
SM O O T H N E SS-IN C R E A SIN G A C C U R A C Y -

C O N SER V IN G FILTERS (SIAC) FOR

D ISC O N T IN U O U S G A LER K IN

SO LUTIO NS

by

Hanieh Mirzaee

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computing

School of Computing

The University of Utah

May 2013

Copyright © Hanieh Mirzaee 2013

All Rights Reserved

The U n i v e r s i t y of Ut a h G r a d u a t e Sc ho o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Hanieh Mirzaee

has been approved by the following supervisory committee members:

Robert M. Kirby Chair 8/21/2012
Date Approved

Jennifer K. Ryan Member
Date Approved

Martin Berzins Member 8/22/2012
Date Approved

Spencer J. Sherwin Member
Date Approved

Christopher R. Johnson Member 8/22/2012
Date Approved

and by Alan L. Davis , Chair of

the Department of ____________________School of Computing

and by Charles A. Wight, Dean of The Graduate School.

A B ST R A C T

Smoothness-increasing accuracy-conserving (SIAC) filters were introduced as a class of

postprocessing techniques to ameliorate the quality of numerical solutions of discontinuous

Galerkin (DG) simulations. SIAC filtering works to eliminate the oscillations in the error by

introducing smoothness back to the DG field and raises the accuracy in the L2-n o rm up to

its natural superconvergent accuracy in the negative-order norm. The increased smoothness

in the filtered DG solutions can then be exploited by simulation postprocessing tools such

as streamline integrators where the absence of continuity in the data can lead to erroneous

visualizations. However, lack of extension of this filtering technique, both theoretically and

computationally, to nontrivial mesh structures along with the expensive core operators have

been a hindrance towards the application of the SIAC filters to more realistic simulations.

In this dissertation, we focus on the numerical solutions of linear hyperbolic equations

solved with the discontinuous Galerkin scheme and provide a thorough analysis of SIAC

filtering applied to such solution data. In particular, we investigate how the use of different

quadrature techniques could mitigate the extensive processing required when filtering over

the whole computational field. Moreover, we provide detailed and efficient algorithms that

a numerical practitioner requires to know in order to implement this filtering technique

effectively. In our first attem pt to expand the application scope of this filtering technique, we

demonstrate both mathematically and through numerical examples that it is indeed possible

to observe SIAC filtering characteristics when applied to numerical solutions obtained

over structured triangular meshes. We further provide a thorough investigation of the

interplay between mesh geometry and filtering. Building upon these promising results, we

present how SIAC filtering could be applied to gain higher accuracy and smoothness when

dealing with totally unstructured triangular meshes. Lastly, we provide the extension of our

filtering scheme to structured tetrahedral meshes. Guidelines and future work regarding the

application of the SIAC filter in the visualization domain are also presented. We further

note that throughout this document, the terms postprocessing and filtering will be used

interchangeably.

C O N T E N T S

A B S T R A C T .. iii

L IST O F F IG U R E S .. vii

L IST O F T A B L E S .. xiii

A C K N O W L E D G E M E N T S ..xvi

C H A P T E R S

1......IN T R O D U C T IO N ... 1

1.1 Contributions .. 2
1.2 O rgan ization .. 5

2. N U M E R IC A L S C H E M E S A N D P R E V IO U S W O R K 7

2.1 Conservation Laws: Integral and
Differential F o rm s ... 8

2.2 Finite Difference, Finite Volume, and Finite
Element Schemes... 9

2.3 The Discontinuous Galerkin M ethod.. 12
2.3.1 Revisiting the Transport Problem in One Dimension................................. 14

2.4 Previous W ork.. 17

3. O V E R V IE W O F T H E SIA C F IL T E R S ... 20
3.1 The Convolution K e rn e l... 20
3.2 Extracting the Higher Order Accuracy

in DG Solutions .. 23
3.3 Construction of the K e rn e l.. 27
3.4 Evaluation of the Convolution O pera to r... 30

3.4.1 Quadrilateral and Hexahedral Meshes .. 33
3.4.2 Structured Triangular M eshes... 36
3.4.3 Note on the Computational Complexity.. 41

3.5 Performance Analysis of the Postprocessor... 42
3.6 Summary and Conclusions .. 43

4. Q U A D R A T U R E A P P R O X IM A T IO N S F O R
EV A L U A T IN G T H E C O N V O L U T IO N
O P E R A T O R IN T H E
SIA C F IL T E R S .. 50
4.1 Numerical Quadrature Approaches... 51

4.1.1 Gaussian Quadrature Approaches.. 51

4.1.2 Midpoint Quadrature A pproach ...53
4.2 Quadrature Approximations of the

Convolution Operator ...54
4.2.1 Gaussian Quadrature on a Consistent Integration Mesh54

4.2.1.1 Exact, Consistent Gaussian Q uadratu re..54
4.2.1.2 Inexact, Consistent Gaussian Quadrature56

4.2.2 Gaussian Quadrature on the DG M esh.. ...56
4.2.3 Midpoint Quadrature on the DG Mesh57

4.3 R esults...57
4.3.1 Consistent Integration with Inexact Gaussian

Quadrature Approach57
4.3.2 Input Mesh-Based Gaussian Quadrature A p proach61

4.3.2.1 One-Dimensional D G61
4.3.2.2 One-Dimensional DG - Nonuniform M esh61
4.3.2.3 Two-Dimensional D G70

4.3.2.4 Two-Dimensional DG - Constant Coefficient Linear Advection
E q u a tio n ...70

4.3.2.5 Two-Dimensional DG - Variable Coefficient
Linear Advection Equation73

4.3.3 Input Mesh-Based Midpoint Quadrature A pproach73
4.3.3.1 One-Dimensional DG - Midpoint Q u ad ra tu re73
4.3.3.2 Two-Dimensional DG - Midpoint Q uad ra tu re79

4.3.4 Two-Dimensional Vector F ie ld79
4.4 Summary and Conclusions83

5. N U M E R IC A L B E H A V IO R O F SIA C F IL T E R IN G F O R
S T R U C T U R E D T R IA N G U L A T IO N S ... 85
5.1 The Discontinuous Galerkin Formulation

for Triangular Mesh Structures .. 86
5.2 Higher Order Accuracy in DG Solutions... 87
5.3 R esults.. 91

5.3.1 Constant Coefficient Linear Advection E q u a tio n ...92
5.3.2 Variable Coefficient Linear Advection E qu a tio n95
5.3.3 Two-Dimensional Wave Equation as a S ystem99

5.3.4 Constant Coefficient Linear Advection Equation
Over Union-Jack M e s h .. 102

5.4 Summary and Conclusions .. 102

6. IM P R O V E D E R R O R S V E R S U S H IG H E R
O R D E R A C C U R A C Y IN A P P L IC A T IO N S O F SIA C FIL T E R S TO
D G S O L U T IO N S ..107

6.1 Theoretical Kernel Scaling .. 108
6.2 Numerical R esu lts ...110

6.2.1 Uniform Quadrilateral M esh ...111
6.2.2 Quadrilateral Cross M esh ..115
6.2.3 Structured Triangular M e sh ...119
6.2.4 Union-Jack M esh..123

6.2.5 Chevron Mesh ... 127
6.2.6 Hexahedral Mesh .. 127

6.3 Summary and Conclusions .. 130
v

7. A P P L IC A T IO N O F SIA C F IL T E R IN G T O U N S T R U C T U R E D
T R IA N G U L A T IO N S ...132
7.1 Smoothness-Increasing Accuracy-Conserving

Filters for Unstructured Triangular M esh es .. 133
7.1.1 The Sutherland-Hodgman Clipping A lgorithm .. 135

7.2 Numerical R esu lts ...138
7.2.1 Simple Delaunay Triangulation.. 138
7.2.2 Delaunay Triangulation with Element S p littin g ..142
7.2.3 Delaunay Triangulation with Variable-Sized E lem ents.............................. 145
7.2.4 Delaunay Triangulation with Stretched Elem ents..145

