information.”

2http://de.linkedin.com/pub/andreas-schoenberger/10/a47/77a, last access: 12/20/2011

284

http://de.linkedin.com/pub/andreas-schoenberger/10/a47/77a

A. B2Bi Requirements Sources and
Classification

This appendix gives the associations of B2Bi requirements with source publications,
B2Bi challenges and B2Bi schema abstraction layers as referenced in chapter 3.

Tables A.1 and A.2 (pages 290/294) associate each requirement with sources it
has been identified in which enables traceability of the work. Moreover, depending
on the requirements source, this information may be useful for looking up additional
context information, different variants of or even solutions to requirements. In case
a requirement has been identified in a requirements source according to the rules
defined in section 3.1 the respective cell has been valuated with a “+”. When a
requirements source only describes some useful features for satisfying a requirement,
but does not explicitly associate these features with a requirement or declare the
requirement itself, then the respective cell has been valuated with a “0”. Otherwise,
the cell has been left empty.
Table A.3 (page 297) defines the contribution each requirement adds to addressing
the B2Bi challenges which helps in assessing the importance of each requirement in
different B2Bi scenarios that vary with respect to the importance of each challenge.
Moreover, the challenge association is helpful in identifying interrelations between
requirements. Clearly, the contribution of fulfilling a particular requirement in
addressing a challenge differs from challenge to challenge. For differentiating the level
of contribution each of the researchers (cf. section 3.1) determined the function ctrb :
REQ×CHL→ {0, 1, 2} (table A.3), where REQ is the set of requirements presented
below, CHL is the set of challenges presented in section 3.2 and {0,1,2} represent
the level of contribution varying from no contribution (0) and some contribution (1)
to highest contribution (2). In order to find the challenge a requirement contributes
to most, the constraints

C1: ∀(a, b) ∈ REQ× CHL, ctrb(a, b) = 2 :

@(x, y) ∈ REQ× CHL, x = a ∧ y 6= b ∧ ctrb(x, y) = 2

C2: ∀a ∈ REQ : ∃(x, y) ∈ REQ× CHL, x = a ∧ ctrb(x, y) = 2

had to be respected when creating the relation saying that for each requirement
exactly one challenge shall be assigned the contribution value 2. In so far, the
contribution values for a given requirement depend on each other and therefore the
contribution values for two different requirements cannot be compared (therefore the
term “highest contribution” has been chosen). The researchers’ relations then have
been discussed and merged in several meetings which lead to the result presented in

285

A. B2Bi Requirements Sources and Classification

table A.3 on page 297. Constraint C1 is satisfied for each requirement except for
requirement 13 (Control flow definition) where both the feasibility and the agreement
challenge have been valuated with 2. Constraint C2 is satisfied for each requirement
except for requirement 78 (formal methods) for which no challenge could be found
that benefits substantially more from requirement 78 than the other challenges.

Finally, table A.4 (page 300) associates each requirement with the abstraction
layers of the B2Bi schema (figure 1.3). This information is helpful for identifying
the problem domains affected by a requirement and available solution technologies.
Moreover, as these abstraction layers correlate with software development phases this
classification helps in deciding when to consider a requirement. The degree to which
a requirement should be considered on abstraction layers has been specified by the
function csdr : REQ×CHL→ {%,−, 0, 1, 2} (table A.4), where REQ is the set of
requirements presented below, CHL is the set of challenges presented in section 3.2
and {%,-,0,1,2} represent the degree of consideration varying from not applicable(%),
should not be considered(-), could be considered(0) and should be considered(1) to is
strongly recommended to be considered(2). Again, each researcher first determined
csdr individually before the final function presented in table A.4 has been merged
during several meetings.

286

Index Requirement [1
3
4
]

[1
2
8
]

[1
3
6
]

[1
3
1
,1

3
2
]

[2
0
8
]

[1
2
3
]

[1
7
0
]

[1
0
1
]

[3
]

[1
2
6
]

[1
2
5
]

[1
0
0
]

[1
4
8
]

[2
3
4
]

[1
8
7
]

[2
1
3
]

[1
9
3
]

[1
7
6
]

[8
9
]

[8
8
]

[2
4
3
]

[3
4
]

[1
6
2
]

1 Multi-level and multi-view
description

+ + + + + + +

2 Support for business
transactions

+ + 0 + 0 +

3 Support for business signals + + + + +
4 Hierarchical decomposition;

Composability
+ + + +

5 Support for binary
collaborations

+ + + + 0

6 Support for multi-party
collaborations

+ + +

7 Support for business
documents

+ + + + + + + +

8 Quality of service + + + + + + + + + + + +
9 Control flow definition + + + + 0 + + +
10 Exception/Error handling + + + + + + + +
11 Role modeling + + + + + + + +
12 Role mapping + + + +
13 Support for business

document attachments
+ + + + +

14 Support for process version
control

+ 0 + + + +

15 Technology independence of
process model

+ + + + + +

16 Integration partner binding + +
17 Flexible configuration of

transfer/transport protocol
+ + + +

18 Flexible configuration of
document exchange
characteristics

+ + + +

19 Negotiation of business
capabilities

+ + + +

20 Negotiation of communication
capabilities

+ + + +

21 Configuration data for
runtime systems

+ + +

Table A.1.: Sources of Requirements (part 1)

287

A
.

B
2B

i
R

eq
u
irem

en
ts

S
ou

rces
an

d
C

lassifi
cation

Index Requirement [1
3
4
]

[1
2
8
]

[1
3
6
]

[1
3
1
,1

3
2
]

[2
0
8
]

[1
2
3
]

[1
7
0
]

[1
0
1
]

[3
]

[1
2
6
]

[1
2
5
]

[1
0
0
]

[1
4
8
]

[2
3
4
]

[1
8
7
]

[2
1
3
]

[1
9
3
]

[1
7
6
]

[8
9
]

[8
8
]

[2
4
3
]

[3
4
]

[1
6
2
]

22 Interfacing with backend
systems

0 + +

23 Message correlation + + + +
24 Communication interface -
25 Registry functionality + 0 + +
26 Repository functionality + + + +
27 Metadata definition + + + + +
28 Classification of processes + + +
29 Definition of associations

between processes
+ +

30 Cataloging of processes + 0
31 Validation + + +
32 Lifecycle management of B2Bi

artifacts;
Methodology

+ - + + + + + +

33 Management of relationships
among service/process
providers and service/process
users

0 +

34 Process governance + + +
35 Extensibility + + + +
36 Event propagation + + +
37 Visual representation 0 + + + +
38 Machine-processable format + + + + 0 + + +
39 State-based modeling + + +
40 Data formats and data codes + + + +
41 External communication +
42 Consistency + + + + + + + + +
43 Ease of maintenance + +
44 Ease of explanation + +
45 Auto-generation of artifacts 0 + 0 + + + + +
46 Description of usage scenarios + + +
47 Description of business

requirements
+ +

48 Description of business
benefits

+

Table A.1.: Sources of Requirements (part 1)

288

Index Requirement [1
3
4
]

[1
2
8
]

[1
3
6
]

[1
3
1
,1

3
2
]

[2
0
8
]

[1
2
3
]

[1
7
0
]

[1
0
1
]

[3
]

[1
2
6
]

[1
2
5
]

[1
0
0
]

[1
4
8
]

[2
3
4
]

[1
8
7
]

[2
1
3
]

[1
9
3
]

[1
7
6
]

[8
9
]

[8
8
]

[2
4
3
]

[3
4
]

[1
6
2
]

49 Pre/Post-conditions of
process/task executions

+ + + + +

50 Formal methods + + + + +
51 Analysis features + + + + +
52 Intelligible feedback of

analysis
+

53 Language for semantic
constraint specification

0 0 0 + +

54 Semantic constraint
management

+ +

55 Semantic constraint violation
traceability

+

56 Reputation information
management

+

57 Language domain
appropriateness

+ + +

58 Language participant
knowledge appropriateness

+ + +

59 Language comprehensibility
appropriateness

+ + + +

60 Language technical actor
appropriateness

+ +

61 Language organizational
appropriateness

+

62 Reasonable tool support + + +
63 Traceability between process

model and process execution
+ + + +

64 Flexibility by
underspecification

+ + + +

65 Adaptability + +
66 Dynamism + +
67 Control flow patterns +
68 Data oriented process

definition
+ + 0 + +

69 Simulation + +
70 Usage of standards + + + + + + + + + +
71 Process flexibility by design +

Table A.1.: Sources of Requirements (part 1)

289

A
.

B
2B

i
R

eq
u
irem

en
ts

S
ou

rces
an

d
C

lassifi
cation

Index Requirement [1
3
4
]

[1
2
8
]

[1
3
6
]

[1
3
1
,1

3
2
]

[2
0
8
]

[1
2
3
]

[1
7
0
]

[1
0
1
]

[3
]

[1
2
6
]

[1
2
5
]

[1
0
0
]

[1
4
8
]

[2
3
4
]

[1
8
7
]

[2
1
3
]

[1
9
3
]

[1
7
6
]

[8
9
]

[8
8
]

[2
4
3
]

[3
4
]

[1
6
2
]

72 Process flexibility by change +
73 Industry acceptance + +
74 Semantic description to

support dynamic service
discovery and invocation

+

75 Measurements +
76 Stochastic modeling
77 Documentation + + + +
78 Asynchronous and

synchronous interaction
+ + + + + + +

Table A.1.: Sources of Requirements (part 1)

290

Index Requirement [1
6
1
]

[4
7
]

[9
]

[1
3
]

[8
7
]

[1
9
9
]

1 Multi-level and multi-view
description

+ + + + +

2 Support for business
transactions

3 Support for business signals
4 Hierarchical decomposition;

Composability
+ + + + +

5 Support for binary
collaborations

+ +

6 Support for multi-party
collaborations

7 Support for business
documents

+ + + +

8 Quality of service + +
9 Control flow definition + + + +
10 Exception/Error handling + + +
11 Role modeling + +
12 Role mapping
13 Support for business

document attachments
+

14 Support for process version
control

15 Technology independence of
process model

+ + +

16 Integration partner binding
17 Flexible configuration of

transfer/transport protocol
+

18 Flexible configuration of
document exchange
characteristics

19 Negotiation of business
capabilities

20 Negotiation of communication
capabilities

21 Configuration data for
runtime systems

22 Interfacing with backend
systems

+

23 Message correlation

Table A.2.: Sources of Requirements (part 2)
291

A
.

B
2B

i
R

eq
u
irem

en
ts

S
ou

rces
an

d
C

lassifi
cation

Index Requirement [1
6
1
]

[4
7
]

[9
]

[1
3
]

[8
7
]

[1
9
9
]

24 Communication interface
25 Registry functionality
26 Repository functionality +
27 Metadata definition +
28 Classification of processes
29 Definition of associations

between processes
30 Cataloging of processes
31 Validation +
32 Lifecycle management of B2Bi

artifacts;
Methodology

33 Management of relationships
among service/process
providers and service/process
users

34 Process governance
35 Extensibility +
36 Event propagation
37 Visual representation + + +
38 Machine-processable format
39 State-based modeling
40 Data formats and data codes
41 External communication
42 Consistency
43 Ease of maintenance
44 Ease of explanation
45 Auto-generation of artifacts
46 Description of usage scenarios + +
47 Description of business

requirements
48 Description of business

benefits
49 Pre/Post-conditions of

process/task executions
+

50 Formal methods + +
51 Analysis features + +
52 Intelligible feedback of

analysis
+

Table A.2.: Sources of Requirements (part 2)

292

Index Requirement [1
6
1
]

[4
7
]

[9
]

[1
3
]

[8
7
]

[1
9
9
]

53 Language for semantic
constraint specification

54 Semantic constraint
management

55 Semantic constraint violation
traceability

56 Reputation information
management

57 Language domain
appropriateness

+

58 Language participant
knowledge appropriateness

+ +

59 Language comprehensibility
appropriateness

+ + +

60 Language technical actor
appropriateness

61 Language organizational
appropriateness

62 Reasonable tool support +
63 Traceability between process

model and process execution
+

64 Flexibility by
underspecification

65 Adaptability
66 Dynamism
67 Control flow patterns
68 Data oriented process

definition
69 Simulation + +
70 Usage of standards
71 Process flexibility by design
72 Process flexibility by change +
73 Industry acceptance
74 Semantic description to

support dynamic service
discovery and invocation

75 Measurements + +
76 Stochastic modeling +
77 Documentation +

Table A.2.: Sources of Requirements (part 2)

293

A
.

B
2B

i
R

eq
u
irem

en
ts

S
ou

rces
an

d
C

lassifi
cation

Index Requirement [1
6
1
]

[4
7
]

[9
]

[1
3
]

[8
7
]

[1
9
9
]

78 Asynchronous and
synchronous interaction

+

Table A.2.: Sources of Requirements (part 2)

294

In
d

ex
(o

rd
er

ed
)

In
d

ex
(s

u
rv

ey
)

Requirement Requirement Group C
o
m

m
u

n
ic

a
ti

o
n

a
m

o
n

g
u

n
eq

u
a
l

p
er

so
n
n

el

A
g
re

em
en

t

M
a
n

a
g
em

en
t

o
f

co
m

p
le

x
a
ss

o
ci

a
ti

o
n

s

H
o
m

o
g
en

iz
a
ti

o
n

o
f

co
m

p
u
ti

n
g

re
so

u
rc

es

C
o
m

p
re

h
en

si
b

il
it

y

F
ea

si
b

il
it

y

C
h
a
n

g
ea

b
il
it

y

1 58 Language participant
knowledge appropriateness

Use specific media that help 2 0 0 0 1 0 0

2 52 Intelligible feedback of
analysis

Use specific media that help 2 0 0 0 1 0 0

3 77 Documentation Describe context of
application

2 1 0 0 1 1 1

4 46 Description of usage scenarios Describe context of
application

2 0 0 0 1 0 0

5 47 Description of business
requirements

Describe context of
application

2 1 0 0 1 1 0

6 48 Description of business
benefits

Describe context of
application

2 0 0 0 1 1 0

7 28 Classification of processes Group processes together 2 0 0 0 1 0 0
8 29 Definition of associations

between processes
Group processes together 2 0 0 0 1 0 0

9 2 Support for business
transactions

Define synchronization
constructs

0 2 0 1 0 0 0

10 3 Support for business signals Define synchronization
constructs

0 2 0 1 0 0 0

11 5 Support for binary
collaborations

Define synchronization
constructs

0 2 0 0 1 0 0

12 7 Support for business
documents

Define synchronization
constructs

0 2 0 0 0 0 0

13 9 Control flow definition Define synchronization
constructs

0 2 0 1 0 2 1

14 53 Language for semantic
constraint specification

Describe state space of
collaboration

1 2 0 0 1 1 1

15 68 Data oriented process
definition

Describe state space of
collaboration

1 2 0 0 0 0 0

16 49 Pre/Post-conditions of
process/task executions

Describe state space of
collaboration

1 2 0 0 0 1 0

17 16 Integration partner binding Allow for partner specifics 0 2 0 0 0 0 0
18 19 Negotiation of business

capabilities
Allow for partner specifics 0 2 1 0 0 0 0

19 20 Negotiation of communication
capabilities

Allow for partner specifics 0 2 1 1 0 0 0

20 56 Reputation information
management

Allow for unknown partners 0 0 2 0 0 0 0

21 6 Support for multi-party
collaborations

Define constructs for complex
interactions

0 1 2 0 0 0 0

22 11 Role modeling Define constructs for complex
interactions

1 0 2 0 1 0 1

23 12 Role mapping Define constructs for complex
interactions

0 0 2 0 0 0 1

24 67 Control flow patterns Define constructs for complex
interactions

1 1 2 1 1 1 0

25 17 Flexible configuration of
transfer/transport protocol

Overcome technical
communication obstacles

0 0 2 1 0 0 1

26 27 Metadata definition Manage associations 0 0 2 1 0 0 1
27 30 Cataloging of processes Manage associations 0 0 2 0 0 0 1
28 36 Event propagation Manage associations 0 0 2 0 0 0 0
29 74 Semantic description to

support dynamic service
discovery and invocation

Manage associations 0 1 2 0 0 0 1

Table A.3.: Requirements-Challenge Relation

295

A. B2Bi Requirements Sources and Classification
In

d
ex

(o
rd

er
ed

)

In
d

ex
(s

u
rv

ey
)

Requirement Requirement Group C
o
m

m
u

n
ic

a
ti

o
n

a
m

o
n

g
u

n
eq

u
a
l

p
er

so
n
n

el

A
g
re

em
en

t

M
a
n

a
g
em

en
t

o
f

co
m

p
le

x
a
ss

o
ci

a
ti

o
n
s

H
o
m

o
g
en

iz
a
ti

o
n

o
f

co
m

p
u
ti

n
g

re
so

u
rc

es

C
o
m

p
re

h
en

si
b

il
it

y

F
ea

si
b

il
it

y

C
h
a
n

g
ea

b
il
it

y

30 25 Registry functionality Manage associations 0 0 2 0 0 0 1
31 26 Repository functionality Manage associations 0 0 2 0 0 0 1
32 54 Semantic constraint

management
Use association management
facilitators

0 1 2 1 0 1 1

33 14 Support for process version
control

Use association management
facilitators

0 1 2 0 0 0 1

34 70 Usage of standards Use association management
facilitators

1 1 2 1 0 1 0

35 40 Data formats and data codes Use association management
facilitators

1 1 2 1 0 0 0

36 43 Ease of maintenance Use association management
facilitators

0 0 2 1 0 1 1

37 78 Asynchronous and
synchronous interaction

Deal with basic distributed
interaction styles

0 0 1 2 0 1 0

38 8 Quality of service Deal with distributed
communication

0 1 0 2 0 0 0

39 10 Exception/Error handling Deal with distributed
communication

0 1 0 2 0 0 0

40 23 Message correlation Deal with distributed
communication

0 0 1 2 0 0 0

41 24 Communication interface Deal with distributed
communication

0 0 0 2 0 1 0

42 42 Consistency Manage state space 0 1 0 2 0 1 0
43 55 Semantic constraint violation

traceability
Manage state space 0 0 1 2 0 0 0

44 21 Configuration data for
runtime systems

Deal with heterogeneity 0 1 0 2 0 0 1

45 22 Interfacing with backend
systems

Deal with heterogeneity 0 0 1 2 0 1 1

46 1 Multi-level and multi-view
description

Decompose problem 1 0 0 0 2 0 0

47 4 Hierarchical decomposition;
Composability

Decompose problem 1 0 0 1 2 0 0

48 37 Visual representation Use adequate representations 1 0 0 0 2 0 0
49 39 State-based modeling Use adequate representations 1 1 0 1 2 0 0
50 44 Ease of explanation Use adequate representations 1 0 0 0 2 0 0
51 59 Language comprehensibility

appropriateness
Use adequate representations 0 0 0 0 2 0 0

52 69 Simulation Figure out what’s going on 0 0 1 0 2 1 1
53 75 Measurements Figure out what’s going on 1 1 0 1 2 0 0
54 76 Stochastic modeling Figure out what’s going on 1 0 1 1 2 1 0
55 13 Support for business

document attachments
Adapt to real world as is 0 1 0 0 0 2 0

56 18 Flexible configuration of
document exchange
characteristics

Adapt to real world as is 0 0 1 0 0 2 1

57 41 External communication Adapt to real world as is 0 1 0 0 0 2 0
58 64 Flexibility by

underspecification
Adapt to real world as is 0 0 1 0 0 2 0

59 65 Adaptability Adapt to real world as is 0 0 1 1 0 2 0
60 71 Process flexibility by design Adapt to real world as is 0 0 1 1 0 2 0
61 72 Process flexibility by change Adapt to real world as is 0 0 1 1 0 2 1
62 73 Industry acceptance Offer wanted/needed

functionality
1 1 1 1 0 2 0

Table A.3.: Requirements-Challenge Relation

296

In
d

ex
(o

rd
er

ed
)

In
d

ex
(s

u
rv

ey
)

Requirement Requirement Group C
o
m

m
u

n
ic

a
ti

o
n

a
m

o
n

g
u

n
eq

u
a
l

p
er

so
n
n

el

A
g
re

em
en

t

M
a
n

a
g
em

en
t

o
f

co
m

p
le

x
a
ss

o
ci

a
ti

o
n

s

H
o
m

o
g
en

iz
a
ti

o
n

o
f

co
m

p
u
ti

n
g

re
so

u
rc

es

C
o
m

p
re

h
en

si
b

il
it

y

F
ea

si
b

il
it

y

C
h
a
n

g
ea

b
il
it

y

63 57 Language domain
appropriateness

Offer wanted/needed
functionality

1 0 0 0 1 2 0

64 62 Reasonable tool support Offer wanted/needed
functionality

0 1 1 1 1 2 1

65 31 Validation Realize business alignment 0 0 1 1 0 2 0
66 32 Lifecycle management of B2Bi

artifacts;
Methodology

Realize business alignment 0 0 1 1 0 2 1

67 34 Process governance Realize business alignment 0 0 1 0 0 2 1
68 61 Language organizational

appropriateness
Realize business alignment 0 0 0 0 0 2 0

69 38 Machine-processable format Use automation 0 1 1 0 0 2 1
70 45 Auto-generation of artifacts Use automation 0 1 1 1 0 2 1
71 51 Analysis features Use automation 0 1 1 0 1 2 1
72 60 Language technical actor

appropriateness
Use automation 0 1 1 1 0 2 1

73 63 Traceability between process
model and process execution

Use automation 0 1 1 1 0 2 0

74 15 Technology independence of
process model

Use abstraction 1 0 1 1 1 0 2

75 33 Management of relationships
among service/process
providers and service/process
users

Manage associations 0 0 1 0 0 0 2

76 35 Extensibility Allow for evolution 0 0 1 1 0 1 2
77 66 Dynamism Allow for evolution 0 0 1 0 0 1 2
78 50 Formal methods Use formal methods 1 1 1 1 1 1 1

Table A.3.: Requirements-Challenge Relation

In
d

ex
(o

rd
er

ed
)

In
d

ex
(s

u
rv

ey
)

Requirement Requirement Group B
u

si
n

es
s

M
o
d

el

B
u

si
n

es
s

P
ro

ce
ss

M
o
d
el

C
h
o
re

o
g
ra

p
h
y

M
o
d

el

P
u

b
li
c

O
rc

h
es

tr
a
ti

o
n

D
efi

n
it

io
n

P
ri

v
a
te

O
rc

h
es

tr
a
ti

o
n

D
efi

n
it

io
n

R
u

n
ti

m
e

S
y
st

em
s

S
u
m

1 58 Language participant
knowledge appropriateness

Use specific media that help 1 2 1 0 0 0 4

2 52 Intelligible feedback of
analysis

Use specific media that help 1 2 1 1 1 2 8

3 77 Documentation Describe context of
application

2 2 2 1 1 2 10

4 46 Description of usage scenarios Describe context of
application

2 2 1 0 1 0 6

5 47 Description of business
requirements

Describe context of
application

2 2 0 0 0 0 4

6 48 Description of business
benefits

Describe context of
application

2 1 0 - - 0 3

Table A.4.: Requirements-Abstraction Layer Relation

297

A. B2Bi Requirements Sources and Classification
In

d
ex

(o
rd

er
ed

)

In
d

ex
(s

u
rv

ey
)

