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A B ST R A C T

Smoothness-increasing accuracy-conserving (SIAC) filters were introduced as a class of 

postprocessing techniques to ameliorate the quality of numerical solutions of discontinuous 

Galerkin (DG) simulations. SIAC filtering works to eliminate the oscillations in the error by 

introducing smoothness back to the DG field and raises the accuracy in the L2-n o rm  up to 

its natural superconvergent accuracy in the negative-order norm. The increased smoothness 

in the filtered DG solutions can then be exploited by simulation postprocessing tools such 

as streamline integrators where the absence of continuity in the data can lead to erroneous 

visualizations. However, lack of extension of this filtering technique, both theoretically and 

computationally, to nontrivial mesh structures along with the expensive core operators have 

been a hindrance towards the application of the SIAC filters to more realistic simulations.

In this dissertation, we focus on the numerical solutions of linear hyperbolic equations 

solved with the discontinuous Galerkin scheme and provide a thorough analysis of SIAC 

filtering applied to such solution data. In particular, we investigate how the use of different 

quadrature techniques could mitigate the extensive processing required when filtering over 

the whole computational field. Moreover, we provide detailed and efficient algorithms that 

a numerical practitioner requires to know in order to implement this filtering technique 

effectively. In our first attem pt to expand the application scope of this filtering technique, we 

demonstrate both mathematically and through numerical examples that it is indeed possible 

to observe SIAC filtering characteristics when applied to numerical solutions obtained 

over structured triangular meshes. We further provide a thorough investigation of the 

interplay between mesh geometry and filtering. Building upon these promising results, we 

present how SIAC filtering could be applied to gain higher accuracy and smoothness when 

dealing with totally unstructured triangular meshes. Lastly, we provide the extension of our 

filtering scheme to structured tetrahedral meshes. Guidelines and future work regarding the 

application of the SIAC filter in the visualization domain are also presented. We further 

note that throughout this document, the terms postprocessing and filtering will be used 

interchangeably.
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C H A P T E R  1

IN T R O D U C T IO N

The discontinuous Galerkin (DG) method provides a high-order extension of the finite 

volume method and has been under rapid development during the past few years. The DG 

methodology allows for a dual path to convergence through both elemental h and polynomial 

p refinement. Due to this discretization flexibility, the discontinuous Galerkin method has 

increased in use steadily in such diverse applications as computational solid mechanics, fluid 

mechanics, acoustics, and electromagnetics (e.g., [9, 6, 58, 16]).

The primary mathematical advantage of DG is that unlike classic continuous Galerkin 

finite element method (FEM) which seeks approximations tha t are piecewise continuous, 

the DG methodology merely requires weak constraints on the fluxes between elements. 

This feature provides a flexibility which is difficult to match with conventional continuous 

Galerkin methods. However, lack of smoothness across elements can hamper simulation 

postprocessings like feature extraction and visualization. Many commonly used visualiza

tion techniques explicitly (or tacitly) assume tha t the field upon which they are acting is 

smooth. Applying such techniques under the nonideal cases of nonsmooth solutions can in 

the best case result only in a loss of convergence rate (or accuracy) and in the worst case 

can lead to erroneous visualization results.

To illustrate this point, we draw the reader’s attention to streamline integration of fields 

produced by computational fluid mechanics simulations, which is a commonly used tool for 

the investigation and analysis of fluid flow phenomena. Integration is often accomplished 

through the application of ordinary differential equation (ODE) integrators- integrators 

whose error characteristics are predicted on the smoothness of the field through which the 

streamline is being integrated. This smoothness is not available at the interelement level of 

DG approximation data.

A class of postprocessing techniques were introduced in [19, 61] as a means of gaining 

increased accuracy from DG solutions through the exploitation of the superior convergence 

rates of DG in the negative-order norm; these filters have as a secondary consequence that
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they increase the smoothness of the output solution. Building upon these concepts, in 

[67, 75], SIAC filters were proposed as a means of ameliorating the challenges introduced 

by the lack of regularity at element interfaces while at the same time maintaining accuracy 

constraints tha t are consistent with the verification process used in the original simula

tion. In essence, in the application domain, one seeks to increase the smoothness without 

destroying (i.e., by maintaining) the order of accuracy of the original input DG solution.

1.1 C ontributions
The purpose of this dissertation is to further develop smoothness-increasing accuracy- 

conserving filters which respect the mathematical properties of the data while providing 

levels of smoothness so tha t commonly-used visualization tools can be used appropriately, 

accurately, and efficiently. The goals of this effort are to address the technical obstacles 

inherent in visualization of data derived from high-order discontinuous Galerkin methods 

and to provide robust and easy to use algorithms to overcome the difficulties tha t arise due 

to lack of smoothness. In particular, we contribute both mathematically and algorithmically 

to the class of smoothness-increasing and accuracy-conserving (SIAC) methods and provide 

a means to make this technique more suitable for real-life engineering problems. In meeting 

the goals, the following major contributions have been made:

• A study of the numerical quadrature approximations used for evaluating the convolu

tion operator in SIAC filters. Theoretical estimates as well as empirical results that 

demonstrate the efficacy of the SIAC postprocessing approach when different levels 

and types of quadrature approximation are used is presented. This study is primarily 

for engineering circumstances when the trade-offs between time, resources, and accu

racy are important. Here, we focus mainly on one-dimensional and two-dimensional 

quadrilateral implementations of the postprocessor over periodic domains, and we 

use as our gold-standard the solving of the convolution operation with consistent 

integration (integration that partitions the domain so as to respect all breaks in 

regularity) combined with Guassian integration tha t integrates the kernel times the 

DG-based polynomial exactly to double-precision machine zero. Alternatively, we 

quantify the impact of inexact quadrature on the filtering process and we investigate 

whether it greatly impacts the usage of the postprocessor as an intermediary stage 

between simulation and visualization in the scientific pipeline. These contributions are 

documented with permission in Chapter 4 and reported in the published peer-reviewed 

journal article: “Quantification of errors introduced in the numerical approximation
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and implementation of smoothness-increasing accuracy-conserving (SIAC) filtering of 

discontinuous Galerkin (DG) fields,” H. Mirzaee, J. K. Ryan, and R. M. Kirby, Journal 

of Scientific Computing, Volume 45, Pages 447-470, 2010.

• Application of the SIAC filters to structured triangular meshes. The basic theoretical 

assumption in the previous implementations of the postprocessor limits the use to 

numerical solutions solved over a quadrilateral mesh. However, this assumption is 

restrictive, which in turn complicates the application of this postprocessing technique 

to general tessellations. We extend the current theoretical results to variable coefficient 

hyperbolic equations solved over structured triangular meshes and demonstrate the 

effectiveness of the application of this postprocessor to structured triangular meshes. 

We show tha t there is a direct theoretical extension to structured triangular meshes 

for hyperbolic equations with bounded coefficients. These contributions are docu

mented with permission in Chapter 5 and reported in the published peer-reviewed 

journal article: “Smoothness-increasing accuracy-conserving (SIAC) postprocessing 

for discontinuous Galerkin solutions over structured triangular meshes,” H. Mirzaee, 

L. Ji, J. K. Ryan, and R. M. Kirby, SIAM Journal of Numerical Analysis, Volume 49, 

Pages 1899-1920, 2011.

• Improved errors versus higher order accuracy in applications of SIAC filters to DG 

solutions. Smoothness-increasing accuracy-conserving (SIAC) filtering has demon

strated its effectiveness in raising the convergence rate for discontinuous Galerkin 

solutions from order k +  1 to order 2k +  1 for specific types of translation invariant 

meshes [19, 46]. Additionally, it improves the weak continuity in the discontinuous 

Galerkin method to k — 1 continuity. Typically, this improvement has a positive 

impact on the error quantity in the sense that it also reduces the absolute errors in 

the solution. However, not enough emphasis has been placed on the difference be

tween superconvergent accuracy and improved errors. This distinction is particularly 

important when it comes to interpreting the interplay between geometry and filtering 

as introduced through meshing. The underlying mesh over which the DG solution is 

built is important because the tool used in SIAC filtering -  convolution -  is scaled by 

the geometric mesh size. This scaling heavily contributes to the effectiveness of the 

postprocessor. Although the choice of this scaling is straightforward when dealing with 

a uniform mesh, it is not clear what the impact of either a global or local scaling will be 

on either the absolute error or on the superconvergence properties of the postprocessor.
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We present a study of this mesh scaling used in the SIAC filter and how it factors 

into the theoretical errors. These contributions are documented with permission in 

Chapter 6 and reported in the peer-reviewed journal article: “Smoothness-increasing 

accuracy-conserving (SIAC) filtering for discontinuous Galerkin solutions: Improved 

errors versus higher-order accuracy,” J. King, H. Mirzaee , J. K. Ryan and, R. M. 

Kirby, Journal of Scientific Computing, In press, 2012.

• Application of the SIAC filters to unstructured triangular meshes. Although the DG 

methodology can be applied to arbitrary triangulations, the typical application of 

SIAC filters has been to discontinuous Galerkin solutions obtained over translation 

invariant meshes such as structured quadrilaterals and triangles. As the assumption of 

any sort of regularity, including the translation invariance of the mesh, is a hindrance 

towards making the SIAC filter applicable to real-life simulations, we demonstrate 

for the first time the behavior and complexity of the computational extension of this 

filtering technique to fully unstructured tessellations. We consider different types 

of unstructured triangulations and show tha t it is indeed possible to get reduced 

errors and improved smoothness in the filtered solution. These results are promising 

as they pave the way towards a more generalized SIAC filtering technique. These 

contributions are documented with permission in Chapter 7 and reported in the 

accepted journal article: “Smoothness-increasing accuracy-conserving (SIAC) filters 

for discontinuous Galerkin solutions over unstructured triangular meshes,” H. Mirzaee, 

J. King, J. K. Ryan and, R. M. Kirby, SIAM Journal of Scientific Computing, accepted 

upon revision, 2012.

• Application of the SIAC filters to structured tetrahedral meshes. While there have 

been several attem pts to demonstrate the usefulness of the SIAC filtering technique 

to nontrivial mesh structures, the application of the SIAC filter never exceeded be

yond two-space dimensions. Thereby, we consider this contribution to be the very 

first attem pt of its kind in demonstrating the potential usefulness of SIAC filtering 

when applied to real-world simulations. Here, we examine the effect of filtering 

over three-dimensional structured tetrahedral meshes. These types of meshes are 

generated by tetrahedralizing uniform hexahedra and therefore, while maintaining 

the structured nature of a hexahedral mesh, they exhibit an unstructured tessel

lation within each hexahedral element. We consider two examples of a hyperbolic 

equation and demonstrate that it is indeed possible to obtain the superconvergence
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accuracy of 2k +  1 through the application of the SIAC filter. These contributions 

are documented with permission in Chapter 8 and reported in the submitted journal 

article:“Smoothness-increasing accuracy-conserving (SIAC) filters for discontinuous 

Galerkin solutions: Application to structured tetrahedral meshes,” H. Mirzaee , J. K. 

Ryan and, R. M. Kirby, SIAM Journal of Numerical Analysis, submitted, 2012.

The following contribution has been made in order to provide the necessary steps and 

algorithms used to obtain the results in the above contributions:

• Efficient implementation of SIAC filtering for DG solutions. Quite often, a numerical 

practitioner is interested in explicit steps to make a numerical scheme applicable. We 

explicitly define the steps to efficient computation of the postprocessor applied to 

different structured mesh tessellations. In addition, we explain how well the inexact 

postprocessor [48] performs computationally comparing to the exact scheme. Further

more, as the SIAC filter is a good candidate for parallelization, we provide, for the 

first time, results tha t confirm anticipated performance scaling when parallelized on 

a shared-memory multiprocessor machine. These contributions are documented with 

permission in Chapter 3 and reported in the published peer-reviewed journal article: 

“Efficient implementation of smoothness-increasing accuracy-conserving (SIAC) filters 

for discontinuous Galerkin solutions,” H. Mirzaee, J. K. Ryan, and R. M. Kirby, 

Journal of Scientific Computing, Volume 52, Pages 85-112, 2011.

1.2 O rganization
We proceed in this dissertation as follows: In Chapter 2, we start by a brief introduction 

of classical choices for numerically solving partial differential equations (PDEs). We then 

continue by discussing the detail of the discontinuous Galerkin scheme and present the 

background and relevant work in filtering of numerical solutions. Chapter 3 provides the 

definition and properties of the SIAC filters. In this chapter, we provide error analysis 

tha t demonstrates the usefulness of SIAC filtering in extracting the higher order accuracy 

in the negative-order norm and obtaining superconvergence in the L2-norm . Moreover, 

we present the detail of the implementation of SIAC filtering over structured meshes in 

2D. Efficient algorithms along with timing results exhibiting the perfect parallelization of 

the SIAC filters on shared-memory multiprocessors are given. Chapter 4 discusses the 

various numerical quadrature strategies one may use in filtering numerical solutions. The 

purpose of this chapter is to demonstrate the trade-offs in gaining higher order accuracy and 

computational efficiency. In Chapter 5, we explain the numerical behavior of SIAC filtering



6

for structured triangulations. In this chapter, we provide numerical proofs confirming the 

effectiveness of SIAC filtering of the numerical solutions of variable coefficient hyperbolic 

PDEs obtained over structured triangular meshes. Numerical results are also provided. In 

Chapter 6, we examine more general structured triangular meshes and demonstrate that it 

is indeed possible to obtain superconvergence of order 2k +  1 for these mesh types when the 

proper scaling of the filter, related to the translation invariant properties of the mesh, is 

employed. Furthermore, we introduce theoretical proof that these results can be extended 

to adaptive meshes tha t are constructed in a hierarchical manner -  in particular, adaptive 

meshes whose elements are defined by hierarchical (integer) splitting of elements of size H , 

where H  represents both the macro-element spacing used in the generation of the mesh 

and the minimum scaling used for the SIAC filters. Chapter 7 presents the computational 

extension of SIAC filtering to unstructured triangulations. In this chapter, we demonstrate 

for the first time the mathematical behavior and computational complexity of the extension 

of this filter to unstructured tessellations. We consider four examples: a simple Delaunay 

triangulation, a Delaunay triangulation with obvious change in element sizes, a Delaunay 

triangulation with splitting, and a stretched (anisotropic) triangulation. We show tha t it is 

indeed possible to obtain order improvement and accuracy enhancement through a proper 

choice of kernel scaling. Chapter 8 discusses the extension of SIAC filtering for structured 

tetrahedral meshes. While there have been several attem pts to demonstrate the usefulness 

of this filtering technique to nontrivial mesh structures, the application of the SIAC filter 

never exceeded beyond two-space dimensions. Thereby, we consider the contribution of this 

chapter to be the very first attem pt of its kind in demonstrating the potential usefulness of 

SIAC filtering when applied to real-world simulations. Lastly, Chapter 9 discusses ongoing 

and future research.



C H A P T E R  2

N U M E R IC A L  SCH EM ES A N D  PR E V IO U S  

W O R K

As [59] puts it, there are three important steps in the computational modeling of 

any physical process: (i) problem definition, (ii) mathematical model, and (iii) computer 

simulation.

Typically, the starting point is a given mathematical model which has been formulated 

in an attem pt to explain and understand an observed phenomenon in biology, chemistry, 

physics, economics, or any other scientific or engineering discipline. In defining such a 

model, we expect to gain a well-posed problem tha t has a unique solution for a given set of 

parameters. Normally, we concentrate on those mathematical models which are (piecewise) 

continuous and are difficult or impossible to solve analytically; this is usually the case in 

practice. Relevant application areas in scientific computing and computer science include 

the Navier-Stokes equations in fluid dynamics which provide an accurate representation of 

the fluid motion and the equations of elasticity in structural mechanics tha t govern the 

deformation of a solid object due to applied external forces. These are complex general 

equations that are very difficult to solve both analytically and computationally.

In order to solve such a model approximately on a computer, the continuous or piecewise 

continuous problem is approximated by a discrete one. Functions are approximated by finite 

arrays of values. Algorithms are then sought which approximately solve the mathematical 

problem efficiently, accurately, and reliably. Throughout this dissertation, we consider the 

numerical solutions of mathematical models of conservation laws which are described by 

partial differential equations (PDEs). The three classical choices for the numerical solution 

of PDEs are the finite difference method (FDM), the finite element method (FEM), and 

the finite volume method (FVM).

In this chapter, we provide a brief overview of conservation laws in their integral and 

differential forms in Section 2.1. Section 2.2 discusses the salient features of finite difference. 

finite volume, and finite element methods and provides the necessary background which will
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lead us to the discontinuous Galerkin method in Section 2.3. Finally, in Section 2.4, we 

briefly review the development of postprocessing techniques devised to improve the quality 

of numerical approximations.

2.1 C onservation Laws: Integral and 
D ifferential Forms

If a system does not interact with its environment in any way, then certain mechanical 

properties of the system cannot change. These quantities are said to be conserved and 

the corresponding conservation laws state tha t this particular measurable property of our 

isolated physical system does not change as the system evolves. Conservation laws are 

considered to be the most fundamental principles of mechanics. Examples of such conserved 

quantities include energy, momentum, and angular momentum.

As stated in [59], the general principle behind the derivation of conservation laws is that 

the rate of change of u(x, t) within a volume V plus the flux of u denoted by f  (u) through 

the boundary A of the volume is equal to the rate of production of u denoted by S(u, x, t) 

which can be written as

d  f  u (x ,t)dV  +  f  f(u ) ■ ndA  — f  S (u ,x ,t)d V  =  0, (2.1)
dt Jv JA Jv

where n  is the unit outward normal to the boundary A. Equation (2.1) is referred to as 

the integral form  of the conservation law. For a fixed volume and (independent of t), 

under suitable conditions of smoothness of the intervening quantities, we can apply Gauss’ 

theorem

[  V  ■ fdV  =  /  f  ■ ndA  (2.2)
v A

to obtain

X  ( d u  +  V - f  (u) — s )  dV =  0. (2.3)

For the integral expression to be zero for any volume V , the integrand must be zero. This 

results in the strong or differential form of the equation
du
-  +  V ■ f  (u) — S =  0. (2.4)

As mentioned in [31], the construction of any numerical method for solving a partial 

differential equation requires one to consider the two choices:

• How does one represent the solution u (x ,t) by an approximate solution uh(x,t)?

• In which sense will the approximate solution uh(x ,t) satisfy the partial differential 

equation?

These two choices separate the different methods and define the properties of each method.
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2.2 F inite D ifference, F in ite Volum e, and Finite  
Elem ent Schem es

The simplest and historically oldest method for numerically solving PDEs is known as 

the finite difference method, which is based upon the application of a local Taylor expansion 

to approximate the differential equations. In this approach, a grid, xk, k =  1, ••• , K, is 

laid down in space and spacial derivatives are approximated by difference methods; that is, 

the conservation law in the strong form given by Equation (2.4) in one-space dimension is 

approximated as
duh(xk , t) +  fh (xk+\,t) — fh (xk - \ , t )  =  g (x fc t) (2 5)

dt hk +  hk — 1

where uh and fh are the numerical approximations to the solution and the flux, respectively, 

and hk =  xk+1 — xk is the local grid size. Here we have used the central difference 

approximation of V ■ f  (u). Inserting these local approximations into Equation (2.4) results 

in the residual

x € [xk-i,xk+i] : Rh(x,t)  =  f  — S(x ,t) .  (2.6)

Clearly, Rh(x,t) is not zero, as in that case, uh(x ,t) would satisfy Equation (2.4) exactly 

and would be the solution u (x, t ). Therefore, we need to specify in which way uh must 

satisfy the equation, which leads to a statement about the residual. If we have a total 

of K  grid points and, thus, K  unknown grid point values uh(xk, t), a natural choice is to 

require tha t the residual vanishes exactly at these grid points. This results in exactly K  

finite difference equations of the type in Equation (2.5) for the K  unknowns, completing 

the scheme.

One of the most appealing aspects of this method is its simplicity; that is, the discretiza

tion of general problems and operators is often intuitive and, for many problems, leads to 

very efficient schemes. Furthermore, the explicit semidiscrete form gives flexibility on the 

choice of timestepping methods if needed. Finally, these methods are supported by an 

extensive body of theory, they are sufficiently robust and efficient to be used for a variety 

of problems, and extensions to higher order approximations by using a local polynomial 

approximation of higher degree is relatively straightforward. However, the finite difference 

method uses a topologically square network of lines to construct the discretization of the 

PDE. Additional complications caused by the simple underlying structure are introduced 

around boundaries and discontinuous internal layers. These make the native finite difference 

method not suitable to deal with complex geometries, both in terms of general computa

tional domains and internal discontinuities as well as for local order and grid size changes 

to reflect local features of the solution.
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The above discussion highlights that to ensure geometric flexibility, one needs to abandon 

the simple one-dimensional approximation in favor of something more general. This issue 

motivated the use of an integral form of the PDEs and subsequently the development of the 

finite element and finite volume techniques. These schemes are better suited to real-world 

applications than the standard finite difference method as the integral formulations do not 

rely on any special mesh structure. l

The finite element and finite volume schemes use the integral form of the equation as 

the starting point of the discretization process. For example, if the strong form of the PDE 

is L(u) =  s, the integral form is given by [59]

/ L(u)w(x) dx = sw(x)dx,  (2.7)
J 0 J 0

where the choice of the weight function w(x) defines the type of the scheme.

A method closely related to the finite difference method, but with added geometric

flexibility, is the finite volume method. Here the region of integration is taken to be a control

volume Qi, associated with the point coordinate x^ represented by x i - (1/ 2) < x  < x i+(1/ 2),

and the conservation law given in Equation (2.4) in one-space dimension in integral form

becomes
f Xi+( 1/2) f Xi+( 1/2)
/ ut dt + f x (u) dx =  0, (2.8)
xi- (1/2) xi- (1/2)

where we assumed S  =  0. This expression could also be obtained from the weighted residual 

form given in Equation (2.7) by selecting a weight w(x) such that w(x) =  1 for x i - (1/ 2) < 

x < x i+(1/ 2) and 0 elsewhere. The last term in Equation (2.8) can be evaluated analytically 

to obtain
C Xi+( 1/2)
/ f x (u)dx =  f  (ui+( 1/2)) — f  (ui— (1/2))
xi - (1/2)

and if we approximate the first integral using the midpoint rule, we get the following semi

discrete form

ut |i (xi+(1/2) — xi—(1 /  2)) +  f  (ui+( 1/2)) — f  (ui— (1/2)) =  0j (2.9)

where ut |i is the value of the solution at x^ This approach produces a conservative scheme 

if the flux on the boundary of one cell equals the flux on the boundary of the adjacent 

cell. For linear problems and equidistant grids, this method reduces to the finite difference 

method. However, one easily realizes tha t the formulation is less restrictive in terms of the 

grid structure; tha t is, the reconstruction of the solution at the interfaces is a local procedure

1We should note th a t there has been extensive ongoing research to  make the finite difference m ethod 
work on unstructured  meshes. See [2] for an example.
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and generalizes straightforwardly to unstructured grids in high dimensions, thus ensuring 

the desired geometric flexibility. If, however, we need to increase the order of accuracy of the 

method, a fundamental problem emerges. To reconstruct the interface values at a higher 

accuracy, we need information from more adjacent cells. In the simple one-dimensional 

case, this can be done similarly, as for the finite difference scheme. However, the need for 

a high-order reconstruction reintroduces the need for a particular grid structure and thus 

destroys the geometric flexibility of the finite volume method in higher dimensions. On 

unstructured grids, this approach requires a reconstruction based on genuinely multivariate 

polynomials with general cell center locations which is both complex and prone to stability 

problems [31]. The main limitation of the finite volume method is found in its inability 

to extend to higher order accuracy on general unstructured grids. This motivates the 

development of the next class of schemes known as the finite element schemes.

Let us first redefine the element Qi as the interval bounded by the grid points [xi ,x i+1] 

and with a total of K  elements and K  +  1 grid points. Note that this is slightly different 

from the finite volume scheme where the element was defined by staggered grid points as 

[xi - (1/2) ,x i+(1/ 2̂  . Here we assume that the solution is expressed globally in the form

N
uh(x,t)  =  ^  Ui(t)Ni(x)

i=1

where we have introduced the use of a locally defined basis function, Ni (x). In the finite ele

ment method, we use expansion bases with compact support which are piecewise continuous 

polynomials within each element. In the simplest case, we can take these basis functions to 

be linear [59]. To recover the scheme to solve the conservation law given in Equation (2.4) 

in one-space dimension, following the weighted residual form given in Equation (2.7), we 

set the weight function w(x) to be the same as the basis function Ni (x), i.e., w(x) =  Ni (x), 

and we arrive at the following integral form

K  I t  + f  -  Sh) N (x )d x  = 0- (2-10)

for j  =  1 ■ ■ ■ K. Straightforward manipulations yield the scheme

MdUUh +  S fh  =  M S h , (2.11)

where M ij and Sij reflect the globally defined mass and stiffness matrices, respectively.

This approach, which presents the essence of the classic finite element method [33, 68, 

78, 79], clearly allows different element sizes. Furthermore, we recall tha t a main motivation 

for considering methods beyond the finite volume approach was the interest in higher order
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approximations. Such extensions are relatively simple in the finite element setting and can 

be achieved by adding additional degrees of freedom to the element. In particular, one can 

have different orders of approximations in each element, thereby enabling local changes in 

both size and order, known as hp-adaptivity [24, 25].

However, the above discussion also highlights disadvantages [31]. First, we see tha t the 

globally defined basis functions and the requirement that the residual be orthogonal to the 

same set of globally defined test functions implies that the semidiscrete scheme becomes 

implicit and M  must be inverted. For time-dependent problems, this is a clear disadvantage 

compared to finite difference and finite volume methods. On the other hand, for problems 

with no explicit time dependence, this is less of a concern.

There is an additional subtle issue tha t is related to the structure of the basis. From 

the discussion above, we recognize tha t the basis functions are symmetric in space. For 

many types of problems (e.g., the heat equation), this is a natural choice. However, for 

problems such as wave problems and conservation laws, in which information flows in specific 

directions, this is less natural and can cause stability problems if left unchanged [33, 77]. 

In finite difference and finite volume methods, this problem is addressed by the use of 

upwinding, either through the stencil choice or through the design of the reconstruction 

approach.

Reflecting on the previous discussion, one realizes tha t to ensure geometric flexibility 

and support for locally adopted resolution, we must strive for an element-based method 

where high-order accuracy is enabled through the local approximation. However, the global 

Galerkin statement, introduced by the globally defined basis and test (weight) functions, 

destroys the locality of the scheme and introduces potential problems with the stability for 

wave-dominated problems. On the other hand, this is precisely the regime where the finite 

volume method has several attractive features.

An intelligent combination of the finite element and the finite volume methods, utilizing 

a space of basis and test functions tha t mimics the finite element method but satisfying 

the equation in a sense closer to the finite volume method, appears to offer many of the 

desired properties. This combination is exactly what leads to the discontinuous Galerkin 

finite element method that will be discussed next.

2.3 The D iscontinuous Galerkin M ethod
Problems of particular interest in which convection plays an important role arise in 

applications as diverse as meteorology, weather-forecasting, oceanography, gas dynamics, 

aeroacoustics, turbomachinery, turbulent flows, granular flows, oil recovery simulation,
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modeling of shallow water, transport of contaminant in porous media, viscoelastic flows, 

semiconductor device simulation, magnetohydrodynamics, and electromagnetism, among 

many others [15]. This is why devising robust, accurate, and efficient methods for numeri

cally solving these problems is of considerable importance and, as expected, has attracted 

the interest of many researchers and practitioners.

The discontinuous Galerkin method makes use of the same function space as the con

tinuous method, but with relaxed continuity at the interelement boundaries. It was first 

introduced by Reed and Hill [60] for the solution of the neutron transport equation, and 

its history and recent development have been reviewed by Cockburn et al. [15, 14]. The 

essential idea of the method is derived from the fact tha t basis functions can be chosen that 

either the field variable or its derivatives, or generally both, are considered discontinuous 

across the element boundaries, while the computational domain continuity is maintained. 

From this point of view, the discontinuous finite element method includes, as its subset, both 

the finite element method and the finite difference method (or finite volume) method [43]. 

Therefore, it has the advantages of both finite difference and finite element methods, in that 

it can be effectively used in convection-dominant applications, while maintaining geometric 

flexibility and higher local approximations through the use of higher order elements. This 

feature makes it uniquely useful for computational dynamics and heat transfer. Because of 

the local nature of a discontinuous formulation, no global matrix needs to be assembled; 

thus, this reduces the demand on the in-core memory. The effects of the boundary conditions 

on the interior field distributions then gradually propagate through the element-by-element 

connection. This is another important feature tha t makes this method useful for fluid flow 

calculations.

To illustrate the basic ideas of the discontinuous Galerkin method, we consider the 

transport equation given below

ut +  V^ (au) =  0 inR d x (0 ,T ),

u(t =  0) =  uo on Rd. (2.12)

We consider only the discretization of this equation in space. For full discretization of this 

equation, please consult [13]. Note also tha t the Equation in (2.12) is the conservation law 

given in Equation (2.4) where f(u ) =  au, a being a constant coefficient, and S =  0.

To discretize the transport equation in space by using a DG method, we first triangulate 

the domain Rd; we denote such triangulation by Th. We then seek a discontinuous approx

imate solution uh which, in each element K  of the triangulation Th , belongs to the space 

V (K ). There is no restriction on how to choose the space V (K ), though a typical choice
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is the space of polynomials of degree at most k, P k (K ). We determine the approximate 

solution on the element K , we multiply Equation (2.12) by a weight function v(x) € V ( K ), 

and substitute the approximate solution uh to get the following weak form

/  (uh)tv — auh ■ V v  +  / auh ■ nds  =  0, (2.13)
JK JK JdK

where we have have used the Gauss (divergence) theorem to obtain the last two terms, n  is 

the unit outward normal, and aUh is the numerical flux.

The difference between this scheme and the previously discussed finite element method 

is that Vh here is a broken space- space of piecewise discontinuous polynomials- which leads 

to local mass and stiffness matrices. At first, the locality also appears problematic as this 

statement does not allow one to recover a meaningful global solution. Furthermore, how 

does one ensure uniqueness of solution at element interfaces? This is where the concept of 

numerical flux comes handy. The main purpose of the numerical flux term auh is to connect 

the elements. In what follows, we give a more detailed description of the terms involved in 

one-space dimension.

2.3.1 R ev isitin g  th e  T ransport P rob lem  in O ne D im ension

Let us consider the linear scalar transport (or wave) equation in one dimension

if t  +  d i r  =  0, x e  [ l , r ]  =  q  (2.14)

where the linear flux is given as f  (u) =  au. This is subject to the appropriate initial 

condition

u(x, 0) =  u0(x).

Boundary conditions are given when the boundary is an inflow boundary [31], that is

u(L ,t)  =  g(t) if a > 0, 

u(R ,t)  =  g(t) if a < 0.

As we mentioned earlier, we approximate Q by K  nonoverlapping elements, K  =  [xk, x k̂ . 

On each of these elements, we express the local solution as a polynomial of order N  =  Np — 1

Np Np
x e  k  : uh(x,t) = Y 2  un (t) ^ n (x) = Y 2  uh(xk ,t) ik (x).

n= 1 i= 1

These are two complementary expressions for the local solution. In the first one, known 

as the modal form, we have used a local polynomial basis, ^ n(x). In the alternative form,
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which is known as the nodal form, we use Np local grid points, and express the polynomial 

through the associated interpolating Lagrange polynomial, (x). We have used the modal 

representation throughout this dissertation.

The global solution u(x ,t)  is then assumed to be approximated by the piecewise N -th 

order polynomial approximation u^(x, t) defined as the direct sum of the K  local polynomial 

solutions u£(x,t). We continue by forming the residual

_  , duh . dav,h
K h(x-t) = ~gt +  “ d ^ ’ (2-15)

and going back to the two main questions presented in Section 2.1, we must decide in which 

sense this residual should vanish. To answer this question, we continue by introducing a 

globally defined space Vh of test functions, (JK=1 V̂ , where the locally defined spaces are 

defined as V^ =  span 0 n( K )N= 1. We recognize Vh as the space of piecewise smooth functions 

defined on Qh. We now require tha t the residual is orthogonal to all test functions in Vh, 

resulting in the local statement

I R h(x, t)0 n (x)dx =  0, 1 < n < Np, (2-16)
K

on all K  elements- This yields exactly Np equations for the Np local unknowns on each 

element- However, we have not imposed any particular constraints on the basis or test 

functions, and thus, we have neglected the issue of how to impose boundary conditions 

and how to recover the global solution from the K  local solutions. Assume tha t the test 

functions in Vh are smooth but not continuous or otherwise constrained across interfaces. 

Spatial integration by parts of Equation (2.16) yields

K
duL ,  # «
dt rn  h dx

0 n — a u h ) dx =  — auh^n ' =  — I n  ■ auh0ndx, 1 < n < Np,
I dK

where n  represents the local outward pointing normal- The use of a surface integral may 

seem a bit artificial in this simple example, but it makes generalization very natural- In 

this one-dimensional case, n is simply a scalar and takes the value +1 and —1 at the right 

and left interface, respectively-

We see tha t as a consequence of the lack of conditions on the local solution and the 

test functions, the solution at the interface between elements is multiply defined and we 

will need to choose which solution, or combination of solutions, is correct- We refer to this 

solution as auh, known as the numerical flux- This leads to the semidiscrete scheme

f  ( 0 n — a u h dx =  — f  n.auh0ndx, 1 < n < Np. (2-17)
Jk  V dt dx j  J dK

x
x
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We recover a total of K  x Np equations for the same number of unknowns; that is, we have 

defined a method for obtaining the globally defined solution. This is also the so-called weak 

formulation.

It is understood from Equation (2.17), it is the right-hand side tha t is responsible 

for recovering the global solution from the local solutions and imposing the boundary 

conditions. This emphasizes the key role played by the numerical flux, aUh.