7.3 Conclusion...155

8. A P P L IC A T IO N O F T H E SIA C F IL T E R IN G T O S T R U C T U R E D
T E T R A H E D R A L M E S H E S .. 156
8.1 Smoothness-Increasing Accuracy-Conserving

Filter for Structured Tetrahedral Meshes ... 157
8.1.1 Practical C onsiderations..160

8.2 Numerical R esu lts ...163
8.2.1 Constant Coefficient Advection E quation ..163
8.2.2 Variable Coefficient Advection Equation ..163
8.2.3 Isosurfaces of a DG F ie ld ..165

8.3 Conclusion...165

9. S U M M A R Y A N D F U T U R E W O R K ..167

A P P E N D IC E S

A. G A U S S IA N Q U A D R A T U R E R U L E S ... 173

B. C U B A T U R E R U LES .. 175

R E F E R E N C E S ... 176

vi

LIST OF FIG U R ES

3.1 Symmetric (left) versus one-sided (right) kernel. Symmetric kernel uses infor
mation from both sides of the evaluation point. Solid red line represents the
kernel and dashed blue lines depict the constructing B-splines of order two
(k = 1).. 22

3.2 B-splines of order 2, 3, and 4. Note tha t as the order increases, the smoothness
and support increase and the maximum value of the B-spline decreases............ 28

3.3 The convolution kernels for k = 1 (a) and k = 2 (b). Dashed lines represent
the constructing B-splines... 30

3.4 A possible kernel-mesh overlap in one dimension. Upper line represents the
kernel, middle line depicts a DG mesh, and the lower line (dashed red) repre
sents the integration mesh... 31

3.5 A possible kernel-mesh overlap in two dimensions. Dashed lines represent the
kernel patch and solid line represent the DG mesh. Red lines depict possible
integration regions over one element... 35

3.6 A possible kernel-mesh overlap in two dimensions over a structured triangular
mesh (left). Dashed lines represent the kernel patch and solid lines represent
the DG mesh. In the right image, red lines depict possible integration regions
over the upper element... 37

3.7 Triangle to rectangle transformation.. 39

3.8 One super-element of the DG mesh (black) with possible kernel breaks (red).
The number of integration regions increases with triangular meshes, with
possibility of two to seven different regions.. 41

3.9 Examples of the (a) uniform and the (b) smoothly varying triangular meshes
used in calculations. ... 45

3.10 Postprocessor performance scaling for the uniform triangular mesh. N repre
sents the number of elements in the field.. 47

3.11 Postprocessor performance scaling for the smoothly varying triangular mesh.
N represents the number of elements in the field.. 48

4.1 Point-wise errors on a logarithmic scale before postprocessing (left), after
postprocessing on the consistent integration mesh with inexact quadrature
(middle), and after postprocessing with exact quadrature (right). P 2 polyno
mials... 58

4.2 Point-wise errors on a logarithmic scale before postprocessing (left), after
postprocessing on the consistent integration mesh with inexact quadrature
(middle), and after postprocessing with exact quadrature (right). P 3 polyno
mials... 59

4.3 Point-wise errors on a logarithmic scale before postprocessing (left), after
postprocessing on the consistent integration mesh with inexact quadrature
(middle), and after postprocessing with exact quadrature (right). P 4 polyno
mials... 60

4.4 Point-wise errors on a logarithmic scale when postprocessing on the DG input
mesh using P 2 polynomials. Left: errors before postprocessing. Q indicates
the number of quadrature points. ... 62

4.5 Point-wise errors on a logarithmic scale when postprocessing on the DG input
mesh using P 2 polynomials. Q indicates the number of quadrature points. . . 63

4.6 Point-wise errors on a logarithmic scale when postprocessing on the DG in
put mesh using P 2 polynomials. Right: errors after postprocessing on the
consistent integration mesh. Q indicates the number of quadrature points. . . . 64

4.7 Point-wise errors on a logarithmic scale using P 3 polynomials.............................. 65

4.8 Point-wise errors on a logarithmic scale using P 3 polynomials.............................. 66

4.9 Point-wise errors on a logarithmic scale using P4 polynomials.............................. 67

4.10 Point-wise errors on a logarithmic scale using P4 polynomials.............................. 68

4.11 Point-wise errors on a logarithmic scale when using midpoint integration for
postprocessing with different number of evaluation points. Left: before post
processing.. 75

4.12 Point-wise errors on a logarithmic scale when using midpoint integration for
postprocessing with different number of evaluation points..................................... 76

4.13 Point-wise errors on a logarithmic scale when using midpoint integration for
postprocessing with different number of evaluation points. Right: after post
processing on the consistent integration mesh... 77

4.14 Convergence of the L2 errors when using midpoint integration for postprocessing. 78

4.15 Convergence of the L2 errors when using midpoint integration for postprocessing. 79

4.16 Streamline integration example based upon vector field mentioned in Equation
(4.22). Solid black streamlines denote “true” solution; blue streamlines were
created based upon integration on an L2 projected field; red streamlines were
created based upon integration on a filtered field using consistent integration
approach, and dashed black streamlines were created based upon integration
on a filtered field using the input mesh-based approach. Euler forward time
integration... 80

viii

4.17 Streamline integration example based upon vector field mentioned in Equation
(4.22). Solid black streamlines denote “true” solution; blue streamlines were
created based upon integration on an L2 projected field; red streamlines were
created based upon integration on a filtered field using consistent integration
approach, and dashed black streamlines were created based upon integration
on a filtered field using the input mesh-based approach. Euler forward time
integration. Rk-2 time integration.. 81

4.18 Streamline integration example based upon vector field mentioned in Equation
(4.22). Solid black streamlines denote “true” solution; blue streamlines were
created based upon integration on an L2 projected field; red streamlines were
created based upon integration on a filtered field using consistent integration
approach, and dashed black streamlines were created based upon integration
on a filtered field using the input mesh-based approach. RK-4 time integration. 82

5.1 A structured triangular mesh... 88

5.2 Smoothly varying triangular mesh.. 93

5.3 Three- and two-dimensional view of point-wise errors in logarithmic scale
for constant coefficient advection equation when P 2 discontinuous Galerkin
method is used over a structured (uniform) triangular mesh. (a) and (c)
demonstrate the initial DG approximation errors; (b) and (d) represent the
errors after the application of the postprocessor on the consistent-integration
mesh. Filled contour plots have been used to visualize the data for (c) and
(d). The SIAC filter works to reduce the oscillations in the error........................ 96

5.4 Three- and two-dimensional view of point-wise errors in logarithmic scale
for constant coefficient advection equation when a P 2 discontinuous Galerkin
method is used over a smoothly varying triangular mesh. (a) and (c) demon
strate the initial DG approximation errors and (b) and (d) represent the errors
after the application of the postprocessor on the consistent-integration mesh.
We can clearly see how the SIAC filter reduces the oscillations in the error. . . 97

5.5 Union-Jack mesh... 102

5.6 Three- and two-dimensional view of point-wise errors in logarithmic scale
for constant coefficient advection equation when a P 2 discontinuous Galerkin
method is used over a Union-Jack triangular mesh. (a) and (c) demonstrate
the initial DG approximation errors and (b) and (d) represent the errors after
the application of the postprocessor on the consistent-integration mesh. We

can clearly see how the SIAC filter reduces the oscillations in the error.............105

6.1 Example of uniform quadrilateral mesh (a) and diagram of filter spacing used
(b)... 111

6.2 Plots of error versus scaling (m) used in the SIAC filter for a uniform quadri
lateral mesh for P2 (left) and P 3 (right) polynomial approximations...................113

6.3 Contour plots using a scaling of 0.5H (left) and H (middle) and 2H (right)
for a uniform quadrilateral mesh such as the one in Figure 6.1. Top row: P 2.
Bottom row: P 3..114

6.4 Example of a variable-spacing quadrilateral (cross) mesh (a) and diagram of
filter spacing used (b)... 115

ix

6.5 Plots of error versus various scalings (m) used in the SIAC filter for a variable-
spacing cross mesh for P2 (left) and P3 (right) polynomial approximations. . . 117

