42 research outputs found

    Interval simplex splines for scientific databases

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1995.Includes bibliographical references (p. 130-138).by Jingfang Zhou.Ph.D

    Kirchhoff-Love shell representation and analysis using triangle configuration B-splines

    Full text link
    This paper presents the application of triangle configuration B-splines (TCB-splines) for representing and analyzing the Kirchhoff-Love shell in the context of isogeometric analysis (IGA). The Kirchhoff-Love shell formulation requires global C1C^1-continuous basis functions. The nonuniform rational B-spline (NURBS)-based IGA has been extensively used for developing Kirchhoff-Love shell elements. However, shells with complex geometries inevitably need multiple patches and trimming techniques, where stitching patches with high continuity is a challenge. On the other hand, due to their unstructured nature, TCB-splines can accommodate general polygonal domains, have local refinement, and are flexible to model complex geometries with C1C^1 continuity, which naturally fit into the Kirchhoff-Love shell formulation with complex geometries. Therefore, we propose to use TCB-splines as basis functions for geometric representation and solution approximation. We apply our method to both linear and nonlinear benchmark shell problems, where the accuracy and robustness are validated. The applicability of the proposed approach to shell analysis is further exemplified by performing geometrically nonlinear Kirchhoff-Love shell simulations of a pipe junction and a front bumper represented by a single patch of TCB-splines

    Dynamic Multivariate Simplex Splines For Volume Representation And Modeling

    Get PDF
    Volume representation and modeling of heterogeneous objects acquired from real world are very challenging research tasks and playing fundamental roles in many potential applications, e.g., volume reconstruction, volume simulation and volume registration. In order to accurately and efficiently represent and model the real-world objects, this dissertation proposes an integrated computational framework based on dynamic multivariate simplex splines (DMSS) that can greatly improve the accuracy and efficacy of modeling and simulation of heterogenous objects. The framework can not only reconstruct with high accuracy geometric, material, and other quantities associated with heterogeneous real-world models, but also simulate the complicated dynamics precisely by tightly coupling these physical properties into simulation. The integration of geometric modeling and material modeling is the key to the success of representation and modeling of real-world objects. The proposed framework has been successfully applied to multiple research areas, such as volume reconstruction and visualization, nonrigid volume registration, and physically based modeling and simulation

    A Survey of Spatial Deformation from a User-Centered Perspective

    Get PDF
    The spatial deformation methods are a family of modeling and animation techniques for indirectly reshaping an object by warping the surrounding space, with results that are similar to molding a highly malleable substance. They have the virtue of being computationally efficient (and hence interactive) and applicable to a variety of object representations. In this paper we survey the state of the art in spatial deformation. Since manipulating ambient space directly is infeasible, deformations are controlled by tools of varying dimension - points, curves, surfaces and volumes - and it is on this basis that we classify them. Unlike previous surveys that concentrate on providing a single underlying mathematical formalism, we use the user-centered criteria of versatility, ease of use, efficiency and correctness to compare techniques

    Adaptive Knot Placement in Non-uniform B-spline Surface Fitting

    Get PDF
    针对非均匀b样条的节点设置问题,提出一种利用非均匀b样条曲面拟合离散数据的迭代算法,通过优化节点分布来改进拟合曲面的质量.该算法以带参数化的三角网格曲面为输入,在首次迭代中根据输入曲面的几何特征将其对应的参数域划分成若干个子区域,并使得每个子区域上累积的几何特征信息量近似相等,子区域的重心坐标将取为首次迭代的节点;在随后的迭代中,保证前次迭代生成的重心位置固定不变,并根据前次迭代得到的曲面拟合误差再次将区域划分成累积误差接近相等的子区域,新增加的子区域重心的坐标选为拟加入的节点.文中算法自适应地在曲面形状复杂或拟合误差大的区域引入更多的控制顶点,使得拟合曲面的质量得以逐步改进.实验结果表明,该算法快速有效,在拟合具有明显几何特征的输入数据时具有优势.Knot placement of non-uniform B-spline is studied, and an iterative surface fitting scheme is proposed by exploring the degrees of freedom of knots to improve the fitting surface's quality.Our algorithm takes as input triangular meshes with parameterization.In the first iteration, the parametric domain is partitioned into several sub-regions with equally accumulated surface geometric information, and the coordinates of the centroids are chosen as the candidates of knots; in the following iteration steps, we partition the regions according to the fitting errors analogously while the centroids generated by previous steps remain unchanged.The fitting surface's quality is progressively improved as more control points are adaptively introduced into the region of the surface with more features or larger fitting error.Several experiments demonstrate the efficacy of our method in fitting surface with distinct geometric features.国家自然科学基金(61100105;61100107;61170324;61272300); 福建省自然科学基金(2011J05007;2012J01291

