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ABSTRACT 

Clinical Decision Support (CDS) is primarily associated with alerts, reminders, 

order entry, rule-based invocation, diagnostic aids, and on-demand information retrieval. 

While valuable, these foci have been in production use for decades, and do not provide a 

broader, interoperable means of plugging structured clinical knowledge into live 

electronic health record (EHR) ecosystems for purposes of orchestrating the user 

experiences of patients and clinicians. To date, the gap between knowledge 

representation and user-facing EHR integration has been considered an “implementation 

concern” requiring unscalable manual human efforts and governance coordination. 

Drafting a questionnaire engineered to meet the specifications of the HL7 CDS 

Knowledge Artifact specification, for example, carries no reasonable expectation that it 

may be imported and deployed into a live system without significant burdens. Dramatic 

reduction of the time and effort gap in the research and application cycle could be 

revolutionary. Doing so, however, requires both a floor-to-ceiling precoordination of 

functional boundaries in the knowledge management lifecycle, as well as formalization of 

the human processes by which this occurs. 

This research introduces ARTAKA: Architecture for Real-Time Application of 

Knowledge Artifacts, as a concrete floor-to-ceiling technological blueprint for both 

provider heath IT (HIT) and vendor organizations to incrementally introduce value into 

existing systems dynamically. This is made possible by service-ization of curated 

knowledge artifacts, then injected into a highly scalable backend infrastructure by 
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automated orchestration through public marketplaces. Supplementary examples of client 

app integration are also provided. Compilation of knowledge into platform-specific form 

has been left flexible, in so far as implementations comply with ARTAKA’s Context 

Event Service (CES) communication and Health Services Platform (HSP) Marketplace 

service packaging standards. 

Towards the goal of interoperable human processes, ARTAKA’s treatment of 

knowledge artifacts as a specialized form of software allows knowledge engineers to 

operate as a type of software engineering practice. Thus, nearly a century of software 

development processes, tools, policies, and lessons offer immediate benefit: in some 

cases, with remarkable parity. Analyses of experimentation is provided with guidelines in 

how choice aspects of software development life cycles (SDLCs) apply to knowledge 

artifact development in an ARTAKA environment. 

Portions of this culminating document have been further initiated with Standards 

Developing Organizations (SDOs) intended to ultimately produce normative standards, as 

have active relationships with other bodies. 
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BACKGROUND 

20th-century clinical decision support systems (CDSS) have gravitated around 

highly localized applications of localized knowledge. Through early decades, successes 

in computerized physician order entry (CPOE), alerts and reminders, point-to-point 

integrations, point-of-care information retrieval and myriad functional areas have not 

suffered from a lack of methodological ideas[1], competing ideals or clinical interest, but 

to date have collectively failed to induce an influx of technologically advanced marvels 

as initially envisioned.[2,3] The future has not yet arrived[4], and the multitude of fingers 

to point is dwarfed by the number of targets to blame. 

Attempting to address roadblocks of the clinical decision support (CDS) 

community from such a pessimistic perspective, chronicling failures ad nauseam to 

attribute blame, is not particularly productive if we are set on swiftly making broad 

course corrections to enable the next golden age of CDS innovation. Rather, it is my 

intention to present a next-generation view of CDS architecture for knowledge-driven 

systems, such that the field may successfully incorporate a broader array of approaches 

and attract radically different ideas: not merely incremental improvement to specific 

isolated applications. The architectural approach described in this manuscript intends to 

bridge the gap between emergent trends in CDS knowledge authoring and management to 

the real-world application of those artifacts in production systems. Exploration of these 

mechanics is extremely important to both clinical informatics and computer science 

disciplines, as traditional client-server software engineering patterns do not address the 

nature of knowledge-driven applications, especially in the context of health standards. 



 

4 

Context-based content filtering, multi-user sessions, localized machine learning, 

workflow branch prediction, intelligent grouping, simulation, and infinite other creative 

support methods require new approaches to CDS architecture, and more precisely, a 

generalized mechanism for generalized client-side UI orchestration that incorporates 

incremental changes to underlying knowledge bases without reengineering of client 

software to explicitly invoke known CDS modules. 

Ontologic investigation and modeling of UI concepts is not particularly new[5], 

but has also not made inroads in practice. Model-driven UI development has failed to 

upset the overwhelmingly popular use of manually-authored model-view-controller 

(MVC) design, generally accredited to Smalltalk and the subject of decades of variation 

and analysis for both user-facing and middleware applications.[6] ARTAKA’s approach 

is extremely complementary to this reality, and is demonstrated and analyzed in practical 

terms. 

In addition to the UI event-related discussion and reference implementation, I 

offer guidance on measured evaluation of concrete implementations. Particular attention 

is paid to a single, oft-neglected quantifiable characteristic that is vital to the future of 

CDS systems – and care in general – that no large organization, healthcare or otherwise, 

can sustain without in the 21st century: scalability. 

Irrespective of what it means to an organization, scalability is always desirable, 

always critical, and simultaneously always elusive. We acknowledge the importance of 

scalability without clear consensus on its meaning, and build mammoth systems with 

latent belief that integration of individually scalable SOA components results in a 
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systemically scalable system. Books on the subject address scalability as a first-class 

consideration [7,8] in all aspects of architecture, but are often treated as lesser concerns 

in healthcare. A single function can be optimized locally by careful profiling and 

thoughtful local engineering decisions, but the edges between can only be scaled by 

requirements and design. No local code optimization can compensate for a lack of 

forethought on the lack of common vocabulary and isosemantically safe exchange of data 

structures across N interaction boundaries, solvable by proactive policy and governance. 

No clever database query can eliminate unsustainable economic costs of implementing a 

medical logic module (MLM) in production. CDS, as a field, is ripe for head-to-toe shift 

towards systemic scalability in a hot-pluggable architecture. 

RESEARCH IMPLICATIONS 

The importance of CDS architecture scalability as a system- and global-level 

clinical quality measure is a cross-cutting concern throughout biomedical informatics 

domains, and far from solely an engineering matter. This scope is further exemplified by 

widespread acknowledgement of challenges in the management of curated clinical 

knowledge intended to affect production systems downstream.[9,10] Collaborative bodies 

such as the Trust Framework Work Group have emerged to frame the problems and guide 

policy, but these are early efforts. 

With appropriate traditional configuration management in place, deployment 

processes can be mitigated in a manageable manner[11,12]; but even so, deploying any 

change into a system affecting patient care caries fundamental danger.[13] Updating the 

available code system version of a terminology such as SNOMED CT, LOINC, or 
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RxNorm is not a simple find/replace operation when the semantics of those codes differ. 

In a prospective future where no single development team can even be aware of the 

entirety of live CIS content upon which clinical decisions are made, centrally-coordinated 

outage events no longer become possible. Yet, we must find a way for clinical subject 

matter experts (SMEs) and knowledge engineers to deploy more actionable knowledge 

faster in an environment of potentially exponentially greater complexity. 

Further complicating matters, a patient’s care is no longer delivered by a single 

country internist operating within the comfort of an isolated layered onion. Coordination 

events across networked onions introduce additional complexities of security, 

governance, and legal dilemmas largely outside the scope of current interoperability 

standards.[14] 

Worse, standards developing organizations (SDO)s tend to assume that health 

data are inherently portable in a computationally timely fashion: another latent belief for 

which there is little evidence. Precision medicine studies can easily yield terabytes of raw 

data per patient. [15] While live CDS modules are unlikely to draw much value in raw 

query of en masse data[16] -- as opposed to highly processed and annotated secondary 

data derived through a vetted pipeline -- it is perfectly reasonable to expect current trends 

in data production and transfer to continue.[17] Certain contexts will warrant 

completeness beyond what Virtual Medical Record (vMR)-like models can provide. 

Accounting for these data sources as well as recent advances in differential privacy[18], 

we must architecturally acknowledge that the reality that CDS will sometimes necessitate 

moving computational lambdas off site, into black box environments where only 
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preapproved result profiles may emerge. This is not in full alignment with specifications 

such as Decision Support Service (DSS) or CDS Hooks. Other barriers may require the 

same solution, such as where collaborating organizations are not willing or able to 

exchange protected health information (PHI), data are partitioned vertically, or 

infrastructural “cloud bursting” manipulates data affinity as a function of load over 

time.[19-21] 

The foremost contribution of this work is in definition of the ARTAKA CDSS, 

adaptable for organizations of all sizes, in which interoperable content may be authored, 

exchanged, validated, and executed in a secure and automatable manner, and such that 

growth of the burden is linear relative to the size of the patient population and volume of 

executable content. And as a secondary aim, provide guidance on the evaluation of 

concrete implementations rooted in existing best practices and analysis of the reference. 

CDS is an incredibly broad topic. Next-generation clinical decision support will 

most likely not be characterized by incremental advances in the status quo of hard-coded 

decision logic written by knowledge and software engineers, but by rapidly adaptable, 

fluid systems driven by clinically-deployed knowledge modules: authored, managed, 

introduced, revised, and removed from active daily use on clinically-driven timelines 

without delay or downtime. 

This shift is not only paramount to freeing providers from vendor implementation 

lock-in and associated consulting timeline and cost constraints, but requisite to the ability 

of HIT organizations to meet rapidly increasing demands for software maintenance. In 

the commercial realm, vendor organizations will not be able to satisfy resource demands 
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if a software engineering effort is required to implement every instance of executable 

knowledge in a context orders of magnitude more complex. It is an implausible path 

forward. 

In a recent case within Veterans Health Administration (VHA), a questionnaire 

was developed to assess patient suicide risk. The form was defined using the Health 

Level 7 (HL7) CDS Knowledge Artifact specification for content and control flow, 

bound to underlying terminology identifiers, and demonstrated to automatically render in 

a manner close to the original intent. While not perfect, this work has not been 

incorporated into the VistA Electronic Medical Record (EMR) system in its true form for 

a number of reasons, most notably that doing so would have required a substantial 

software engineering effort commitment. 

In the future, questionnaires and other forms of documentation templates are but 

one example of actionable clinical knowledge that must be fully compilable, validatable, 

and deployable across the entirety of a networked organization in response times limited 

only by safe human processes. More recently, VHA has expanded its effort by 

development of approximately ~104 distinct HL7 CDS Knowledge Artifacts, none of 

which has attained plug-and-plug operability in any known system. It would be clinically 

unacceptable to accept an enterprise architecture stretching the implementation response 

turnaround through years of backlogged artifact queues and artifact-specific services and 

tooling. The state of the art in knowledge-based systems, however, does not appear to 

have dramatically improved over recent decades.[22] 
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From an informatics perspective, reducing these burdens requires the entire HIT 

stack to be architected to accommodate generalized execution of hot-pluggable content. 

Pragmatically, this operation of the executor framework must be managed by a HIT 

organization, with knowledge-as-software content managed by SMEs and clinical 

informaticists, and process governance and compliance at the separation of concerns 

boundary. The SOA defined by ARTAKA is intended to accommodate standards-based 

knowledge modules from domain-specific SMEs, support the validation process of 

individual modules to stakeholder parties, and integrate alongside or on top of a live EHR 

platform on demand in a fully automated manner when clinically approved. The entirety 

of this process must be based on open, practical standards from top to bottom, and 

depends on provider and vendor acceptance to garner widespread adoption. 

Within this vision, bridging between formally-represented clinical knowledge and 

cross-institutional execution requires, amongst other things, openly available knowledge 

compilers that translate technology-agnostic models into type-specific runtime code, 

platform-agnostic service container packaging, and automatic binding of data and service 

dependencies at runtime using late binding. 



 

 

RESEARCH AREA COMPETENCIES 

I am a career systems architect with over 15 years in applied software 

engineering, with 8 in BMI disciplines in a number of roles spanning public and private 

organizations. I currently serve as a systems architect for Veterans Health Administration 

in Knowledge-Based Systems, Chief Systems Architect for Biomedical Informatics at 

Arizona State University (ASU), and am a contributor to the Object Management Group 

(OMG), Health Level 7 (HL7), Health Services Platform Consortium (HSPC), OSEHRA, 

and assist in departmental efforts in BMI at ASU. Prior published works include papers 

on the scalable, secure syndication of collaborative bioinformatics studies over the 

Internet, perspectives on the nature of biointelligence, separate patent applications on the 

use of hypergraphs for logical biomedical modeling and visualization of N-of-1 study 

data, and other topics, in addition to software projects and libraries in the BMI domain. I 

completed my written and oral comprehensive exams in 2017. 

Prior, I have completed AA and AGS degrees, an undergraduate BS degree in 

Computer Science and Software Engineering, and Masters in Business Administration 

(MBA). I returned to ASU briefly to teach OOA&D concepts and database-backed 

enterprise application engineering as adjunct faculty at the polytechnic campus under 

Drs. Gary and Lindquist. 

Outside of BMI, I have focused on architecture and development of large-scale 

applications and middleware, and have broad experience in private commercial practice, 

research institutions such as the Translational Genomics Research Institute and Van 

Andel Institute, and public entities such as VHA.  
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I have been an active professional in BMI for 8 years and have been collecting 

incremental thoughts on this subject since enrolling in the program. As a cross-cutting 

topic and result of my personal interests and background, most literature sources have 

come from two general areas: medical informatics and computer science. A perusal of the 

bibliography reveals most publications fall into these areas. With broad experience in 

many related disciplines, I am qualified to contribute to this specialized intersection of 

CDS and applied computer science. 



 

 

MISUNDERSTANDING MAINSTREAM WORKS 

All systems have limits: some by constraints imposed by implementation 

concerns, others by innate qualities of a specification or architecture. Standards-oriented 

solutions, in particular, are prone to the latter due to the inherent inability of 

implementors to create extensions universally compatible with all implementations of the 

standard proper. 

The ARTAKA design is informed and motivated by such boundaries of current 

and upcoming standards. Context Event Service, as the prime example, is designed to 

complement some of these inherent limitations without introducing a competitive turf 

war for well-covered use cases. This section expands on notable misconceptions, and the 

relation to mitigating capabilities presented in ARTAKA and constituent services. 

FAST HEALTH INTEROPERABILITY RESOURCES 

Health IT’s predominant standards body is Health Level 7 (HL7), stewarding 

decades of mission-critical interoperability specifications such as “v2”. At present, 

personal observation has revealed huge expectations and hype surrounding Fast Health 

Interoperability Resources (FHIR), as well as anything leveraging FHIR as a dependency. 

Anecdotally, almost all new project efforts at HL7 appear to somehow reference, if not 

directly incorporate, FHIR. 

FHIR originated as a REST-like approach to health data interoperability[23] 

suitable for modern service-oriented architectures (SOA) primarily exchanging JSON or 

XML documents either as middleware or directly with client applications.[24] 
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PLATFORMS AND CLINICAL MODELS 

One of the most common mischaracterizations of FHIR is that it provides all core 

data exchange structures to effectively create a data interoperability bridge between 

multiple organizations. This is categorically false. FHIR, by its own description, “..is a 

platform specification”.[25] FHIR provides base data structures and semantics for a 

FHIR-based API, but is somewaht silent on the selection of the particular clinical models 

being exchanged, harkening to equivalent widespread issues with HL7 v2.[26,27] 

In non-healthcare domains, APIs are commonly developed to provide lock-step 

alignment between logical representations and underlying physical implementations, 

typically manifested in some form of database. The semantics and constraints of each 

field are declared in the API, and deviations usually result in incompatibility. Health IT 

provides a slight anomaly in that this style of bottom-up design is frequently frowned 

upon as too limiting. “Local customization”, particularly in clinical informatics, is 

generally considered requisite to a degree. For this reason, FHIR separates the concept of 

a “resource” into a highly customizable type hierarchy. Each resource definition provides 

field-level metadata that may or may not permit expansion or contraction of constraints. 

To achieve true semantic clarity of what is represented by a given resource instance, a 

clear resource “profile” must be followed. Argonaut [28] and US-Core[29] are prime 

examples of interoperability efforts focused on developing clear semantic profiles of 

FHIR resources. 

Due to the complexity of the ecosystem, the current likelihood of defining a 

profilable context event model for orchestration of all client applications from compatible 
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backend knowledge services is nil. Doing so would fragment client applications to, most 

likely, only support a vendor-specific profile in ways that preclude simultaneous support 

for competing Context Event Service implementations. Further, as Context Event Service 

is primarily an event broker to/from knowledge agents, event profiling will not scale to 

potentially thousands of underlying agents operating in concert. Any such model needing 

to operate in this environment must be lightweight and semantically crisp. This approach 

is in no way incompatible with FHIR, though may irk FHIR evangelists that the FHIR 

Subscription resource is not directly used by CES. Also, CES’ real-time push mechanism 

relies on standard HTML 5 Server Sent Events that are not supported, nor mentioned by, 

FHIR Subscription as of the STU 3 release. (See the section on HTML 5 Server Sent 

Events (SSE) for details.) CES provides for complete flexibility of data models and does 

not currently define a “profiling” mechanism of the core (and only) event structure. The 

section on Event Profiling & Developer Collaboration provides additional discussion. 

MODULE MATURITY 

FHIR is balloted in consolidated revisions; however, the robustness of individual 

resources varies greatly according to a governed “maturity level” classification system. 