In the classical discontinuous Galerkin method, as we mentioned previously, the space 

of test functions are the same as the solution space. The weak form in Equation (2.17) can 

also be written as

M k d ^ h  — (&’ ') aUh =  — (aUh)'^(xhk) +  (aUh)^(xf), (2.18)

where

Mkj =  ( * , * )k , S j  = ( * . d j j ) K , (2.19)

are the local and stiffness mass matrices, respectively. Furthermore, we have

=  [^ i(x )  ••• , ^ (x )nv ]T , (2.20)Uk =  U =

as the vector of the local solution and the local test functions, respectively. The scheme in 

Equation (2.18) is the classical discontinuous Galerkin method. To complete the definition 

of the DG method, it only remains to define the numerical flux aUh•

The specification of the numerical flux is most naturally related to the the dynamics of 

the partial differential equation being solved. At the left end of the local domain K , this

numerical flux should be a function of avfh 1(x’k 1), av,h(xk) while the right end depends

on aUh(x’ ), aUh+ (x^+ ) . A simple interpretation is tha t aUh is the flux one would wish 

to know at the interface. Alternatively, the role of the flux is to guarantee the stability of 

the formulation by mimicking the flow of information in the underlying partial differential 

equation.

To derive the stability condition for our DG scheme, one would follow the approach of the 

energy method [3], replace ^ n with Uh in the weak formulation in Equation (2.17), and add 

on the elements K. We refer the interested reader to [13, 31] for the detailed mathematical 

formulas. After this step, we find out tha t the numerical flux will have the following form 

in order to guarantee stability

aUh =  aUh +  C  [Uh], (2.21)

Uh =  2 (U+ +  [Uh] =  U- n -  +  U+n +.

where
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u+ and u— denote the left and right value at the interface and C  is a non-negative definite 

matrix. This completes the definition of our DG scheme.

There are two main examples of DG methods considering the flux definition in Equation 

(2.21) [13]. The first uses the following choice for the parameter C : 2 |a ■ n| I, where I  is 

the identity matrix. This implies that the numerical flux is

auh(x) =  lim uh (x — ea),e^0

which is nothing but the classical upwinding numerical flux.

The second example is when we take C  =  2 |a| I. For this choice, we have

auh(x) =  auh +  2 |a| [uhj, (2.22)

which is the so-called Lax-Friedrichs numerical flux [42].

From the two examples above, we see tha t the DG methods are strongly related to finite 

volume methods. Indeed, the method of lines, tha t is, the discretization in space, for the 

upwinding scheme and the local Lax-Freidrichs scheme coincide with the corresponding DG 

method under consideration when the local space V ( K ) is taken to be the space of constant 

functions. Moreover, the DG methods, like finite volume methods, can easily handle 

complex computational domains. However, unlike finite volume methods, DG achieves 

higher order accuracy easily. Indeed, a theoretical order of convergence of k +  1/2 can be 

proven simply by requiring tha t the local spaces V (K ) contain all polynomials of degree at 

most k. Moreover, this is achieved while keeping a high degree of locality since to increase the 

degrees of freedom of the approximate solution uh in an element, only the degrees of freedom 

of uh in the immediate neighbors are involved. We also add the fact that the mass matrix 

is block diagonal, and hence easily invertible, which renders the DG schemes extremely 

parallelizable when they are discretized in time by, for example, an explicit Runge-Kutta 

method.

2.4 P revious Work
In order to introduce the basic ideas of this work and to put them into proper perspective, 

we briefly review the development of postprocessing techniques devised to improve the 

quality of numerical approximations. For further detail, the reader should consult lecture 

notes of Wahlbin [74] on superconvergence in Galerkin finite element methods as well as

[19].
In 1978, Mock and Lax [52] showed tha t for a difference scheme of any formal order 

of accuracy ^, for linear hyperbolic systems, the moments  of the exact solution converge
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with order ^  provided tha t the initial data were suitably preprocessed. This result holds 

even when the exact solution contains discontinuities. They also showed how to postprocess 

the approximate solution by a simple convolution to enhance its accuracy over regions of 

smoothness of the exact solution. If the solution were sufficiently smooth locally, they 

could obtain nearly the full order of convergence ^  provided tha t the support of the kernel 

was of order almost one. This seems to have been the first instance when the ideas of (i) 

preprocessing the initial data, (ii) obtaining an error estimate for the moments, and (iii) 

postprocessing the approximation appear clearly delineated. Gottlieb and Tadmor [30], 

motivated by the work of Mock and Lax [52], found a spectrally accurate postprocessing 

kernel for spectral methods (see also [45]). Again, the full spectral accuracy could be 

recovered by using a convolution; the measure of the support of the kernel had to be of 

order one.

Quite independently of the review above, in 1977, Bramble and Schatz [11] considered 

linear elliptic problems and showed how to postprocess the finite element solution by means 

of a simple convolution to enhance the quality of the approximation. They showed tha t the 

order of convergence could be doubled if the exact solution were locally smooth. In 1977, 

Thomee [70] extended the work of Bramble and Schatz [11] to include superconvergence of 

the derivatives and gave an elegant proof of their approximation results by using Fourier 

analysis. In 1980, he extended these results [71] to semidiscrete Galerkin finite element 

methods for parabolic problems.

It is important to point out that, just like Mock and Lax, Bramble and Schatz proved a 

negative-order norm error estimate (an error estimate of the moments in Mock and Lax’s 

terminology) and then showed how to use it to enhance the approximation by convolution. 

However, unlike Mock and Lax’s convolution kernel, for locally translation invariant grids, 

the Bramble-Schatz kernel has support in a cube whose diameter is of order h (mesh 

characteristic) only; this fact represents a considerable advantage from the computational 

point of view.

In 1981, Johnson and Navert [37] applied this technique to steady-state advection- 

diffusion problems with small diffusion; they considered the standard Galerkin and the 

streamline-diffusion methods. An application of this technique to the simulation of miscible 

displacement was devised and analyzed in 1985 by Douglas [38]. Other applications can be 

found in the book of Wahlbin [74].

According to Cockburn et al. [19] it seems tha t the first (and only) attem pt to apply 

this technique to finite element methods for hyperbolic problems was carried out in 1993
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by Bales [10] who considered a fourth-order accurate finite element method applied to a 

one-dimensional wave equation. Built upon the framework initially established by Bramble 

and Schatz [11] and Mock and Lax [52], Cockburn, Luskin, Shu, and Siili [19, 17] introduced 

a class of postprocessors for hyperbolic PDEs using the discontinuous Galerkin method. 

In [19, 17], the authors considered the postprocessing of the discontinuous Galerkin ap

proximation to time-dependent linear hyperbolic systems. In this case, they show that 

the postprocessor improves the accuracy from order k +  1 to order 2k +  1 for linear 

hyperbolic systems solved over a locally uniform mesh, namely h =  A xi for all i in the 

support of the postprocessor. Moreover, the postprocessor consists of a convolution kernel 

applied to the approximation only once, at the final time, and is independent of the partial 

differential equation under consideration as long as the necessary negative-order norm error 

estimate can be proven. The negative-order norm error estimates give us information on 

the oscillatory nature of the error and should be of higher order than the L2-norm error 

estimates for the postprocessor to be applicable. The postprocessor extracts this information 

and works to filter out oscillations in the error and to enhance the accuracy in the usual 

L2-norm, up to the order of the error estimates in the negative-order norm. Our work in 

this dissertation is based on the filtering technique introduced by Cockburn et al. in [19] 

applied to linear hyperbolic equations.



C H A P T E R  3

O VERVIEW  OF T H E  SIAC FILTERS

The Smoothness-Increasing Accuracy-Conserving (SIAC) filters were first introduced 

as a class of postprocessors for the discontinuous Galerkin method applied to hyperbolic 

equations in [18, 19]. This filtering technique was extended to a broader set of applications 

such as being used for filtering within streamline visualization algorithms in [20, 22, 62, 

61, 67, 75]. Here we provide an overview of the structure and properties of this filtering 

technique. Furthermore, quite often a numerical practitioner is interested in explicit steps 

to make a numerical scheme applicable. In this chapter, we explicitly define the steps 

to efficient computation of the postprocessor applied to different mesh tessellations. In 

addition, as the SIAC filter is a good candidate for parallelization, we provide, for the 

first time, results tha t confirm anticipated performance scaling when parallelized on a 

shared-memory multiprocessor machine. We add tha t postprocessing over unstructured 

triangulations will be discussed in Chapter 7.

We proceed in this chapter by providing the definition and properties of the convolution 

kernel in Section 3.1. We then continue by demonstrating how SIAC filtering works to 

extract the higher order accuracy hidden in the DG solution in Section 3.2. The detail 

of the construction of the convolution kernel is given in Section 3.3. The implementation 

of the SIAC filter will be discussed in Section 3.4 in one dimension. Moving on to higher 

dimensions, we provide implementation details for quadrilateral and hexahedral meshes in 

Section 3.4.1 and for triangular mesh structures in Section 3.4.2. In Section 3.5, we provide 

performance analysis as well as the parallel implementation of the postprocessor. The result 

of this contribution has been published in [49].

3.1 The C onvolution K ernel
The postprocessor itself is simply the discontinuous Galerkin solution at the final time 

T , convolved against a B-splines kernel K r+1>fc+1. That is, in one dimension,
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u*(x) = K  r+1’fc+1 * u h ,

= 1  /H K  ’+ u + 1 (  ’i t ) ’‘‘ O ')*'- (3A)

where u* is the postprocessed solution and h is the mesh characteristic length. The 

superscript r  + 1 , k +  1 typically represents the number of B-splines used in the convolution 

kernel as well as the B-spline order. In the following discussions, we shall drop this 

superscript for the sake of a less cluttered explanation.

The convolution kernel in the SIAC filter is a linear combination of B-splines. We 

note tha t filtering in most visualization applications has as its goal the reconstruction of 

a continuous function from a given (discrete) data set. For example, assume tha t f k is 

the given set of evenly sampled points of some function f  (x). A filter might take this set 

of points and introduce some type of continuity assumption to create the reconstructed 

solution f*(x). Filtering for visualization based upon discrete data is often done using 

convolution with some type of spline, often a cubic B-splines [57, 56, 28, 32, 51, 63]. Much 

of the literature concentrates on the specific use in image processing, though there has also 

been work in graphic visualization [12, 72] and computer animation [32].

There are many filtering techniques tha t rely on the use of splines in filtering. A good 

overview of the evaluation of filtering techniques is presented in [53]. In [54], Moller et al. 

further discuss imposing a smoothness requirement for interpolation and derivative filtering. 

In [57], the methods of nearest neighbor interpolation and cubic splines are compared. 

Hou and Andrew [32] specifically discuss the use of cubic B-splines for interpolation with 

applications to image processing. The interpolation consists of using a linear combination 

of five B-splines with the coefficients determined by the input data. This is a similar 

approach to the one discussed throughout this dissertation. Another method of filtering for 

visualization via convolution is presented in [54]. This methods chooses an even number of 

filter weights for the convolution kernel to design a filter based on smoothness requirements. 

The authors also discuss classifying filters and extend the analysis to the spatial domain. 

We can also relate our filter to those evaluated by Mitchell and Netraveli [51], where they 

design a reconstruction filter for images based on piecewise cubic filters, with the B-spline 

filter falling into this class. In [51], it is noted tha t a 2D separable filter is desirable, as is 

the case with the B-spline filter discussed in this work. Further discussion on spline filters 

can be found in [34, 65, 66]. Here, we focus on a type of spline filter that is used to improve 

the numerical solutions obtained from a discontinuous Galerkin scheme.

The kernel in Equation (3.1) has the following form
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K (x) =  ^  cY# +1)(x — xY), (3.2)
7=0

where ^ (fc+1) is the B-spline of order k +  1, cY are the kernel coefficients, and r =  2k 

represents the number of B-splines used in the kernel. Furthermore, x Y represent the 

positions of the kernel nodes and are given by

r
xY =  — 2 +  Y, Y =  0, ••• , r ■ (3.3)

The kernel in Equation (3.2) has a symmetric form (Figure 3.1 left) tha t can be used for 

postprocessing in the interior of the domain. This type of kernel requires information from 

both sides of an evaluation point at which we wish to calculate the postprocessed value. To 

perform filtering near boundaries or shocks, we need to use a one-sided form of the kernel 

tha t requires information only from one side of the boundary or shock (Figure 3.1 right). 

In general, we can generate such a kernel by shifting the positions of the kernel nodes to 

one side. This shifting can be done by using a shift function A(x) so that the new kernel 

positions xY +  A(x) all reside on the one side of the boundary or shock. We note tha t in 

this work, we always consider periodic meshes and solutions; hence, only the symmetric 

kernel is implemented. However, the ideas presented in this document can easily adapt to 

the one-sided kernel. For more information on one-sided postprocessing, consult [62, 73]. 

The convolution kernel given in Equation (3.2) has three mains properties [19]:

Evaluation point \  Evaluation point

F ig u re  3.1. Symmetric (left) versus one-sided (right) kernel. Symmetric kernel uses 
information from both sides of the evaluation point. Solid red line represents the kernel and 
dashed blue lines depict the constructing B-splines of order two (k =  1).
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1. K  has a compact support.

2. It reproduces polynomials of degree up to r  by convolution. For example, considering 

monomials we get

K  * xp =  xp p =  0,1, ••• , r. (3.4)

This guarantees that the accuracy of order r +1 is not destroyed. Moreover, it provides 

a mechanism for calculating the kernel coefficients cY. More detail is given in Section 

3.3.

3. It allows us to express derivatives of the convolution with the kernel in terms of simple 

difference quotients. This is the consequence of the kernel being a linear combination 

of B-splines. Indeed it is not difficult to verify tha t for multi-indices a  and such 

that fii > a i for i =  1, ■ ■ ■ , d, we have

D “ (^H * u) =  ^ - a  * dHu, (3.5)

where ^H(x) =  ^ (a/H)/H d, dH := dH \ ■ ■ ■ dHdd and

dn,ju(x) =  -1 (u (x  +  2 Hej ) — u(x — 1 Hej ))- (3.6)

For a  =  1, dH is simply the central difference operator. This property can be exploited 

in the finite element framework and in the theoretical proofs, as will be seen in the 

next section.

Given the necessary background on the convolution kernel, we continue by demonstrating 

how we can extend the higher order accuracy in the negative-order norm to the L2-norm 

through the application of the SIAC filter.

3.2 E xtracting th e H igher Order Accuracy  
in D G  Solutions

We begin this section by stating the main theorem in filtering numerical solutions from 

Bramble and Schatz [11] valid for locally uniform mesh structures:

T h eo re m  3.2.1 Let uh be any numerical approximation to u and Khk+1,k+1 the kernel 

given in Equation (3.2). For T  > 0 and sufficient smoothness of u we have

\\u(T) — K f +1’k+1 * u h k n  < C1 h2k+1 +  C2 £  ||da(u — U h ) L ^ n  (3.7)
|a|<k+1

where C1 and C2 are independent of h.
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W hat we would ultimately like to show is

||u(T) — K f +1’fc+1 *uh||o,fi < Ch2k+1, (3-8)

where C depends solely on the smoothness of the solution and is independent of h-

We note here tha t the notation ||u||o,fi represents the standard L2—norm of a function 

u on fi. In general, for any natural number I, we consider the norm of the Sobolev space 

H l (fi), defined by

IMkfi =  I £  ||D“ u ll2o , f i . (3-9)
l> |< i J

Moreover, | u | - i ;n denotes the negative-order norm of a function u and its definition will 

be given later in this section-

In this work, we consider uh to be an approximation obtained by the DG methodology- 

In this case, Equation (3-8) indicates tha t through the application of the SIAC filter, we can 

pass from O (hk+1) accuracy in the L2-norm of DG solutions to O (h2k+1) in the L2-norm 

of filtered DG solutions- According to Theorem 3-2-1, we can bound the error in the 

L2-norm by a higher order term of h2k+1 accuracy and the negative-order norm of the 

divided differences of the error- If this second term, i.e., negative-order norm of the divided 

differences of the error, is also of higher order h2k+1, we arrive at Equation (3-8) and hence 

the effectiveness of SIAC filtering in raising the order of accuracy in the L2—norm-

Let us now demonstrate how we can bound the L2-norm, as given in Theorem 3-2-1- 

Note that we can rewrite the estimate in Equation (3-7) as

||u — K f +1’k+1 * uhIIo.fi < ||u — K f +1’k+1 * ullo.fi +  | |K f +1’k+1 * (u — uh)||o,fi. (3-10)

To estimate the first term in Equation (3-10), we consider a Taylor series expansion of u(x, T ) 

around a point y and of degree 2k. We denote the Taylor polynomial by T 2k+1u(y, x) which 

is given by

T 2k+1u(y, x) = £  _  y)a
. . a!|a|=o

and _
D a u(y)

R2k+1u(y,x) =  u(x) — T 2k+1u(y,x) =  ;— (x — y)a .
' a!|a|=2k+1

Consequently, we arrive at

u(x) — K h * u(x) =  u(x) — Kh * (T2k+1u (y ,.) +  R2k+1u(y, .))(x)

=  u(x) — Kh * T 2k+1u(y, x) — Kh * R2k+1 u(y, x) 

=  R2k+1u(y, x) — Kh * R2k+1u(y, x),
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where the third equation is resulted from the second property of the kernel mentioned in 

the previous section which indicates tha t the kernel reproduces polynomials of degree up to 

r (here r =  2k ) by convolution.

For y =  x, the above expression becomes

u(x) — K h -ku(x) =  — /  K h(z)R2k+1(x ,x  — z)dz
JRd

=  — J  K ( z )R 2k+1u (x ,x  — hz)dz,

where the second equation is resulted from K h =  hK (h ) and I  is the support of the kernel. 

Consequently, we obtain the error bound on the first term of Equation (3.10) as

||u — K f +1’k+1 * u ||0,n < yK2k+1,k+1 ||L1(Rd) sup ||R2k+1u (x ,x  — h z )||0,Qo.
zeI

We note tha t R2k+1u(x, x  — hz) in the above equation is given by

Dau (e) h2k+1
R2k+1u(x, x — hz) = ---- u( e ) (—hz)a =  (—1)2k+17h— —D au(e)za , (3.11)

a! 2k +  1!

where |a | =  2k +  1. Ultimately, we arrive at the following error bound

||u — Khk+1’k+1 * u||0,n < C ih2k+1. (3.12)

At this stage, it only remains to show tha t the second term in Equation (3.10) is of higher 

order which then results in the error estimate in Equation (3.8).

If u is a function in L2(Q), it can be shown tha t (Bramble and Schatz [11], Lemma 4.2)

||u||0,n < C £  HDaf  ||— i. (3.13)
\a\<l

This indicates tha t we can derive error estimates for the standard L 2- norm in terms of the 

negative-order norm of the divided differences. Substituting u with K"^+l’k+l * (u — uh) 

and I  with k +  1 we obtain:

©

| |K f +1’k+1 * (u — uh)||0,n < C2 ^  |D a ( K f +1’k+1 * (u — uh)) ||—(k+1),n . (3.14)
|a|<k+1

We further emphasize tha t this is an important step to pass from the usual L2-norm to the 

negative-order Sobolev norm.
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To bound the error in Equation (3.14), we make use of the third property of the kernel 

presented in the previous section to get

© <C 2 £  | |K f +1’fc+1- a ^ ( u  -  uh)y_(fc+i),n
|a|<k+1

<C2 £  |K f + 1’fc+1_“ | Ll(Rd)|da(u  -  u h ) |_ (fc+1;n)
|a|<k+1

< C2 £  |d a (u  — uh)ll-(fc+1),n- (3.15)
|a|<k+1

In other words, by using the property of the kernel to rewrite the derivative of the con

volution as the convolution with the divided differences, we are able to bound 0  by the 

negative-order norm of the divided differences of the error. Consequently, it is now clear 

how the inequality relation given in Theorem 3.2.1 is obtained. Moreover, if we demonstrate 

tha t this negative-order norm of the divided differences of the error is of higher order, our 

initial claim given in Equation (3.8) is realized. For this, we continue by providing the 

definition of the negative-order norm.

A negative-order norm is a norm equipped with the dual space of the Sobolev space 

H l (Q). A dual space of a vector space consists of all linear functionals (linear maps) of that 

vector space. For example, for u € H l and 0 € C0°(Q), ^  =  (u, 0), i.e., the inner product 

of u and 0, denotes a linear functional on u and thereby ^  belongs to the dual space of 

H l (Q). We denote this space by H _ l (Q) and define its associated norm as
(u, 0)

IMI-^n =  sup — — . (3.16)
^ecg°(n) ll0 lk,n

Equation (3.16) is what we refer to as the negative-order norm. We emphasize tha t although 

||u |_ i)n is associated with H _ l (Q), here we only use this as a quantitative measure for 

functions in L2.

In Equation (3.16), if we consider the simplified domain Q =  [—n,n], then the complex 

exponential functions emx =  cos(nx) +  i sin(nx), n  € Z  is an orthonormal basis for 

L2([—n,n]). By assigning 0 =  emx, will result in normalized Fourier coefficients

in the Fourier series expansion of u. Consequently, the negative-order norm in this case will 

yield the supremum Fourier coefficient.

Similarly, the negative-order norm of the divided differences of the error as given in 

Equation (3.15) will be

||da (u — u‘ )||_ijn =  sup (d‘ (u0 |i u‘ ) ,0 ) . (3.17)
^ecg°(n) ll0 lkn

The norm given in Equation (3.17) needs to be of higher order accuracy (using any numerical 

approximation u‘ ) in order to achieve higher order accuracy in the L2-norm through convo
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lution. Normally what happens in practice is that we demonstrate, through mathematical 

proofs, the higher order accuracy of O (h2k+1) in the negative-order norm of the error u — Uh 

by applying a duality argument for locally uniform meshes. Proofs for the divided differences 

will be similar. Cockburn et al. have sketched the detail of the proof of higher order accuracy 

in the negative-order norm of the error for a DG scheme of linear hyperbolic equations in 

[19], therefore, we avoid repeating tha t discussion here. Details of the proof for variable 

coefficient linear hyperbolic equations will be given in Section 5.2.

By demonstrating tha t 0  in Equation (3.15) can be estimated with high accuracy, the 

estimate in Equation (3.10) will also be of higher accuracy and therefore, we provided in 

this section how one can raise the order of accuracy in the L 2—norm through the application 

of the SIAC filter.

3.3 C onstruction  of the K ernel
We remind the reader that the postprocessor is simply the discontinuous Galerkin 

solution at the final time T , convolved against a linear combination of B-splines. That 

is, in one dimension,

u*(x) =  h  J  K r+1,k+1 ^ Uh(y)dy,  (3.18)

where u* is the postprocessed solution, h is the characteristic length and
r

K r+1>k+1(x) =  cY+1’k+V (k+1)(x — x7), (3.19)
7=0

is the convolution kernel. ^ (k+1) is the B-spline of order k +  1 and cY+1,k+1 represent the 

kernel coefficients. xY represent the positions of the kernel nodes and are defined as:
r

xY =  — 2  +  Y, Y =  0, ••• , r  =  2k. (3.20)

B-splines form the core elements of spline filters. The B-splines tha t we consider for our 

convolution kernel are more specifically referred to as central B-splines. A central B-spline of 

degree k is a B-spline with knots x j  =  — kjr1 +  j j= 0 _ k+1 and it can be defined by recursive 

convolutions of the characteristic function with itself.

^ (1)(x) =X[—1/2,1/2],

^ (1)( 0 ^ (k)(x — £ )di, k =  1, 2, 3, ••• . (3.21)
-OO

By evaluating the integral in Equation (3.21), we arrive at the following recursion relations: 

^ (1)(x) =X[—1/2,1/2],

# +1) (x) = 1  ^ + x)  ^ (k) ( x +  2 )  +  ( —x)  ^ (k) ( x — 2 ) )  ’ (3.22)
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Figure 3.2 depicts the B-splines of different orders. From these plots, we observe tha t as 

the order increases, the smoothness and support increase and the maximum value of the 

B-spline decreases.

A B-spline of order k +  1 is a piecewise polynomial of degree k over each individual 

interval separated by the B-spline knots. Using Equation (3.21), one can also calculate the 

polynomial coefficients as fractions, a priori, store them in a matrix, and then use some 

polynomial evaluation scheme such as Horner’s method to evaluate the B-spline at some 

arbitrary point. As an example, for k =  2, the B-spline has the form

-0(3)(x) =

1 x2 +  3 x +  9 x G [_3 _1)2x +  2x +  8 , x G [ 2 , 2 ) ,
x  G [_ 1 , 2) ,_ x 2 +  f , (3.23)1 x2 _  3 x +  9 x G [ I 31

2 x 2 x +  8 , x G [ 2 , 2 J:
0, otherwise.

We should also note tha t from the aforementioned definitions, it is obvious tha t the B- 

splines have compact support, meaning tha t a B-spline ^ (fc+1)(x) of degree k with knots 

xo < ••• < xk+1 is zero outside of [xo,xk+1], where xo =  _ (k+1) and xk+1 =  (k+1). 

This leads to a more efficient scheme for B-spline evaluations since the points outside this 

interval simply result in a zero value. Algorithm 1 depicts the pseudo-code for evaluating 

the B-spline at a particular point x. We further note that B-splines have been well-studied, 

and we refer the interested reader to [35, 64, 23] for a more thorough discussion.

Now tha t the B-splines are defined, they can be used to construct the convolution kernel 

in the SIAC filters. However, the kernel coefficients cY remain to be defined.

One of the important properties of the kernel, as mentioned in the previous chapter, is 

tha t it reproduces polynomials up to a certain degree r, which equals 2k for the symmetric 

kernel postprocessing we consider in this work. This means that the convolution of the

F ig u re  3.2. B-splines of order 2, 3, and 4. Note that as the order increases, the smoothness 
and support increase and the maximum value of the B-spline decreases.
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A lg o rith m  1 Evaluating 0 (fc+1)(x)
1: if  x in [x0,x k+1] th e n
2: Find the interval of x, call it [xj,x j +1]
3: 0 (fc+1)(x) =  value of the corresponding polynomial over [xj ,x j+1 ] (as in Equation 

3.21) at x 
4: else
5: 0 (fc+1)(x) =  0 
6: end  if

kernel with a polynomial of degree less than or equal to r  is equal to tha t polynomial itself. 

In addition, it guarantees that the accuracy of the DG approximation is not destroyed by 

the convolution. Using the monomials, we obtain the following linear system for the kernel 

coefficients:

^  c j  0 (fc+1)(y)(y — x — xY )mdy =  xm, m =  0,1, ••• , r
7=0 J r

(3.24)

To calculate the integral in Equation (3.24), we use Gaussian quadrature with ^4^+ 1  

quadrature points [40]. As an example for k =  1, Equation (3.24) gives

(3.25)
1 1 1 "co" 1

x + 1 x x — 1 c1 = x
x2 +  2x +  6 x2 +  6 i+x2—2x c2 x2

Equation (3.25) must hold for all x; we simply set x =  0 and obtain the coefficients

12
(3.26)

The linear system in Equation (3.24) is a nonsingular system. Hence, the existence and 

uniqueness of the kernel coefficients is guaranteed (see [19] for a proof). Linear alge

bra routines provided by the LAPACK library can be used for solving the system (visit 

www.netlib.org/lapack/). Figure 3.3 provides a schematic of the kernel function for k =  1 

and k =  2.

Algorithm 2 provides the pseudo-code for constructing the matrix of the linear system 

mentioned in Equation (3.24). Note that for calculating the integral in Equation (3.24) (Line 

12 in Algorithm 2), the integration region R actually reduces to [—(k + 1)/2, (k + 1)/2], and 

tha t we need to divide this region into subintervals tha t respect the continuity breaks in 

the B-splines. This is required for the integral to be evaluated exactly to machine precision 

using Gaussian quadrature.

Having defined the kernel, we continue by demonstrating how to implement the post

processor operator by evaluating the integral in Equation (3.18).

6

http://www.netlib.org/lapack/
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(a) k =  1 (b) k =  2

F ig u re  3.3. The convolution kernels for k =  1 (a) and k =  2 (b). Dashed lines represent 
the constructing B-splines.

A lg o rith m  2 Constructing the B-spline coefficient matrix
1 rowSize  =  r +  1
2 colSize =  r +  1
3 LinMatrix[rowSize] [colSize]
4 bsplineKnots =  [— kjr1, — +  1, ■ ■ ■ , ]
5 for row =  0 to rowSize  do
6 for col =  0 to colSize do
7 LinMatrix[row][col] =  0
8 olc=

9 x II 1 +

10 {Evaluate the integral in Equation (3.24)}
11 for i =  0 to size(bsplineKnots)  — 1 do
12 0  =  [bsplineKnots[i], bsplineKnots[i +  1]]
13 x  =  map the Gaussian quadrature points obtained over [—1,1] to 0
14 LinMatrix[row][col]+ =  ^ (fc+1)(x)(x +  x Y)rowdx using Gaussian quadrature
15 en d  for
16 en d  for
17 en d  for

3.4 Evaluation of the C onvolution Operator
Traditionally, SIAC filters are implemented as small matrix-vector multiplications [61]. 

That is, considering a fixed number of evaluation points per element, a number of coefficient 

matrices are produced. These are computed one time and stored for future use. The 

postprocessing is then implemented in a simple manner via these small matrix-vector 

multiplications of the prestored coefficient matrices and the coefficients of the numerical 

solution. However, as this approach is not suitable for the more general case of unstructured 

meshes, we discuss in this section how the integral in Equation (3.18) can be evaluated 

directly.

We begin by introducing the notion of a standard region (sometimes referred to as the
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reference element). In order to evaluate a DG approximation at an arbitrary point or to 

compute an integral using Gaussian quadrature, we often first need to map the points to a 

standard region (see [40]). In this section, we introduce the 1D standard element, such 

that

Rst =  ( C l -  1 < C < 1} . (3.27)

Therefore, to evaluate our DG approximation uh(x) in Equation (3.18) at a point x defined 

on the interval I  =  [xa ,x b], which we refer to as the local region, we have

k
Uh(x) =  ^ 2  u f V l (^ -1 (x)) (3.28)

l=0

(I)where ui are the local polynomial modes on I i resulting from a discontinuous Galerkin 

approximation, are the polynomial basis functions of degree I  defined over the standard 

region, and ^(£) is the affine mapping from the standard to local region given by

M £ ) =  xa ̂  +  x b ̂ . (3.29)

To evaluate the postprocessed solution at an isolated point x € I i by directly evaluating 

the integral in the convolution operator, we have

u*(x) =  h J K ( ~ n ^ )  uh(y)dy =  h  E  f K  uh(y)dy  (3.30)
- ^  Ii+j£Supp{K} Il+j

where the second equation is due to the compact support property of the kernel. In order 

to evaluate the integral in Equation (3.30) exactly, we need to divide the interval I i+j 

to subintervals over which there is no break in regularity in the integrand. We then use 

Gaussian quadrature with sufficient quadrature points to evaluate the integration.

Figure 3.4 shows how the integration regions are constructed from the intersection of 

the kernel knots and the DG element interfaces. As the figure demonstrates, in the final 

integration mesh (red line), each DG element is divided into two subintervals so that there

Kernel \---------- \-----------j---------- 1-----------}---------- ‘---------- j---------- f

M esh 1— j-------1— j-------1— |------ 1— |-------1— |-------1— j------ 1— |------ 1— j-------1

Kernel-Mesh overlap i— i-----'— j------ l—l -----1—1-----1— 1----- j._j------ l _ ± -----1—1----- 1

F ig u re  3.4. A possible kernel-mesh overlap in one dimension. Upper line represents the 
kernel, middle line depicts a DG mesh, and the lower line (dashed red) represents the 
integration mesh.



32

is no break in continuity. The integration will then be carried out over these subintervals, 

tha t is,

1 [°° K  ( y  -  x '  
hu*(x) =  h  L K ( yi r ) u M d y '

= h E  f  - ( ^ ( y H y ,

1  V
h

Ii+j
L/_1  k ( ^ S1 ̂  X)  U h(^ i(€ )) |J i|d e  +  £  K ^ s2®  x  ) Uh(^s2(e))|J2|de

(3.31)

where s 1 and s2 are the two aforementioned subintervals within each DG element, i.e., 

s 1 U s2 =  Ii+j. In addition, y si (£) and ^ S2 (£) represent the mappings from the standard to 

local regions s 1 and s2 and | J 1| and | J 2| are the Jacobians of these mappings. Moreover, the 

number of quadrature points should be enough to integrate polynomials of degree 2k. In 

addition, similar to Equation (3.28), we evaluate the DG approximation in Equation (3.31) 

as
k

uh(x) = Y^ u<ii+j (^_+j (x)) (3.32)
1=0

where in this case, x  =  y si 2 (£) and belongs to element I i+j-.

We note tha t the support of the kernel is given by

K  =  x +  h ( - )  , K b =  x +  h ( )  , (3.33)

where x  is the evaluation point and I  =  k +  1. Consequently, the position of the kernel 

breaks are given by

K a +  h , K a +  2h, • • • , Kb. (3.34)

Algorithm 3 provides a pseudo-code for implementing the convolution operator in a 

one-dimensional field. In Line 5, it is stated tha t the subintervals are the result of the kernel 

and DG mesh intersection, which is a geometric problem. This will be addressed thoroughly 

in Chapter 6. In one dimension, this problem is fairly straightforward as it is the result of 

the sorted merge of the kernel breaks and the mesh element interfaces tha t are (partially) 

covered by the support of the kernel (note that kernel breaks and element interfaces are 

already sorted lists). For a uniform mesh, the footprint of the kernel can be found in 

constant computational time. For a nonuniform mesh structure, where the positions of 

the element interfaces in the mesh are defined by a smooth function, the footprint can be 

found in O(log(N )), N  being the number of elements in one direction (or total number of 

elements in 1D). Moreover, for uniform meshes, h represents the uniform mesh spacing. For
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A lg o rith m  3 1D-Convolution
1 for each evaluation point x do
2 Ii =  the element to which x belongs
3 h =  the size of the element I i
4 {Find the integration subintervals}
5 S =  kernel and mesh intersection
6 {The following for loop implements the third line in Equation 3.31}
7 for each s in S do
8 intg + =  Evaluate J'_1 K  ( Ms(h) j  u h (^s(0 )| J|d£
9 end  for

10 hegni(x)
*

u

11 end  for

nonuniform meshes, we simply consider h as being the size of the element (length of element 

in 1D and length of element sides in 2D).