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    Doctor of Philosophy

    Get PDF
    dissertationSmoothness-increasing accuracy-conserving (SIAC) filters were introduced as a class of postprocessing techniques to ameliorate the quality of numerical solutions of discontinuous Galerkin (DG) simulations. SIAC filtering works to eliminate the oscillations in the error by introducing smoothness back to the DG field and raises the accuracy in the L2-n o rm up to its natural superconvergent accuracy in the negative-order norm. The increased smoothness in the filtered DG solutions can then be exploited by simulation postprocessing tools such as streamline integrators where the absence of continuity in the data can lead to erroneous visualizations. However, lack of extension of this filtering technique, both theoretically and computationally, to nontrivial mesh structures along with the expensive core operators have been a hindrance towards the application of the SIAC filters to more realistic simulations. In this dissertation, we focus on the numerical solutions of linear hyperbolic equations solved with the discontinuous Galerkin scheme and provide a thorough analysis of SIAC filtering applied to such solution data. In particular, we investigate how the use of different quadrature techniques could mitigate the extensive processing required when filtering over the whole computational field. Moreover, we provide detailed and efficient algorithms that a numerical practitioner requires to know in order to implement this filtering technique effectively. In our first attempt to expand the application scope of this filtering technique, we demonstrate both mathematically and through numerical examples that it is indeed possible to observe SIAC filtering characteristics when applied to numerical solutions obtained over structured triangular meshes. We further provide a thorough investigation of the interplay between mesh geometry and filtering. Building upon these promising results, we present how SIAC filtering could be applied to gain higher accuracy and smoothness when dealing with totally unstructured triangular meshes. Lastly, we provide the extension of our filtering scheme to structured tetrahedral meshes. Guidelines and future work regarding the application of the SIAC filter in the visualization domain are also presented. We further note that throughout this document, the terms postprocessing and filtering will be used interchangeably

    A simplex cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2007.Includes bibliographical references (p. 169-175).While an indispensable tool in analysis and design applications, Computational Fluid Dynamics (CFD) is still plagued by insufficient automation and robustness in the geometry-to-solution process. This thesis presents two ideas for improving automation and robustness in CFD: output-based mesh adaptation for high-order discretizations and simplex, cut-cell mesh generation. First, output-based mesh adaptation consists of generating a sequence of meshes in an automated fashion with the goal of minimizing an estimate of the error in an engineering output. This technique is proposed as an alternative to current CFD practices in which error estimation and mesh generation are largely performed by experienced practitioners. Second, cut-cell mesh generation is a potentially more automated and robust technique compared to boundary-conforming mesh generation for complex, curved geometries. Cut-cell meshes are obtained by cutting a given geometry of interest out of a background mesh that need not conform to the geometry boundary. Specifically, this thesis develops the idea of simplex cut cells, in which the background mesh consists of triangles or tetrahedra that can be stretched in arbitrary directions to efficiently resolve boundary-layer and wake features.(cont.) The compressible Navier-Stokes equations in both two and three dimensions are discretized using the discontinuous Galerkin (DG) finite element method. An anisotropic h-adaptation technique is presented for high-order (p > 1) discretizations, driven by an output-error estimate obtained from the solution of an adjoint problem. In two and three dimensions, algorithms are presented for intersecting the geometry with the background mesh and for constructing the resulting cut cells. In addition, a quadrature technique is proposed for accurately integrating high-order functions on arbitrarily-shaped cut cells and cut faces. Accuracy on cut-cell meshes is demonstrated by comparing solutions to those on standard, boundary-conforming meshes. In two dimensions, robustness of the cut-cell, adaptive technique is successfully tested for highly-anisotropic boundary-layer meshes representative of practical high-Re simulations. In three dimensions, robustness of cut cells is demonstrated for various representative curved geometries. Adaptation results show that for all test cases considered, p = 2 and p = 3 discretizations meet desired error tolerances using fewer degrees of freedom than p = 1.Krzysztof Jakub Fidkowski.Ph.D

    New Techniques for the Modeling, Processing and Visualization of Surfaces and Volumes

    Get PDF
    With the advent of powerful 3D acquisition technology, there is a growing demand for the modeling, processing, and visualization of surfaces and volumes. The proposed methods must be efficient and robust, and they must be able to extract the essential structure of the data and to easily and quickly convey the most significant information to a human observer. Independent of the specific nature of the data, the following fundamental problems can be identified: shape reconstruction from discrete samples, data analysis, and data compression. This thesis presents several novel solutions to these problems for surfaces (Part I) and volumes (Part II). For surfaces, we adopt the well-known triangle mesh representation and develop new algorithms for discrete curvature estimation,detection of feature lines, and line-art rendering (Chapter 3), for connectivity encoding (Chapter 4), and for topology preserving compression of 2D vector fields (Chapter 5). For volumes, that are often given as discrete samples, we base our approach for reconstruction and visualization on the use of new trivariate spline spaces on a certain tetrahedral partition. We study the properties of the new spline spaces (Chapter 7) and present efficient algorithms for reconstruction and visualization by iso-surface rendering for both, regularly (Chapter 8) and irregularly (Chapter 9) distributed data samples
    corecore