HL7’s granular maturity model used in FHIR provides a sensible compartmentalization 

mechanism to allow natural ebb and flow of loosely related areas of the overall 

specification. The caveat is that consuming parties can easily view the high-level state of 

the specification – notably the “Standard for Trial Use” (STU) moniker – and infer that 

this applies equally to all portions of the work. This is not so. 
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FHIR “Level 5” resources under Clinical Reasoning Module are largely 

categorized at maturity levels 0-2 at present[30] on a 0-6 scale. The area is subject to 

significant revision, has limited real-world use, and is not in complete lock-step 

alignment with the XML document-based HL7 CDS Knowledge Artifacts specification. 

This is notable in addressing a reason that the ARTAKA design is not bound to 

any specific model or method of knowledge representation: no generally accepted means 

exists in executable form in practice. FHIR Clinical Reasoning Module is likely to gain 

much traction in the future, but at time of initial experimentation did not provide 

sufficiently mature definition to warrant detailed experiments. 

Of additional particular interest are FHIR’s PlanDefinition and CarePlan 

resources. These types loosely correlate with core data structures in process models suites 

such as BPMN, CMMN, and DMN – collectively *MN -- and underlying execution 

engines. The *MN suite, governed and stewarded by Object Management Group 

(OMGG), is of great interest to the clinical informatics community, as they are general-

purposes solutions with numerous existing vendor solutions already in production use 

globally. The intersection of the *MN and FHIR worlds is currently under investigation 

by the OMG Healthcare Domain Task Force (HDTF), conveining at work group meeting 

in 2017 and 2018 thus far.[31] 

The HDTF has released a *MN “Field Guide” [32] providing best practices for 

knowledge engineers tasked with production or consumption of *MN in healthcare. In 

current work, the community is exploring the exact relationships between OMG *MN 
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and HL7 FHIR down to the field level, with the aim of providing both whitepapers and 

proof-of-concept prototypes illustrating the work. 

As it relates to ARTAKA, the resultant runtimes produced by the HDTF or 

similar efforts are intended to manifest as knowledge agents discussed in Agents, though 

the platform-specific means by which a specific process model is agent-ized is beyond 

the scope of this manuscript. Regardless of the means, process- or workflow-focused 

agents are easily able to detect and emit relevant changes using the same CES 

mechanisms used for client orchestration. An external change to specific CarePlan, for 

example, would trigger a lightweight event carrying the URI of the instance, URI 

representing the nature of the change, and originating actor. 

ARTAKA, via CES’ event backplane, unifies event-driven thinking with frontline 

user applications, and can be used to bind applications, workflow runtimes, and CDS 

services without introducing strong coupling and point-to-point integrations. 

HATEOAS 

REpresentational State Transfer (REST) is an architectural style. There is no 

governing board validating adherence to REST principles, nor any form of certification 

or adjudication on usage of the term. As such, colloquial usage of “REST” generally does 

not mean strict adherence to the principles outlined by Fielding.[33] “REST” in practice 

usually implies a service accepting and returning JSON and/or XML-structured 

documents, manipulated with standardized HTTP verbs, at URLs paths declared as 

nouns. Beyond that, very little can be reasonably assumed. 
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Of the most ignored concepts of REST is the notion of Hypertext As The Engine 

Of Application State (HATEOAS). In essence, HATEOAS encourages changes to front-

end application state based on explicit transitional guidance provided by services as part 

of their native resource specifications. Despite the positive long-term outlook of REST, 

almost no REST services, including FHIR, provide a focal means for service-driven 

contextual state management, instead leaving application usage purely in the hands of the 

user. 

This is fine. However, ignoring the ability to do so in individual API definitions is 

extremely problematic when use cases call for direct, real-time, server-side client 

orchestration. CES’ API directly supports this type of push-enabled HATEOAS, 

regardless of whether FHIR forms the basis of the domain model. 

SMART-ON-FHIR (SOF) 

The SMART-on-FHIR specification originated as a common way of “launching” 

a front end-only user interface against FHIR resources managed by an EHR or other 

system of record. It is fairly simple to understand and establishes an appropriate 

separation of concerns and degree of abstraction between data and application layers in a 

SOA. It is already supported to significant degree by the leading EHR vendors, with 

entire revenue models designed to profit off the ecosystem. 

SoF’s core launching method is not new technology. For technologists outside 

health IT, it is easily explained as existing, industry-standard OAuth 2.0 and OpenID 

Connect[34] with precoordinated launch parameters and custom scope definitions for 

domain-specific resource authorization. Other than the format of these values, there is 
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nothing HIT related about SoF. It is a simple precoordination of OAuth 2.0 usage by 

design and works well for its purpose. The specification has since moved to HL7 for 

standardization. 

ACCESS CONTROLS 

The danger of SoF is overmarketing of its capabilities. As effectively a “profile” 

of OAuth 2.0, SoF does not provide any form of context management or state 

propagation. The scope authorization mechanism is debatably too simple, as most 

examples do not show how complex, fine-grained control may be implemented as is 

necessary when field-level censoring is required. 

BACKEND SERVICES 

SoF only addresses a small number of common, albeit important, use cases 

regarding launch of front-end clients against a FHIR authority. SoF does not have an 

equivalent covering the inverse scenario where a backend service must be distributed for 

use by existing clients. This is for good reason that no non-proprietary de facto standard 

has emerged. Elements exist, but standardized means for automated publication, 

validation, and distribution of CDS Hooks services, as a choice example, is nonexistent.  

ARTAKA addresses these issues through the Health Services Platform 

Marketplace: a formalized vendor-neutral specification for “gallery”-like uses present in 

the SoF community [35,36], and notably compatible with SoF gallery use cases, that has 

specific considerations for backend services and the local infrastructure that will need to 
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run it.  Additionally, the HSP Marketplace supports distribution of SoF application when 

they need to be run on premise: a requirement almost never addressed in practice. 

The Marketplace model also recognizes the need for curation of service images, 

and accounts for these needs via a simple non-prescriptive state model. Role-based access 

and permissions are all dynamically configurable, and authentication is designed to use 

OAuth 2.0 OpenID Connect in a manner fully compatible with, and already present in, 

SoF architectures. 

Through detailed review of the relevant works, coupled with additional hands-on 

implementation, it is apparent that these technological contributions are needed 

regardless of a commitment to CES. These concerns are discussed in depth in Health 

Services Platform Marketplace. Reference implementations have been developed and are 

available under Open Source license. 

CDS HOOKS 

At present, much additional hype exists in the clinical interoperability and CDS 

communities around CDS Hooks: a simple REST-like mechanism for invocation of 

remote CDS services.[37] For client-side engineers, it is appealing to support due to the 

low learning curve, ease of implementation, and lightweight nature, relative to more 

heavyweight standards. CDS Hooks service implementations may be called from any 

actor capable of making HTTP requests using JSON: effectively all web-based, mobile, 

desktop, and middleware types of applications. 

EXPLICIT NOUN-VERB 
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CDS Hooks is based on the design principle of explicit invocation. Each “hook” 

name follows a noun-verb pattern indicative of the type of event that has occurred. [38] 

At time of this writing, three hooks are explicitly defined on the CDS Hooks website in 

addition to the template. It is reasonable to expect the official set of noun-verb hooks will 

grow immensely due to ease of defining new hook types. 

The disadvantage to this principle is that of scalability. If the specification 

becomes a long-term mainstream function of EHRs, the list of potential noun-verbs may 

grow exponentially. While it is not technically problematic to do so, there are no “noun-

only”, “verb-only”, or multi-noun/verb semantics. Allowing for extremely granular hooks 

such as “patient-selection-changed-from-to” would quickly result in an explosion in use 

case-specific hooks. Such an approach is unscalable, as is amplified by the profile-

specific nature of FHIR resources and combinatorics of possible client and server 

integration. 

CES’ event structure allows for this, and through existing fields may actually 

“wrap” CDS Hooks requests, but CES defines no specific set of supported or unsupported 

noun/verb combinations. No central registry exists by design. Events typically carry 

equivalent fields, but unlike CDS Hooks, CES-integrated applications are encouraged to 

emit and respond to events of interest over relying on a central registry of supported CDS 

events. Thus, any and every possible combination of CDS Hooks noun-verb is possible, 

regardless of the noun or verb. CES is based on the principle of use case-agnostic events. 

SYNCHRONOUS RESPONSE 
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CDS Hooks invocations are synchronous, allowing services to return an array of 

“cards” in response. Each card may include a set of related “links” to resources, and 

“suggestions” for user “actions”. 

In this regard, ARTAKA provides similar and compatible capabilities to CDS 

Hooks. CES’ event “parameters” field is the equivalent of CDS Hooks’ action “resource” 

field. It is an arbitrary object, optional, and may contain payload data specific to the 

intent of the service that must be specified by the underlying service in advance to permit 

client integration. 

Where CES is architecturally divergent lies in the nature of determinism. CDS 

Hooks is fundamentally synchronous, while CES is fundamentally asynchronous. For 

CDS Hooks clients, the context of the response is always to be interpreted with respect to 

the state of the client at the time it was invoked. There is little ambiguity or flexibility: 

one request results in one response. 

CES does not permit explicit CDS invocations, and as a natural consequence there 

is no inherent notion of “response”. Events may crudely be characterized as observations 

of things that happen either in a real or simulated timeline, in past, present or future. 

Request/Response-style usage is but one type of CDS supported by this paradigm. CES’ 

peculiar approach to event semantics may be used to implement request/response, but 

clients are likely better served by adopting the expectation that CDS is a fluid, integrated 

experience, regardless of whether or not it is explicitly asked for. CDS Hooks’ simplicity 

is a double-edged sword: it is only capable of supporting applications when intentionally 

invoked, and even then, only for the particular noun-verb function referenced. 
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Unconventionalities of CES’ event model are discussed in Orchestration, 

Simulation, and Time Travel, and wields its own form of multi-dimensional sword. 

SIMULATION 

Closely related to the pros and cons of invocation synchronicity, CDS Hooks 

operations are generally assumed to operate on the “real” state of data and the known 

world. These is no defined mechanism for addressing “What if..?” use cases needed for 

computing the effects of hypothetical actions. This is necessary in cases such as: 

• Precomputing an output that needs to be available immediately when needed but 

is computationally implausible to perform on demand. “Prefetch” is a prime 

example of practical out-of-order execution used to deceive the user into thinking 

a system is faster than it really is. 

• Forward-chaining of consequences from a critical datum that is censored, 

unavailable, driven by chance, or where a state must be assumed but is not 

observable. 

• Triggering of scheduled services that cannot wait on globally defined wall-clock 

intervals. For example, a patient data sync agent normally executing at 2am daily 

may need to be triggered at a highly accelerated redefinition of 2am. 

• Finding systemic optimizations via continual revalidation of the SOA using 

evolutionarily updated algorithms and models, such as prediction of staffing 

needs. 
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CDS Hooks services implemented with strictly functional semantics, where 

invocations are isolated and carry no side effects, may be safe to use for simulation 

purposes, but this is far out of scope from the intent of the specification. Early attempts to 

use simulation methodology in clinical practice such as at Georgetown University 

Hospital in the 1980’s[39] were not long lasting. 

Cellier discusses in a 1977 ACM SIGSIM paper, “..there exist problems which 

cannot be modelled in a proper way by either purely discrete or purely continuous 

simulation elements“[40], and given the highly complex nature of clinical environment it 

is likely that any ARTAKA or ARTAKA-like platform will exist in a middle-ground 

where discrete observations are the currency of event publication and subscription, but 

change to sources of record occurs continuously and cannot be assumed to align with any 

discrete event. 

ARTAKA aims to allow for the application of knowledge not only for “real” data 

and contextual states, but universes of belief for simulation of potential outcomes. The 

mechanism is further used as the basis for orchestrating client state changes as a 

simulation of past user events that did not occur. Knowledge agents behind the curtain of 

the CES API always receive and emit events scoped to a given timeline. In functional 

cases, whether or not these events occur on real or simulated timelines is largely 

immaterial. 

The definitions of timelines and the notion of a clock as an malleable event 

generator is firmly rooted in decades of existing research and best practices in the 

simulation and modeling domain.[41] These are not mainstream concepts in HIT, 
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however, and ARTAKA attempts to bring numerous beneficial aspects of discrete-event 

and continual simulation, not uncommon in other domains[42,43], into the realm of CDS. 

Law et al[44] provided a comprehensive breakdown of such approaches in the early 

1990’s. 

Simulation architectures generally do not use the real-world clock to drive 

processing cycles. Doing so would bind the time to complete a simulation to the 

equivalent duration of wall-clock time, largely defeating the purpose of a given 

simulation if obtaining a result requires waiting until after the real-world consequences 

would have occurred. Use of proportional coefficients to change the duration of a second 

still needlessly introduces delays for quickly running and no-op cycles. This is 

architecturally solvable by redefining time itself to be event-driven as opposed to clock-

driven. ARTAKA’s smallest, defined, discrete increment of such clock tick events is one 

second. The nature of CDS as a specialized form of simulation is discussed in greater 

detail in Orchestration, Simulation, and Time Travel. 

DATA ACCESS 

CDS Hooks’ allows for two ways for services to fetch data: 

1. The caller fetches FHIR data directly, based on a template set of queries declared 

by the service. 

2. The caller passes credentials to the service, and the service is allowed to 

masquerade on behalf of the caller. 
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CES allows for both styles, though as a general security principle the second 

method should not be used in any system. Sharing credentials is a highly flawed approach 

to data access authorization, not the intension of the OAuth protocol flows, and is 

extremely troubling to see in the official specification. [45] 

ARTAKA is generally assumed to the operating in a trusted environment, such 

that disclosure of user credentials is never necessary. Caveats to this approach are 

discussed in Experimentation, Evaluation and much deeper future investigation is needed. 

CES also differs from CDS Hooks in that FHIR is supported, but not required. 

FHIR resources have been used in ARTAKA experiments, but no particular data 

representation or model is presumed since most CES events typically only pass data by 

URI reference. The decision to avoid passage of fully hydrated data structures in 

ARTAKA is rooted in systemic scalability in highly orchestrated environments. 

In a future state where CDS is not a “periodic” invocation, but a constant, ongoing 

stream of orchestrations across client and server boundaries, the event volume will be 

innately high. To compensate for the reality of network and computing limits, payloads 

must compensate by shedding as much weight as possible. CES does allow for 

heavyweight payloads to support CDS Hooks “card”-like cases, but usage is sanctioned 

only to cases where it is truly necessary, such as when performing information retrieval 

operations from internal databases that cannot be accessed directly from the client, or in 

transmitting predictive modeling outcomes[46] not permanently stored.  



 

 

APPROACH AND SCOPE 

As a cross-cutting research interest in CDS architecture, the architecture 

development approach has been heavily based on prior works from clinical informatics, 

approaches to scalable systems design from generalized computer science, and standards 

across both. 

Existing specifications and tools have been used to the greatest extent possible, 

with a strong preference towards solutions with very permissible licenses. In the case of 

software, this entails the MIT, Apache 2.0, and BSD 2- and 3-clause licenses, and 

excludes any viral or overly restrictive license such as the GPL and AGPL. This decision 

is in 100% alignment with the Health Services Platform Consortium (HSPC) licensing 

policy on the same subject.  

ARCHITECTURAL COMPONENTS 

Previous works in published CDS architecture[13,47,48], as well as expert 

consensus [49], tend to share a number of thematic elements regarding system 

boundaries. Typically, there exists an authority of patient records (usually an EHR), 

source of external knowledge, externalized services for applying the knowledge to patient 

records, connecting interfaces, and an overarching “platform” and/or enterprise service 

bus (ESB)-like framework governing integration practices. Individual cases warrant 

variations, but this is a common baseline. Greenes’ “conceptual model of CDS design 

components” [4] aligns with this observation as the most generalized form. 

This separation of concerns is not due, however, to HIT-specific causes. Rather, it 

is a natural expression of externalizing service functions from a centralized source of 
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truth in a service-oriented architecture. In addition to present-day hybrid cloud 

architectures designed specifically for CDS[19,50], infrastructure-as-a-service (IaaS) 

vendors expose generalized external lambda execution though services such as Google 

Cloud Functions[51], Amazon Lambda[52], and Azure Functions[53] that potentially 

may be leveraged in distributed CDS architectures, though none were developed 

specifically targeting CDS or healthcare. 

The ARTAKA design augments Greenes’ generalized CDS conceptual model by 

explicitly addressing a number of next-generation concerns, and in the case of CDS 

invocation, provides for reversal of the paradigm entirely. This fundamental departure in 

the nature of invocation flows brings with it a new set of pros, cons, and qualities that do 

not always directly map to traditional service integration patterns.[54-56] 

EVENT ORIENTATION 

Synchronous request/response-style calls, such as those used in the hypertext 

transfer protocol (HTTP) protocol of the world wide web (WWW), are a straightforward 

way of integrating a CDS (or other) service. Design, implementation, and testing are 

limited to linear, blocking calls that do not inherently introduce non-deterministic aspects 

to client software. Unfortunately, this can also impose strict design limitation on CDS 

designs for live user-facing applications, in that certain actions must be traceable back to 

some user-invoked action. This is not a “bad” paradigm, per se, but tends to introduce 

busy polling operations when needing to implement asynchronous client-side event 

handlers.[57] This was the de facto approach used to implement push notifications in web 

applications for many years.[58] 
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ARTAKA reverses this paradigm. All operations are asynchronous unless 

otherwise allowed, though it is not always possible to do so. Further, clients do not 

explicitly “invoke” any particular CDS module or function as conventional wisdom 

would dictate with respect to HL7 Decision Support Service (DSS) or CDS Hooks. 