Requirement Requirement Group B
u

si
n

es
s

M
o
d

el

B
u

si
n

es
s

P
ro

ce
ss

M
o
d
el

C
h
o
re

o
g
ra

p
h
y

M
o
d

el

P
u

b
li
c

O
rc

h
es

tr
a
ti

o
n

D
efi

n
it

io
n

P
ri

v
a
te

O
rc

h
es

tr
a
ti

o
n

D
efi

n
it

io
n

R
u

n
ti

m
e

S
y
st

em
s

S
u
m

7 28 Classification of processes Group processes together 1 2 1 0 0 1 5
8 29 Definition of associations

between processes
Group processes together 2 2 1 1 2 2 10

9 2 Support for business
transactions

Define synchronization
constructs

- 1 2 2 2 1 8

10 3 Support for business signals Define synchronization
constructs

- 0 1 2 2 1 6

11 5 Support for binary
collaborations

Define synchronization
constructs

- 2 2 2 1 0 7

12 7 Support for business
documents

Define synchronization
constructs

0 2 2 2 2 2 10

13 9 Control flow definition Define synchronization
constructs

- 2 1 2 2 0 7

14 53 Language for semantic
constraint specification

Describe state space of
collaboration

1 2 2 1 1 1 8

15 68 Data oriented process
definition

Describe state space of
collaboration

0 2 2 1 2 0 7

16 49 Pre/Post-conditions of
process/task executions

Describe state space of
collaboration

1 2 2 0 0 1 6

17 16 Integration partner binding Allow for partner specifics - 0 1 1 2 2 6
18 19 Negotiation of business

capabilities
Allow for partner specifics 2 2 1 1 0 - 6

19 20 Negotiation of communication
capabilities

Allow for partner specifics 0 1 2 2 0 0 5

20 56 Reputation information
management

Allow for unknown partners 1 1 1 1 1 1 6

21 6 Support for multi-party
collaborations

Define constructs for complex
interactions

0 2 2 2 1 0 7

22 11 Role modeling Define constructs for complex
interactions

1 2 2 1 0 0 6

23 12 Role mapping Define constructs for complex
interactions

0 2 2 2 1 0 7

24 67 Control flow patterns Define constructs for complex
interactions

- 2 1 2 2 0 7

25 17 Flexible configuration of
transfer/transport protocol

Overcome technical
communication obstacles

- - 1 2 0 1 4

26 27 Metadata definition Manage associations 0 1 2 2 1 0 6
27 30 Cataloging of processes Manage associations - 1 1 1 1 2 6
28 36 Event propagation Manage associations - 1 1 1 1 2 6
29 74 Semantic description to

support dynamic service
discovery and invocation

Manage associations - 1 2 2 1 2 8

30 25 Registry functionality Manage associations 0 1 2 2 1 1 7
31 26 Repository functionality Manage associations - 0 1 1 1 2 5
32 54 Semantic constraint

management
Use association management
facilitators

0 1 2 2 1 1 7

33 14 Support for process version
control

Use association management
facilitators

0 2 2 2 2 1 9

34 70 Usage of standards Use association management
facilitators

1 1 2 2 1 1 8

35 40 Data formats and data codes Use association management
facilitators

- 0 1 2 2 1 6

36 43 Ease of maintenance Use association management
facilitators

- 0 0 1 2 1 4

Table A.4.: Requirements-Abstraction Layer Relation

298

In
d

ex
(o

rd
er

ed
)

In
d

ex
(s

u
rv

ey
)

Requirement Requirement Group B
u

si
n

es
s

M
o
d

el

B
u

si
n

es
s

P
ro

ce
ss

M
o
d
el

C
h
o
re

o
g
ra

p
h
y

M
o
d

el

P
u

b
li
c

O
rc

h
es

tr
a
ti

o
n

D
efi

n
it

io
n

P
ri

v
a
te

O
rc

h
es

tr
a
ti

o
n

D
efi

n
it

io
n

R
u

n
ti

m
e

S
y
st

em
s

S
u
m

37 78 Asynchronous and
synchronous interaction

Deal with basic distributed
interaction styles

- 1 1 2 2 1 7

38 8 Quality of service Deal with distributed
communication

0 0 1 2 2 2 7

39 10 Exception/Error handling Deal with distributed
communication

- 1 1 1 2 2 7

40 23 Message correlation Deal with distributed
communication

- 0 1 2 1 1 5

41 24 Communication interface Deal with distributed
communication

- 0 0 1 1 2 4

42 42 Consistency Manage state space 1 2 1 2 2 1 9
43 55 Semantic constraint violation

traceability
Manage state space 0 1 1 1 1 2 6

44 21 Configuration data for
runtime systems

Deal with heterogeneity - - 0 1 1 2 4

45 22 Interfacing with backend
systems

Deal with heterogeneity - 0 0 0 2 1 3

46 1 Multi-level and multi-view
description

Decompose problem 1 2 1 1 1 0 6

47 4 Hierarchical decomposition;
Composability

Decompose problem 0 2 2 2 2 0 8

48 37 Visual representation Use adequate representations 1 2 1 1 1 0 6
49 39 State-based modeling Use adequate representations 1 2 1 1 1 0 6
50 44 Ease of explanation Use adequate representations 1 2 1 1 1 1 7
51 59 Language comprehensibility

appropriateness
Use adequate representations 2 2 1 1 1 - 7

52 69 Simulation Figure out what’s going on 1 2 1 2 2 0 8
53 75 Measurements Figure out what’s going on 1 1 0 0 1 2 5
54 76 Stochastic modeling Figure out what’s going on 1 2 0 0 1 1 5
55 13 Support for business

document attachments
Adapt to real world as is - 0 1 2 1 1 5

56 18 Flexible configuration of
document exchange
characteristics

Adapt to real world as is - 0 2 2 1 0 5

57 41 External communication Adapt to real world as is - 1 1 1 2 1 6
58 64 Flexibility by

underspecification
Adapt to real world as is 0 2 1 1 2 1 7

59 65 Adaptability Adapt to real world as is 0 2 1 1 2 1 7
60 71 Process flexibility by design Adapt to real world as is 1 2 1 1 2 0 7
61 72 Process flexibility by change Adapt to real world as is 1 1 1 1 2 1 7
62 73 Industry acceptance Offer wanted/needed

functionality
1 1 1 1 0 0 4

63 57 Language domain
appropriateness

Offer wanted/needed
functionality

1 2 2 1 1 - 7

64 62 Reasonable tool support Offer wanted/needed
functionality

1 2 2 2 2 1 10

65 31 Validation Realize business alignment 1 1 2 2 2 0 8
66 32 Lifecycle management of B2Bi

artifacts;
Methodology

Realize business alignment 0 1 2 2 1 0 6

67 34 Process governance Realize business alignment 1 2 2 2 2 0 9
68 61 Language organizational

appropriateness
Realize business alignment 1 2 2 1 1 - 7

69 38 Machine-processable format Use automation 0 1 2 2 2 2 9

Table A.4.: Requirements-Abstraction Layer Relation

299

A. B2Bi Requirements Sources and Classification
In

d
ex

(o
rd

er
ed

)

In
d

ex
(s

u
rv

ey
)

Requirement Requirement Group B
u

si
n

es
s

M
o
d

el

B
u

si
n

es
s

P
ro

ce
ss

M
o
d
el

C
h
o
re

o
g
ra

p
h
y

M
o
d

el

P
u

b
li
c

O
rc

h
es

tr
a
ti

o
n

D
efi

n
it

io
n

P
ri

v
a
te

O
rc

h
es

tr
a
ti

o
n

D
efi

n
it

io
n

R
u

n
ti

m
e

S
y
st

em
s

S
u
m

70 45 Auto-generation of artifacts Use automation - 0 1 2 2 1 6
71 51 Analysis features Use automation 1 2 2 2 2 2 11
72 60 Language technical actor

appropriateness
Use automation 0 1 2 2 2 1 8

73 63 Traceability between process
model and process execution

Use automation 0 1 1 1 2 2 7

74 15 Technology independence of
process model

Use abstraction % 2 1 0 0 - 3

75 33 Management of relationships
among service/process
providers and service/process
users

Manage associations 0 0 1 2 2 1 6

76 35 Extensibility Allow for evolution 1 1 1 2 2 2 9
77 66 Dynamism Allow for evolution - 0 0 1 2 2 5
78 50 Formal methods Use formal methods 0 2 2 2 1 0 7

Sum: 40 100 98 104 101 66

Table A.4.: Requirements-Abstraction Layer Relation

300

B. Algorithm for Translating
ebBP-ST to BPEL

This appendix contains research results that have been created by Christoph Pflügler
for his diploma thesis which has been supervised during this work’s dissertation
project. The contents have been adapted from [182].

A WSTBC is translated into two orchestrated BPEL processes using a two-
stage procedure. At first, the control flow of a WSTBC is translated, whereas a
placeholder for each BTA with its subsequent Decision is inserted. Then, each of
these placeholders is replaced with the respective BPEL code. The overall procedure
is depicted in algorithm 11 and described in more detail in the following paragraphs.
Thereby, each write* function takes the reference to the file containing the BPEL
process of a role r∈R as first parameter. All other parameters are function specific.
Note that each of the write* functions appends its BPEL code to the end of the
BPEL process definition file specified in the first parameter.

The translation algorithm begins with the insertion of the BPEL code required
before being able to insert the BPEL translation of the actual control flow. This code
includes the import of required WSDL interfaces, the specification of partnerLinks,
the declaration of global variables such as the ones containing the process state,
as well as the specification of a business document independent correlationSet.
Furthermore, collaboration timeouts are handled and the so-called internal pro-
cess state is initialized with the nameID of the shared state which can be reached
from the initial state (nameID of parentST (out(wbc.s0))). Finally, the central while
loop switching over all shared states is prepared. Listing B.1 shows a corresponding
BPEL snippet.

Listing B.1: BPEL Output of writeBPELHeader Function
1 <process ... name="UseCase">
2 <!-- WSDL imports here -->
3 <!-- parterLinks here -->
4 <!-- variables here -->
5 <!-- correlation set here -->
6 <scope name="UseCase">
7 <eventHandlers >
8 <onAlarm >
9 <!-- collaboration timeout handling -->

10 </onAlarm >
11 </eventHandlers >
12 <sequence >
13 <assign >
14 <copy>
15 <from>
16 <literal >
17 <wsdlDoc:stateType >{first state nameID}

301

B. Algorithm for Translating ebBP-ST to BPEL

Algorithm 11: WSTBC to BPEL Translation Algorithm

input : A valid WSTBC wbc to be transformed
output : Two orchestrated BPEL processes BPELprocesses<wbc.r1.bpel,

wbc.r2.bpel>
algorithm :

1 BPELprocesses<writeBPELHeader(wbc.r1.bpel, parentST(out(wbc.s0))),
writeBPELHeader(wbc.r2.bpel, parentST(out(wbc.s0)))>;

2 BPELprocesses<writeBPELStateProlog(wbc.r1.bpel, parentST(out(wbc.s0)),
tt), writeBPELStateProlog(wbc.r2.bpel, parentST(out(wbc.s0)), tt)>;

3 foreach link in out(nodef(parentST(out(wbc.s0)))) do
4 BPELprocesses<writeBTA+DECplaceholder(wbc.r1.bpel, link, out(link)),

writeBTA+DECplaceholder(wbc.r2.bpel, link, out(link))>;

5 end
6 BPELprocesses<writeBPELStateEpilog(wbc.r1.bpel),
writeBPELStateEpilog(wbc.r2.bpel)>;

7 foreach st in wbc.ST | st 6= parentST(out(s0)) do
8 BPELprocesses<writeBPELStateProlog(wbc.r1.bpel, st, ff),

writeBPELStateProlog(wbc.r2.bpel, st, ff)>;
9 foreach link in out(nodef(st)) do

10 BPELprocesses<writeBTA+DECplaceholder(wbc.r1.bpel, link,
out(link)), writeBTA+DECplaceholder(wbc.r2.bpel, link, out(link))>;

11 end
12 BPELprocesses<writeBPELStateEpilog(wbc.r1).bpel,

writeBPELStateEpilog(wbc.r2.bpel)>;

13 end

14 foreach t in wbc.T |∃(nk, tt, t)∈ctrlFlow(wbc)∧∃(nl, g, nk)∈ctrlFlow(wbc) do
15 BPELprocesses<writeBPELTerminalCode(wbc.r1.bpel, t),

writeBPELTerminalCode(wbc.r2.bpel, t)>;

16 end

17 BPELprocesses<writeBPELProcessEpilog(wbc.r1.bpel),
writeBPELProcessEpilog(wbc.r2.bpel)>;

18 BPELprocesses<replaceBTA+DECplaceholders(wbc.r1.bpel),
replaceBTA+DECplaceholders(wbc.r2.bpel)>;

19 return BPELprocesses<wbc.r1.bpel, wbc.r2.bpel>;

302

18 </wsdlDoc:stateType >
19 </literal >
20 </from>
21 <to>$processState_internal </to>
22 </copy>
23 </assign >
24 <while>
25 <condition >’true’</condition >
26 <sequence >

After initializing the two BPEL processes, the shared state which can be reached
from the initial state is translated first before translating all remaining ones. The
only difference between the translation of the first and the remaining shared states is
that the execution of one of the BTAs admissible from the first shared state creates a
new process instance (createInstance="yes"). The translation of a shared state is
carried out in three steps: At first, a so-called state prolog providing the functionality
for state timeout handling is added (listing B.2). Thereafter, the placeholders for
all BTAs with attached Decisions (cf. listing B.3) admissible from the respective
shared state are inserted. Finally, a so-called state epilog (c.f. listing B.4) closes all
remaining open tags related to the shared state BPEL code.

Listing B.2: BPEL Output of writeBPELStateProlog Function
1 <if>
2 <condition >$processState_internal = ’{state nameID}’</condition >
3 <scope name="{state nameID}_Timeout_Scope">
4 <faultHandlers >
5 <catch faultName="StateTimeout">
6 <empty />
7 </catch>
8 </faultHandlers >
9 <scope name="{state nameID}_Scope">

10 <eventHandlers >
11 <onAlarm >
12 <for>’{state ttp}’</for>
13 <scope>
14 <sequence >
15 <assign >
16 <copy>
17 <from>
18 <literal >
19 <wsdlDoc:stateType >{nameID of state reached in case of state timeout}</

wsdlDoc:stateType >
20 </literal >
21 </from>
22 <to>$processState_internal </to>
23 </copy>
24 </assign >
25 <throw faultName="StateTimeout" />
26 </sequence >
27 </scope>
28 </onAlarm >
29 </eventHandlers >
30 <sequence >
31 <assign >
32 <copy>
33 <from>
34 <literal >
35 <wsdlDoc:stateType >{state inner entry nameID}</wsdlDoc:stateType >
36 </literal >
37 </from>
38 <to>$processState_internal </to>
39 </copy>
40 </assign >
41 <while>
42 <condition >$processState_internal =
43 ’{state inner entry nameID}’

303

B. Algorithm for Translating ebBP-ST to BPEL

44 </condition >
45 <sequence >
46 <assign >
47 <copy>
48 <from>
49 <literal >
50 <wsdlDoc:stateType >{state nameID}
51 </wsdlDoc:stateType >
52 </literal >
53 </from>
54 <to>$processState </to>
55 </copy>
56 </assign >
57 <invoke operation="dropProcessState" .. inputVariable="processState" />
58 <!-- createInstance ="yes", if second parameter of function is true ,

createInstance ="no" otherwise -->
59 <pick createInstance="yes">

In order to implement the shared state timeout behaviour described in section
4.4 in a BPEL standard compliant manner, two distinct variables for the process
state are necessary. The processState_internal variable is used for internal
purposes only and governs the execution of the BPEL processes according to the
ebBP process definition. The second one, processState, is used to communicate
the state of a collaboration instance to the collaboration partners. Note that the
state is assigned to processState only after a BPEL process already is in the
respective state. Besides the nameIDs of all shared states of a business collaboration
which constitute all possible values of processState, processState_internal also
includes the nameIDs of all timer-preserving nodei(st) (cf. section 4.4) of all shared
states st as possible values. It is important to know that in BPEL, a scope in which
a fault occurred is considered to have completed unsuccessfully [137]. Throwing
a fault terminates all scopes this fault is thrown in or passed through until it is
handled in some scope. Hence, if a state timeout is reached, the nameID of the state
specified in the respective timeout linkTo is assigned to processState_internal

and a fault terminating all scopes not handling it is thrown. The outmost scope of
the BPEL code for a shared state handles the fault and subsequently also terminates.
Thus, the process switches to the shared state specified in the timeout linkTo. If a
Decision attached to an admissible BTA of a shared state links to nodei(st) of that
shared state st, the process remains in that state without resetting the timer due to
the while-loop. Conversely, if that Decision links to nodej(st) of the shared state
st, the next iteration of the while-loop switching over all shared states is triggered,
and the timer of the shared state is reset consequently.

Listing B.3: BPEL Output of writeBTA+DECplaceholder Function
1 <empty name="{BTA nameID }###{ DECISION NameID}" />

Once the state prolog for a state is appended, a placeholder for each BTA with
attached Decision admissible from the respective shared state is added. These
placeholders are replaced by BPEL code later in the translation procedure. The
state epilog finally closes all open BPEL tags corresponding to the translation of a
shared state.

304

Listing B.4: BPEL Output of writeBPELStateEpilog Function
1 </pick>
2 </sequence >
3 </while>
4 </sequence >
5 </scope>
6 </scope>
7 </if>

After translating all shared states, all terminal states need to be translated as well.
Thereby, the BPEL code depicted in listing B.5 is inserted for each terminal state
referenced by a Decision or a timeout linkTo of a shared state. As in every shared
state, the process state is pushed to the backend system using the invoke construct.

Listing B.5: BPEL Output of writeBPELTerminalCode Function
1 <if>
2 <condition >$processState_internal = ’{terminal state nameID}’</condition >
3 <sequence >
4 <assign >
5 <copy>
6 <from>
7 <literal >
8 <wsdlDoc:stateType >{terminal state nameID}<wsdlDoc:stateType >
9 </literal >

10 </from>
11 <to>$processState </to>
12 </copy>
13 </assign >
14 <invoke operation="dropProcessState" .. inputVariable="processState" />
15 <exit/>
16 </sequence >
17 </if>

In the next step, all open BPEL tags of the entire process (c.f. listing B.6) need
to be closed.

Listing B.6: BPEL Output of writeBPELProcessEpilog Function
1 </sequence >
2 </while>
3 </sequence >
4 </scope>
5 </process >

Before ending the translation procedure, all placeholders for BTAs and attached
Decisions need to be replaced by the respective BPEL code. As this appendix
focuses on the introduction of shared states in modeling ebBP business collaborations,
the translation of BTAs and Decisions is depicted more briefly in the rest of this
section.

Tables B.1, B.2/B.3 and B.4 give an overview of the most important BPEL ele-
ments used to translate a BTA with an attached Decision and indicate the purpose
of their particular usage. The elements are listed in the order of their occurrence
in the BPEL process. The tables’ content corresponds to a BTA that contains a
ReceiptAcknowledgement as well as an AcceptanceAcknowledgement signal. Fur-
thermore, all timing parameters offered for a BTA by the ebBP specification [134]
are set. If only some or none of the signals for and parameters of a BTA are
specified, the BPEL translation is a corresponding subset of the depicted one. As
the mapping of a RespondingBusinessActivity is analogous to a Requesting-

BusinessActivity, only a RequestingBusinessActivity is described here. An

305

B. Algorithm for Translating ebBP-ST to BPEL

Table B.1.: BPEL Production Rules for ebBP BusinessTransactionActivity

Role BPEL Process Elements
- enclosing onMessage, receiving a

Initiator triggering message from integration
partner or backend system

+ - enclosing scope for complete BTA
- all variables required for the ebBP

Responder Requesting-/RespondingBA and the ebBP
Decision

- catch blocks for all ebBP failure types
containing the corresponding reaction as
specified in the ebBP
BusinessCollaboration

- catchAll block containing reaction as
specified in ebBP BusinessCollaboration
for AnyProtocolFailure

- onAlarm to implement the
TimeToPerform parameter specified for
the BTA

- sequence containing the BPEL code
for the ebBP constructs (in this order):
RequestingBA, RespondingBA, Decision.
For the respective production rules see
tables B.2/B.3 and B.4.

occurrence of an onAlarm based timeout in combination with throwing a fault

terminates the BTA and is handled by the faultHandlers of the scope enclosing
the BPEL code of a BTA. ReceiptAcknowledgement/-Exception (RA/RAE) and
AcceptanceAcknowledgement/-Exception (AA/AAE) are processed concurrently
as suggested by the ebBP specification [134, sec. 3.4.9.3.3]. A process tries to
get a valid RA/RAE by sending the corresponding business document (BD) to
the process of the integration partner until the specified ebBP retryCount is ex-
ceeded or a timeout occurs. Furthermore, if both signal types are used, it waits
for receiving a valid AA/AAE until the occurrence of a timeout. At the end of
the BTA mapping, an ebBP Decision is realized by using an invoke for querying
the backend services for the evaluation of the latest business document exchanged
and the processState_internal variable is then set correspondingly. As described
earlier, this may lead to a switch to another shared state within the next iteration of
the collaboration’s while loop.

306

Table B.2.: BPEL Production Rules for ebBP RequestingBusinessActivity (1)

Role BPEL Process Elements
Initiator - enclosing scope

+ - enclosing flow for concurrent processing
Responder of RA/RAE and AA/AAE

RA / RAE
Initiator - enclosing while for trying to get a valid

RA/RAE until ebBP retryCount is exceeded
- scope to encapsulate RA/RAE handling
- catch block for RAE handling
- invoke to check RAE validity using the

backend system
- throw to throw ebBP AnyProtocolFailure

in case no valid RAE was received and
ebBP retryCount is exceeded

- throw to throw ebBP RequestReceiptFailure
in case of a valid RAE

- catchAll block for technical failure (TF)
handling

- rethrow to forward TF to enclosing scope

if ebBP retryCount is exceeded
- onAlarm to implement ebBP

timeToAcknowledgeReceipt
- throw ebBP AnyProtocolFailure if ebBP

retryCount is exceeded
- invoke to forward Business Document

(BD) to and get a RA/RAE from Responder
- invoke to check RA validity using the

backend system
Responder - enclosing scope

- catch block for RAE handling
- reply construct to forward RAE to Initiator
- throw ebBP RequestReceiptFailure in case

of a RAE
- onAlarm to implement ebBP

timeToAcknowledgeReceipt
- invoke to forward BD to and get a

RA/RAE from backend system
- reply to forward RA to Initiator

307

B. Algorithm for Translating ebBP-ST to BPEL

Table B.3.: BPEL Production Rules for ebBP RequestingBusinessActivity (2)

Role BPEL Process Elements
AA / AAE

Initiator - enclosing while to wait for valid AA/AAE
- scope to encapsulate AA/AAE handling
- catch block to forward ebBP

RequestAcceptanceFailure faults to
enclosing scopes

- catchAll block to handle TF
- empty to wait for an AA/AAE despite of TFs
- onAlarm to implement ebBP

timeToAcknowledgeAcceptance
- pick to receive either AA or AAE
- invoke to check AA/AAE validity using

the backend system
- throw ebBP RequestAcceptanceFailure in

case of a valid AAE
Responder - enclosing scope

- catch block for handling AAE
- invoke to forward AAE to Initiator
- throw ebBP RequestAcceptanceFailure in

case of an AAE
- onAlarm to implement ebBP

timeToAcknowledgeAcceptance
- invoke to get AA/AAE from backend system
- invoke to forward AA to Initiator

Table B.4.: BPEL Production Rules for ebBP Decision

Role BPEL Process Elements
Initiator - invoke to send BD of RespondingBA to

+ backend system in order to get an
evaluation

Responder - if no RespondingBA exists, BD of
RequestingBA is used

- if and assign statements to determine
and switch to next process state

Note that ConditionGuardValues are
evaluated before DocumentEnvelopes.

308

C. WS-* Implementation of the
Secure WS-ReliableMessaging
Scenario

This appendix contains research results that have been created by Johannes Schwalb
for his diploma thesis which has been supervised during this work’s dissertation
project. The contents have been adapted from [196].

The purpose of this appendix is the analysis of the availability of the SecRM
scenario on contemporary WS stacks. Such an investigation is desirable even if
interoperable WS-* functionality is not available (cf. [183, 196]) because there are
use cases of WS-RM and WS-Sec that are desirable for homogeneous environments
as well. Content-level encryption and signing of XML messages allows for multi-
party scenarios that barely can be matched using transport level security methods.
The combination with additional WS-* standards such as WS-Trust [146] and WS-
SecureConversation [144] allows integration scenarios that obviate the need of mutual
security certificate exchanges outside of the actual Web Services interaction.

The purpose of the SecRM scenario is the reliable exchange of confidential, authen-
ticated and integrity-protected messages without frequent key exchanges (cf. [4, 19]
for more detailed descriptions of security properties). In order to achieve these goals
WS-Sec, WS-RM, WS-Trust, WS-SecureConversation as well as WS-Addressing are
combined for establishing a WS-SecureConversation session (or security context)
which is then used to reliably and securely exchange messages. Basically, the SecRM
scenario consists of a key-exchange phase, a message sending phase and a termination
phase [4]. The key-exchange phase generates a so-called Security Context Token
(SCT) and uses asymmetric keys for integrity as well as confidentiality protection
of WS-SecureConversation bootstrap messages. After the generation of the secu-
rity context, a WS-RM sequence is initiated which is used for exchanging payload
messages. Once the exchange of all payload-messages has been acknowledged, the
WS-RM sequence as well as the security context are subsequently terminated.