We further note tha t the postprocessed polynomial is of degree 2k +  1. Therefore, if 

we want to postprocess a DG approximation of degree k over the entire field so that a 

transformation to a modal representation is feasible, we need to evaluate the postprocessor 

at 2k +  2 collocating points per element. Moreover, in our initial DG approximation space, 

we have N  x (k +  1) degrees of freedom (N  being the number of elements in the field), 

whereas in the postprocessed solution space, there are N  x (2k +  2) — N  x (k — 1) degrees 

of freedom. The first term is due to higher order polynomials and the second term is due 

to what is removed (constrained) due to continuity.

3.4.1 Q uadrilateral and H exahedral M eshes

In two dimensions, the convolution kernel is a tensor product of the one-dimensional 

kernels
ri r2

K (x ,y) =  £  £  C l c Y2 '0(fc+1)(x — xYi ) ^ (fc+1)(y — xY2) (3.35)
71=0 72=0

= K  (x) x K  (y),

where xY1 and xY2 are the position of the kernel nodes in the x 1— and x2—directions and 

the two-dimensional coordinate system is denoted with (x1,x 2). Furthermore, r 1, r 2 equal 

2k.

The two-dimensional convolution over quadrilateral mesh structures is therefore,
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u * ( x , y ) = - ^ /  f  K [ Xl  ) ^ x \  y ) Uhi,h2 (x1,x2)dx1dx2,
h 1h2 J - ' x J - ' x  V h 1 /  V h2

h1h2 ^  . . .  V h1 /  V h2Ii+d1 ,.+d2es«pp{irK •'J.+d ij+d2 v 7 v
(3.36)

which evaluates the postprocessed solution at (x,y) € I i;j . Notice that the scaling of the 

kernel does not require h 1 =  h2.

Once again to evaluate the integral in Equation (3.36) exactly to machine precision, we 

need to divide the integration region h+d1,j+d2 which has a quadrilateral shape to subregions 

over which there is no break in regularity.

Figure 3.5 demonstrates a possible kernel-mesh intersection over a quadrilateral mesh.

As shown in the figure, the postprocessing kernel can be viewed as a two-dimensional patch 

which is the immediate result of the tensor product of the one-dimensional kernels on each 

direction.

For the example in Figure 3.5, we can see that it is necessary to break down the DG 

element to four subelements in order to evaluate the integration in Equation (3.36) exactly, 

i.e.,

K  ( x \  x %) K  f x2 y N) uh1,h2(x1,x2)dx1dx2 
Ii+dl,.+d2 v h1 /  V h2 /

£  / /  K  ( x \  x )  K  ( x2h y )  Uhi,h2(x 1 ,x 2)dx 1dx2
n=0 Sn 1 2

£  K  ^ ̂  & ) -  y ̂  |J 2| K  (  ̂  (̂  - x  )  Uhi,h2 (^s„i ( 6 ) , ^  ( 6  ))|J1 |d& ) d&,1 (e ^ - y \  |J2V  I '1 K ( Vsni (CQ - x
ra=^ - 1 \  h2 )  x J - 1 V h

(3.37)

where sn indicates the integration region resulting from the kernel-mesh intersection. Fur

thermore, the third equation is obtained using the tensor product property of the two

dimensional kernel. This allows us to write the two-dimensional integration as a product of 

one-dimensional integrations. ^ Sni ({1) and ^ Sn2 (£2) are used to denote the one-dimensional 

mappings from the standard element to the local regions, which in this case are the sides 

of the subelement sn in the x 1 and x2 directions. |J 1| and |J 2| are the Jacobians of these 

transformations. In addition, the number of quadrature points required for integration 

should be chosen to exactly integrate polynomials of degree 2k in each direction.

Another point that we would like to mention here is the evaluation of our DG approx

imation, uhi,h2(x,y). To evaluate the DG approximation at an arbitrary point(x,y) € I i;j , 

we have
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F ig u re  3.5. A possible kernel-mesh overlap in two dimensions. Dashed lines represent the 
kernel patch and solid line represent the DG mesh. Red lines depict possible integration 
regions over one element.

k k
(*,y) =  £ £  0 (pq)( 6 ,6 )  (3.38)

p=0 q=0

where £1 and £2 are obtained using the appropriate one-dimensional inverse mappings from 

local to standard regions (see Section 3.4).

If we define our two-dimensional basis function ^ (pq')(£1,£2) as the tensor product of 

one-dimensional basis functions (see [40])

4>pq ( 6 , 6 )  =  ^ ( 6 ) ^  (6 ) , (3-39)

with 0 “ and 0  being the modified or orthogonal basis functions as in [40], then we can 

evaluate the DG approximation in Equation (3.38) as

k k
Uh1,h2 ( x , y ) = Y 1  0 (“(£i ) Y 1 ut j 0 q (£2) - (3-40)

p=0 q=0

This is the so-called sum-factorization technique introduced in [40]. Using this approach, 

the number of operations needed to evaluate the DG approximation at O(k2) quadrature 

points formed by the tensor product of one-dimensional points reduces from O(k4) to O(k3). 

This aids the numerical practitioner in saving on the overall computational cost of the 

postprocessor.

Algorithm 4 provides a pseudo-code for the two-dimensional convolution over quadrilat

eral mesh structures. Lines 6 and 7 are implemented the same way as the one-dimensional 

case explained in the previous section. Consequently, S 1 and S 2 are integration sets that 

represent the one-dimensional integration regions on each direction. This means tha t the 

tensor product of these two sets produces the two-dimensional integration regions, as shown 

in Figure 3.5. In addition, in Lines 3 and 4, if we are dealing with a uniform mesh, h 1 =  h2



36

A lg o rith m  4 2D Quadrilateral Mesh Convolution
1 for each evaluation point (x, y) do
2 I i)j- =  the element to which (x, y) belongs
3 h 1 =  length of I i)j- side in direction x 1
4 h2 =  length of I i)j- side in direction x 2
5 {Find the 1D integration subintervals on each direction}
6 S 1=kernel and mesh intersection in direction x 1
7 S2=kernel and mesh intersection in direction x2
8 for s 1 in S 1 do
9 for s2 in S2 do

10 in tg+  =  Evaluate the outer integral in Equation (3.37)
11 end  for
12 end  for
13 u*(x,y) =  in tg /(h 1 h2)
14 end  for

and is equal to the uniform mesh spacing on each direction. Otherwise as we mentioned in 

the previous section, we choose the length of the element size on each direction for h 1 and 

h2, respectively (Figure 3.5).

Similar to the two-dimensional case, the convolution kernel in three dimensions can also 

be formed by performing the tensor product of one-dimensional kernels. That is,

ri r2 rs
K (x, y, z) =  £  £  £  cYic72c73^ (x — 7 1 )^ (y — 72)^ (z — 7a)- (3.41)

Yi=0 72=0 Y3=0
= K (x) x K(y) x K (z),

where xYi, xY2, and xYs are the position of the kernel nodes in x 1—, x2— and x3-directions 

and we have denoted the three-dimensional coordinate system with (x 1 ,x 2 ,x 3). Further

more, r d, d =  1, 2, 3 and equals 2k.

From Equation (3.41), it is clear tha t the three-dimensional postprocessor over hexahe- 

dral meshes will be a natural extension of the two-dimensional quadrilateral postprocessor 

given above and therefore, we will not provide further detail for this type of the postpro

cessing.

3.4.2 S tru ctured  Triangular M eshes

In this section, we discuss postprocessing over structured triangular meshes. For this, we 

simply take the quadrilateral mesh implementation and apply the same kernel for structured 

triangular meshes. This means that we still use the kernel definition given in Equation 

(3.35) and evaluate the integral in Equation (3.36). However, now this is over a triangular 

region. The accuracy-enhancement capabilities of the SIAC filter over structured triangular
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regions will be discussed thoroughly in Chapter 5. Here, we explain the details of the 

implementation.

Figure 3.6 depicts a possible kernel-mesh intersection for a structured triangular mesh. 

As was done in the quadrilateral mesh case, we note that it is necessary to divide the 

element into subregions tha t respect both the element interfaces and kernel breaks, in 

order to perform the integrations exactly to machine precision. Moreover, we choose to 

further divide these subregions into triangles, as shown in red in Figure 3.6. Therefore, the 

postprocessed solution at (x, y) € I i j  becomes

u*(x,y) =
1 roo poo

hi h2 — 

1
<x> J — <x h i

K  ( — -  | K  | — -  ) Uh!,h2(xi,x2)dxidx2:
h2

hi h2 £
Ii+d1 ,j+d2 &Supp[K} U(1i+di ,j + d2 ) hi

„  , x i — x \  ̂ / x2 — y , , , ,
K  I ---;----- I K  I ---;----- I Uh1,h2 (xi,x2)axidx2 +

h2

K
L(1i+di ,j + d2 )

x i x
h i

K x2 — y 
h2

Uh1 ,h2 (xi, x2)dxidx2 

(3.42)

In Equation (3.42), we have simply modified Equation (3.36) in Section 3.4.1 by dividing 

the integration over a quadrilateral element into two triangular elements U(Ii+d1j+d2) and 

L (Ii+d1 ,j+d2 )• We refer to the quadrilateral element in this case as a super-element, to 

indicate the quadrilateral combination of the two diagonally aligned triangles in the DG 

structured mesh.

We consider one of the integrals in Equation (3.42),and explain how this integration can 

be evaluated exactly to machine precision. After triangulating the integration regions as 

shown in Figure 3.6, we arrive at

F ig u re  3.6. A possible kernel-mesh overlap in two dimensions over a structured triangular 
mesh (left). Dashed lines represent the kernel patch and solid lines represent the DG mesh. 
In the right image, red lines depict possible integration regions over the upper element.
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U (Ii+di ,j + d2) V 1
3

h 1 h 2
. x i x \ K  f x2 y ) Uhi,h2 (x1,x2)dx1dx2

J  J  K  (^X1hi x ^ K  (̂ 2h  ̂ ^  Uhi,h2(x1,x2)dx1dx2
n=0 “ “ 'n

=  /_ !  / _ / 2 K ^ 1(C1,/f12) -  ^  K ^ 1’̂  -  ^  U hi,h2(M 6 ,€2),M2(^1 ,£2))| J  |d^1d^2
(3.43)

where Tn is the triangular subelement in U (Ii+di,j+d2), ^ 1 and ^ 2 are the appropriate 

mappings from the the standard to local triangular region which are defined later in the 

section, and | j ? 1 = 1 |.

In Equation (3.43), the third equation is derived by mapping the standard triangular 

element defined as

Tst =  { ( 6 , 6 )| - 1 < £1>6 ; £1 +  (2  < o} (3.44)

to the local region rn . We also note tha t in order to have the triangular expansion be 

as efficient as the quadrilateral one, we want to be able to define the two-dimensional 

basis functions used to evaluate our DG approximation in terms of a tensor product of 

one-dimensional basis functions. Consequently, we define a mapping from the Cartesian 

coordinate system to the so-called collapsed coordinate system such that

1 +  £1
V1 =  2----- 11 -  1, n2 =  £2 , (3.45)

1 -  £2
with the inverse transformation

£1 = -  j, £2 =  (3.46)

These new local coordinates (n1,n2) define the standard triangular region by

Tst =  { (n1 ,n2 )|-  1 < V1,V2 < 1} . (3.47)

The transformation in Equation (3.45) can be interpreted as a mapping from the triangular 

region to a rectangular one, as seen in Figure 3.7. This transformation ia also known as 

the Duffy transformation (see [27]). Furthermore, for more information regarding tensorial 

basis functions and the collapsed coordinate system, we refer the interested reader to [40]. 

Using the collapsed coordinate system, the integral in Equation (3.43) now becomes 
'•1 r _?2

L 1/ / K  ( ^ 1(£1,h£2) x )  K ^ 6 ^ 2) ^  Uhi,h2(^1(£1,£2),^2(£1,£2))|Jf |d£1d£2

1 ! j  ! K  ( — x )  K  (^ 2(n1 h22)— y )  Uh i , h 2 (m, n2)) | J?| | Jn|dm dn2
(3.48)
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F ig u re  3.7. Triangle to rectangle transformation.

Equation (3.48) results in the value of the two-dimensional integral over the triangular 

region rn . We note that since the kernel is a function of both variables in the standard as well 

as the collapsed coordinate systems, we can not separate the two-dimensional integration 

in terms of one-dimensional integrations as we did in Equation (3.37). Consequently. 

the number of quadrature points required for integration should be enough to integrate 

polynomials of degree 3k exactly. Furthermore, if we denote the vertices of Tn as xA, xB 

and xC then we have

+  xB +  xC
2 i 2

Substituting {1 and {2 using Equation (3.46), we arrive at

i =  1,2.

xi =  ^ ( n  1 ,^ 2) =  x
1 -  ni i  -  n2 + x B 1 +  ni 1 -  n2 + x C 1 +  n2

i =  1,2.

(3.49)

(3.50)
2 2 2 2 2 

We can also use a similar procedure to Equation (3.38) to evaluate the DG approximation 

at (x,y) € U(Iitj ). That is,

k k-p
Uhuh2 ( x , y ) =  vPUq(ii,j )^pq (^ i, ^2),

p=0 q=0

with the difference tha t the basis functions are given by

pq (Ci,C2) =  ( n i X  (n2),

(3.51)

(3.52)

with and ^pq being the orthogonal or modified basis functions for triangular elements 

defined in [40]. In Equation (3.51), U (Ii)j-) represents the DG triangular element that 

contains (x, y) and ni and n2 are obtained by first applying an inverse mapping that maps 

U (Ii,j) to the standard triangular region given in Equation (7.4), and then using Equation 

(3.45). The use of the sum-factorization technique mentioned in the previous section is not 

beneficial here, since the quadrature points obtained as a result of several mappings do not 

necessarily follow a tensor-product form.

Algorithm 5 provides a pseudo-code for implementing the convolution operator over 

structured triangular meshes. As we mentioned earlier, for implementation purposes, we
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A lg o rith m  5 2D Triangular Mesh Convolution
1 for each evaluation point (x, y) do
2 I i)j- =  the super-element to which (x, y) belongs
3 h 1 =  size of I i)j- in direction x 1
4 h2 =  size of I i)j- in direction x2
5 {This simply gives the super-elements (partially) covered by the 2D kernel}
6 k F o o tP rin t=  the footprint of the 2D kernel on the DG mesh
7 for each super-element I  in k F o o tP rin t do
8 {lower triangle}
9 L(I)=lower triangle

10 intgRegions =  intersection of L (I) with each square in the 2D kernel patch
11 for each triangle t in intgRegions do
12 intg + =  Result of the integral in Equation (3.48)
13 end  for
14 {upper triangle}
15 U (I)= upper triangle
16 intgRegions =  intersection of U (I) with each square in the 2D kernel patch
17 for each triangle t in intgRegions do
18 intg + =  Result of the integral in Equation (3.48)
19 end  for
20 end  for
21 u*(x,y) =  in tg /(h 1 h2)
22 end  for

consider the kernel in two dimensions as a patch or a two-dimensional matrix of squares. 

Therefore, to find the intersection region of a triangle with the kernel, we simply find the 

intersection of the triangle with these squares. For structured triangulations, we can identify 

all the possible cases for kernel-mesh intersection, as shown in Figure 3.8. Moreover, similar 

ideas discussed in the previous section apply to the scaling parameters h 1 and h2 for the 

nonuniform mesh structure. For general unstructured grids, these parameters need to be 

modified properly to gain optimal error convergence. However, the general implementation 

scheme for unstructured triangular grids will be similar to that of the structured ones. 

Once we identify the elements covered by the kernel support, we solve a series of geometric 

intersections (similar to Figure 3.6). As the unstructured mesh will be more complex, we 

are likely to get more integration regions comparing to the structured mesh. Investigation 

of the SIAC filter for unstructured triangular meshes will be discussed in Chapter 7.

We further note tha t in this document, when choosing a distribution of points for 

integration, we prefer the Lobatto-type quadrature. Particularly, for triangular regions, 

we choose Gauss-Lobatto-Legendre (GLL) points on the x 1-direction and Gauss-Radau- 

Legendre (GRL) on the x2-direction. GRL points absorb the Jacobian of the collapsed 

coordinate transformation and do not include the singularity at the collapsed vertex. For
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(a) (b) (c) (d) (e) (f) (g)

F ig u re  3.8. One super-element of the DG mesh (black) with possible kernel breaks (red). 
The number of integration regions increases with triangular meshes, with possibility of two 
to seven different regions.

more information on these types of quadrature points, we refer the reader to [40].

3 .4 .3  N o te  on th e  C om pu tation al C om plexity

In this section, we discuss the complexity of the computational cost for postprocessing.

As mentioned in Section 3.4, finding the intersection of the kernel mesh with the DG 

mesh is a geometric intersection problem that in general can be quite complex in two and 

three dimensions. The complexity increases due to the elements being further tessellated 

into subelements over which numerical integrations are performed. In our analysis thus 

far, we have only considered uniform triangular meshes where at most one kernel break per 

direction lies within a super-element. However, in the case of totally unstructured triangular 

meshes, the number of breaks can be up to several breaks within an element, which will 

result in more integration regions and therefore more numerical quadratures. Here, we 

consider the cost of the convolution operator, assuming that the integration subintervals 

have already been found.

The number of elements that are covered by the kernel support is dependent on the 

extent (width) of the convolution kernel, which is a function of the polynomial order per 

element. Therefore, if we denote the polynomial order as k and assume tha t all elements 

have the same polynomial order in both directions, the number of elements tha t need to 

be considered for every evaluation point will be O(k2) in two dimensions. Furthermore, for 

each of these elements, depending on the number of integration regions within each element, 

a series of numerical quadratures must be performed. After transforming to the collapsed 

coordinate system, we evaluate integrals as shown in Equation (3.48). Gaussian quadrature 

in two dimensions will be performed in O(k2) operations. However, we need to evaluate 

the kernel as well as the DG approximation at each of the quadrature points used in the 

integration. The DG approximation can be calculated at O(k2) quadrature points in O(k3) 

floating point operations using the so-called sum-factorization technique when possible, and
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in O(k4) operations otherwise. Kernel evaluation can also be performed in O(k3) operations 

in the case of quadrilateral elements or in Q(k4) for triangular elements. Hence, the overall 

cost of performing one numerical integration will be O(k4). Consequently, from Equation

(3.43), the cost of numerical quadrature on a single triangular element will be O (M k4), 

with M  being the number of integration regions within the element. When performing the 

exact postprocessor scheme, M  > 1 and is at most seven per triangular element in the case 

of a uniform mesh. However, this upper bound increases in the case of totally unstructured 

grids and will play a significant role in the overall performance of the algorithm, especially 

when postprocessing the entire DG field such that a transform to the modal representation 

is feasible. In tha t case, the total computational cost is O (M N k8), with N  being the total 

number of elements in the field.

3.5 Performance Analysis of the Postprocessor
In this section, we provide performance results for postprocessing DG fields using the 

implementation strategies in Section 3.4. The postprocessor is a good candidate for paral- 

lelization because when filtering an entire computational field, evaluating the postprocessed 

value at one quadrature point is independent of the other. Therefore, having access to 

a multiprocessor machine, we can have separate threads evaluate the postprocessed value 

at different points without any communications among them. Using OpenMP, only a few 

compiler directives are required to parallelize the execution of the postprocessor and gain 

proper scaling in the performance on a multiprocessor shared-memory machine.

We note tha t although we are only considering the performance of the SIAC filter, we 

provide the performance when applied to a discontinuous Galerkin solution. For our results, 

we consider the traditional second-order wave equation,

ntt -  Vxx -  Vvv =  0, (x, y) € (0,1) x (0,1), T  =  6.28. (3.53)

We rewrite Equation (3.53) as a system of first-order linear equations,

nt +  Ux +  Vy =  0

ut +  nx =  0 (3.54)

vt +  nv =  0,

with initial conditions

n(x,y, 0) =  0.01 x (sin(2nx) +  sin(2ny))

u(x,y, 0) =  0.01 x (sin(2nx)) (3.55)

v(x,y, 0) =  0.01 x (sin(2ny)),
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and 2n periodic boundary conditions in both directions. We apply the postprocessor to the 

solutions of this DG problem for the n variable, after one period in time over triangular 

mesh structures. The numerical behavior of the SIAC filter for Equation (3.53) is examined 

in Chapter 5. Here, we provide a thorough performance analysis of the parallelization.

Algorithm 6 depicts the condensed version of Algorithm 5 presented in Section 3.4.2. The 

OpenMP directives in lines 1 and 3 are used to parallelize the execution of the postprocessor. 

As displayed in Algorithm 6, there exist three principle nested for loops in the code, and 

we choose to parallelize the outer most one to minimize the overhead due to initiation of 

OpenMP directives.

The performance results for postprocessing an entire triangular DG field provided in 

this section consider six evaluation points per element. Results are provided for both the 

uniform and the smoothly varying triangular meshes shown in Figure 3.9. Moreover, we 

provide a performance comparison between the filtering approaches using exact and inexact 

integration. Note that the timing results have been gathered on a SGI multiprocessor 

machine with 2.67 MHz CPUs, using up to 16 threads.

The timing results for postprocessing are given in Table 3.1 (uniform mesh) and Table

3.2 (smoothly varying mesh). We note tha t the workload for the uniform mesh is statically 

assigned to each thread, as each thread performs an equal amount of work. However, for the 

smoothly varying mesh, we have used dynamic scheduling to simulate an equal workload 

for each thread. Figures 3.10 and 3.11 demonstrate the performance scaling plots for the 

uniform and smoothly varying meshes, respectively. The scaling results have been calculated 

from the following,
T7 • T serial /<-> rscaling =  —-------- (3.56)

Tparallel
where Tserial represents the serial execution time and Tparallel is the parallel execution 

time. Ideally, this parameter should result in the number of threads used in the parallel 

execution. We see that as we increase the order of the polynomial, the scaling approaches 

the theoretically desired.

3.6 Summary and Conclusions
This chapter presents the explicit steps a numerical practitioner should use in order 

to implement the Smoothness-Increasing Accuracy-Conserving (SIAC) filters in an efficient 

manner. We consider quadrilateral and triangular element shapes in two dimensions and 

hexahedra in three dimensions for both uniform and smoothly varying mesh structures. We
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A lg o rith m  6 Parallel-2D-Tri-Postprocessor
1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15
16
17
18

ft pragma omp parallel 
{
ft pragma omp for schedule(static/dynamic) 
for each evaluation point (x, y) do

for each super-element I  in k F o o tP rin t do 
{lower triangle}
for each triangle in intgRegions do

intg + =  Result of the integral in Equation 3.48 
end  for
{upper triangle}
for each triangle in intgRegions do

intg + =  Result of the integral in Equation 3.48 
end  for 

end  for
{Lines 5-14 will be repeated here if convex combination is needed.} 
u*(x,y) =  in tg /(h 1 h2) 

end  for 
}
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F ig u re  3.9. Examples of the (a) uniform and the (b) smoothly varying triangular meshes 
used in calculations.

T ab le 3.1. Timing results in seconds for postprocessing over the entire domain for the 
uniform triangular mesh considering P2, P 3, and P4 polynomials. th  represents the number 
of threads used in the parallel execution._____________________________

P2
mesh 1h=t 2h=t th  =  4 8h=t th  =  16

2X2o
2 8.68 4.39 2.19 1.13 0.63

2X2o

34.74 17.70 8.85 4.48 2.47

2X2ooc 137.85 68.92 34.61 17.68 9.53
P3

2X2o
2 39.76 19.98 10.00 5.02 2.64

2X2o

159.68 79.68 40.04 20.22 10.47

2X2ooc 632.34 316.43 158.77 80.45 40.39
P4

2X2o
2 154.76 77.05 38.69 19.35 9.81

2X2o

617.32 310.56 155.65 78.27 39.43

2X2o00 2455.01 1238.38 622.12 311.82 157.08
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T able 3.2. Timing results in seconds for postprocessing over the entire domain for the 
smoothly varying triangular mesh considering P2, P 3 and P4 polynomials. th  represents the 
number of threads used in the parallel execution.______________________

P2
mesh th  =  1 th  =  2 th  =  4 th  =  8 th  =  16

202 x 2 13.74 6.95 3.46 1.78 0.94
402 x 2 52.77 26.51 13.28 6.80 3.51
802 x 2 208.10 104.59 52.40 26.84 13.92

P3
202 x 2 59.39 29.77 14.90 7.59 3.84
402 x 2 223.59 112.04 56.14 28.57 14.64
802 x 2 853.65 426.84 213.43 106.72 53.37

P4
202 x 2 202.85 101.81 51.06 25.72 12.98
402 x 2 765.83 384.75 192.09 96.83 48.71
802 x 2 2960.00 1483.83 742.29 372.28 188.58



n u m b e r o f th re a d s n u m b e r o f th re a d s  n u m b e r o f th re ad s

F ig u re  3.10. Postprocessor performance scaling for the uniform triangular mesh. N  represents the number of elements in the field.
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n u m b e r o f th re a d s  n u m b e r o l th re a d s n u m b e r o f th re a d s

F ig u re  3.11. Postprocessor performance scaling for the smoothly varying triangular mesh. N  represents the number of elements in the 
field.
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address the computational tasks performed when postprocessing discontinuous Galerkin 

(DG)fields. As the conventional way of postprocessing through the use of matrix-vector 

multiplications has limited applicability, we provide a more general scheme to calculate the 

postprocessed value, by directly evaluating the convolution operator of the postprocessor. 

We demonstrate tha t when evaluating the convolution operator exactly to machine pre

cision, we need to respect the breaks in continuity over the integration regions which are 

due to the element interfaces and kernel breaks. Consequently, the number of numerical 

quadratures can increase significantly when dealing with general mesh structures. In an 

attem pt to overcome the cost of several numerical quadratures, we provide results for 

the first time tha t demonstrate the efficiency of the postprocessor when parallelized on 

a shared-memory multiprocessor machine.



CHAPTER 4

QUADRATURE APPROXIMATIONS FOR 
EVALUATING THE CONVOLUTION 

OPERATOR IN THE 
SIAC FILTERS

As discussed in the previous chapters, the basic operation performed to gain the smooth

ness and accuracy benefits is convolution of the DG solution against a judiciously con

structed B-spline-based kernel. The goal of this chapter is to ascertain and quantify the 

impact of quadrature errors within this convolution process. All of the mathematical proofs 

concerning accuracy and smoothness assume exact integration. All the empirical numerical 

examples both in the mathematical literature [19, 61] and the engineering literature [67, 75] 

employed consistent integration with Gaussian quadrature to guarantee tha t the numerical 

errors within the convolution operator could be driven below machine precision. In this 

chapter, we seek to quantify the impact of inexact quadrature on the filtering process and 

to assess whether it greatly impacts its use as an intermediary stage between simulation 

and visualization in the scientific pipeline.

Here, we examine a collection of common scenarios that might arise when one seeks 

to implement the aforementioned postprocessing algorithms in the engineering context. 

We focus on one-dimensional and two-dimensional quadrilateral implementations and use 

as our gold-standard the solving of the convolution operation with consistent integration 

(integration that partitions the domain so as to respect all breaks in regularity) combined 

with Gaussian integration that integrates the kernel times the DG-based polynomial exactly 

to double-precision machine zero. We first examine the case when consistent integration 

with inexact Gaussian quadrature (under-integration) is used. Because consistent integra

tion requires solving the geometric problem of finding all the places in which regularity is 

decreased and generating a super-mesh based on these data, we consider what happens when 

only the original DG mesh is used as the underlying support mesh for integration. Under
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this scenario, we examine the use of Gaussian quadrature and of midpoint quadrature. 

This choice highlights the difference between polynomial-based high-order and adaptive 

low-order quadrature implementations. We emphasis tha t this study is primarily for en

gineering circumstances when the trade-offs between time, resources, and accuracy are 

important. Although the case against committing such numerical crimes is well-known, the 

repercussions have not been well documented for the use of this filter as a visualisation tool. 

It is this specific crime that we wish to address.

The chapter is organized as follows. In Section 4.1, we present the different implemen

tation strategies one might employ, in particular: (1) the consistent integration approach 

with exact and inexact Gaussian quadrature, (2) the input mesh-based Gaussian quadrature 

approach, and (3) the input mesh-based midpoint quadrature approach. In Section 4.2.2, 

we present analysis which provides theoretical estimates which bound the numerical crimes 

committed when using the three aforementioned approaches. In Section 4.3, we present an 

empirical study which corroborates the error estimates we have derived. In Section 4.4, we 

summarize our results and provide guidelines based upon our study concerning under which 

circumstances one technique should be used versus another. We further add that the result 

of these contributions has been published in [48].

4.1 Numerical Quadrature Approaches
In this section, we present the different implementation strategies used to calculate the 

convolution operator.

4 .1 .1  G aussian Q uadrature A pproaches

We remind the reader that the postprocessor is simply the discontinuous Galerkin 

solution convolved against a linear combination of B-splines at the final simulation time. 

That is, in one dimension,

u*(x) =  h  /  k 2fc+1,fc+1 ^ u h ( y ) d y ,  (4.1)

where uk is the postprocessed solution, h is the mesh characteristic length, and uh the DG 

solution of degree k.

The postprocessed solution, uk(x), which is a piecewise polynomial of degree 2k + 1 , can 

be evaluated exactly. As we mentioned in Chapter 3, uh(y) =  k=0 u ( y )  , and 

are the basis functions of the projected function on cell /j. Therefore, for x € /j, we have

“*(x) = h K (c i t )  uh(y)dy =  h  £  / . + . K  0 ^ ) uh(y)dy. (4.2)ii+j eSupp{K}
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The kernel in the expression above consists of a linear combination of B-splines. Therefore, 

in order to calculate the above integral exactly, we need to decompose the interval I i+j- into 

subintervals tha t respect the kernel knots (which we refer to as breaks) (see also Section 3.4); 

the resulting integral is calculated as the summation of the integrals over each subinterval. 

The term consistent integration is used to denote integration tha t respects these breaks 

by finding the necessary subintervals such tha t the integral on each subinterval can be 

done exactly to machine precision. To compute the postprocessed solution for x  € I i , the 

algorithm is as follows:

For j  =  -  k!, • • • ,k! :

• Find the kernel breaks (if any) that lie in the interval I i+j-. Use the kernel breaks to 

identify the subintervals. Note that in the general case, the number of breaks can be 

zero up to several breaks within an element. In the case of uniform meshes, one can 

show tha t there is at most one break per input mesh element.

• Evaluate the integral over each of the subintervals using Gaussian quadrature. For 

the case of an exact quadrature, we are required to evaluate the integrand at k +  1 

Gauss points where k is the approximation degree of the DG solution. We have used 

k Gauss points (one less than the required) for the inexact quadrature experiments 

presented in the results section.

• Sum the resulting values from each subinterval to gain the overall value of the integral 

on element I i+j-.

This general algorithm can be used in one of several ways which we will mention here. 

First, this algorithm holds for any x  € I i , and hence can be used for isolated postprocessing 

of the solution at some arbitrary point. The only additional cost not previously mentioned 

is the search time needed to find the element I i containing the point x  of interest. Building 

upon this usage, the second strategy is to postprocess an entire element (i.e., find the 

postprocessed polynomial of degree 2k +  1 on an element) by repeating the above procedure 

for a collection of collocation points or at quadrature points so that a transform to a modal 

representation can be done. The third usage, which is often implemented for uniform 

meshes, is to rewrite the above equation using small matrix multiplications,
k! k

U*(x) =  J 2 Ui+j Cj1,k(x) (4.3)
j=_k! 1=0

where Cj,i,k(x) is a polynomial of degree 2k +  1 and U(+j are the coefficients in the discon

tinuous Galerkin approximation.
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The purpose of this chapter is to quantify the numerical crimes committed when using 

different quadrature schemes. Therefore, it is useful to understand the dominant costs in 

the above algorithm so tha t one can appreciate why different engineering implementation 

choices might be made. The possibly dominating cost in the above algorithm is performing 

the numerical quadrature on the consistent integration mesh. When filtering based upon 

the input mesh, we disregard the position of the kernel breaks and evaluate the integrand 

over the entire element. That is, we skip the first step in the consistent integration approach 

(and hence its associated cost); in the second step, there is only one interval which is the 

entire element. We then proceed by using Q > k +  1 Gauss points for computing the 

Gaussian quadrature. Considering the computational cost, as we increase the number of 

quadrature points, Q, filtering based upon the input mesh will use more floating point 

operations for Q > 2k +  2 to calculate the integral over I i+j- compared to the consistent 

integration approach; however, the algorithmic scaling is still O (M ) where M  is a number 

related to the extent of the local filter.

Two further notes are worth mentioning before proceeding. The first is tha t the al

gorithm above extends easily to the case of two-dimensional and three-dimensional post

processing as the convolution kernel is merely a tensor-product of the one-dimensional 

kernels. Secondly, in the case of a nonuniform mesh, since the kernel is no longer translation 

invariant, the postprocessing coefficients need to be recomputed for each element as is 

mentioned in [22]. In order to avoid this recomputation, Curtis et al. proposed two strategies 

for postprocessing over nonuniform meshes: one based upon the local L2 — projection of 

the solution to a uniform “scratch-pad” mesh and one based upon the characteristic length. 

The algorithmic scaling for both algorithms is O (N ), with N  being the size of the domain.