6.6 Contour plots using a scaling of 0.5H (left), H (middle), and 1.5H (right) for
a variable-spacing cross quadrilateral mesh such as the one in Figure 6.4. Top
row: P 2, Bottom row: P 3...118

6.7 Example of structured triangular mesh (a) and diagram of filter spacing used
(b)... 119

6.8 Plots of error versus various scalings (m) used in the SIAC filter for a struc
tured triangular mesh for P 2 (left) and P3 (right) polynomial approximations. 120

6.9 Contour plots using a scaling of 0.5H (left), H (middle), and 2H (right) for
a structured triangular mesh such as the one in Figure 6.7. Top row: P 2,
Bottom row: P 3..121

6.10 Example of a Union-Jack mesh (a) and diagram of filter spacing used (b). . . . 123

6.11 Plots of error versus various scalings used in the SIAC filter for a Union-Jack
mesh for P 2 (left) and P 3 (right) polynomial approximations................................125

6.12 Contour plots using a scaling of 0.25H (left), 0.5H (middle), and H (right)
for a Union-Jack mesh such as the one in Figure 6.10. Top row: P2, Bottom
row: P 3...126

6.13 Example of a Chevron mesh (a) and diagram of filter spacing used (b). H
represents the minimum translation invariance of the mesh. This value is not
necessarily the same for each direction, as it is shown in (b).................................127

6.14 Plots of error versus various scalings used in the SIAC filter for a Chevron
mesh for P2 (left) and P3 (right) polynomial approximations................................128

6.15 Contour plots using a scaling of 0.25H (left), 0.5H (middle), and H (right)
for a Chevron mesh such as the one in Figure 6.13. Top row: P2, Bottom row:

P3.. 129

7.1 A sample unstructured triangular mesh.. 133

7.2 Demonstration of integration regions resulted from the kernel-mesh intersec
tion. Dashed lines represent the kernel breaks. Solid red lines represent a
triangulation of the integration regions..135

7.3 A sample kernel-mesh overlap (left). Dashed lines represent the two-dimensional
kernel as an array of squares. In right, the intersection between a square of

the kernel and a triangular element is shown...137

7.4 The Sutherland-Hodgman clipping. The final intersection area is triangulated
for ease of implementation. Dashed red lines represent a square of the kernel,
solid black lines represent the triangular DG element, solid blue lines represent
the clipped area at each stage of the Sutherland-Hodgman algorithm and
dashed blue lines represent the final triangulation of the integration region. . . 137

7.5 L2-errors versus different kernel scalings when postprocessing over a simple
Delaunay triangulation. Left: P2, middle: P3, and right: P4 polynomials. N
represents the number of triangular elements in the mesh......................................140

x

7.6 Point-wise error contour plots before and after postprocessing over a simple
Delaunay triangulation with N = 14888 elements. Left column: before post
processing; Middle column: H scaling; Right column: 1.5H scaling. Top row:

P3 polynomials; Bottom row: P4 polynomials..141

7.7 Refining a sample triangular element by splitting...142

7.8 L2-errors versus different kernel scalings when postprocessing over a triangu
lation with element splitting. Left: P 2, middle: P3, and right: P4 polynomials.

N represents the number of triangular elements in the mesh................................ 143

7.9 Point-wise error contour plots before and after postprocessing over a triangu
lation with element splitting with N = 12416 elements. Left column: before
postprocessing; Middle column: H scaling; Right column: 1.5H scaling. Top
row: P 3 polynomials; Bottom row: P4 polynomials.. 144

7.10 Examples of variable-sized unstructured Delaunay triangulation..........................145

7.11 L2-errors versus different kernel scalings when postprocessing over the Mesh
Example 1. Left: P2, middle: P3, and right: P4 polynomials. N represents

the number of triangular elements in the mesh... 147

7.12 Point-wise error contour plots before and after postprocessing over the Mesh
Example 1 with N = 22960 elements. Left column: before postprocessing;
Middle column: H scaling; Right column: 1.5H scaling. Top row: P3 polyno
mials; Bottom row: P4 polynomials..148

7.13 L2-errors versus different kernel scalings when postprocessing over the Mesh
Example 2. Left: P2, middle: P3, and right: P4 polynomials. N represents

the number of triangular elements in the mesh... 150

7.14 Point-wise error contour plots before and after postprocessing over the Mesh
Example 2 with N = 34562 elements. Left column: before postprocessing;
Middle column: H scaling; Right column: 1.5H scaling. Top row: P3 polyno
mials; Bottom row: P4 polynomials..151

7.15 A sample unstructured triangular mesh with stretched elements in the x-
direction...152

7.16 L2-errors versus different kernel scalings when postprocessing over a stretched
triangulation. Left: P2, middle: P3, and right: P4 polynomials. N represents

the number of triangular elements in the mesh... 153

7.17 Point-wise error contour plots before and after postprocessing over a stretched
triangulation with N = 12816 elements. Left column: before postprocessing;
Middle column: H scaling; Right column: 1.5H scaling. Top row: P3 polyno
mials; Bottom row: P4 polynomials..154

8.1 All possible subdivisions of a hexahedral element into five and six tetrahedra.
When juxtaposing the hexahedral elements, it is necessary to flip the hexa
hedron in x-, y-, or z-direction with the first five configurations. No flipping
is required with the configurations in the bottom row. We consider the lower

left configuration as our structured tetrahedral mesh.. 158

8.2 Footprint of a three-dimensional kernel (a). Demonstration of an intersection
between a tetrahedral element and a cube of the kernel footprint (b).................160

xi

8.3 Isosurface constructed based on the analytical solution u(x, y, z) = cos(2nx) +
cos(2ny) + cos(2nz) for isovalue = 0.2.. 166

8.4 Comparison of isosurfaces before and after the application of the SIAC filter. . 166

xii

LIST OF TABLES

3.1 Timing results in seconds for postprocessing over the entire domain for the
uniform triangular mesh considering P 2, P 3, and P4 polynomials. th represents
the number of threads used in the parallel execution... 45

3.2 Timing results in seconds for postprocessing over the entire domain for the
smoothly varying triangular mesh considering P 2, P 3 and P4 polynomials. th
represents the number of threads used in the parallel execution........................... 46

4.1 Errors for one-dimensional DG using P2 polynomials for the nonuniform mesh.
Before postprocessing, after postprocessing on the DG mesh where Q is the
number of quadrature points, and finally after postprocessing on the consistent
integration mesh. CI stands for consistent integration mesh................................. 69

4.2 Errors for one-dimensional DG using P 3 polynomials for the nonuniform mesh.
Before postprocessing, after postprocessing on the DG mesh where Q is the
number of quadrature points, and finally after postprocessing on the consistent
integration mesh. CI stands for consistent integration mesh................................. 69

4.3 Errors for two-dimensional DG using P 2 polynomials. Before postprocessing,
after postprocessing on the DG mesh where Q is the number of quadrature
points, and finally after postprocessing on the consistent integration mesh. CI
stands for consistent integration mesh... 70

4.4 Errors for two-dimensional DG using P 3 polynomials. Before postprocessing,
after postprocessing on the DG mesh where Q is the number of quadrature
points, and finally after postprocessing on the consistent integration mesh. CI
stands for consistent integration mesh .. 71

4.5 Errors for one-dimensional DG using P 1 polynomials for the linear advection
equation. Before postprocessing, after postprocessing on the DG mesh where
Q is the number of quadrature points, and finally after postprocessing on the
consistent integration mesh. CI stands for consistent integration mesh.............. 71

4.6 Errors for two-dimensional DG using P2 polynomials for the linear advection
equation. Before postprocessing, after postprocessing on the DG mesh where
Q is the number of quadrature points, and finally after postprocessing on the
consistent integration mesh. CI stands for consistent integration mesh.............. 72

4.7 Errors for two-dimensional DG using P 1 polynomials for the variable coefficient
advection equation. Before postprocessing, after postprocessing on the DG
mesh where Q is the number of quadrature points, and finally after postpro
cessing on the consistent integration mesh. CI stands for consistent integration
mesh.. 74