Instead, any MVC-based client is provided with a real-time connection to a backend 

event delivery system, the ARTAKA Context Event Service (CES), responsible for 

brokering events related to the user’s activities and implied cognitive processes to the 

relevant CDS services of interest, and asynchronously triggering those functions. For 

those accustomed to client-initiated CDS such as CDS Hooks and DSS this is likely to 

create some initial discomfort, though as we will demonstrate, it is not exclusionary to 

continued use of explicit MLM invocation. In fact, explicit MLM invocation is extremely 

easy to support in ARTAKA, though a response, if any, will always be asynchronous to 

the invocation. 

The HL7 Infobutton Manager standard, a straightforward and practical 

information retrieval mechanism, is also easy to emulate in either a manner 

indistinguishable from true Infobuttons, as well as a fully automated mode in which 

information is delivered as a response to UI context, thus potentially designing out user 

clicks streamlining the delivery of context-sensitive information. 

Outside of backwards compatibility, ARTAKA’s paradigm change is due to 

several primary reasons: 

1. Scalability. It will be impossible for application developers to continuously 

integrate with new CDS Hook cards types, DSS modules, custom service 
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application programming interfaces (APIs) etc at a rate mirroring the growth of 

clinical knowledge. 

2. Separation of concerns. ARTAKA CES clients have no awareness of the 

underlying knowledge “modules” being used within the black box, unlike DSS 

where clients must have a priori knowledge of, and encode explicit reference to, 

known support modules. 

3. Generalization. Much like the generalized conceptual CDS model, it is not 

inherently clinical, and in fact, makes no reference to any clinical concept in 

specification form, other than relying on knowledge from the clinical domain. The 

design may thus be reused to apply knowledge in other domains. 

4. Modernization. Fielding’s dissertation covering representational state transfer 

(REST)[33,59] changed the way architects and developers think about systems 

integration, though Hypertext As The Engine Of Application State (HATEOAS) 

is not nearly as well understood as state representation itself.[60] Anecdotally, it 

is rarely applied as intended. ARTAKA provides for a conceptually similar form 

of HATEOAS in that server-side logic is able to provide actionable state 

transition guidance, based on knowledge, that may or may not be applied by a 

client. 

FULL-DUPLEX MESSAGE INITIATION 

Moving to a purely event-oriented CDS paradigm requires clients to participate in 

both client-initiated and server-initiated communication. On the WWW, this has been 

historically challenging for clients to implement due to the stateless, client-initiated 
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nature of the HTTP v1 protocol. The stateless design of HTTP v1 did not provide a 

method for server-side software to “push” an unsolicited event to a client, further 

complicated by firewalls, network address translation (NAT), and other network-level 

restrictions. For SMART-on-FHIR and other web-based clients, this is now possible 

using HTML Server Sent Events (SSE), and/or Internet Engineer Task Force’s (IETF) 

standardized WebSockets protocol. Neither SSE nor WebSockets, however, address 

application-level messages structures that ARTAKA defines. 

TEMPORAL SESSION CONTEXT 

Event-Condition-Action (ECA) rules are an example CDS method typically used 

to apply stateless logic; given a triggering event and retrieved set of data conditions, 

execute some action. In the case of stateful user sessions, though, there may not be a 

single discrete event to which a CDS action applies, but rather a fluid contextual situation 

based on recent activity implemented using complex event processing (CEP). For 

example, given the user: 

• is an endocrinologist, 

• searching a local knowledge management system for diabetes management 

guidelines, and 

• is now looking at their calendar in a completely separate application 

..an ARTAKA-based system may determine the user may be interested in an 

overlay of all patient appointments over the next 5 days due for blood tests referenced by 

the guideline: based neither on any one event, nor selection event of any particular patient 
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record, but because they are engaging in a stream of cognitive activities and are likely 

interested in this knowledge. This is analogous to the highly targeted content 

narrowcasting approaches used in other domains, most notably media and marketing 

companies such as Internet-based television service Hulu, or cross-system click tracking 

by Facebook, Amazon or Google. 

ARTAKA provides CDS services with a longitudinal model of user events 

through a Temporal Event Store (TES) referencing generalized ontologic event types, 

application-specific MVC actions, data targets, timestamps, and event timelines for 

simulation and UI orchestration purposes. 

 



 

 

GUIDELINES FOR IMPLEMENTATION EVALUATION 

Care providers must be able to gauge the suitability of CDS solutions such that 

realistic expectations may be set and programmatically validated across the board, as 

opposed to purely qualitative checklists centered around IT policy. 

For purposes of evaluating systems built on ARTAKA principles, I suggest a 

shortlist of constituent qualities requisite for any CDS artifact or CIS to be scalable to the 

organization, across three interrelated areas: 

• Human: burdens placed on people, acts that they perform, and the rules that 

govern them. 

• Technological: limits of mathematical feasibility of computing systems, short of 

significant leaps forward in computer science. This is strictly constrained to the 

algorithmic and physical limitations of currently-available devices within reach of 

modest organizations. 

• Economic: dollars required of local institutions and impacts on macroeconomic 

ability to produce and consume as a function of public health. 

In this broad-stroke definition, SME, software development and informatics 

development: 

• Times are human. 

• Prices are economic. 

• Devices are technological. 
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Heuristically, implementations of the architecture may be quantitatively evaluated 

using a number of measures spanning all three pillars of interest. These factors include: 

NEAR-ZERO ECONOMIC VARIABLE COST 

CDS MLM projects, as with software, are notoriously costly to implement and 

maintain sustainably. Personnel costs are high, especially in highly-regulated expert 

domains such as healthcare.[61,62] In ideal form, the economic burden of incrementally-

improved CDS systems is largely limited to the fixed costs of deployment and budgetable 

costs of maintenance. In terms of variable costs, the growth of CDS modules in a system 

should not statistically correlate to support costs. These criteria are intended to encourage 

a number of downstream behaviors, including: 

• Trending towards test-driven development (TDD) principles such as unit- and 

integration-test automation as first-pass regression validation that generate 

concrete coverage data using clinically-meaningful, representative test cases. 

• Dissuading adoption of solutions that require human-intensive custom local data 

and service bindings, such as the well-known curly braces issue of Arden 

Syntax[63] standardized and endorsed by HL7. 

• Preference toward developing medical content across organizational boundaries in 

the open, using unencumbered licenses devoid of usage fees. 

• Leveraging non-healthcare-specific content development processes and tools 

using well understood, generalized methods. 

POSITIVE DIMINISHING RETURNS 
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Borrowing again from economic theory and strongly related to reducing variable 

costs, economic scalability of a solution should not suffer from negative incremental 

returns until beyond the projected upper limit of the system as a whole. Doing so 

reasonably protects the organization from no-win situations in which any change to 

anything is guaranteed to incur negative net value. 

In a future of CDSS with modules routinely being imported, authored, revised, 

tested and decommissioned fluidly from live production use, local architects and other 

engineers must negotiate realistic order-of-magnitude upper-bound N values to assure 

that, during the expected useful life of the system, the critical value is not surpassed such 

that module increments result in negative utility. No system nor individual device can be 

deemed scalable if it cannot define the claims by which is should be evaluated. 

Diminishing marginal returns apply not only to horizontal scalability, but vertical 

scalability as well. In a given assembly line with a number of stations between 1..N, there 

exists a point at which introducing an additional station to divide-and-conquer workflow 

activities no longer improves the utility of the overall site. Over-partitioning activities in 

a CDSS in a noble effort to separate concerns can have the opposite effect due to the 

added complexity of over-compartmentalization. Separation of concerns is often in 

competition with minimization ofcomplexity, as the total number of system interfaces, N, 

relates to the potential number of system-system integrations exponentially according to 

the function N(N-1)/2, not linearly. 

SME-DRIVEN MODULE LIFECYCLES 
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The translation of knowledge acquired by clinical SMEs to machine-readable and 

executable form is an imperfect manual art requiring a mix of clinical familiarity, 

technical aptitude, and tribal knowledge. The specifications reflect this. Expecting SMEs 

with in-depth specialized domain experience to deal with raw and highly technical XML, 

JSON, proprietary syntaxes in addition to authoring actual content is unrealistic, and the 

system must support highly assistive and restrictive authoring applications such that 

SMEs are comfortable representing knowledge with user-friendly tools and with only 

minimal support by clinical informicists. 

CLEAR ARTIFACT INDEX REQUIREMENTS 

An unintended side effect of “separation of concerns” design practices is an 

inability to optimize across interface boundaries. In fully integrated systems, such as 

silicon-level system-on-chip (SoC) designs[64], individual components may be optimized 

with full knowledge of the inner workings of every other component. This tacit 

knowledge provides for both design-time and validation-time evaluation “white box” 

testing.[65,66] 

In microservice-oriented architectures such as ARTAKA, individual knowledge 

executor agents are assumed to be black boxes unless otherwise specified. In cases such 

as an ARTAKA Patient Corpora Cluster (PCC), a specialized array of executor agents, 

this means that queries cannot be assumed to be optimized in accordance with existing 

internal indexes. A degree of cooperation and goodwill must exist between developers on 

both sides of service boundaries to assure the whole is not overly burdened by the 

overheating of its parts. 
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FAULT TOLERANCE 

All things eventually fail. With all components of a system exhibiting less than 

100% availability rates, networked systems are thus cursed with their incrementally 

added components resulting in an exponential decrease in the availability of all parts. 

This effect on the mean time between failure (MTBF) is a recognized issue of service 

oriented architecture[67,68], and must be addressed through diligent design practices to 

ensure that services at the terminal nodes of the dependency graph do not cascade into 

complete systemic collapse.  

AVAILABILITY OVER CONSISTENCY 

Medical systems, in some ways, have clearer design priorities than in other 

domains. EHRs systems cannot go down every time a slight change to a business process 

must be made. In similar vein, updating a software process in such a way that requires a 

temporary component outage should not affect the availability of the EHR or other 

systems. As a rule of thumb, availability of the system should trump hard guarantees of 

eventual consistency. The ARTKAK Patient Corpora Cluster is notably assumed to 

exhibit this characteristic. 

ELIMINATION OF VALIDATION OVERHEAD 

ARTAKA views declarative knowledge as a specialized form of software. This is 

not only a philosophic stance, but practical, as it permits decades of study and applied 

work in automated regression testing to be applied to the validation of clinical 

knowledge.[69-71] 
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All ARTAKA agents should provide comprehensive full-suite regression test 

cases bundled with agent images distributed through ARTAKA Marketplaces. This 

allows for on-site integration testing of 3rd-party agents and is intended to drastically 

reduce the “implementation time” of licensed agents. 

SECURITY 

Putting security into a manuscript concerning dynamic CDS architecture may 

seem slightly tangential, however, a portion of analysis of the experimental reference 

implementation is dedicated exclusively to vulnerabilities in future-facing coordinated 

CDS. Issues tend to originate in standards such as HL7 v2 being designed under a simpler 

presumption of trust between systems. Today, in-flight specifications generally do not 

include information security considerations far beyond their pre-Internet lineages, and 

shallowly recognize domain-agnostic work in the area.[72] The bigger the target, the 

bigger the attack surface, and it should be expected that 21st-century CDS will 

unfortunately be accompanied by targeted attacks via PHI, CDS, and even terminology-

level vectors. Failure to account for the CISO’s concerns in our assessment of systemic 

CDS scalability could have grave consequences at the global level. 

Medical information security is an exceptionally important topic in present-day 

informatics, and warrants significantly greater attention in the research community. 

Interoperability outside the firewall introduces a league of attack vectors to the patient, 

organization, and broader population that must be addressed at a foundational level. In 

this characterization of security scalability, the classical notion of point-to-point 
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authentication, authorization and encryption is woefully inadequate. Implementations 

must also consider: 

• Participant identity. The concepts of user identities, accounts, and authorities are 

closely related, confusing, and sometimes implemented in semantically 

contradictory manners. For CDS purposes, clinicians must be able to coordinate 

across care boundaries by participating in inter-network architectures, reciprocally 

recognizing local identities without imposing unreasonable burden on the issuing 

institution. 

• Audit trails. When breaches occur, forensics requires logs. In a large care 

network, comprehensive log availability to digital first responders is nearly 

impossible without pre-coordination with developers, full cooperation of local 

authorities, and dedicated staff efforts, possibly across jurisdictions and aided by 

court orders. 

• Tamper resistance. Structural and semantic interoperability can allow for safe 

clinical exchange of information, but does not inherently verify that the exchange 

itself was safe. Complicating the matter, what amounts to “cleaning up” or “data 

mapping” by an exchange or other intermediary party may qualify as falsification 

or fabrication to another. 

• Accidental disclosure and discrimination. Scrubbing of exported data to contain 

only “relevant” information is extremely difficult in a medical context, as the 

definition of “relevant” is a localized concept. Prevention of “leaks” is further 

complicated by the question of whether internal computational agents should be 
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allowed to access data that the user is not. ARTAKA agents are assumed to 

operate in a trusted environment, but no explicit architectural decision is 

mandated on whether a given agent may operate in a fully authorized manner or 

be scope constrained to the abilities of an active user, if any. 

• Timing. A drawback of event-driven system design is sensitivity to event 

timelines and order. Foundational infrastructure such as the Domain Name 

System (DNS) have been subject to such vulnerabilities[73], as have web 

applications[74]. Attacks are real, and implementations need be cognizant that 

rouge actors may intend to induce undesired outcomes through generation of 

carefully orchestrated event timelines. 

IMPLICIT LICENSING OF TRANSITIVE DEPENDENCIES 

This content has been extracted into separate paper and will not be reproduced 

here. In short, for production environments it is necessary to limit the effects of 

proprietary content and software licenses on the entire system. Organizations should 

define a base set of policies and permissible licenses such that all actors need not be 

burdened by complicated low-level programmatic checks on license compatibility. 

No assumptions should be made that content distributed or published through the 

National Institute of Health (NIH) Unified Medical Language System (UMLS) license 

implies “open source” or public domain terms. Consideration of the license(s) relevant to 

each individual work is necessary. 

LIMITATIONS AND RISKS 
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While the intended impact of this research is to guide long-term organizational 

and national interests in design of interoperable CIS by providing a vendor-neutral view 

of CDS subsystem architecture based on current and emerging standards, only so much 

can be specified in generalized form. Flexibility to “localize” is both a blessing and a 

curse. 

Scalability can be measured according the outlined considerations, but any 

evidence attained in a lab environment is purely synthetic. Research in this area generally 

acknowledges both the syntheticness of data and lab-constained nature of 

experimentation as a limiting factor. The reference implementations evaluated and 

analyzed have not been used in production context, and beyond peer review at both the 

architectural concept level and code level can provide no guarantees on suitability. The 

base performance qualities of the reference architecture, in particular, are only 

meaningful in the context of the deployment environment. Different implementations are 

expected to make different optimizations, to exhibit completely different performance 

profiles. Further, these “wind tunnel” experiments cannot account for all the complexities 

and compromises made in large, legacy-riddled HIT environments. For this reason, the 

reference implementations are not expected to be useful in definitely demonstrating 

scalability. They are an initial baseline for design of future systems. 

In terms of risks, the biggest is scope. Even in minimal form, the number of 

related works, moving parts and application specifications necessary to implement an 

ARTAKA-based SOA is daunting, as will be the resolution of any organization-specific 

gaps. Within each functional area, temptation will always be present to add more, go 
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deeper, and fix things out of scope. This can be mitigated by keeping forefront the 

observation that scalability, in all things, is best achieved by removal of the need to scale 

in the first place. Similarly, flexibility to future implementers is granted through concise, 

clear interfaces not overburdened in a rigid framework. 



 

 

ARCHITECTURAL OVERVIEW 

Implementing the ARTAKA paradigm requires a distinct set of interoperable 

components described in this chapter. Once present, knowledge-driven services may be 

“plugged in”, provided they meet the interface specifications of the overall system. Each 

component will be detailed, with discussion focused on: 

1. The original aspects of the architecture, and 

2. Items necessary for plugged-in service implementations to be exchanged across 

implementations. 

While we will discuss components outside these categories, it is for reference 

purposes only, as deviations do not invalidate the utility of the architecture nor cripple the 

ability of knowledge services to be portable across implementations. Each component is 

ideally interoperable across ARTAKA implementations to facilitate cross-vendor 

solutions, but due to the highly complex nature of doing so, some vendor flexibility is 

warranted to provide for patchworks and variant architectures. 

COTS components implementing sufficient existing specifications will be 

identified with supplemental external reading called out, as existing works based on open 

standards do not need to be repeated here in depth. 

At a high level, ARTAKA is functionally divided into two hemispheres working 

as a whole and connected by several mechanisms, designed to be in line with high 

availability (HA) requirements of production HIT environments and familiar to 
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practitioners of mainstream complex event processing. The overall architecture is 

illustrated in Figure 1. 

 

FIGURE 1 ARTAKA BOX DIAGRAM 

Peripheral to the system, ARTAKA references an: 

• Integrated Knowledge Environment (IKE) for authoring, compiling, managing, 

testing, and exchanging of knowledge resources in both source and executable 

form. 

• Health Services Platform (HSP) Marketplace implementation and local agent 

for publishing, curating, validating, and deploying executable services in an 

automated manner. 
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• Service Execution Platform for interoperable executable artifacts. 