The steps listed below describe the interactions between the client and the sender
role of the SecRM scenario and reflect the definitions of [4] and [44, pages 34-60]. The
prefixes wsrm, wss, wst, wsu and env are used to identify concepts of the WS-RM,
WS-Sec, WS-Trust, WS-Sec utility and SOAP standards, respectively.

1. RequestSecurityToken RST: The client sends a message containing a RST
to the service, asking the service to issue a SCT. This message must be signed
and encrypted by the client using the service’s public key.

309

C. WS-* Implementation of the Secure WS-ReliableMessaging Scenario

2. RequestSecurityTokenResponse RSTR: The service responds with a RSTR
message, containing the requested SCT. This message must be signed and
encrypted by the service using the client’s public key. The SCT must be used
for signing and encrypting any message of the subsequent message flow.

3. CreateSequence: The client sends a wsrm:CreateSequence message to the
service. This message includes a wss:SecurityContextReference to reference
the SCT received in step 2. This SCT is used to sign the wsrm:CreateSequence
message and encrypt the wss:Signature.

4. CreateSequenceResponse: The service responds to the CreateSequence
request with a wsrm:CreateSequenceResponse message. This message is also
signed and the wss:Signature is encrypted using the SCT.

5. Payload Message: The client now sends signed and encrypted messages
containing the payload of this communication. Each payload message contains
a WS-ReliableMessaging sequence header containing at least the sequence
identifier and the sequence number of the respective message. In contrast to
the previous two and following five messages, the payload messages have an
encrypted env:Body.

6. SequenceAcknowledgement: The service acknowledges the receipt of the
payload message(s) with a wsrm:SequenceAcknowledgement. The scenario
definition proposes a single wsrm:SequenceAcknowledgement message with
an empty env:Body. The acknowledgment headers are also signed and the
wss:Signature is encrypted.

7. TerminateSequence: As soon as the client has received the acknowledgments
for each message within the message sequence, it closes this sequence using
the wsrm:TerminateSequence message defined by WS-RM. This message is
signed and the wss:Signature is encrypted, too.

8. TerminateSequenceResponse: The service confirms the termination of
the sequence with a signed wsrm:TerminateSequenceResponse message. The
wss:Signature of this message is encrypted.

9. CancelSecurityToken: After termination of the WS-ReliableMessaging se-
quence, the client asks the service for cancellation of the WS-SecureConversation
context using a wst:CancelTarget message. The WS-Addressing header el-
ements, the wss:Signature, and the wsu:Timestamp are integrity protected.
In addition, the signature is encrypted whereas the message env:Body is not
protected.

10. CancelSecurityTokenResponse: The service confirms the wst:CancelTarg
et with a wst:RequestedTokenCancelled message. This message is protected
in the same way as the wst:CancelTarget message.

310

Once the security context is started, sender and receiver may create multiple
WS-RM sessions for message transmission, as the publications (cf. [4, 19, 44]) do
not impose any restrictions on that. However, in order to fulfill the requirements of
the SecRM scenario each WS-RM session that is started within the WS-SecureCon-
versation session must be closed or terminated within the same session. After the
security context is established, all signature and encryption processes are performed
using keys derived from the SCT. The last two messages that collectively cancel the
security context are protected using SCT-derived keys, too.

Note that [4] and [44] make use of WS-ReliableMessaging version 1.0 [12] which does
not define wsrm:CloseSequence, wsrm:CloseSequenceResponse, or wsrm:Termina
teSequenceResponse messages. However, these messages have been defined for WS-
RM since version 1.1 [138]. Therefore, message number eight wsrm:TerminateSequen
ceResponse is inserted into the message sequence as recommended by WS-I’S RSP
[240, pages 28/29].

Table C.1 lists the requirements of the scenario definitions for confidentiality
and integrity protection. The corresponding message type number is put into
the first column. The other columns show the key required for encrypting (enc) or
signing (sig) the message elements wss:Signature (Sign), env:Body, wsu:Timestamp
(TS), WS-Addressing headers (WS-A), WS-ReliableMessaging headers (WS-R), and
wss:EncryptedKey (EncKey). The entry SKX stands for a session key, which is
usually encrypted using the receivers public key (PuKY). The private key of a party
is abbreviated PrKY . If a wsc:SecurityContextToken is used to derive keys, these
keys are labeled as DKY X . The indices X and Y are variables that are substituted in
the table. Instead of the X a number is inserted to identify different instances of the
corresponding key type. These instances are independent of the type of party. The
index Y determines whether the client (c) or the service (s) is the owner of the key,
e.g., PrKS denotes that the key used for the specified operation is the private key
of the service, while DKC1 stands for a key derived from a SecurityContextToken

by the client. Since multiple derived keys may be used in a SOAP message, each
derived key has an assigned number, here ‘1’. The ‘•’ symbol indicates that the
corresponding element is present, but not protected, whereas the ‘◦’ means that the
corresponding element is not present in this message.

The defining sources of the SecRM scenario describe the messages to be exchanged
in detail. However, no WS-Policy definitions are given to instruct the WS stacks
under test to create the messages as intended. Therefore the policy configuration of
the SecRM scenario is sketched in section C.1. These assertions have been derived
from the scenario descriptions and the sample messages provided in [44]. Section C.2
then checks the generated message exchanges by the GlassFish-openESB and IBM
Websphere platforms following the approach of [197].

311

C. WS-* Implementation of the Secure WS-ReliableMessaging Scenario

Msg Sign Body TS WS-A WS-R EncKey
No enc enc sig sig sig sig enc

1 SK1 PrKC ◦ PuKS

2 SK2 PrKS ◦ PuKC

3 DKC1 • DKC2 ◦ ◦
4 DKS1 • DKS2 ◦ ◦
5 DKC1 DKC2 ◦
6 DKS1 • • DKS2 ◦
7 DKC1 • DKC2 ◦
8 DKS1 • DKS2 ◦
9 DKC1 • DKC2 ◦ ◦
10 DKS1 • DKS2 ◦ ◦

Table C.1.: Message Protection Requirements and Keys Required for Protection
Realization Defined by the Scenario Definitions

C.1. Policy Configuration

The policy configurations below sketch the platform-independent specification of
the service’s WSDL definition for the SecRM scenario. In order to deploy these
configurations on the selected platforms, some specific assertions have to be defined.
For example, XPath-based Encrypted- and SignedElements assertions (cf. [145])
have to be added to work around IBM WebSphere’s non-compliant handling of
EncryptSignature, EncryptBeforeSigning or Timestamp assertions. For such
details, please see [196].

The presentation of the WS-Policy definition is split up into four listings where
listing C.1 shows the security binding and WS-RM configuration for the actual
payload messages, listing C.2 shows the configuration for setting up the security
context, and listings C.3 and C.4 show the definition of WS-Sec protection assertions
for incoming and outgoing SOAP messages, respectively.

The policy for the actual message exchange (listing C.1) defines the use of WS-RM
(lines 5-7) and WS-Addressing (lines 9-11) as well as the binding for the security
context (lines 13-43). The WS-RM assertion activates the use of WS-RM within
the security context. Neither [4] nor [44] allow to draw a conclusion about the
delivery assurance to be used in the scenario or whether the WS-RM sequence should
be bound to a security token using the wsrmp:SequenceSTR assertion. Conversely,
the use of WS-Addressing is required by both publications. The WS-Addressing
assertion enables the use of WS-Addressing message header properties such as wsa:To,
wsa:Action, wsa:MessageID, or wsa:RelatesTo for implementing functionality as
required by the SecRM scenario definition.

The setup of the security context is denoted in the sp:SymmetricBinding assertion,
since the session key is symmetric. A sp:SecureConversationToken is established

312

C.1. Policy Configuration

as protection token. This token is the base for signature and encryption key derivation
(sp:RequireDerivedKeys assertion). The sp:BootstrapPolicy is the policy used
to obtain the sp:SecureConversationToken from the token issuer (see listing C.2
for a specification of this policy). Within the security context the sp:Basic128

algorithm is used for encryption, since [4] and [44] propose 128-bit cryptography.
Considering the sample message structures in [44], the sp:Layout of the SOAP
messages is a sp:Strict layout (see [145, pages 52/53]) and a wsu:Timestamp must
be included. Both aspects are not explicitly specified in [4]. A significant difference
between the two scenario specifications is the protection order. Whereas [44] states
that “signature occurs before encryption” [44, page 35] (first sign the body and then
encrypt body and signature), [4] proposes to encrypt the message body first, then to
sign the corresponding message parts including the env:Body, and finally to encrypt
the signature. Since [4] gives a formal cryptographic analysis of this scenario, the
sp:EncryptBeforeSigning assertion has been chosen. The sp:EncryptSignature

assertion then requires the encryption of the wss:Signature.

Listing C.1: The WS-Policy for the SecRM Scenario
1 <wsp:Policy wsu:Id="SecureRMSessionBinding">
2 <wsp:ExactlyOne >
3 <wsp:All >
4

5 <wsrmp:RMAssertion >
6 <wsp:Policy />
7 </wsrmp:RMAssertion >
8

9 <wsam:Addressing >
10 <wsp:Policy />
11 </wsam:Addressing >
12

13 <sp:SymmetricBinding >
14 <wsp:Policy >
15 <sp:ProtectionToken >
16 <wsp:Policy >
17 <sp:SecureConversationToken >
18 <wsp:Policy >
19 <sp:RequireDerivedKeys />
20 <sp:BootstrapPolicy >
21 <!--
22 See the XML listing containing the BootstrapPolicy
23 -->
24 </sp:BootstrapPolicy >
25 </wsp:Policy >
26 </sp:SecureConversationToken >
27 </wsp:Policy >
28 </sp:ProtectionToken >
29 <sp:AlgorithmSuite >
30 <wsp:Policy >
31 <sp:Basic128 />
32 </wsp:Policy >
33 </sp:AlgorithmSuite >
34 <sp:Layout >
35 <wsp:Policy >
36 <sp:Strict />
37 </wsp:Policy >
38 </sp:Layout >
39 <sp:IncludeTimestamp />
40 <sp:EncryptBeforeSigning />
41 <sp:EncryptSignature />
42 </wsp:Policy >
43 </sp:SymmetricBinding >
44

45 </wsp:All >
46 </wsp:ExactlyOne >
47 </wsp:Policy >

313

C. WS-* Implementation of the Secure WS-ReliableMessaging Scenario

Listing C.2 gives the policy for the sp:BootstrapPolicy [145, p. 41] of listing
C.1. The sp:BootstrapPolicy defines the policy for the sp:SecureConversation-

Token request and the sp:SecureConversationToken issuance. [4] and [44] stipulate
the use of X509 certificates in the sp:BootstrapPolicy, which are certified by a
certificate authority. This is important for real-world use cases, however, for the
purpose of testing the selected platforms, client and service are in possession of a
trusted X509 certificate of each other. This change of the scenario does not have any
effect on the policy configuration or the SOAP message traffic between client and
service, and is therefore not relevant in this work.

The sp:BootstrapPolicy in listing C.2 uses an sp:AsymmetricBinding (public-
key cryptography) with a sp:X509Token for the initiator and the recipient. The
initiator should send his public key as wss:BinarySecurityToken to the recipient,
whereas the key of the recipient must not necessarily be transmitted to the client.
The sp:AlgorithmSuite, the sp:Layout, the wsu:Timestamp inclusion, the protec-
tion order, and the sp:EncryptSignature instruction are used analogously to the
sp:SymmetricBinding of the main policy.

Listing C.2: The sp:BootstrapPolicy of the sp:SecureConversationToken in the
SecRM Scenario

1 <wsp:Policy >
2 <sp:AsymmetricBinding >
3 <sp:Policy >
4 <sp:InitiatorToken >
5 <wsp:Policy >
6 <sp:X509Token sp:IncludeToken="http://docs.oasis -open.org/ws-sx/ws-

securitypolicy /200702/ IncludeToken/AlwaysToRecipient">
7 <wsp:Policy >
8 <sp:WssX509V3Token10 />
9 </wsp:Policy >

10 </sp:X509Token >
11 </wsp:Policy >
12 </sp:InitiatorToken >
13 <sp:RecipientToken >
14 <wsp:Policy >
15 <sp:X509Token sp:IncludeToken="http://docs.oasis -open.org/ws-sx/ws-

securitypolicy /200702/ IncludeToken/Never">
16 <wsp:Policy >
17 <sp:WssX509V3Token10 />
18 </wsp:Policy >
19 </sp:X509Token >
20 </wsp:Policy >
21 </sp:RecipientToken >
22 <sp:AlgorithmSuite >
23 <wsp:Policy >
24 <sp:Basic128 />
25 </wsp:Policy >
26 </sp:AlgorithmSuite >
27 <sp:Layout >
28 <wsp:Policy >
29 <sp:Strict />
30 </wsp:Policy >
31 </sp:Layout >
32 <sp:IncludeTimestamp />
33 <sp:EncryptBeforeSigning />
34 <sp:EncryptSignature />
35 </wsp:Policy >
36 </sp:AsymmetricBinding >
37

38 <sp:SignedParts >
39 <sp:Header Namespace="http:// schemas.xmlsoap.org/ws /2004/08/ addressing" />
40 <sp:Header Namespace="http://www.w3.org /2005/08/ addressing" />
41 <sp:Body />

314

C.2. SecRM Scenario Test Results

42 </sp:SignedParts >
43

44 <sp:EncryptedParts >
45 <sp:Body />
46 </sp:EncryptedParts >
47 </wsp:Policy >

In addition to the security binding assertions, the sp:BootstrapPolicy specifies
the message elements to be protected. The scenario definition stipulates that the
WS-Addressing headers, the wsu:Timestamp, and the message env:Body are to be
signed. The assertions in lines 39 and 40 of listing C.2 indicate that all WS-Addressing
headers must be signed (for reasons of compatibility the XML namespace of two WS-
Addressing versions is specified), the assertion in line 41 defines that the env:Body

must be signed. The wsu:Timestamp of a SOAP message must always be covered
by a signature due to the sp:IncludeTimestamp definition in [145, page 51]. The
encryption of the env:Body is declared in lines 44-46 and the encryption of the
signature is asserted with the sp:EncryptSignature element in the binding (line 34
of listing C.2).

The protection assertions of the messages from the client to the service (see listing
C.3) and vice versa (see listing C.4) are similar to the assertions defined in the
sp:BootstrapPolicy: the WS-Addressing headers and the env:Body are intended
for integrity protection, and the env:Body is also encrypted. In addition, the WS-RM
header sections are signed.

Listing C.3: The WS-Security Policy Protection Assertions for the Input Messages
1 <wsp:Policy wsu:Id="SecureRMSessionInput" >
2 <sp:SignedParts >
3 <sp:Header Namespace="http:// schemas.xmlsoap.org/ws /2004/08/ addressing"/>
4 <sp:Header Namespace="http://www.w3.org /2005/08/ addressing"/>
5 <sp:Header Namespace="http:// schemas.xmlsoap.org/ws /2005/02/ rm"/>
6 <sp:Header Namespace="http://docs.oasis -open.org/ws-rx/wsrm /200702"/>
7 <sp:Body />
8 </sp:SignedParts >
9 <sp:EncryptedParts >

10 <sp:Body />
11 </sp:EncryptedParts >
12 </wsp:Policy >

Listing C.4: The WS-Security Policy Protection Assertions for the Output Messages
1 <wsp:Policy wsu:Id="SecureRMSessionOutput" >
2 <sp:SignedParts >
3 <sp:Header Namespace="http:// schemas.xmlsoap.org/ws /2004/08/ addressing"/>
4 <sp:Header Namespace="http://www.w3.org /2005/08/ addressing"/>
5 <sp:Header Namespace="http:// schemas.xmlsoap.org/ws /2005/02/ rm"/>
6 <sp:Header Namespace="http://docs.oasis -open.org/ws-rx/wsrm /200702"/>
7 <sp:Body />
8 </sp:SignedParts >
9 <sp:EncryptedParts >

10 <sp:Body />
11 </sp:EncryptedParts >
12 </wsp:Policy >

C.2. SecRM Scenario Test Results

This section analyzes the SOAP message traffic produced by the selected platforms
for the SecRM scenario by checking for the existence of relevant WS-* elements as

315

C. WS-* Implementation of the Secure WS-ReliableMessaging Scenario

defined in table C.1 within the exchanged SOAP messages. The approach taken
follows the test approach proposed in [197] which is, roughly speaking, invocation of
the service by a QoS-aware client, logging of the SOAP message traffic, and analysis
of the captured message trace.

The analysis of the test run on the GlassFish-openESB platform shows a close match
to the scenario definitions. Yet, the results obtained slightly deviate from the expected
results, since, in general, the wss:Signature is not encrypted if the env:Body is not
encrypted on the GlassFish-openESB platform. This concerns message types 3, 4,
7, 8, and 9. Message type 6 contains an encrypted and signed env:Body, although
the scenario definitions intend an empty and unprotected env:Body. Although
this is a deviation from the scenario definition, the behavior of the GlassFish-
openESB platform is standard compliant since the “primary signature element is
NOT REQUIRED to be encrypted [...] when there is nothing in the message that is
covered by this signature that is encrypted.” [145, lines 1730/1731]. Conversely, the
env:Body of message type 10 is encrypted, and therefore the wss:Signature also is
encrypted.

Interestingly, the GlassFish-openESB platform first sends a wsrm:CloseSequence

message and then a wsrm:TerminateSequence message to terminate the sequence.
The opposite party answers both messages with a corresponding response message.
Although this means that the GlassFish-openESB platform’s message sequence differs
from the scenario description, this is a minor deviation since both message types
are protected in exactly the same way and both have the same purpose. Therefore,
the four messages are treated as two two-part message types 7 and 8 in the scenario
analysis below.

Table C.2 summarizes the results of the scenario analysis for the GlassFish-openESB
platform. It shows the protected message parts and the keys used for protection.
The notation conventions correspond to the ones defined for table C.1.

Compared to the GlassFish-openESB platform, the results obtained from the
test runs on the IBM WebSphere platform deviate significantly from the scenario
definitions. Concerning the message sequence, the fact that neither the WS-RM
sequence nor the WS-SecureConversation security context is terminated or canceled
is striking. On the IBM WebSphere platform, sequences or sessions have to be
closed explicitly by addressing the WS-RM sequence in the source code of a client
application. However, this does not fulfill the call for policy-based implementation of
WS-* functionality (cf. section 2.1) and is therefore considered to be invalid for this
work.

However, not only the message sequence does not comply with the SecRM
scenario, but also the structure of several messages. The wsu:Timestamp ele-
ments have no expiration date, the message env:Body always is encrypted, even
when the scenario does not intend a confidentiality protection, and the IBM Web-
Sphere platform only uses a wss:SecurityTokenReference instead of an embedded
wsc:SecurityContextToken. Similar to the results for the GlassFish-openESB plat-
form, message type 6 has an integrity and confidentiality protected env:Body which
is not scenario compliant. Table C.3 lists the protected parts and gives an overview

316

C.2. SecRM Scenario Test Results

Msg Sign Body TS WS-A WS-R EncKey
No enc enc sig sig sig sig enc

1 SK1 PrKC ◦ PuKS

2 SK2 PrKS ◦ PuKC

3 • • DKC2 ◦ ◦
4 • • DKS2 ◦ ◦
5 DKC1 DKC2 ◦
6 DKS1 DKS2 ◦
7 • • DKC2 ◦
8 • • DKS2 ◦
9 • • DKC2 ◦ ◦
10 DKS1 DKS2 ◦ ◦

Table C.2.: Message Protection and Keys Used for Protection Realization on the
GlassFish-openESB Platform

of the keys used to realize the protection. The notation corresponds to the tables
C.1 and C.2.

Msg Sign Body TS WS-A WS-R EncKey
No enc enc sig sig sig sig enc

1 SK1 PrKC ◦ PuKS

2 SK2 PrKS ◦ PuKC

3 DKC1 DKC2 ◦ ◦
4 DKS1 DKS2 ◦ ◦
5 DKC1 DKC2 ◦
6 DKS1 DKS2 ◦

Table C.3.: Message Protection and Keys Used for Protection Realization on the
IBM WebSphere Platform

317

D. SPIN Validation of the BT
Execution Model

This appendix contains research results that have been created by Matthias Geiger
for his diploma thesis which has been supervised during this work’s dissertation
project. The contents have been adapted from Matthias’ diploma thesis.

The validation of the BT Execution Model is performed using the well-known
model checker SPIN1 that has been invented by Gerard J. Holzmann for the purpose
of analyzing interacting software components. From a high-level point of view,
validation based on SPIN works as follows. At first, the behavior of the interacting
components as well as the message channels used for interaction are captured using
SPIN’s input language Promela. SPIN is then able to derive the state space of
the overall system from the Promela model, that means SPIN derives all possible
interactions of the components (as long as the overall system is finite and memory
suffices). Relevant properties of the system can be expressed in the temporal logic
language Linear Temporal Logic (LTL) and SPIN is able to check the corresponding
expressions against the state space. The reader is assumed to have a working
knowledge of model checking methods and SPIN in particular. For a comprehensive
introduction to model checking with SPIN, please see [62]. For another excellent
introduction to model checking, please see [17,25].

The presentation of the SPIN validation of the BT execution model is split up
into the following sections. At first, the BT execution model as input for validation
is discussed in section D.1. Then, the representation of the BT execution model
using Promela is presented in section D.2 and brief description of simulating the
model using the XSPIN functionalities is given in section D.3. The formulation of
the intended system properties as well as their validation then is presented in section
D.4. Section D.5 concludes.

D.1. The BT Execution Model as Validation Input

The object of investigation of the BT execution model are the control process
state machines of section 4.3. These specify the admissible message exchanges
between the respective control processes, the backend processes and superordinate
master processes. Precisely speaking, only the control flow of the control process

1http://spinroot.com/spin/whatispin.html, last access: 12/20/2011

319

http://spinroot.com/spin/whatispin.html

D. SPIN Validation of the BT Execution Model

state machines will be analyzed. The realization of various BT configuration QoS
parameters that are proposed to be implemented at the messaging layer (cf. sections
2.3.1 and 4.3) is assumed to be safe. Similarly, the details of implementing the
control flow using Web Services and BPEL are not taken into consideration. As a
consequence, the validation results of this appendix only apply if the abstract control
process models are not modified upon translation into BPEL code.

The sample state machines of figures 4.2 and 4.3 (page 95/96) that represent the
most complex Single-Action BT configuration from a control flow point of view are
used as input for the formal analysis. This appendix will show that these sample
requester and responder machines eventually terminate in a consistent final state
upon execution, i.e., both in the Success state or both in the Failure state. Strictly
speaking, this result cannot be taken to any BT configuration that deviates from the
sample state machines’ control flow definition. However, it is noteworthy that the
validation did not reveal any major flaw (except for naming inconsistencies in the
visual models) in the sample machines. So, deriving (less complex) machines for less
complex BT configurations should be doable without introducing inconsistencies.

Finally, the sample state machines of section 4.3 do not only define cross-organi-
zational message exchanges, but also message exchanges with backend and master
components. Hence, these must be suitably represented in the validation model. The
master components are trivial and the corresponding Promela models therefore will
be introduced in the next section. The backend components, however, exchange
multiple messages with the control processes and hence are first visualized as state
machines in this section.

Figure D.1.: Resquester Backend Automaton

Figures D.1 and D.2 show the corresponding state machines for the backends of
the BT requester and responder roles, respectively. The visualization concept for
the backends corresponds to the visualization concept of the control process state
machines, that means the labels for states and transitions are defined by analogy.
Moreover, the concept for unfolding hierarchical states is the same. In the start state
of the backend machines, receiving a start message from the master components is
admissible. After that, the exchange of business documents and business signals as

320

D.2. Promela Representation of the BT Execution Model

Figure D.2.: Responder Backend Automaton

implied by the corresponding control process machines takes place. In that regard, it
is noteworthy that there are no events in the backend machines that represent failing
message exchanges. This is because communication between control processes and
backends is assumed to be safe (cf. section 4.2). The details of transforming these
state machines into a Promela representation are given in the next section.

D.2. Promela Representation of the BT Execution
Model

This section discusses the assumptions, design choices and language constructs
used for transforming the state machines of the BT execution model into valid
Promela processes. First, the overall structure of the process system, global variable
definitions as well as the message channels used are described. Afterwards, the
individual processes are described in detail.