4 .1 .2  M idpoint Q uadrature A pproach

In this section, we examine an alternative strategy to using Gaussian quadrature for the 

approximation of the convolution integral. For a given x € I  we try  to approximate the 

integral

u* (x) =  h  J  k  uh(y)dy (4.4)

using midpoint integration. For a complete overview of the derivation and implementation 

of the midpoint rule, we refer the reader to [39]. In this case, we evaluate the postprocessed 

solution u*(x) using the midpoint rule to compute the integral in Equation (4.4) over the 

entire kernel support at once, i.e., we are not following the element-by-element approach 

mentioned in the previous section. In other words, we proceed as follows:
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• For x € I i , determine where the limits of the kernel lie on the DG mesh. That specifies

the integration area, which we denote by [xlef t , x right\.

• Set the level of the midpoint integration. Assuming Ax is the size of each of the n 

equal cells involved in the discretization, we have Ax =  (xright — x lef t) /2 level with 

2level being the number of evaluation points used in the midpoint rule. Typically, the

Again, we follow a similar process in case of a 2D postprocessor along each direction.

As it is understood from the aforementioned steps, we both disregard the kernel breaks and 

the element interfaces in the input mesh for this quadrature approach.

In this section, we analyze the crimes committed when performing a nonconsistent 

and/or inexact quadrature. Although we discuss the simplified case of a uniform one

dimensional mesh, many of the concepts extend to postprocessing over nonuniform meshes. 

We begin by discussing the ideal case of an exact, consistent quadrature, then move on 

to discuss an inexact quadrature on a consistent integration mesh. We secondly discuss 

implementing an inconsistent quadrature which takes only the DG mesh into account and 

lastly, the midpoint quadrature on the DG mesh.

4.2 .1  G aussian Q uadrature on a C on sisten t Integration  M esh

4.2 .1 .1  E xact, C on sisten t G aussian Q uadrature

Gaussian quadrature is well-known to integrate polynomials of degree 2m — 1 exactly 

by using m points, x i ,x 0, ■ ■ ■ , x m, and m weights w 1,w 2, ■ ■ ■ , wm [21]. The formula for the 

quadrature is given by

support of the kernel centered around zero will be the case where x lef t =  — and

xright =  • This gives Ax =  .

• Perform the midpoint integration,

4.2 Quadrature Approximations of the 
Convolution Operator

(4.6)
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where yj =  b__aXj +  , and Wj is the associated weight function. This implies that for our 

convolution, which consists of integrals of polynomial degree at most 2k, we must employ

The main point of this discussion is to emphasize tha t in order to postprocess one element 

in a uniform mesh construction that contains a discontinuous Galerkin approximation of 

degree k, we have a support size of 2k' +  1 elements for the postprocessor, where k' =  | " 1 • 

There are two integral evaluations per element. Therefore, we are performing 4k' +  2 

Gaussian quadrature evaluations of degree 2k +  1. Although Schumaker gives a simplified 

formula for integrating B-splines against a polynomial [64], we should point out that we are 

convolving the B-splines against a piecewise polynomial.

To begin, let us examine the kernel performed using exact integration over a uniform 

mesh. In this case, to postprocess element i, we have

u*(x) =  ^ (k+1)(n -  y ) 0 (l)(6  +  n -  j)  d n  (4.8)

discontinuous at element boundaries. This stems from the properties of the B-splines and 

the basis of our DG approximation and is easily seen by examining the case of piecewise 

monomials. In this case, 0 (l) (^  +  n -  j ) =  (6  +  n -  j ) l - If we consider the boundary where 

n ^  ( - -  1/2), then we have, from the left of the elemental boundary:

since we are approaching from the element / i_ 1. However, approaching the limit from the 

right, we would have

as we are approaching from element Ij. The limits of these two functions are continuous for 

piecewise constants, but otherwise they are discontinuous.

k +  1 points and weights in our quadrature in order to be exact to machine precision.

Setting n =  ~̂_x and , this becomes

On each element, I i+j , define the function in our integral to be

k
f  (n ^ i)  =  £  ^ (k+1) (n -  y ) 0 (l)(Ci +  n -  j  )• (4.9)

For purposes of error analysis, we note tha t this function is Ck 1 over each DG element and
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In order to analyze the error for the case of consistent integration with reduced quadra

ture and quadrature based on the input DG mesh, it is useful to review the existing 

literature. Here, we follow the work of de Boor [21] for w(x) =  1. That is, if we were 

to use exact quadrature over a consistent integration mesh using k +  1 Gauss points per 

integral, the error is given by

Note that in our case, f  (n, &) is a polynomial of degree 2k, and the integral is exact.

4 .2 .1 .2  Inexact, C onsisten t G aussian Q uadrature

Now tha t we have discussed the necessary components for exact, consistent quadrature, 

let us examine the case where we simply use fewer Gauss points. In this case, we are 

respecting both the kernel breaks and the DG elemental boundaries and use only k Gauss 

points. From the error formula above (Equation 4.11), we have the following error estimate 

for one integral

The constant in the error is not necessarily less than one, but is certainly bounded due to 

the smoothness of f  (n,( i). We also note tha t the constant depends upon k.

Next, we examine the case were we are using exact quadrature over a discontinuous 

Galerkin mesh. That is, we are ignoring the knots of the B-splines and disregarding the 

level of smoothness. For this case, we simply note tha t it is only possible to use the error 

estimate given in Equation (4.10) since the function on a given element is only Ck-1. That 

is, the error is given by

/ f (n ,& )d n -  j  Pk(n )dn = j  f [xo,••• ,x 2k+i]g2k+ i(x)dx (4 .10 )

where pk is some polynomial tha t interpolates f  (n ,6 ) at k+1 points and

g2k+l(x) =  [(x -  xo) ■ ■ ■ (x -  xk )]2 

If f  (n, &) e  C2k+2, then we have the error estimate

b b
/  f(n ,& ) dn -  Pk (n) dn =  C(& ,yo, ••• ,y k + i)f(2k+2)(z,&), z e  (a,b). (4 .1 1 )
a a

f (n , i i )  dn -  Pk(n) dn =  c(&,yo,  ••• ,y k + i)f(2k)(z,Ci) =  C. (4.1 2 )

4 .2 .2  G aussian Q uadrature on th e  D G  M esh

/ f  (n,&) dn - j  Pk (n) dn = \  f  [xo, ••• ,x 2k-i]g2k+i(x) dx. (4.13 )
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4 .2 .3  M idpoint Q uadrature on th e  D G  M esh

Lastly, we consider the problem of using midpoint integration. In this case, our formula 

is given by

f  f  (x) dx =  (b -  a ) f  (c) (4.14)
a

where c =  (a +  b)/2 and f  is as given in Equation 4.9. It is well known that the midpoint 

error is given by

E rror(m idpoint) =  - 4 f w(z)(b -  a)3, z € (a, b)

[21]. In our case, we are carrying out m =  level midpoint quadratures. Therefore, we have 

for the error
m-1 ..

f //(z) A x3 < C A x3 (4.15)
j=0 24

where Ax =  since xfe/t  =  - 3k2t1 , x right =  3k2t1 , and Ax =  (xright -  x tef t ) /2m. 

We should note two things: first, tha t the constant tha t bounds f //(z)/24 depends upon 

the polynomial order, secondly, that this estimate of the error does not improve for higher 

polynomial orders. Therefore, it does not m atter whether we increase the polynomial order 

of our B-spline or our DG solution. The only time where implementing the midpoint 

quadrature may be effective is for piecewise linear polynomial approximations.

4.3 Results
In this section, we present the results for the various choices of quadrature to see the 

computational effect of the crimes committed in our quadrature. We examine the L2-errors, 

and in the case of one dimension, the smoothness of the error. Lastly, we present a test 

example to demonstrate the usefulness for visualisation purposes.

4 .3 .1  C on sisten t In tegration  w ith  Inexact G aussian  
Q uadrature A pproach

We consider the one-dimensional projection of the function

u(x) =  sin(2nx), x € (0,1) (4.16)

onto a uniform mesh. We assume tha t we have a periodic interval in order to simplify 

the application of the postprocessor. Consistent integration is used, but the number of 

quadrature points used in the computation of the integrals is one less than what is required 

for exact integration. The results are presented in Figures 4.1, 4.2, and 4.3. In this set of 

plots, we can see tha t the aliasing error is more sensitive at low orders and tha t the higher



F ig u re  4.1. Point-wise errors on a logarithmic scale before postprocessing (left), after postprocessing on the consistent integration mesh 
with inexact quadrature (middle), and after postprocessing with exact quadrature (right). P 2 polynomials.
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P : After Postprocessing, inexact quadrature P3: After Postprocessing

X

F ig u re  4.2. Point-wise errors on a logarithmic scale before postprocessing (left), after postprocessing on the consistent integration mesh 
with inexact quadrature (middle), and after postprocessing with exact quadrature (right). P 3 polynomials.
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P : After Postprocessing
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F ig u re  4.3. Point-wise errors on a logarithmic scale before postprocessing (left), after postprocessing on the consistent integration mesh 
with inexact quadrature (middle), and after postprocessing with exact quadrature (right). P 4 polynomials.
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order coefficients in the approximation are important. Additionally, notice tha t increasing 

N  for P 2-polynomial approximations does not lower the convergence rate as expected.

4.3 .2  Input M esh-B ased  G aussian Q uadrature A pproach

In this section, we examine the results of not using a consistent integration mesh, but 

instead attem pt to overcome the numerical crimes committed by integrating over the jump 

by increasing the number of quadrature points.

4.3 .2 .1  O ne-D im ension al D G

For this section, we again consider the L2-projection of the function

u(x) =  sin(2nx), x € (0,1) (4-17)

to a uniform mesh. We assume a periodic interval. Figures 4.4, 4.5, 4.6 4.7, 4.8, 4.9, and 

4.10 show the point-wise errors when postprocessing on the DG mesh for P2, P 3, and P4 

polynomials. Considering Pk polynomials, we need k +  1 Gauss points to exactly evaluate 

the inner products involved in postprocessing of a DG solution on a consistent integration 

mesh. Using the same number of points when postprocessing on the DG input mesh, we 

observe that the accuracy in terms of error is improved but tha t oscillations still exist.

4 .3 .2 .2  O ne-D im ension al D G  — N onuniform  M esh

In this section, we examine the L2-projection of the function

u(x) =  sin(2nx), x € (0,1) (4.18)

to smoothly varying mesh. The smoothly varying mesh is defined by x =  £ +  1 sin £, so 

tha t the element sizes vary by at most 50% from each other. We use the characteristic 

length-based postprocessor implementation introduced in [22]. In the case of a nonuniform 

mesh, Table 4.1 demonstrates tha t the lowest quadrature order for piecewise quadratic 

polynomials is not sufficient for removing the error, unlike the uniform mesh case. In the 

case of a nonuniform mesh, a quadrature that uses at least nine Gauss points seems to 

be required. For piecewise cubic, the errors using the lowest value of the quadrature are 

even worse (Table 4.2). And, unless exact quadrature is implemented, the errors are always 

worse when using ten elements.



F ig u re  4.4. Point-wise errors on a logarithmic scale when postprocessing on the DG input mesh using P2 polynomials. Left: errors 
before postprocessing. Q indicates the number of quadrature points.
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F ig u re  4.5. Point-wise errors on a logarithmic scale when postprocessing on the DG input mesh using P 2 polynomials. Q indicates the 
number of quadrature points.

ObOo



P : After Postprocessing, Q = 21 P2: After Postprocessing

X

F ig u re  4.6. Point-wise errors on a logarithmic scale when postprocessing on the DG input mesh using P2 polynomials. Right: errors 
after postprocessing on the consistent integration mesh. Q indicates the number of quadrature points.
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P3: Before Postprocessing

X

F ig u re  4.7. Point-wise errors on a logarithmic scale using P 3 polynomials.
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P : After Postprocessing, Q = 13 P3: After Postprocessing

X

F ig u re  4.8. Point-wise errors on a logarithmic scale using P3 polynomials.
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F ig u re  4.9. Point-wise errors on a logarithmic scale using P4 polynomials.
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P : After Postprocessing, Q = 14

F ig u re  4.10. Point-wise errors on a logarithmic scale using P4 polynomials.

P4: After Postprocessing

X
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T able 4.1. Errors for one-dimensional DG using P 2 polynomials for the nonuniform mesh. 
Before postprocessing, after postprocessing on the DG mesh where Q is the number of 
quadrature points, and finally after postprocessing on the consistent integration mesh. CI 
stands for consistent integration mesh.____________________________________________

P2
mesh L2 error order L^> error order L2 error order L^> error order

Be ore postprocessing After postprocessing, Q =  3
10 1.22E-03 - 5.60E-03 - 2.67E-03 - 1.04E-02 -
20 1.55E-04 2.98 7.74E-04 2.85 1.58E-03 0.76 6.16E-03 0.76
40 1.94E-05 3.00 9.93E-05 2.96 4.76E-04 1.73 2.22E-03 1.46
80 2.43E-06 3.00 1.25E-05 2.99 1.05E-04 2.17 6.06E-04 1.87

After postprocessing, Q =  9 After postprocessing, Q =  12
10 6.23E-04 - 1.44E-03 - 6.30E-04 - 1.49E-03 -
20 1.03E-04 2.60 3.68E-04 1.97 5.99E-05 3.39 1.94E-04 2.94
40 9.76E-05 0.08 3.26E-04 0.18 4.01E-05 0.58 1.67E-04 0.22
80 4.09E-05 1.26 1.81E-04 0.85 2.11E-05 0.93 1.12E-04 0.57

After postprocessing, Q =  21 After postprocessing, Q =  35
10 6.17E-04 - 1.42E-03 - 6.21E-04 - 1.41E-03 -
20 1.07E-05 5.85 2.95E-05 5.59 1.15E-09 5.76 2.57E-05 5.78
40 9.79E-06 0.12 3.50E-05 -0.24 2.14E-06 2.43 8.76E-06 1.55
80 8.03E-06 0.28 3.43E-05 0.03 2.01E-06 0.09 8.03E-06 0.13

After postprocessing, Q =  45 After postprocessing, CI
10 6.22E-04 - 1.42E-03 - 6.21E-04 - 1.42E-04 -
20 1.08E-05 5.84 2.30E-05 5.95 1.08E-05 5.84 2.27E-05 5.96
40 8.99E-07 3.59 3.65E-06 2.65 1.73E-07 5.96 3.36E-07 6.08
80 8.69E-07 0.05 4.34E-06 -0.25 2.74E-09 5.99 5.31E-09 5.99

T able 4.2. Errors for one-dimensional DG using P 3 polynomials for the nonuniform mesh. 
Before postprocessing, after postprocessing on the DG mesh where Q is the number of 
quadrature points, and finally after postprocessing on the consistent integration mesh. CI 
stands for consistent integration mesh.____________________________________________

P3
mesh L2 error order L^> error order L2 error order L^> error order

Be1tore postprocessing After postprocessing, Q =  4
10 5.56E-05 - 2.18E-04 - 2.97E-04 - 8.94E-04 -
20 3.55E-05 3.97 1.55E-05 3.81 1.88E-04 0.66 6.08E-04 0.55
40 2.24E-07 3.99 9.89E-07 3.97 6.85E-05 1.46 2.75E-04 1.15
80 1.40E-08 4.00 6.16E-08 4.00 1.32E-05 2.38 3.94E-05 2.80

Before postprocessing, Q =  7 After postprocessing, Q =  16
10 1.42E-04 - 3.39E-04 - 1.38E-04 - 3.40E-04 -
20 1.86E-05 2.94 6.16E-05 2.46 9.62E-07 7.16 2.74 6.95
40 1.98E-05 -0.09 6.07E-05 0.02 7.84E-07 0.30 2.82E-06 -0.04
80 4.63E-06 2.10 1.62E-05 1.90 6.21E-07 0.34 1.96E-06 0.53

Before postprocessing, Q =  31 After postprocessing, CI
10 1.38E-04 - 3.40E-04 - 1.38E-04 - 3.40E-04 -
20 6.34E-07 7.76 1.42E-06 7.91 6.32E-07 7.77 1.41E-06 7.91
40 5.96e-08 3.41 2.56E-07 2.47 2.57E-09 7.94 5.24E-09 8.08
80 5.68E-08 0.07 1.95E-07 0.39 1.02E-11 7.98 2.00E-11 8.04
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4 .3 .2 .3  T w o-D im ensional D G

In this case, we consider the L2-projection of the function

u(x, y) =  sin(2n(x +  y)), x € (0,1) ,y  € (0,1) (4.19)

to a uniform mesh. Again, we assume a periodic domain. Additionally, we see in Tables 4.3 

and 4.4 tha t although the convergence rates with the postprocessor are not always improved, 

the errors are always lower than for the input DG solution.

4 .3 .2 .4  T w o-D im ensional D G  — C onstant C oefficient 
Linear A d vection  E quation

For this example, we consider solutions of the equation

ut +  ux +  uy =  0, (x,y) € (0, 2n) x (0, 2 n ) , T  =  12.5 (4.20)

with initial condition u(0 ,x ,y ) =  sin(x +  y). Observe in Table 4.5 that when we use two 

Gauss points for linear polynomials, we immediately obtain the desired convergence rate. 

Additionally, the errors are slightly better than what is observed for the original DG solution. 

For the quadratic polynomial approximation as presented in Table 4.6, we also immediately 

improve both the errors and the convergence rate using only three Gauss points.

T ab le 4.3. Errors for two-dimensional DG using P 2 polynomials. Before postprocessing, 
after postprocessing on the DG mesh where Q is the number of quadrature points, and 
finally after postprocessing on the consistent integration mesh. CI stands for consistent 
integration mesh.

P2
mesh L 2 error order L^> error order L2 error order L^> error order

Bef ore postprocessing After postprocessing, Q =  3
162 1.90E-04 - 9.16E-04 - 3.15E-05 1.00E-04 -

223 2.38E-05 3.00 1.16E-04 2.99 3.31E-06 3.25 1.18E-05 3.08
642 2.98E-06 3.00 1.45E-05 3.00 4.11E-07 3.01 1.48E-06 3.00

2821 3.72E-07 3.00 1.81E-06 3.00 5.15E-08 3.00 1.85E-07 3.00
After postprocessing, Q =  6 After postprocessing, Q =  9

162 1.72E-05 - 2.71E-05 - 1.68E-05 - 2.41E-05 -

223 5.05E-07 5.09 1.67E-06 4.02 2.88E-07 5.87 6.75E-07 5.16
642 5.35E-08 3.24 2.03E-07 3.04 1.37E-08 4.40 6.97E-08 3.27
1282 6.65E-09 3.00 2.54E-08 3.00 1.63E-09 3.07 8.68E-09 3.00

After postprocessing, Q =  12 After postprocessing, CI
162 1.68E-05 - 2.40E-05 - 1.68E-05 2.39E-05 -

223 2.77E-07 5.92 4.53E-07 5.73 2.69E-07 5.97 3.81E-07 5.97

246 9.45E-09 4.87 3.10E-08 3.87 4.22E-09 5.99 6.00E-09 5.99

2821 1.06E-09 3.15 3.80E-09 3.02 6.60E-11 6.00 3.38E-11 6.00
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T able 4.4. Errors for two-dimensional DG using P 3 polynomials. Before postprocessing, 
after postprocessing on the DG mesh where Q is the number of quadrature points, and 
finally after postprocessing on the consistent integration mesh. CI stands for consistent 
integration mesh

P3
mesh L2 error order L^> error order L2 error order L^> error order

Bef ore postprocessing After postprocessing, Q =  4
162 4.71E-06 - 2.42E-05 - 8.49E-07 - 1.91E-06 -

2
OC 2.95E-07 4.00 1.53E-06 3.99 1.72E-08 5.62 5.21E-08 5.19

642 1.84E-08 4.00 9.58E-08 4.00 1.06E-09 4.03 3.21E-09 4.02

2oc21 1.15E-09 4.00 5.99E-09 4.00 6.60E-11 4.00 2.01E-10 3.99
After postprocessing, Q =  7 After postprocessing, Q =  10

162 8.09E-07 - 1.15E-06 - 8.07E-07 - 1.16E-06 -

22
c

c 3.43E-09 7.88 5.37E-09 7.75 3.29E-09 7.94 6.05E-09 7.57

246 2.69E-11 7.00 6.56E-11 6.36 3.02E-11 6.77 1.08E-10 5.81
1282 1.10E-12 4.61 3.03E-12 4.44 1.71E-12 4.15 5.70E-12 4.25

After postprocessing, Q =  13 After postprocessing, CI
162 8.09E-07 - 1.15E06 - 8.07E-07 - 1.14E-06 -

22
C

C 3.42E-09 7.88 5.26E-09 7.77 3.26E-09 7.95 4.61E-09 7.95

246 2.44E-11 7.13 5.84E-11 6.49 1.29E-11 7.99 1.82E-11 7.99

2821 8.62E-13 4.82 2.59E-12 4.50 5.04E-14 7.99 7.74E-14 7.88

T able 4.5. Errors for one-dimensional DG using P 1 polynomials for the linear advection 
equation. Before postprocessing, after postprocessing on the DG mesh where Q is the 
number of quadrature points, and finally after postprocessing on the consistent integration 
mesh. CI stands for consistent integration mesh.

P 1
mesh L2 error order L^> error order L2 error order L^> error order

Bef ore postprocessing After postprocessing, Q =  2
102 1.92E-01 - 2.93E-01 - 1.92E-01 - 2.78E-01 -

202 3.02E-02 2.67 4.98E-02 2.56 2.93E-02 2.71 4.35E-02 2.68

204 4.31E-03 2.81 7.69E-03 2.69 3.81E-03 2.94 5.95E-03 2.87
802 7.06E-04 2.61 2.45E-03 1.65 4.85E-04 2.97 8.24E-04 2.85

After postprocessing, Q =  5 After postprocessing, Q =  8
102 1.92E-01 - 2.73E-01 - 1.92E-01 - 2.71E-01 -

202 2.94E-02 2.71 4.18E-02 2.71 2.92E-02 2.71 4.15E-02 2.71

204 3.83E-03 2.94 5.50E-03 2.93 3.78E-03 2.95 5.39E-03 2.94

208 4.88E-04 2.97 7.10E-04 2.95 4.76E-04 2.99 6.82E-04 2.98
After postprocessing, Q =  11 After postprocessing, CI

102 1.92E-01 - 2.71E-01 - 1.92E-01 - 2.71E-01 -
202 2.92E-02 2.71 4.14E-02 2.71 2.92E-02 2.71 4.14E-02 2.71

204 3.78E-03 2.95 5.37E-03 2.95 3.78E-03 2.95 5.35E-03 2.95

208 4.75E-04 2.99 6.77E-04 2.99 4.76E-04 2.99 6.73E-04 2.99
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T able 4.6. Errors for two-dimensional DG using P 2 polynomials for the linear advection 
equation. Before postprocessing, after postprocessing on the DG mesh where Q is the 
number of quadrature points, and finally after postprocessing on the consistent integration 
mesh. CI stands for consistent integration mesh.

P2
mesh L2 error order L00 error order L2 error order L error order

Be fore postprocessing After postprocessing, Q =  3
102 4.95E-03 - 2.78E-02 - 3.48E-03 - 4.99E-03 -
202 4.87E-04 3.34 3.72E-03 2.90 1.11E-04 4.97 1.64E-04 4.92

20 5.96E-05 3.03 4.74E-04 2.97 3.83E-06 4.86 6.57E-06 4.64

208 7.44E-06 3.00 5.94E-05 3.00 2.38E-07 4.01 5.75E-07 3.51
Before postprocessing, Q =  6 After postprocessing, CI

102 3.48E-03 - 4.92E-03 - 3.48E-03 - 4.92E-03 -

202 1.10E-04 4.98 1.56E-04 4.98 1.10E-04 4.98 1.56E-04 4.98
402 3.44E-06 5.00 4.91E-06 4.99 3.42E-06 5.01 4.84E-06 5.01

208 1.12E-07 4.94 1.78E-07 4.79 1.07E-07 5.01 1.51E-07 5.01
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4 .3 .2 .5  T w o-D im ensional D G  — V ariable C oefficient 
Linear A d vection  E quation

In this example, we consider solutions to a two-dimensional variable coefficient equation,

ut +  (au)x +  (au)y =  f  (x ,y , t ) ,  (x,y)  € (0, 2n) x (0, 2 n ) , T  =  12.5 (4.21)

with the variable coefficient function a(x, y) =  2 +  sin(x +  y). We set the forcing function 

so tha t the solution is u(x, y, t) =  sin(x +  y — 2t). We observe in Tables 4.7 and 4.8 that the 

convergence rate is not always optimal, but tha t indeed, with a minimum number of Gauss 

points, we improve the errors.

4 .3 .3  Input M esh-B ased  M idpoint Q uadrature A pproach

In this section, the effect of using midpoint integration while approximating the convo

lution operator is examined for the 1D and 2D cases.

4 .3 .3 .1  O ne-D im en sional D G  — M idpoin t Q uadrature

In this example, we again consider the case of projecting

sin(2nx), x  € (0,1)

onto a piecewise polynomial space. The results are displayed in Figures 4.11, 4.12, and

4.13. The plots show tha t it takes many applications of the midpoint rule to get better 

errors for the postprocessed solution than the initial projection, and tha t the midpoint rule 

is effective when we use 128 points or greater. However, the point-wise errors are smoother 

than the errors for the piecewise polynomial projection. This is because the breakpoints for 

the midpoint rule align with the element boundaries on our mesh. Additionally, in Figure

4.14, we can see tha t the lines level off to the same error as tha t for consistent integration 

error, which is the best possible scenario.
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T able 4.7. Errors for two-dimensional DG using P 1 polynomials for the variable coefficient 
advection equation. Before postprocessing, after postprocessing on the DG mesh where 
Q is the number of quadrature points, and finally after postprocessing on the consistent 
integration mesh. CI stands for consistent integration mesh.

P 1
mesh L2 error order L00 error order L2 error order L error order

Bef ore postprocessing After postprocessing, Q =  2
102 3.52E-02 - 2.06E-01 - 1.50E-02 - 2.51E-02 -

202 8.42E-03 2.06 5.10E-02 2.01 1.85E-03 3.01 4.90E-03 2.36

20 2.09E-03 2.01 1.28E-02 2.00 3.48E-04 2.41 9.61E-04 2.35

20
O

C 5.23E-04 2.00 3.17E-03 2.00 7.78E-05 2.16 2.16E-04 2.15
After postprocessing, Q =  5 After postprocessing, Q =  8

102 1.42E-02 - 2.21E-02 - 1.41E-02 - 2.20E-02 -

202 1.36E-03 3.38 2.68E-03 3.04 1.44E-03 3.29 2.66E-03 3.05

20 1.66E-04 3.04 3.73E-04 2.85 1.95E-04 2.88 3.74E-04 2.83

20
O

C 2.11E-05 2.97 5.57E-05 2.74 2.71E-05 2.85 5.67E-05 2.72
After postprocessing, Q =  11 After postprocessing, CI

102 1.41E-02 - 2.20E-02 - 1.41E-02 - 2.20E-02 -

202 1.44E-03 3.29 2.64E-03 3.06 1.44E-03 3.29 2.63E-03 3.06

20 1.97E-04 2.87 3.69E-04 2.84 1.94E-04 2.89 3.53E-04 2.90

20
00 2.75E-05 2.84 5.53E-05 2.74 2.66E-05 2.86 5.00E-05 2.82

T able 4.8. Errors for two-dimensional DG using P 2 polynomials for the variable coefficient 
advection equation. Before postprocessing, after postprocessing on the DG mesh where 
Q is the number of quadrature points, and finally after postprocessing on the consistent 
integration mesh. CI stands for consistent integration mesh.

P2
mesh L2 error order L 00 error order L2 error order L error order

Be ore postprocessing After postprocessing, Q =  3
102 3.87E-03 - 3.39E-03 - 2.85E-04 - 6.30E-04 -

202 4.79E-04 3.02 4.06E-03 3.06 1.52E-05 4.22 4.36E-05 3.85

204 5.97E-05 3.01 4.93E-04 3.04 1.72E-06 3.14 4.73E-06 3.20

208 7.45E-06 3.00 6.05E-05 3.03 2.12E-07 3.02 5.64E-07 3.07
After postprocessing, Q =  6 After postprocessing, Q =  9

102 2.62E-04 - 4.91E-04 - 2.61E-04 4.69E-04 -

202 6.91E-06 5.24 1.43E-05 5.10 6.59E-06 5.31 1.44E-05 5.03

204 3.59E-07 4.27 1.05E-06 3.77 2.49E-07 4.73 6.30E-07 4.51

208 3.43E-08 3.39 1.02E-07 3.36 1.12E-08 4.47 4.53E-08 3.80
After postprocessing, Q =  12 After postprocessing, Q =  15

102 2.61E-04 - 4.63E-04 - 2.61E-04 4.62E-04 -

202 6.58E-06 5.31 1.06E-05 5.45 6.60E-06 5.31 1.06E-05 5.45

204 2.44E-07 4.75 4.92E-07 4.43 2.41E-07 4.76 4.47E-07 4.57

208 9.40E-09 4.70 2.64E-08 4.22 8.37E-09 4.85 1.87E-08 4.58
After postprocessing, Q =  18 After postprocessing, CI

102 2.61E-04 - 4.62E-04 - 2.61E-04 4.62E-04 -

202 6.57E-06 5.31 1.06E-05 5.45 6.57E-06 5.31 1.06E-05 5.45

204 2.41E-07 4.77 4.34E-07 4.61 2.41E-07 4.77 4.18E-07 4.66

208 8.08E-09 4.90 1.70E-08 5.34 8.04E-09 4.91 1.49E-08 4.81



P3, Before Postprocessing P3> number of points=32 P3, number of pointS=64

N=16

N=32
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F ig u re  4.11. Point-wise errors on a logarithmic scale when using midpoint integration for postprocessing with different number of 
evaluation points. Left: before postprocessing.
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F ig u re  4.12. Point-wise errors on a logarithmic scale when using midpoint integration for postprocessing with different number of 
evaluation points.
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F ig u re  4.13. Point-wise errors on a logarithmic scale when using midpoint integration for postprocessing with different number of 
evaluation points. Right: after postprocessing on the consistent integration mesh.



F ig u re  4.14. Convergence of the L2 errors when using midpoint integration for postprocessing.
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4 .3 .3 .2  T w o-D im ensional D G  — M idpoint Q uadrature
In this section, we again consider the two-dimensional projection problem given by 

Equation (4.19). It is observed tha t in the case of the 2D midpoint rule, the convergence 

rate in the L2-norm is linear, as is shown in the sample plot in Figure 4.15. We observe 

this linear trend as we double the number of evaluation points. For this particular example 

and based upon the slope of our convergence diagram, we would need approximately 213 

evaluation points to get an error level similar to the DG solution. The errors for the higher 

degree polynomials are not shown as they do not provide any new information given the 

computational time required to compute them.

4 .3 .4  T w o-D im ensional V ector Field
As it is mentioned in [67, 75], smoothness-increasing, accuracy-conserving filtering can 

be applied to discontinuous Galerkin vector fields to enhance streamline integration. In 

this section, we examine the impact of input mesh-based filtering of a 2D vector field on 

streamline calculations for visualization purposes.

A two-dimensional vector field was created from

u(r, 0)
v(r, 0)

2 cos(2O0) cos(0) — r  sin(0) 
21 (4.22)

L2 cos(2O0) sin(0) +  r  cos(0)

This has streamlines which are oscillating closed circuits. In Figures 4.16, 4.17, and 4.18,

Log2(number of evalutaion points)

F ig u re  4.15. Convergence of the L2 errors when using midpoint integration for postpro
cessing.



E F ,  di = 0.1 E F , dt = 0.01 E F > dt = 0.001

F ig u re  4.16. Streamline integration example based upon vector field mentioned in Equation (4.22). Solid black streamlines denote 
“true” solution; blue streamlines were created based upon integration on an L2 projected field; red streamlines were created based upon 
integration on a filtered field using consistent integration approach, and dashed black streamlines were created based upon integration 
on a filtered field using the input mesh-based approach. Euler forward time integration.
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RK-2, dt = 0.01 R K-2, d t = 0.001

F ig u re  4.17. Streamline integration example based upon vector field mentioned in Equation (4.22). Solid black streamlines denote 
“true” solution; blue streamlines were created based upon integration on an L2 projected field; red streamlines were created based upon 
integration on a filtered field using consistent integration approach, and dashed black streamlines were created based upon integration 
on a filtered field using the input mesh-based approach. Euler forward time integration. Rk-2 time integration.
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RK—4, d t = 0.1 R K-4, d t = 0.01 RK-4, d t = 0.001

F ig u re  4.18. Streamline integration example based upon vector field mentioned in Equation (4.22). Solid black streamlines denote 
“true” solution; blue streamlines were created based upon integration on an L2 projected field; red streamlines were created based upon 
integration on a filtered field using consistent integration approach, and dashed black streamlines were created based upon integration 
on a filtered field using the input mesh-based approach. RK-4 time integration.
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we present a sample streamline of this vector field by projecting the function above over a 

40 x 40 uniform mesh on the interval [-1,1] x [-1,1] with a starting location of (0.0, 0.3). 

The field approximations are linear in both the x — and y— directions. Streamlines were 

calculated using three different time integration schemes, Euler Forward, 2nd-order Runge- 

Kutta (RK-2), and 4th-order Runge-Kutta (RK-4), with three different time steps dt = 

0.1,0.01,0.001. The “true solution” streamlines (denoted as a solid black line in all the 

images) are calculated by performing RK-4 on the analytical function.

These results corroborate that input mesh-based integration with sufficient quadrature 

provides sufficient postprocessing benefit in terms of smoothness and accuracy to be of use 

in data processing and visualization.

4.4 Summary and Conclusions
In this chapter, we presented a atudy of the impact of numerical quadrature approxima

tions used for evaluating the convolution operator in the smoothness-increasing accuracy- 

conserving (SIAC) filter. We provided both theoretical estimates as well as empirical results 

which demonstrated the efficacy of the postprocessing approach when different levels and 

types of quadrature approximation are used. We first examined the case when consistent in

tegration with inexact Gaussian quadrature (under-integration) is used. Because consistent 

integration requires performing up to several numerical quadratures within an element, we 

considered what happens when only the original DG mesh is used as the underlying support 

mesh for integration. Under this scenario, we examined the use of Gaussian quadrature and 

midpoint quadrature. This choice highlighted the differences between polynomial-based 

high-order and adaptive low-order quadrature implementations.

