82,440 research outputs found

    The ‘Urbanforest’ and ‘Green space’ Classification Model in the Spatial Arrangement of Registro-SP, Brazil

    Get PDF
    The necessity of handling green areas relating to urban settings has become one of the vital environmental challenges in view of several accumulated environmental problems in the last few decades. In United States and Canada, many investments are being made for new techniques and instruments that are needed in environmental planning involving urban forest researches both in the local and national scale. However, there are few reports on urban forest classification connecting spatial characteristics, physical structures involving pattern and process. With the objective to classify urban green areas for integrated approach, this research have focused on urban pattern for an effective understanding of urban forest concept, green areas and urban vegetation types. The urban morphology in consistency with the urban forest Focus Chat (FC) recently designed has been applied to characterize spatial categories of urban vegetation involved in the urban arrangement of Registro-SP. Method has integrated zones, patterns and processes for technical analyses to contemplate the urban dynamics, occupation and land use. Categories of urban forest and vegetation types were derived for the urban planning and system management. The resulting pattern can be technically monitored in the use of suitable GIS (Geographical Information System) software for physical and environmental records.

    Performance assessment of urban precinct design: a scoping study

    Get PDF
    Executive Summary: Significant advances have been made over the past decade in the development of scientifically and industry accepted tools for the performance assessment of buildings in terms of energy, carbon, water, indoor environment quality etc. For resilient, sustainable low carbon urban development to be realised in the 21st century, however, will require several radical transitions in design performance beyond the scale of individual buildings. One of these involves the creation and application of leading edge tools (not widely available to built environment professions and practitioners) capable of being applied to an assessment of performance across all stages of development at a precinct scale (neighbourhood, community and district) in either greenfield, brownfield or greyfield settings. A core aspect here is the development of a new way of modelling precincts, referred to as Precinct Information Modelling (PIM) that provides for transparent sharing and linking of precinct object information across the development life cycle together with consistent, accurate and reliable access to reference data, including that associated with the urban context of the precinct. Neighbourhoods are the ‘building blocks’ of our cities and represent the scale at which urban design needs to make its contribution to city performance: as productive, liveable, environmentally sustainable and socially inclusive places (COAG 2009). Neighbourhood design constitutes a major area for innovation as part of an urban design protocol established by the federal government (Department of Infrastructure and Transport 2011, see Figure 1). The ability to efficiently and effectively assess urban design performance at a neighbourhood level is in its infancy. This study was undertaken by Swinburne University of Technology, University of New South Wales, CSIRO and buildingSMART Australasia on behalf of the CRC for Low Carbon Living

    A rapid review of the background to source control

    Get PDF
    Background to researchThe start of the 21st Century witnessed a revolution in drainage practices with the implementation of sustainable drainage systems (SUDS). Prior to 2000, rainfall was managed by directing it away as quickly as possible in underground pipes. Increasing pressures such as watercourse pollution, stricter environmental laws, climate change and urbanisation called for a paradigm shift with Scotland leading the way for implementing SUDS. SUDS are designed to mimic natural drainage processes, managing rainfall in stages as it drains from a development. Collectively this process is called the stormwater treatment train. The first stage is source control, with stages two and three being site and regional controls respectively. Source control principally controls and treats polluted runoff at source (where the rain falls) and if designed and implemented correctly, protect watercourses and downstream SUDS through filtration, infiltration and storage. In Scotland, site and regional control SUDS have become business as usual, however uptake of the stormwater treatment train and the use of source control SUDS in practice is less routine than would be expected.Objectives of researchThe SUDS Working Party in Scotland is an interdisciplinary stakeholder platform to discuss issues relating to the SUDS agenda and promote their use. In 2009, a consultation paper on ‘Implementing the Water Environment and Water Services (Scotland) Act’ set out proposals to improve the sustainable management of Scotland’s water resources. The need for increased source control measures for the mitigation of diffuse pollution and climate change effects in urban areas was identified. To assist in this aspiration, the SUDS Working Party commissioned this study via CREW to identify opportunities and barriers to increasing the uptake of source control in Scotland. This report covers phase one of a three-phase study. It focuses on tracking the evolution of source control to gain an insight into enabling factors and obstacles for successful uptake of the systems. A literature review identified source control origins, the techniques available, and options for their application.Key findings and recommendationsIn the UK, research to validate the performance of source control measures began in the early 1990’s. This was enabled by stakeholder platforms such as the SUDS Working Party and the Scottish Universities SUDS Monitoring Group. By the mid-1990s, the SUDS concept was developed which included source control and outlined water quality, quantity and biodiversity / amenity benefits of the systems. By 2000, Scottish guidance was developed and by 2006 it became law to implement SUDS in all new developments. This was quickly followed by technical standards in 2007. SUDS for roads networks were addressed in 2010. Currently, many types of source control exist, most of which have been validated by research and are commonplace. The state of the art techniques such as rain gardens, green roofs and rainwater harvesting however, have had limited uptake in Scotland.It is evident that the enabling factors for the uptake of SUDS have been the result of top down drivers such as environmental initiatives and regulation. However, clarity surrounding the definition and application of source control as part of the stormwater treatment train is becoming a barrier to its uptake by practitioners. Extensive research provided a bottom up driver to validate effectiveness of the technologies for attenuating pollutants, mitigating flooding and creating habitats. Validation of emerging innovative techniques however, such as green roofs and rain gardens for different development types is limited in Scotland and this may prove to be a barrier in the future