4.8 Errors for two-dimensional DG using P 2 polynomials for the variable coefficient
advection equation. Before postprocessing, after postprocessing on the DG
mesh where Q is the number of quadrature points, and finally after postpro
cessing on the consistent integration mesh. CI stands for consistent integration
mesh.. 74

5.1 Errors for the linear constant coefficient advection equation using P 2, P 3,
and P4 polynomials for the structured (uniform) triangular mesh. Before
postprocessing and after postprocessing on the DG mesh, where Qo represents
GLL points on one direction and Qi represents GRL points on the other
direction, CI indicates consistent integration... 93

5.2 Errors for the linear constant coefficient advection equation using P2, P3, and
P4 polynomials for the smoothly varying triangular mesh. Before postpro
cessing and after postprocessing on the DG mesh, where Qo represents GLL
points on one direction and Q1 represents GRL points on the other direction,
CI indicates consistent integration.. 94

5.3 Errors for variable coefficient advection equation using P2, P3, and P4 poly
nomials. Before postprocessing and after postprocessing on the consistent-
integration (CI) and DG meshes. We have assumed a structured (uniform)
triangular mesh.. 98

5.4 Errors for variable coefficient advection equation using P2, P3, and P4 poly
nomials for the smoothly varying triangular mesh. Before postprocessing and
after postprocessing on the consistent-integration (CI) and DG meshes............. 99

5.5 Errors for 2D system using P2, P 3, and P4 polynomials. Before postprocessing
and after postprocessing on the consistent-integration (CI) and DG meshes.

We have assumed a structured (uniform) triangular mesh..................................... 100

5.6 Errors for 2D system using P 2, P 3, and P4 polynomials for the smoothly
varying triangular mesh. Before postprocessing and after postprocessing on

the consistent-integration (CI) and DG meshes...101

5.7 Errors for constant coefficient advection equation over a uniformly structured
criss-cross mesh using P 2, P 3, and P4 polynomials. Before postprocessing and
after postprocessing on the consistent-integration (CI) and DG meshes.............103

5.8 Errors for constant coefficient advection equation over a criss-cross mesh using
P 2, P 3, and P4 polynomials. Before postprocessing and after postprocessing on
the consistent-integration (CI) and DG meshes. We have assumed a smoothly
varying criss-cross mesh...104

6.1 Table of L2-errors for various scalings used in the SIAC filter for a uniform
quadrilateral mesh. ‘x ’ indicates the cases where the width of the kernel
became larger than the computational field... 112

6.2 Table of L2-errors for various scalings used in the SIAC filter for a variable-
spacing cross mesh. ‘x ’ indicates the cases where the width of the kernel
became larger than the computational field... 116

6.3 Kernel to mesh ratios for the structured triangular mesh cases (uniform, Jack,
and Chevron). N 2 represents the number of quadrilateral elements....................122

xiv

6.4 Table of L2-errors for various H scalings used in the SIAC filter for a structured
triangle mesh.. 122

6.5 Table of L2-errors for various scalings used in the SIAC filter for a Union-Jack
mesh..124

6.6 Table of L2-errors for various scalings used in the SIAC filter for a Chevron
mesh..130

6.7 Table of L2-errors for various scalings used in the SIAC filter for a uniform
hexahedral mesh.. 130

7.1 L2-errors for various kernel scalings used in the SIAC filter for a simple
Delaunay triangulation...139

7.2 L2-errors for various kernel scalings used in the SIAC filter for a triangulation
with element splitting... 142

7.3 L2-errors for various kernel scalings used in the SIAC filter for the Mesh
Example 1... 146

7.4 L2-errors for various kernel scalings used in the SIAC filter for the Mesh
Example 2... 149

7.5 L2-errors for various kernel scalings used in the SIAC filter for a stretched
triangulation... 152

8.1 Number of quadrature points required in each integration technique for trian
gular elements. k indicates the degree of the numerical approximation..............162

8.2 Number of quadrature points required in each integration technique for te tra
hedral elements. k indicates the degree of the numerical approximation. We
were not able to find the cubature points for the P 4 approximation................... 162

8.3 Errors before and after postprocessing the solutions of the constant coefficient
advection equation over a structured tetrahedral mesh. 164

8.4 Errors before and after postprocessing the solutions of the variable coefficient
advection equation over a structured tetrahedral mesh. 164

9.1 Statistics calculated for isosurfaces extracted from the P 2 DG-projection of
the function sin(x) x sin(y) x sin(z) for isovalue = 0.6. The exact isosurface
was generated on a 1000 x 1000 x 1000 mesh. The polynomial modes were
calculated on a 20 x 20 x 20 DG mesh. MC stands for Marching Cubes. 171

xv

A C K N O W L E D G E M E N T S

It would not have been possible to write this doctoral thesis without the help and support

of the kind people around me, to only some of whom it is possible to give particular mention

here.

I wish to thank, first and foremost, my advisor Mike Kirby, for his supervision, advice,

and guidance from the very early stages of this research. Above all and the most needed,

he provided me unflinching encouragement and support in various ways. His truly scientific

intuition along with his wide knowledge and logical way of thinking have exceptionally

inspired and enriched my growth as a student, a researcher, and a scientist. Numerous

unexpected circumstances could arise during a span of five years, and Mike showed more

sympathy and patience than anyone could have asked for. For that, I am also extremely

grateful.

I would also like to express my immense gratitude to Jennifer Ryan, whose role during

the course of my PhD studies went above and beyond just that of a committee member.

This thesis would not have been possible, had it not been for her support and valuable and

insightful scientific discussions. I also wish to thank her and Kees Vuik, for kindly hosting

me within the numerical modeling and simulation group at TU Delft in the Netherlands

during the summers of 2010 and 2011.

I wish to acknowledge the rest of my committee members, M artin Berzins for helpful

conversations, Spencer Sherwin for his support of the N ek tar+ + library, and Chris Johnson

for providing an exceptional research environment at the Scientific Computing and Imaging

(SCI) institute. I am thankful tha t in the midst of all their activities, they accepted to be

members of my committee.

I am also grateful to the administrative staff at the SCI institute for their generous help

and support. In particular, I wish to thank Deb Zemek, Magali Coburn, and Ed Cask.

Many friends have helped me stay sane during the times of difficulty. From my friends of

almost two decades to more recent ones I made in Utah, their support and care helped me

overcome setbacks and stay focused on my graduate study. I greatly value their friendship

and I deeply appreciate their belief in me. I particularly thank Vincent Pegoraro, Samar

Emami, Neda Sadeghi, and Pooyan Amini for their presence, the joyful moments they

created for me, and their limitless moral support.

Most importantly, none of this would have been possible without the love and patience

of my family. My mother Maryam Azima, my father Karam Mirzaee, my brother Hesam,

and my sister Hoda, to whom this dissertation is dedicated, have been a constant source of

love, concern, support, and strength all these years. No mere paragraph can do justice to

the appreciation I have for them. They are my everything.

Finally, I wish to acknowledge the financial support provided for this work by the

Air Force Office of Scientific Research (AFOSR), Computational Mathematics program

(Program Manager: Dr. Fariba Fahroo), under grant number FA9550-08-1-0156.

xvii

C H A P T E R 1

IN T R O D U C T IO N

The discontinuous Galerkin (DG) method provides a high-order extension of the finite

volume method and has been under rapid development during the past few years. The DG

methodology allows for a dual path to convergence through both elemental h and polynomial

p refinement. Due to this discretization flexibility, the discontinuous Galerkin method has

increased in use steadily in such diverse applications as computational solid mechanics, fluid

mechanics, acoustics, and electromagnetics (e.g., [9, 6, 58, 16]).

The primary mathematical advantage of DG is that unlike classic continuous Galerkin

finite element method (FEM) which seeks approximations tha t are piecewise continuous,

the DG methodology merely requires weak constraints on the fluxes between elements.