There are several points that can be drawn from our results and discussions:

• The major uncontrollable cost in the postprocessing algorithm is performing several 

numerical quadratures within a DG element. In the case of uniform meshes, many 

things simplify to drastically cut down the cost; however, uniform meshes are not 

often used in general engineering practice.

• Because the postprocessor consists of integrating a B-spline kernel against a DG 

solution, there are certain things we can state about the integrand being integrated. 

As the DG element discontinuities and the B-spline knot lines cannot overlap, we 

know that in the worst case, the integrands contain a reduction in regularity due to 

the product of the DG discontinuity with the polynomial on a B-spline knot-segment.
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Although Gauss quadrature over such a region is not exact, it can nonetheless be very 

effective.

• If the cost of performing integration on the consistent mesh is prohibitive, postprocess

ing with input mesh-based postprocessing provides in many cases benefits comparable 

with consistent integration. The error introduced can be controlled by increasing the 

number of quadrature points.

• Alternatives to Gaussian quadrature can be used for evaluating the convolution inte

grals; however, a large number of samples are needed to obtain comparable results.

• When examined in light of an application area as visualization of DG solutions, input 

mesh-based postprocessing appears to provide a convenient means of obtaining smooth 

solutions with controllable accuracy.

We emphasize again that our study is primarily for engineering circumstances when 

trade-offs between time, resources, and accuracy are important. Although the case against 

committing such numerical crimes is well-known, the repercussions have not been well 

documented for the use of this filter as a visualization tool. It is concerning this specific 

crime to which we have attempted to provide both theoretical and empirical insight.



CHAPTER 5

NUMERICAL BEHAVIOR OF SIAC 
FILTERING FOR STRUCTURED  

TRIANGULATIONS

One drawback of the previous implementations of the postprocessor is that there is a 

basic assumption that the data are obtained over a uniform quadrilateral mesh. However, 

this assumption is restrictive, which makes the application of this postprocessing technique 

to general tessellations a challenging task. In this chapter, we demonstrate the behavior 

and complexity of the computational extension of this SIAC filter to structured triangular 

meshes. We furthermore show that the theoretical extension to variable coefficient equations 

over structured triangular meshes is straightforward. Moving from quadrilateral meshes to 

triangulated ones introduces more complexity in the calculations as the number of required 

integrations increases. This is a challenging first step toward implementing smoothness- 

increasing accuracy-conserving filters for unstructured tessellations. By using the usual 

B-spline implementation, we are able to improve on the order of accuracy as well as decrease 

the magnitude of the errors. We are essentially able to increase the order of accuracy from 

O(hk+1) to approximately O(h2fc+1) for structured triangular meshes and show accuracy 

enhancement for smoothly varying meshes and Union-Jack meshes. These results are valid 

regardless of whether we employ exact or inexact integration.

The detail of implementation of the SIAC filter for structured triangular meshes was 

discussed in Section 3.4.2. Here, we present the numerical behaviour of this filtering tech

nique over these type of meshes. We begin by reviewing the key concepts of discontinuous 

Galerkin methods over triangulations. In Section 5.2, we show how there is a natural 

theoretical extension of the accuracy enhancing capabilities of the SIAC filter for structured 

triangular meshes. In Section 5.3, we give numerical results confirming the usefulness of 

our smoothness-increasing accuracy-conserving filter for triangulated meshes. The result of 

these contributions has been published in [46].
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5.1 The Discontinuous Galerkin Formulation 
for Triangular Mesh Structures

In this section, we provide an overview of the discontinuous Galerkin method over a 

domain that is subdivided into triangular elements. A more thorough study of the DG 

formulation is presented in Section 2.3. Here, we introduce the notations we consider 

throughout this chapter.

We consider the numerical solution of a two-dimensional linear hyperbolic equation of 

the form

2 d
ut +  ^  —  (A i(x)u) = 0 , x e Q x [0,T], (5.1)

i=1 Xi
u(x, 0) =  uo(x), x e Q,

where x e Q, t e R, and A i (x), i =  1, 2 is bounded in the L ^  — norm. We also assume 

smooth initial conditions are given along with periodic boundary conditions.

We begin by defining our mesh such that the computational domain, Q, consists of 

N  nonoverlapping triangular elements. We designate these by Te and assume that their 

characteristic length is h. The tessellated computational domain then is given by Q = 

1JN= 1 Te. We also define Vh to be the approximation space consisting of piecewise polynomials 

of degree at most k on element Te,

Vh =  {p e l 2(Q) :  ^ |Te e Pk(Te), VTe e  q } . (5.2)

We will approximate the exact solution u(x) with uh(x) e Vh.

To begin defining our numerical method, we consider the weak form of Equation (5.2) in 

order to derive our discontinuous Galerkin approximation. That is, we multiply Equation

(5.2) by a smooth function v(x) and integrate over Te. We then make use of Green’s theorem 

in the second term to obtain a formulation that includes boundary terms. Next, the test 

function, v, is replaced with a piecewise polynomial function, vh e  V h, in the approximation 

space. The flux function is defined to be f i(x, t) =  A i(x)uh(x ,t) , i =  1,2. The DG 

formulation is then given by

2 2 
/  Vh dx  — ^  f  f i ( x ,t )  d x  dx  +  ^  f  fiiiiVh ds =  0, (5.3)
Te i=1 Te i i=1

where 3tc is the boundary of the element Te, and hi denotes the unit outward normal to the 

element boundary in the ith direction. Notice that the flux is multiply defined at element in

terfaces and therefore, we impose the definition that fa iii =  h(uh(xexterior, t ) , uh(x interior ,t))
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is a consistent two-point monotone Lipschitz flux as in [13]. We note that if we sum over 

all the elements, Te, we can rewrite Equation (5.3) as

+ B(A,ut; vt)q =  0, (5.4)

where

2 /  d \  2 f  
B(A, UT; vT) —  ̂̂  ( Ai(x)uT(x?t) j dd ) _ + E E /  Ai(x)«TVT? î ds, (5.5)

i=1 '  n Te i=1 7dTe

and we have denoted Aj(x), i — 1,2 by A for simplicity.

The approximate solution, ut, within an element is given by

k k-p
Uh(x,t) —£ £ uTP’(‘t]0(p,q)(x)j x € Te, (5.6)

p=0 q=0

where uTp,q) (t) represent the expansion coefficients and 0(p>q) (x) are the given basis functions. 

We note here that for our DG solvers, we are using the NEKTAR++ implementation given 

in [40] and available at h ttp ://w w w .n ek ta r.in fo .

5.2 Higher Order Accuracy in DG Solutions
We remind the reader that the two-dimensional postprocessor has the following form: 

u*(x,y) — J  J  KV'e ( X1̂ 1 ^ )  KV'e ( X2̂ 2 ^ )  u tx,hi(x i,x 2)dxidx2 .

In this section, we discuss the theoretical extension of the smoothness-increasing accuracy- 

conserving filter to two dimensions. We build on previous proofs in [19, 36] and account for 

a variable coefficient as well as the triangular mesh structure. This allows us to arrive at 

an estimate that demonstrates that the order accuracy of the DG solution can be improved 

from O(hk+1) to O(h2k+1) for structured triangular meshes such as that in Figure 5.1.

We begin by stating our main theorem:

T heorem  5.2.1 Let ut  be the discontinuous Galerkin solution for the variable coefficient 

problem (5.2), where Aj(x), i — 1,2 is bounded in the L ^ —norm, and uT — K ^ * u t , where 

K Ur  — K v,l(HX) is the position-dependent SIAC  kernel given in (3.19). Given sufficient 

smoothness in the initial data, we have that

||u — k H  * u fcyn < Ch2k+1, (5.7)

where C depends upon the smoothness of the solution as well as the boundedness o f Aj(x), i — 

1,2, and K ^ f  a B-spline kernel as given in Equation (3.19).

http://www.nektar.info
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Figure 5.1. A structured triangular mesh.

In this statement, we see that it is possible to improve the order of accuracy of the 

approximation through the use of a B-spline kernel. This improvement is possible provided 

the negative-order norm of the solution and the divided differences are of higher order. Since 

we are considering the simplest case of structured triangular mesh, we have translation 

invariance of the mesh. It only remains to prove that we have higher order accuracy in the 

negative-order norm for the solution and the divided differences. To show this, we follow the 

proofs in [19, 36]. We note that in those proofs, the coefficients multiplying the convection 

term are constant. Here, we consider the variable-coefficient case.

Proof: We note that we can rewrite the estimate in Equation (5.7) as

||u -  KH11 *Uh||n < ||u -  K f 1 *u ||n  +  [[K^11 * (u -  u^Hn. (5.8)

The estimate for the first term on the right side was shown in Section 3.2. For the 

second term, we need to demonstrate that the divided differences of the error in a negative- 

order norm are of higher order for the variable coefficient equation solved over a structured 

triangular mesh. We show this by considering the inner product of the errors from the DG 

solution with a smooth function, $(x), that is the final time condition to the dual problem. 

We can define this dual problem by

2
f t  + ^ 2  Ai(x)^xi =  0, (x, t) € Q x (0, T], (5.9)

i=1
f ( x ,T ) =  $(x), (5.10)

with f  having periodic boundary conditions. Multiplying the equation for the exact solu

tion, (5.2), by f  and the dual equation, (5.9), by the exact solution, we see that we have 

dt (u, f )  =  0. We can use this to begin estimating ((u — uh)(T), $ )n , which would become
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((u -  Uh)(T), $)q =(u -  uh, v)n(0) -  / {((uh)t, v)n +  (uh, Vt)n} dt
Jo

=(u -  Uh, v)n(0) -  {((Uh)t, V -  x)n +  B(A, Uh; V -  x)n} dt 
Jo

= 01 +  02; (5.11)

where B (A, uh; v  -  x) is the bilinear form given in (5.5) and v  is the solution to the dual 

equation (5.9).

We note that the proof of 0 1 being of higher order was given in [19] and is |0 1| < 

C1h2k+2\\uo\\k+1\\lp(0)\\k+1- The proof for 0 2 uses x  =  PV, the projection of v, and Lipschitz 

continuity to obtain:

|02| <

<

- /  {((uh)t,<P -  x)n +  B(A, uh; V -  x)n} dt < -  f  {B(A,uh; V -  x)n} dt 
Jo Jo

Y ]  / < (A i(x)uh (x, t), (v  -  P v)x i) - y  A i(x)iihfii(v  -  P v) d s \  dt 
t = 1 Jo { ^  J9re J

(5.12)

Adding and subtracting the term ((Ai(x)u)Xi , v  -  P v)n , and using simple inequalities gives 

the bound on 0 2  as

/  rT \ 1/2 / rT \ 1/2 / p T  \  1/2
|0 2| < C h 2 k + y J o \\uh -  u \n dtj  [ J Q llvNk+1 dtj  +  C h 2 k + \ J 0 HvNk+1dt

For the negative-order norm of the solution, we then have the estimate

|u -  uh||-(k+1),n =  Ch2k+1,

(5.13)

(5.14)

where C depends on the smoothness of the solution and the bound on ||A ||ltc(q). We 

have obtained this by using the above bounds on 1011, |0 21, as well as the definition of 

the negative-order norm together with the regularity for the variable coefficient equation, 

Nv(x,t)||l;n < C Nv(x,0)||l;n, where C  is a constant that depends on ||A||LTC(q).

We emphasize that the proof of the negative-order norm estimate of the DG solution 

did not rely on the mesh from the DG solution. The mesh type only plays a role in the 

estimation of the divided differences that help to bound the error. However, because we are 

assuming a structured triangular mesh, we maintain the translation invariance property. 

The constant now relies on the bound on the variable coefficient A i , i =  1, 2. To show that



this is indeed the case, we first define the DG method for the divided differences of the 

variable coefficient equation,
2

dHut +  J ]  dH (A(x)u)Xi = 0 , x € R2 x (0,T], (5.15)
i=1

dHu(x, 0) =  dHuo(x), (5.16)

where a  is the order of the divided difference, dH =  dal dH22 and
1 m / \

v(x) =  E  (—1)^ 7 )  v (x +  ( — *) • i=0 V /
The DG scheme is given by

(dH uh, vh)n +  Ba (A, uh; Vh)n =  0, (5.17)

for all vh € Vh, where

90

B„(A,uh;vh)n =  — E  ( ^ H ( A ^ x ) ^ ) , ^ )  +  E  E  /  ^H(Ai(x)uh)vhT?ids. (5.18)
i=1 '  « re i=1 7dTe

For the dual equation, we need to factor in the divided differences of the error:
2

dH(^«)t +  E  Ai(x)dH(^a)xj =  0, (x,t) € Q x (0,T], (5.19)
i=1

^ „ (x ,T  ) =  $  a (x) • (5.20)

Defining the dual equation in this way gives the relation dt(dHu, ^«)n =  0. Having this 

relation is an important step in the proof of the higher order accuracy in the negative-order 

norms.

We can perform a similar rearrangement of terms as above to obtain

(dH(u — uh)(T), i a )n =(dH(u — ufe), ^« )n (0)

/  {(dH(uh ^  — x)Q +  B a(A, dHuh; — x)Q} dt 
0

/  {(dH(uh), (^«)t)n — Ba(A, dHufe; ^«)n} dt
0

=d©1 + d©2 +  d©3. (5.21)

Here, d©1, d©2, and d©3 are

d© 1  =  (dH (u — uh),pa)n (0) (5.22)
cT

{(d« (u  ). ,,Qd©2 =  — f  {(dH(uh)t , ^a — x)Q +  Ba (A,dHuh; — x)Q} dt (5.23)
J0

d©3 =  — f  {(dH(uh), (^« )t)Q — dHuh; ^«)Q} d t  (5.24)
0
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The bounds on d©1 and d©2 provide a similar estimate to that appearing above and 

therefore, we only concentrate on bounding d©3. For the interior part of the integral 

of d©3, we have

/ N T(d©3) = (dH(uh) j ( f a )t)n — Ba (A, dHuh; f a )n
2

=  dH(f a )t)n +  ^  (dH(Ai(x)uh)J (f « )xi)n
i=1

2 /-  dH (A i(x)uh)fa fii ds
Te i=1

2
= ( —1)a(uh, dH( f a )t)n +  ( —1)a Ai(x)dH( f a)xi)n =  0. (5.25)

i=1

Combining the estimates and using the regularity of f , we then have

(dH(u -  uh)(T), i ) n  < Ch2fc+1, (5.26)

proving our theorem.

We point out that the negative-order norm estimates for the solution did not rely on 

the mesh type, and that in fact, we do see higher order convergence; however, the divided 

differences do. In order to extend this to unstructured meshes, we will need to focus our 

attention on improving the estimates for the divided differences of the error. The proofs for 

the accuracy extracting capabilities of the SIAC filter do not change.

5.3 Results
The main contribution of this section is the demonstration of the effectiveness of the 

quadrilateral B-spline postprocessor applied to discontinuous Galerkin solutions calculated 

over a structured triangular mesh and its accuracy enhancing capabilities. Furthermore, 

we present the results for the various choices of quadrature to see the computational effect 

of the numerical crimes committed in our integration. We examine both the L2-  and 

L00-errors, but note that the theory presented in this paper only applies to the L2-errors. 

We note that all examples have been implemented using NEKTAR++ for the discontinuous 

Galerkin solution to the partial differential equation under consideration. The classical 

Runge-Kutta 4 time-stepping scheme was used for the time discretization and the cfl was 

taken so that spatial errors dominate. We note that this restriction is not necessary in 

practical applications - the errors will still be improved over the DG errors. However, in 

order to see the higher rate of convergence, it is necessary to have such a restriction. For 

the consistent integration approach, we always use exact integration to calculate the L2
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projections, i.e., the number of quadrature points is what is required for exact integration. 

However, when performing integration considering only the DG mesh, we increase the 

number of quadrature points. In order to isolate the applicability of this filter, we assume 

that we have periodic boundary conditions for our test cases to simplify the application 

of the postprocessor so that it is only necessary to implement the symmetric filter with 

r +  1 =  2k +  1 B-splines. In addition, Gauss-Lobatto-Legendre (GLL) points are used 

in one direction, and Gauss-Radau-Legendre (GRL) points are used on the other. In all 

examples, we calculate the error for six quadrature points on each element, i.e., three GLL 

points on one direction and two GRL points on the other.

5.3.1 C onstant C oefficient Linear A d vection  E quation

For this example, we consider solutions of the equation

ut +  ux +  uy =  0, (x ,y) e  (0,1) X (0,1), T =  12.5 (5.27)

with initial condition u(0,x,y) =  sin(2n(x +  y)).

Table 5.1 shows the errors when postprocessing using inexact quadrature that only 

respects the DG element breaks and postprocessing on a mesh that respects both kernel 

breaks and DG element breaks, for a uniformly structured triangular mesh. For this case, 

we clearly see improvements from k+1 to 2k+1 in the order of the errors. Furthermore, 

we see a decrease in the magnitude of the errors. We note that the errors for inexact 

postprocessing on the DG mesh are represented for two different sets of quadrature points. 

The first two sets of errors are for inexact integration, where only the DG element breaks 

are respected. The second set of errors for inexact quadrature demonstrates our attempt to 

overcome the numerical crimes with increased quadrature points. These sets of quadrature 

points are designated “inexact postprocesssing” and the number of quadrature points are 

given in the tables. We see that even in the first set of quadrature points, the results of 

the DG mesh are similar to the results of the consistent-integration approach. In addition, 

increasing the number of quadrature points results in decreased error and improved order 

of convergence. The final set of errors is what is required to calculate the integrals exactly 

when applying the postprocessor on the consistent integration mesh. In the tables, we 

designate this “consistent postprocessing.” We see that for this set of errors, we obtain the 

desired order accuracy as given by the theory in Equation (5.7), except for P4 and the finest 

mesh, where we expect that roundoff errors have begun to dominate.

The errors for the smoothly varying triangular mesh shown in Figure 5.2 are provided 

in Table 5.2. We note that technically, the theory does not cover this case. We see that
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Table 5.1. Errors for the linear constant coefficient advection equation using P2, P3, and 
P4 polynomials for the structured (uniform) triangular mesh. Before postprocessing and 
after postprocessing on the DG mesh, where Q0 represents GLL points on one direction 
and Q1 represents GRL points on the other direction, CI indicates consistent integration.

P2
mesh L2 error order LTC error order L2 error order LTC error order

Before postprocessing Inexact postprocessing, Q0 =  5, Q1 =  4

2X
M

01 6.86E-03 - 3.27E-02 - 2.32E-03 - 3.28E-03 -
202 X  2 9.86E-04 2.78 4.35E-03 2.91 7.15E-05 5.02 1.02E-04 5.01

2X
M

0 1.36E-04 2.86 5.45E-04 3.00 2.22E-06 5.01 3.21E-06 4.99
Inexact postprocessing, Q0  =  34, Q1 =  33 Consistent postprocessing, CI

102 X  2 2.32E-03 - 3.28E-03 - 2.32E-03 - 3.28E-03 -

2X
M

02 7.14E-05 5.02 1.01E-04 5.02 7.14E-05 5.02 1.01E-04 5.02

2X
M

0 2.18E-06 5.03 3.09E-06 5.03 2.18E-06 5.03 3.09E-06 5.03
P3

Before postprocessing Inexact postprocessing, Q0 =  6, Q1 =  6

2X
M

01 4.95E-04 - 2.60E-03 - 4.58E-05 - 6.52E-05 -

2X
M

02 2.44E-05 4.34 1.74E-04 3.90 2.68E-07 7.42 4.21E-07 7.27

2X
M

0 2.01E-06 3.60 1.11E-05 3.97 3.17E-09 6.40 6.70E-09 5.97
Inexact postprocessing, Q0 =  45, Q1 =  44 Consistent postprocessing, CI

2X
M

01 4.54E-05 - 6.42E-05 - 4.54E-05 - 6.42E-05 -

2X
M

02 2.44E-07 7.54 3.51E-07 7.51 2.44E-07 7.54 3.51E-07 7.51

2X
M

0 1.41E-09 7.44 2.65E-09 7.05 1.41E-09 7.44 2.65E-09 7.05
P4

Before postprocessing Inexact postprocessing, Q0 =  8, Q1 =  7

2X
M

01 3.62E-05 - 2.05E-04 - 4.02E-06 - 5.69E-06 -

2X
M

02 1.14E-06 4.99 6.47E-06 4.99 5.81E-09 9.44 8.27E-09 9.43
402 X  2 3.56E-08 5.00 2.00E-07 5.02 2.30E-10 4.66 3.27E-10 4.66

Inexact postprocessing, Q0 =  56, Q1 =  55 Consistent postprocessing, CI

2X
M

01 4.02E-06 - 5.68E-06 - 4.02E-06 - 5.68E-06 -
202 X  2 5.84E-09 9.43 9.35E-09 9.25 5.84E-09 9.43 9.35E-09 9.25

2X
204 2.31E-10 4.66 4.74E-10 4.30 2.31E-10 4.66 4.74E-10 4.30

Figure 5.2. Smoothly varying triangular mesh.
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Table 5.2. Errors for the linear constant coefficient advection equation using P2, P3, and 
P4 polynomials for the smoothly varying triangular mesh. Before postprocessing and after 
postprocessing on the DG mesh, where Qo represents GLL points on one direction and Q1 
represents GRL points on the other direction, CI indicates consistent integration.

P2
mesh L2 error order LTC error order L2 error order LTC error order

Before postprocessing Inexact postprocessing, Q0 =  5, Q1 =  4
102 X  2 1.11E-02 - 9.15E-02 - 6.32E-03 - 1.21E-02 -

2X
M

02 1.37E-03 3.01 1.31E-02 2.80 5.97E-04 3.40 3.75E-03 1.69

2X
M

0 1.71E-04 3.00 1.66E-03 2.98 2.53E-04 1.24 1.60E-03 1.23
Inexact postprocessing, Q0  =  34, Q1 =  33 Consistent postprocessing, CI

2X
M

01 6.17E-03 - 1.14E-02 - 6.17E-03 - 1.14E-02 -

2X
M

02 1.95E-04 4.98 5.53E-04 4.37 1.96E-04 4.98 5.49E-04 4.38

2X
M

0 7.02-E06 4.80 6.04E-05 3.19 7.08E-06 4.78 6.26E-05 3.14
P3

Before postprocessing Inexact postprocessing, Q0 =  6, Q1 =  6

2X
M

01 1.22E-03 - 1.05E-02 - 3.81E-04 - 9.88E-04 -
202 X  2 7.82E-05 3.96 7.49E-04 3.81 5.00-E05 2.93 2.64E-04 1.90

2X
M

0 4.97E-06 3.98 4.75E-05 3.98 2.37e-05 1.08 1.07E-04 1.30
Inexact postprocessing, Q0 =  45, Q1 =  44 Consistent postprocessing, CI

102 X  2 3.45E-04 - 9.37E-04 - 3.45E-04 - 9.37E-04 -

2X
M

02 1.86E-06 7.54 4.83E-06 7.60 1.86E-06 7.54 4.83E-06 7.60
2X

M
0 1.24E-08 7.23 1.02E-07 5.57 1.24E-08 7.23 1.02E-07 5.57

P4
Before postprocessing Inexact postprocessing, Q0 =  8, Q1 =  7

2X
M

01 1.11E-04 - 1.34E-03 - 7.31E-05 - 2.13E-04 -
202 X  2 3.66E-06 4.92 4.73E-05 4.82 2.83E-06 4.69 1.63E-05 3.71

2X
20 1.17E-07 4.97 1.52E-06 4.96 1.87E-06 0.60 1.38E-05 0.24

Inexact postprocessing, Q0 =  56, Q1 =  55 Consistent postprocessing, CI
102 X  2 7.25E-05 - 2.13E-04 - 7.25E-05 - 2.13E-04 -

2X
202 9.55E-08 9.57 2.76E-07 9.59 9.55E-08 9.57 2.76E-07 9.59

2X
20 3.70E-09 4.69 6.28E-09 5.46 3.70E-09 4.69 6.28E-09 5.46
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errors have decreased and the order of convergence in the L2-norm is generally better when 

postprocessing on the consistent integration mesh and improves to approximately 2k+1. 

For the smoothly varying structured triangular mesh, when using quartic polynomials and 

the finest mesh, the error values improved compared to the initial solution; however, the 

convergence rate decreased. Using the smoothly varying triangular mesh, more quadrature 

points are required to simulate the exact results. Furthermore, Figures 5.3 and 5.4 depict 

the point-wise errors in logarithmic scale when using quadratic polynomials over a 202 x 2 

mesh. From these plots, we observe that the error has decreased for the postprocessed 

solution, and the postprocessor has filtered out the oscillations. We note that the error 

plots for the inexact integration give the same results as for the consistent integration and 

therefore, we neglect to include these.

5.3.2 V ariable C oefficient Linear A d vection  E quation

For this example, we consider solutions of the equation

ut +  (au)x +  (au)y =  f, (x, y) € (0,1) x (0,1), T =  12.5. (5.28)

We implement a smooth coefficient a(x,y) =  2 +  sin(2n(x +  y)), with an initial con

dition of u(x,y, 0) =  sin(2n(x +  y)). Periodic boundary conditions are implemented in 

both directions and the forcing function, f(x ,y ,t) , is chosen so that the exact solution is 

u(x ,y ,t) =  sin(2n(x +  y — 2t)). By examining the results of this equation, we can gain 

insight into how effective the filter might be for nonlinear equations.

Table 5.3 shows the errors when postprocessing on both the consistent-integration mesh 

and the DG mesh for the structured triangular mesh. There is clear improvement from k+1 

to approximately 2k for P2 and P3 polynomials. For P4—polynomials, the improvement is 

diminished, but the magnitude of the errors improves significantly, especially for fine-mesh 

structures. The errors for the smoothly varying triangular mesh are similar, and provided 

in Table 5.4.
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Figure 5.3. Three- and two-dimensional view of point-wise errors in logarithmic scale for constant coefficient advection equation when P2 
discontinuous Galerkin method is used over a structured (uniform) triangular mesh. (a) and (c) demonstrate the initial DG approximation 
errors; (b) and (d) represent the errors after the application of the postprocessor on the consistent-integration mesh. Filled contour plots 
have been used to visualize the data for (c) and (d). The SIAC filter works to reduce the oscillations in the error. 96



(c) (d)

Figure 5.4. Three- and two-dimensional view of point-wise errors in logarithmic scale for constant coefficient advection equation when a 
P2 discontinuous Galerkin method is used over a smoothly varying triangular mesh. (a) and (c) demonstrate the initial DG approximation 
errors and (b) and (d) represent the errors after the application of the postprocessor on the consistent-integration mesh. We can clearly 
see how the SIAC filter reduces the oscillations in the error.

97
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Table 5.3. Errors for variable coefficient advection equation using P2, P3, and P4 poly
nomials. Before postprocessing and after postprocessing on the consistent-integration (CI)
and DG meshes. We have assumed a structured (uniform) triangular mesh.

P2
mesh L2 error order L̂ > error order L2 error order L̂ > error order

Before postprocessing After postprocessing, Q0 =  5, Q1 =  4
102 x 2 6.16E-03 - 3.39E-02 - 2.11E-04 - 4.19E-04
202 x 2 7.43E-04 3.05 4.11E-03 3.04 5.68E-06 5.22 1.54E-05 4.77
402 x 2 9.13E-05 3.02 4.98E-04 3.04 3.98E-07 3.84 1.05E-06 3.87

After postprocessing, Q0 =  34, Q1 =  33 After postprocessing, CI
102 x 2 2.09E-04 - 4.05E-04 - 2.09E-04 - 4.05E-04
202 x 2 4.89E-06 5.42 9.66E-06 5.39 4.89E-06 5.42 9.66E-06 5.39
402 x 2 1.74E-07 4.81 3.87E-07 4.64 1.74E-07 4.81 3.87E-07 4.64

P3
Before postprocessing After postprocessing, Q0 =  6, Q1 =  6

102 x 2 5.50E-04 - 3.34E-03 - 3.11E-05 - 4.75E-05
202 x 2 3.23E-05 4.09 2.00E-04 4.06 1.55E-07 7.65 2.98E-07 7.32
402 x 2 2.05E-06 3.98 1.20E-05 4.06 2.39E-09 6.02 5.64E-09 5.72

After postprocessing, Q0 =  45, Q1 =  44 After postprocessing, CI
102 x 2 3.08E-05 - 4.66E-05 - 3.08E-05 - 4.66E-05
202 x 2 1.55E-07 7.63 2.98E-07 7.29 1.55E-07 7.63 2.98E-07 7.29
402 x 2 2.39E-09 6.01 5.64E-09 5.72 2.39E-09 6.01 5.64E-09 5.72

P4
Before postprocessing After postprocessing, Q0 =  8, Q1 =  7

102 x 2 4.34E-05 - 2.82E-04 - 3.95E-06 - 5.61E-06
202 x 2 1.20E-06 5.18 7.75E-06 5.19 4.44E-09 9.80 7.78E-09 9.49
402 x 2 3.55E-08 5.08 2.20E-07 5.14 1.19E-10 5.22 2.73E-10 4.83

After postprocessing, Q0 =  56, Q1 =  55 After postprocessing, CI
102 x 2 3.95E-06 - 5.61E-06 - 3.95E-06 - 5.61E-06
202 x 2 4.43E-09 9.80 8.30E-09 9.40 4.43E-09 9.80 8.30E-09 9.40
402 x 2 1.19E-10 5.22 4.65E-10 4.16 1.19E-10 5.22 4.65E-10 4.16
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Table 5.4. Errors for variable coefficient advection equation using P2, P3, and P4 
polynomials for the smoothly varying triangular mesh. Before postprocessing and after
postprocessing on the consistent-integration (CI) and DG meshes.

P2
mesh L2 error order L00 error order L2 error order L 00 error order

Before postprocessing After postprocessing, Q0 =  5, Q1 =  4

2X201 1.19E-02 - 9.97E-02 - 2.78E-03 - 7.67E-03 -

2X202 1.40E-03 3.09 1.32E-02 2.92 5.67E-04 2.29 3.25E-03 2.36

2X20 1.70E-04 3.04 1.66E-03 2.99 2.54E-04 1.16 1.59E-03 1.03
After postprocessing, Q0 =  34, Q1 =  33 After postprocessing, CI

2X201 2.63E-03 - 6.83E-03 - 2.63E-03 - 6.83E-03 -

2X202 8.77E-05 4.91 3.95E-04 4.11 8.77E-05 4.91 3.95E-04 4.11

2X20 4.17E-06 4.39 4.55E-05 3.12 4.03E-06 4.44 4.55E-05 3.12
P3

Before postprocessing After postprocessing, Q0 =  6, Q1 =  6

2X201 1.30E-03 - 1.22E-02 - 3.59E-04 - 1.01E-03 -

2X202 7.81E-05 4.06 8.48E-04 3.85 4.97E-05 2.85 2.63E-04 1.94

2X20 4.91E-06 3.99 4.96E-05 4.10 2.37E-05 2.10 1.02E-04 1.37
After postprocessing, Q0 =  45, Q1 =  44 After postprocessing, CI

2X201 3.30E-04 - 9.99E-04 - 3.30E-04 - 9.99E-04 -

2X202 2.19E-06 7.24 1.55E-05 6.01 2.19E-06 7.24 1.55E-05 6.01

2X20 5.86E-08 5.22 8.26E-07 4.23 5.86E-08 5.22 8.26E-07 4.23
P4

Before postprocessing After postprocessing, Q0 =  8, Q1 =  7

2X201 1.48E-04 - 1.57E-03 - 7.36E-05 - 2.16E-04 -

2X202 4.02E-06 5.20 5.01E-05 4.97 2.83E-06 4.70 1.59E-05 3.76

2X20 1.17E-07 5.10 1.54E-06 5.02 1.87E-06 0.60 1.37E-05 0.21
After postprocessing, Q0 =  56, Q1 =  55 After postprocessing, CI

2X201 7.30E-05 - 2.16E-04 - 7.30E-05 - 2.16E-04 -

2X202 1.22E-07 9.22 5.84E-07 8.53 1.22E-07 9.22 5.84E-07 8.53

2X20 1.25E-09 6.61 1.26E-08 5.53 1.25E-09 6.61 1.26E-08 5.53

5.3 .3  T w o-D im ensional W ave E quation  as a System

We now consider the traditional second-order wave equation,

ntt -  Vxx -  Vyy =  0, (x, y) € (0,1) X (0,1), T =  6.28. (5.29)

We rewrite Equation (5.29) as a system of first-order linear equations shown below

nt +  Ux +  Vy =  0

Ut +  nx =  0 (5.30)

Vt +  ny =  0

with initial conditions

n(x,y, 0) =  0.01 X (sin(2nx) +  sin(2ny))

u(x,y, 0) =  0.01 X (sin(2nx)) (5.31)

v(x,y, 0) =  0.01 x (sin(2ny))
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and 2n periodic boundary conditions in both directions. In Tables 5.5 and 5.6, we have 

provided the errors after one period in time for the n variable. As it is presented, the 

value of the error and the order of convergence are improved after the application of the 

postprocessor. For both the structured triangular mesh and the smoothly varying mesh, 

this is the expected improvement to O (h2k+1).

Table 5.5. Errors for 2D system using P2, P3, and P4 polynomials. Before postprocessing 
and after postprocessing on the consistent-integration (CI) and DG meshes. We have
assumed a structured (uniform) triangular mesh.