D.2.1. Overall Process Structure and Global Resources

For each component of the BT execution model a separate Promela proctype

(process) is defined that represents the behavior of the respective component. This
leads to the following list of proctypes:

• The Requester control process (REQ)

• The Responder control process (RESP)

• The Requester backend process (BEreq)

• The Responder backend process (BEresp)

• The Requester master process (MAreq)

• The Responder master process (MAresp)

321

D. SPIN Validation of the BT Execution Model

• The service for creating RA signal messages (ReceiptAcknowledgementCreator
(RAC))

The goal of the validation is to prove that all backend and control processes
eventually reach a common final state, that means all processes are supposed to
terminate in the Failure state or, in case the BT execution is successful, in the
Success state. Therefore, boolean variables are added to each of the corresponding
proctypes in order to represent success or failure (processName EndStateFail and
processName EndStateSuccess, respectively).

In addition, Promela channels are defined for representing the messaging chan-
nels between the proctypes. In that regard, it is vital to note that synchronous
communication is assumed between the interacting components. As a consequence,
the Promela channels are defined to have a buffer length of 0. The identifiers for the
channels are derived according to the pattern chansender 2receiver . Moreover,
it is noteworthy that each channel is unidirectional so that the interaction between
two proctypes necessitates the definition of two channels in opposite directions.

In the Promela model, messages are represented as symbolic names (declared
using the mtype keyword). This simplification is unproblematic for the BT execution
model because it does not rely on the message contents (as opposed to the control
flow of BCs). Therefore, the message names can simply be taken over from the state
machine definitions of the BT execution model. Listing D.1 shows the definition of
all message and channel definitions.

Listing D.1: Promela Definition of Messages and Message Channels

1 /* Global constants */

2 /* Constant representing the retryCount parameter of the BT

execution model */

3 #define MAX_RETRIES 3

4
5 /* Global variables */

6 /* Boolean variables for representing the Failure end state

of proctypes */

7 bool reqEndStateFail , respEndStateFail , reqBEEndStateFail ,

respBEEndStateFail;

8
9 /* Boolean variables for representing the Success end state

of proctypes */

10 bool reqEndStateSuccess , respEndStateSuccess ,

reqBEEndStateSuccess , respBEEndStateSuccess;

11
12 /* Message type declaration */

13 mtype = {

14 start ,

15 generalException ,

16 cancel ,

17 solicitBizDoc ,

322

D.2. Promela Representation of the BT Execution Model

18 sendBizDoc ,

19 receiptAckException , receiptAck ,

20 acceptAckException , acceptAck ,

21 persistStateChanges

22 };

23
24 /* Message channel declaration */

25 chan req2resp = [0] of { mtype };

26 chan resp2req = [0] of { mtype };

27
28 chan req2be = [0] of { mtype };

29 chan be2req = [0] of { mtype };

30
31 chan resp2be = [0] of { mtype };

32 chan be2resp = [0] of { mtype };

33
34 chan resp2rac = [0] of { mtype };

35 chan rac2resp = [0] of { mtype };

36
37 chan ma2req = [0] of { mtype };

38 chan ma2resp = [0] of { mtype };

39
40 chan ma2beReq = [0] of { mtype };

41 chan ma2beResp = [0] of { mtype };

D.2.2. Promela Representation of the Requester Control
Process

Before the Promela representation of the requester control process is given, the
approach for transforming the state machines of the BT execution model is described.

Promela does not offer an explicit concept for modeling states. As a consequence
the automaton states such as Started or AwaitBizDoc are only implicitly existent in
the below proctypes. For better readability, the names of the automaton states will
added in comments. In contrast to the states, the transitions of the state machines
can directly be transformed into Promela code. For example, the transition labeled
BE?cancel of the requester’s state machine can be encoded as be2req?cancel in
Promela. As the Promela processes use symbolic names for representing message
types, the message names of the state machines can be taken over unmodified. In
addition, the syntax and semantics of representing incoming (?) and outgoing (!)
messages is the same for Promela and the used state machine formalization so that
the symbols ‘?’ and ‘!’ also can be taken over unmodified. In contrast to this,
the names of the messaging partners as used in the state machine model cannot be
taken over unmodified because Promela enforces using channels for communication.
Hence, the name of the communication partner must be replaced with the name
of the communication channel that is defined for the two communication partners

323

D. SPIN Validation of the BT Execution Model

under consideration. For example, if the requester process sends a message to the
backend process then the channel req2be is to be used. If the requester receives a
message from the backend then the channel be2req is to be used.

The state machines of the BT execution model require the definition of branching
behavior. For example, in the Started state of the requester control process either
sending a solicitBizDoc message to the responder, receiving a generalException from
the responder, receiving a cancel message from the backend or the TimeToPerform
timeout are admissible. The Promela if construct can be used to capture such
branching behavior. However, it is vital to note that the semantics of a Promela
if significantly deviates from the semantics of an if construct in procedural pro-
gramming languages. In Promela, the guards of the branches of the if construct
(defined as ::guard -> ...) are evaluated first. Then, one branch is selected on a
non-deterministic basis out of those branches with a guard that evaluates to true
(cf. [62, pages 56-58 and 424-425]). For demonstrating the concept, listing D.2 shows
the representation of the Started state of the requester control process.

Listing D.2: Exemplary Usage of a Promela if Construct

1 ...

2 /* State: Started */

3 if

4 :: resp2req?generalException ->

5 propagateErrorToBackend(req2be ,reqEndStateFail);

6 :: be2req?cancel ->

7 propagateError(req2resp ,reqEndStateFail);

8 ::true -> /* Enable Timeout TimeToPerform */

9 propagateErrorToBackend(req2be ,reqEndStateFail);

10 propagateError(req2resp ,reqEndStateFail);

11 :: req2be!solicitBizDoc ->

12 /* State: AwaitBizDoc */

13 if ... fi;

14 fi;

15 ...

The attentive reader may have noticed that listing D.2 does not define any kind of
counter or clock for controlling the TimeToPerform timer. Indeed, Promela abstracts
from real time or clocks. The concept of a timeout is instead modeled by means of a
true-guarded branch. This basically means that the timeout can be fired irrespective
of how fast the alternative activities are performed. Note that this reflects the nature
of distributed systems very well because well-defined distributed systems should not
rely on timing. Moreover, the probability of a timeout is not of any interest for the
analysis of the BT execution model because it is supposed to always produce correct
results and not only in the majority of runs.

Timeouts may occur in almost any state of the BT execution model’s state
machines. Similarly, cancel messages of the backend or exception messages of the
partner control process also are accepted in almost any state. As the reactions to such

324

D.2. Promela Representation of the BT Execution Model

events is almost always the same, Promela inline definitions are used to maintain
well-structured Promela code. A Promela inline definition is not a function or
procedure as available in procedural programming languages. Instead, an inline

definition declares the name and the parameters of a textual template that can be
included in different Promela code by referencing the name and providing values for
the parameters (cf. [62, pages 64-66 and 428-429]). Listing D.3 shows the usage of
inline definitions for the purpose of reusing the behavioral specification of processing
timeouts or exception messages. The following list enumerates the different cases
that can be covered based on these templates:

1. The backend of a particular control process terminates the BT us-
ing a cancel message. In this case, the respective control process is in
charge of informing the partner control process about the termination. It is
noteworthy that sending the corresponding exception message to the partner
control process may fail. For example, the partner control process may detect
an error at the same time and try to terminate the BT execution as well. In
order to avoid blocking control processes in such a case, the Promela ‘timeout’
variable is used. The Promela timeout is a predefined global boolean variable
that becomes true whenever no further action is possible in the system under
consideration. Hence, using the timeout variable as shown in listing D.3 is a
means to model the geFail events of the control process state machines. In any
case, that means whether the generalException message has been delivered
to the partner control process or not, the respective Failure state variable of
the control process is set to true.
The representation of this behavior is shown in the inline definition prop-

agateError(msgchan, stateVar) of the listing D.3. The parameters to be
provided are the message channel to be used and the state variable to be
written.

2. A generalException message is received from the partner control
process. In this case, the respective control process is in charge of informing
the corresponding backend about the failure. The representation of this case is
similar to the first case, but the predefined Promela timeout variable is not
needed. This is due to the fact that the backend cannot terminate without
informing its corresponding control process.

3. The control process itself detects the need for terminating the BT
execution. Valid reasons for which a control process may decide to terminate
a BT execution are timeouts or repeatedly failing business document/business
signal transmissions. In this case, the corresponding backend as well as the
partner control process have to be informed about the BT execution termination.
For representing this case in Promela, the inline definitions for the first two
cases can be used.

325

D. SPIN Validation of the BT Execution Model

Listing D.3: The inline Definitions Used

1 inline propagateError(msgchan , stateVar)

2 {

3 if

4 :: msgchan!generalException;

5 :: timeout -> skip; /* generalException cannot be delivered

*/

6 fi;

7 stateVar = true;

8 }

9
10 inline propagateErrorToBackend(msgchan , stateVar)

11 {

12 msgchan!generalException;

13 stateVar = true;

14 }

Finally, listing D.4 shows the Promela definition of the requester control process
that has been derived according to the above procedures.

Listing D.4: Promela Definition of the Requester Control Process

1 /* Requester Control Process */

2 proctype requester ()

3 {

4 int retryCount = 0;

5 ma2req?start;

6 /* State: Started */

7 if

8 :: resp2req?generalException ->

9 propagateErrorToBackend(req2be ,reqEndStateFail);

10 :: be2req?cancel ->

11 propagateError(req2resp ,reqEndStateFail);

12 ::true -> /* Enable Timeout TimeToPerform */

13 propagateErrorToBackend(req2be ,reqEndStateFail);

14 propagateError(req2resp ,reqEndStateFail);

15 :: req2be!solicitBizDoc ->

16 /* State: AwaitBizDoc */

17 if

18 :: resp2req?generalException ->

19 propagateErrorToBackend(req2be ,reqEndStateFail);

20 :: be2req?cancel ->

21 propagateError(req2resp ,reqEndStateFail);

22 ::true -> /* Enable Timeout TimeToPerform */

23 propagateErrorToBackend(req2be ,reqEndStateFail);

24 propagateError(req2resp ,reqEndStateFail);

25 :: be2req?sendBizDoc ->

26 /* State: DeliverBizDoc */

326

D.2. Promela Representation of the BT Execution Model

27 do

28 :: be2req?cancel ->

29 propagateError(req2resp ,reqEndStateFail);

30 break;

31 :: resp2req?generalException ->

32 propagateErrorToBackend(req2be ,reqEndStateFail);

33 break;

34 ::true -> /* Enable Timeout TimeToPerform */

35 propagateErrorToBackend(req2be ,reqEndStateFail);

36 propagateError(req2resp ,reqEndStateFail);

37 break;

38 ::(retryCount <= MAX_RETRIES) -> retryCount =

retryCount + 1; /* Simulate undeliverable message

*/

39 ::(retryCount >MAX_RETRIES) -> /* Maximum number of

retries exceeded */

40 propagateErrorToBackend(req2be ,reqEndStateFail);

41 propagateError(req2resp ,reqEndStateFail);

42 break;

43 :: req2resp!sendBizDoc ->

44 /* State: AwaitReceiptAck */

45 if

46 :: be2req?cancel ->

47 propagateError(req2resp ,reqEndStateFail);

48 :: resp2req?generalException ->

49 propagateErrorToBackend(req2be ,reqEndStateFail);

50 break;

51 ::true -> /* Enable Timeouts TimeToPerform ,

TimeToReceiptAck , TimeToAcceptAck */

52 propagateErrorToBackend(req2be ,reqEndStateFail);

53 propagateError(req2resp ,reqEndStateFail);

54 :: resp2req?receiptAckException ->

55 /* State: DeliverReceiptAckException */

56 if

57 :: be2req?cancel ->

58 propagateError(req2resp ,reqEndStateFail);

59 ::true -> /* Enable Timeout TimeToPerform */

60 propagateErrorToBackend(req2be ,reqEndStateFail);

61 propagateError(req2resp ,reqEndStateFail);

62 :: req2be!receiptAckException;

63 fi;

64 reqEndStateFail = true;

65 :: resp2req?receiptAck ->

66 /* State: DeliverReceiptAck */

67 if

68 :: be2req?cancel ->

327

D. SPIN Validation of the BT Execution Model

69 propagateError(req2resp ,reqEndStateFail);

70 :: resp2req?generalException ->

71 propagateErrorToBackend(req2be ,reqEndStateFail);

72 ::true -> /* Enable Timeouts TimeToPerform ,

TimeToAcceptAck */

73 propagateErrorToBackend(req2be ,reqEndStateFail);

74 propagateError(req2resp ,reqEndStateFail);

75 :: req2be!receiptAck ->

76 /* State: AwaitAcceptAck */

77 if

78 :: be2req?cancel ->

79 propagateError(req2resp ,reqEndStateFail);

80 :: resp2req?generalException ->

81 propagateErrorToBackend(req2be ,reqEndStateFail)

;

82 ::true -> /* Enable Timeouts TimeToPerform ,

TimeToAcceptAck */

83 propagateErrorToBackend(req2be ,reqEndStateFail)

;

84 propagateError(req2resp ,reqEndStateFail);

85 :: resp2req?acceptAckException ->

86 /* State: DeliverAcceptAckException */

87 if

88 :: be2req?cancel ->

89 propagateError(req2resp ,reqEndStateFail);

90 ::true -> /* Enable Timeout TimeToPerform */

91 propagateErrorToBackend(req2be ,

reqEndStateFail);

92 propagateError(req2resp ,reqEndStateFail);

93 :: req2be!acceptAckException;

94 reqEndStateFail = true;

95 fi;

96 :: resp2req?acceptAck ->

97 /* State: DeliverAcceptAck */

98 req2be!acceptAck;

99 /* State: Propagate */

100 req2be!persistStateChanges;

101 reqEndStateSuccess = true;

102 fi;

103 fi;

104 fi;

105 break;

106 od;

107 fi;

108 fi;

109 }

328

D.2. Promela Representation of the BT Execution Model

D.2.3. Promela Representation of the Responder Control
Process

The Promela representation of the responder control process can basically be derived
by analogy with the requester’ s control process representation. A major difference,
though, is that timeouts are mainly controlled by the requester control process so
that true-guarded branches of if constructs are not needed. The only exception
is the responder’s AwaitBizDoc state in which a timeout is used to terminate the
process in case the requester never sends the business document.

Another important specialty of the responder process is that sending the ReceiptAc-
knowledgement message to the requester and receiving the AcceptanceAcknowledge-
ment from the backend can occur concurrently. After the RAC service has successfully
validated the business document, it will be delivered to the backend. The backend,
in turn, checks the business document for processability and correspondingly answers
with an AcceptanceAcknowledgement or an AcceptanceAcknowledgementException.
At the same time, the responder control process tries to deliver the ReceiptAcknowl-
edgement to the requester control process. These activities are defined to be executed
concurrently so that the oder of sending/receiving the corresponding messages in
the responder control process is not determined. Either the ReceiptAcknowledgement
is sent first and then the AcceptanceAcknowledgement is received or the other way
round. In addition, the transmission of the ReceiptAcknowledgement may have to be
repeated in case of delivery errors and exception/cancel messages may be received
from the requester or from the backend process, respectively. The responder automa-
ton states DeliverRA, AwaitAcceptance, Deliver RA-AA and GotAcceptAckException
correspond to this concurrent behavior. Their Promela representation is shown in
lines 49-79 of listing D.5. It is noteworthy that these states are not represented
by analogy with the other states. Instead, they are enclosed within a Promela
do loop that is performed until the ReceiptAcknowledgement has successfully been
transmitted (or the retryCount is exceeded) and the AcceptanceAcknowledgement
has been received. In order to prevent multiple successful transmissions of the
ReceiptAcknowledgement or multiple receipts of the AcceptanceAcknowledgement,
boolean flags are used to represent successful transmission or receipt (see lines 49/50
of listing D.5). Upon successful transmission/receipt the flags are set to true which
disables the corresponding branches of the Promela do loop. Once both flags have
been set to true the DeliverAcceptanceAck state of the responder state machine is
reached the representation of which starts in line 82. In this state, the AcceptanceAc-
knowledgement is tried to be transmitted to the requester process. For this purpose,
the retryCount is reset to 0 beforehand (see line 81).

Apart from the two peculiarities just described the Promela model of the responder
process is similar to the requester process. Listing D.5 shows the Promela code for
representing the responder control process.

329

D. SPIN Validation of the BT Execution Model

Listing D.5: Promela Definition of the Responder Control Process

1 /* Responder Control Process */

2 proctype responder ()

3 {

4 int retryCount = 0;

5 ma2resp?start;

6 /* State: AwaitBizDoc */

7 if

8 :: req2resp?generalException ->

9 propagateErrorToBackend(resp2be ,respEndStateFail);

10 :: be2resp?cancel ->

11 propagateError(resp2req ,respEndStateFail);

12 ::true -> /* Enable Timeout TimeToPerform */

13 propagateErrorToBackend(resp2be ,respEndStateFail);

14 propagateError(resp2req ,respEndStateFail);

15 :: req2resp?sendBizDoc ->

16 /* State: GotBizDoc */

17 if

18 :: req2resp?generalException ->

19 propagateErrorToBackend(resp2be ,respEndStateFail);

20 :: be2resp?cancel ->

21 propagateError(resp2req ,respEndStateFail);

22 :: resp2rac!sendBizDoc; ->

23 /* State: AwaitValidation */

24 if

25 :: req2resp?generalException ->

26 propagateErrorToBackend(resp2be ,respEndStateFail);

27 :: be2resp?cancel ->

28 propagateError(resp2req ,respEndStateFail);

29 :: rac2resp?receiptAckException ->

30 /* State: GotReceiptAckException */

31 if

32 :: resp2req!receiptAckException;

33 :: timeout -> skip; /* Simulate delivery error */

34 fi;

35 if

36 :: resp2be!receiptAckException;

37 :: timeout ->skip; /* Simulate delivery error */

38 fi;

39 respEndStateFail = true;

40 :: rac2resp?receiptAck ->

41 /* State: GotReceiptAck */

42 if

43 :: req2resp?generalException ->

44 propagateErrorToBackend(resp2be ,respEndStateFail);

45 :: be2resp?cancel ->

330

D.2. Promela Representation of the BT Execution Model

46 propagateError(resp2req ,respEndStateFail);

47 :: resp2be!sendBizDoc ->

48 /* State: DeliverReceiptAck */

49 bool sendRAsuccessful = false;

50 bool receivedAcceptAck = false;

51 do

52 :: req2resp?generalException ->

53 propagateErrorToBackend(resp2be ,respEndStateFail)

;

54 break;

55 ::! sendRAsuccessful ->

56 if

57 ::(retryCount <= MAX_RETRIES) -> retryCount =

retryCount + 1; /* Simulate delivery error */

58 ::(retryCount >MAX_RETRIES) ->

59 propagateErrorToBackend(resp2be ,

respEndStateFail);

60 propagateError(resp2req ,respEndStateFail);

61 break;

62 :: resp2req!receiptAck -> sendRAsuccessful = true

;

63 fi;

64 ::! receivedAcceptAck ->

65 if

66 /* Backend: Canceling is allowed for unless the

AA signal has been sent */

67 :: be2resp?cancel ->

68 propagateError(resp2req ,respEndStateFail);

69 break;

70 :: be2resp?acceptAckException ->

71 if

72 :: resp2req!acceptAckException;

73 :: timeout -> skip;

74 fi;

75 respEndStateFail = true;

76 break;

77 :: be2resp?acceptAck -> receivedAcceptAck = true;

78 fi;

79 :: sendRAsuccessful && receivedAcceptAck ->

80 /* State: DeliverAcceptanceAck */

81 retryCount = 0; /* Reset retryCount */

82 do

83 :: req2resp?generalException ->

84 propagateErrorToBackend(resp2be ,

respEndStateFail);

85 break;

331

D. SPIN Validation of the BT Execution Model

86 ::(retryCount <= MAX_RETRIES) -> retryCount =

retryCount + 1; /* Simulate delivery error */

87 ::(retryCount >MAX_RETRIES) ->

88 propagateErrorToBackend(resp2be ,

respEndStateFail);

89 propagateError(resp2req ,respEndStateFail);

90 break;

91 :: resp2req!acceptAck ->

92 /* State: Propagate */

93 resp2be!persistStateChanges;

94 respEndStateSuccess = true;

95 break;

96 od;

97 break;

98 od;

99 fi;

100 fi;

101 fi;

102 fi;

103 }

D.2.4. Promela Representation of the Requester’s Backend
Process

The derivation of the Promela representation of the requester’s backend process by
and large corresponds to the above description. Alone the AwaitAcceptAck state
deserves more detailed discussion.

Once the requester’s backend has entered this state, canceling the BT may not
be admissible any more depending on whether the requester control process has
received the AcceptanceAcknowledgement signal yet or not. If the requester control
process has received the AcceptanceAcknowledgement, canceling is not admissible
any more. In case the backend tries to transmit a cancel message nonetheless, the
corresponding cancelFail event is fired in the backend’s state machine. Representing
this behavior in Promela is not a big issue because synchronous communication is
assumed, that means the channel buffer has size 0. This, in turn, implies that the
success of the cancel message transmission depends on whether the requester control
process accepts it or not. In case canceling fails, the requester’s backend process
remains in the same state. This case is represented using a do loop and a ::true

guard (see line 27 in listing D.6). The problem with this representation is that the
do loop may be repeated infinitely often which is inconvenient for the validation.
In order to enable validation, the two progress labels inLoop and passedLoop are
defined that will be discussed in more detail during the presentation of the validation
in section D.4.

332

D.2. Promela Representation of the BT Execution Model

Listing D.6: Promela Definition of the Requester Backend Process

1 /* Requester backend process */

2 proctype BEreq(){

3 ma2beReq?start;

4 /* State: Started */

5 if

6 :: be2req!cancel -> reqBEEndStateFail = true;

7 :: req2be?generalException -> reqBEEndStateFail = true;

8 :: req2be?solicitBizDoc ->

9 /* State: createBizDoc */

10 if

11 :: be2req!cancel -> reqBEEndStateFail = true;

12 :: req2be?generalException -> reqBEEndStateFail = true;

13 :: be2req!sendBizDoc ->

14 /* State: AwaitReceiptAck */

15 if

16 :: be2req!cancel -> reqBEEndStateFail = true;

17 :: req2be?generalException -> reqBEEndStateFail = true;

18 :: req2be?receiptAckException -> reqBEEndStateFail =

true;

19 :: req2be?receiptAck ->

20 /* State: AwaitAcceptAck */

21 do

22 :: be2req!cancel ->

23 reqBEEndStateFail = true;

24 break;

25 ::true -> /* ‘cancelFail ’: canceling failed - stay

in the same state */

26 inLoop: skip;

27 :: req2be?generalException ->

28 reqBEEndStateFail = true;

29 break;

30 :: req2be?acceptAckException ->

31 reqBEEndStateFail = true;

32 break;

33 :: req2be?acceptAck ->

34 /* State: PrePersist */

35 req2be?persistStateChanges;

36 reqBEEndStateSuccess = true;

37 break;

38 od;

39 passedLoop: skip;

40 fi;

41 fi;

42 fi;}

333

D. SPIN Validation of the BT Execution Model

D.2.5. Promela Representation of the Responder’s Backend
Process

The Promela representation of the responder’s backend process can be derived by
analogy with the above Promela processes. Listing D.7 therefore shows its definition
without further discussion.

Listing D.7: Promela Definition of the Responder Backend Process

1 /* Responder Backend Process */

2 proctype BEresp ()

3 {

4 ma2beResp?start;

5 /* State: AwaitBizDoc */

6 if

7 :: resp2be?generalException -> respBEEndStateFail = true;

8 :: be2resp!cancel -> respBEEndStateFail = true;

9 :: resp2be?receiptAckException -> respBEEndStateFail = true

;

10 :: resp2be?sendBizDoc ->

11 /* State: AcceptValidation */

12 if

13 :: resp2be?generalException -> respBEEndStateFail = true;

14 :: be2resp!cancel -> respBEEndStateFail = true;

15 :: be2resp!acceptAckException -> respBEEndStateFail =

true;

16 :: be2resp!acceptAck ->

17 /* State: PrePersist */

18 if

19 :: resp2be?generalException -> respBEEndStateFail =

true;

20 :: resp2be?persistStateChanges -> respBEEndStateSuccess

= true;

21 fi

22 fi

23 fi

24 }

D.2.6. Promela Representation of the Master Processes

The only purpose of the master processes as used in the BT execution model is
starting the backend processes and the control processes. The Promela representation
of the master processes is correspondingly simple. At first, a start message is sent to
the respective backend process and then a start message is sent to the corresponding
control process.