This feature provides a flexibility which is difficult to match with conventional continuous

Galerkin methods. However, lack of smoothness across elements can hamper simulation

postprocessings like feature extraction and visualization. Many commonly used visualiza

tion techniques explicitly (or tacitly) assume tha t the field upon which they are acting is

smooth. Applying such techniques under the nonideal cases of nonsmooth solutions can in

the best case result only in a loss of convergence rate (or accuracy) and in the worst case

can lead to erroneous visualization results.

To illustrate this point, we draw the reader’s attention to streamline integration of fields

produced by computational fluid mechanics simulations, which is a commonly used tool for

the investigation and analysis of fluid flow phenomena. Integration is often accomplished

through the application of ordinary differential equation (ODE) integrators- integrators

whose error characteristics are predicted on the smoothness of the field through which the

streamline is being integrated. This smoothness is not available at the interelement level of

DG approximation data.

A class of postprocessing techniques were introduced in [19, 61] as a means of gaining

increased accuracy from DG solutions through the exploitation of the superior convergence

rates of DG in the negative-order norm; these filters have as a secondary consequence that

2

they increase the smoothness of the output solution. Building upon these concepts, in

[67, 75], SIAC filters were proposed as a means of ameliorating the challenges introduced

by the lack of regularity at element interfaces while at the same time maintaining accuracy

constraints tha t are consistent with the verification process used in the original simula

tion. In essence, in the application domain, one seeks to increase the smoothness without

destroying (i.e., by maintaining) the order of accuracy of the original input DG solution.

1.1 C ontributions
The purpose of this dissertation is to further develop smoothness-increasing accuracy-

conserving filters which respect the mathematical properties of the data while providing

levels of smoothness so tha t commonly-used visualization tools can be used appropriately,

accurately, and efficiently. The goals of this effort are to address the technical obstacles

inherent in visualization of data derived from high-order discontinuous Galerkin methods

and to provide robust and easy to use algorithms to overcome the difficulties tha t arise due

to lack of smoothness. In particular, we contribute both mathematically and algorithmically

to the class of smoothness-increasing and accuracy-conserving (SIAC) methods and provide

a means to make this technique more suitable for real-life engineering problems. In meeting

the goals, the following major contributions have been made:

• A study of the numerical quadrature approximations used for evaluating the convolu

tion operator in SIAC filters. Theoretical estimates as well as empirical results that

demonstrate the efficacy of the SIAC postprocessing approach when different levels

and types of quadrature approximation are used is presented. This study is primarily

for engineering circumstances when the trade-offs between time, resources, and accu

racy are important. Here, we focus mainly on one-dimensional and two-dimensional

quadrilateral implementations of the postprocessor over periodic domains, and we

use as our gold-standard the solving of the convolution operation with consistent

integration (integration that partitions the domain so as to respect all breaks in

regularity) combined with Guassian integration tha t integrates the kernel times the

DG-based polynomial exactly to double-precision machine zero. Alternatively, we

quantify the impact of inexact quadrature on the filtering process and we investigate

whether it greatly impacts the usage of the postprocessor as an intermediary stage

between simulation and visualization in the scientific pipeline. These contributions are

documented with permission in Chapter 4 and reported in the published peer-reviewed

journal article: “Quantification of errors introduced in the numerical approximation

3

and implementation of smoothness-increasing accuracy-conserving (SIAC) filtering of

discontinuous Galerkin (DG) fields,” H. Mirzaee, J. K. Ryan, and R. M. Kirby, Journal

of Scientific Computing, Volume 45, Pages 447-470, 2010.

• Application of the SIAC filters to structured triangular meshes. The basic theoretical

assumption in the previous implementations of the postprocessor limits the use to

numerical solutions solved over a quadrilateral mesh. However, this assumption is

restrictive, which in turn complicates the application of this postprocessing technique

to general tessellations. We extend the current theoretical results to variable coefficient

hyperbolic equations solved over structured triangular meshes and demonstrate the

effectiveness of the application of this postprocessor to structured triangular meshes.

We show tha t there is a direct theoretical extension to structured triangular meshes

for hyperbolic equations with bounded coefficients. These contributions are docu

mented with permission in Chapter 5 and reported in the published peer-reviewed

journal article: “Smoothness-increasing accuracy-conserving (SIAC) postprocessing

for discontinuous Galerkin solutions over structured triangular meshes,” H. Mirzaee,

L. Ji, J. K. Ryan, and R. M. Kirby, SIAM Journal of Numerical Analysis, Volume 49,

Pages 1899-1920, 2011.

• Improved errors versus higher order accuracy in applications of SIAC filters to DG

solutions. Smoothness-increasing accuracy-conserving (SIAC) filtering has demon

strated its effectiveness in raising the convergence rate for discontinuous Galerkin

solutions from order k + 1 to order 2k + 1 for specific types of translation invariant

meshes [19, 46]. Additionally, it improves the weak continuity in the discontinuous

Galerkin method to k — 1 continuity. Typically, this improvement has a positive

impact on the error quantity in the sense that it also reduces the absolute errors in

the solution. However, not enough emphasis has been placed on the difference be

tween superconvergent accuracy and improved errors. This distinction is particularly

important when it comes to interpreting the interplay between geometry and filtering

as introduced through meshing. The underlying mesh over which the DG solution is

built is important because the tool used in SIAC filtering - convolution - is scaled by

the geometric mesh size. This scaling heavily contributes to the effectiveness of the

postprocessor. Although the choice of this scaling is straightforward when dealing with

a uniform mesh, it is not clear what the impact of either a global or local scaling will be

on either the absolute error or on the superconvergence properties of the postprocessor.

4

We present a study of this mesh scaling used in the SIAC filter and how it factors

into the theoretical errors. These contributions are documented with permission in

Chapter 6 and reported in the peer-reviewed journal article: “Smoothness-increasing

accuracy-conserving (SIAC) filtering for discontinuous Galerkin solutions: Improved

errors versus higher-order accuracy,” J. King, H. Mirzaee , J. K. Ryan and, R. M.

Kirby, Journal of Scientific Computing, In press, 2012.

• Application of the SIAC filters to unstructured triangular meshes. Although the DG

methodology can be applied to arbitrary triangulations, the typical application of

SIAC filters has been to discontinuous Galerkin solutions obtained over translation

invariant meshes such as structured quadrilaterals and triangles. As the assumption of

any sort of regularity, including the translation invariance of the mesh, is a hindrance

towards making the SIAC filter applicable to real-life simulations, we demonstrate

for the first time the behavior and complexity of the computational extension of this

filtering technique to fully unstructured tessellations. We consider different types

of unstructured triangulations and show tha t it is indeed possible to get reduced

errors and improved smoothness in the filtered solution. These results are promising

as they pave the way towards a more generalized SIAC filtering technique. These

contributions are documented with permission in Chapter 7 and reported in the

accepted journal article: “Smoothness-increasing accuracy-conserving (SIAC) filters

for discontinuous Galerkin solutions over unstructured triangular meshes,” H. Mirzaee,

J. King, J. K. Ryan and, R. M. Kirby, SIAM Journal of Scientific Computing, accepted

upon revision, 2012.

• Application of the SIAC filters to structured tetrahedral meshes. While there have

been several attem pts to demonstrate the usefulness of the SIAC filtering technique

to nontrivial mesh structures, the application of the SIAC filter never exceeded be

yond two-space dimensions. Thereby, we consider this contribution to be the very

first attem pt of its kind in demonstrating the potential usefulness of SIAC filtering

when applied to real-world simulations. Here, we examine the effect of filtering

over three-dimensional structured tetrahedral meshes. These types of meshes are

generated by tetrahedralizing uniform hexahedra and therefore, while maintaining

the structured nature of a hexahedral mesh, they exhibit an unstructured tessel

lation within each hexahedral element. We consider two examples of a hyperbolic

equation and demonstrate that it is indeed possible to obtain the superconvergence

5

accuracy of 2k + 1 through the application of the SIAC filter. These contributions

are documented with permission in Chapter 8 and reported in the submitted journal

article:“Smoothness-increasing accuracy-conserving (SIAC) filters for discontinuous

Galerkin solutions: Application to structured tetrahedral meshes,” H. Mirzaee , J. K.

Ryan and, R. M. Kirby, SIAM Journal of Numerical Analysis, submitted, 2012.