P2
mesh L 2 error order L̂ > error order L2 error order L̂ > error order

Before postprocessing After postprocessing, Q0 =  5, Q1 =  4

2X201 1.24E-05 - 6.14E-05 - 2.35E-06 - 4.78E-06 -

2X202 1.56E-06 2.99 7.97E-06 2.95 5.42E-08 5.44 1.22E-07 5.29

2X20 1.95E-07 3.00 1.01E-06 2.98 3.85E-09 3.82 9.42E-09 3.70
After postprocessing, Q0 =  34, Q1 =  33 After postprocessing, CI

2X201 2.33E-06 - 4.66E-06 - 2.33e-06 - 4.66e-06 -

2X202 4.48E-08 5.70 9.03E-08 5.69 4.48e-08 5.70 9.03e-08 5.69

2X20 9.17E-10 5.61 1.85E-09 5.61 9.17E-10 5.61 1.85E-09 5.61
P3

Before postprocessing After postprocessing, Q0 =  6, Q1 =  6

2X201 6.58E-07 - 3.36E-06 - 2.31E-07 - 4.70E-07 -

2X202 4.12E-08 4.00 2.09E-07 4.01 1.17E-09 7.63 2.69E-09 7.45

2X20 2.58E-09 4.00 1.32E-08 3.98 2.13E-11 5.78 5.51E-11 5.61
After postprocessing, Q0 =  45, Q1 =  44 After postprocessing, CI

2X201 2.29E-07 - 4.58E-07 - 2.29E-07 - 3.36E-07 -

2X202 9.80E-10 7.87 1.96E-09 7.87 9.80E-10 7.87 1.96E-09 7.42

2X20 4.02E-12 7.93 8.05E-12 7.93 4.03E-12 7.93 1.37E-11 7.16
P4

Before postprocessing After postprocessing, Q0 =  8, Q1 =  7
2X201 2.44E-08 - 1.29E-07 - 2.80E-08 - 5.61E-08 -

2X202 7.64E-10 5.00 4.16E-09 4.95 3.10E-11 9.82 6.22E-11 9.82
2X20 2.40E-11 4.99 1.32E-10 4.98 8.07E-13 5.26 1.64E-12 5.25

After postprocessing, Q0 =  56, Q1 =  55 After postprocessing, CI

2X201 2.80E-08 - 5.61E-08 - 2.80E-08 - 5.61E-08 -

2X202 3.10E-11 9.82 6.19E-11 9.82 3.10E-11 9.82 6.19E-11 9.82

2X20 8.17E-13 5.24 1.78E-12 5.12 8.17E-13 5.24 1.78E-12 5.24
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Table 5.6. Errors for 2D system using P2, P3, and P4 polynomials for the smoothly varying 
triangular mesh. Before postprocessing and after postprocessing on the consistent-integra-
tion (CI) and DG meshes.

P2
mesh L2 error order L̂ > error order L2 error order L̂ > error order

Before postprocessing After postprocessing, Q0 =  5, Q1 =  4

2X201 2.79E-05 - 1.81E-04 - 1.61E-05 - 9.08E-05 -

2X202 3.57E-06 2.97 2.60E-05 2.80 8.14E-06 0.98 5.37E-05 0.76

2X20 4.48E-07 2.99 3.37E-06 2.95 3.59E-06 1.18 2.59E-05 1.05
After postprocessing, Q0 =  34, Q1 =  33 After postprocessing, CI

2X201 9.92E-06 - 3.14E-05 - 9.92E-06 - 3.14E-05 -

2X202 1.90E-07 5.71 5.30E-07 5.89 1.92E-07 5.69 5.46E-07 5.85

2X20 1.48E-08 3.68 9.27E-08 2.52 3.85E-09 5.64 2.72E-08 4.33
P3

Before postprocessing After postprocessing, Q0 =  6, Q1 =  6

2X201 1.70E-06 - 8.97E-06 - 2.67E-06 - 8.35E-06 -

2X202 1.09E-07 3.96 6.38E-07 3.81 7.07E-07 1.92 4.20E-06 0.99

2X20 6.85E-09 3.99 4.11E-08 3.96 3.55E-07 0.99 1.85E-06 1.18
After postprocessing, Q0 =  45, Q1 =  44 After postprocessing, CI

2X201 1.95E-06 - 6.84E-06 - 1.95E-06 - 6.84E-06 -

2X202 8.93E-09 7.77 2.84E-08 7.91 9.01E-09 7.76 2.84E-08 7.91

2X20 1.11E-10 6.33 5.55E-10 5.68 3.69E-11 7.93 1.06E-10 8.07
P4

Before postprocessing After postprocessing, Q0 =  8, Q1 =  7
2X201 1.21E-07 - 8.29E-07 - 4.72E-07 - 1.70E-06 -

2X202 3.87E-09 4.97 3.04E-08 4.77 4.34E-08 3.44 2.72E-07 2.64

2X20 1.22E-10 4.99 9.88E-10 4.94 2.70E-08 1.61 2.25E-07 0.27
After postprocessing, Q0 =  56, Q1 =  55 After postprocessing, CI

2X201 4.58E-07 - 1.72E-06 - 4.58E-07 - 1.72E-06 -

2X202 5.58E-10 9.68 1.86E-09 9.85 5.58E-10 9.68 1.86E-09 9.85

2X20 7.67E-13 9.51 2.98E-12 9.29 5.79E-13 9.91 1.77E-12 10.04
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5.3 .4  C onstant C oefficient Linear A d vection  E quation  
Over U nion-Jack M esh

We conclude this section by demonstrating the application of the SIAC filter on the 

solutions of the linear advection equation (Equation (8.7)) over a different type of triangular 

mesh, known as the criss-cross mesh, shown in Figure 5.5. We consider

ut +  ux +  Uy =  0, (x,y) € (0,1) x (0,1), T =  6.28 (5.32)

with initial condition u(0, x, y) =  sin(2n(x +  y)) and periodic boundary conditions. Tables 

5.7 and 5.8 present the error values for the uniform and smoothly varying criss-cross meshes 

after one period in time. The error plots for the uniform structured mesh are displayed in 

Figure 5.6. For quartic polynomials and the finest mesh, we see that the error values 

improved but the convergence rate decreased. In addition, in the smoothly varying mesh 

case, the L2-error value for the quartic polynomial and the coarsest mesh has increased and 

this is because the kernel support covers the entire area of the mesh. In general, however, 

we see that the error values and the convergence rate have improved. Moreover, the inexact 

approach when using enough quadrature points yields similar results to the exact scheme.

5.4 Summary and Conclusions
The most pressing issue in accuracy enhancement is to formulate a suitable technique for 

extracting extra accuracy from the discontinuous Galerkin solution solved over an unstruc

tured triangular mesh. In this chapter, we make a significant contribution to addressing 

this problem by demonstrating that there is a direct extension of the theory to structure 

triangular meshes as well as investigating the performance of the smoothness-increasing 

accuracy-conserving filter to two-dimensional hyperbolic equations solved over structured

Figure 5.5. Union-Jack mesh
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Table 5.7. Errors for constant coefficient advection equation over a uniformly structured 
criss-cross mesh using P2, P3, and P4 polynomials. Before postprocessing and after
postprocessing on the consistent-integration (CI) and DG meshes.

P2
mesh L2 error order L̂ > error order L2 error order L̂ > error order

Before postprocessing After postprocessing, Q0 =  5, Q1 =  4
102 x 2 2.76E-03 - 1.78E-02 - 1.14E-03 - 3.61E-03 -
202 x 2 3.47E-04 2.99 2.31E-03 2.94 6.74E-04 0.75 2.72E-03 0.40
402 x 2 4.35E-05 2.99 3.03E-04 2.93 6.76E-04 -0.004 2.83E-03 -0.05

After postprocessing, Q0 =  34, Q1 =  33 After postprocessing, CI
102 x 2 8.36E-04 - 1.30E-03 - 8.36E-04 - 1.30E-03 -
202 x 2 2.88E-05 4.86 5.55E-05 4.55 2.87E-05 4.86 5.55E-05 4.55
402 x 2 2.43E-06 3.57 5.05E-06 3.46 2.36E-06 3.60 4.63E-06 3.58

P3
Before postprocessing After postprocessing, Q0 =  6, Q1 =  6

102 x 2 2.44E-04 - 1.59E-03 - 4.22E-05 - 1.12E-04 -
202 x 2 1.54E-05 3.98 1.03E-04 3.94 2.61E-05 0.69 6.82E-05 0.72
402 x 2 9.72E-07 3.98 6.44E-06 3.99 2.55E-05 0.03 7.12E-05 -0.06

After postprocessing, Q0 =  65, Q1 =  64 After postprocessing, CI
102 x 2 3.57E-05 - 5.48E-05 - 3.57E-05 - 5.49E-05 -
202 x 2 2.40E-07 7.22 4.99E-07 6.78 2.40E-07 7.22 4.99E-07 6.78
402 x 2 9.30E-09 4.69 1.83E-08 4.78 9.97E-09 4.60 1.83E-08 4.78

P4
Before postprocessing After postprocessing, Q0 =  8, Q1 =  7

102 x 2 1.48E-05 - 1.12E-04 - 3.98E-06 - 6.36E-06 -
202 x 2 4.71E-07 4.97 3.40E-06 5.04 3.18E-07 3.65 1.19E-06 2.42
402 x 2 1.47E-08 5.00 1.07E-07 4.99 3.09E-07 0.04 1.23E-06 -0.04

After postprocessing, Q0 =  56, Q1 =  55 After postprocessing, CI
102 x 2 3.98E-06 - 5.68E-06 - 3.98E-06 - 5.68E-06 -
202 x 2 4.95E-09 9.64 8.08E-09 9.45 4.95E-09 9.64 8.08E-09 9.45
402 x 2 1.84E-09 1.43 2.65E-09 1.61 1.84E-09 1.43 2.65E-09 1.61
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Table 5.8. Errors for constant coefficient advection equation over a criss-cross mesh 
using P2, P3, and P4 polynomials. Before postprocessing and after postprocessing on the 
consistent-integration (CI) and DG meshes. We have assumed a smoothly varying criss-cross 
mesh._________________________________________________________________________

P2
mesh L2 error order L̂ > error order L2 error order L̂ > error order

Before postprocessing After postprocessing, Q0 = 5, Q1 = 4
102 x 2 5.57E-03 - 5.12E-02 - 4.10E-03 - 1.57E-02 -
202 x 2 7.25E-04 2.94 8.09E-03 2.66 2.91E-03 0.49 1.42E-02 0.14
402 x 2 9.16E-05 2.98 1.17E-03 2.78 2.88E-03 0.01 1.46E-02 0.04

After postprocessing, Q0 = 34, Q1 =  33 After postprocessing, CI
102 x 2 2.67E-03 - 6.52E-03 - 2.67E-03 - 6.52E-03 -
202 x 2 1.32E-04 4.34 5.77E-04 3.50 1.31E-04 4.35 5.78E-04 3.50
402 x 2 1.57E-05 3.07 8.99E-05 2.68 1.35E-05 3.28 9.00E-05 2.68

P3
Before postprocessing After postprocessing, Q0 = 6, Q1 = 6

102 x 2 6.51E-04 - 6.63E-03 - 4.01E-04 - 2.43E-03 -
202 x 2 4.18E-05 3.96 5.34E-04 3.63 3.72E-04 0.10 2.96E-03 -0.28
402 x 2 2.64E-06 3.98 3.15E-05 4.08 3.87E-04 -0.05 3.17E-03 -.09

After postprocessing, Q0 = 45, Q1 = 44 After postprocessing, CI
102 x 2 3.12E-04 - 8.80E-04 - 3.11E-04 - 8.80E-04 -
202 x 2 3.00E-06 6.70 2.14E-05 5.36 2.97E-06 6.71 2.14E-05 5.36
402 x 2 2.38E-07 3.66 1.63E-06 3.71 2.20E-07 3.75 1.63E-06 3.71

P4
Before postprocessing After postprocessing, Q0 = 8, Q1 = 7

102 x 2 5.52E-05 - 7.03E-04 - 7.59E-05 - 2.29E-04 -
202 x 2 1.77E-06 4.96 2.67E-05 4.71 3.59E-05 1.08 3.20E-04 -0.48
402 x 2 5.62E-08 4.97 9.03E-07 4.88 3.69E-05 -0.03 3.60E-04 -0.16

After postprocessing, Q0 = 56, Q1 = 55 After postprocessing, CI
102 x 2 7.23E-05 - 2.12E-04 - 7.23E-05 - 2.12E-04 -
202 x 2 1.07E-07 9.40 3.24E-07 9.35 1.07E-07 9.40 3.24E-07 9.35
402 x 2 2.58E-09 5.37 1.73E-08 4.23 2.35E-09 5.51 1.73E-08 4.23



Figure 5.6. Three- and two-dimensional view of point-wise errors in logarithmic scale for constant coefficient advection equation when 
a P2 discontinuous Galerkin method is used over a Union-Jack triangular mesh. (a) and (c) demonstrate the initial DG approximation 
errors and (b) and (d) represent the errors after the application of the postprocessor on the consistent-integration mesh. We can clearly 
see how the SIAC filter reduces the oscillations in the error.
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triangular meshes. The implementation of this method leads to formidable computational 

challenges because of the many (computationally intensive) integrations involved. For exact 

integration, the technique must respect both the DG mesh breaks as well as the B-spline 

kernel breaks. However, we have demonstrated that we can obtain optimal convergence 

even though we perform inconsistent integration and ignore the B-spline kernel breaks. We 

have given these elements both a uniform size structure and a smoothly varying structure. 

In both cases, we are able to improve the order of accuracy of the discontinuous Galerkin 

solution from k+1 to better then 2k, and in some cases 2k+1. The results obtained here 

are exciting because previously accuracy enhancement on triangles has been restricted to 

O(hk+2). Furthermore, we have addressed one of the computational bottlenecks of the 

multidimensional implementation of this filter by reducing the number of integrations 

required.

Forming the filter for general unstructured triangular meshes is a challenging task 

and requires visiting the issue of the appropriate interpolation function to use for the 

convolution kernel. The proofs of the higher order accuracy in the negative-order norm 

of the discontinuous Galerkin method do not rely on the mesh assumption; however, the 

accuracy-extracting capabilities of the kernel rely on the translation invariance of the mesh. 

Once this is accomplished, the postprocessor can then also be utilized for determining mesh 

adaptivity.



CHAPTER 6

IMPROVED ERRORS VERSUS HIGHER 
ORDER ACCURACY IN APPLICATIONS 

OF SIAC FILTERS TO DG SOLUTIONS

Smoothness-increasing accuracy-conserving (SIAC) filtering has demonstrated its effec

tiveness in raising the convergence rate for discontinuous Galerkin solutions from order k +  2 

to order 2k +  1 for specific types of translation invariant meshes [19, 22, 46]. Additionally, 

it improves the weak continuity in the discontinuous Galerkin method to k — 1 continuity. 

Typically, this improvement has a positive impact on the error quantity in the sense that 

it also reduces the absolute errors in the solution. However, not enough emphasis has 

been placed on the difference between superconvergent accuracy and improved errors. This 

distinction is particularly important when it comes to interpreting the interplay introduced 

through meshing, between geometry and filtering. The underlying mesh over which the 

DG solution is built is important because the tool used in SIAC filtering -  convolution -  

is scaled by the geometric mesh size. This scaling heavily contributes to the effectiveness 

of the postprocessor. Although the choice of this scaling is straightforward when dealing 

with a uniform mesh, it is not clear what the impact of either a global or local scaling will 

be on either the absolute error or on the superconvergence properties of the postprocessor. 

In this chapter, we present a study of the mesh scaling used in the SIAC filter and how it 

factors into the theoretical errors.

As mentioned, the typical application of SIAC filters has been to discontinuous Galerkin 

solutions on translation invariant meshes. The most common means of generating transla

tion invariant meshes is by constructing a base tessellation of size H  and repeatedly tiling 

in a nonoverlapping fashion the base tessellation until the volume of interest is filled [7, 1]. 

The effectiveness of such a translation invariant filter for discontinuous Galerkin solutions 

of linear hyperbolic equations was initially demonstrated by Cockburn, Luskin, Shu, and 

Suli [19]. A computational extension to smoothly varying meshes as well as random meshes,
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where a scaling equal to the largest element size was used, was given in [22]. For smoothly 

varying meshes, the improvement to order 2k +  1 was observed. For random meshes, there 

was no clear order improvement, which could be due to an incorrect kernel scaling. These 

results were theoretically and numerically extended to translation invariant structured 

triangular meshes in Chapter 5 and published in [46]. However, the outlook for triangular 

meshes is actually much better than those presented in [46]. Indeed, the order improvement 

was not clear for filtering over a Union-Jack mesh when a filter scaling equal H was used. 

In this chapter, we revisit the Union-Jack mesh case, as well as a Chevron triangular mesh, 

and demonstrate that it is indeed possible to obtain superconvergence of order 2k +  1 for 

these mesh types when the proper scaling of the filter, related to the translation invariant 

properties of the mesh, are employed. Furthermore we also introduce theoretical proof 

that these results can be extended to adaptive meshes that are constructed in a hierarchical 

manner -  in particular, adaptive meshes whose elements are defined by hierarchical (integer) 

splittings of elements of size H , where H  represents both the macro-element spacing used 

in the generation of the mesh and the minimum scaling used for the SIAC filter.

This chapter addresses these issues in the following manner: in Section 6.1, we present 

the theoretical extension of the SIAC filter to adaptive meshes; in Section 6.2, an emphasis 

on the difference between order improvement and error improvement is discussed through 

presenting various numerical examples. The result of these contributions has been published 

in [47].

6.1 Theoretical Kernel Scaling
In this section, a proof of the superconvergence of the DG solution through SIAC filtering 

for h =  1H  where I  is a multi-integer is given. The main theorem is the following:

T heorem  6.1.1 Let uh be the DG solution to

d
ut +  ^  AjUXi +  A0u =  0, x € Q x [0, T],

n=1
u(x, 0) =  uo(x), x € Q,

where Aj, i =  0 , . . . ,  d are constant coefficients, Q C Rd. The approximation is taken 

over a mesh whose elements are o f size h =  1H  in each coordinate direction where I is a 

multi-integer (of dimension equal to the number of elements along one coordinate direction) 

and H  represents the macro-element size of which any particular element is generated by
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hierarchical integer partitioning of the macro-element. Given sufficient smoothness in the 

initial data,

||u — K h  * Uh||n < C H 2fc+1, 

where K h  is the SIAC  postprocessing kernel scaled by H.

R em ark  1 This theorem is more about geometry than the issues o f superconvergence. 

Indeed, the difference between this estimate and the estimate in [19] has to do with the 

kernel scaling, H .

Proof: The general estimate for a uniform mesh was proven in [19]. Here, we repeat 

the important points for this extension.

First, the error is split into two parts -  the error from the design of the filter and the 

error from the approximation method used:

||u — K h * u%||n < ||u — K h * u ||q +  ||Kh * (u — Uh)||n. (6.1)
V V

Filtering exact solution Filtering of approximation

The first part of this error estimate simply uses the fact that the kernel reproduces polyno

mials of degree less than or equal to degree 2k as well as a Taylor expansion. Details are 

given in [19]. Note that it is possible to make the estimate of the first term of arbitrarily high 

order. It is therefore the second term, the postprocessed approximation, that dominates 

the error estimate.

One key aspect of the second error estimate is a property of the B-Splines. That is,

D“ (Kh * (u — Uh)) =  K h * d%(u — Uh), (6.2)

where Kh  is the kernel using B-splines of order k +  1 +  a, K % is the kernel using B-splines 

of order k +  1, and the operator d% denotes the differencing operator as defined in [11]. 

Another important factor in obtaining the bound on the approximation is the estimate 

by Bramble and Schatz [11] that bounds the L2-error by the superconvergent error in the 

negative-order norm:

||Kh * (u — Uh)||n < C £  ||D“ (Kh * (u — Uh))||-i < C £  ||d%(u — Uh)||-i < C H 2fc+1.
a<|l| a<|l|

(6.3)

This superconvergence in the negative-order norm was proven by Cockburn et al. in [19] 

for a uniform  translation invariant mesh. This is a consequence of the B-Spline property that 

allows derivatives to be expressed as divided difference quotients. The divided difference
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quotient relationship as expressed in Equation (6.2) is only possible for an H-translation 

invariant mesh or those meshes in which the mesh element spacings are integer multiples 

of the characteristic length H. This occurs automatically for uniform quadrilateral or 

hexahedral meshes as well as structured triangular meshes. However, extension to adaptive 

meshes is possible by constructing the element spacing h as an integer partitioning of the 

fundamental characteristic size, h =  |H , I  a multi-integer. When this is the case, one can 

observe that the translation operator as defined in [11] specified with respect to H  can be 

related to translation with respect to the actual element size h, i.e., over the DG mesh, as 

follows:

Tf} v(x) =  v(x +  m H ) =  v(x +  mlh) =  T/mlv(x). (6.4)

The error estimate therefore follows as the divided difference operator in Equation (6.3), 

originally expressed in terms of H, can be expressed in terms of its integer multiples. The 

constant C in the right-most expression encapsulates the impact of the (integer multiple) 

adaptive spacing.

R em ark  2 Particular emphasis should be placed on the fact that this makes the SIAC  filter 

applicable to adaptive meshes, provided the scaling is taken in the correct manner.

6.2 Numerical Results
In this section, we discuss the importance of geometric mesh assumptions for obtaining 

improved errors versus improved order of accuracy. This is done by inspecting one equation 

for different mesh types. That is,

ut +  V ■ u =  0, x € [0, 2n]2 X [0, T] 

u(x, 0) =  sin(x +  y).

An investigation of the filtered DG solution will be performed for meshes that include the 

uniform quadrilateral mesh, an adaptive mesh, a structured triangular mesh, a Union-Jack 

mesh, and a Chevron mesh. Additionally, for the first time, three-dimensional results over 

a hexahedral mesh are also given. Note that similar behavior has been observed for variable 

coefficient equations, as predicted by the theory (see Section 5.2). A particular emphasis 

will be placed on the distinction between reduced errors and higher order accuracy for a 

given scaling of the SIAC filter.
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6.2.1 U niform  Q uadrilateral M esh

The first example presented is a study of the scaling for the SIAC filter for a uniform 

quadrilateral mesh, as shown in Figure 6.1.

The theory of [19] establishes that the scaling H  used by the postprocessor should be 

the same as used to construct the mesh (i.e., the mesh is of uniform spacing H ). However, 

according to Theorem 6.1.1, a scaling of any integer multiple, m H  should also produce 

superconvergent accuracy. Indeed, in Table 6.1 the numerical results using different values 

of m  for the kernel scaling are presented. It can be seen that as long as m  > 1, accuracy 

of order 2k +  1 is obtained. Examining the errors closely, it becomes obvious that the 

errors are actually increasing as the kernel scaling becomes greater, even with this 2k  +  1 

convergence. A plot of absolute error versus different scalings is given in Figure 6.2. This 

plot demonstrates that the minimal error actually occurs with a SIAC filter scaling a bit 

less than the element spacing H  and after this scaling, the errors begin increasing, although 

maintaining the 2k+1 convergence rate. In Figure 6.3, contour plots of the errors for N  =  40 

for P2 and P3 polynomial approximations are presented for scalings of 0.5H, H , and 2H . 

The plots demonstrate that the errors get much smoother as we increase the scaling from 

0.5H to H . The errors using 2H scaling are also smooth; however, the magnitude of the 

errors is larger.

2H

____________________  ,_____ |

| | | | | | | | | | | | | | | | | | | H

(a) Uniform quadrilateral mesh (b) Filter spacing

Figure 6.1. Example of uniform quadrilateral mesh (a) and diagram of filter spacing used 
(b).



112

Table 6.1. Table of L2-errors for various scalings used in the SIAC filter for a uniform 
quadrilateral mesh. ‘x’ indicates the cases where the width of the kernel became larger than 
the computational field.______________________________________________________

m = 0.5 m = 1 m = 2 m = 3
Mesh L2 error Order L2 error Order L2 error Order L2 error Order

P2

202 2.95E-05 — 4.48E-06 — 2.69E-04 — x —

20 3.75E-06 2.98 7.09E-08 5.98 4.45E-06 5.92 4.96E-05 —

20
oc 4.7E-07 2.99 1.11E-09 5.99 7.06E-08 5.98 7.99E-07 5.95

1602 5.88E-08 3 1.74E-11 6 1.11E-09 5.99 1.26E-08 5.99
P3

202 1.99E-07 — 1.38E-07 — 3.22E-05 — x —

20 1.27E-08 3.97 5.49E-10 7.97 1.38E-07 7.87 3.4E-06 —

20
OC 7.97E-10 3.99 2.16E-12 7.99 5.49E-10 7.97 1.4E-08 7.93

1602 4.99E-11 4 9.1E-15 7.89 2.16E-12 7.99 5.52E-11 7.98
P4

20 3.36E-11 — 4.41E-12 — 4.38E-09 — x —
20

OC 1.06E-12 4.99 3.19E-15 10.4 4.41E-12 9.96 2.51E-10 —
1602 3.37E-14 4.97 2.38E-15 0.421 3.79E-15 10.2 2.48E-13 9.98



(a) P2-polynomials (b) P3-polynomials

Figure 6.2. Plots of error versus scaling (m) used in the SIAC filter for a uniform quadrilateral mesh for P2 (left) and P3 (right) 
polynomial approximations.
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6.2 .2  Q uadrilateral Cross M esh

In this example, we consider a variable-spacing quadrilateral mesh. The mesh was 

designed in the following manner: let H  = N2, where N  is the total number of elements 

in one direction used in the approximation. We first divide the mesh into a collection 

of evenly-spaced quadrilateral macro-elements of size H . In order to generate the final 

mesh, we further split some of these quadrilateral elements (more towards the middle of the 

mesh) into two, four, or more quadrilateral subelements, i.e., each element of the new mesh 

is created by subdividing the macro-element of size H  by some integer partition. This type 

of scaling gives an adaptive cross mesh, as shown in Figure 6.4. Note that although this 

mesh is not uniformly-spaced, the mesh construction proposed does meet a local hierarchical 

partitioning property which we have proven to be sufficient for observing superconvergence 

when applying the SIAC filter with a scaling of H.

In Table 6.2 ,the errors for mH where m = 0.5,1.0,1.5,2.0 are given. Notice that one 

begins to see the correct superconvergent rate of order 2k +  1 for a scaling of m = 1.0, as 

expected. The “x’s” given in the table denote regions in which the chosen scaling of the 

kernel makes the kernel support wider than the mesh used in the approximation. In Figure 

6.5, a plot of error versus m is given. Observe that the minimum error and the correct 

convergence rate occurs at H  (m = 1), as predicted by the theory. In Figure 6.6, contour 

error plots are shown for different scalings of the SIAC filter.

I______ I
H

(a) Variable-spacing quadrilateral (b) Filter spacing
(cross) mesh

Figure 6.4. Example of a variable-spacing quadrilateral (cross) mesh (a) and diagram of 
filter spacing used (b).
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Table 6.2. Table of L2-errors for various scalings used in the SIAC filter for a variable-s
pacing cross mesh. ‘x’ indicates the cases where the width of the kernel became larger than
the computational field.

m = 0.5 m = 1 m = 1.5 m = 2
Mesh L2 Error Order L2 Error Order L2 Error Order L2 Error Order

P2
202 1.5E-04 — 3.19E-04 — x — x —

402 1.83E-05 3.03 6.04E-06 5.72 5.11E-05 — 2.71E-04 —

802 2.34E-06 2.97 1.28E-07 5.56 8.52E-07 5.91 4.5E-06 5.91
1602 2.95E-07 2.98 4.74E-09 4.75 1.77E-08 5.59 7.21E-08 5.96

P3
202 1.91E-06 — 3.23E-05 — x — x —

402 1.24E-07 3.95 1.38E-07 7.87 3.4E-06 — 3.22E-05 —

802 7.92E-09 3.96 5.72E-10 7.92 1.4E-08 7.93 1.38E-07 7.87
1602 5E-10 3.99 3.75E-12 7.25 5.56E-11 7.97 5.5E-10 7.97

P4
402 6.61E-10 — 4.38E-09 — 2.4E-07 — x —

802 2.19E-11 4.91 7.87E-12 9.12 2.51E-10 9.9 4.38E-09 —

1602 7.6E-13 4.85 3.71E-13 4.4 4.23E-13 9.21 4.38E-12 9.96



(a) P2-polynomials (b) P3-polynomials

Figure 6.5. Plots of error versus various scalings (m) used in the SIAC filter for a variable-spacing cross mesh for P2 (left) and P3 
(right) polynomial approximations.
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Figure 6.6. Contour plots using a scaling of 0.5H (left), H  (middle), and 1.5H (right) for a variable-spacing cross quadrilateral mesh 
such as the one in Figure 6.4. Top row: P2, Bottom row: P3.
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6.2 .3  S tru ctured  Triangular M esh

Once it has been established that superconvergence occurs for various scalings of quadri

lateral meshes, it is then interesting to test whether these ideas extend to structured trian

gular meshes, as these meshes are also translation invariant. Below are the numerical results 

for three different types of structured triangular meshes: a uniform structured triangular 

mesh, a Union-Jack mesh, and a Chevron mesh. The uniform structured triangular mesh, 

as shown in Figure 6.7, is first examined to ensure the extension of the main ideas of 

Theorem 6.1.1 to this type of mesh. The DG errors together with the filtered errors were 

first presented in [46] and discussed in Chapter 5. In Figure 6.8, the L2-errors are presented 

for various scalings. It can be seen that superconvergent accuracy of order 2k +  1 occurs 

for scalings of m H , m > 1 although the errors increase with increasing m. In Figure 6.9, 

contour plots of the errors for scalings of m = 0.5,1,2 are also shown. A scaling of 0.5H 

and 2H produces worse errors than that of H, although scalings of H  and 2H also produce 

smoothness in the errors. Furthermore, in Table 6.3, the ratio of kernel size to mesh size 

is given. It demonstrates that the ratio becomes larger for increasing polynomial order 

or increased m values, which means that the footprint of the postprocessor requires more 

elements in the computation and becomes less local. Table 6.4 provides the error values.

(a) S tructured triangular mesh (b) Filter spacing

Figure 6.7. Example of structured triangular mesh (a) and diagram of filter spacing used 
(b).



•  N=202 
. *  N=402

--1-------1----- ----- 1-----

•

■ N=8G2
#  M=1602 +

A '

. •
A

A • A ■

' ■
■ ■

♦ * ■

♦

4

■ ♦

♦
J.. S. ■ ■ ■ j ..

0 .0.5 1 1.5 2 2.5 3 3.5 4  4.5m
(a) P2 -polynomials (b) P3-polynomials

Figure 6.8. Plots of error versus various scalings (m) used in the SIAC filter for a structured triangular mesh for P2 (left) and P3 (right) 
polynomial approximations.
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Table 6.3. Kernel to mesh ratios for the structured triangular mesh cases (uniform, Jack, 
and Chevron). N 2 represents the number of quadrilateral elements.

H P2 P3 P4
0.5 3.5/N 5/N 7.5/N
1 7/N 10/N 13/N
2 14/N 20/N 26/N
3 21/N 30/N 39/N
4 28/N 40/N 52/N

Table 6.4. Table of L2-errors for various H  scalings used in the SIAC filter for a structured 
triangle mesh.

- m  =  0.5 m  = 1 m  = 2 m = 3
Mesh L 2 Error Order L2 Error Order L2 Error Order L 2 Error Order

P2

202 1.01E-04 — 4.65E-06 — 2.69E-04 — x —

204 1.25E-05 3.01 7.50E-08 5.95 4.46E-06 5.92 4.96E-05 —

208 1.57E-06 3.00 1.26E-09 5.89 7.06E-08 5.98 7.99E-07 5.96
1602 2.28E-07 2.78 1.05E-09 0.259 2.14E-09 5.04 1.36E-08 5.87

P3

202 1.49E-06 — 1.38E-07 — 2.21E-04 — x —

204 9.15E-08 4.02 5.50E-10 7.97 1.38E-07 10.65 3.40E-06 —

208 5.70E-09 4.01 2.16E-12 7.99 5.49E-10 7.97 1.40E-08 7.93
1602 3.52E-10 4.02 1.64E-13 3.72 2.2E-12 7.97 5.52E-11 7.98

P4

204 7.26E-10 — 4.41E-12 — 4.38E-09 — 3.47E-07 —

208 2.24E-11 5.02 1.75E-14 7.98 4.41E-12 9.96 2.51E-10 10.43
1602 5.81E-013 5.27 2.38E-013 -3.77 2.37E-013 4.22 3.53E-013 9.47
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6.2 .4  U nion-Jack M esh

In Section 5.3.4, error results for the Union-Jack mesh were presented with a scaling of 

H2 equal to the uniform spacing of the base quadrilateral mesh. It was noted at the time 

that the correct convergence order was not obtained (and from the theory was not expected 

to be obtained), but error improvement was observed. However, as Babuska et al. noted in 

[5, 55, 8, 7], this mesh is translation invariant in H , as seen in Figure 6.10.

In Table 6.5, errors for scaling of m H , where m = 0.5,1,1.5, 2 are presented. It is clearly 

seen that the superconvergence is observed for scalings of mH where m > 1. It is interesting 

to note that the mesh is not translation invariant in 1.5H but we see the superconvergence 

of order 2k +  1. Additionally, the errors begin to worsen after the scaling of H . This is 

also seen in Figure 6.11 (m = 1). Additionally, in Figure 6.12 the differences in the errors 

between 0.25H scaling, 0.5H, and H  are shown. We obtain a much smoother contour plot 

with the H  scaling.

(a) Union-Jack mesh (b) F ilter Spacing

Figure 6.10. Example of a Union-Jack mesh (a) and diagram of filter spacing used (b).