334

D.2. Promela Representation of the BT Execution Model

Listing D.8: Promela Definition of the Master Processes

1 proctype MAreq()

2 {

3 ma2beReq!start;

4 ma2req!start;

5 }

6
7 proctype MAresp ()

8 {

9 ma2beResp!start;

10 ma2resp!start;

11 }

D.2.7. Promela Representation of the
ReceiptAcknowledgementCreation Service

The behavior of the ReceiptAcknowledgementCreation service (RAC) is rather simple.
Upon incoming request, the RAC validates the corresponding business document
and replies with a ReceiptAcknowledgement or a ReceiptAcknowledgementException
depending on the validation result. This choice can be represented using a Promela
if construct that non-deterministically selects between the two different results as
shown in listing D.9. In addition to the two reply options of the RAC a third branch
leveraging Promela’s timeout variable is added to the if construct in order to avoid
blocking the process (cf. above). This is necessary because the control processes
may terminate before the RAC has provided a result. Moreover, the BT execution
may be terminated before the RAC even has been called. From an application point
of view, this is not critical because the RAC does not store any state and therefore
does not have to be aligned with the result of the BT execution. From the point of
view of Promela validation, this scenario is critical because the RAC would represent
a blocking process. Hence, a so-called end label (end_cancelBeforeCallingRAC;
cf. [62, pages 76-78 and 413-414]) is added to the Promela definition of the RAC
service in order to declare that staying in the initial state is acceptable for the RAC
process.

Listing D.9: Promela Definition of the ReceiptAcknowledgementCreation Service
(RAC)

1 /* ReceiptAck -Creation -Service process */

2 proctype recAckService ()

3 {

4 end_cancelBeforeCallingRAC:

5 resp2rac?sendBizDoc;

6 if

7 :: rac2resp!receiptAck;

8 :: rac2resp!receiptAckException;

335

D. SPIN Validation of the BT Execution Model

9 :: timeout -> skip;

10 fi

11 }

D.3. BT Execution Model Simulation Using XSPIN

XSPIN is the graphical user interface of the SPIN system. An important XSPIN
feature for exploring the behavior of the specified system is simulation. XSPIN offers
to either randomly generate sample runs (also denoted as Trail) of the system or to
let the user choose between alternative paths in an interactive manner. In addition,
XSPIN offers different options for visualizing system runs, among others Timeline
and Message Sequence Charts. Moreover, the values of the local and global variables
can be displayed. Figure D.3 shows the selected options that have been used for the
following example runs.

Figure D.3.: Simulation Configuration for the Process System (Screenshot XSPIN)

Figure D.4 shows an exemplary successful run, that means an interaction that does
not terminate prematurely because of Receipt- or AcceptanceAcknowledgementExcep-
tions. After the BT execution protocol simulation terminates successfully, all local
process state variables signifying Success are set to true (cf. figure D.4).

Figure D.5 shows a system run that contains the transmission of an AcceptanceAc-
knowledgementException. After the business document has been received by the
responder control process, it is passed on to the RAC for legibility validation. Then,
the RAC confirms legibility so that the business document is passed on to the back-
end system that reacts with an AcceptanceAcknowledgementException which is then

336

D.4. Validation of the BT Execution Model Using SPIN

Figure D.4.: Message Sequence Chart of a Successful Run (Screenshot XSPIN)

passed on to the requester control process and the requester backend subsequently.
At the end of the run, all local process state variables signifying Failure are set to
true as intended.

D.4. Validation of the BT Execution Model Using
SPIN

In its default configuration, SPIN verifies absence of invalid end states as a basic
soundness property of systems. Therefore, if any proctype reaches an end state and
if the overall system reaches an end state, that means no further action is possible,
then the end state of the respective proctype must be valid. If not defined otherwise,
the only valid end state of a proctype is the end of its code which is demarcated by
the closing curly brace of its definition body (cf. [62, page 77]). However, this default
notion of valid end state is not adequate for processes that are to be repeatedly used,

337

D. SPIN Validation of the BT Execution Model

Figure D.5.: Message Sequence Chart of an Erroneous Run (Screenshot XSPIN)

for example semaphores. In addition, other processes may have to be performed on
an optional basis only. Then, the beginning of the corresponding proctype definition
would be a valid end state as well which would correspond to not performing the
respective process at all. The RAC process is an example for optional behavior
because the interaction between control processes may terminate before the RAC
has been called (which is a valid system run as defined in the BT execution model).
In order to define additional valid end states for processes, Promela offers so-called
end labels (cf. above). Hence, a corresponding end label is also defined for the RAC
process definition (cf. listing D.9, row 4).

In order to verify absence of invalid end states, the configuration as shown in figure
D.6 has been used. The corresponding verification result is shown in figure D.7.

As SPIN does not report on invalid end states, there is no final system configuration
that comprises a proctype in an invalid end state. This also implies absence of
deadlocks as a deadlock would imply proctypes in end states (that means no further
action is possible) that are not valid.

In addition, SPIN allows for analyzing unreachable code. In order to activate this
type of analysis, the option “Report Unreachable Code” must be activated in the

338

D.4. Validation of the BT Execution Model Using SPIN

Figure D.6.: SPIN Configuration for Invalid End States Analysis (Screenshot XSPIN)

validation configuration (cf. figure D.6). As SPIN allows for analyzing the whole
state space of the system under validation, the individual actions of the proctype

declarations can be checked for containment in the state space. SPIN has been
configured to report unreachable code when validating the BT execution model. The
result is that all states of the execution model’s state machines are reachable (cf.
figure D.7).

Beyond safety properties such as absence of invalid end states, SPIN is also able
to verfiy so-called liveness properties (cf. [17,25]). A famous example of a liveness
property is absence of non-progress cycles. A non-progress cycle is a cycle that can be
potentially executed infinitely often. The requester backend’s state machine contains
such a non-progress cycle because it may try to cancel the current BT infinitely often
in state AwaitAcceptanceAck (represented as do loop in lines 22-39 of listing D.6).

In that regard, the notions of weak fairness and strong fairness are of relevance.
Assume that a particular process is permanently able to perform a particular action.
Then, weak fairness means that the process eventually will perform that particular
action. The difference to strong fairness is that enabling the action infinitely often
(that means not necessarily permanently) implies that the action eventually will be
performed.

Intuitively, a fair process execution would imply that the requester backend’s state
machine eventually will not perform the cancelFail transition, but will receive an
exception message or an AcceptanceAcknowledgement. To be more precise, strong
fairness is needed which is not supported by SPIN directly. Strong fairness is needed
because no action of the requester backend’s non-progress cycle is permanently en-
abled. For example, receiving an AcceptanceAcknowledgement (req2be?acceptAck)
is not enabled as long as the statements ::true -> /* ‘cancelFail’: cancel-

339

D. SPIN Validation of the BT Execution Model

Figure D.7.: Verification Result for Invalid End States Analysis (Screenshot XSPIN)

ing failed - stay in the same state */ inLoop: skip; are executed. On
the other hand, receiving an AcceptanceAcknowledgement is possible in every itera-
tion of the non-progress cycle so that strong fairness is sufficient.

As SPIN does not support strongly fair process executions automatically, the strong
fairness property must be encoded into the properties to be verified. Therefore two
cases must be distinguished:

340

D.4. Validation of the BT Execution Model Using SPIN

The first case is that the do loop of the requester backend process is performed exactly
once, that means canceling the BT execution is never tried. The second case is that
the do loop of the requester backend process is performed at least twice but at most
finitely often, which means that canceling the BT execution is tried in vain at least
once but at most finitely often. In order to distinguish between the two cases, the
label inLoop: is inserted into line 27 of listing D.6 and used as follows.

If the requester backend’s proctype never passes by this label in a particular system
run then the do loop is executed exactly once (first case). Assume that the expression
in corresponds to reaching the label inLoop. Then, the LTL formula �!in can be
used to capture those system runs in which inLoop is never reached. The syntax for
expressing that a label is reached in Promela is processName[processID]@label.
As there is exactly one requester backend process for each system validation run, the
expression BEreq@inLoop is sufficient for the process under consideration. Hence,
�!BEreq@inLoop can be used to qualify the system runs that correspond to the first
case. As the first case excludes non-progress cycles, strong fairness is not needed.

On the contrary, the second case enters the non-progress cycle so that strong fairness
is needed. There is no limitation on the number of cancellation attempts defined in the
BT execution model and hence the backend indeed may try to cancel the BT execution
in vain infinitely often. However, it may be assumed that sooner or later the requester
backend process will deliver either an exception or an AcceptanceAcknowledgement
to its backend. From the perspective of SPIN, this assumption can be interpreted
as the fact that the delivery of an exception or AcceptanceAcknowledgement which
is enabled infinitely often is eventually performed. A general expression of strong
fairness in LTL is ((�♦P@U) → (�♦P@L)) (cf. [62, page 141]). This expression
says that if the label U of process P is reached once or infinitely often then label
L of process P also must be reachable once or infinitely often. In order to transfer
this expression to the second case, the additional label passedLoop is inserted into
row 40 of listing D.6. Reaching this label corresponds to leaving the non-progress
cycle of the requester backend which can be done by executing any branch of the do

loop except for the ::true branch. Based on the two labels inLoop and passedLoop

the strong fairness property then can be expressed as ((�♦in)→ (�♦passed)) if in
corresponds to reaching inLoop and passed corresponds to reaching passedLoop.

Now, as the two formulas �!in and ((�♦in)→ (�♦passed)) can be used to qualify
the above two cases, these can be used to restrict the state space of the BT execution
model to runs that do not execute the do loop of the requester backend infinitely
often. One option to do so is using these formulas as preconditions for the actual
property to be verified in logical implications.

Having defined how to exclude the non-progress cycle of the requester backend
from the analysis, the actual BT execution model property to be verified, i.e. state
alignment, is discussed next. The simulation runs of section D.3 show that reaching
a Success state is possible for both control processes and both backends at the same
time. So, technically speaking, the state alignment property of the BT execution
model can be expressed as either the two control processes and the two backend
processes all reach a Failure state or they all reach a Success state. The analysis

341

D. SPIN Validation of the BT Execution Model

of this property is split up into two parts. At first, correct termination of each
individual control or backend process is analyzed. Then, the alignment of the process
end states is verified.

For verifying correct termination of each backend and control process, the process
state variables defined in the Promela models are used (processName EndstateFailure
and processName EndstateSuccess). Initially, the two variables that are defined
for a particular process are set to false. If correctly modified, both variables never
carry a true value at the same time. In addition, at least one of the two vari-
ables must be true at the end of the process. In order to formally express these
conditions in an LTL formula, let p = processName EndstateFailure and q =

processName EndstateSuccess be the boolean variables representing failure and
success of the respective process. Then the formula (p∧!q)∨(!p∧q) expresses that the
process under consideration is either in a failure state or in a success state. However,
the formula does not take into consideration that the process is neither in a success
state nor in a failure state at the beginning. Put the other way around, the formula
can only be required for the end state of the process. In order to formalize this fact,
the LTL “stability” pattern can be used (cf. [62, pages 136-137]) that says that a
particular property r must permanently hold true from some point in time onwards
(formalized as ♦�r, cf. [62, page 137]). So, correct termination of a particular process
can be expressed in LTL as

♦�((p∧!q) ∨ (!p ∧ q))

Listing D.10 shows the application of this formula to the control processes and
backend processes of the BT execution model as well as the restriction to system
runs that never try to cancel the BT execution from within the requester backend or
do so at most finitely often. The formulas in lines 5 and 8 using the various variable
definitions of lines 11-29 have to be verified by SPIN for ensuring correct termination
of all control and backend processes.

Figure D.8 shows the exemplary input for verifying correct termination of the
requester backend process under the condition of finitely often repetition of the
requester backend’s do loop (cancellation attempts of the BT execution). The code
shown in the “Never Claim” area of the LTL editor is generated automatically from
the formula and variable input. Moreover, the verification configuration options
are shown in the small application window in the forefront of figure D.8. Finally,
the result of the verification is shown (see marking in figure D.8). It is noteworthy
that figure D.8 only shows the result for one formula and one backend process. The
additional cases of checking the formulas of lines 5 and 8 against the other backend
process and control processes have all been successfully verified as well.

Hence the claim can be established that each control and backend process terminates
correctly from a local perspective. The alignment of the local results is analyzed
next.

342

D.4. Validation of the BT Execution Model Using SPIN

Listing D.10: LTL Formulas for Validating the Consistent Use of Local Process State
Variables

1 /* Base LTL formula capturing ‘either Success or Failure ’ */

2 <>[]((p && !q) || (!p && q))

3
4 /* Base LTL formula for all runs that do not pass through

the label ‘inLoop ’ */

5 [] ! in -> <> [] ((p && !q) || (!p && q))

6
7 /* Base LTL formula for all runs that do pass through the

label ‘inLoop ’ */

8 ([] <> in -> [] <> passed) -> <> [] ((p && !q) || (!p && q)

)

9
10 /* Definitions for: ‘in’ and ‘passed ’ */

11 #define in BEreq@inLoop

12 #define passed BEreq@passedLoop

13
14 /* Redefinitions of p and q */

15 /* Requester process */

16 #define p (reqEndStateFail)

17 #define q (reqEndStateSuccess)

18
19 /* Responder process */

20 #define p (respEndStateFail)

21 #define q (respEndStateSuccess)

22
23 /* Requester backend */

24 #define p (reqBEEndStateFail)

25 #define q (reqBEEndStateSuccess)

26
27 /* Responder backend */

28 #define p (respBEEndStateFail)

29 #define q (respBEEndStateSuccess)

The state alignment property of the BT execution model, that means that the two
control processes and the two backend processes all reach a Failure state or they all
reach a Success state, does not express that all relevant processes reach an end state
at the same time. However, once any of the participating processes makes a decision
about success or failure (informally property p) then all other processes eventually
have to make the same decision (informally property q). This can be formalized as
follows in an abstract manner:

� (p→ ♦�q)

For the BT execution model, p and q have to concretized as follows:
p is either the disjunction of all process state variables signifying Success or the

343

D. SPIN Validation of the BT Execution Model

Figure D.8.: Verification Result for the Local Process State Variables (XSPIN LTL
Editor Screenshot)

disjunction of all process state variables signifying Failure. q then either is the
conjunction of all process state variables signifying Success or the conjunction of all
process state variables signifying Failure correspondingly.

The attentive reader may have noticed that verifying this formula does not ensure
that any process eventually makes a decision. If no decision is made then the
precondition of the implication (p→ ♦�q) does not hold and the overall implication
is true. However, the first analysis step above already shows that each process
eventually makes a decision. Hence, the precondition of this implication is true.

Listing D.11 shows the formalization of the second step in analyzing the state
alignment property of the BT execution model. Again, infinite repetitions of the
requester backend’s do loop must be ruled out so that the formulas to be verified
are given in lines 5 and 8. The definitions of the variables of these formulas are
given in lines 11-32. As the verification of all combinations of formulas and variable
definitions can be successfully verified (using the verification settings depicted in
figure D.8) the claim can be established that the BT execution model ensures state
alignment across the participating processes.

344

D.5. Validation Results

Listing D.11: LTL Formulas for Validating State Alignment

1 /* Base LTL formula representing consistent result across

participants */

2 [] (p -> <> [] q)

3
4 /* Base LTL formula for all runs that do not pass through

the label ‘inLoop ’ */

5 ([] ! in -> [] (p -> <> [] q))

6
7 /* Base LTL formula for all runs that do pass through the

label ‘inLoop ’ */

8 (([]<> in -> [] <> passed) -> [] (p -> <> [] q))

9
10 /* Definitions for: ‘in’ and ‘passed ’ */

11 #define in BEreq@inLoop

12 #define passed BEreq@passedLoop

13
14 /* Redefinition of p and q for the ‘Failure ’ case */

15 #define p (reqEndStateFail ==true) ||

16 (reqBEEndStateFail ==true) ||

17 (respEndStateFail ==true) ||

18 (respBEEndStateFail ==true)

19 #define q (reqEndStateFail ==true) &&

20 (reqBEEndStateFail ==true) &&

21 (respEndStateFail ==true) &&

22 (respBEEndStateFail ==true)

23
24 /* Redefinition of p and q for the ‘Success ’ case */

25 #define p (reqEndStateSuccess ==true) ||

26 (reqBEEndStateSuccess ==true) ||

27 (respEndStateSuccess ==true) ||

28 (respBEEndStateSuccess ==true)

29 #define q (reqEndStateSuccess ==true) &&

30 (reqBEEndStateSuccess ==true) &&

31 (respEndStateSuccess ==true) &&

32 (respBEEndStateSuccess ==true)

D.5. Validation Results

In conclusion, this appendix shows that the BT execution model can adequately be
represented as Promela processes. Based on this representation, XSPIN functionality
can be used to explore the behavior of the BT execution model by means of simulation.
In addition, the intended properties, that means termination and state alignment,
can be proved. In so far, the execution model outperforms the guidelines of B2Bi
standards (cf. chapter 4) and related scientific approaches (cf. chapter 7). However,

345

D. SPIN Validation of the BT Execution Model

it is vital to note that the properties proved only hold true for the abstract model that
has been verified. As this abstract model has been created manually, termination
and state alignment can only be taken for granted for the BPEL implementations of
chapter 5 if no modifications of the abstract model’s control flow are implied by the
implementation process. Finally, it is noteworthy that the BT execution model could
be verified at all by means of model checking considering the number of states and
transitions of the corresponding state machines. This is largely due to the assumption
of synchronous communication that eliminates the need for representing message
buffers in the state space of the system under verification.

346

Bibliography

[1] H. J. Ahn, P. Childerhouse, G. Vossen, and H. Lee, “Rethinking XML-enabled
agile supply chains,” International Journal of Information Management, vol.
article in press, 2011.

[2] Z. Ammarguellat, “A control-flow normalization algorithm and its complexity,”
IEEE Trans. Softw. Eng., vol. 18, pp. 237–251, March 1992. [Online]. Available:
http://dl.acm.org/citation.cfm?id=129809.129815

[3] S. Androutsellis-Theotokis, D. Spinellis, and V. Karakoidas, “Performing peer-
to-peer e-business transactions: a requirements analysis and preliminary design
proposal,” in Proceedings of the IADIS International Conference on e-Commerce
2004, N. Karmakar and P. Isáıas, Eds., 2004, pp. 399–404.

[4] M. Backes, S. Moedersheim, B. Pfitzmann, and L. Vigano, “Symbolic and
cryptographic analysis of the secure WS-ReliableMessaging scenario,” in Pro-
ceedings of Foundations of Software Science and Computational Structures
(FOSSACS), Vienna, Austria, ser. Lecture Notes in Computer Science, vol.
3921. Springer, March 2006, pp. 428–445.

[5] K. Bäına, B. Benatallah, F. Casati, and F. Toumani, “Model-driven web
service development,” in Proceedings of the 16th International Conference on
Advanced Information Systems Engineering, CAiSE 2004, Riga, Latvia, ser.
Lecture Notes in Computer Science, A. Persson and J. Stirna, Eds. Springer
Berlin / Heidelberg, June 2004, vol. 3084, pp. 527–543. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-25975-6 22

[6] A. Barbir, C. Hobbs, E. Bertino, F. Hirsch, and L. Martino, “Challenges
of testing Web Services and security in SOA implementations,” in Test and
Analysis of Web Services, L. Baresi and E. D. Nitto, Eds. Springer Berlin
Heidelberg, 2007, pp. 395–440.

[7] A. Barker, P. Besana, D. Robertson, and J. B. Weissman, “The benefits of
service choreography for data-intensive computing,” in CLADE ’09: Proceed-
ings of the 7th international workshop on Challenges of large applications in
distributed environments. New York, NY, USA: ACM, 2009, pp. 1–10.

[8] A. Barker, C. D. Walton, and D. Robertson, “Choreographing web services,”
IEEE Transactions on Services Computing, vol. 2, no. 2, pp. 152–166, 2009.

347

http://dl.acm.org/citation.cfm?id=129809.129815
http://dx.doi.org/10.1007/978-3-540-25975-6_22

Bibliography

[9] A. P. Barros and A. H. M. ter Hofstede, “Towards the construction of workflow-
suitable conceptual modelling techniques,” Information Systems Journal, vol. 8,
no. 4, pp. 313–337, October 1998.

[10] A. P. Barros, G. Decker, and M. Dumas, “Multi-staged and multi-viewpoint
service choreography modelling,” in Proceedings of the Workshop on Software
Engineering Methods for Service Oriented Architecture (SEMSOA), Hannover,
Germany, May 10-11, 2007, ser. CEUR Workshop Proceedings, vol. 244, May
2007.

[11] A. P. Barros, M. Dumas, and A. H. M. ter Hofstede, “Service interaction
patterns,” in Proceedings of the 3rd International Conference on Business
Process Management (BPM), Nancy, France. Springer Verlag, 2005, pp.
302–318.

[12] Web Services Reliable Messaging Protocol (WS-ReliableMessaging), BEA
Systems, IBM Corporation, Microsoft Corporation Inc., TIBCO Soft-
ware Inc., February 2005, first specification (Version 1.0). [Online].
Available: http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/
ws-rm/ws-reliablemessaging200502.pdf

[13] J. Becker, Handelsinformationssysteme. Landsberg/Lech: Verl. Moderne
Industrie, 1996.

[14] D. Beimborn, S. Mintert, and T. Weitzel, “Web services und ebXML,”
Wirtschaftsinformatik, vol. 44, no. 3, pp. 277–280, 2002.

[15] B. Benatallah, F. Casati, and F. Toumani, “Representing, analysing and
managing web service protocols,” Data Knowl. Eng., vol. 58, no. 3, pp. 327–357,
2006.

[16] T. Benker, S. Fritzemeier, M. Geiger, S. Harrer, T. Kessner, J. Schwalb,
A. Schönberger, and G. Wirtz, “QoS-enabled B2B integration,” Otto-
Friedrich-Universität Bamberg, Bamberger Beiträge zur Wirtschaftsinformatik
und Angewandten Informatik 80, May 2009. [Online]. Available: http:
//www.opus-bayern.de/uni-bamberg/volltexte/2009/205/

[17] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and
P. Schnoebelen, Systems and Software Verification : Model-Checking Techniques
and Tools, 1st ed. Berlin: Springer-Verlag, August 2001.

[18] P. Besana and A. Barker, “An executable calculus for service choreography,”
in Proceedings of On the Move 2009 Confederated International Conferences:
CoopIS, IS, DOA and ODBASE, Vilamoura, Portugal, ser. Lecture Notes in
Computer Science, R. Meersman, T. Dillon, and P. Herrero, Eds. Springer
Berlin / Heidelberg, 2009, vol. 5870, pp. 373–380. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-05148-7 26

348

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-rm/ws-reliablemessaging200502.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-rm/ws-reliablemessaging200502.pdf
http://www.opus-bayern.de/uni-bamberg/volltexte/2009/205/
http://www.opus-bayern.de/uni-bamberg/volltexte/2009/205/
http://dx.doi.org/10.1007/978-3-642-05148-7_26

Bibliography

[19] K. Bhargavan, R. Corin, C. Fournet, and A. D. Gordon, “Secure sessions for
web services,” ACM Trans. Inf. Syst. Secur., vol. 10, no. 2, pp. article no. 8, 46
pages, 2007.

[20] D. Bianchini, C. Cappiello, V. D. Antonellis, and B. Pernici, “P2S: A
methodology to enable inter-organizational process design through web
services,” in Proceedings of the 21st International Conference on Advanced
Information Systems Engineering, CAiSE 2009, Amsterdam, The Netherlands,
ser. Lecture Notes in Computer Science, P. van Eck, J. Gordijn, and
R. Wieringa, Eds. Springer Berlin / Heidelberg, June 2009, vol. 5565, pp.
334–348. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-02144-2 28

[21] A. Brogi and R. Popescu, “Automated generation of BPEL adapters,” in
Proceedings of the 4th International Conference on Service-Oriented Computing
- ICSOC 2006, Chicago, IL, USA, ser. Lecture Notes in Computer Science,
A. Dan and W. Lamersdorf, Eds. Springer Berlin / Heidelberg, december 2006,
vol. 4294, pp. 27–39. [Online]. Available: http://dx.doi.org/10.1007/11948148 3

[22] G. Bruno, “Modeling and using business collaborations,” in Proceedings of
the 1st Int. Conf. on Interoperability of enterprise software and applications
INTEROP-ESA 2005, Geneva, Switzerland, D. Konstantas, J.-P. Bourrières,
M. Léonard, and N. Boudjlida, Eds. Springer London, 2005, pp. 114–125.
[Online]. Available: http://dx.doi.org/10.1007/1-84628-152-0 11

[23] T. Bultan and X. Fu, “Specification of realizable service conversations using col-
laboration diagrams,” Service Oriented Computing and Applications, Springer,
vol. 2, no. 1, pp. 27–39, 2008.