The following contribution has been made in order to provide the necessary steps and

algorithms used to obtain the results in the above contributions:

• Efficient implementation of SIAC filtering for DG solutions. Quite often, a numerical

practitioner is interested in explicit steps to make a numerical scheme applicable. We

explicitly define the steps to efficient computation of the postprocessor applied to

different structured mesh tessellations. In addition, we explain how well the inexact

postprocessor [48] performs computationally comparing to the exact scheme. Further

more, as the SIAC filter is a good candidate for parallelization, we provide, for the

first time, results tha t confirm anticipated performance scaling when parallelized on

a shared-memory multiprocessor machine. These contributions are documented with

permission in Chapter 3 and reported in the published peer-reviewed journal article:

“Efficient implementation of smoothness-increasing accuracy-conserving (SIAC) filters

for discontinuous Galerkin solutions,” H. Mirzaee, J. K. Ryan, and R. M. Kirby,

Journal of Scientific Computing, Volume 52, Pages 85-112, 2011.

1.2 O rganization
We proceed in this dissertation as follows: In Chapter 2, we start by a brief introduction

of classical choices for numerically solving partial differential equations (PDEs). We then

continue by discussing the detail of the discontinuous Galerkin scheme and present the

background and relevant work in filtering of numerical solutions. Chapter 3 provides the

definition and properties of the SIAC filters. In this chapter, we provide error analysis

tha t demonstrates the usefulness of SIAC filtering in extracting the higher order accuracy

in the negative-order norm and obtaining superconvergence in the L2-norm . Moreover,

we present the detail of the implementation of SIAC filtering over structured meshes in

2D. Efficient algorithms along with timing results exhibiting the perfect parallelization of

the SIAC filters on shared-memory multiprocessors are given. Chapter 4 discusses the

various numerical quadrature strategies one may use in filtering numerical solutions. The

purpose of this chapter is to demonstrate the trade-offs in gaining higher order accuracy and

computational efficiency. In Chapter 5, we explain the numerical behavior of SIAC filtering

6

for structured triangulations. In this chapter, we provide numerical proofs confirming the

effectiveness of SIAC filtering of the numerical solutions of variable coefficient hyperbolic

PDEs obtained over structured triangular meshes. Numerical results are also provided. In

Chapter 6, we examine more general structured triangular meshes and demonstrate that it

is indeed possible to obtain superconvergence of order 2k + 1 for these mesh types when the

proper scaling of the filter, related to the translation invariant properties of the mesh, is

employed. Furthermore, we introduce theoretical proof that these results can be extended

to adaptive meshes tha t are constructed in a hierarchical manner - in particular, adaptive

meshes whose elements are defined by hierarchical (integer) splitting of elements of size H ,

where H represents both the macro-element spacing used in the generation of the mesh

and the minimum scaling used for the SIAC filters. Chapter 7 presents the computational

extension of SIAC filtering to unstructured triangulations. In this chapter, we demonstrate

for the first time the mathematical behavior and computational complexity of the extension

of this filter to unstructured tessellations. We consider four examples: a simple Delaunay

triangulation, a Delaunay triangulation with obvious change in element sizes, a Delaunay

triangulation with splitting, and a stretched (anisotropic) triangulation. We show tha t it is

indeed possible to obtain order improvement and accuracy enhancement through a proper

choice of kernel scaling. Chapter 8 discusses the extension of SIAC filtering for structured

tetrahedral meshes. While there have been several attem pts to demonstrate the usefulness

of this filtering technique to nontrivial mesh structures, the application of the SIAC filter

never exceeded beyond two-space dimensions. Thereby, we consider the contribution of this

chapter to be the very first attem pt of its kind in demonstrating the potential usefulness of

SIAC filtering when applied to real-world simulations. Lastly, Chapter 9 discusses ongoing

and future research.

C H A P T E R 2

N U M E R IC A L SCH EM ES A N D PR E V IO U S

W O R K

As [59] puts it, there are three important steps in the computational modeling of

any physical process: (i) problem definition, (ii) mathematical model, and (iii) computer

simulation.

Typically, the starting point is a given mathematical model which has been formulated

in an attem pt to explain and understand an observed phenomenon in biology, chemistry,

physics, economics, or any other scientific or engineering discipline. In defining such a

model, we expect to gain a well-posed problem tha t has a unique solution for a given set of

parameters. Normally, we concentrate on those mathematical models which are (piecewise)

continuous and are difficult or impossible to solve analytically; this is usually the case in

practice. Relevant application areas in scientific computing and computer science include

the Navier-Stokes equations in fluid dynamics which provide an accurate representation of

the fluid motion and the equations of elasticity in structural mechanics tha t govern the

deformation of a solid object due to applied external forces. These are complex general

equations that are very difficult to solve both analytically and computationally.

In order to solve such a model approximately on a computer, the continuous or piecewise

continuous problem is approximated by a discrete one. Functions are approximated by finite

arrays of values. Algorithms are then sought which approximately solve the mathematical

problem efficiently, accurately, and reliably. Throughout this dissertation, we consider the

numerical solutions of mathematical models of conservation laws which are described by

partial differential equations (PDEs). The three classical choices for the numerical solution

of PDEs are the finite difference method (FDM), the finite element method (FEM), and

the finite volume method (FVM).

In this chapter, we provide a brief overview of conservation laws in their integral and

differential forms in Section 2.1. Section 2.2 discusses the salient features of finite difference.

finite volume, and finite element methods and provides the necessary background which will

8

lead us to the discontinuous Galerkin method in Section 2.3. Finally, in Section 2.4, we

briefly review the development of postprocessing techniques devised to improve the quality

of numerical approximations.

2.1 C onservation Laws: Integral and
D ifferential Forms

If a system does not interact with its environment in any way, then certain mechanical

properties of the system cannot change. These quantities are said to be conserved and

the corresponding conservation laws state tha t this particular measurable property of our

isolated physical system does not change as the system evolves. Conservation laws are

considered to be the most fundamental principles of mechanics. Examples of such conserved

quantities include energy, momentum, and angular momentum.

As stated in [59], the general principle behind the derivation of conservation laws is that

the rate of change of u(x, t) within a volume V plus the flux of u denoted by f (u) through

the boundary A of the volume is equal to the rate of production of u denoted by S(u, x, t)

which can be written as

d f u (x ,t)dV + f f(u) ■ ndA — f S (u ,x ,t)d V = 0, (2.1)
dt Jv JA Jv

where n is the unit outward normal to the boundary A. Equation (2.1) is referred to as

the integral form of the conservation law. For a fixed volume and (independent of t),

under suitable conditions of smoothness of the intervening quantities, we can apply Gauss’

theorem

[V ■ fdV = / f ■ ndA (2.2)
v A

to obtain

X (d u + V - f (u) — s) dV = 0. (2.3)

For the integral expression to be zero for any volume V , the integrand must be zero. This

results in the strong or differential form of the equation
du
- + V ■ f (u) — S = 0. (2.4)

As mentioned in [31], the construction of any numerical method for solving a partial

differential equation requires one to consider the two choices:

• How does one represent the solution u (x ,t) by an approximate solution uh(x,t)?

• In which sense will the approximate solution uh(x ,t) satisfy the partial differential

equation?

These two choices separate the different methods and define the properties of each method.

9

2.2 F inite D ifference, F in ite Volum e, and Finite
Elem ent Schem es

The simplest and historically oldest method for numerically solving PDEs is known as

the finite difference method, which is based upon the application of a local Taylor expansion

to approximate the differential equations. In this approach, a grid, xk, k = 1, ••• , K, is

laid down in space and spacial derivatives are approximated by difference methods; that is,

the conservation law in the strong form given by Equation (2.4) in one-space dimension is

approximated as
duh(xk , t) + fh (xk+\,t) — fh (xk - \ , t) = g (x fc t) (2 5)

dt hk + hk — 1

where uh and fh are the numerical approximations to the solution and the flux, respectively,

and hk = xk+1 — xk is the local grid size. Here we have used the central difference

approximation of V ■ f (u). Inserting these local approximations into Equation (2.4) results

in the residual

x € [xk-i,xk+i] : Rh(x,t) = f — S(x ,t) . (2.6)

Clearly, Rh(x,t) is not zero, as in that case, uh(x ,t) would satisfy Equation (2.4) exactly

and would be the solution u (x, t). Therefore, we need to specify in which way uh must

satisfy the equation, which leads to a statement about the residual. If we have a total

of K grid points and, thus, K unknown grid point values uh(xk, t), a natural choice is to

require tha t the residual vanishes exactly at these grid points. This results in exactly K

finite difference equations of the type in Equation (2.5) for the K unknowns, completing

the scheme.