ARTAKA’s left-side systems provide: 

• Reverse Proxy/Load Balancer. This is a generic component of HIT 

environments that should come as no surprise to HIT implementors, with the 

exception of several requirements we will identify.  

• Context Event Service (CES) API for application integration. This is the 

programming interface used by applications such as SMART-on-FHIR clients to 

implement knowledge-driven activities. As this interface is the only public 

interface for the system, it will be explained in detail in dedicated chapter: 

Context Event Service. 

• Temporal Event Store. ARTAKA knowledge-driven services are stateless, but 

often need to operate in the context of a stateful user session environment. All 

access in managed 

• Health Services Platform Agent. This allows new service implementations to be 

automatically hot-plugged into a live production ARTAKA instance. 

ARTAKA’s right-side systems provide: 

• Triggered Agents that receive and respond to client activities via Complex Event 

Processing (CEP). These instances are the heart of the system, as individual 

instances constitute the meat of a local deployment, are consist of compiled local 

knowledge, manually authored software, facades for complex subsystems, and 

adapters for proprietary services and specifications. They are entirely 
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customizable. More sophisticated implementations may integrate like-minded 

frameworks such as Apache Kafka and Apache Samza in a implementation-

specific manner. 

• Scheduled Agents for periodic jobs based on clock tick events. 

• Autonomous Agents that run continuous on their own terms, regardless of an 

external triggering mechanism. 

• Patient Corpora Cluster that keeps patient data in scope-isolated random access 

memory (RAM). 

• External Data caches for databases and services authoritatively maintained 

outside the ARTAKA system. 

INTEGRATED KNOWLEDGE ENVIRONMENT (IKE) 

Recalling that ARTAKA views knowledge engineering as a specialized from of 

software engineering, the IKE is a specialized form of an integrated development 

environment (IDE) that is the staple of many software developers daily lives, particularly 

in statically typed languages such as Java and C#. The scope of an IKE includes: 

• Authoring: create/read/update/delete of standardized types of knowledge 

documents via individual artifact editors. 

• Compilation: 100% programmatic transform of declarative artifacts into 

executable ARTAKA binaries using platform-specific technologies. These may 

be fully Open Source, such as Knowledge Is Everything (KIE) including Drools, 

proprietary to a vendor, or combination thereof.   
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• Testing: At minimum, regression support for change control and validation in the 

context of the backend implementation. This allows authors to run and debug 

knowledge resources directly in the IKE without requiring in-depth technical 

platform knowledge that a clinical informaticist is unlikely to have. 

• Integration: Leverage the run-time SSE API capabilities of the backend, including 

event topics via direct, programmatic integration of server-side events. 

• Simulation: run and debug against synthetic or real patient records, when 

applicable to the scope of the knowledge. 

• Governance: appropriately apply business processes, policies, and frameworks. 

• Community: sustainable in a pluggable manner via community extensions and 

maintenance, ideally all in the Open Source domain as an informal collaborative 

effort across organizations and stewarded by several primary benefactors. 

Variants of this paradigm are common to most successful IDEs.  

No stringent specification is necessary and maximal creativity in design of IKE 

environments is encouraged, however, baseline environments are necessary to spur 

innovation. With current momentum towards FHIR-based knowledge objects, IKEs able 

to launch against backends supporting the FHIR Clinical Reasoning Module are most 

likely to attract initial attention. 

KNARTWORK 

As an entry point into IKEs, I have developed the web-based KNARTwork 

application as a standalone tool for authoring HL7 CDS Knowledge Artifacts (KNARTs). 
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I have presented this work as a standalone contribution to clinical informatics tooling at 

the 2017 HL7 FHIR Applications Roundtable[75], and moved future stewardship of 

project source code to the Clinical Quality Framework (CQF) in 2017 where it may be 

maintained as a community interest amongst similar projects. At time of this writing, 

composite artifacts have not yet been standardized, though schemas have been posted 

informally by the HL7 KNART work group. 

Using KNARTwork, knowledge engineers may create new KNARTs, load 

existing ones, download documents in native XML format, and preview them directly on 

the web using UI widgets. It has already been used by end users comfortable managing 

source documents as an out-of-band process using git/subversion, Dropbox, email etc. 

Support for FHIR Clinical Reasoning Module with automated conversion tools is a future 

feature of great interest. 

Repository Browsing 

One of more recent developments to the KNARTwork IKE is addition of a simple 

knowledge repository browser feature. Prior to the changes, the application provided a 

purely standalone experience that did not use any APIs or databases such as RDBMS or 

NoSQL systems, thus requiring manual acquisition of XML KNARTs.  

With the changes, KNARTwork may now be launched via a special `/browser` 

page using a single query parameter pointing to a separate repository web server. During 

startup, the browser makes a web service call to the repository for a `manifest.json` file. 

This manifest, maintained and provided by the remote repository, references any number 

of distinct documents, batched into logical groups for presentation purposes. Each 
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manifest "item" has a name, MIME type, and set of arbitrary text tags/keywords the end 

user may use to search for it. Using this information, KNARTwork presents a logical 

web-based view of the manifest and a text search control for filtering the results. Several 

alternate presentation modes are also provided to dynamically regroup content by type or 

tag. 

For all files of a MIME type supported by the KNARTwork editor, a special link 

is provided to open the document directly on the web. This eliminates the need for the 

user to download the document to their local computer, launch KNARTwork as normal, 

and manually open the file. All other file types may be opened directly in the browser 

when supported by the local operating system environment, or simply downloaded for 

loading into a separate application. 

To help troubleshoot the availability of files referenced in the manifest, the 

browser provides an "Audit" button. When pressed, an HTTP HEAD call is made against 

every referenced file. All files that appear to be available are highlighted in green; files 

that appear to either be missing or are unavailable for security or network reasons are 

highlighted in red. 

As of this writing, the KNARTwork manifest format is now being pursued as a 

baseline format for exchange of metadata between Veterans Health Administration 

(VHA) and Agency for Health Research and Quality (AHRQ) for artifact publication and 

distribution. 

Customization 
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KNARTwork is useful as-is, but is intended to be extended by vendors to add 

tight integration with vendor-specific ARTAKA backend systems. With this in mind, 

KNARTwork intentionally does not come with a backend data store – nor any type of 

backend -- out of the box. In other words, it is a web-based application but does not have 

any server-side component, by design. it is assumed that the customizing party has their 

own mechanism for doing so. Integration with the AHRQ’s CDS Connect project is 

currently being considered. 

Content vendors with existing libraries of HL7 KNARTs and supplemental 

artifacts may also use the KNARTwork browser by creating a manifest.json file, either 

manually or via a content management system, and launching the KNARTwork browser 

using its hosted repository URL. The repository server only needs to allow cross-origin 

resource sharing (CORS) requests and be accessible by the end user, such that 

KNARTwork is able to load the manifest and content directly from the user’s browser. 

HEALTH SERVICES PLATFORM MARKETPLACE 

The concept of an application “marketplace” or “app store” is nothing new. The 

HSP Marketplace, in particular, addresses the problem of exchanging backend service 

implementations in a vendor-neutral manner, which is necessary to exchange executable 

artifacts across SOAs with plug-n-play interoperability. A Marketplace is a location 

where executable artifacts are published for exchange, such as backend CDS Hooks 

implementations, runnable ECA rules derived from KNARTs, raw FHIR resource 

services, persistent data stores, and effectively any other service that may be wrapped in 

an Open Container Initiative-compatible image, such as via Docker. 
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In broad strokes, the Marketplace provides a server-side equivalent of SMART-

on-FHIR (SoF), as SoF only concerns client-side app integration and also does not 

address on-premise deployments of client web applications: not uncommon in enterprise 

IT. The design principles are inspired by the business processes that made other 

computing ecosystems such as the (all proprietary) Apple, Google, and Amazon app 

stores successful in general-purpose computing. 

The Marketplace specification also provides an “app store”-like experience for 

HIT professionals to explore published services, and install it locally or to a sandbox 

environment with a point-and-click experience similar to that of consumer desktop 

software. This allows: 

• HIT orgs to search for new services across all participating vendors, and deploy 

them in a 100% automated fashion into on-prem, cloud, and/or hybrid 

infrastructure, using 1 or more Marketplace instances in any public/private 

combination. 

• Developers to directly submit new (and update existing) service builds. 

• Marketplace operators to curate, review, and publish vendor submissions. 

• Compliance validators to automate certification activities. 

• All parties to optionally authenticate with existing SSO credentials needed for 

SoF apps/architectures. 

 

This concept has evolved from an HSPC side project into a proposed HL7 project 

with the intent on moving towards informative ballot, at minimum. A primary selling 
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point of the specification itself is complete agnosticism to programming 

language/frameworks, database, I/O technologies, and most notably, vendor. It accounts 

for SMART-on-FHIR client applications that require on-site deployment, but does not 

require use of SMART, nor FHIR. Without being duplicative of the HL7 track, the 

deliverables include: 

• REST JSON API (Representation State Transfer JavaScript Object Notation 

Application Programming Interface) and platform-independent model (PIM) of 

specified objects, fully compatible with the OAuth 2-based nature of SMART-on-

FHIR. 

• Exemplar HSPC reference implementation of the Marketplace Service and Web 

UI/Client. 

• Reference database schema for relational database management systems. 

Due to the success of this concept and community-driven nature of HL7, the 

content produced here may not necessarily reflect what, if anything, eventually emerges 

from the SDOs. 

The Marketplace is not technically a store, in that it does not directly facilitate 

financial transactions. Publication of commercial software images is highly encouraged, 

though the acquisition of proprietary licenses is currently an out-of-band activity between 

the ISV and consuming party. Commercial software vendors must allow limited use of 

their service images for integration validation and evaluation purposes prior to achieving 

a "published" state in a Marketplace, and must remain so to remain publicly discoverable. 
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The HSP specification aims to ease service deployment woes in an infrastructure-

neutral manner, taking into consideration that most organizations run services in a 

combination of: 

• locally-provisioned and managed virtual machines using on-premise IaaS tools 

• cloud services such as AWS and Google Cloud 

• bare metal machines and appliances for legacy and one-off use cases 

To make automated health service provisioning possible, all services meet a 

highly opinionated set of interoperability criteria prior to being published in a 

Marketplace, the majority of which must be validated automatically. A compatible 

Platform conceptually unifies three areas of an IT architecture: 

• Packaging - How individual service releases are produced by independent 

software vendors (ISVs) and consumed by IT groups. 

• Registration - Definition and announcement of a service release's capabilities and 

dependencies. 

• Orchestration - Automated service dependency resolution and deployment into 

the local IT architecture. 

SERVICE PACKAGING 

Services are declared to the Marketplace via a client such as the official web UI or 

other compatible application. Each service is further programmatically bootstrapped into 

an execution environment and may be subject to additional validation, depending on 

specific declared capabilities. All service implementations must be: 
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• Containerized into a single, OCI-compatible image, with Docker Community 

Edition as the gold standard and runtime verification tool. 

• Ephemeral. All persistent data must be saved to an external database and declared 

as a service dependency, if needed. 

• Programmatically verifiable. Services providing standardized capabilities must 

support a mode for exercising declared APIs via a "smoke test" suite triggered via 

the marketplace. Service submissions failing to pass smoke tests on declared 

capabilities should be automatically rejected. Marketplace operators may provide 

such tests at their discretion. Tests specific to a specific service or version may be 

run as an out-of-band activity prior to submission to a Marketplace. Additionally, 

ISVs should run applicable test suite(s) on service versions prior to review and 

publication. 

• Horizontally scaled. The number of concurrently running containers will usually 

be more than 1. 

• Dynamically scalable. Instances are scaled up/down at at any time. Note: For 

HTTP services, the use of sticky sessions is prohibited, in favor of JWTs or 

similar lightweight tracking for session state data. 

• Single process per container task. If a service requires, for example, a single 

image to be run once as a web service and again as a separate worker node, these 

alternate entry points should be declared at publication time. 
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• Domain name (DNS) agnostic. No domain name, SSL/TLS context, and locale-

specific settings may be hard-coded into the service. Configuration is always 

injected at runtime. 

• Unencrypted. HTTP services are assumed to be encrypted at a separate layer 

providing SSL/TLS as a separate service providing reverse proxy load balancing. 

• Compute constrained. Images must define the maximum per-task RAM 

requirement at image publication time, and manage use of memory to prevent 

exceeding this boundary. 

• x86-64. 32-bit binaries are fine as well, but other CPU architectures are not 

currently supported. 

• Self-bootstrapped. Every image must be able to bootstrap itself into a functional, 

default state with zero human intervention. This is declared at publication time 

and is used for service validation, local consumer evaluation testing, and for 

seeding production deployments. 

• Stoppable at container shutdown time within 10 seconds. 

• Good critizens executing in good faith that they do exactly what they say. 

• Traceable. Health via process monitoring internal to the container should support 

prevailing standards of practice for the applicable software language/framework 

in use. 

• Logged. Services should log to standard out/error, and must not be written to the 

file system. PHI/PII must not be logged unless explicitly enabled by the 

administrator via injected configuration flags and in a compliant environment. 
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Services should not be: 

• Data payloads. While nothing prevents using a Marketplace for data distribution, 

service images are intended for software use. Large data files should not be 

bundled into software images. Rather, container initialization steps should be 

implemented that download requisite data or pulls them from a configured 

database. 

• Hardware dependent. This is software that requires specific physical daughter 

cards, dongles, CPU serial numbers etc. ARTAKA has no means of binding to 

hardware dependencies. Future extension to image metadata will likely need to 

make special considerations, however, for frameworks such as OpenCL [76-78] 

that aggregate underlying GPU hardware into abstract interfaces. 

BEST PRACTICES 

Services are encouraged to be: 

• SSO Aware using OpenID Connect and/or SAML. If a service requires user 

logins, it should be declared as needing an SSO IDP such that configuration can 

be provided at run-time. 

• Provisionable via IETF SCIM 2 API implementations for individual and batch 

user and group management that is commonly used by ActiveDirectory and other 

identity management systems. 

• Profilable via [79], which supports tracking of user session context across services 

for comprehensive system benchmarking. 
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• Incorruptible in the event they are killed without notice.  

• Offline-freindly to environments where no Internet access is permitted, or is 

subject is quality of service disruptions. 

At present, this specification is being proposed to HL7 under stewardship of the 

SOA Work Group. 

HEALTH SERVICE PLATFORM 

A Health Services Platform is the infrastructural fabric capable of running service 

containers packaged according to Marketplace requirements. Due to the close 

relationship between Marketplace functions and platform runtime, they are two sides of 

the same coin. While an ARTAKA platform may fully operate without any integrated 

service Marketplace, doing so limits the potential of automating deployment of 

knowledge-based (and traditional) services acquired from external parties. 

The HSP specification is not a strict specification, per se, but a profile of how to 

use existing technologies in an interoperable way. Enterprise IT environments generally 

already have strategic directions on how core virtualization infrastructure is managed, 

and a prescriptive enterprise architecture strictly prohibiting deviations would be unlikely 

to make traction in existing environments. 

Simply put, an HSP is fundamentally three things: a 

1. Cluster of servers capable of running arbitrary services packaging according to 

Marketplace specifications. 

2. A orchestration framework for management service distribution across the farm. 



 

57 

3. An agent synchronizing state changes made by 0..N authorized Marketplaces with 

the target state of the orchestration controller. 

In the provided reference implementation, these capabilities are provided as 

follows: 

1. A horizontal set of virtual machines running Ubuntu Linux with Docker 

Community Edition. 

2. Out-of-the-box Docker Swarm with Rancher and Portainer. 

3. A minimalistic proof-of-concept agent listening for changes to the Marketplace-

managed target HSP state, capable of initializing new service instances when they 

are requested. 

Note that the reference implementation intentionally refrains from using all 

proprietary functions of Docker, effectively substituting the proprietary Docker “Store” 

for the proposed open, interoperable, vendor-neutral specification pursued through HL7. 

Real-world implementations should choose a mainstream management system such as 

Kubernetes. 

HEALTH SERVICES PLATFORM AGENT 

The HSP Agent is a minimalistic service running on the local HSP listening for 

state changes in target platform state, as perceived by all configured Marketplace(s) as 

well as the local orchestration system. The HSP Agent is minimalistic in nature, 

intending only to bridge the Marketplace API with the native platform orchestration 

system. 
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The HSP agent proof of concept does very little, only showing how push 

messages sent from a reference Marketplace may be translated into action by the 

container platform. More sophisticated deployment profiles are the responsibility of the 

orchestration system. In any event, implementors are encouraged to use a stateful system 

for HSP management to match the stateful nature of the Marketplace’s model of local 

capabilities. 

REVERSE PROXY/LOAD BALANCER 

This is the simplest component of the architecture, requiring no custom 

development. It may be split into separate load balancer and reverse proxy components, a 

single instance of a software application such as Nginx or Apache HTTPD, a cloud 

service, or a hardware application delivery controller such as produced by BIG-IP, 

Barracuda or many other vendors. The primary requirements are: 

• Provides high-availability proxying and balancing for continuous delivery 

environments leveraging rolling deployment strategies 

• Scales SSL/TLS encryption to a suitable number of concurrent connections 

• Supports HTML Server Sent Events (SSE) 

• Allows for manipulation of HTTP headers for cases where Cross-Origin Resource 

Sharing and caching controls require fine tuning 

• Provides for automated certificate management through a commercial vendor or 

free provider such as non-profit Let’s Encrypt. 
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Beyond these base requirements, no particularly esoteric features are required. 