[24] T. Bultan, J. Su, and X. Fu, “Analyzing conversations of web services,” IEEE
Internet Computing, vol. 10, no. 1, pp. 18–25, 2006.

[25] E. M. Clarke Jr., O. Grumberg, and D. A. Peled, Model checking. Cambridge,
MA, USA: MIT Press, 1999.

[26] P. Dadam and M. Reichert, “The ADEPT project: a decade of research and
development for robust and flexible process support,” Computer Science -
Research and Development, vol. 23, no. 2, pp. 81–97, 2009.

[27] G. Decker and A. P. Barros, “Interaction modeling using BPMN,” in Proceedings
of the 1st International Workshop on Collaborative Business Processes (CBP),
Brisbane, Australia, ser. LNCS, no. 4928. Berlin, Heidelberg: Springer-Verlag,
2007, pp. 208–219.

[28] G. Decker, A. P. Barros, F. M. Kraft, and N. Lohmann, “Non-desynchronizable
service choreographies,” in ICSOC ’08: Proceedings of the 6th International
Conference on Service-Oriented Computing. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 331–346.

349

http://dx.doi.org/10.1007/978-3-642-02144-2_28
http://dx.doi.org/10.1007/11948148_3
http://dx.doi.org/10.1007/1-84628-152-0_11

Bibliography

[29] G. Decker, O. Kopp, and A. P. Barros, “An introduction to service choreogra-
phies,” Information Technology, vol. 50, no. 2, pp. 122–127, 2008.

[30] G. Decker, O. Kopp, F. Leymann, K. Pfitzner, and M. Weske, “Modeling
service choreographies using BPMN and BPEL4Chor,” in CAiSE ’08: Proceed-
ings of the 20th international conference on Advanced Information Systems
Engineering, Montpellier, France. Berlin, Heidelberg: Springer-Verlag, 2008,
pp. 79–93.

[31] G. Decker, O. Kopp, F. Leymann, and M. Weske, “BPEL4Chor: Extending
BPEL for modeling choreographies,” in Proceedings of the 2007 IEEE Interna-
tional Conference on Web Services (ICWS), July 9-13, 2007, Salt Lake City,
Utah, USA, 2007, pp. 296–303.

[32] ——, “Interacting services: From specification to execution,” Data &
Knowledge Engineering, vol. 68, no. 10, pp. 946 – 972, 2009. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/B6TYX-4W4JDJH-1/2/
ac04033b7102e246c41244b0efc79812

[33] G. Decker and M. Weske, “Local enforceability in interaction petri nets,” in Pro-
ceedings of the 5th International Conference on Business Process Management
(BPM 2007), Brisbane, Australia, September 24-28, 2007, pp. 305–319.

[34] P. Derler and R. Weinreich, “Models and tools for SOA governance,” in Proc.
of the 2nd International Conference on Trends in Enterprise Application
Architecture (TEAA 2006), Berlin, Germany, 2006, pp. 112–126.

[35] R. Dijkman and M. Dumas, “Service-oriented Design: A Multi-viewpoint
Approach,” International Journal of Cooperative Information Systems, vol. 13,
no. 4, pp. 337–368, 2004.

[36] A. Dogac, Y. Tambag, P. Pembecioglu, S. Pektas, G. Laleci, G. Kurt,
S. Toprak, and Y. Kabak, “An ebXML infrastructure implementation
through UDDI registries and RosettaNet PIPs,” in Proceedings of the
2002 ACM SIGMOD international conference on Management of data, ser.
SIGMOD’02. New York, NY, USA: ACM, 2002, pp. 512–523. [Online].
Available: http://doi.acm.org/10.1145/564691.564750

[37] J. Dorn, C. Grün, H. Werthner, and M. Zapletal, “A survey of B2B methodolo-
gies and technologies: From business models towards deployment artifacts,” in
HICSS ’07: Proceedings of the 40th Annual Hawaii International Conference
on System Sciences, Waikoloa, Big Island, Hawaii, USA. IEEE Computer
Society, 2007.

[38] R. Eshuis, “Reconciling statechart semantics,” Sci. Comput. Program., vol. 74,
no. 3, pp. 65–99, 2009.

350

http://www.sciencedirect.com/science/article/B6TYX-4W4JDJH-1/2/ac04033b7102e246c41244b0efc79812
http://www.sciencedirect.com/science/article/B6TYX-4W4JDJH-1/2/ac04033b7102e246c41244b0efc79812
http://doi.acm.org/10.1145/564691.564750

Bibliography

[39] R. Eshuis, P. Brimont, E. Dubois, B. Grégoire, and S. Ramel, “Animating
ebXML transactions with a workflow engine,” in Proceedings of the OTM
Confederated International Conferences, On The Move to Meaningful Internet
Systems 2003: CoopIS, DOA, and ODBASE, Catania, Sicily, Italy, November
2003, pp. 426–443.

[40] R. Eshuis and P. W. P. J. Grefen,“Composing services into structured processes.”
International Journal of Cooperative Information Systems, vol. 18, no. 2, pp.
309–337, 2009.

[41] O. K. Ferstl and E. J. Sinz, “Modeling of business systems using SOM,” in
Handbook on Architectures of Information Systems, ser. International Hand-
books on Information Systems, P. Bernus, K. Mertins, and G. Schmidt, Eds.
Springer Berlin Heidelberg, 2006, pp. 347–367.

[42] R. T. Fielding, “Architectural styles and the design of network-based software
architectures,” Ph.D. dissertation, University of California, Irvine, 2000.
[Online]. Available: http://portal.acm.org/citation.cfm?id=932295

[43] D. Florescu, A. Grünhagen, and D. Kossmann, “XL: an XML programming
language for web service specification and composition,” in Proceedings
of the 11th international conference on World Wide Web, ser. WWW
’02. New York, NY, USA: ACM, 2002, pp. 65–76. [Online]. Available:
http://doi.acm.org/10.1145/511446.511456

[44] K. Gavrylyuk, O. Hrebicek, and S. Batres. (2005) WCF (Indigo) Interoperability
Lab: Reliable Messaging. Word Document (.doc). Microsoft. [Online]. Available:
http://mssoapinterop.org/ilab/RM/WCFInteropPlugFest RM.doc

[45] M. Geiger, A. Schönberger, and G. Wirtz, “A proposal for checking the confor-
mance of ebBP-ST choreographies and WS-BPEL orchestrations,” in Proceed-
ings of the 3rd Central-European Workshop on Services and their Composition
(ZEUS), Karlsruhe, Germany, February 21-22, 2011, ser. CEUR Workshop
Proceedings. CEUR-WS.org, Feb 2011, pp. 24–25.

[46] ——, “Towards automated conformance checking of ebBP-ST choreographies
and corresponding WS-BPEL based orchestrations,” in Proceedings of 2011
Conf. on Software Engineering and Knowledge Engineering (SEKE’2011),
Miami, Florida, USA. Knowledge Systems Institute, 7.-9. July 2011.

[47] G. M. Giaglis, R. J. Paul, and G. I. Doukidis, “Simulation for intra- and
inter-organisational business process modelling,” in WSC ’96: Proceedings of
the 28th conference on Winter simulation. Washington, DC, USA: IEEE
Computer Society, 1996, pp. 1297–1304.

351

http://portal.acm.org/citation.cfm?id=932295
http://doi.acm.org/10.1145/511446.511456
http://mssoapinterop.org/ilab/RM/WCFInteropPlugFest_RM.doc

Bibliography

[48] F. Goethals, J. Vandenbulcke, W. Lemahieu, M. Snoeck, and B. Cumps,
“Two basic types of business-to-business integration,” International Journal of
E-Business Research (IJEBR), vol. 1, no. 1, pp. 1–15, 2005.

[49] F. G. Goethals, “Important issues for evaluating inter-organizational data
integration configurations,” The Electronic Journal Information Systems
Evaluation, vol. 11, no. 3, pp. 185–196, 2008. [Online]. Available:
http://www.ejise.com/volume-11/volume11-issue3/Goethals.pdf

[50] S. Gregor and D. Jones, “The anatomy of a design theory,” Journal of the
Association for Information Systems, vol. 8, no. 5, pp. 312–335, 2007.

[51] A. Gunasekaran and E. W. T. Ngai, “Information systems in supply
chain integration and management,” European Journal of Operational
Research, vol. 159, no. 2, pp. 269–295, December 2004. [Online]. Available:
http://ideas.repec.org/a/eee/ejores/v159y2004i2p269-295.html

[52] A. Gunasekaran, C. Patel, and R. E. McGaughey, “A framework for
supply chain performance measurement,” International Journal of Production
Economics, vol. 87, no. 3, pp. 333–347, February 2004. [Online]. Available:
http://ideas.repec.org/a/eee/proeco/v87y2004i3p333-347.html

[53] R. Hamadi and B. Benatallah, “A petri net-based model for web service com-
position,” in CRPITS’17: Proceedings of the Fourteenth Australasian database
conference on Database technologies 2003. Darlinghurst, Australia: Australian
Computer Society, Inc., 2003, pp. 191–200.

[54] S. Harrer, A. Schönberger, and G. Wirtz, “A model-driven approach for moni-
toring ebBP BusinessTransactions,” in Proceedings of the 7th World Congress
on Services 2011(SERVICES2011), Washington, D.C., USA. IEEE, July
2011.

[55] R. Hauser and J. Koehler, “Compiling process graphs into executable code,” in
Proceedings of the Third International Conference on Generative Programming
and Component Engineering, GPCE 2004, Vancouver, Canada, ser. Lecture
Notes in Computer Science, G. Karsai and E. Visser, Eds. Springer Berlin
/ Heidelberg, October 2004, vol. 3286, pp. 129–243. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-30175-2 17

[56] T. Hettel, C. Flender, and A. P. Barros, “Scaling choreography modelling for
B2B value-chain analysis,” in BPM ’08 Proceedings of the 6th International
Conference on Business Process Management, Milan, Italy, ser. Lecture
Notes in Computer Science, M. Dumas, M. Reichert, and M.-C. Shan, Eds.
Springer Berlin / Heidelberg, 2008, vol. 5240, pp. 294–309. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-85758-7 22

352

http://www.ejise.com/volume-11/volume11-issue3/Goethals.pdf
http://ideas.repec.org/a/eee/ejores/v159y2004i2p269-295.html
http://ideas.repec.org/a/eee/proeco/v87y2004i3p333-347.html
http://dx.doi.org/10.1007/978-3-540-30175-2_17
http://dx.doi.org/10.1007/978-3-540-85758-7_22

Bibliography

[57] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in information
systems research,” MIS Quarterly, vol. 28, no. 1, pp. 75–105, 2004.

[58] C. A. R. Hoare, “Communicating sequential processes,” Commun.
ACM, vol. 21, pp. 666–677, August 1978. [Online]. Available: http:
//doi.acm.org/10.1145/359576.359585

[59] B. Hofreiter and C. Huemer, “A model-driven top-down approach to inter-
organizational systems: From global choreography models to executable BPEL,”
in Joint Conference on E-Commerce Technology (CEC’08) and Enterprise
Computing, E-Commerce, and E-Services (EEE’08). Crystal City, Washington
D.C., USA: IEEE, 7 2008.

[60] B. Hofreiter, C. Huemer, and J.-H. Kim, “Choreography of ebXML
business collaborations,” Information Systems and E-Business Management,
vol. 4, pp. 221–243, 2006, 10.1007/s10257-005-0016-3. [Online]. Available:
http://dx.doi.org/10.1007/s10257-005-0016-3

[61] B. Hofreiter, C. Huemer, P. Liegl, R. Schuster, and M. Zapletal, “Deriving
executable BPEL from UMM business transactions,” in Proceedings of the
IEEE International Conference on Services Computing (SCC), Salt Lake City,
UT, USA, 2007, pp. 178–186.

[62] G. J. Holzmann, The SPIN Model Checker. Addison-Wesley Pearson Education,
September 2003.

[63] C. Huemer, P. Liegl, R. Schuster, H. Werthner, and M. Zapletal, “Inter-
organizational systems: From business values over business processes to de-
ployment,” in Proceedings of the 2nd International IEEE Conference on Digital
Ecosystems and Technologies (DEST2008), Phitsanulok, Thailand. IEEE,
2008.

[64] C. Huemer, P. Liegl, R. Schuster, and M. Zapletal, “B2B Services:
Worksheet-Driven Development of Modeling Artifacts and Code,” The
Computer Journal, vol. 52, no. 8, pp. 1006–1026, 2009. [Online]. Available:
http://comjnl.oxfordjournals.org/content/52/8/1006.abstract

[65] C. Huemer and M. Zapletal, “A state machine executing UMM business
transactions,” in Proceedings of the 2007 Inaugural IEEE International
Conference on Digital Ecosystems and Technologies (IEEE DEST 2007),
IEEE Computer Society. Cairns (Australia): IEEE Computer Society, 2007.
[Online]. Available: http://publik.tuwien.ac.at/files/pub-inf 4580.pdf

[66] IETF, ODETTE File Transfer Protocol 2, IETF, 11 2007. [Online]. Available:
http://tools.ietf.org/html/rfc5024

353

http://doi.acm.org/10.1145/359576.359585
http://doi.acm.org/10.1145/359576.359585
http://dx.doi.org/10.1007/s10257-005-0016-3
http://comjnl.oxfordjournals.org/content/52/8/1006.abstract
http://publik.tuwien.ac.at/files/pub-inf_4580.pdf
http://tools.ietf.org/html/rfc5024

Bibliography

[67] M. Ilger and M. Zapletal, “An implementation to transform business collab-
oration models to executable process specifications,” in Proceedings of the
conference on Service-Oriented Electronic Commerce at the Multikonferenz
Wirtschaftsinformatik 2006, Passau, Germany, M. Schoop, C. Huemer, M. Reb-
stock, and M. Bichler, Eds. GI-Edition - Lecture Notes in Informatics (LNI),
2006, pp. 9–23.

[68] M. Indulska, J. Recker, M. Rosemann, and P. Green, “Business process model-
ing: Current issues and future challenges,” in CAiSE ’09: Proceedings of the
21st International Conference on Advanced Information Systems Engineering.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 501–514.

[69] ISO/IEC, Information technology - Open-edi reference model, 2nd ed.,
ISO/IEC, May 2004. [Online]. Available: http://standards.iso.org/ittf/
PubliclyAvailableStandards/c037354 ISO IEC 14662 2004(E).zip

[70] ——, ISO/IEC 15909-1:2004: Software and system engineer-
ing – High-level Petri nets – Part 1: Concepts, defini-
tions and graphical notation, ISO/IEC, December 2004. [Online].
Available: http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?
CSNUMBER=38225&COMMID=&scopelist=

[71] J. Jung, W. Hur, S.-H. Kang, and H. Kim, “Business process choreography
for B2B collaboration,” IEEE Internet Computing, vol. 8, pp. 37–45, January
2004.

[72] R. Kazhamiakin and M. Pistore, “Choreography conformance analysis: Asyn-
chronous communications and information alignment,” in Proceedings of the
Third International Workshop on Web Services and Formal Methods, WS-FM
2006 Vienna, Austria, ser. Lecture Notes in Computer Science, M. Bravetti,
M. Nunez, and G. Zavattaro, Eds. Springer Berlin / Heidelberg, September
2006, vol. 4184, pp. 227–241.

[73] R. Khalaf, A. Keller, and F. Leymann, “Business processes for web services:
principles and applications,” IBM Syst. J., vol. 45, pp. 425–446, January 2006.
[Online]. Available: http://dx.doi.org/10.1147/sj.452.0425

[74] R. Khalaf, “From RosettaNet PIPs to BPEL processes: A three level approach
for business protocols,” in Proceedings of the 3rd International Conference on
Business Process Management, BPM 2005, Nancy, France, ser. Lecture Notes
in Computer Science, W. M. van der Aalst, B. Benatallah, F. Casati, and
F. Curbera, Eds. Springer Berlin / Heidelberg, September 2005, vol. 3649,
pp. 364–373. [Online]. Available: http://dx.doi.org/10.1007/11538394 25

[75] ——, “From RosettaNet PIPs to BPEL processes: A three level approach for
business protocols,” Data & Knowledge Engineering, vol. 61, no. 1, pp. 23–38,
2007.

354

http://standards.iso.org/ittf/PubliclyAvailableStandards/c037354_ISO_IEC_14662_2004(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c037354_ISO_IEC_14662_2004(E).zip
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38225&COMMID=&scopelist=
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38225&COMMID=&scopelist=
http://dx.doi.org/10.1147/sj.452.0425
http://dx.doi.org/10.1007/11538394_25

Bibliography

[76] B. Kiepuszewski, A. H. M. ter Hofstede, and C. Bussler, “On structured
workflow modelling,” in CAiSE ’00: Proceedings of the 12th International
Conference on Advanced Information Systems Engineering. London, UK:
Springer-Verlag, 2000, pp. 431–445.

[77] H. D. Kim, “BPMN-based modeling of B2B business processes from the neutral
perspective of UMM/BPSS,” in Proceedings of the 2008 IEEE International
Conference on e-Business Engineering, ICEBE, Xi’An, China. Washington,
DC, USA: IEEE Computer Society, October 2008, pp. 417–422. [Online].
Available: http://dl.acm.org/citation.cfm?id=1471605.1472141

[78] H. Kim, “Conceptual modeling and specification generation for B2B business
processes based on ebXML,” SIGMOD Rec., vol. 31, pp. 37–42, March 2002.
[Online]. Available: http://doi.acm.org/10.1145/507338.507346

[79] J.-H. Kim and C. Huemer, “From an ebXML BPSS choreography to a BPEL-
based implementation,” SIGecom Exch., vol. 5, no. 2, pp. 1–11, 2004.

[80] J. Koehler and R. Hauser, “Untangling unstructured cyclic flows -
a solution based on continuations,” in On the Move to Meaningful
Internet Systems 2004: CoopIS, DOA, and ODBASE, ser. Lecture
Notes in Computer Science, R. Meersman and Z. Tari, Eds. Springer
Berlin / Heidelberg, 2004, vol. 3290, pp. 121–138. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-30468-5 10

[81] O. Kopp, D. Martin, D. Wutke, and F. Leymann, “The difference between
graph-based and block-structured business process modelling languages,”
Enterprise Modelling and Information Systems Architectures, vol. 4, no. 1, pp.
3–13, 2009. [Online]. Available: http://dblp.uni-trier.de/db/journals/emisaij/
emisaij4.html#KoppMWL09

[82] O. Kopp, B. Wetzstein, R. Mietzner, S. Pottinger, D. Karastoyanova, and
F. Leymann, “A model-driven approach to implementing coordination protocols
in BPEL,” in Proceedings of the 1st International Workshop on Model-Driven
Engineering for Business Process Management (MDE4BPM 2008), ser. Lecture
Notes in Business Information Processing, D. Ardagna, M. Mecella, J. Yang,
W. M. van der Aalst, J. Mylopoulos, M. Rosemann, M. J. Shaw, and
C. Szyperski, Eds. Springer Berlin Heidelberg, September 2008, vol. 17, pp.
188–199. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-00328-8 19

[83] O. Kopp, M. Wieland, and F. Leymann, “Towards Choreography
Transactions,” in Proceedings of the 1st Central-European Workshop
on Services and their Composition, ZEUS 2009, Stuttgart, Germany,
March 2–3, 2009, ser. CEUR Workshop Proceedings, O. Kopp and
N. Lohmann, Eds., vol. 438. Stuttgart: CEUR-WS.org, 2009, pp.

355

http://dl.acm.org/citation.cfm?id=1471605.1472141
http://doi.acm.org/10.1145/507338.507346
http://dx.doi.org/10.1007/978-3-540-30468-5_10
http://dblp.uni-trier.de/db/journals/emisaij/emisaij4.html#KoppMWL09
http://dblp.uni-trier.de/db/journals/emisaij/emisaij4.html#KoppMWL09
http://dx.doi.org/10.1007/978-3-642-00328-8_19

Bibliography

49–54. [Online]. Available: http://www2.informatik.uni-stuttgart.de/cgi-bin/
NCSTRL/NCSTRL view.pl?id=INPROC-2009-28&engl=

[84] M. Kovács, D. Varró, and L. Gönczy, “Formal analysis of BPEL workflows
with compensation by model checking,” International Journal of Computer
Systems Science and Engineering, Special Issue: Engineering Fault Tolerant
Systems, vol. 23, no. 5, pp. 349–363, Sep 2008.

[85] V. Kozyura, A. Roth, and W. Wei, “Local enforceability and inconsumable
messages in choreography models,” in Proceedings of 4th South-East European
Workshop on Formal Methods (SEEFM’09),Thessaloniki, Greece, 2009.

[86] G. Kramler, E. Kapsammer, W. Retschitzegger, and G. Kappel, “Towards
using UML 2 for modelling web service collaboration protocols,” in Proceedings
of the 1st Int. Conf. on Interoperability of enterprise software and applications
INTEROP-ESA 2005, Geneva, Switzerland, D. Konstantas, J.-P. Bourrieres,
M. Leonard, and N. Boudjlida, Eds. Springer London, 2005. [Online].
Available: http://dx.doi.org/10.1007/1-84628-152-0 21

[87] C. Kruse, Referenzmodellgestütztes Geschäftsprozessmanagement. Wiesbaden:
Gabler, 1996.

[88] W. Lam, “Investigating success factors in enterprise application integration: a
case-driven analysis,” Eur. J. Inf. Syst., vol. 14, no. 2, pp. 175–187, 2005.

[89] W. Lam and V. Shankararaman, “An enterprise integration methodology,” IT
Professional, vol. 6, no. 2, pp. 40–48, 2004.

[90] D. M. Lambert and M. C. Cooper, “Issues in supply chain management,”
Industrial Marketing Management, vol. 29, no. 1, pp. 65 – 83,
2000. [Online]. Available: http://www.sciencedirect.com/science/article/
B6V69-3YDGKGP-8/2/6b65247be734b1607fc222cee08e2a99

[91] N. Laranjeiro and M. Vieira,“Deploying fault tolerant web service compositions,”
International Journal of Computer Systems Science and Engineering, Special
Issue: Engineering Fault Tolerant Systems, vol. 23, no. 5, pp. 337–348, Sep
2008.

[92] K. Lassen and W. M. P. van der Aalst, “WorkflowNet2BPEL4WS: A tool
for translating unstructured workflow processes to readable BPEL,” in On
the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and
ODBASE, Montpellier, France, ser. Lecture Notes in Computer Science,
R. Meersman and Z. Tari, Eds. Springer Berlin / Heidelberg, 2006, vol. 4275,
pp. 127–144. [Online]. Available: http://dx.doi.org/10.1007/11914853 9

[93] J. Lenhard, A. Schönberger, and G. Wirtz, “Edit distance-based pattern support
assessment of orchestration languages,” in Proceedings of On the Move 2011

356

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-28&engl=
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-28&engl=
http://dx.doi.org/10.1007/1-84628-152-0_21
http://www.sciencedirect.com/science/article/B6V69-3YDGKGP-8/2/6b65247be734b1607fc222cee08e2a99
http://www.sciencedirect.com/science/article/B6V69-3YDGKGP-8/2/6b65247be734b1607fc222cee08e2a99
http://dx.doi.org/10.1007/11914853_9

Bibliography

Confederated International Conferences: CoopIS, IS, DOA and ODBASE,
Hersonissos, Crete, Greece, Oct 19 - 21, 2011, ser. Lecture Notes in Computer
Science. Springer, 2011.

[94] ——, “Streamlining pattern support assessment for service composition lan-
guages,” in Proceedings of the 3rd Central-European Workshop on Services and
their Composition (ZEUS), Karlsruhe, Germany, February 21-22, 2011, ser.
CEUR Workshop Proceedings. CEUR-WS.org, Feb 2011, pp. 112–119.

[95] P. Liegl, M. Zapletal, C. Pichler, and M. Strommer, “State-of-the-art in
business document standards,” in Proceedings of the 8th IEEE International
Conference on Industrial Informatics, Osaka, Japan, 2010, pp. 1–8. [Online].
Available: http://publik.tuwien.ac.at/files/PubDat 186928.pdf

[96] A. Liu, L. Huang, Q. Li, and M. Xiao, “Fault-tolerant orchestration of trans-
actional web services,” in Proceedings of the 7th International Conference on
Web Information Systems Engineering, WISE 2006, Wuhan, China, October
2006, pp. 90–101.

