74,889 research outputs found

    Badger: Complexity Analysis with Fuzzing and Symbolic Execution

    Full text link
    Hybrid testing approaches that involve fuzz testing and symbolic execution have shown promising results in achieving high code coverage, uncovering subtle errors and vulnerabilities in a variety of software applications. In this paper we describe Badger - a new hybrid approach for complexity analysis, with the goal of discovering vulnerabilities which occur when the worst-case time or space complexity of an application is significantly higher than the average case. Badger uses fuzz testing to generate a diverse set of inputs that aim to increase not only coverage but also a resource-related cost associated with each path. Since fuzzing may fail to execute deep program paths due to its limited knowledge about the conditions that influence these paths, we complement the analysis with a symbolic execution, which is also customized to search for paths that increase the resource-related cost. Symbolic execution is particularly good at generating inputs that satisfy various program conditions but by itself suffers from path explosion. Therefore, Badger uses fuzzing and symbolic execution in tandem, to leverage their benefits and overcome their weaknesses. We implemented our approach for the analysis of Java programs, based on Kelinci and Symbolic PathFinder. We evaluated Badger on Java applications, showing that our approach is significantly faster in generating worst-case executions compared to fuzzing or symbolic execution on their own

    An empirical investigation into branch coverage for C programs using CUTE and AUSTIN

    Get PDF
    Automated test data generation has remained a topic of considerable interest for several decades because it lies at the heart of attempts to automate the process of Software Testing. This paper reports the results of an empirical study using the dynamic symbolic-execution tool. CUTE, and a search based tool, AUSTIN on five non-trivial open source applications. The aim is to provide practitioners with an assessment of what can be achieved by existing techniques with little or no specialist knowledge and to provide researchers with baseline data against which to measure subsequent work. To achieve this, each tool is applied 'as is', with neither additional tuning nor supporting harnesses and with no adjustments applied to the subject programs under test. The mere fact that these tools can be applied 'out of the box' in this manner reflects the growing maturity of Automated test data generation. However, as might be expected, the study reveals opportunities for improvement and suggests ways to hybridize these two approaches that have hitherto been developed entirely independently. (C) 2010 Elsevier Inc. All rights reserved

    Holistic debugging - enabling instruction set simulation for software quality assurance

    Get PDF
    We present holistic debugging, a novel method for observing execution of complex and distributed software. It builds on an instruction set simulator, which provides reproducible experiments and non-intrusive probing of state in a distributed system. Instruction set simulators, however, only provide low-level information, so a holistic debugger contains a translation framework that maps this information to higher abstraction level observation tools, such as source code debuggers. We have created Nornir, a proof-of-concept holistic debugger, built on the simulator Simics. For each observed process in the simulated system, Nornir creates an abstraction translation stack, with virtual machine translators that map machine-level storage contents (e.g. physical memory, registers) provided by Simics, to application-level data (e.g. virtual memory contents) by parsing the data structures of operating systems and virtual machines. Nornir includes a modified version of the GNU debugger (GDB), which supports non-intrusive symbolic debugging of distributed applications. Nornir's main interface is a debugger shepherd, a programmable interface that controls multiple debuggers, and allows users to coherently inspect the entire state of heterogeneous, distributed applications. It provides a robust observation platform for construction of new observation tools

    The Homeostasis Protocol: Avoiding Transaction Coordination Through Program Analysis

    Get PDF
    Datastores today rely on distribution and replication to achieve improved performance and fault-tolerance. But correctness of many applications depends on strong consistency properties - something that can impose substantial overheads, since it requires coordinating the behavior of multiple nodes. This paper describes a new approach to achieving strong consistency in distributed systems while minimizing communication between nodes. The key insight is to allow the state of the system to be inconsistent during execution, as long as this inconsistency is bounded and does not affect transaction correctness. In contrast to previous work, our approach uses program analysis to extract semantic information about permissible levels of inconsistency and is fully automated. We then employ a novel homeostasis protocol to allow sites to operate independently, without communicating, as long as any inconsistency is governed by appropriate treaties between the nodes. We discuss mechanisms for optimizing treaties based on workload characteristics to minimize communication, as well as a prototype implementation and experiments that demonstrate the benefits of our approach on common transactional benchmarks

    Quantifying Information Leaks Using Reliability Analysis

    Get PDF
    acmid: 2632367 keywords: Model Counting, Quantitative Information Flow, Reliability Analysis, Symbolic Execution location: San Jose, CA, USA numpages: 4acmid: 2632367 keywords: Model Counting, Quantitative Information Flow, Reliability Analysis, Symbolic Execution location: San Jose, CA, USA numpages: 4acmid: 2632367 keywords: Model Counting, Quantitative Information Flow, Reliability Analysis, Symbolic Execution location: San Jose, CA, USA numpages: 4We report on our work-in-progress into the use of reliability analysis to quantify information leaks. In recent work we have proposed a software reliability analysis technique that uses symbolic execution and model counting to quantify the probability of reaching designated program states, e.g. assert violations, under uncertainty conditions in the environment. The technique has many applications beyond reliability analysis, ranging from program understanding and debugging to analysis of cyber-physical systems. In this paper we report on a novel application of the technique, namely Quantitative Information Flow analysis (QIF). The goal of QIF is to measure information leakage of a program by using information-theoretic metrics such as Shannon entropy or Renyi entropy. We exploit the model counting engine of the reliability analyzer over symbolic program paths, to compute an upper bound of the maximum leakage over all possible distributions of the confidential data. We have implemented our approach into a prototype tool, called QILURA, and explore its effectiveness on a number of case studie

    A Simple and Scalable Static Analysis for Bound Analysis and Amortized Complexity Analysis

    Full text link
    We present the first scalable bound analysis that achieves amortized complexity analysis. In contrast to earlier work, our bound analysis is not based on general purpose reasoners such as abstract interpreters, software model checkers or computer algebra tools. Rather, we derive bounds directly from abstract program models, which we obtain from programs by comparatively simple invariant generation and symbolic execution techniques. As a result, we obtain an analysis that is more predictable and more scalable than earlier approaches. Our experiments demonstrate that our analysis is fast and at the same time able to compute bounds for challenging loops in a large real-world benchmark. Technically, our approach is based on lossy vector addition systems (VASS). Our bound analysis first computes a lexicographic ranking function that proves the termination of a VASS, and then derives a bound from this ranking function. Our methodology achieves amortized analysis based on a new insight how lexicographic ranking functions can be used for bound analysis
    • …
    corecore