Most COTS options suffice. 

AGENTS 

A knowledge "agent" is essentially an isolated event handler programmed to 

connect to the pub/sub cluster and, in most cases, integrate with CES’ event publication 

endpoint. The control flow entry point for most agents is via subscriptions to individual 

channels, such as specific topics originating from client applications or other agents. The 

Redis instance used in the reference implementation may be used for NoSQL object 

storage, but is used exclusively for implementing the pub/sub pattern within the reference 

implementation. There is a conceptually infinite number of potential channels, but in 

reality, agents will want to focus on handling events on a small number of known 

channels, or in the case of person- or session-specific channels, channel patterns using 

the asterisk “*” as a glob character: e.g. “artaka://people/*” and “artaka://sessions/*”, 

respectively. 

THE CLOCK 

Events need not originate from the client side. The reference implementation of 

CES is bundled with alternative entry points that emit clock tick events on dedicated 

channels on a periodic based. Ticks at a specific minute, hour, day etc is neither 

supported nor encouraged, though implementations may do so, if desired, to implement 

cron-like scheduling at the architecture level. In cases where an agent must execute 15 

minutes prior to a shift change, for example, the relevant agents should subscribe at the 
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minute granularity and then filter for the correct ticks within the agent itself according to 

injected configuration parameters. 

The clock is implemented as an agent that publishes on the following channels, 

with each event emitted after a delay from the prior event.  

• artaka://ticks/second  

• artaka://ticks/minute 

• artaka://ticks/hour 

• artaka://ticks/day 

As the period of each channel is defined as the delay from the previous event on 

that channel, an hourly tick will not broadcast, for example, in an absolute sense exactly 

at the top of the hour. The only guarantee is that one will be emitted a relative hour from 

the last tick. 

Clients may also wish to subscribe to these for testing purposes or as a means for 

triggering client-side jobs that may be awkward to account for in web applications, such 

as session expiry or duplicate session detection from agents implementing CEP-based 

functions. No useful information is included in tick events other than: 

• topic_uri and model_uri fields matching the above channel names. 

• Populated timestamps 

Unlike most other events, however, clock ticks: 

• Are not recorded in the TES, or otherwise tracked. Agents wanting a clock 

history must track it themselves. 
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• Do not include person_id, session_id, parameters, or other details 

• Have no memory of “parent” time events, nor pointers to future events. 

Ticks should not be relied upon, for example, to be broadcast exactly every 60 

minutes. Agents sensitive to high levels of precision should subscribe to a more precise 

channel and check a “last run” variable on every tick. 

SCHEDULED AGENTS 

A scheduled agent is no different than a regular agent, expect that the triggering 

event is the passage of time, such as via clock tick channels. This is necessary since the 

containerized and elastically scalable nature of agents – which is required by the HSP to 

facilitate cross-implementation compatibility of agents -- makes cron-like scheduling 

awkward, if not impossible.  

Rather than relying on traditional system level scheduling such as cron within an 

agent, the suggested implementation pattern is to implement service-level scheduling by 

subscribing to the most applicable “tick” event and scaling any additional intra-container 

workers or inter-container agent instances via service logic. This approach: 

• Simplifies services from needing to be aware of the underlying job scheduling 

mechanism, likely specific to the platform or agent. Rather, developers author the 

agent to subscribe to the most appropriate “tick” event. Services may simply trust 

that the tick is accurate, or perform additional validation as a means of throttling. 

• Allows administrators to use reuse the existing ARTAKA pub/sub cluster 

infrastructure, including all management tools. Without this, job scheduling in 
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containerized environments will vary greatly depending on the whims of the agent 

developer. 

EXAMPLES 

The CES reference includes a small library of example agents useful as templates 

or inspiration. The “Message of the Day” agent subscribes to application initialization 

and document load events from “ui2-ontology” concepts, and emits a random 

inspirational message back to the session that originated the event. 

“Agent Smith” is subtly different, in that it listens for the cross-section of all user 

activities based on a channel pattern using the “*” glob character, and emits a quirky 

message. 

“See Also”, implemented by collaborator Austin Michne, is a compelling example 

that subscribes to text selection events of formal knowledge documents, searches for 

relevant literature references, and emits external links and metadata for those articles. 

This sample agent showcases how ARTAKA can be used for clinical information 

retrieval in event-driven architecture, accomplishing similar goals to HL7 InfoButton 

Manager but based on contextual cues over explicit CDS invocation. Further refinements 

of the example can use the session history provided by the TES to gain additional 

contextual inputs, including other recent activities in other applications, patient details 

etc. 

PATIENT CORPORA CLUSTER 
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Agents requiring access to patient data have several significant considerations 

requiring planning, especially if those agents require write-back capabilities to the EHR 

or other patient data source. While agents may perform the heavy computational lifting, 

they are ephemeral, multi-tenant services, and do not come bundled with any source of 

patient data. As agents are a specialization of HSP-packaged services and are therefore 

bound by a common set of configuration requirements, data configurations such as 

database connection URLs and locations of service endpoints including FHIR servers are 

injected at runtime. 

Patient data is a particularly volatile resource. In the ARTAKA paradigm it must 

be accessed concurrently from any number of agents, thus introducing many potential 

issues with cache coherency. To assist in mitigating this issue, implementations are 

strongly encouraged to implement a non-authoritative patient corpora cluster (PCC) for 

agent use. 

A PCC itself is a simple concept. It is a dynamically scaled set of patient corpus 

agents dedicated exclusively to providing a high-performance query interface for patients 

of active interest. Each patient corpus agent is scope limited to the patient-specific data, 

potentially aggregated from multiple sources. Spawning of a new agent should, in 

general, take place by a PCC management agent subscribed to event channels used for 

selection or loading of records, such as a corresponding “*select” topic_uri with a 

model_uri. Upon dynamic instantiation of a corpus, the agent self-initializes based on 

authoritative data, denormalizing and precomputing as meaningful to local needs, and 

based on expected load. This is a realistic method for creating patient-specific semantic 
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indexes dynamically, without needing a requirement to load everything about everybody 

into a single memory space and index. 

The same approach is recommended for population-level agent queries by 

aggregating only relevant data fields horizontally across records into purpose-built 

indexes. An influenza outbreak detection and response agent would, for example: 

1. update the index at frequent intervals to receive changes made to EHRs or 

registries, out of band with ARTAKA components. 

2. respond to events published by EHR clients already integrated with ARTAKA 

CES. 

3. Frequently perform CEP queries agent the index. 

4. emit detection events out to external clients in the form of orchestrations. 

UNIQUE AGENT CHARACTERISTICS 

Patient corpus agents are unlike most other agents in several ways. Most 

immediately noticeable from a design perspective is that they are intended to be 

dynamically created and destroyed. Creating a patient corpus based on a selection event 

is reactive, but may also be done proactively based on upcoming scheduled encounters or 

orders. Similarly, they should be terminated from the HSP by expiry, or even self-

destruct after a pre-set maximum idle period. This is necessary to prevent the PCC from 

growing uncontrollably with stale subjects, and keep the operational footprint more-or-

less correlative to the amount of care being delivered on a given day. 

Secondly, corpus agents are encouraged and expected to provide a traditional 

request/response endpoint with support for semantic query and reasoning. These 
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endpoints, when available, are intended to be used directly by other agents without 

needing to go through event pub/sub cycles. Internally, they are intended to be miniature 

standalone services, and generally contain an internal (ephemeral) database system bound 

to the lifecycle of the HSP corpus agent container in which in resides. This capability 

may be raw SPARQL, OMG API4KP [80], or other mechanism. 

Thirdly, for corpus agents to be useful, their lifecycle events need to be made 

available to other agents. If an agent decides, for example, a potentially time consuming 

query should be run now, or deferred until after a corpus agent is available for that 

patient, this event is of potential interest to other system actors. While ARTAKA does not 

explicitly provide a registry for discovery of active agents, it is not against the paradigm 

to so. If a centralized service registry capability is deployed, however, it should be done 

generically, and ideally as part of the HSP-level implementation. A simpler form of 

decentralize discovery in trusted environments may be accomplished via libraries such as 

my journeta library[81]: based on UDP broadcast that does not use any form of 

centralized registry and supports client-side callbacks for both online and offline events. 

Lastly, patient corpus agents are intended to be bound to a timeline. In simply 

cases, the null timeline may be assumed. If this is done, however, any form of simulation 

requiring writeback should be avoided, as doing so would untentionally corrupt the real-

world patient record with that of a simulated record. 

WRITEBACK 

A PCC implemented at full potential with the ability to write changes both to the 

underlying EHR and/or PCC, then, must embue corpus agents with the ability to handle 
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copy-on-write semantics, wherein a write event may spur a diff from the real-world event 

timeline. This diff may be represented as a full-fledged copy of the given corpus agent, a 

diff file written to the global cache and passed along with any subsequent query to the 

timeline-less corpus agent, internal branching/forking mechanism specific to the semantic 

query engine, or combination thereof. 

The PCC is a performance-enhancing architectural feature that will be needed for 

any significant implementation in practice, but is nevertheless optional. Simple 

implementations without a PCC may decide to query an EHR via FHIR, v2/v3, or similar 

interface directly, as needed. Regardless of the approach used for a PCC, the implementor 

must be keenly aware of the consequences to cache coherency, lest subtle data corrupts 

be discovered via dangerous runtime outcomes. 



 

 

CONTEXT EVENT SERVICE 

ARTAKA’s Context Event Service (CES) is the primary means by which all 

client applications – SMART-on-FHIR, non-FHIR, rich clients, systems, and others -- 

interface with knowledge agents by means of brokering “context events”: concise records 

each representing a discrete, atomic topical occurrence by either a human or system actor. 

CES allows for concurrent communication of events amongst different user sessions, 

agents, and even completely unrelated applications manipulating shared data models, all 

on different development cycles and release timelines. Events are a polymorphic type 

emitted from and consumed by clients to allow pluggable backend services to indirectly 

drive user experience without any tight coupling between client software and backend 

agents. It is the API bridge between clients and internal complex event processing 

infrastructure, and the reference implementation may be modified to substitute the 

pub/sub system, Temporal Event Store (TES), or other components with similar 

counterparts. 

SCOPE 

CES’ functional purpose is to facilitate complex, dynamic user experiences akin 

to the ways: 

• GPS systems aid the driver of a car utilizing maps and routes provided by 

backend services, wherein the system facilitates delivery of suggested “paths” 

through client application state while also being able to continuous adapt to 

unexpected user deviations. 
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• iOS and Android software platforms continuously monitor for contextual changes 

– location, time, calendar appointments etc – to develop personalized behavioral 

models that invoke guidance at appropriate times, such as “Leave now to get to 

work on time.”. 

• Wearable technologies learn from baseline biorhythms to detect potentially 

hazardous health events such as cardiac arrhythmias. 

• Internet of things (IoT) devices mesh to form event streams for home automation, 

security, and remote wellness monitoring. 

The client-side Context Event Client reference library has been developed as both 

a proof of concept and functional demonstration of how interactions with ARTAKA CES 

are expected to occur in a number of special cases. Further, the GPS analogy is 

meaningful in that ARTAKA’s take on complex event processing has similarities to the 

way Uber’s Kafka-based infrastructure [82] supports scaling to the real-time needs of a 

safety-critical domain, demonstrating that the commonalities of the paradigm are not 

unrealistic to produce in a healthcare context.  

As a proof-of-concept, the production KNARTwork application has been 

modified to integrate with a Context Event Client (CEC) library and configured against a 

live ARTAKA CES reference implementation. 

From an application architecture standpoint, CES itself is an unconventional 

design. It operates in a stateful, asynchronous manner that in some senses is the polar 

opposite of traditional stateless synchronous web services and specifications discussed in 

Misunderstanding Mainstream Works. This design illustrated in Figure 2 was presented 
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longer form in a poster session at the Mobilizing Computable Biomedical Knowledge 

conference in 2018. 

 

FIGURE 2 ARTAKA CONTEXT EVENT SERVICE 

 

CES is largely devoid of a conventional APIs such as would typically be exposed 

by REST or SOAP endpoints, with APIs only provided for security purposes and 

management of slow-moving system objects. Outside of those authentication-related and 

management operations, CES does not actually provide a means for clients to explicitly 

invoke any type of CDS service. This deviates from decades of conventional wisdom 
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such as is applied to the design of DSS where CDS is typically invoked by clients imbued 

with a priori knowledge of existing support modules. In ARTAKA CES clients, the 

application is only instrumented with a CES client library. The quantity and quality of 

backend agents is assumed to be completely different across deployment environments. 

The sequence diagram shown in Figure 3 illustrates the flow of event publication to CES. 

 

FIGURE 3 EVENT PUBLICATION FLOW 

The primary purpose of this architectural decoupling is to free app developers 

from needing to hard-code support for specific support services, and vice versa, thereby 

allowing for easier scaling of development and IT practices through independent ebb and 
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flow of software clients and knowledge-based agents. Requiring client app developers to 

programmatically account for the potential invocation of tens of thousands of artifacts 

non-deterministically, for example, is completely implausible, especially in a world 

where declarative knowledge is expected to be deployed into production continuously 

and without system disruption. If application code must be constantly updated based on 

available backend agents, development cycles will be impossible to manage, leaving 

applications extremely fragile and constantly breaking due to fluctuating agent 

availability. CES thus provides the glue for event-driven µSOAs, wherein knowledge-

based agents are dynamically injected and constantly changing, whether by programmed 

knowledge executables (KXs), KXs complied from structured declarative knowledge, 

and anywhere in between.  

A second reason for philosophical departure[83] is acknowledgement that not 

every type of application support function can be forced into the request/response pattern 

of REST and SOAP, where the notion of a push event is completely out of scope. 

Historically, applications have checked for changes in remote systems by polling at 

periodic intervals, or via a similar approach known as long polling. This was done for 

technical reasons largely due to the stateless nature of the HTTP protocol as initially 

conceived. 

HTML 5 SERVER SENT EVENTS (SSE) 

For the bulk of its existence, the WWW has relied on many HTTP requests made 

in rapid succession from a client (usually a browser) to a server to retrieve resources to 

render a page. Each request required the establishment of an underlying TCP connection 
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at layer 4[84], and was disconnected after each call. For decades, this resulted in 

immense amounts of repetitive TCP connections being made to the same server, only to 

be followed by further round trips of SSL and HTTP. Worse, since connections were 

dropped once a resource was retrieved, servers had no way to send a message to a client 

out of band with a client-initiated request/response cycle due to clients usually residing 

behind firewalls, network address translation (NAT), or other network devices preventing 

inbound network connections. Fast forward to present day, and most backend web 

application frameworks remain rooted in these architectural assumptions that no stateful 

client connection is present, and no reliable means of pushing content to the client exists. 

REST-like design and JSON data representations currently reign supreme for greenfield 

projects.  

In recent years, leading software organizations such as Google have made major 

investments in providing efficient, stateful, bi-directional methods of general-purpose 

communication. Efforts such as WebSockets and SPDY shared great enthusiasm, 

culminating in the final ratification of the HTTP/2 (HTTP 2.0) specification in 2015 as 

well as the introduction of HTML 5 Server Sent Events (SSE). Web browsers and 

middleware are continuing to implement support for HTTP/2. 

Modern applications often need to be notified of an event without explicitly 

making a request. Of the numerous mechanisms potentially available, SSE provides a 

modern mechanism for subscribing to these types of messages. SSE is unlike 

WebSockets, however, in that it only allows for server-to-client propagation. All event 

publication to CES from an external client thus occurs via traditional REST. 
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EVENT MODEL 

Events are the lifeblood of ARTAKA, with nomenclature largely congruent with 

that of the complex event processing (CEP) community.[85] CES' internal model uses a 

single polymorphic "event" class for all types of events, transmitted as a JSON 

associative array. Events emitted from the user-facing client are typically UI-related 

topics from an HCI ontology such as ui2-ontology -- “focus”, “click”, “submit” etc -- but 

may also be system-related or more abstract in nature. Headless clients, for example, may 

control operations that do not correlate to any interactive user action. While the provided 

examples use the “ui2-ontology” for UI-specific event topics, CES has no specific 

dependence, or even awareness of, ontologic concepts. CES accepts any URI-encoded 

values for event fields of URI type and does not directly perform any semantic validation. 

Every event carries several required fields and many optional ones, as follows: 

Field Type Require Example Comments 

topic_uri URI Yes artaka://ui2-ontology/hover User or 

system 

action that 

has occured 

model_uri URI Yes fhir://Patient/42 URI-

encoded 

resource of 

interest 



 

74 

controller_u

ri 

URI Optiona

l for 

client 

"knartwork://relatedResources" Client-

specific 

identifier 

for the 

controlling 

code 

agent_uri URI Require

d for 

agents 

"artaka://agents/hello_world" Set by an 

agent to 

identify 

itself 

action_uri URI No "artaka://actions/orchestrations/li

nk" 

Relevant 

client-side 

function, if 

known 

parameters JSON Yes {“urls” : […], “foo” : true} Any valid 

JSON 

object 

session_id UUIDv

4 

No 06dae8ff-4682-40ac-b13e-

6d71c0508b41 

Added to 

POSTed 

client 

events 
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automatical

ly prior to 

publication. 