One of the most appealing aspects of this method is its simplicity; that is, the discretiza

tion of general problems and operators is often intuitive and, for many problems, leads to

very efficient schemes. Furthermore, the explicit semidiscrete form gives flexibility on the

choice of timestepping methods if needed. Finally, these methods are supported by an

extensive body of theory, they are sufficiently robust and efficient to be used for a variety

of problems, and extensions to higher order approximations by using a local polynomial

approximation of higher degree is relatively straightforward. However, the finite difference

method uses a topologically square network of lines to construct the discretization of the

PDE. Additional complications caused by the simple underlying structure are introduced

around boundaries and discontinuous internal layers. These make the native finite difference

method not suitable to deal with complex geometries, both in terms of general computa

tional domains and internal discontinuities as well as for local order and grid size changes

to reflect local features of the solution.

10

The above discussion highlights that to ensure geometric flexibility, one needs to abandon

the simple one-dimensional approximation in favor of something more general. This issue

motivated the use of an integral form of the PDEs and subsequently the development of the

finite element and finite volume techniques. These schemes are better suited to real-world

applications than the standard finite difference method as the integral formulations do not

rely on any special mesh structure. l

The finite element and finite volume schemes use the integral form of the equation as

the starting point of the discretization process. For example, if the strong form of the PDE

is L(u) = s, the integral form is given by [59]

/ L(u)w(x) dx = sw(x)dx, (2.7)
J 0 J 0

where the choice of the weight function w(x) defines the type of the scheme.

A method closely related to the finite difference method, but with added geometric

flexibility, is the finite volume method. Here the region of integration is taken to be a control

volume Qi, associated with the point coordinate x^ represented by x i - (1/ 2) < x < x i+(1/ 2),

and the conservation law given in Equation (2.4) in one-space dimension in integral form

becomes
f Xi+(1/2) f Xi+(1/2)
/ ut dt + f x (u) dx = 0, (2.8)
xi- (1/2) xi- (1/2)

where we assumed S = 0. This expression could also be obtained from the weighted residual

form given in Equation (2.7) by selecting a weight w(x) such that w(x) = 1 for x i - (1/ 2) <

x < x i+(1/ 2) and 0 elsewhere. The last term in Equation (2.8) can be evaluated analytically

to obtain
C Xi+(1/2)
/ f x (u)dx = f (ui+(1/2)) — f (ui— (1/2))
xi - (1/2)

and if we approximate the first integral using the midpoint rule, we get the following semi

discrete form

ut |i (xi+(1/2) — xi—(1 / 2)) + f (ui+(1/2)) — f (ui— (1/2)) = 0j (2.9)

where ut |i is the value of the solution at x^ This approach produces a conservative scheme

if the flux on the boundary of one cell equals the flux on the boundary of the adjacent

cell. For linear problems and equidistant grids, this method reduces to the finite difference

method. However, one easily realizes tha t the formulation is less restrictive in terms of the

grid structure; tha t is, the reconstruction of the solution at the interfaces is a local procedure

1We should note th a t there has been extensive ongoing research to make the finite difference m ethod
work on unstructured meshes. See [2] for an example.

11

and generalizes straightforwardly to unstructured grids in high dimensions, thus ensuring

the desired geometric flexibility. If, however, we need to increase the order of accuracy of the

method, a fundamental problem emerges. To reconstruct the interface values at a higher

accuracy, we need information from more adjacent cells. In the simple one-dimensional

case, this can be done similarly, as for the finite difference scheme. However, the need for

a high-order reconstruction reintroduces the need for a particular grid structure and thus

destroys the geometric flexibility of the finite volume method in higher dimensions. On

unstructured grids, this approach requires a reconstruction based on genuinely multivariate

polynomials with general cell center locations which is both complex and prone to stability

problems [31]. The main limitation of the finite volume method is found in its inability

to extend to higher order accuracy on general unstructured grids. This motivates the

development of the next class of schemes known as the finite element schemes.

Let us first redefine the element Qi as the interval bounded by the grid points [xi ,x i+1]

and with a total of K elements and K + 1 grid points. Note that this is slightly different

from the finite volume scheme where the element was defined by staggered grid points as

[xi - (1/2) ,x i+(1/ 2̂ . Here we assume that the solution is expressed globally in the form

N
uh(x,t) = ^ Ui(t)Ni(x)

i=1

where we have introduced the use of a locally defined basis function, Ni (x). In the finite ele

ment method, we use expansion bases with compact support which are piecewise continuous

polynomials within each element. In the simplest case, we can take these basis functions to

be linear [59]. To recover the scheme to solve the conservation law given in Equation (2.4)

in one-space dimension, following the weighted residual form given in Equation (2.7), we

set the weight function w(x) to be the same as the basis function Ni (x), i.e., w(x) = Ni (x),

and we arrive at the following integral form

K I t + f - Sh) N (x)d x = 0- (2-10)

for j = 1 ■ ■ ■ K. Straightforward manipulations yield the scheme

MdUUh + S fh = M S h , (2.11)

where M ij and Sij reflect the globally defined mass and stiffness matrices, respectively.

This approach, which presents the essence of the classic finite element method [33, 68,

78, 79], clearly allows different element sizes. Furthermore, we recall tha t a main motivation

for considering methods beyond the finite volume approach was the interest in higher order

12

approximations. Such extensions are relatively simple in the finite element setting and can

be achieved by adding additional degrees of freedom to the element. In particular, one can

have different orders of approximations in each element, thereby enabling local changes in

both size and order, known as hp-adaptivity [24, 25].

However, the above discussion also highlights disadvantages [31]. First, we see tha t the

globally defined basis functions and the requirement that the residual be orthogonal to the

same set of globally defined test functions implies that the semidiscrete scheme becomes

implicit and M must be inverted. For time-dependent problems, this is a clear disadvantage

compared to finite difference and finite volume methods. On the other hand, for problems

with no explicit time dependence, this is less of a concern.

There is an additional subtle issue tha t is related to the structure of the basis. From

the discussion above, we recognize tha t the basis functions are symmetric in space. For

many types of problems (e.g., the heat equation), this is a natural choice. However, for

problems such as wave problems and conservation laws, in which information flows in specific

directions, this is less natural and can cause stability problems if left unchanged [33, 77].

In finite difference and finite volume methods, this problem is addressed by the use of

upwinding, either through the stencil choice or through the design of the reconstruction

approach.

Reflecting on the previous discussion, one realizes tha t to ensure geometric flexibility

and support for locally adopted resolution, we must strive for an element-based method

where high-order accuracy is enabled through the local approximation. However, the global

Galerkin statement, introduced by the globally defined basis and test (weight) functions,

destroys the locality of the scheme and introduces potential problems with the stability for

wave-dominated problems. On the other hand, this is precisely the regime where the finite

volume method has several attractive features.

An intelligent combination of the finite element and the finite volume methods, utilizing

a space of basis and test functions tha t mimics the finite element method but satisfying

the equation in a sense closer to the finite volume method, appears to offer many of the

desired properties. This combination is exactly what leads to the discontinuous Galerkin

finite element method that will be discussed next.

2.3 The D iscontinuous Galerkin M ethod
Problems of particular interest in which convection plays an important role arise in

applications as diverse as meteorology, weather-forecasting, oceanography, gas dynamics,

aeroacoustics, turbomachinery, turbulent flows, granular flows, oil recovery simulation,

13

modeling of shallow water, transport of contaminant in porous media, viscoelastic flows,

semiconductor device simulation, magnetohydrodynamics, and electromagnetism, among

many others [15]. This is why devising robust, accurate, and efficient methods for numeri

cally solving these problems is of considerable importance and, as expected, has attracted

the interest of many researchers and practitioners.