[97] R. Liu and A. Kumar, “An analysis and taxonomy of unstructured workflows,”
in Proceedings of the 3rd International Conference on Business Process
Management, BPM 2005, Nancy, France, ser. Lecture Notes in Computer
Science, W. M. van der Aalst, B. Benatallah, F. Casati, and F. Curbera, Eds.
Springer Berlin / Heidelberg, 2005, vol. 3649, pp. 268–284. [Online]. Available:
http://dx.doi.org/10.1007/11538394 18

[98] N. Lohmann, O. Kopp, F. Leymann, and W. Reisig, “Analyzing BPEL4Chor:
verification and participant synthesis,” in Proceedings of the 4th international
conference on Web services and formal methods, Brisbane, Australia, ser.
WS-FM’07. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 46–60. [Online].
Available: http://dl.acm.org/citation.cfm?id=1791676.1791680

[99] N. Lohmann and K. Wolf, “Artifact-centric choreographies,” in Proceedings
of the 8th International Conference on Service-Oriented Computing, ICSOC
2010, San Francisco, CA, USA, ser. Lecture Notes in Computer Science,
P. Maglio, M. Weske, J. Yang, and M. Fantinato, Eds. Springer Berlin
/ Heidelberg, December 2010, vol. 6470, pp. 32–46. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-17358-5 3

[100] R. Lu and S. W. Sadiq, “A survey of comparative business process modeling
approaches,” in Proceedings of the 10th International Conference of Business
Information Systems (BIS 2007), ser. Lecture Notes in Computer Science, vol.
4439. Poznan, Poland: Springer, April 2007, pp. 82–94.

[101] L. T. Ly, K. Göser, S. Rinderle-Ma, and P. Dadam, “Compliance of semantic
constraints - a requirements analysis for process management systems,” in Proc.

357

http://publik.tuwien.ac.at/files/PubDat_186928.pdf
http://dx.doi.org/10.1007/11538394_18
http://dl.acm.org/citation.cfm?id=1791676.1791680
http://dx.doi.org/10.1007/978-3-642-17358-5_3

Bibliography

1st Int’l Workshop on Governance, Risk and Compliance - Applications in
Information Systems (GRCIS’08), Montpellier, France, 2008.

[102] M. Madiesh and G. Wirtz, “A top-down method for B2B process design
using SOA,” in Proceedings of the 2008 International Conference on Software
Engineering Research & Practice, SERP 2008, July 14-17, 2008, Las Vegas
Nevada, USA, 2008, pp. 444–450.

[103] ——, “A top-down method for secure SOA-based B2B processes,” in Proceedings
of the 22nd International Conference on Software Engineering & Knowledge
Engineering (SEKE’2010), Redwood City, San Francisco Bay, CA, USA, July
2010, pp. 698–703.

[104] M. L. Markus, A. Majchrzak, and L. Gasser, “A design theory for systems that
support emergent knowledge processes,” MIS Quarterly, pp. 179–212, 2002.

[105] A. Martens, “Consistency between executable and abstract processes,” in
Proceedings of the 2005 IEEE International Conference on e-Technology, e-
Commerce and e-Service, EEE 2005, Hong Kong, China, April 2005, pp. 60–67.

[106] L. Martino and E. Bertino, “Security for web services: Standards and research
issues,” Int. J. Web Services Res., vol. 6, no. 4, pp. 48–74, 2009.

[107] S. McIlvenna, M. Dumas, and M. T. Wynn, “Synthesis of orchestrators from
service choreographies.” in Proc. of the Sixth Asia-Pacific Conference on
Conceptual Modelling (APCCM), ser. CRPIT, M. Kirchberg and S. Link, Eds.,
vol. 96. Australian Computer Society, 2009, pp. 129–138. [Online]. Available:
http://dblp.uni-trier.de/db/conf/apccm/apccm2009.html#McIlvennaDW09

[108] A. McNeile, “Protocol contracts with application to choreographed
multiparty collaborations,” Service Oriented Computing and Applications,
vol. 4, pp. 109–136, 2010, 10.1007/s11761-010-0060-9. [Online]. Available:
http://dx.doi.org/10.1007/s11761-010-0060-9

[109] B. Medjahed, B. Benatallah, A. Bouguettaya, A. Ngu, and A. Elmagarmid,
“Business-to-business interactions: issues and enabling technologies,”The VLDB
Journal, vol. 12, no. 1, pp. 59–85, 2003.

[110] J. Mendling and M. Hafner, “From Inter-Organizational Workflows to Process
Execution: Generating BPEL from WS-CDL,” Proceedings of OTM 2005
Workshops, Agia Napa, Cyprus, vol. LNCS 3762, pp. 506–515, 2005.

[111] J. Mendling, K. B. Lassen, and U. Zdun, “On the transformation of control
flow between block-oriented and graph-oriented process modelling languages,”
International Journal of Business Process Integration and Management, vol. 3,
no. 2, pp. 96 – 108, 2008.

358

http://dblp.uni-trier.de/db/conf/apccm/apccm2009.html#McIlvennaDW09
http://dx.doi.org/10.1007/s11761-010-0060-9

Bibliography

[112] J. T. Mentzer, W. DeWitt, J. S. Keebler, S. Min, N. W. Nix, C. D. Smith,
and Z. G. Zacharia, “Defining supply chain management,” JOURNAL OF
BUSINESS LOGISTICS, vol. 22, no. 2, pp. 1–26, 2001.

[113] R. Milner, “A calculus of communicating systems,” vol. 92, 1980.

[114] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile processes,
i,” Information and Computation, vol. 100, no. 1, pp. 1 – 40,
1992. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
0890540192900084

[115] ——, “A calculus of mobile processes, ii,” Information and Computation,
vol. 100, no. 1, pp. 41 – 77, 1992. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/0890540192900095

[116] D. Moberg and R. Drummond, RFC 4130:MIME-Based Secure Peer-to-Peer
Business Data Interchange Using HTTP, Applicability Statement 2 (AS2),
The Internet Engineering Task Force (IETF), July 2005. [Online]. Available:
http://www.ietf.org/rfc/rfc4130.txt

[117] L. E. Moser, P. M. Melliar-Smith, and W. Zhao, “Building dependable and
secure web services,” Journal of Software, vol. 2, no. 1, pp. 14–26, 2007.

[118] O. Moser, F. Rosenberg, and S. Dustdar, “Non-intrusive monitoring and service
adaptation for WS-BPEL,” in Proceeding of the 17th international conference
on World Wide Web, ser. WWW ’08. New York, NY, USA: ACM, 2008, pp.
815–824. [Online]. Available: http://doi.acm.org/10.1145/1367497.1367607

[119] S. Mouzakitis and D. Askounis, “A capability assessment framework for the
adoption of B2B integration systems,” in WSKS ’08: Proceedings of the 1st
world summit on The Knowledge Society. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 451–459.

[120] B. Mutschler, B. Weber, and M. Reichert, “Workflow management versus case
handling: results from a controlled software experiment,” in Proceedings of the
2008 ACM symposium on Applied computing, Fortaleza, Brazil. ACM, Mar
2008, pp. 82–89.

[121] K.-D. Naujok and C. Huemer, “Designing ebXML - the work of UN/CEFACT,”
in Ontologies-Based Business Integration. Heidelberg: Springer, 2008, pp.
79–93, eingeladen.

[122] H. Nezhad, B. Benatallah, F. Casati, and F. Toumani, “Web services interoper-
ability specifications,” Computer, vol. 39, no. 5, pp. 24–32, May 2006.

[123] Northern European Subset Profiles, 2nd ed., Northern European working group
for development of a subset for UBL 2.0, July 2007. [Online]. Available:
http://www.nesubl.eu

359

http://www.sciencedirect.com/science/article/pii/0890540192900084
http://www.sciencedirect.com/science/article/pii/0890540192900084
http://www.sciencedirect.com/science/article/pii/0890540192900095
http://www.sciencedirect.com/science/article/pii/0890540192900095
http://www.ietf.org/rfc/rfc4130.txt
http://doi.acm.org/10.1145/1367497.1367607
http://www.nesubl.eu

Bibliography

[124] J.-M. Nurmilaakso, “ICT solutions and labor productivity: evidence from
firm-level data,” Electronic Commerce Research, vol. 9, no. 3, pp. 173–181,
2009.

[125] J. Nurmilaakso and P. Kotinurmi, “A review of XML-based supply-chain
integration,” Production Planning and Control, vol. 15, no. 6, pp. 608–621,
2004.

[126] A. Nysetvold and J. Krogstie, “Assessing business processing modeling lan-
guages using a generic quality framework,” in Proceedings of the Workshop on
Evaluating Modeling Methods for Systems Analysis and Design (EMMSAD‘05),
held in conjunctiun with the 17th Conference on Advanced Information Systems
2005 (CAiSE 2005), Porto, Portugal, T. Halpin, K. Siau, and J. Krogstie, Eds.,
2005.

[127] OASIS, ebXML Collaboration-Protocol Profile and Agreement Specification
Version 3.0 (Editor’s Draft, latest state as of June 2009), OASIS.
[Online]. Available: http://www.oasis-open.org/committees/download.php/
31996/ebcppa-v3.0-Spec-wd-r01-en-pete4.pdf

[128] ——, Collaboration-Protocol Profile and Agreement Specification Version 2.0,
OASIS, sep 2002. [Online]. Available: http://www.oasis-open.org/committees/
ebxml-cppa/documents/ebcpp-2.0.pdf

[129] ——, ebXML Message Service Specification, 2nd ed., OASIS, April
2002. [Online]. Available: http://www.oasis-open.org/committees/ebxml-msg/
documents/ebMS v2 0.pdf

[130] OASIS, UDDI Spec Technical Committee Specification, 3rd ed., OASIS, 10
2003. [Online]. Available: http://uddi.org/pubs/uddi-v3.0.1-20031014.htm

[131] OASIS, ebXML Registry Information Model Version 3.0, OASIS, May 2005.

[132] ——, ebXML Registry Services and Protocols Version 3.0, OASIS, May 2005.

[133] OASIS, UDDI version 3.0.2, OASIS, February 2005. [Online]. Available:
http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf

[134] OASIS, ebXML Business Process Specification Schema Technical Specification,
2nd ed., OASIS, December 2006. [Online]. Available: http://docs.oasis-open.
org/ebxml-bp/2.0.4/OS/spec/ebxmlbp-v2.0.4-Spec-os-en.pdf

[135] ——, Web Services Security: SOAP Message Security 1.1
(WS-Security 2004), OASIS, February 2006. [Online]. Avail-
able: http://www.oasis-open.org/committees/download.php/16790/wss-v1.
1-spec-os-SOAPMessageSecurity.pdf

360

http://www.oasis-open.org/committees/download.php/31996/ebcppa-v3.0-Spec-wd-r01-en-pete4.pdf
http://www.oasis-open.org/committees/download.php/31996/ebcppa-v3.0-Spec-wd-r01-en-pete4.pdf
http://www.oasis-open.org/committees/ebxml-cppa/documents/ebcpp-2.0.pdf
http://www.oasis-open.org/committees/ebxml-cppa/documents/ebcpp-2.0.pdf
http://www.oasis-open.org/committees/ebxml-msg/documents/ebMS_v2_0.pdf
http://www.oasis-open.org/committees/ebxml-msg/documents/ebMS_v2_0.pdf
http://uddi.org/pubs/uddi-v3.0.1-20031014.htm
http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf
http://docs.oasis-open.org/ebxml-bp/2.0.4/OS/spec/ebxmlbp-v2.0.4-Spec-os-en.pdf
http://docs.oasis-open.org/ebxml-bp/2.0.4/OS/spec/ebxmlbp-v2.0.4-Spec-os-en.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf

Bibliography

[136] ——, ebXML Messaging Services Version 3.0: Part 1, Core Features, OASIS,
October 2007. [Online]. Available: http://docs.oasis-open.org/ebxml-msg/
ebms/v3.0/core/os/ebms core-3.0-spec-os.pdf

[137] ——, Web Services Business Process Execution Language, 2nd ed., April 2007.
[Online]. Available: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.
0-OS.pdf

[138] OASIS, Web Services Reliable Messaging (WS-ReliableMessaging) Version 1.1,
OASIS, January 2008. [Online]. Available: http://docs.oasis-open.org/ws-rx/
wsrm/200702/wsrm-1.1-spec-os-01-e1.pdf

[139] ——, Web Services Atomic Transaction (WS-AtomicTransaction) Version 1.2,
OASIS, February 2009. [Online]. Available: http://docs.oasis-open.org/ws-tx/
wstx-wsat-1.2-spec-os.pdf

[140] ——, Web Services Business Activity (WS-BusinessActivity) Version 1.2,
OASIS, February 2009. [Online]. Available: http://docs.oasis-open.org/ws-tx/
wstx-wsba-1.2-spec-os.pdf

[141] OASIS, Web Services Coordination (WS-Coordination) Version 1.2, OASIS,
February 2009. [Online]. Available: http://docs.oasis-open.org/ws-tx/
wstx-wscoor-1.2-spec-os.pdf

[142] ——, Web Services Reliable Messaging Policy Assertion (WS-RM
Policy) Version 1.2, OASIS, February 2009. [Online]. Available: http:
//docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.2-spec-os.pdf

[143] OASIS, Web Services Reliable Messaging (WS-ReliableMessaging) Version 1.2,
OASIS, February 2009. [Online]. Available: http://docs.oasis-open.org/ws-rx/
wsrm/200702/wsrm-1.2-spec-os.pdf

[144] ——, WS-SecureConversation 1.4, OASIS, February 2009. [Online].
Available: http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/
ws-secureconversation-1.4-spec-os.pdf

[145] OASIS, WS-SecurityPolicy 1.3, OASIS, February 2009. [Online].
Available: http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/os/
ws-securitypolicy-1.3-spec-os.pdf

[146] ——, WS-Trust 1.4, OASIS, February 2009. [Online]. Available: http:
//docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.pdf

[147] OASIS; UN/CEFACT, ebXML Business Process Specification Schema,
1st ed., OASIS; UN/CEFACT, May 2001. [Online]. Available: http:
//www.ebxml.org/specs/ebBPSS.pdf

361

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01-e1.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01-e1.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/os/ws-securitypolicy-1.3-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/os/ws-securitypolicy-1.3-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.pdf
http://www.ebxml.org/specs/ebBPSS.pdf
http://www.ebxml.org/specs/ebBPSS.pdf

Bibliography

[148] L. O’Brien, P. Merson, and L. Bass, “Quality attributes for service-oriented
architectures,” in SDSOA ’07: Proceedings of the International Workshop on
Systems Development in SOA Environments. Washington, DC, USA: IEEE
Computer Society, 2007, p. 3.

[149] OMG, Unified Modeling Language (OMG UML), Superstructure, 2nd ed., May
2010.

[150] ——, Business Process Model and Notation, v2.0, OMG, January 2011.
[Online]. Available: http://www.omg.org/spec/BPMN/2.0

[151] C. Ouyang, M. Dumas, S. Breutel, and A. ter Hofstede, “Translating standard
process models to BPEL,” in Proceedings of the 18th International Conference
on Advanced Information Systems Engineering, CAiSE 2006, Luxembourg,
Luxembourg, ser. Lecture Notes in Computer Science, E. Dubois and K. Pohl,
Eds. Springer Berlin / Heidelberg, June 2006, vol. 4001, pp. 417–432. [Online].
Available: http://dx.doi.org/10.1007/11767138 28

[152] C. Ouyang, M. Dumas, A. H. M. ter Hofstede, and W. M. P. van der Aalst,
“From BPMN process models to BPEL web services,” in ICWS ’06: Proceedings
of the IEEE International Conference on Web Services. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 285–292.

[153] C. Ouyang, M. Dumas, A. H. ter Hofstede, and W. M. van der Aalst,
“Pattern-based translation of BPMN process models to BPEL web services,”
International Journal of Web Services Research (JWSR), vol. 5, no. 1, pp.
42–62, 2007. [Online]. Available: http://eprints.qut.edu.au/6810/

[154] C. Ouyang, M. Dumas, W. M. P. van der Aalst, A. H. M. ter Hofstede,
and J. Mendling, “From business process models to process-oriented software
systems,” ACM Trans. Softw. Eng. Methodol., vol. 19, pp. 2:1–2:37, August
2009. [Online]. Available: http://doi.acm.org/10.1145/1555392.1555395

[155] M. P. Papazoglou, “Web services and business transactions,” World Wide Web:
Internet and Web Information Systems, vol. 6, pp. 49–91, March 2003. [Online].
Available: http://dl.acm.org/citation.cfm?id=634729.634760

[156] L. C. Paulson, “Inductive analysis of the internet protocol TLS,” ACM Trans.
Inf. Syst. Secur., vol. 2, no. 3, pp. 332–351, August 1999. [Online]. Available:
http://doi.acm.org/10.1145/322510.322530

[157] C. Pautasso and G. Alonso, “JOpera: a toolkit for efficient visual composition
of web services,” International Journal of Electronic Commerce, vol. 9, no. 2,
pp. 107–141, 2004.

[158] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful web services vs.
”big”’ web services: making the right architectural decision,” in Proceeding

362

http://www.omg.org/spec/BPMN/2.0
http://dx.doi.org/10.1007/11767138_28
http://eprints.qut.edu.au/6810/
http://doi.acm.org/10.1145/1555392.1555395
http://dl.acm.org/citation.cfm?id=634729.634760
http://doi.acm.org/10.1145/322510.322530

Bibliography

of the 17th international conference on World Wide Web, ser. WWW
’08. New York, NY, USA: ACM, 2008, pp. 805–814. [Online]. Available:
http://doi.acm.org/10.1145/1367497.1367606

[159] C. Peltz, “Web services orchestration and choreography,” Computer, vol. 36,
no. 10, pp. 46–52, 2003.

[160] C. Pflügler, A. Schönberger, and G. Wirtz, “Introducing partner shared states
into ebBP to WS-BPEL translations,” in Proc. iiWAS2009, 11th International
Conference on Information Integration and Web-based Applications & Services,
14.-16. December 2009, Kuala Lumpur, Malaysia. ACM, December 2009.

[161] K. Phalp and M. Shepperd, “Quantitative analysis of static models of
processes,” Journal of Systems and Software, vol. 52, no. 2-3, pp. 105 –
112, 2000. [Online]. Available: http://www.sciencedirect.com/science/article/
B6V0N-40962F9-3/2/025532797e57568a53472a442269e355

[162] K. T. Phalp, “The CAP framework for business process modelling,”
Information and Software Technology, vol. 40, no. 13, pp. 731 – 744,
1998. [Online]. Available: http://www.sciencedirect.com/science/article/
B6V0B-3VHWKSD-1/2/fb19de34342a419cdc098fcb1a890b27

[163] R. Pibernik and E. Sucky, “An approach to inter-domain master
planning in supply chains,” International Journal of Production Economics,
vol. 108, no. 1-2, pp. 200–212, July 2007. [Online]. Available: http:
//dx.doi.org/10.1016/j.ijpe.2006.12.010

[164] C. Pütz and E. J. Sinz, “Model-driven derivation of BPMN workflow schemata
from SOM business process models,” Enterprise Modelling and Information
Systems Architectures, vol. 5, no. 2, pp. 57–72, 2010.

[165] M. Reichert and P. Dadam, “Enabling adaptive process-aware information
systems with ADEPT2,” in Handbook of Research on Business Process
Modeling, J. Cardoso and W. M. van der Aalst, Eds. Hershey, New York:
Information Science Reference, March 2009, pp. 173–203. [Online]. Available:
http://dbis.eprints.uni-ulm.de/476/

[166] H. A. Reijers and W. M. van der Aalst, “The effectiveness of workflow man-
agement systems: Predictions and lessons learned,” International Journal of
Information Management, vol. 25, no. 5, pp. 458 – 472, 2005.

[167] D. Robertson, A. Barker, P. Besana, A. Bundy, Y. Chen-Burger, D. Dupplaw,
F. Giunchiglia, F. van Harmelen, F. Hassan, S. Kotoulas, D. Lambert, G. Li,
J. McGinnis, F. McNeill, N. Osman, A. de Pinninck, R. Siebes, C. Sierra,
and C. Walton, Advances in Web Semantics I: Ontologies, Web Services and
Applied Semantic Web, ser. Lecture Notes in Computer Science. Springer,

363

http://doi.acm.org/10.1145/1367497.1367606
http://www.sciencedirect.com/science/article/B6V0N-40962F9-3/2/025532797e57568a53472a442269e355
http://www.sciencedirect.com/science/article/B6V0N-40962F9-3/2/025532797e57568a53472a442269e355
http://www.sciencedirect.com/science/article/B6V0B-3VHWKSD-1/2/fb19de34342a419cdc098fcb1a890b27
http://www.sciencedirect.com/science/article/B6V0B-3VHWKSD-1/2/fb19de34342a419cdc098fcb1a890b27
http://dx.doi.org/10.1016/j.ijpe.2006.12.010
http://dx.doi.org/10.1016/j.ijpe.2006.12.010
http://dbis.eprints.uni-ulm.de/476/

Bibliography

2009, vol. 4891, ch. Models of Interaction as a Grounding for Peer to Peer
Knowledge Sharing, pp. 81–129.

[168] A. Rodŕıguez, E. Fernández-Medina, and M. Piattini, “An MDA approach to
develop secure business processes through a UML 2.0 extension,” International
Journal of Computer Systems Science and Engineering, Special Issue: TrustBus
2006, vol. 22, no. 5, pp. 307–319, Sep 2007.

[169] F. Rosenberg, C. Enzi, A. Michlmayr, C. Platzer, and S. Dustdar, “Integrating
quality of service aspects in top-down business process development using WS-
CDL and WS-BPEL,”in EDOC ’07: Proceedings of the 11th IEEE International
Enterprise Distributed Object Computing Conference. Washington, DC, USA:
IEEE Computer Society, 2007, p. 15.

[170] RosettaNet Implementation Framework: Core Specification, V02.00.01 ed.,
RosettaNet, www.rosettanet.org, March 2002. [Online]. Avail-
able: http://www.rosettanet.org/dnn rose/DMX/tabid/2979/DMXModule/
624/Command/Core ViewDetails/Default.aspx?EntryId=4730

[171] RosettaNet, Multiple Messaging Services (MMS) Profile for Web Services (WS)
V11.00.01, RosettaNet, August 2009.

[172] ——, Message Control and Choreography (MCC) - Profile-Web Services (WS),
Release 11.00.00A, RosettaNet, June 2010.

[173] ——, RosettaNet Methodology for Creating Choreographies, R11.00.00A, Roset-
taNet, July 2011.

[174] N. Russell, W. van der Aalst, and N. Mulyar, “Workflow control-flow patterns:
A revised view, BPM center report BPM-06-22,” BPMcenter.org, Tech. Rep.,
2006.

[175] T. Santoso, S. Ahmed, M. Goetschalckx, and A. Shapiro, “A stochastic
programming approach for supply chain network design under uncertainty,”
European Journal of Operational Research, vol. 167, no. 1, pp. 96–115,
November 2005. [Online]. Available: http://ideas.repec.org/a/eee/ejores/
v167y2005i1p96-115.html

[176] G. Scheithauer and G. Wirtz, “Case study: Applying business process manage-
ment systems,” in Proceeding of the 2008 International Conference on Software
Engineering and Knowledge Engineering (SEKE’08), Redwood City, CA (USA),
July 2008.

[177] A. Schönberger, “Modelling and Validating Business Collaborations: A
Case Study on RosettaNet,” Otto-Friedrich-Universität Bamberg, Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik 65, Mar.
2006. [Online]. Available: http://www.opus-bayern.de/uni-bamberg/volltexte/
2006/81/pdf/modelFIN.pdf

364

http://www.rosettanet.org/dnn_rose/DMX/tabid/2979/DMXModule/624/Command/Core_ViewDetails/Default.aspx?EntryId=4730
http://www.rosettanet.org/dnn_rose/DMX/tabid/2979/DMXModule/624/Command/Core_ViewDetails/Default.aspx?EntryId=4730
http://ideas.repec.org/a/eee/ejores/v167y2005i1p96-115.html
http://ideas.repec.org/a/eee/ejores/v167y2005i1p96-115.html
http://www.opus-bayern.de/uni-bamberg/volltexte/2006/81/pdf/modelFIN.pdf
http://www.opus-bayern.de/uni-bamberg/volltexte/2006/81/pdf/modelFIN.pdf

Bibliography

[178] ——, “The CHORCH B2Bi approach: Performing ebBP choreographies as
distributed BPEL orchestrations,” in Proceedings of the 6th World Congress on
Services 2010 (SERVICES 2010), Second International Workshop on Services
Computing for B2B (SC4B2B), Miami, Florida, USA. IEEE, July 2010.