Agents 

must set it 

manually 

person_id UUIDv

4 

No 06dae8ff-4682-40ac-b13e-

6d71c0508b41 

The user 

relevant to 

the event. 

Not a 

subject, 

such as a 

patient 

timeline_id UUIDv

4 

Usually 06dae8ff-4682-40ac-b13e-

6d71c0508b41 

Temporal 

universe; 

explained in 

later section 

parent_id UUIDv

4 

No 06dae8ff-4682-40ac-b13e-

6d71c0508b41 

The logical 

basis, if any 

next_id UUIDv

4 

No 06dae8ff-4682-40ac-b13e-

6d71c0508b41 

For cases 

where 
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logical 

order 

differs from 

temporal 

order 

 

Regarding the “action_uri” field, note that it is primarily intended to be used to 

indicate the client-side processing function specifically responsible for the state change, if 

known. It may be set optionally by both clients and agents, and if so, should likely be set 

to a URI-encoded name of a local function indicating the precise origin or recipient of the 

event such as the method name within the MVC controller corresponding to the 

“controller_uri” field that is required for client-emitted events.  

EVENT PUBLICATION, SUBSCRIPTION, AND BROKERING 

CES brokers events between client applications and internal agents. It does not, 

however, directly push events to internal agents. Instead, CES publishes events to a 

connected a pub/sub system – Redis in the provided reference implementation – that is 

deployed and scaled separately from CES.  

When CES receives an event from any source, it is injected with a session_id and 

person_id, when possible, saved to a local database, and indexed, all before the event is 

published. This is architecturally important to prevent race conditions where subscribed 

agents receive the event prior to it being committed to the temporal store. After the event 

is injected with missing fields and saved, it is partitioned to the field level, then broadcast 
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to every referenced pub/sub channel. “Relevent” channels are identified as the set of all 

field values keyed with a “*_uri” prefix, as well as several channels implicit to event 

published event. In the above table, for example, the: 

• topic_uri will cause broadcast to the "http://www.ke.tu-

darmstadt.de/ontologies/ui_detail_level.owl#mouse-single-click" channel 

• model_uri will cause broadcast to the “fhir://Patient/42 channel” 

• controller_uri will cause broadcast to the "knartwork://relatedResources" channel 

In addition to *_uri topics, the person_id and session_id fields are also implicitly 

considered to be relevant channel names. They are always encoded into URI format using 

an “artaka://” prefix with an English pluralization of the object name, e.g. 

“artaka://people/06dae8ff-4682-40ac-b13e-6d71c0508b41” and 

“artaka://sessions/06dae8ff-4682-40ac-b13e-6d71c0508b41”, respectively. This 

matrixing of events into separate broadcast events is architecturally significant, as it 

facilitates agents that respond to: 

• user activity across multiple applications concurrently. 

• agent-enforced business rules at the session level, such as pushing of single log 

out/off (SLO) events from an SSO system. 

• model state changes (such as EHR updates) across all applications. 

• comprehensive activity flow tracking across the entire enterprise. 

Concepts identified by channel URIs are encouraged to be selected from a 

recognized and appropriate ontology, though this is not required. Since CES is unaware 
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of any such associations, an event to “..#mouse-single-click”, for example, will never be 

implicitly broadcast to any parent-level channels. Publishing (or republishing) events to 

parental concepts is an activity that must be implemented by an agent with awareness of 

these relationships. As a direct consequence, interested agents should generally subscribe 

to a set of channels at appropriate levels in the taxonomic hierarchy and perform any 

filtering internally. 

While the reference implementation of CES has been designed as lightweight as 

possible, CES API compatibility may also be achieved using adapter layers around 

Kafka, Knowledge Grid[86,87] or other complementary frameworks. 

It is also worth reemphasizing that CES itself is not a pub/sub system and has no 

need to replicate one. Pub/Sub is a common capability to many systems architectures, and 

for the scope of work done for the ARTAKA reference materials there is little reason to 

pursue such a path of making enhancements to this specific component of the 

architecture. This is debatably in contrast to HL7’s Event Publish & Subscribe Service 

Interface[88] (EPS) published in 2015 as a contribution to the Health Services 

Specification Project[89]: a jointly recognized effort between HL7 and OMG and co-

sponsored by HL7 Clinical Decision Support and Service Oriented Architecture work 

groups. 

ARTAKA establishes a strict separation of CES, internal pub/sub, and Temporal 

Event Store. EPS does not draw specific lines defining where sub-service boundaries lay, 

if any, and exposes a much broader scope of interfaces with prescriptive approaches to 

role-based access control. Additionally, many capabilities such as event replay and 
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federation are explicitly supported. EPS is philosophically intended to be inclusive of 

most every type of pub/sub scenario an architect is likely to encounter, many of which 

CES either explicitly descopes or does not explicitly address. As an additional bonus, 

EPS at large appears safe to expose directly to other services in the SOA, whereas 

ARTAKA’s internal pub/sub system and agent cluster are assumed to operate behind the 

façade of CES. EPS also defines a CES-like broker is defined at the functional level. 

Downsides to EPS as-is are that: 

• It is only a Service Functional Model (SFM). It does not actually provide 

implementation guidance to the level that applications may build applications 

against.  

• The functional model is extraordinarily complicated for a pub/sub system design. 

The specification itself is 136 pages long, with around ~40 discernable internal 

domain model types (p.25). Event digests, full-fledged user role, security model, 

multiple exception handling mechanisms (p.46), topic management, and other 

features all create complexity not only for implementors, but for application 

integrators. The specification is clear that it may be decomposed to be 

implemented in any number of ways, but the whole of the solution nevertheless 

requires a large commitment and high learning curve. No implementations from 

anyone other than the submitting vendor appear to have emerged to date. 

• Even with strong positions or role-based access, it is effectively impossible to 

define specific permissions without knowledge of the model resources and 

operations being permitted. For this reason, ARTAKA descopes access control 
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enforcement from the pub/sub system completely, trusting CES and individual 

knowledge agents to make their own determinations on what sessions are 

authorized to receive granular data elements. 

• Due to the high-level nature of the specification, it is unclear how 

implementations work in the use cases of web-based applications such as 

SMART-on-FHIR that typically have no known backend service provider(s) until 

launch time. 

It may be argued well that either CES is currently unharmonized with but 

philosophically aligned with EPS, CES is too divergent from EPS to warrant 

harmonization, or some middle ground depending on desired functional capabilities. At 

the very least, there is strong intersection of interests and use cases between CES’ 

lightweight yet opinionated approach and EPS’ more heavy-handed yet accommodating 

approach. What is ultimately best for knowledge-driven healthcare applications is to be 

determined, though explicitly-defined mechanisms for user experience orchestration 

beyond high-level functional models are sorely needed. Some of the drawbacks and 

limitations of CES’ more open-ended current approach are discussed in Event Profiling & 

Developer Collaboration and Topic vs Action URIs. 

SCALE 

Due to the granular level of events and horizontal slicing of internal broadcast 

topics, CES generates immense amounts of internal event traffic. The CES deployment 

and pub/sub cluster must be scalable appropriately in a horizontal manner. Other than the 
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Temporal Event Store, all channels should be configured to be 100% ephemeral and with 

no history. (This is different than EPS.) In other words, a subscribed agent should have 

no way of asking the pub/sub cluster for past events: only the Temporal Event Store may 

be used for that purpose. These design decisions allow the pub/sub cluster to effectively 

ignore all published events that have no active subscriptions. No caching or buffering is 

necessary. Thus, if CES emits person_id traffic in an implementation where no agent is 

listening, it will simply be disregarded. "If a tree falls in a forest and no one is around to 

hear it, does it make a sound?" 

Under ARTAKA, “No.” 

DATABASE / TEMPORAL EVENT STORE (TES) 

The TES is a temporally-ordered object store authoritative for maintaining 

session-specific history. For illustrative simplicity within the reference implementation, 

this capability is included within the CES database’s PostgreSQL schema. In large-scale 

production use, however, the “events” table specifically is extremely hot and should be 

broken out into a separately-scaled entity, such as a sharded MongoDB cluster with built-

in request routing for distributed Map/Reduce needed for complex event processing 

queries across a temporal window. [90] Indexing of the various *_uri and *_id fields is 

highly recommended, though should be accompanied with aggressive ETL jobs into a 

separate data warehouse structure to keep the TES lean. Figure 4 illustrates how the CES 

reference implementation system objects relate to the “events” table. 
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FIGURE 4 CES REFERENCE IMPLEMENTATION SCHEMA 

Alternate implementations may leverage other solutions designed specifically for 

this purpose, such as WSO2 CEP with SiddhiQL[91-94] for optimized trigger-based 
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window queries, or semantic query by replacing the simplistic TES model with a 

semantic database pre-optimized with caches for demanding agent queries. 

CLIENT SUBSCRIPTIONS 

Client applications – web-based or otherwise – are all notified of events in the 

same way: HTTP/2 with HTML SSE. This is a simple operation underpinned with broad 

support for the standard across the most used web browsers, with the current exception of 

Microsoft browsers. CES supports subscriptions at the “/stream” endpoint after acquiring 

a session identifier, generally as part of an authentication process. (Guidance is provided 

in the following section.) A client subscription will always implicitly include events 

published to session-specific channel of the form “artaka://sessions/<uuid>”, and all other 

subscriptions must be included in a URL-encoded, comma-separated list of a “channels” 

parameters, e.g. “h2://ces.local/stream?channels=list,of,channels”. 

AUTHENTICATION AND AUTHORIZATION 

With the fabric of HTTP/2 and HTML SSE in place, most security considerations 

that apply to traditional web services also apply to CES. In the following discussion, note 

that the reference software provides a schema and session mechanism compatible with all 

popular SSO systems, but not a full implementation as the authentication and 

authorization portion of the architecture is intended to be married to local infrastructure. 

All with FHIR, client authentication is necessarily loosely defined as to allow for 

maximum compatibility with existing health IT environments. There is no singular and 

universally accepted IAM protocol. The reference implementation requires a bearer 
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token for most calls, which may be acquired via an HTTP GET to the “/sessions” 

endpoint. This GET call, in real-world deployment, must be replaced with either a 

standards-based authentication flow such as chained SMART-on-FHIR launches against 

a common IDP, or similar mechanism. The CES and Marketplace schema have been 

intentionally designed with the common characteristic of supporting multiple IDPs 

concurrently. This is necessary for large enterprises and collaborative care scenarios that 

authenticate users across trusted boundaries. 

The bearer token mechanism is completely in line with OAuth-based APIs, and is 

required for both CES’ “/stream” SSE endpoint and traditional REST endpoints. A bearer 

token obtained from CES is a JSON Web Token (JWT) that represents the active client 

session, and must be included on every request as an HTTP header in the form of: 

 Authorization: Bearer <the_jwt> 

A JWT may be decoded by the client, but also includes a cryptographic signature 

salted with a secret only known to the CES deployment. Any tampering of the JWT-

based session is thus detected by CES and rejected on any call that included it. 

Alternative implementations may choose to preventively invalidate the referenced session 

identifier, assuming that doing so does not introduce a denial of service attack vector. 

Additional security precautions may also be implemented to prevent session replay 

attacks, though the reference implementation prescribes no specific approach. 

The CES reference implementation includes a “role” and “group” model, both in 

line with the marketplace, that supports dynamic enforcement of granular privileges. 
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From the perspective of a legitimately-authenticated user, the attack surface likely 

to exhibit implementor bugs is the “/event” publication endpoint and corresponding SSE 

“/stream”. 

Most client events should have no expectation of a response, such as those 

emitted based on field selection or model changes. All events broadcast to their session 

(referred by their JWT) will automatically be routed to them. Some clients, however, may 

desire subscriptions to a large numbers of non-session streams, or streams intended to be 

used internally between agents. This is allowable, and CES facilitates this by allowing the 

list of client channel subscriptions to include a “*” wildcard/glob character. This is 

problematic for security reasons, however, and clients must not be able to arbitrarily 

subscribe to any channel they chose. Further discussion on this issue is provided in the 

Experimentation, Evaluation chapter. 

The CES reference implementation provides very little channel filtering as doing 

so is highly dependent on the integrated authorization mechanism in relation to system 

roles. Real-world deployments should use a pattern-based whitelist of approved channels 

tied to the roles the user – or more accurately the identity they are using at the moment – 

is allowed to access. 

Similarly, clients must be prevented for broadcasting nonsensical or malicious 

events into the system. As ARTAKA is asynchronous, non-deterministic, and has no 

innate notion of session “stickiness” to specific agents, controls must be enforced to 

assure users are not able to affect the state of other sessions, such as by attempting to 

fabricate or falsify events by mimicking a trusted agent. Allowing this would permit a 
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new notion of client-side man-in-the-middle and timing attacks. The reference restricts 

these interactions with a design consideration that clients are not allowed to set an 

agent_id nor session_id with an additional permission normally reserved for trusted 

agents. Further, normal clients are never allowed to subscribe to any other non-session 

channels than those whitelisted in the configuration. 

API OVERVIEW 

An initial intent in early CES design was to declare the entirety of the interfaces 

using an open specification language such as OpenAPI (OAS) [95], formally known as 

Swagger, or RAML, “..an application of the YAML 1.2 specification” [96]. Numerous 

proprietary and open source tools were used to attempt this, as both OAS and RAML are 

generally-accepted languages for modern web-based services. 

In all cases attempted, no mainstream language nor tool provided ample support 

to encompass the CES API due to a heavy focus on REST and lack of support for Server 

Sent Events (SSE). Neither tooling nor API specification languages have caught up to the 

type of SSE interface exposed by CES. In lieu of a comprehensive API document that 

would typically be expected, I have provided an overview shown in Table 1 as well as 

additional documents and diagrams in the reference implementation linked from Table 3. 

A computable representation of this information should be of high priority once support 

is available in a mainstream language such as OpenAPI.  

Verb     URI Pattern                                                                               Controller#Action 

OPTIONS  /*all(.:format)                                                                           application#cors_preflight_check 

GET      /timelines(.:format)                                                                      timelines#index 
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POST     /timelines(.:format)                                                                      timelines#create 

GET      /timelines/:id(.:format)                                                                  timelines#show 

PATCH    /timelines/:id(.:format)                                                                  timelines#update 

PUT      /timelines/:id(.:format)                                                                  timelines#update 

DELETE   /timelines/:id(.:format)                                                                  timelines#destroy 

GET      /events(.:format)                                                                         events#index 

POST     /events(.:format)                                                                         events#create 

GET      /events/:id(.:format)                                                                     events#show 

PATCH    /events/:id(.:format)                                                                     events#update 

PUT      /events/:id(.:format)                                                                     events#update 

DELETE   /events/:id(.:format)                                                                     events#destroy 

GET      /people/:person_id/identities(.:format)                                                   identities#index 

POST     /people/:person_id/identities(.:format)                                                   identities#create 

GET      /people/:person_id/identities/:id(.:format)                                               identities#show 

PATCH    /people/:person_id/identities/:id(.:format)                                               identities#update 

PUT      /people/:person_id/identities/:id(.:format)                                               identities#update 

DELETE   /people/:person_id/identities/:id(.:format)                                               identities#destroy 

GET      /people(.:format)                                                                         people#index 

POST     /people(.:format)                                                                         people#create 

GET      /people/:id(.:format)                                                                     people#show 

PATCH    /people/:id(.:format)                                                                     people#update 

PUT      /people/:id(.:format)                                                                     people#update 

DELETE   /people/:id(.:format)                                                                     people#destroy 

GET      /groups/:group_id/members(.:format)                                                       members#index 

POST     /groups/:group_id/members(.:format)                                                       members#create 
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GET      /groups/:group_id/members/:id(.:format)                                                   members#show 

PATCH    /groups/:group_id/members/:id(.:format)                                                   members#update 

PUT      /groups/:group_id/members/:id(.:format)                                                   members#update 

DELETE   /groups/:group_id/members/:id(.:format)                                                   members#destroy 

GET      /groups(.:format)                                                                         groups#index 

POST     /groups(.:format)                                                                         groups#create 

GET      /groups/:id(.:format)                                                                     groups#show 

PATCH    /groups/:id(.:format)                                                                     groups#update 

PUT      /groups/:id(.:format)                                                                     groups#update 

DELETE   /groups/:id(.:format)                                                                     groups#destroy 

GET      /roles/:role_id/capabilities(.:format)                                                    capabilities#index 

POST     /roles/:role_id/capabilities(.:format)                                                    capabilities#create 

GET      /roles/:role_id/capabilities/:id(.:format)                                                capabilities#show 

PATCH    /roles/:role_id/capabilities/:id(.:format)                                                capabilities#update 

PUT      /roles/:role_id/capabilities/:id(.:format)                                                capabilities#update 

DELETE   /roles/:role_id/capabilities/:id(.:format)                                                capabilities#destroy 

GET      /roles(.:format)                                                                          roles#index 

POST     /roles(.:format)                                                                          roles#create 

GET      /roles/:id(.:format)                                                                      roles#show 

PATCH    /roles/:id(.:format)                                                                      roles#update 

PUT      /roles/:id(.:format)                                                                      roles#update 

DELETE   /roles/:id(.:format)                                                                      roles#destroy 

GET      /clients/:id/launch(.:format)                                                             clients#launch 

GET      /clients(.:format)                                                                        clients#index 

POST     /clients(.:format)                                                                        clients#create 

GET      /clients/:id(.:format)                                                                    clients#show 
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PATCH    /clients/:id(.:format)                                                                    clients#update 

PUT      /clients/:id(.:format)                                                                    clients#update 

DELETE   /clients/:id(.:format)                                                                    clients#destroy 

GET      /identity_providers/:id/launch(.:format)                                                  identity_providers#launch 

GET      /identity_providers(.:format)                                                             identity_providers#index 

POST     /identity_providers(.:format)                                                             identity_providers#create 

GET      /identity_providers/:id(.:format)                                                         identity_providers#show 

PATCH    /identity_providers/:id(.:format)                                                         identity_providers#update 

PUT      /identity_providers/:id(.:format)                                                         identity_providers#update 

DELETE   /identity_providers/:id(.:format)                                                         identity_providers#destroy 

GET      /sessions(.:format)                                                                       sessions#callback 

POST     /sessions(.:format)                                                                       sessions#create 

DELETE   /sessions(.:format)                                                                       sessions#destroy 

GET      /status(.:format)                                                                         welcome#status 

GET      /stream(.:format)                                                                         events#stream 

GET      /                                                                                         welcome#landing 

TABLE 1 ENDPOINT OVERVIEW WITH REFERENCE IMPLEMENTATION LOCATION



 

 

ORCHESTRATION, SIMULATION, AND TIME TRAVEL 

The most peculiar and abstract aspect of ARTAKA is in use of an optional 

timeline_id field common to all types of events brokered by the CES. While the base 

nature of CES and agents have already been discussed, it is necessary to have an 

additional understanding of event timeline semantics to design compatible systems. 