    Planning and Design Strategies for Sustainable Urban Development

    Get PDF
    In order to create high impact low-carbon architecture it is necessary to address issues at the urban scale. This paper reviews methods adopted in the UK, Hong Kong and America and develops a series of themes that should be incorporated in modern city development strategies to produce green and sustainable outcomes. These are concerned with: planning policies and building regulations; neighborhood and site planning; and building design. Underlying themes which must be incorporated are connected to: building façade, systems design and operation; energy demand and supply; transportation systems; water supply and use; and wastes/pollution issues. To achieve success a number of support mechanisms are needed including strategic and infrastructure development, implementation of assessment frameworks, and the distribution of information and knowledge to stakeholders. The themes are compared to recent developments in the city of Kunming and proposals for future applications are explored

    Hybridizing old downtown Suwon City: how new urban fabric may save the past

    Get PDF
    In response to paradigm shifts of environmental, social and economic methods at the local and global scales, new approaches are required for creating alternative urban models which emphasize sustainability and landscape productivity. The Old Downtown of Suwon City, South Korea, which is encompassed by the Hwaseong Fortress and designated by UNESCO as a World Heritage Site, is currently experiencing challenges between preservation and development – past and future. This thesis investigates sustainable and productive urban tactics to mediate this conflict. The primary focus of these tactics is the re-organization of land use towards more efficient and productive models born of contemporary science, technology, and culture, while simultaneously embracing and preserving key aspects of the city’s heritage

    Mapping and assessment of ecosystems and their services. Urban ecosystems

    Get PDF
    Action 5 of the EU Biodiversity Strategy to 2020 requires member states to Map and Assess the state of Ecosystems and their Services (MAES). This report provides guidance for mapping and assessment of urban ecosystems. The MAES urban pilot is a collaboration between the European Commission, the European Environment Agency, volunteering Member States and cities, and stakeholders. Its ultimate goal is to deliver a knowledge base for policy and management of urban ecosystems by analysing urban green infrastructure, condition of urban ecosystems and ecosystem services. This report presents guidance for mapping urban ecosystems and includes an indicator framework to assess the condition of urban ecosystems and urban ecosystem services. The scientific framework of mapping and assessment is designed to support in particular urban planning policy and policy on green infrastructure at urban, metropolitan and regional scales. The results are based on the following different sources of information: a literature survey of 54 scientific articles, an online-survey (on urban ecosystems, related policies and planning instruments and with participation of 42 cities), ten case studies (Portugal: Cascais, Oeiras, Lisbon; Italy: Padua, Trento, Rome; The Netherlands: Utrecht; Poland: PoznaƄ; Spain: Barcelona; Norway: Oslo), and a two-day expert workshop. The case studies constituted the core of the MAES urban pilot. They provided real examples and applications of how mapping and assessment can be organized to support policy; on top, they provided the necessary expertise to select a set of final indicators for condition and ecosystem services. Urban ecosystems or cities are defined here as socio-ecological systems which are composed of green infrastructure and built infrastructure. Urban green infrastructure (GI) is understood in this report as the multi-functional network of urban green spaces situated within the boundary of the urban ecosystem. Urban green spaces are the structural components of urban GI. This study has shown that there is a large scope for urban ecosystem assessments. Firstly, urban policies increasingly use urban green infrastructure and nature-based solutions in their planning process. Secondly, an increasing amount of data at multiple spatial scales is becoming available to support these policies, to provide a baseline, and to compare or benchmark cities with respect to the extent and management of the urban ecosystem. Concrete examples are given on how to delineate urban ecosystems, how to choose an appropriate spatial scale, and how to map urban ecosystems based on a combination of national or European datasets (including Urban Atlas) and locally collected information (e.g., location of trees). Also examples of typologies for urban green spaces are presented. This report presents an indicator framework which is composed of indicators to assess for urban ecosystem condition and for urban ecosystem services. These are the result of a rigorous selection process and ensure consistent mapping and assessment across Europe. The MAES urban pilot will continue with work on the interface between research and policy. The framework presented in this report needs to be tested and validated across Europe, e.g. on its applicability at city scale, on how far the methodology for measuring ecosystem condition and ecosystem service delivery in urban areas can be used to assess urban green infrastructure and nature-based solutions

    Reclaiming Brownfields: A Primer for Municipalities

    Get PDF
    This resource provides information about brownfields redevelopment targeted to municipal planners and decision-makers. The primer defines brownfields, identifies benefits and barriers involved in brownfield redevelopment, discusses related issues such as green building and equitable development, and describes Pennsylvania, New Jersey, and federal brownfields funding and technical assistance resources. The primer is organized within a folder. The folder also contains case studies of brownfield redevelopment projects from the region, as well as two previously-published DVRPC resources on brownfields: the Brownfields Resource Guide: Funding and Technical Assistance for Remediation and Reuse (publication number 07052) and Municipal Implementation Tool #10: Reclaiming Brownfields
    • 

    corecore