[179] ——, “Do we need a refined choreography notion?” in Proceedings of the
3rd Central-European Workshop on Services and their Composition (ZEUS),
Karlsruhe, Germany, February 21-22, 2011, ser. CEUR Workshop Proceedings.
CEUR-WS.org, Feb 2011, pp. 16–23.

[180] ——, “Visualizing B2Bi choreographies,” in Proceedings of the IEEE Interna-
tional Conference on Service-Oriented Computing and Applications (SOCA’11),
Irvine, California, USA. IEEE, December 12-14 2011.

[181] A. Schönberger, T. Benker, S. Fritzemeier, M. Geiger, S. Harrer, T. Kessner,
J. Schwalb, and G. Wirtz, “QoS-enabled business-to-business integration us-
ing ebBP to WS-BPEL translations,” in Proceedings of the IEEE SCC 2009
International Conference on Services Computing, Bangalore, India. IEEE,
September 2009.

[182] A. Schönberger, C. Pflügler, and G. Wirtz, “Translating shared state based
ebXML BPSS models to WS-BPEL,” International Journal of Business In-
telligence and Data Mining - Special Issue: 11th International Conference on
Information Integration and Web-Based Applications and Services in December
2009, vol. 5, no. 4, pp. 398 – 442, 2010.

[183] A. Schönberger, J. Schwalb, and G. Wirtz, “Has WS-I’s work resulted in WS-*
interoperability?” in Proceedings of the 9th 2011 International Conference on
Web Services (ICWS 2011), Washington, D.C., USA. IEEE, July 2011, pp.
171–178.

[184] A. Schönberger, C. Wilms, and G. Wirtz, “A Requirements Analysis of Business-
To-Business Integration,” University of Bamberg, Technical Report: Bamberger
Beiträge zur Wirtschaftsinformatik und Angewandten Informatik 83, 12 2009.

[185] A. Schönberger and G. Wirtz, “Realising RosettaNet PIP Compositions as Web
Service Orchestrations - A Case Study,” in The 2006 International Conference
on e-Learning, e-Business, Enterprise Information Systems, e-Government, &
Outsourcing (CSREA EEE’06), Las Vegas, Nevada, USA, June 26-29 2006, pp.
141–147.

[186] ——, “Using Webservice Choreography and Orchestration Perspectives to
Model and Evaluate B2B Interactions,” in The 2006 International Conference
on Software Engineering Research and Practice (SERP’06), Las Vegas, Nevada,
USA, June 26-29 2006, pp. 329–335.

365

Bibliography

[187] ——, “Taxonomy on consistency requirements in the business process inte-
gration context,” in Proceedings of 2008 Conf. on Software Engineering and
Knowledge Engineering (SEKE’2008). Redwood City, California, USA: Knowl-
edge Systems Institute, 1.-3. July 2008.

[188] ——, “Using variable communication technologies for realizing business collab-
orations,” in Proceedings of the 5th 2009 World Congress on Services (SER-
VICES 2009 PART II), International Workshop on Services Computing for
B2B (SC4B2B), Bangalore, India. IEEE, September 2009.

[189] ——, “Sequential composition of multi-party choreographies,” in Proceedings
of the IEEE International Conference on Service-Oriented Computing and
Applications (SOCA’10), Perth, Australia. IEEE, December 13-15 2010.

[190] ——, “Towards executing ebBP-Reg B2Bi choreographies,” in Proceedings of
the 12th IEEE Conference on Commerce and Enterprise Computing (CEC’10),
Shanghai, China. IEEE, November 10-12 2010.

[191] ——, “Configurable analysis of sequential multi-party choreographies,” forth-
coming in International Journal of Computer Systems Science and Engineering,
March 2012.

[192] A. Schönberger, G. Wirtz, C. Huemer, and M. Zapletal, “A composable,
QoS-aware and web services-based execution model for ebXML BPSS Busi-
nessTransactions,” in Proceedings of the 6th 2010 World Congress on Services
(SERVICES2010), Fourth International Workshop on Web Services and Cloud
Services Testing (WS-CS-Testing 2010), Miami, Florida, USA. IEEE, July
2010, pp. 229 – 236.

[193] H. Schonenberg, R. Mans, N. Russell, N. Mulyar, and W. M. P. van der Aalst,
“Process flexibility: A survey of contemporary approaches,” in Advances in
Enterprise Engineering I, 4th International Workshop CIAO! and 4th Interna-
tional Workshop EOMAS, held at CAiSE 2008, Proceedings, ser. Lecture Notes
in Business Information Processing, J. L. G. Dietz, A. Albani, and J. Barjis,
Eds., vol. 10. Montpellier, France: Springer, June 2008, pp. 16–30.

[194] C. Schroth, T. Janner, and V. Hoyer, “Strategies for cross-organizational
service composition,” in MCETECH ’08: Proceedings of the 2008 International
MCETECH Conference on e-Technologies. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 93–103.

[195] K. Schulz and M. Orlowska, “Architectural issues for cross-organisational B2B
interactions,” in International Conference on on Distributed Computing Systems
Workshop 2001, Los Alamitos, California, USA, apr 2001, pp. 79 –87.

366

Bibliography

[196] J. Schwalb and A. Schönberger, “Analyzing the Interoperability of WS-Security
and WS-ReliableMessaging Implementations,” Otto-Friedrich-Universität Bam-
berg, Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Infor-
matik 87, 09 2010.

[197] J. Schwalb, A. Schönberger, and G. Wirtz, “Approaching interoperability test-
ing of QoS based on WS-* standards implementations,” in The 4th Workshop
on Non-Functional Properties and SLA Management in Service-Oriented Com-
puting (NFPSLAM-SOC’10), co-located with 8th IEEE European Conference
on Web Services (ECOWS 2010), Ayia Napa, Cyprus. IEEE, December 2010.

[198] R. Seguel, R. Eshuis, and P. Grefen, “Constructing minimal protocol adaptors
for service composition,” in WEWST ’09: Proceedings of the 4th Workshop on
Emerging Web Services Technology. New York, NY, USA: ACM, 2009, pp.
29–38.

[199] S. Simmons, “Introducing the websphere integration reference architecture,”
IBM WebSphere Developer Technical Journal, vol. 8.5, pp. 5–20, August
2005. [Online]. Available: http://www.ibm.com/developerworks/websphere/
techjournal/0508 simmons/0508 simmons.html

[200] H. A. Simon, The sciences of the artificial. The MIT Press, 1996.

[201] M. P. Singh, “Information-driven interaction-oriented programming: BSPL,
the blindingly simple protocol language,” in The 10th International Conference
on Autonomous Agents and Multiagent Systems - Volume 2, Taipei, Taiwan,
ser. AAMAS ’11. Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems, 2011, pp. 491–498. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2031678.2031687

[202] ——, “LoST: Local state transfer - an architectural style for the distributed
enactment of business protocols,” in Proceedings of the 9th 2011 International
Conference on Web Services(ICWS 2011), Washington, D.C., USA. IEEE,
July 2011, pp. 57–64.

[203] T. F. Stafford, “Introduction to special section on e-services,” Commun.
ACM, vol. 46, no. 6, pp. 26–28, June 2003. [Online]. Available:
http://doi.acm.org/10.1145/777313.777333

[204] P. Telang and M. Singh, “Abstracting and applying business modeling patterns
from rosettanet,” in Proceedings of the 8th International Conference on Service-
Oriented Computing - ICSOC 2010, San Francisco, CA, USA, ser. Lecture
Notes in Computer Science, P. Maglio, M. Weske, J. Yang, and M. Fantinato,
Eds. Springer Berlin / Heidelberg, December 2010, vol. 6470, pp. 426–440.

367

http://www.ibm.com/developerworks/websphere/techjournal/0508_simmons/0508_simmons.html
http://www.ibm.com/developerworks/websphere/techjournal/0508_simmons/0508_simmons.html
http://dl.acm.org/citation.cfm?id=2031678.2031687
http://doi.acm.org/10.1145/777313.777333

Bibliography

[205] P. Telang and M. P. Singh, “Specifying and verifying cross-organizational
business models: An agent-oriented approach,” Services Computing, IEEE
Transactions on, vol. 4, no. 4, p. in press, 2011.

[206] A. J. C. Trappey, P.-S. Ho, T.-H. Lu, and S.-Y. Shih, “Building B2B protocols
in inter-enterprise process execution,” in Proceedings of The 5th Asia-Pacific
Industrial Engineering and Management Systems Conference, APIEMS 2004,
Gold Coast, Australia, 2004, pp. 7.3.1 – 7.3.9.

[207] UN/CEFACT, “UN/CEFACT’ s Modelling Methodology N090 Revision 10,”
November 2001. [Online]. Available: http://www.untmg.org/

[208] ——, UN/CEFACT’s Modeling Methodology (UMM): UMM Meta Model -
Foundation Module Version 1.0, 1st ed., UN/CEFACT, 10 2006.

[209] ——, Core Components Technical Specification Version 3.0, UN/CEFACT, 9
2009.

[210] ——, UML Profile for UN/CEFACT’s Modeling Methodology (UMM) - Foun-
dation Module, 2nd ed., UN/CEFACT, 4 2011.

[211] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P.
Barros, “Workflow patterns,” Distrib. Parallel Databases, vol. 14, no. 1, pp.
5–51, 2003.

[212] W. M. P. van der Aalst, N. Lohmann, P. Massuthe, C. Stahl, and K. Wolf,
“From public views to private views - correctness-by-design for services,”
in Proceedings of the 4th International Workshop on Web Services and
Formal Methods, WS-FM 2007, Brisbane, Australia, ser. Lecture Notes
in Computer Science, M. Dumas and R. Heckel, Eds. Springer Berlin /
Heidelberg, September 2007, vol. 4937, pp. 139–153. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-79230-7 10

[213] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske, “Business
process management: A survey,” in Business Process Management, ser. Lecture
Notes in Computer Science, W. M. P. van der Aalst, A. H. M. ter Hofstede,
and M. Weske, Eds., vol. 2678. Springer, 2003, pp. 1–12.

[214] W. M. P. van der Aalst and M. Weske,“The P2P approach to interorganizational
workflows,” in CAiSE ’01: Proceedings of the 13th International Conference on
Advanced Information Systems Engineering. London, UK: Springer-Verlag,
2001, pp. 140–156.

[215] W. M. van der Aalst and K. B. Lassen, “Translating unstructured workflow
processes to readable BPEL: Theory and implementation,” Information and
Software Technology, vol. 50, no. 3, pp. 131 – 159, 2008.

368

http://www.untmg.org/
http://dx.doi.org/10.1007/978-3-540-79230-7_10

Bibliography

[216] G. van Seghbroeck, F. de Turck, B. Dhoedt, and P. Demeester, “Web service
choreography conformance verification in M2M systems through the pix-model,”
in Proceedings of the IEEE International Conference on Pervasive Services
2007, Istanbul, Turkey, july 2007, pp. 385 –390.

[217] J. Vanhatalo, H. Völzer, and J. Koehler, “The refined process structure tree,”
Data Knowl. Eng., vol. 68, no. 9, pp. 793–818, 2009.

[218] W. Vogels, “Web services are not distributed objects,” IEEE Internet Comput-
ing, vol. 7, no. 6, pp. 59–66, 2003.

[219] W3C, Web Services Description Language (WSDL) 1.1, W3C, March 2001.
[Online]. Available: http://www.w3.org/TR/wsdl

[220] ——, XML Encryption Syntax and Processing, W3C, December 2002. [Online].
Available: http://www.w3.org/TR/xmlenc-core/

[221] ——, “Web services architecture,” February 2004. [Online]. Available:
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/wsa.pdf

[222] ——, XML Schema Part 0: Primer Second Edition, W3C, October 2004.
[Online]. Available: http://www.w3.org/TR/xmlschema-0/

[223] ——, Web Services Choreography Description Language, 1st ed.,
W3C, November 2005. [Online]. Available: http://www.w3.org/TR/
2005/CR-ws-cdl-10-20051109/

[224] ——, Web Services Addressing 1.0 - Core, W3C, May 2006. [Online]. Available:
http://www.w3.org/TR/ws-addr-core

[225] ——, SOAP Version 1.2 Part 1: Messaging Framework (Second Edition),
W3C, April 2007. [Online]. Available: http://www.w3.org/TR/2007/
REC-soap12-part1-20070427/

[226] ——, Web Services Description Language (WSDL) Version 2.0 Part 0:
Primer, W3C, June 2007. [Online]. Available: http://www.w3.org/TR/2007/
REC-wsdl20-primer-20070626/

[227] ——, Web Services Policy 1.5 - Framework, W3C, September 2007. [Online].
Available: http://www.w3.org/TR/2007/REC-ws-policy-20070904/

[228] ——, XML Signature Syntax and Processing (Second Edition), W3C, June
2008. [Online]. Available: http://www.w3.org/TR/xmldsig-core/

[229] Y. Wand and R. Weber, “Research commentary: Information systems and
conceptual modeling–a research agenda,” Info. Sys. Research, vol. 13, no. 4,
pp. 363–376, 2002.

369

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/wsa.pdf
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/
http://www.w3.org/TR/ws-addr-core
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626/
http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626/
http://www.w3.org/TR/2007/REC-ws-policy-20070904/
http://www.w3.org/TR/xmldsig-core/

Bibliography

[230] I. Weber, J. Haller, and J. A. Mülle, “Automated derivation of executable busi-
ness processes from choreographies in virtual organizations,” in In: F. Lehner,
H. Nösekabel, P. Kleinschmidt (eds.): Multikonferenz Wirtschaftsinformatik
2006 (MKWI 2006), Band 2, XML4BPM Track, GITO-Verlag Berlin, Mar.
2006, pp. 313–327.

[231] T. Weitzel, S. Martin, and W. König, “Straight through processing auf XML-
Basis im Wertpapiergeschäft,” Wirtschaftsinformatik, vol. 45, no. 4, pp. 409–420,
2003.

[232] S. Wieczorek, A. Roth, A. Stefanescu, V. Kozyura, A. Charfi, F. M. Kraft, and
I. Schieferdecker, “Viewpoints for modeling choreographies in service-oriented ar-
chitectures,” in Joint Working IEEE/IFIP Conference on Software Architecture
2009 & European Conference on Software Architecture 2009 (WICSA/ECSA),
Cambridge. Los Alamitos/Calif., 2009.

[233] G. Wirtz, M. Weske, and H. Giese, “The OCoN approach to workflow modeling
in object-oriented systems,” Information Systems Frontiers 3:3, pp. 357–376,
2001. [Online]. Available: citeseer.ist.psu.edu/wirtz01ocon.html

[234] P. Wohed, W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede, and
N. Russell, “On the suitability of BPMN for business process modelling,” in
Proc. of the International Conference on Business Process Management (BPM
2006), ser. Lecture Notes in Computer Science, S. Dustdar, J. L. Fiadeiro, and
A. P. Sheth, Eds., vol. 4102. Springer, 2006, pp. 161–176. [Online]. Available:
http://dblp.uni-trier.de/db/conf/bpm/bpm2006.html#WohedADHR06

[235] A. Wombacher, “Decentralized consistency checking in cross-organizational
workflows,” in IEEE International Conference on Enterprise Computing, E-
Commerce, and E-Services, EEE 2006, San Francisco, CA, USA. IEEE
Computer Society, June 2006, pp. 39–46.

[236] A. Wombacher, B. Mahleko, and E. Neuhold, “IPSI-PF. a business
process matchmaking engine based on annotated finite state automata,”
Information Systems and E-Business Management, vol. 3, no. 2, pp.
127–150, 2005, 10.1007/s10257-005-0053-y. [Online]. Available: http:
//dx.doi.org/10.1007/s10257-005-0053-y

[237] WS-I, Basic Profile Version 1.2, WS-I, November 2010. [Online]. Available:
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html

[238] ——, Basic Profile Version 2.0, WS-I, November 2010. [Online]. Available:
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html

[239] ——, Basic Security Profile Version 1.1, WS-I, January 2010. [Online].
Available: http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html

370

citeseer.ist.psu.edu/wirtz01ocon.html
http://dblp.uni-trier.de/db/conf/bpm/bpm2006.html#WohedADHR06
http://dx.doi.org/10.1007/s10257-005-0053-y
http://dx.doi.org/10.1007/s10257-005-0053-y
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.1.html

Bibliography

[240] ——, Reliable Secure Profile Version 1.0, WS-I, November 2010. [Online].
Available: http://www.ws-i.org/profiles/ReliableSecureProfile-1.0-2010-11-09.
html

[241] D. M. Yellin and R. E. Strom, “Protocol specifications and component adaptors,”
ACM Trans. Program. Lang. Syst., vol. 19, no. 2, pp. 292–333, 1997.

[242] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed, “Deploying and managing
web services: issues, solutions, and directions,” The VLDB Journal, vol. 17,
no. 3, pp. 537–572, 2008.

[243] C. Yushi, L. Wah, and D. Limbu, “Web services composition - an overview of
standards.” Synthesis Journal, Fifth issue, ITSC publication, (pp 137-150),
2004. [Online]. Available: http://www.itsc.org.sg/synthesis/2004/4 WS.pdf

[244] J. Zaha, M. Dumas, A. ter Hofstede, A. P. Barros, and G. Decker, “Bridging
global and local models of service-oriented systems,” Systems, Man, and Cy-
bernetics, Part C: Applications and Reviews, IEEE Transactions on, vol. 38,
no. 3, pp. 302 –318, may 2008.

[245] J. M. Zaha, A. P. Barros, M. Dumas, and A. H. M. ter Hofstede, “Let’s
Dance: A language for service behavior modeling,” in Proceedings of the
14th international conference on cooperative information systems (CoopIS’06),
Montpellier, France, 10 2006, pp. 145–162.

[246] M. Zapletal, “A holistic methodology for model-driven B2B integration: From
business values over business collaborations to deployment artifacts,” in Proceed-
ings of the Tenth International Conference on Electronic Commerce (ICEC08),
August 2008, Innsbruck, Austria. CEUR-WS.org, August 2008.

[247] ——, “A UML-based methodology for model-driven B2B integration: From
business values over business processes to deployment artifacts,” Ph.D. disser-
tation, Vienna University of Technology, June 2009.

[248] M. Zapletal, T. Motal, and H. Werthner, “The business choreography language
(BCL) - a domain-specific language for global choreographies,” in Proceedings
of the 5th 2009 World Congress on Services (SERVICES 2009 PART II),
International Workshop on Services Computing for B2B (SC4B2B), Bangalore,
India. IEEE, September 2009.

[249] M. Zapletal, R. Schuster, P. Liegl, C. Huemer, and B. Hofreiter, “Modeling
interorganizational business processes,” in Handbook on Business Process
Management 1, ser. International Handbooks on Information Systems, J. vom
Brocke and M. Rosemann, Eds. Springer Berlin Heidelberg, 2010, pp.
543–564. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-00416-2 25

371

http://www.ws-i.org/profiles/ReliableSecureProfile-1.0-2010-11-09.html
http://www.ws-i.org/profiles/ReliableSecureProfile-1.0-2010-11-09.html
http://www.itsc.org.sg/synthesis/2004/4_WS.pdf
http://dx.doi.org/10.1007/978-3-642-00416-2_25

[250] W. Zhao, B. R. Bryant, F. Cao, R. Hauser, K. Bhattacharya, and T. Tao,
“Transforming business process models in the presence of irreducibility and
concurrency,” International Journal of Business Process Integration and Man-
agement, vol. 2, no. 1, pp. 37–48, 2007.

UNIVERSITY OF BAMBERG PRESS

ISBN 978-3-86309-076-0
ISSN 1867-7401
32,00 Euro

The establishment and implementation of cross-organizational
business processes is an implication of today‘s market pressure
for efficiency gains. In this context, Business-To-Business inte-
gration (B2Bi) focuses on the information integration aspects
of business processes. A core task of B2Bi is specifying the mes-
sage exchanges between integration partners as so-called cho-
reographies.

Despite the economic importance of B2Bi, existing choreogra-
phy languages fall short of fulfilling all relevant requirements of
B2Bi scenarios. Dedicated B2Bi choreography standards allow
for inconsistent outcomes of basic interactions and do not pro-
vide unambiguous semantics for advanced interaction models.
In contrast to this, more formal or technical choreography lan-
guages may provide unambiguous modeling semantics, but do
not offer B2Bi domain concepts or an adequate level of abstrac-
tion. Defining valid and complete B2Bi choreography models
becomes a challenging task in the face of these shortcomings.

The CHORCH approach offers B2Bi choreographies that are
B2Bi adequate, simple, unambiguous, and implementable. In-
tegration partners start out with a high-level visual model of
their interactions in BPMN that identifies the types and se-
quences of the business document exchanges to be implemen-
ted. An ebBP refinement then is used to fill in technical details
such that an implementation based on Web Services and BPEL
can be derived.

	Acknowledgements
	Kurzfassung
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	1 Introduction
	1.1 Scope of Work
	1.1.1 B2Bi as SCM Component
	1.1.2 Relevant Abstraction Layers
	1.1.3 Types of B2Bi

	1.2 Research Question
	1.3 Research Method
	1.4 Outline

	2 Technological Background
	2.1 Web Services and WS-*
	2.2 Orchestration Technology
	2.2.1 Web Services Business Process Execution Language

	2.3 Choreography Technology
	2.3.1 ebXML Business Process Specification Schema
	2.3.2 BPMN Choreographies
	2.3.3 Alternative B2Bi Choreography Languages
	2.3.4 Alternative Services Choreography Languages
	2.3.5 Alternative Conceptual Choreography Languages

	2.4 ebXML

	3 Requirements and Design Choices
	3.1 Approach of the Requirements Study
	3.2 Results of the Requirements Study and Design Choices

	4 Representing B2Bi Choreographies
	4.1 ebBP Deficiencies
	4.2 Integration Architecture
	4.3 ebBP BusinessTransaction Representation
	4.3.1 Requirements Analysis
	4.3.2 Execution Model

	4.4 ebBP-ST Choreographies
	4.4.1 Use Case
	4.4.2 Informal ebBP Models
	4.4.3 Formal ebBP models
	4.4.4 Evaluation

	4.5 ebBP-Reg Choreographies
	4.5.1 Use Case
	4.5.2 Formalization of ebBP-Reg
	4.5.3 ebBP-Reg Semantics

	4.6 SeqMP Choreographies
	4.6.1 Definition
	4.6.2 Problems in Multi-Party Choreographies
	4.6.3 SeqMP Algorithms

	4.7 Chapter Summary

	5 Implementation of Choreographies as BPEL Orchestrations
	5.1 General Implementation Aspects
	5.2 Implementation of BusinessTransactions
	5.3 Implementation of BusinessCollaborations
	5.4 Chapter Summary

	6 Visualizing B2Bi Choreographies
	6.1 Selection of BPMN Elements
	6.2 Representing Strict Choreographies
	6.2.1 Strict Binary Choreographies
	6.2.2 Strict Multi-Party Choreographies

	6.3 Validation
	6.4 Chapter Summary

	7 Related Work
	7.1 Requirements Analysis for B2Bi
	7.2 B2Bi Choreography Representation
	7.3 Implementation of B2Bi Choreographies
	7.4 Multi-Layer Approaches

	8 Conclusion and Future Work
	A B2Bi Requirements Sources and Classification
	B Algorithm for Translating ebBP-ST to BPEL
	C WS-* Implementation of the Secure WS-ReliableMessaging Scenario
	C.1 Policy Configuration
	C.2 SecRM Scenario Test Results

	D SPIN Validation of the BT Execution Model
	D.1 The BT Execution Model as Validation Input
	D.2 Promela Representation of the BT Execution Model
	D.2.1 Overall Process Structure and Global Resources
	D.2.2 Promela Representation of the Requester Control Process
	D.2.3 Promela Representation of the Responder Control Process
	D.2.4 Promela Representation of the Requester's Backend Process
	D.2.5 Promela Representation of the Responder's Backend Process
	D.2.6 Promela Representation of the Master Processes
	D.2.7 Promela Representation of the ReceiptAcknowledgementCreation Service

	D.3 BT Execution Model Simulation Using XSPIN
	D.4 Validation of the BT Execution Model Using SPIN
	D.5 Validation Results

	Bibliography