124

Table 6.5. Table of L2-errors for various scalings used in the SIAC filter for a Union-Jack 
mesh._______________________________________________________________________

- m = 0.5 m = 1 m = 1.5 m = 2
Mesh L2 Error Order L2 Error Order L2 Error Order L2 Error Order

P2

202 2.88E-05 — 2.87E-04 — 1.98E-03 — 7.92E-02 —

20 2.39E-06 3.59 5.01E-06 5.84 5.01E-05 5.31 2.70E-04 8.19

20
OC 2.92E-07 3.03 8.81E-08 5.83 8.17E-07 5.94 4.47E-06 5.92

1602 3.66E-08 3 1.65E-09 5.74 1.31E-08 5.96 7.11E-08 5.97
P3

202 2.39E-07 — 2.23E-04 — 8.64E-02 — 6.90E-02 —

20 9.97E-09 4.59 1.38E-07 10.66 3.40E-06 14.63 4.54E-05 13.89

20
OC 5.89E-10 4.09 5.51E-10 7.97 1.39E-08 7.93 1.38E-07 8.37

1602 3.65E-11 4.01 2.2E-12 7.97 5.52E-11 7.98 5.5E-10 7.97
P4

20 1.84E-09 — 4.77E-09 — 3.49E-07 — 2.72E-03 —
20

OC 3.11E-12 9.21 5.34E-12 9.80 2.51E-10 10.44 4.38E-09 19.24
1602 2.35E-13 3.73 2.34E-013 4.52 3.51E-13 9.48 4.42E-12 9.95
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(a) P2-polynomials
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Figure 6.11. Plots of error versus various scalings used in the SIAC filter for a Union-Jack mesh for P2 (left) and P3 (right) polynomial 
approximations.

125



Figure 6.12. Contour plots using a scaling of 0.25H (left), 0.5H (middle), and H  (right) for a Union-Jack mesh such as the one in 
Figure 6.10. Top row: P2, Bottom row: P3.
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6.2.5 C hevron M esh

In this example, the structured Chevron mesh presented in Figure 6.13 is examined. 

Note that the mesh is translation invariant for H  =  2h in the x1-direction and H  =  h in 

the x 2-direction where h denotes the spacing of the base quadrilateral mesh. For simplicity 

in the calculations, the kernel scaling for the xi and x2 directions have been taken to be the 

same and equal to H  =  2h. In Figure 6.14, the errors versus different scalings are presented 

similar to previous examples. Figure 6.15 depicts the contour plots. In Table 6.6, the errors 

are presented for various choices of m . The table shows mixed results in convergence order 

for a scaling of m  =  0.5, but clear improvement to the theoretical order for m  =  1 and 

larger.

6.2 .6  H exahedral M esh

The last example that we present is the first example of the extension of this SIAC filter 

to three-dimensions. The extension is for a uniform hexahedral mesh of spacing H . In Table 

6.7, the errors for the discontinuous Galerkin solution of a three-dimensional DG projection 

problem are given along with the improved errors using the SIAC filter for various scalings 

m H . We can see that the added dimension does not reduce the order of convergence, and 

a superconvergent rate of 2k +  1 is obtained. This is in agreement with the theory [19].

(a) Chevron mesh (b) F ilter Spacing

Figure 6.13. Example of a Chevron mesh (a) and diagram of filter spacing used (b). H  
represents the minimum translation invariance of the mesh. This value is not necessarily 
the same for each direction, as it is shown in (b).



(a) P2-polynomials (b) P3-polynomials

Figure 6.14. Plots of error versus various scalings used in the SIAC filter for a Chevron mesh for P2 (left) and P3 (right) polynomial 
approximations.
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Figure 6.15. Contour plots using a scaling of 0.25H (left), 0.5H (middle), and H  (right) for a Chevron mesh such as the one in Figure 
6.13. Top row: P2, Bottom row: P3.
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Table 6.6. Table of L2-errors for various scalings used in the SIAC filter for a Chevron 
mesh._______________________________________________________________________

- m = 0.5 m = 1 m = 1.5 m = 2
Mesh L2 Error Order L2 Error Order L2 Error Order L2 Error Order

P2

202 4.06E-05 — 3.05E-04 — x — x —

204 1.46E-06 4.79 5.57E-06 5.77 5.07E-05 — 2.71E-04 —

20
OC 1.09E-07 3.74 1.06E-07 5.72 8.34E-07 5.93 4.49E-06 5.91

1602 1.29E-08 3.09 2.2E-09 5.58 1.37E-08 5.93 7.17E-08 5.97
P3

202 1.96E-07 — 2.23E-04 — x — x —

204 2.75E-09 6.16 1.38E-07 10.66 3.40E-06 — 4.54E-05 —

20
OC 2.82E-10 3.29 6.00E-10 7.85 1.40E-08 7.93 1.38E-07 8.37

1602 1.17E-11 4.59 6.27E-12 6.58 5.56E-11 7.97 5.5E-10 7.97
P4

204 9.49E-11 — 4.38E-09 — 3.48E-07 — x —

20
OC 6.01E-12 3.98 7.46E-12 9.20 2.51E-10 10.44 4.38E-09 —

1602 4.67E-13 3.68 4.67E-13 4.0 5.38E-13 8.87 4.45E-12 9.94

Table 6.7. Table of L2-errors for various scalings used in the SIAC filter for a uniform 
hexahedral mesh._______________________________________________________________

- Original DG Error m = 0.5 m = 1 m = 1.5
Test Case DG Error Order L2 Error Order L2 Error Order L2 Error Order

P2
203 1.82e-04 4.22E-05 6.71e-06 7.44e-05
403 2.28e-05 2.99 5.36e-06 2.97 1.06e-07 5.98 1.21e-06 5.94

P3
203 3.17e-06 1.57e-07 — 2.06e-07 — 5.09E-06 —
403 1.98e-07 3.99 1.00e-08 3.97 8.24e-10 7.97 2.13E-08 7.90

6.3 Summary and Conclusions
By implementing smoothness-increasing accuracy-conserving filtering, the errors for the 

DG solution can usually be improved from order k + 1 to order 2k +  1 for linear hyperbolic 

equations. Additionally, due to the nature of the convolution kernel used in this SIAC filter, 

the smoothness of the solution is also improved from only having weak continuity to having 

continuity of k — 1. However, care has to be taken with the mesh geometry and correct kernel 

scalings must be used. The emphasis of this chapter has been on the difference between 

error improvement versus order improvement in terms of geometry. In all our numerical 

examples, it has been demonstrated that it is possible to obtain superconvergence with the
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correct kernel scaling. However, if the scaling becomes too large, the errors worsen and can 

become worse than the original DG errors while maintaining superconvergence. We further 

note that when the mesh size is large enough, filtering with the true scaling parameter H 

yields the optimal results in terms of the magnitude of the error. Lastly, numerical results 

showing the effectiveness of the SIAC filter for a three-dimensional DG projection problem 

were presented. For this equation, superconvergence of order 2k +  1 was obtained, showing 

that adding a dimension did not reduce the achieved convergence rate.



CHAPTER 7

APPLICATION OF SIAC FILTERING TO 

UNSTRUCTURED TRIANGULATIONS

As was mentioned previously, allowing discontinuity between element interfaces provides 

such flexibility with the discontinuous Galerkin method that is difficult to match with 

conventional continuous Galerkin methods. Although the DG methodology can be applied 

to arbitrary triangulations, the typical application of SIAC filters with mathematically 

proven properties, as shown in Chapters 5 and 6, has been to discontinuous Galerkin 

solutions obtained over translation invariant meshes. In an attempt to make the SIAC filter 

applicable to arbitrary tessellations, Curtis et al. [22] proposed a computational extension 

of this filtering technique to smoothly varying meshes as well as random meshes. They 

provided numerical results in one dimension, which confirmed the accuracy enhancement 

of 2k +  1, proved in [19], for smoothly varying meshes when a kernel scaling equal to the 

largest element size was used. For random meshes, there was no clear order improvement. 

which may have been due to an incorrect kernel scaling. To further expand the applicability 

of the SIAC filter, we previously demonstrated how to extend the postprocessing results, 

both theoretically and numerically, to structured triangular meshes.

As the assumption of any sort of regularity, including the translation invariance of 

the mesh, is a hindrance towards making the SIAC filter applicable to real-life simula

tions, in this chapter, we demonstrate for the first time the mathematical behavior and 

computational complexity of the extension of this filter to unstructured tessellations. We 

consider four examples: a simple Delaunay triangulation, a Delaunay triangulation with 

obvious change in element sizes, a Delaunay triangulation with splitting, and a stretched 

(anisotropic) triangulation. We show that it is indeed possible to obtain reduced errors and 

improved smoothness through a proper choice of kernel scaling. These results are promising 

as they pave the way towards a more generalized SIAC filtering technique that could be 

used for arbitrary unstructured tessellations.

We proceed in this chapter by providing the implementation details of the postproces
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sor for unstructured triangular meshes and we discuss the Sutherland-Hodgman clipping 

algorithm used to compute the mesh-kernel intersections. In Section 7.2, we give numerical 

results confirming the usefulness of our SIAC filter for the proposed triangulated meshes. 

We note tha t the result of these contributions is reported in a submitted manuscript [47].

7.1 Smoothness-Increasing Accuracy-Conserving 
Filters for Unstructured Triangular Meshes

In this section, we provide the implementation details of the postprocessor over unstruc

tured triangular meshes. The implementation discussed in this section is used to produce 

the results given in Section 7.2.

In Chapters 3 and 5, we thoroughly discussed the extension of the SIAC filter to 

structured triangular meshes. Here, we simply take the existing implementation of the 

SIAC filter and apply the same ideas to unstructured triangular meshes.

The postprocessor takes as input an array of the polynomial modes used in the discon

tinuous Galerkin method and produces the values of the postprocessed solution at a set 

of specified evaluation points. We assume these evaluation points correspond with specific 

quadrature points which can be used at the end of the simulation for such things as error 

calculations. We examine how to calculate the postprocessed value at a single evaluation 

point. Postprocessing of the entire domain is obtained by repeating the same procedure 

for all the evaluation points. Let us consider the case of a discontinuous Galerkin solution 

produced over an unstructured triangular mesh, shown in Figure 7.1. We remind the reader 

tha t in two dimensions, the convolution kernel is the tensor product of one-dimensional 

kernels. Therefore, the postprocessed solution at (x, y) € Tj, becomes

1
u*(x,y) = h h I IljX2 J —̂ J —̂

where Tj is a triangular element, uh is our approximate DG solution, and we have denoted

F ig u re  7.1. A sample unstructured triangular mesh.
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the two-dimensional coordinate system as (x l ,x 2). The main difference in the implemen

tation of Equation (7.1) for unstructured triangulations versus structured meshes is in the 

choices of hXl and hX2 used to scale the kernel in the x l and x2 directions, respectively. 

As we discussed in Chapter 6, hXl =  H Xl and hX2 =  H X2, where HXl and HX2 represent 

the minimum scaling for translation invariance of the mesh. For instance, for a uniform 

quadrilateral mesh, hXl =  hX2 =  H  and is simply the uniform mesh spacing. We also 

provided mathematical proofs demonstrating that for an adaptive mesh whose elements are 

of size h =  j H , I  a multi-integer, and H  the size of the largest element, we can obtain 

the correct convergence order and smoothness enhancement in the postprocessed results by 

choosing H  as the scaling parameter. However, for an unstructured triangulation, neither 

the translation invariant property nor any interelement relation, as in the adaptive mesh case 

holds. Therefore, we require another mechanism to find the proper scaling parameter. As 

it is not straightforward to speculate as to the width of the kernel support (and hence the 

corresponding neighboring information) necessary to generate accuracy conservation and 

smoothness enhancement, we will investigate how different choices of the scaling parameter 

lead to different postprocessing results. We start by considering a scaling equal to the 

largest side of all the triangular elements, which we refer to as H. We then continue by 

investigating the impact of a kernel scaling smaller or larger than H  on postprocessing DG 

solutions. In particular, in Section 7.2, we present postprocessing results using 0.5H , 0.75H,

H , 1.5H, and 2H as kernel scaling values.

To calculate the integral involved in the postprocessed solution in Equation (7.1) exactly, 

we need to decompose the triangular elements that are covered by the kernel support into 

subelements that respect the kernel knots (which we also refer to as kernel breaks); the 

resulting integral is calculated as the summation of the integrals over each subelement. 

Figure 7.2 depicts a possible kernel-mesh intersection for a sample triangular element of the 

unstructured triangular mesh shown in Figure 7.1. As it is shown in Figure 7.2(b), we divide 

the triangular region into subregions over which there is no break in regularity. Furthermore, 

we choose to triangulate these subregions for ease of implementation. Choosing H  as the 

kernel scaling value in each direction, we can therefore rewrite Equation (7.1) as

*/ x 1 f  ~  f  ™ „  ( x i -  x \  TJ x 2 -  y \  , ,
u (x,y) =  H2  K l  h  ) K I  h  1 U h(xi,x2)dxidx2

= H 2 E  / /  K  ( XIh  x \  K  ( X2h  y \  Uh(xi,x2)dxidx2 (7.2)
TjeSupp{Ky ^ ^ ^

where we have used the compact support property of the kernel to transform the infinite 

integral to finite local sums over elements. Each of the integrals over a triangle Tj then
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(a) Triangular element (b) Integration regions

F ig u re  7.2. Demonstration of integration regions resulted from the kernel-mesh intersec
tion. Dashed lines represent the kernel breaks. Solid red lines represent a triangulation of 
the integration regions.

where N  is the total number of triangular subregions formed in the triangular element Tj 

as the result of kernel-mesh intersection.

We note here tha t to evaluate the integrals in Equation (8.6) exactly to machine pre

cision, we first map via a Duffy transformation the triangular region Tn to the standard 

triangular element defined as

and then we apply Guassian quadrature rules with enough quadrature points. For more 

information regarding the Gaussian quadrature and the various mappings involved in the 

integration, consult [46, 49, 40].

We further add tha t in order to find the footprint of the kernel on the DG mesh, we 

first lay a regular grid over our unstructured mesh. Each regular grid element contains the 

information of the triangles that intersect with it. In this way, we can easily find the extent 

of the kernel support on this regular grid and consequently compute the integration regions 

by solving a geometric intersection problem. For this, we apply the Sutherland-Hodgman 

clipping algorithm from computer graphics [69]. Next, we provide a brief overview of this 

algorithm.

becomes

(7.3)

Tst =  { (6 ,6 )1  -  1 < 6 , 6 ; 6  +  6  < ° } , (7.4)

7.1.1 T he Su therland-H odgm an C lipp ing A lgorithm
The Sutherland-Hodgman clipping algorithm finds the polygon that is the intersection 

between an arbitrary polygon (the subject polygon) and a convex polygon (the clip polygon)
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[69]. Figure 7.3 depicts a sample kernel-mesh overlap. We remind the reader that the 

convolution kernel used in the postprocessing algorithm is a linear combination of B-splines 

and therefore is a piecewise polynomial. Moreover, in two dimensions, it is the tensor 

product of one-dimensional kernels. Consequently, for implementation purposes, we will 

think of the footprint of the two-dimensional kernel as an array of squares, as depicted 

with red dashed lines in Figure 7.3 (left). Thereby, the problem of finding the integration 

regions becomes the problem of finding the intersection areas between each square of the 

kernel array (the clip polygon) and the triangular elements (the subject polygons) covered 

by the kernel support. Furthermore, it is clear tha t both the clip polygon and the subject 

polygons are convex.

To find the intersection area between a square of the kernel and a triangular element 

(Figure 7.3 (right)), we follow the Sutherland-Hodgman clipping algorithm and use a divide- 

and-conquer strategy. First, we clip the polygon (in our case, the triangular element) against 

the left clipping boundary (left side of the square in the kernel array). The resulting partially 

clipped polygon is then clipped against the top boundary, and then the process is repeated 

against the two remaining boundaries, as shown in Figure 7.4.

To clip against one boundary, the algorithm loops through all polygon vertices. At 

each step, it considers two of the vertices that we denote as previous and current. First, 

it determines whether these vertices are inside or outside the clipping boundary. This, 

of course, is a m atter of comparing the horizontal or vertical position to the boundary’s 

position. We then apply the following simple rules:

1. if the previous vertex and the current vertex are both inside the clipping boundary, 

output the current vertex,

2. if the previous vertex is inside the clipping boundary, and the current vertex is outside 

the clipping boundary, output the intersection point of the corresponding edge with 

the clipping boundary,

3. if the previous vertex and the current vertex are both outside the clipping boundary, 

then output nothing,

4. if the previous vertex is outside the clipping boundary and the current vertex is inside 

the clipping boundary, output the intersection point of the corresponding edge with 

the clipping boundary.

Following this procedure, we obtain a new polygon, clipped against one boundary, and 

ready to be clipped against the next boundary. Furthermore, we triangulate the resulting
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F ig u re  7.3. A sample kernel-mesh overlap (left). Dashed lines represent the two-dimen
sional kernel as an array of squares. In right, the intersection between a square of the kernel 
and a triangular element is shown.

F ig u re  7.4. The Sutherland-Hodgman clipping. The final intersection area is triangulated 
for ease of implementation. Dashed red lines represent a square of the kernel, solid black 
lines represent the triangular DG element, solid blue lines represent the clipped area at 
each stage of the Sutherland-Hodgman algorithm and dashed blue lines represent the final 
triangulation of the integration region.
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clipped area for ease of implementation of the quadrature rules (Figure 7.4 (right)). As 

the final triangulation is merely used for performing numerical quadrature, there is no 

rigorous requirement on the triangle element quality. We only require well-formed (i.e., 

valid) triangles over which the approximate solution and the kernel can be evaluated and 

their product integrated.

7.2 Numerical Results
In this section, we provide postprocessing results tha t demonstrate the efficacy of the 

SIAC filter when applied to multiple unstructured triangulations. In all the examples, we 

consider the solutions of the constant coefficient linear advection equation given below:

ut +  Ux +  Uy =  0, (x,y) € (0,1) x (0,1), T  =  12.5 (7.5)

with initial condition u (0 ,x ,y) =  sin(2n(x +  y)). We further note that to generate the 

various unstructured meshes, we used the Gmsh finite element mesh generator [29].

7.2.1 S im ple D elaunay Triangulation

For this example, we consider a simple Delaunay triangulation of the domain given in 

Figure 7.1. As we discussed in Section 7.1, we consider the largest side of all the triangular 

elements and denote tha t with H. We then perform postprocessing using m H  as the kernel 

scaling values, where m =  0.5,1.0,1.5,2.0. Table 7.1 and Figure 7.5 provide the L2-error 

results and plots for these scaling values. The m =  2.0 case is purposefully omitted from 

the table as this scaling is not valid for many of the meshes, i.e., the kernel would become 

larger than the domain size. However, the m =  2.0 data are provided in the error plots 

when available. This omission has been done for all the tables presented herein. Generally 

speaking, as we increase the kernel width by using a larger m, the error decreases until it 

reaches a point where we obtain the minimal error value and it increases afterwards. For 

coarser mesh structures, it is often more beneficial to use a smaller kernel to avoid the not 

valid scenarios. We further note tha t the L2-error values presented herein are always better 

than the initial DG errors by orders of magnitude.

In Figure 7.6, we present the point-wise error contour plots. As can be observed from 

these plots, the errors are highly oscillatory before the application of the postprocessor 

(left column). However, the postprocessor filters out the oscillations, and this effect is 

noticeably visible when using P4 polynomials. The magnitude of the error also decreases 

after postprocessing. Moreover, we get better results in terms of smoothness with a larger 

kernel; however, the error might increase in some cases.
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T able 7.1. L2-errors for various kernel scalings used in the SIAC filter for a simple Delaunay 
triangulation.

- m  = 0.5 m  =  0.75 m  = 1.0 m  = 1.5
Mesh L 2 Error Order L2 Error Order L2 Error Order L2 Error Order

P 2
878 1.14E-04 — 5.34E-05 — 6.54E-05 — not valid —

3588 1.40E-05 3.02 9.61E-06 2.47 6.20E-06 3.40 7.48E-06 —

14888 1.50E-06 3.22 1.02E-06 3.23 6.30E-07 3.30 2.30E-07 5.02
59264 2.07E-07 2.85 1.56E-07 2.70 1.09E-07 2.53 4.51E-08 2.35

P 3
878 1.71E-06 — 8.09E-07 — 2.95E-06 — not valid —

3588 1.05E-07 4.02 3.09E-08 4.71 1.46E-08 7.65 2.43E-07 —

14888 8.55E-09 3.61 3.45E-09 3.16 1.20E-09 3.60 9.06E-10 8.06
59264 5.21E-10 4.03 2.48E-10 3.79 1.08E-10 3.47 1.87E-11 5.59

P4
878 2.37E-08 — 1.27E-08 — not valid — not valid —

3588 3.77E-09 2.65 3.69E-09 1.78 3.69E-09 — not valid —

14888 3.57E-11 6.72 7.39E-12 8.96 6.07E-12 9.24 1.01E-11 —

59264 2.44E-12 3.87 1.55E-12 2.25 1.03E-12 2.55 6.94E-13 3.86
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F ig u re  7.5. L2-errors versus different kernel scalings when postprocessing over a simple Delaunay triangulation. Left: P2, middle: P3 
and right: P4 polynomials. N  represents the number of triangular elements in the mesh.
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P , Before postprocessing

m m I

F ig u re  7.6. Point-wise error contour plots before and after postprocessing over a simple Delaunay triangulation with N  =  14888
elements. Left column: before postprocessing; Middle column: H  scaling; Right column: 1.5H scaling. Top row: P3 polynomials;
Bottom row: P4 polynomials. 141
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7.2.2 D elaunay T riangulation w ith  E lem en t Sp littin g

For this case, we took the unstructured mesh in Figure 7.1 and refined it with splitting 

(Figure 7.7). We suspected tha t this would give better postprocessing results due to the 

natural hierarchy of solution spaces generated. Table 7.2 and Figure 7.8 provide the L2-error 

values with respect to different sizes of kernel scalings. Again, it is noted that generally, 

there is an optimal kernel scaling value for which we obtain the minimum L2-error. In 

addition, Figure 7.9 presents the point-wise error contour plots. Comparing to the contour 

plots in Figure 7.6, these provide much smoother error values.

(a) Triangular E l
ement

F ig u re  7.7. Refining a sample triangular element by splitting.

T ab le 7.2. L2-errors for various kernel scalings used in the SIAC filter for a triangulation 
with element splitting.__________________________________________________________

- m = 0.5 m =  0.75 m = 1.0 m = 1.5
Mesh L2 Error Order L2 Error Order L2 Error Order L2 Error Order

P 2
776 1.10E-04 — 7.08E-05 — 1.25E-04 — not valid —

3104 1.22E-05 3.17 7.84E-06 3.17 6.45E-06 4.27 not valid —
12416 1.46E-06 3.06 8.24E-07 3.25 5.02E-07 3.68 1.98E-06 —
49664 1.80E-07 3.15 1.09E-07 2.20 5.97E-08 3.07 8.11E-08 4.60

P 3
776 1.47E-06 — 9.88E-07 — 8.52E-06 — not valid —

3104 1.23E-07 3.57 2.71E-08 5.18 1.30E-07 6.03 not valid —
12416 1.17E-08 3.39 3.28E-09 6.02 1.99E-09 6.02 4.58E-08 —
49664 1.05E-09 3.47 2.34E-10 3.80 5.85E-11 5.08 6.20E-10 6.20

P4
776 2.68E-08 — 4.48E-08 — not valid — not valid —

3104 4.84E-10 5.79 2.52E-10 7.47 4.07E-09 — not valid —

12416 2.76E-11 4.13 6.66E-12 5.24 2.05E-11 7.63 not valid —
49664 1.49E-12 4.21 7.81E-13 3.09 7.12E-13 4.85 5.17E-12 —
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F ig u re  7.8. L2-errors versus different kernel scalings when postprocessing over a triangulation with element splitting. Left: P2, middle: 
P3, and right: P4 polynomials. N  represents the number of triangular elements in the mesh.
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F ig u re  7.9. Point-wise error contour plots before and after postprocessing over a triangulation with element splitting with N  =  12416
elements. Left column: before postprocessing; Middle column: H  scaling; Right column: 1.5H scaling. Top row: P3 polynomials; Bottom
row: P4 polynomials. 144
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7.2.3 D elaunay T riangulation w ith  V ariable-Sized E lem ents

In this example, we examine two variants of the Delaunay triangulation of the domain, 

shown in Figure 7.10, where there is an obvious spatial transition in element size in the 

interior of the domain. This change was made in the middle of the mesh in order to maintain 

the periodic boundary conditions and simplify the application of the postprocessor.

Table 7.3 and Figure 7.11 present the L2-errors for postprocessing over the Mesh Exam

ple 1 in Figure 7.10 using different kernel scaling values. Moreover, Figure 7.12 provides the 

point-wise error contour plots for this mesh. We observe similar postprocessing behavior to 

the previous mesh examples. Postprocessing results for the Mesh Example 2 are provided 

in Table 7.4 and Figures 7.13 and 7.14.

7.2.4 D elaunay T riangulation w ith  S tretched  E lem ents

Here, we consider a sample Delaunay mesh with stretched elements in the x-direction 

(Figure 7.15). This is the so-called anisotropic unstructured mesh and is often the type 

of mesh we see in practice when simulating flows which have strong preferential direction. 

Table 7.5 and Figures 7.16 and 7.17 provide the postprocessing results. Again, through the 

application of the SIAC filter, we are able to smooth out the oscillations in the error and 

obtain lower error values.

(a) Mesh Example 1 (b) Mesh Exam ple 2

F ig u re  7.10. Examples of variable-sized unstructured Delaunay triangulation.
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T able 7.3. L2-errors for various kernel scalings used in the SIAC filter for the Mesh 
Example 1.

- m = 0.5 m =  0.75 m = 1.0 m = 1.5
Mesh L2 Error Order L2 Error Order L2 Error Order L2 Error Order

P 2
1350 6.74E-05 — 4.68E-05 — 5.30E-05 — not valid —
5662 1.30E-05 2.37 7.59E-06 2.62 3.75E-06 3.82 6.78E-06 —

22960 1.66E-06 2.96 1.19E-06 2.67 7.43E-07 2.33 2.91E-07 4.54
90682 1.95E-07 3.08 1.44E-07 3.04 9.53E-08 2.96 3.37E-08 3.11

P 3
1350 9.99E-07 — 3.90E-07 — 2.06E-06 — not valid —
5662 9.84E-08 3.34 2.32E-08 4.07 1.14E-08 7.49 2.20E-07 —

22960 7.59E-09 3.69 2.70E-09 3.10 9.15E-10 3.63 8.53E-10 8.01
90682 5.04E-10 3.91 1.87E-10 3.85 5.93E-11 3.94 1.05E-11 6.34

P4
1350 1.33E-08 — 8.41E-09 — not valid — not valid —
5662 6.22E-10 4.41 1.01E-10 6.37 1.41E-10 — not valid —

22960 2.56E-11 4.60 7.12E-12 3.82 6.08E-12 4.53 9.60E-12 —
90682 2.17E-12 3.56 1.38E-12 2.36 1.04E-12 2.55 6.83E-13 3.81



F ig u re  7.11. L2-errors versus different kernel scalings when postprocessing over the Mesh Example 1. Left: P 2, middle: P 3, and right: 
P4 polynomials. N  represents the number of triangular elements in the mesh.

147



P3, Before postprocessing P3, After postprocessing, H P3, After postprocessing, 1.5H

F ig u re  7.12. Point-wise error contour plots before and after postprocessing over the Mesh Example 1 with N  =  22960 elements. Left
column: before postprocessing; Middle column: H  scaling; Right column: 1.5H scaling. Top row: P 3 polynomials; Bottom row: P4
polynomials. 148
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T able 7.4. L2-errors for various kernel scalings used in the SIAC filter for the Mesh 
Example 2.

- m = 0.5 m =  0.75 m = 1.0 m = 1.5
Mesh L 2 Error Order L2 Error Order L2 Error Order L2 Error Order

P 2
1972 6.61E-05 — 4.40E-05 — 5.02E-05 — not valid —
8240 9.06E-06 2.86 4.69E-06 3.22 2.31E-06 4.44 6.52E-06 —

34562 1.18E-06 2.94 7.99E-07 2.55 4.68E-07 2.30 1.68E-07 5.27
138254 1.38E-07 3.09 9.60E-08 3.05 6.14E-08 2.93 2.32E-08 2.84

P 3
1972 1.04E-06 — 3.97E-07 — 2.27E-06 — not valid —

8240 7.02E-08 3.88 2.01E-08 4.30 1.10E-08 7.68 2.17E-07 —
34562 6.35E-09 3.46 1.70E-09 3.56 4.01E-10 4.77 8.11E-10 8.06
138254 4.58E-10 3.79 1.65E-10 3.36 4.27E-11 3.23 7.08E-12 6.83

P4
1972 8.71E-09 — 9.29E-09 — not valid — not valid —

8240 3.75E-10 4.53 2.34E-10 5.31 2.69E-10 — not valid —
34562 2.06E-11 4.18 1.46E-11 4.00 1.45E-11 4.21 1.62E-11 —
138254 2.15E-12 3.26 1.27E-12 3.52 9.04E-13 4.00 6.28E-13 4.68



-  •  -  N=1972
-  A -  N=8240
-  » - N=34562
-  ♦ N=138254

9 -  -  _  «

A  _  ,  - A  
-  - A -  -

-  ■  ■

*  *  ♦  ; -----------♦  -

m

F ig u re  7.13. L2-errors versus different kernel scalings when postprocessing over the Mesh Example 2. Left: P2, middle: P3, and right: 
P4 polynomials. N  represents the number of triangular elements in the mesh.
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F ig u re  7.14. Point-wise error contour plots before and after postprocessing over the Mesh Example 2 with N  =  34562 elements. Left
column: before postprocessing; Middle column: H  scaling; Right column: 1.5H  scaling. Top row: P 3 polynomials; Bottom row: P4
polynomials. 151
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F ig u re  7.15. A sample unstructured triangular mesh with stretched elements in the 
x-direction.

T ab le 7.5. L2-errors for various kernel scalings used in the SIAC filter for a stretched 
triangulation.

- m = 0.5 m =  0.75 m = 1.0 m = 1.5
Mesh L2 Error Order L2 Error Order L2 Error Order L2 Error Order

P 2
796 3.38E-04 — 2.96E-04 — not valid — not valid —

3232 3.48E-05 3.27 1.86E-05 3.99 3.31E-05 — not valid —

12816 4.10E-06 3.08 2.51E-06 2.88 1.62E-06 4.35 5.54E-06 —
51430 6.79E-07 2.59 4.12E-07 2.60 2.13E-07 2.92 1.62E-07 5.09

P 3
796 5.25E-06 — not valid — not valid — not valid —

3232 5.13E-07 3.35 2.04E-07 — 1.72E-06 — not valid —
12816 3.10E-08 4.04 6.46E-09 4.98 7.44E-09 7.85 1.79E-07 —

51430 2.23E-09 3.79 5.05e-10 3.67 1.80E-10 5.36 1.45E-09 6.94
P4

796 1.07E-07 — not valid — not valid — not valid —
3232 4.40E-09 4.60 7.07E-09 — not valid — not valid —
12816 7.38E-11 5.89 9.61E-12 9.52 1.08E-10 — not valid —

51430 2.60E-12 4.82 8.17E-13 3.55 7.00E-13 7.26 1.49E-11 —
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F ig u re  7.16. L2-errors versus different kernel scalings when postprocessing over a stretched triangulation. Left: P2, middle: P3, and 
right: P4 polynomials. N  represents the number of triangular elements in the mesh.
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F ig u re  7.17. Point-wise error contour plots before and after postprocessing over a stretched triangulation with N  =  12816 elements.
Left column: before postprocessing; Middle column: H  scaling; Right column: 1.5H scaling. Top row: P 3 polynomials; Bottom row: P4
polynomials. 154
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7.3 Conclusion
The smoothness-increasing accuracy-conserving filtering technique has traditionally been 

applied to translation invariant meshes. In some cases, random meshes in one dimension 

and structured smoothly varying meshes in two dimensions were also considered. However, 

as the assumption of any sort of regularity will restrict the application of this filtering 

technique to more complex simulations, we provided in this chapter the behavior and 

complexity of the computational extension of this filtering technique to totally unstructured 

tessellations. We note tha t this is an important step towards a more generalized SIAC filter. 

We considered various unstructured tessellations and demonstrated that it is indeed possible 

to get reduced errors and improved smoothness through a proper choice of kernel scaling. 

Lastly, GPU implementations of this SIAC filter were described. Using a single GPU, up 

to a 18 x reduction in computational costs over the traditional CPU implementations can 

be obtained for these unstructured tessellations. We documented why care must be taken 

with the programming of the GPUs to obtain such a reduction when applied to SIAC 

postprocessing of DG solutions.



CHAPTER 8

APPLICATION OF THE SIAC FILTERING 
TO STRUCTURED TETRAHEDRAL  

MESHES

In this chapter, we attem pt to address the potential usefulness of smoothness-increasing 

accuracy-conserving (SIAC) filters when applied to real-world simulations. As presented 

so far, the application of the SIAC filter never exceeded beyond two-space dimensions for 

time-dependent simulations. As tetrahedral meshes are often the type considered in more 

realistic scenarios, we contribute to the class of SIAC postprocessors by demonstrating 

the effectiveness of SIAC filtering when applied to structured tetrahedral meshes. These 

types of meshes are generated by tetrahedralizing uniform hexahedra and therefore, while 

maintaining the structured nature of a hexahedral mesh, they exhibit an unstructured 

tessellation within each hexahedral element. Moreover, we address the computationally 

intensive task of performing numerical integrations when one considers tetrahedral elements 

for SIAC filtering and provide guidelines on how to ameliorate these challenges through the 

use of more general cubature rules. We consider two examples of a hyperbolic equation and 

confirm the usefulness of SIAC filters in obtaining the superconvergence accuracy of 2k +  1 

when applied to structured tetrahedral meshes. Additionally, as these filters improve the 

weak continuity in the DG method to k — 1 continuity, we provide results that show how 

postprocessing is useful in extracting smooth isosurfaces of DG fields.

We proceed in this chapter by briefly discussing the theoretical foundations in SIAC 

filtering of DG solutions and how it applies to structured tetrahedral meshes. We then 

continue by presenting the detail of the implementation as well as important practical 

considerations. Section 8.2 provides numerical results confirming the usefulness of post

processing over structured tetrahedral meshes. The results of this contribution have been 

documented in a submitted manuscript [50].
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8.1 Smoothness-Increasing Accuracy-Conserving 
Filter for Structured Tetrahedral Meshes

In this chapter, we consider accuracy enhancement of numerical solutions to three

dimensional linear hyperbolic equations of the form

3 d
ut +  ^  -d— (Ai(x)u)  =  0, x  e  Q x [0, T ],

i=1 Xi
u(x, 0) =  uo(x), x  e  Q (8.1)

where Q e  R3, and Ai(x), i =  1,2,3 is bounded in the L ^  — norm. We also assume smooth 

initial conditions are given along with periodic boundary conditions.