Without awareness of how these events manifest, they may appear to have materialized 

out of error. ARTAKA considers passage of time itself to be an event and provides an 

optional timeline_id field for all events as a means of partitioning intentionally distinct 

logical event universes. 

ONTOLOGICAL DISAMBIGUATION 

One of the primary design goals of ARTAKA is to provide a sensible means of 

knowledge-driven client UI orchestration based on pluggable knowledge: authorable, 

testable, deployable, and maintainable by clinical domain experts without deep technical 

knowledge of the underlying system. A key challenge of doing so is being able to 

disambiguate observations of events that: 

• should have occurred, but did not: “Session S should have prefetched model M.” 

• have occurred or are occuring presently: “Session S fetched model M.” 

• will occur: “Session S will fetch model M.” 

• may occur: “Session S will probably select patient P. 

Disambiguating these different uses of the concept of “fetching” would be unwise 

using only singular atomic terminologic codes, as doing so would require immense 
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amounts of duplication in model ontologies. CDS Hooks, for example, only defines a 

“patient-view” hook as “The patient whose record was opened..”, a past event. Stating a 

record is in the process of opening or will open in the future would require a separate, and 

arguably duplicative, hook type definition. 

The above examples can also be categorized as statements of past, present, and 

future state, respectively. Most event-driven systems, in practice, only make statements 

of the present, generally via a singular timestamp of high precision for simplify. Backend 

agents performing predictive or simulation functions, however, may view ARTAKA as a 

form of complex event processing or event streaming system wherein simulation of 

future state may be accomplished by applying all normal agent functions at a logical 

speed faster than real-world wall clock time in a divergent timeline.  

TIMELINE CONNECTIVITY 

An ARTAKA “timeline” is a chronology of events that occur within a logical 

universal of discourse between agents, clients, and data. It is a temporal space that 

partitions events that would otherwise need to uniformally fall into a single, one-

dimensional, linear order. 

To be able to simplify orchestration and allow for complex autonomous event 

simulation simulateously, ARTAKA agents must be able to emit and receive observations 

of the past and future regardless of whether they actually have or will occur. The 

disambiguation occurs via a timeline associated with every event. This notion of event 

timelines alleviates the need for ontological activity models for past and future, as the 

values of timestamp fields in the structure implies their meaning. The created_at and 
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updated_at fields are always accurate to the “real-world” clock, even if the event is 

modeled to have occurred in the past/future. A non-null effective_at field, when present, 

is used to semantically convey a timestamp that is different from created_at. Clients and 

agents should not set effective_at if the event occurred has occurred at the same time as 

created_at. Further, all ARTAKA events should always be normalized to a tenseless form 

to prevent aforementioned terminologic explosion. 

ARTAKA agents do not directly perform any form of traditional command-based 

orchestration of client UI. All orchestration activities are represented as a form of 

simulation: alternate past and possible future events that may or may not coincide or 

converge with real-world events experienced by the user. As events are always stated in 

tenseless form and on varying timelines, they may occur in universes of discourse 

divergent from or convergent to the user’s perception of reality. If/When clients observe 

these orchestration events, they may or may not choose to “merge” the event from an 

alternate timeline onto its own default/real-world timeline, if agreeable from the 

perspective of the user, by first performing the corresponding action and subsequently 

publishing an updated copy of the event to the default timeline, referencing the causal 

trigger via a genealogical “parent_id” identifier. The same notion applies to future or 

scheduled events. 

Orchestration hints, as the primary client example, are represented as events that 

have occurred in an alternate past of the same session, whose timeline may or may not 

have converged -- or will converge in the future -- to the “default” timeline associated to 

the user session. This convergence is represented via an event’s next_id pointing to an 
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event in the default timeline. The “next” event, when pointing back to the default 

timeline, is likely to have already occurred in the real world, and may have been the 

trigger that created the alternate past. 

Similarly, predictive events are also represented in present tense at a future time 

on an alternate timeline that must have diverged, at some point, from any “default” 

timeline via a parent_id pointing to a real-world event that triggered the branching. The 

soft requirement for all timelines to diverge on converge from a common source ensures 

all timelines are kept connected, but does not prevent actors from creating incoherent 

situations where, for example, an event is its own ancestor. Contiguousness of the TES 

graph may also be broken if/when events fall outside the event horizon and are subject to 

pruning. 

NULL TIMELINE 

Timelines themselves do not have any awareness of or pointers to other timelines: 

only events do so indirectly through pointers to events on other timelines. When a 

timeline is created, it carries no data other than the “real” timestamp of creation. It will be 

automatically purged by the system after a preset period if and only if they are found to 

contain an empty set of events. 

The null timeline is the only timeline with special semantics, as its existence is 

not actually retained in any tangible way. It does not have any concrete start and/or end. 

As such, it cannot be purged or created, since there is nothing to purge or create. It is 

reserved for use only in cases where scoping of an event to a single timeline does not 

make sense or is undesirable. System-wide global clock ticks are a primary example, as 
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the notion of “current wall clock time” is useful on all timelines, even if operating at a 

logical time different from the real world. Events that occur on the null timeline may only 

be said to be inconsistent with the notion of a single timeline, and no other conclusions 

may be inferred from the lack of a timeline on an event. 

CLIENT SEMANTICS 

When a CES session is created, CES automatically creates a new timeline or use 

by the client, referenced by a 128-bit UUID field in the bearer token. From a client-side 

perspective, this is known as the “default” timeline for the session. When a client receives 

an event from an agent on the same timeline, it is known to have occurred “in the real 

world”, at the exact date(s) indicated by the created_at timestamp. This occurs when, for 

example, the user has multiple application windows open that use the same session but 

have separate connections to the server. Clients may only publish events on their current 

default timeline. When a client attempts to publish an event to the null timeline, it will be 

implicitly set to the default. Clients attempts to publish to a non-default timeline should 

be rejected. 

Since event topics carry no tense, Table 2 demonstrates colloquial types of 

orchestrations, and the ARTAKA representation. Td is the default session timeline, and 

T<x> is an alternate timeline identifier. 
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Orchestration Representation 

Prefetch patient model X 

for session Y now. 

Patient model X fetched at <effective_at> on timeline T42 

preceding <triggering_event_id>. 

Reauthenticate the user 

in 5 minutes. 

User authenticated at <effective_at> on T42. 

Mark the document as 

complete and then save 

it. 

Two events on a single alternate timeline: Document state 

set to “complete” at <past effective_at> on T42 followed by 

save at <past effective_at+1> on T42 followed by 

<triggering_event_id> on Td. 

TABLE 2 REPRESENTATIONS OF ORCHESTRATION HINTS 

In the last example, the event trigger caused a chain of actions to be created in 

an alternate past timeline. The agent(s) continued contributing events to that timeline 

until it converged with the triggering event on the default timeline. If both “mark 

complete” and “save” events were published by the same agent, the “mark complete” 

event will likely have a next_id indicating there will be a subsequent event coming that 

should be processed in the same client-side sequence of operations, if they are processed 

at all. The “save” will subsequently have a pointer to the original triggering event, likely 

created by the client itself. 

If/When CEC (the client side) observes these orchestration events, it may or may 

not choose to “merge” them onto the default timeline by actually performing the function 

and then publishing a copy of event to the default timeline referencing the causal trigger 

via a “parent_id” in the new event. 
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AGENT SEMANTICS 

When an agent receives an event, it has no implicit knowledge of the meaning of 

the referenced timeline. And while events are usually scoped to a session, there is not 

presumed concept of a “default” timeline from an agent’s perspective. All timelines are 

treated equal. 

While an ARTAKA “agent” is a very generalized concept, at their core they are 

event-triggered services that may perform reasoning, complex event processing, do 

database or repository I/O operations, be scheduled, invoke other agents etc. They are 

usually stateless, and always multi-tenant/user/context. This is familiar and comfortable. 

Where agents become more abstract is that they are inherently multi-

timeline. Agents are “grounded” to wall-clock time via global clock tick events, but are 

generally unaware of whether they are operating on “real world” (aka client “default”) 

timeline events or those from alternate universes unless an effective_at timestamp is 

provided, though the TES may be queried if necessary. Agents that accept and/or emit 

events from alternate pasts and futures may be triggered from any number of timelines 

simultaneously, and even cross timelines when events converge (for past events) or 

diverge (in future events). Knowing which timeline to use, and when, follows a few rules 

of thumb. 

• Agents that emit responses to specific types of events within the context of a user 

session should only use the triggering timeline for statements of events that 

actually happened. “Notification sent” and “User logged out” are event cases 
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where the act occurs on the same timeline as the trigger. The timeline_id of the 

triggering event should be used in events published by the agent. 

• Orchestrations should occur on alternative timelines, as the acts did not occur 

from the perspective of the client. They would be fabricated statements on their 

default timeline, and if the client decides to merge them into their default timeline, 

the client will re-publish updated copies that may subsequently be received by 

other agents. Agents may create and manage timelines via CES REST API calls. 

• Cross-agent chatter and system events exist outside the scope of a single timeline, 

and should thus use the null timeline. 

For event simulation requiring modification of model state, it is highly 

recommended to consider global data resources writable only from the null timeline, and 

represent timeline-specific differences via model overlays using copy-on-write semantics. 

Each patient corpus, then, is always specific to a known timeline. This prevents the 

corruption of data resources in the null timeline by constraining changes to a separate 

universe, ideally in the PCC such that different agents may all query the same semantic 

view of the alternate timeline. 

To prevent infinite event looping scenarios across agents, generally considered to 

be stateless by design, agents involved in the creation of event timelines should always 

proactively check for livelocks of their own creation by querying the TES prior to 

publishing any new events. If such conditions are a known risk, the agent should self-

impose an internal tracking and/or throttling mechanism to prevent accidentally flooding 

the system. Due to the high-volume, low-latency nature of agents, the risk of accidental 
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denial of service via livelock increases exponentially with the number of deployed 

agents. Agents that prune system objects, such as the “pruner” agent provided in the CES 

reference implementation, are further recommended to do so aggressively and at frequent 

intervals triggered from clock tick events. 

EXAMPLES REVISITED  

In Figure 3 of the Context Event Service chapter, several situations and a 

generalized sequence are discussed in which UI orchestrations may be desired. With a 

deeper understanding of the way CES facilitates this process, it may be helpful to expand 

this sequence in the context of ARTAKA’s event orchestration semantics. 

In Figure 3, a client application has presumably already been instrumented with 

support for CES. This instrumentation into the application is further assumed to capture 

UI actions at a global or similarly high level in the controller hierarchy such that notable 

interactions with visual controls/widgets results in discrete events being published to CES 

via the REST JSON API. In this example, the user has “logged in” to the application and 

is, or is about to be, sitting in a “home” screen and state within the application. At this 

stage, the user likely has just “launched” the application (in the case of SMART-on-

FHIR) or started the application from their desktop computer or mobile device. Let us 

expand this scenario but orchestrating several useful state changes to the client using both 

frontend and backend event capabilities: 

• Restoration of user preferences. 

• Synchronizing with concurrent sessions. 

• Preloading of patient data for detailed query. 



 

99 

Most applications have some form of persistence mechanism allowing for user 

preferences to be saved and applied at a later point in time. Color schemes, visual layout, 

display language etc are all common user settings. When implemented, this is usually 

engineered in an application-specific manner. This can also be implemented with an 

ARTAKA agent operating with central authority for managing these data across all 

applications. In this case, the fictitious user preference management agent would detect 

the login event, retrieve any existing preference information for the specific user and 

application, and emit a preference model_uri back to the client session with any 

application-specific parameters in the payload. 

Similarly, specifications such as HL7 CCOW permit certain session context fields 

to be synchronized across multiple different applications. This can be enabled in 

ARTAKA-integrated applications by use of an agent detecting the same login event. 

Instead of integrating with an underlying database, however, an external CCOW service 

is used. If a current patient selection is found via CCOW, for example, this selection may 

be relayed to the client with a “…#select” topic_uri, FHIR resource reference as a 

model_uri, and directed to a “PatientController” via application-specific controller_uri 

and/or action_uri, if known. This orchestration event would contain a timeline_id, set by 

the CCOW integration agent, different from the “default” timeline used by the user 

session, with an effective_at timestamp in the past, and pointing to the triggering login 

event via next_id. Setting of these fields in combination allows the client’s named (or 

anonymous) controller responsible for managing patient selection to automatically select 
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the patient within the client, in turn publishing a “…#select” event back to CES on the 

“real” session timeline. 

Regardless of who or what selected the patient of interest, CES’ broadcast of a 

patient selection is indicative that some session is likely to have more detailed inquiry 

into the given patient in the near future. This specific case is intended to be handled by 

one or more Patient Corpora Cluster management agents. Once detected, the PCC 

manager is now able to materialize a patient-specific semantic database for the patient, 

and internally broadcast its availability, location, and capabilities. 

With sufficiently low-latency and high-performance engineering, these stories 

may ideally be executed so quickly that the user has no awareness of such choreography. 

The application simply launched quickly, into a reasonably expected state based on their 

activities in other applications, and is extremely responsive to continued use.
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EXPERIMENTATION, EVALUATION, & FUTURE DIRECTION 

Enterprise architecture deliverables are often accused of being overly academic, 

with little concern for the plausibility of designs. To demonstrate real-world value, I have 

provided an environment supplementary to this work both as evidence of feasibility, and 

guidance to future implementors. This environment is hosted under the artaka.org domain 

at time of this writing, and includes the reference implementation of CES, a version of 

KNARTwork instrumented with the CEC client library, and handful of exemplar agents, 

containerized HSP environment, TES, reverse proxy balancer, pub/sub system, object 

cache, and all associated databases. 

Fortuitously as this manuscript was in early draft state, several developers became 

available through grant money initially provided by the Piper Foundation to promulgate 

works in biomedical informatics. These hours were leveraged wherever possible to gain 

hands-on feedback from the perspective of external developers new to event-driven 

architecture, tasked with implementing CEC and reference CES/agents into the existing 

KNARTwork application. 

The successes and failures of doing so would have been impossible to predict, and 

many of the challenges discovered along the way have already resulted in positive 

changes at the component level. Perhaps most importantly, these lessons learned set 

clearer direction for future work outlined in this chapter, organized by the area of concern 

being discussed. Moving forward, two broad categories have emerged in which most 

shortcomings fall: clarity around information security practices in the integrated 
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enterprise, and the idiosyncrasies concerning the nature of events and timelines. Both 

these headings are deep rabbit holes of investigation and will benefit greatly from further 

review of existing literature and current directions of CDS as a field. 

Various reference implementation projects and direct links are provided in Table 

3. 

Project Link Remarks 

Context Event 

Service/Temporal 

Event Store 

https://github.com/preston/context-

event-service 

Also includes clock 

agents, event pruner, and 

example agents. 

Context 

Event Client 

https://github.com/preston/context-

event-client 

TypeScript/JavaScript 

KNARTwork https://github.com/cqframework/knart

work/ 

Contributed to 

CQFramework in 2017. 

HSP 

Marketplace 

Server 

https://github.com/preston/hsp-

marketplace-server 

Pursuing HL7 adoption. 

HSP 

Marketplace 

UI 

https://github.com/preston/hsp-

marketplace-ui 

Web UI. AngularJS. 
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HSP 

Marketplace 

Agent 

https://github.com/preston/hsp Supplemental proof of 

concept client for 

integration into local 

orchestration 

environment.  

TABLE 3 REFERENCE IMPLEMENTATION SOURCE CODE RESOURCES 

All reference systems have been packaged according to HSP-compatible service 

criteria, and a docker-compose file has also been created for ARTAKA- and CES-

oriented developers to quickly start a local development sandbox with minimal overhead. 

This docker-compose file is packaged with CES, and utilizes a .env file that must be 

configured for the local databases available to the local system. 