We continue by restating the main theorem in SIAC filtering of DG solutions, which 

was thoroughly discussed in Chapter 6:

T h eo re m  8.1.1 Let uh be the DG solution to the linear hyperbolic equation given in Equa

tion (8.1). The approximation is taken over a mesh whose elements are of size h =  1H  in 

each coordinate direction where I  is a multi-integer (of dimension equal to the number of 

elements along one coordinate direction) and H  represents the macro-element size of which 

any particular element is generated by hierarchical integer partitioning of the macro-element. 

Given sufficient smoothness in the initial data,

||u — K h  * u fc||n < CH2fc+1, (8.2)

where K h  is the postprocessing kernel in the SIAC  filter scaled by H.

Comparing to the original theorem in [19], Theorem 8.1.1 encompasses a broader range 

of mesh structures. More detail along with several numerical examples can be found in 

Chapter 6.

As discussed in previous chapters, if within each macro-element of size H  we assume 

equal partitioning, the resulting mesh will have a translation invariant structure. A trans

lation invariant mesh is a type of mesh in which we can identify a repeating pattern [7]. 

Consequently, according to Theorem 8.1.1, we are able to obtain higher order accuracy in 

the L 2-norm when postprocessing translation invariant meshes. The structured tetrahedral 

mesh we consider in this paper will fall into this category.

To generate a translation invariant structured tetrahedral mesh, we first split the domain 

into uniform hexahedral elements and then subdivide each hexahedral element into tetra- 

hedra. As it is mentioned in [26], there are eight different ways to divide a hexahedron into 

tetrahedra. These configurations are shown in Figure 8.1. As you notice from this figure, the
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F ig u re  8.1. All possible subdivisions of a hexahedral element into five and six tetrahedra. 
When juxtaposing the hexahedral elements, it is necessary to flip the hexahedron in x-, y-, or 
z-direction with the first five configurations. No flipping is required with the configurations 
in the bottom row. We consider the lower left configuration as our structured tetrahedral 
mesh.

top configuration leads to 5 tetrahedra per element while the rest lead to six tetrahedra. 

Another point worth mentioning is that in the first five configurations (first and second 

row in Figure 8.1), we sometimes need to flip the hexahedral element when constructing 

the entire mesh so that the diagonal edges of adjacent hexahedra align. We are, however, 

not required to do that if we choose any of the last three configurations (bottom row in 

Figure 8.1). In either case, we are always able to identify a repeating pattern within these 

structured meshes. Here, we have chosen the lower left configuration in Figure 8.1 as our 

structured tetrahedral mesh. We continue by providing the detail of the implementation of 

the SIAC filter over structured tetrahedral meshes.

The convolution kernel in three dimensions is formed by the tensor product of one

dimensional kernels. That is

K (x ,y ,z ) =  K (x) x K(y) x K (z). (8.3)

Consequently the postprocessor in three dimensions will have the following form: 

u*(x, y, z) =

H 1h 2H 3 j  /  /  K  ( Xlf f1 X)  K  ( X2h 2 y )  K  ( X3f f1 X)  Uh(xi,X2,X3)dXidX2dX3,
(8.4)

where Uh is the approximate DG solution of the numerical simulation and Hi, i =  1,2,3 are 

the kernel scaling parameters in each direction.
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We note that in Chapters 5 and 7, we thoroughly discussed the extension of the SIAC 

filter to structured and unstructured triangular meshes, respectively. Similarly, here we have 

taken the existing implementation of this filtering technique and applied it to structured 

tetrahedral meshes.

The convolution kernel in the SIAC filter along with the DG approximation Uh are 

piecewise polynomials. Therefore, to numerically evaluate the integral in Equation (8.4) 

exactly to machine precision, we need to subdivide the integration domain into regions 

of sufficient continuity. Previously in Chapter 7, we demonstrated that these integration 

regions can be found by solving a geometric intersection problem between a square and a 

triangle for triangular meshes. In three dimensions, the footprint of the kernel is contained 

in a cube tha t is further subdivided by the kernel knots into smaller cubes of H l x H 2 x H 3 

dimensions. As a result, to find the regions of continuity as shown in Figure 8.2, we find 

the intersection region between a tetrahedral element and a cube. For this, we again apply 

the Sutherland-Hodgman clipping algorithm from computer graphics [69].

Following Theorem 8.1.1, the scaling parameters Hi, i =  1, 2, 3, which determine the 

extent of the kernel on the DG mesh, will be equal to the translation invariance of the 

mesh. This is necessary in order to observe the proper order of convergence in the L 2-  

norm after the application of the SIAC filter. It is therefore clear tha t Hi is equal to the 

uniform mesh spacing for the configurations in the bottom row of Figure 8.1 as the entire 

mesh could be constructed by exactly repeating the hexahedral element. However, for the 

other configurations, whenever we perform a flip in a direction i, the scaling H i will be 

twice as large as the uniform mesh spacing.

To evaluate the postprocessed solution at a point denoted by (x,y, z) ,  we center the 

kernel at tha t point. We then find the intersection regions and evaluate the resulted 

integrals. Therefore, the integral in Equation (8.4) now becomes 

1
u * ( x , y , z ) = — 3 K ( x l ) K ( x 2) K ( x 3)uh(xl , x 2, x 3)dxl dx2dx3

H J  — ̂  J — ̂  J —̂

K ( x l ) K ( x 2) K ( x 3)uh(x l , x 2, x 3)dxldx2dx3 (8.5)
Tj €Supp{K}

where we have denoted K(xj )  =  K ( )  for simplicity, and S u p p {K } contains all the 

tetrahedral elements Tj tha t intersect with the kernel footprint.

We note tha t the final integration region resulted as the kernel-mesh intersection is 

itself a polyhedron. For ease of implementation, we further tetrahedralize this polyhedron

1
H 3 E T
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(a) Kernel footprint (b) Kernel-mesh intersec
tion

F ig u re  8.2. Footprint of a three-dimensional kernel (a). Demonstration of an intersection 
between a tetrahedral element and a cube of the kernel footprint (b).

by triangulating its faces (as shown in Figure 8.2b) and connecting the resulting triangles 

to the centroid of the polyhedron. Consequently, the integral in Equation (8.5) becomes

/ i? (x i )i?(x2)i?(x3 )uh(x i, x2, x3)dxi_dx2dx3

=  / KC(x1)KC(x2)KC(x3)uh(xl5x2,x 3)dx1 dx2dx3 (8.6)
n=0 Tn

where N  is the total number of tetrahedral subregions formed in the tetrahedral element 

Tj as the result of kernel-mesh intersection.

By numerically computing the integral in Equation (8.6) using a quadrature technique, 

we can now evaluate the postprocessed solution u*(x, y, z).

8.1.1 P ractica l C onsiderations

From the computational perspective, postprocessing over tetrahedral meshes is a very 

challenging task. Let us consider again the postprocessing formula given in Equation (8.4). 

Following our discussion in the previous section, in computing the postprocessed value at a 

single point (x, y,z), there exist three distinct steps:

1. Centering the kernel at (x, y, z) and identifying the support of the kernel over the DG 

mesh.

2. Solving a geometric intersection problem to obtain the integration regions.

3. Numerically evaluating the integrals by a means of quadrature rule.

In the case of structured tetrahedral meshes, it suffices to find the extent of the kernel 

on the basic hexahedral mesh which has a uniform structure. It is trivial that the footprint
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of the kernel over such a uniform mesh can be found in constant computational time. In 

the case of unstructured meshes, as it was performed in Chapter 7, we can always group the 

unstructured mesh elements within a regular grid. Consequently, we conclude tha t Step 1 

has always a constant computational complexity.

To find the integration regions in Step 2, as mentioned in the previous section, we 

perform the Sutherland-Hodgman clipping algorithm. In this algorithm, we loop through 

the faces of one polyhedron and clip it against the second polyhedron. The computational 

complexity of this algorithm is O(n), where n =  f i  x f 2 and is equal to 24 when finding the 

intersection between a cube and a tetrahedron. fi, i =  1, 2 indicate the number of faces in 

each polyhedron. For structured tetrahedral meshes, the support of the kernel spans 3k +  1 

hexahedral elements in each direction, k being the degree of the approximation. That is, 

for each evaluation point, we need to process 6 x (3k +  1)3 tetrahedra for the configuration 

we chose in this paper. As each tetrahedral element intersects with at most 8 cubes of the 

kernel, the cost of finding all the intersection regions will therefore be 8 x 6 x 24(3k +  1)3 

or O(k3).

Given the amount of processing we need to perform in Step 2, we should maintain the 

computational cost of Step 3 as low as possible in order to have a tractable postprocessing 

algorithm. It appears that the main computational bottleneck in postprocessing over 

tetrahedral meshes lies in evaluation of the integrals. The key point to consider here 

is tha t the three-dimensional integral over a tetrahedral region Tn as given in Equation 

(8.6) is in fact an expensive operator to evaluate due to several function evaluations. To 

understand why this is the case, consider quadrilateral and hexahedral meshes. For these 

mesh structures, the tensor product nature of the convolution kernel in higher dimensions 

would result in separation of the integrals and ultimately, the multidimensional integral 

could essentially be evaluated by computing one-dimensional integrals (refer to Chapter 3). 

This evaluation could even further be simplified if one also considers tensorial basis functions 

to represent the DG approximation in multidimensions [40]. Consequently, using tensor 

product Gaussian quadrature rules provides a convenient way to numerically evaluate the 

integrals involved in the convolution when dealing with tensor product mesh structures such 

as quadrilateral and hexahedral meshes. However, in the case of triangular or tetrahedral 

meshes, due to the dependency of the coordinate directions, the convolution integral is 

not separable (see Chapter 3 for triangles) and therefore, we can not reduce the cost 

of computing the 3D integral through evaluating 1D integrals. As a result, using the 

conventional tensor product quadrature rules will not be optimal in the sense of using the
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fewest function evaluations for a given approximation degree. A suitable alternative here is 

to use nontensor product formulas -generally known as cubature rules. The cubature rules 

are complicated to derive and are not known to very high orders. For our postprocessing 

experiments, we used the pregenerated points and weights by Zhang et al. in [76] and 

available for polynomials up to degree 14. We note that from equation (8.6), it is clear 

tha t the cubature rule we apply should be exact to integrate a polynomial integrand of 

degree 4k. Tables 8.1 and 8.2 provide the number of points (see [76]) required to evaluate 

the convolution integral over each region of continuity using the aforementioned quadrature 

strategies. While there is no substantial difference in the number of quadrature points for 

the case of triangular elements, there is a noticeable difference in terms of computational 

efficiency when using cubature rules for tetrahedral meshes over tensor product quadrature. 

Note that we could not find the cubature points for a k =  4 DG approximation (polynomial 

integrand of degree 16). However, in practice, we were able to use even fewer cubature 

points, tha t are required to integrate a lower degree polynomial, to evaluate the convolution 

operator. In fact, using only 24 points for a P 2 approximation, 36 points for a P 3, and 46 

points for a P 4 approximation seemed to be enough to provide the accuracy predicted by 

theory.

We further emphasize the use of the sum-factorization technique introduced in Section

3.4.1 for evaluating our DG approximation at the cubature points. The application of this

T able 8.1. Number of quadrature points required in each integration technique for 
triangular elements. k indicates the degree of the numerical approximation.

Triangles
k Tensor product Cubature

P  2 16 12
P  3 25 19
P  4 49 33

T able 8.2. Number of quadrature points required in each integration technique for 
tetrahedral elements. k indicates the degree of the numerical approximation. We were 
not able to find the cubature points for the P 4 approximation.

Tetrahedra
k Tensor product Cubature

P  2 125 46
P  3 343 140
P  4 729 -
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technique, along with the cubature rules, led to a substantial decrease in the computational 

intensity of Step 3 of the postprocessing algorithm.

8.2 Numerical Results
In this section, we provide numerical results tha t demonstrate the effectiveness of SIAC 

filtering when applied to structured tetrahedral meshes. We consider a constant coefficient 

and a variable coefficient advection equation and show tha t it is indeed possible to gain 

the optimal convergence rate of 2k +  1 in the L2- and L^-norm s after the application of 

the SIAC filter. Moreover, to demonstrate the effectiveness of SIAC filtering in introducing 

smoothness back to our numerical approximation, we provide an example of isosurfaces of 

a DG field before and after the application of the postprocessor.

8.2.1 C onstant C oefficient A d vection  E quation

For this example, we consider the following advection equation

ut +  ux +  uy +  uz =  0, (x, y, z) € (0,1) x (0,1) x (0,1), T  =  12.5, (8.7)

with initial condition u(0, x, y, z) =  sin(2n(x +  y +  z)). Table 8.3 provides the error results 

for three different mesh resolutions and polynomial degrees. From these results, it is again 

clear tha t SIAC filtering has been effective in raising the order of accuracy to 2k +  1 both 

in the L2 and L ^  norms.

8.2 .2  V ariable C oefficient A d vection  E quation

For this example, we consider solutions of the equation

ut +  (au)x +  (au)y +  (au)z =  f , (x, y, z) € (0,1) x (0 ,1), x (0,1) T  =  12.5. (8.8)

We implement a smooth coefficient a (x ,y ,z) =  2 +  sin(2n(x +  y +  z)), with an initial 

condition of u(x, y, z, 0) =  sin(2n(x+ y +  z)). Periodic boundary conditions are implemented 

in both directions and the forcing function, f  (x,y, z ,t), is chosen so tha t the exact solution 

is u(x, y, z, t) =  sin(2n(x +  y +  z — 2t)). Table 8.4 demonstrates the error results before and 

after postprocessing. Similarly to the previous example, we see a clear improvement in the 

order of accuracy. Moreover, the magnitudes of the errors are lower after the application of 

the postprocessor.
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T able 8.3. Errors before and after postprocessing the solutions of the constant coefficient
advection equation over a structured tetrahedral mesh.

Mesh L2-error Order L o -error Order L2-error Order Lo -error Order
- Before postprocessing After postprocessing

P2
6000

48000
384000

1.06E-03
1.28E-04
1.60E-05

3.04
3.00

6.78E-03
8.96E-04
1.13E-04

2.91
2.98

2.50E-04
5.52E-06
1.40E-07

5.50
5.30

7.50E-04
1.54E-05
3.82E-07

5.60
5.33

P3
6000

48000
384000

1.21E-04
7.51E-06
4.76E-07

4.01
3.98

1.30E-03
8.41E-05
5.43E-06

3.95
3.99

3.72E-05
2.15E-07
1.07E-09

7.43
7.65

8.60E-05
4.43E-07
3.01E-09

7.60
7.20

P4
6000

48000
384000

2.02E-05
6.53E-07
2.21e-08

4.95
4.88

1.70E-04
5.65E-06
1.89E-07

4.91
4.90

not valid 
2.02E-09 
5.43E-12 8.56

not valid 
6.50E-09 
1.79E-11 8.50

T able 8.4. Errors before and after postprocessing the solutions of the variable coefficient
advection equation over a structured tetrahedral mesh.

Mesh L2-error Order L -error Order L2-error Order Lo -error Order
- Before postprocessing After postprocessing

P2
6000

48000
384000

1.78E-03
2.24E-04
2.82E-05

2.99
2.98

6.50E-03
8.83E-04
1.14E-04

2.88
2.95

3.02E-04
7.61E-06
1.93E-07

5.31
5.30

6.90E-04
1.58E-05
3.71E-07

5.45
5.41

P3
6000

48000
384000

2.00E-04
1.32E-05
8.60E-07

3.92
3.94

1.10E-03
6.97E-05
4.51E-06

3.98
3.95

4.50E-05
3.06E-07
2.10E-09

7.20
7.18

9.10E-05
7.36E-07
5.79E-09

6.95
6.99

P4
6000

48000
384000

2.91E-05
9.74E-07
3.15E-08

4.90
4.95

2.00E-04
6.79E-06
2.32E-07

4.88
4.87

not valid 
5.50E-09 
1.68E-11 8.50

not valid 
8.43E-09 
2.67E-11 8.30
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8 .2 .3  Isosurfaces o f a D G  Field

Here, we again consider the advection equation given in Equation (8.7) but this time 

with u(x, y, z) =  cos(2nx) +  cos(2ny) +  cos(2nz) as the initial condition. We consider an 

isosurface of the numerical approximation of this equation before and after the application 

of the SIAC filter. Figure 8.3 demonstrates an isosurface extracted from the analytical 

field for isovalue =  0.2. To extract an isosurface we follow the approach of the traditional 

Marching Cubes (MC) algorithm [44] with some modifications. For a given MC mesh (which 

is a hexahedral mesh), we loop through individual cubes and identify the cube tha t contains 

part of the isosurface for a given isovalue. In traditional MC, linear interpolation is used 

to find the surface/edge intersection along an edge of the cube. However, in our modified 

algorithm, we perform a higher order root-finding scheme. That is, we find the intersection 

of the higher order DG approximation with the edge of the cube by a means of root-finding. 

Therefore, along an edge of the cube tha t contains the isosurface, we find the intersection 

point by finding the roots of the following equation:

uh(x) — isovalue =  0, (8.9)

where u^ is our numerical approximation as given in Equation (5.6). When generating 

isosurfaces using the postprocessed data, uh is replaced by u*, the postprocessed value 

given in Equation (8.4). We add tha t by applying a root-finding mechanism, we are able to 

observe the discontinuities tha t exist in the solution data as long as the MC grid overlaps 

with the hexahedral mesh tha t was used to construct our structured tetrahedral mesh.

Figure 8.4 depicts a zoomed-in portion of the isosurface in Figure 8.3, but this time 

using the approximate DG solution uh (Figure 8.4a) and the postprocessed solution u* 

(Figure 8.4b) to find the point of intersection in Equation (8.9). As you notice, there are 

visible discontinuities in the isosurface constructed on the DG approximation whereas in the 

isosurface extracted using the postprocessed value, there is no discontinuity. In other words, 

through the application of the SIAC filter, we are indeed able to introduce smoothness back 

to our numerical solution.

8.3 Conclusion
From its early introduction by Bramble and Schatz in [11] to its later development 

for linear hyperbolic equations by Cockburn et al. in [18, 19], there has never been a 

demonstration of the effectiveness of the Smoothness-Increasing Accuracy-Conserving filter 

over three-dimensional mesh structures. In fact, the very first attem pt of applying this 

filtering technique to meshes of nontrivial structures, mainly in one dimension, was in [22].
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F ig u re  8.3. Isosurface constructed based on the analytical solution
u(x, y , z) =  cos(2nx) +  cos(2ny) +  cos(2nz) for isovalue =  0.2.

(a) Isosurface based on the DG (b) Isosurface based on the post
solution. processed solution.

F ig u re  8.4. Comparison of isosurfaces before and after the application of the SIAC filter.

Later in a series of papers [46, 41, 47] (Chapters 5, 7, and 6), the extension to structured 

triangular meshes, general translation invariant meshes, as well as adaptive meshes and 

unstructured triangulations were provided, all in two-space dimensions. As our ultimate 

goal is the application of this filter to real-world simulations, we provided in this chapter, for 

the first time, computational results confirming the accuracy-conserving and smoothness- 

increasing capabilities of the SIAC filter over structured tetrahedral meshes. We considered 

two variants of a hyperbolic PDE and presented error results, which indicate that it is indeed 

possible to obtain the optimal 2k +  1 order of accuracy through postprocessing. We further 

demonstrated how postprocessing is useful in extracting smooth isosurfaces of DG fields. 

We believe this is a significant contribution and a major step in extending the application 

of the SIAC filter beyond conventional 2D mesh structures.



CHAPTER 9

SUMMARY AND FUTURE WORK

Throughout this dissertation, we contributed to a class of postprocessors known as 

smoothness-increasing accuracy-conserving filters by providing mathematical foundations 

and numerical examples confirming the effectiveness of this filtering technique in a variety 

of circumstances. In particular, the following contributions were made:

• A study of the numerical quadrature approximations used for evaluating the con

volution operator in SIAC  filters. Theoretical estimates as well as empirical re

sults tha t demonstrate the efficacy of the SIAC postprocessing approach when dif

ferent levels and types of quadrature approximation are used were presented. This 

study was primarily for engineering circumstances when the trade-offs between time, 

resources, and accuracy are important. These contributions were documented in 

Chapter 4 and reported in the published peer-reviewed journal article: “Quantifi

cation of errors introduced in the numerical approximation and implementation of 

smoothness-increasing accuracy-conserving (SIAC) filtering of discontinuous Galerkin 

(DG) fields,” H. Mirzaee, J. K. Ryan, and R. M. Kirby, Journal of Scientific Comput

ing, Volume 45, Pages 447-470, 2010.

• Application of the SIAC  filters to structured triangular meshes. The basic theoretical 

assumption in the previous implementations of the postprocessor limited the use to 

numerical solutions solved over a quadrilateral mesh. However, this assumption was 

restrictive, which in turn complicates the application of this postprocessing technique 

to general tessellations. We extended the current theoretical results to variable coeffi

cient hyperbolic equations solved over structured triangular meshes and demonstrated 

the effectiveness of the application of this postprocessor to structured triangular 

meshes. These contributions were documented in Chapter 5 and reported in the 

published peer-reviewed journal article: “Smoothness-increasing accuracy-conserving 

(SIAC) postprocessing for discontinuous Galerkin solutions over structured triangular



168

meshes,” H. Mirzaee, L. Ji, J. K. Ryan, and R. M. Kirby, SIAM Journal of Numerical 

Analysis, Volume 49, Pages 1899-1920, 2011.

• Improved errors versus higher order accuracy in applications of SIAC  filters to DG 

solutions. Smoothness-increasing accuracy-conserving (SIAC) filtering has demon

strated its effectiveness in raising the convergence rate for discontinuous Galerkin 

solutions from order k +  l  to order 2k +  1 for specific types of translation invariant 

meshes [19, 46]. Additionally, it improves the weak continuity in the discontinuous 

Galerkin method to k — 1 continuity. Typically, this improvement has a positive 

impact on the error quantity in the sense that it also reduces the absolute errors in 

the solution. However, not enough emphasis was placed on the difference between 

superconvergent accuracy and improved errors. This distinction is particularly im

portant when it comes to interpreting the interplay between geometry and filtering 

as introduced through meshing. We presented a study of the impact of mesh scaling 

used in the SIAC filter and how it factors into the theoretical errors. These con

tributions were documented in Chapter 6 and reported in the peer-reviewed journal 

article: “Smoothness-increasing accuracy-conserving (SIAC) filtering for discontinu

ous Galerkin solutions: Improved errors versus higher-order accuracy,” J. King, H. 

Mirzaee , J. K. Ryan and, R. M. Kirby, Journal of Scientific Computing, In press, 

2012.

• Application of the SIAC  filters to unstructured triangular meshes. Although the DG 

methodology can be applied to arbitrary triangulations, the typical application of 

SIAC filters has been to discontinuous Galerkin solutions obtained over translation 

invariant meshes such as structured quadrilaterals and triangles. As the assumption of 

any sort of regularity, including the translation invariance of the mesh, is a hindrance 

towards making the SIAC filter applicable to real-life simulations, we demonstrated 

for the first time the behavior and complexity of the computational extension of this 

filtering technique to fully unstructured tessellations. These results were promising 

as they paved the way towards a more generalized SIAC filtering technique. These 

contributions were documented in Chapter 7 and reported in the accepted journal 

article: “Smoothness-increasing accuracy-conserving (SIAC) filters for discontinuous 

Galerkin solutions over unstructured triangular meshes,” H. Mirzaee, J. King, J. 

K. Ryan and, R. M. Kirby, SIAM Journal of Scientific Computing, accepted upon 

revision, 2012.
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• Application of the SIAC  filters to structured tetrahedral meshes. While there have 

been several attem pts to demonstrate the usefulness of the SIAC filtering technique 

to nontrivial mesh structures, the application of the SIAC filter never exceeded beyond 

two-space dimensions. Thereby, we considered this contribution to be the very first 

attem pt of its kind in demonstrating the potential usefulness of SIAC filtering when 

applied to real-world simulations. We consider two examples of a hyperbolic equation 

and demonstrate tha t it is indeed possible to obtain the superconvergence accuracy of 

2k+1 through the application of the SIAC filter. These contributions were documented 

in Chapter 8 and reported in the submitted journal article:“Smoothness-increasing 

accuracy-conserving (SIAC) filters for discontinuous Galerkin solutions: Application 

to structured tetrahedral meshes,” H. Mirzaee, J. K. Ryan and, R. M. Kirby, SIAM 

Journal of Numerical Analysis, submitted, 2012.

The following contributions were made in order to provide the necessary steps and algo

rithms used to obtain the results in the above contributions:

• Efficient implementation of SIAC  filtering for DG solutions. Quite often, a numerical 

practitioner is interested in explicit steps to make a numerical scheme applicable. 

We explicitly defined the steps to efficient computation of the postprocessor applied 

to different structured mesh tessellations. These contributions were documented in 

Chapter 3 and reported in the published peer-reviewed journal article: “Efficient 

implementation of smoothness-increasing accuracy-conserving (SIAC) filters for dis

continuous Galerkin solutions,” H. Mirzaee, J. K. Ryan, and R. M. Kirby, Journal of 

Scientific Computing, Volume 52, Pages 85-112, 2011.

The extension of the SIAC filter to general unstructured tessellations was discussed in 

Chapter 7 in two-space dimensions . There, we demonstrated how filtering can be performed 

effectively through proper choices of the kernel scaling parameter. Although the results 

in Chapter 7 were indicative of the usefulness of the SIAC filter in extracting the higher 

order accuracy from approximation data obtained over unstructured meshes, the underlying 

theoretical proofs strongly depend on the translation invariance of the mesh and therefore, 

the numerical behavior of the SIAC filter can not be proven for general unstructured meshes. 

Mathematical extension of the SIAC filter to unstructured tessellations is a very challenging 

task for which we will need to focus on improving the estimates for the divided differences 

of the error. This constitutes further research.

In Chapter 8, we briefly discussed how filtering the approximation data would naturally 

result in smooth isosurfaces of DG fields. We applied a modified version of the Marching
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Cubes algorithm where we find the point of intersection via a higher order root-finding 

scheme rather than the usual linear interpolation. Using this approach of extracting isosur

faces, we further performed a preliminary investigation of the impact of postprocessing on 

the Hausdorff distance metric. Hausdorff distance is a very generic technique to define a 

distance between two nonempty sets [4]. Given two triangular representations of isosurfaces, 

one way to measure the error between them is by computing their Hausdorff distance. If 

we denote these two surfaces by S and S', the Hausdorff distance is defined by

d(S, S ') =  max(min lip — p '|L), (9.1)
pes p'eS' " 112

tha t is, it is the maximum of the minimum distances between point samples of S and S'. 

Table 9.1 presents the Hausdorff distances and their means for a sample isosurface extracted 

from a DG projection of sin(x) x sin(y) x sin(z). We projected this function onto a 20 x 20 x 20 

hexahedral mesh and considered the isosurface for the isovalue =  0.6 and kept refining the 

Marching Cubes mesh. For each level of refinement, we computed the Hausdorff distance 

and its mean with respect to the exact isosurface. To generate the exact isosurface, we 

assumed a very fine mesh and the analytical representation of the function.

From Table 9.1, we observe tha t by refining the MC mesh, we reach a mesh resolu

tion after which there is no convergence in the Hausdorff distance when using the DG 

approximation Uh to find the point of intersection. The convergence rate starts off the 

convergence rate of the MC algorithm and decreases to zero where the pointwise error 

in the approximation data begins to dominate. Comparing to the error results obtained 

using the filtered approximation, it takes more mesh refinements for the convergence rate 

to come to a halt. This could be related to the higher order estimates of the L°°-norm 

after the application of the SIAC filter. On the other hand, the higher order accuracy in 

the Hausdorff distance using the filtered data could be realized by using a higher order 

polynomial approximation with the nonfiltered solution data Uh. A natural question that 

arise here is: which approach would be (could be made) computationally more efficient? 

This constitutes further research.

Lastly, going back to our motivating example in Chapter 1, we briefly discussed how post

processing discontinuous Galerkin approximations could result in more accurate streamline 

placements. In [67], Steffen et al. investigated how SIAC filtering of DG fields for streamline 

integration compares computationally to common adaptive error control approaches. The 

authors in [67] postprocessing over the entire DG field prior to streamline integration 

using the symmetric form of the kernel discussed throughout this dissertation. As the 

symmetric form of the kernel may not be applicable over the entire domain, Walfisch et
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T able 9.1. Statistics calculated for isosurfaces extracted from the P 2 DG-projection of the
function sin(x) x sin(y) x sin(z) for isovalue =  0.6. The exact isosurface was generated on 
a 1000 x 1000 x 1000 mesh. The polynomial modes were calculated on a 20 x 20 x 20 DG 
mesh. MC stands for Marching Cubes.

P  2
DG approximation, Uh Filtered approximation, vUh

MC mesh Hausdorff order mean order Hausdorff order mean order

2 O cc 5.44E-03 - 2.83E-03 - 5.43E-03 - 2.83E-03 -

4 O ■cc 1.34E-03 2.02 6.38E-04 2.14 1.32E-03 2.04 6.43E-04 2.13
803 3.79E-04 1.82 1.68E-04 1.92 3.91E-04 1.75 1.72E-04 1.90

1 o ■cc 1.17E-04 1.69 3.90E-05 2.10 1.08E-04 1.85 3.90E-05 2.14
3203 5.70E-05 1.03 1.20E-05 1.70 2.70E-05 2.00 9.00E-06 2.11
6403 5.70E-05 0.0 1.10E-05 0.12 8.00E-06 1.75 3.00E-06 1.58
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al. [75] presented streamline integration using the one-sided form of the kernel given in

[62]. Moreover, they considered filtering only along the streamline rather than over the 

entire computational field. However, the one-sided filter in [62] is not always robust in 

terms of producing lower error values near the boundaries. In addition, it does not acquire 

any information at the point where the postprocessed value needs to be computed. For 

streamline integrators, this could result in the advection of the streamline beyond the 

position where the velocity is zero and consequently leading to a wrong visualization of 

the vector field. In [73], Slingerland et al. proposed a position-dependent form of the kernel 

tha t alleviates the challenges posed by the original form of the one-sided kernel. However, 

the behaviour of this filter for streamline integration was never investigated. Additionally, 

uniform quadrilateral meshes were always considered. The extension of the SIAC filter for 

streamline integration over unstructured tessellation is the subject of ongoing research.



APPENDIX A

GAUSSIAN QUADRATURE RULES

In numerical analysis, a quadrature rule is an approximation of the definite integral of a

domain of integration. Gaussian quadrature is a particularly accurate method for treating 

integrals where the integrand is smooth. In this technique, the integrand is represented as 

a Lagrange polynomial using the Q points £j, which are to be specified, tha t is,

above to be exact if u(£) is a polynomial of order at most Q — 1. This would be true if, 

for example, we choose the points so tha t they are equispaced in the interval. There is, 

however, a better choice of zeros which permits exact integration of polynomials of higher 

order than Q — 1. This remarkable fact was first recognised by Gauss and is at the heart of 

Gaussian quadrature.

There are three different types of Gauss quadrature known as Gauss, Gauss Radau, and 

Gauss-Lobatto. The difference between these three types comes from the different choices

function, usually stated as a weighted sum of function values at specified points within the

Q-i

u(0  =  u(&)hi (0  +  e(u)> (A.1)

where e(u) is the approximation error. Therefore, to evaluate integrals as

(A.2)

we obtain
Q -l

(A.3)

where

(A.4)

and

Since u(£) is represented by a polynomial of order Q — 1, we would expect the relation
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of quadrature zeros. Gauss quadrature uses zeros which have points that are interior to the 

interval, —1 < ( i < 1 for i =  0, ■ ■ ■ ,Q  — 1. In Gauss-Radau, the zeros include one of the 

end-points of the interval, usually (  =  —1, and in Gauss-Lobatto, the zeros include both 

end-points of the interval, tha t is (  =  ±1. We further note tha t the quadrature zeros are 

chosen so tha t are the P  zeros of the P th order Jacobi polynomial P . For further 

detail, consult [40].



APPENDIX B

CUBATURE RULES

Let T  be a d-dimensional simplex; here d =  2 (triangle) or 3 (tetrahedron). A cubature 

rule R  on T  is defined as a set of point and weight pairs: R  =  (pi,wi)\i =  1, ■ ■ ■ , n, such 

tha t for any function f  (x) defined on a domain containing T  and the points pi , its integral 

on T  can be approximated by:

where n € N is the number of points, pi are the quadrature points, wi are the associated 

weights, \T\ denotes the area (d =  2) or volume (d =  3) of T.

When dealing with a simplex, it is often convenient to use barycentric coordinates. Let 

vi , i =  1, ■ ■ ■ , d +  1, be the vertices of T. Then the barycentric coordinates ({1, ■ ■ ■ , £d+1) of 

a point p with respect to T  is determined by:

In finite element computations, numerical integration is widely used for computing 

integrals of functions or bilinear forms. For triangular meshes, numerical integrations 

on line segments, triangles, and tetrahedra are needed. In contrast to quadrilaterals or 

hexahedra on which quadrature formulas can be naturally derived from tensor products of 

one-dimensional Gauss quadrature rules, high-order nontensor product quadrature rules on 

triangles and tetrahedra are difficult to construct. In fact, many of the nontensor product 

rules published in finite element textbooks contain either negative weights or points outside 

of the integration domain, which are undesirable for numerical computations. For the 

purposes of this document, we followed the symmetric quadrature rules from [76] with all 

positive weights.

(B.1)

(B.2)

a n d £  d+1 £  =  1 .
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