HOT SPOTS 

CES provides the publication endpoint for both clients and agents. Rather 

unexpectedly, the components subject to the most experimentation turned out to be CES 

and corresponding adjustments to the polymorphic event model. In retrospect, this should 

have been expected as CES and the event representation are the glue that binds all 

ARTAKA actors together. 

While agents may technically write directly to the pub/sub system, it is 

discouraged since direct-broadcast events are not recorded in TES nor propagate to 

clients connected to CES. Excluding runtime characteristics of any specific agent, the 

“hottest” aspects of ARTAKA to date are the pub/sub cluster and TES, and the manner in 

which CES’ must interact with it. 
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CES and pub/sub Redis cluster were jointly stress tested with numerous 

simultaneous mock clients and real agents running to search for bugs as well as issues 

fundamental to the architecture itself. The most significant discoveries relate to 

determinism. 

POSTing to CES’ /events REST endpoint is trivial to implement but extremely 

sensitive to changes. In initial implementation, an event POST would perform two 

operations simultaneously: 

• Save the event to TES and return the result immediately to the client, to maximize 

performance by removing any and all I/O delays. 

• Broadcast the event to agents via pub/sub. 

With this implementation, agents directly querying TES (such as the event pruner) 

would exhibit sporadic failures while trying to retrieve the windowed historical context of 

an event of interest. The reason for these odd and difficult to reproduce issues was that 

the asynchronous nature of CES did not guarantee that an event was fully committed to 

TES prior to broadcasting it via the pub/sub system. In rare occasions an agent would 

receive an event, attempt to retrieve it from TES, and fail to do so. After changing CES to 

fully commit the event to the TES prior to pub/sub broadcast, the issue appeared to be 

resolved. 

LIVE LOCKS 
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During course of prototype agent development, several cases emerged in which a 

stateless agent unwittingly flooded the system with an infinite loop of event interactions 

with either: 

• Itself 

• another agent 

• a client that “merged” an agent event into its own timeline and essentially 

rebroadcast the merged event in such a way that triggered the same agent 

While event-driven architecture is extremely powerful, the observation of these 

types of occurrences highlights the amount of vigilance needed to prevent, let alone 

detect, infinite loops. Agent-side filtering of one’s own events – that is, events with a 

agent_uri that matches the URI of the receiving agent – provides a quick win, but does 

nothing to remove possibilities of circular loops between agents. In one case, the live 

locking was so severe that a TES table lock created by the event pruner agent caused CES 

to suffer buffer overflows from inability to keep up with event publication demands. 

Production systems will need special monitoring agents specifically designed to 

detect, and potentially stop, live lock events determined to threaten the availability of the 

system. ARTAKA does not prevent these safety features from being added, but also does 

not provide a built-in solution. A consideration for subsequent revisions of the 

architecture is a requirement for agents to be able to process a halt event topic. Receipt of 

a halt would result in a temporary suspension of activities when notified of events 

matching a provided pattern. This may or may not work in practice, as any sort of 
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system-wide deadman switch is typically as easy to abuse as to use, and the difference 

difficult to detect. Anyone can pull a fire alarm. 

NETWORK RELIABILITY 

From the onset, the ARTAKA concept has been subject to the runtime conditions 

that client event pub/sub is never guaranteed, nor is event order. This was generally not a 

problem due to the non-critical nature of the exemplar application, but requires developer 

awareness to handle properly. 

The primary negative effect of non-reliability is that client code must be authored 

to provide “best effort” processing of events received from CES. In the case of sequences 

– e.g. a “load model M” followed by a “select field F” – out-of-order or partial receipt of 

the events will result in a client state not fully aligned with the expectations of the 

emitting agent. For agents, this also implies that 100% accurate state mirroring is 

impossible, as agents have no built-in means of verifying events were received, let alone 

processed. 

The majority of reliability-related issues during CES experimentation came from 

infrastructure-level causes. In the initial sandbox environment, I discovered a network 

device between the Internet and CES application server was preemptively dropping 

inactive TCP connections between clients and the host server. This showed up in the CES 

logs as user disconnects, even though the client test applications believed they were still 

connected. Brower-side automatic reconnection attempts were problematic and difficult 

to reproduce. 



 

107 

For IT environments where the network is not fully controllable, the use of 

stateful SSE may reveal inadequacies of the underlying infrastructure. In the local case, 

the issue was not resolvable until the application server was moved at a cloud-based 

environment on Amazon Web Services where a software defined network (SDN) could 

be established with the correct configuration. 

AGENT ACCESS CONTROLS 

ARTAKA agents are assumed to operate in a trusted environment. The access 

level provided agents to access underlying data sources is left undefined, but it is clear 

that an architectural stance must be made early in the development of an implementation. 

The position simplest to implement is to assume that agents, as trusted operators 

operating in a secured environment, are allowed largely unfettered access to data layer 

resources, most notably the EHR. The problem, however, is that without a security 

context of the session, agents may inadvertently run queries or perform operations that 

the end user is not allowed to read or execute, respectively. Outcomes can result in 

accidental disclosure or unintentional privilege escalation by using agents as a 

middleman to run operation at privilege level the user does not possess. 

The most secure approach is to limit agent capabilities to the scope of the user 

session, when applicable. Using the existing ‘scope’ values of a SMART-on-FHIR-

authenticated session, for example, allows abiding agents to implement self-imposed 

access checks prevent privilege escalation. Of course, asking every agent developer to 

consistently and correctly supply support in agent implementations would likely be a 
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mixed bag. If this approach is used, security context field would/will need to be injected 

by CES prior to publication of the event to the relevant channels. 

PUBLICATION AND SUBSCRIPTION FILTERING 

Clients should be able to subscribe to a wide range of channels, but never to any 

channel that could potentially leak sensitive data. Implementing this in CES is tricky, and 

the CES reference implementation does not provide a fully flushed out security model for 

limiting the scope of subscriptions that can be created by clients. 

For production use, the straightforward means of doing so is to add a 

“permissions” object field to the Role type: an approach I have used successfully in other 

RBAC designs. This field would store a whitelist of allowable channel patterns for users 

assigned this role. As with all secure web applications, these privileges would be 

evaluated upon every API call. 

An additional benefit of using such a permissions model is that it would also serve 

as a mechanism for agent publication authorization management. As agents publish to 

CES in the same way as external CES clients, and a unified publication permissions 

model would provide a layer of internal security as well for all CES API operations. 

EVENT PROFILING & DEVELOPER COLLABORATION 

While engaging in both client and agent development, a common recurring 

question was, “What URI should I use for X when Y happens?” Since event payloads 

contain numerous URI fields and there are very few restrictions on their use, developers 
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naturally need some explicit guidance on reasonable values to use. This question applies 

equally to both client and agent developers. 

Even when only developing within the context of a single organization, 

documentation is necessary to catalog local ontologies and the specific allowable 

concepts referenced during event publication. Without such a catalog, which can be as 

simple as a wiki page, developers are forced to guess or make point-to-point decisions 

based on a priori knowledge of specific agent behavior. From experience working as a 

team, these guesses are usually wrong, even when ontologies and models used for the 

URI spaces are identified. Subtle semantic interpretations of events varies greatly by 

application and subjective interpretation of the developer. 

CES events, as a polymorphic model with optional fields, unfortunately will 

require a level of “profiling” not currently accounted for. This mechanism should avoid 

prescriptive constraints, but support extremely clear usage semantics that may not be 

evidence from strict consideration of only the referenced ontologies and/or models. This 

should be similar in spirit to the mechanisms of the same name used in specification of 

the FHIR API, though in a more constrained manner to only allow for specializations that 

do not break the “is-a” semantics of the core CES event type. Allowing for expansion of 

the structure or semantics of a CES “event” would require coordination amongst all agent 

and application developers that is unlikely to succeed at scale. Thus, changes to CES’ 

event resource should occur as governed revisions of CES itself. This future addition of 

event profiles implies additional changes to other aspects of ARTAKA, such as the 

Health Services Platform Marketplace specification. 
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The HSP Marketplace specification includes only a limited and loosely defined 

mechanism for declaring service operability models. It is a known limitation that, at time 

of this writing, awaits detailed feedback from the HL7 community to resolve sufficiently 

for supporting FHIR services in such a way that semantic resource interoperability can be 

determined with 100% automated declarative compatibility checking. This will require a 

change to the Marketplace’s current platform-independent model (PIM), platform-

specific model (PSM) of the reference implementation, and API. Regardless of the exact 

nature of the changes, it will require consideration to support FHIR, but not be 

constrained to it. Doing so will allow ARTAKA knowledge agents to declare the event 

and model types supported and/or required in a way comfortable to the SDO community. 

The other major area of necessary developer collaboration is the event payload 

field. As this field may be any arbitrary lightweight JSON object, clients and agents have 

no strict guidance on how to use it for specific use cases. In retrospect, this field 

effectively functions as a developer-defined microschema. Both agent and client 

developers must clearly document any/all uses of this field such that the structure and 

semantics are clear to all parties. Examples are the most practical way of documenting 

usage, though formalization of the microschemas using JSON Schema[97] or similar is 

preferred. A formal schema governing payload contents better allows for automated 

validating and mocking. 

TOPIC VS ACTION URIS 

During the course of instrumenting the KNARTwork application with the CEC 

library, it became apparent that the difference between the event topic_uri and action_uri 
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fields is ambiguous. The topic_uri, being required for all events, was used in all cases, 

but the value of the action_uri field is unclear. In highly orchestration user experiences it 

is expected that action_uri will have value, but in simple cases such as information 

retrieval appears to be slightly duplicative. A profiling or profile-like approach such as 

discussed in Event Profiling & Developer Collaboration is needed to disambiguate exact 

uses. 

TIMELINE EXPLOSION 

The usage of event timelines for orchestrations, shown as the optional “create 

alternate timeline” call in Figure 3, appears to work well. In highly orchestration 

applications, note that this call to the CES API is made very frequently, as often as once 

per orchestration event. There are three potential issues caused by this design decision 

that may warrant adjustments. 

First, the number of timelines managed by CES can theoretically grow at the same 

rate and scale as the number of events. Timeline resources are managed by the TES, 

however, the growth of these objects was not intended to grow as fast as it does when 

using agents driving high levels of UI orchestration. 

Second, an API call to CES involves a network I/O call to a different system. 

Doing so introduces precious latency to agent processing times while waiting for CES to 

create and return the new timeline. Additionally, a creation of a timeline itself generates a 

event. This can result in live locks, race conditions, and unnecessary flooding of the 

system with timeline management events. 
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A potential change worth consideration is having CES create a single alternate 

timeline in addition to the default timeline when the client session is created, and 

injecting the alternate timeline UUID into events shunted into the pub/sub system. This 

would allow the minimalistic timeline model to remain unchanged while allowing the 

“create alternate timeline” call to be eliminated from the sequence diagram to simply 

attain a valid timeline UUID for events occurring in an alternate past. 

Third, ARTAKA has a very lax notion of a simulation event horizon[98,99]: the 

points before and after a discrete place in time beyond which all events are censored or 

deleted. This is problematic for agents querying TES since it, as currently defined, is 

neither a closed world nor open world. Semantic queries extending beyond the event 

horizon have no guarantees that what is known to TES constitutes all that has been 

known to TES, presenting an immediate epistemic dilemma. In cases where censoring or 

purging has occurred, it is difficult to discern the nature or magnitude of what was 

removed. 

In future revisions, TES needs a clear definition of an event horizon that must be 

observed by agents. Most likely, a system-wide cutoff would need to be decoupled from 

the physical act of pruning. This approach allows for agents to establish clear boundaries 

around queries regardless of the state of garbage collection. 

TIMELINE AGNOSTICISM 

The decision that agents, by default, would remain indifferent to real or simulated 

timelines is intended to be a simplifying assumption to ease the learning curve for agent 

developers. Real-world usage suggests, however, that any agent performing write 
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operations to the PCC, EHR or other external system must have some minimal awareness 

of the timeline context to prevent simulated timelines from corrupting real-world data 

stores. That is, to apply the copy-on-write semantics discussed in the section on the 

Patient Corpora Cluster, agents must be able to know when and how it is ok to create, 

update, and delete data. 

One potential approach for patient-centric agents is for CES to inject a reference 

to the appropriate PCC authority(ies) for reading and writing. This is messy, however, 

and also breaks a separation of concerns barrier by forcing to CES to be aware of the 

PCC. CES is not intended to be aware of any internal systems except for the pub/sub 

cluster, TES, and it’s own management database. 

A more general solution may be to build upon the security permissions injection 

approach discussed in Agent Access Controls. This would allow CES to guide the 

consumption constraints of subscribed agents without necessarily introducing awareness 

of a PCC. 



 

 

CONCLUSIONS 

ARTAKA is a hybrid architectural paradigm combining flagship aspects of 

traditional MVC application architecture, UI orchestration, knowledge representation and 

reasoning, complex event and stream processing, and simulation, in a coherent package 

harmonized with current health IT standards. The architectural blueprints provided, with 

particular attention paid to elements of lessor prior academic focus, defines a logical path 

for clinically-authored knowledge artifacts to drive the user experience of production 

applications using current or future knowledge representation standards. 

Hands-on experimentation and evaluation of ARATKA’s primary architectural 

components has provided encouraging results suggesting that the architecture is both 

achievable in real-world use and highly valuable in advanced cases. At a high level, the 

potential effects of adoption could significantly impact numerous areas of knowledge 

management and application chains. 

FOR DECLARATIVE KNOWLEDGE 

Providers, payers, academics, and industry stakeholders have long seen the 

potential of declarative knowledge. In healthcare, Arden syntax wet the tongues of 

clinical informaticists, but due to the “curly braces problem” that limits executional 

portability, and non-technical issues, has failed to make knowledge executable. 

More recently, the HL7 CDS Knowledge Artifact specification improved on a 

number of shortcomings by standardizing on a polymorphic XML-based document 

schema for representing 3 specific types of knowledge: order sets, documentation 

templates, and ECA rules. Through field review of approximately ~104 individual 
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artifacts and source material, many remaining shortcomings are evident. Feedback to the 

HL7 work group from myself and many others is guiding recommend changes to the 

specification, such as by introducing a “composite” type that effectively serves as a more 

powerful form of ECA rule to glue knowledge-level artifacts together using event-based 

triggering. Due to the current gravity around FHIR, the fate of the Knowledge Artifact 

Specification (KAS) is unclear. Mainstream runtime environments may or may not 

emerge. 

Regardless of the fate of the Knowledge Artifact specification, the primary 

purposes of using any such standard is to enable L4[100] computability of the content by 

compiling it to executable form in a platform-specific manner. ARTAKA’s event-driven 

and decoupled semantics provide interoperable pipes and glue for these executable 

artifacts to drive clinical UX through use of precoordinated topics. In the CES reference 

implementation, the event pub/sub mechanisms show how a rendered KAS 

documentation template can, for example, emit selection events back to the server side 

where any number of other artifacts may subscribe to the outcome, and in turn trigger 

small UI orchestrations such as hiding/showing of subsequent questions, or more 

complex operations such as starting a business process in a completely different 

department through complex event processing. The implications of any architecture 

loosely similar to ARTAKA pertaining to the incremental introduction of declarative 

knowledge cannot be understated. 

FOR DEEP LEARNING 
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Often at odds with proponents of formal clinical knowledge modeling is the 

impressive results from application of modern machine learning. ARTAKA’s 

comprehensive TES provides ML practitioners with a complete structured set of human 

and agent activities necessary to model complex behaviors of which SMEs may not even 

be aware. By integrating the CEC into SMART-on-FHIR and other applications, the TES 

can be shunted into a data warehouse for analysis of comprehensive behaviors, both in 

and out of the EHR. The traceability of ARTAKA events across unrelated applications is 

a capability that cannot be trivial replicated by most application development frameworks 

used in singularity, and while most enterprise applications have some form of traceability, 

enterprise-wide audits of user activity are rare. The reference implementation does not 

provide built-in tools for ML-based agents as no real-world set of training data is yet 

available. Additionally, it should generally be assumed that ML-based agent development 

is driven by custodians of the relevant data. 

It is difficult to offer predictions on the role of deep learning in event-driven CDS. 

The future is bright, however, and ARTAKA is set to support them.  

FOR HEALTH IT 

For software engineers working in a clinical context, the regulated and highly 

controlled nature of the domain can be overwhelming for innovators attempting to 

introduce disruptive change. The sometimes decades-long delays between discovery and 

live application of knowledge can be maddening and feel overcautious when evidence 

suggests delays to changes will result in a net negative to outcome quality. A core 

element to such frustrations is the necessary alignment of priorities and timelines across 
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clinical and technical stakeholder groups to bring a unit of formalized knowledge into 

practice. 

Traditionally, manual programmatic translation has been performed to mirror 

SME-driven knowledge in executable form, and usually localized to the extent that reuse 

of the executable artifacts are non-interoperable. Such has been the case with HL7 Arden 

syntax. With the introduction of compilable languages such as CQL, runtime 

architectures such as ARTAKA, and configuration management principles from the 

software engineering domain, the stage is set to break the mandatory alignments of 

clinical and technical managers. If clinical SMEs are able to effectively cut out manual IT 

efforts from the knowledge management cycle, clinicians will be able to significantly 

shorten the delays to fully develop, exchange, customize, test, deploy, and maintain 

executable knowledge artifacts. 
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