The discontinuous Galerkin method makes use of the same function space as the con

tinuous method, but with relaxed continuity at the interelement boundaries. It was first

introduced by Reed and Hill [60] for the solution of the neutron transport equation, and

its history and recent development have been reviewed by Cockburn et al. [15, 14]. The

essential idea of the method is derived from the fact tha t basis functions can be chosen that

either the field variable or its derivatives, or generally both, are considered discontinuous

across the element boundaries, while the computational domain continuity is maintained.

From this point of view, the discontinuous finite element method includes, as its subset, both

the finite element method and the finite difference method (or finite volume) method [43].

Therefore, it has the advantages of both finite difference and finite element methods, in that

it can be effectively used in convection-dominant applications, while maintaining geometric

flexibility and higher local approximations through the use of higher order elements. This

feature makes it uniquely useful for computational dynamics and heat transfer. Because of

the local nature of a discontinuous formulation, no global matrix needs to be assembled;

thus, this reduces the demand on the in-core memory. The effects of the boundary conditions

on the interior field distributions then gradually propagate through the element-by-element

connection. This is another important feature tha t makes this method useful for fluid flow

calculations.

To illustrate the basic ideas of the discontinuous Galerkin method, we consider the

transport equation given below

ut + V^ (au) = 0 inR d x (0 ,T),

u(t = 0) = uo on Rd. (2.12)

We consider only the discretization of this equation in space. For full discretization of this

equation, please consult [13]. Note also tha t the Equation in (2.12) is the conservation law

given in Equation (2.4) where f(u) = au, a being a constant coefficient, and S = 0.

To discretize the transport equation in space by using a DG method, we first triangulate

the domain Rd; we denote such triangulation by Th. We then seek a discontinuous approx

imate solution uh which, in each element K of the triangulation Th , belongs to the space

V (K). There is no restriction on how to choose the space V (K), though a typical choice

14

is the space of polynomials of degree at most k, P k (K). We determine the approximate

solution on the element K , we multiply Equation (2.12) by a weight function v(x) € V (K),

and substitute the approximate solution uh to get the following weak form

/ (uh)tv — auh ■ V v + / auh ■ nds = 0, (2.13)
JK JK JdK

where we have have used the Gauss (divergence) theorem to obtain the last two terms, n is

the unit outward normal, and aUh is the numerical flux.

The difference between this scheme and the previously discussed finite element method

is that Vh here is a broken space- space of piecewise discontinuous polynomials- which leads

to local mass and stiffness matrices. At first, the locality also appears problematic as this

statement does not allow one to recover a meaningful global solution. Furthermore, how

does one ensure uniqueness of solution at element interfaces? This is where the concept of

numerical flux comes handy. The main purpose of the numerical flux term auh is to connect

the elements. In what follows, we give a more detailed description of the terms involved in

one-space dimension.

2.3.1 R ev isitin g th e T ransport P rob lem in O ne D im ension

Let us consider the linear scalar transport (or wave) equation in one dimension

if t + d i r = 0, x e [l , r] = q (2.14)

where the linear flux is given as f (u) = au. This is subject to the appropriate initial

condition

u(x, 0) = u0(x).

Boundary conditions are given when the boundary is an inflow boundary [31], that is

u(L ,t) = g(t) if a > 0,

u(R ,t) = g(t) if a < 0.

As we mentioned earlier, we approximate Q by K nonoverlapping elements, K = [xk, x k̂ .

On each of these elements, we express the local solution as a polynomial of order N = Np — 1

Np Np
x e k : uh(x,t) = Y 2 un (t) ^ n (x) = Y 2 uh(xk ,t) ik (x).

n= 1 i= 1

These are two complementary expressions for the local solution. In the first one, known

as the modal form, we have used a local polynomial basis, ^ n(x). In the alternative form,

15

which is known as the nodal form, we use Np local grid points, and express the polynomial

through the associated interpolating Lagrange polynomial, (x). We have used the modal

representation throughout this dissertation.

The global solution u(x ,t) is then assumed to be approximated by the piecewise N -th

order polynomial approximation u^(x, t) defined as the direct sum of the K local polynomial

solutions u£(x,t). We continue by forming the residual

_ , duh . dav,h
K h(x-t) = ~gt + “ d ^ ’ (2-15)

and going back to the two main questions presented in Section 2.1, we must decide in which

sense this residual should vanish. To answer this question, we continue by introducing a

globally defined space Vh of test functions, (JK=1 V̂ , where the locally defined spaces are

defined as V^ = span 0 n(K)N= 1. We recognize Vh as the space of piecewise smooth functions

defined on Qh. We now require tha t the residual is orthogonal to all test functions in Vh,

resulting in the local statement

I R h(x, t)0 n (x)dx = 0, 1 < n < Np, (2-16)
K

on all K elements- This yields exactly Np equations for the Np local unknowns on each

element- However, we have not imposed any particular constraints on the basis or test

functions, and thus, we have neglected the issue of how to impose boundary conditions

and how to recover the global solution from the K local solutions. Assume tha t the test

functions in Vh are smooth but not continuous or otherwise constrained across interfaces.

Spatial integration by parts of Equation (2.16) yields

K
duL , # «
dt rn h dx

0 n — a u h) dx = — auh^n ' = — I n ■ auh0ndx, 1 < n < Np,
I dK

where n represents the local outward pointing normal- The use of a surface integral may

seem a bit artificial in this simple example, but it makes generalization very natural- In

this one-dimensional case, n is simply a scalar and takes the value +1 and —1 at the right

and left interface, respectively-

We see tha t as a consequence of the lack of conditions on the local solution and the

test functions, the solution at the interface between elements is multiply defined and we

will need to choose which solution, or combination of solutions, is correct- We refer to this

solution as auh, known as the numerical flux- This leads to the semidiscrete scheme

f (0 n — a u h dx = — f n.auh0ndx, 1 < n < Np. (2-17)
Jk V dt dx j J dK

x
x

16

We recover a total of K x Np equations for the same number of unknowns; that is, we have

defined a method for obtaining the globally defined solution. This is also the so-called weak

formulation.

It is understood from Equation (2.17), it is the right-hand side tha t is responsible

for recovering the global solution from the local solutions and imposing the boundary

conditions. This emphasizes the key role played by the numerical flux, aUh.

In the classical discontinuous Galerkin method, as we mentioned previously, the space

of test functions are the same as the solution space. The weak form in Equation (2.17) can

also be written as

M k d ^ h — (&’ ') aUh = — (aUh)'^(xhk) + (aUh)^(xf), (2.18)

where

Mkj = (* , *)k , S j = (* . d j j) K , (2.19)

are the local and stiffness mass matrices, respectively. Furthermore, we have

= [^ i(x) ••• , ^ (x)nv]T , (2.20)Uk = U =

as the vector of the local solution and the local test functions, respectively. The scheme in

Equation (2.18) is the classical discontinuous Galerkin method. To complete the definition

of the DG method, it only remains to define the numerical flux aUh•

The specification of the numerical flux is most naturally related to the the dynamics of

the partial differential equation being solved. At the left end of the local domain K , this

numerical flux should be a function of avfh 1(x’k 1), av,h(xk) while the right end depends

on aUh(x’), aUh+ (x^+) . A simple interpretation is tha t aUh is the flux one would wish

to know at the interface. Alternatively, the role of the flux is to guarantee the stability of

the formulation by mimicking the flow of information in the underlying partial differential

equation.

To derive the stability condition for our DG scheme, one would follow the approach of the

energy method [3], replace ^ n with Uh in the weak formulation in Equation (2.17), and add

on the elements K. We refer the interested reader to [13, 31] for the detailed mathematical

formulas. After this step, we find out tha t the numerical flux will have the following form

in order to guarantee stability

aUh = aUh + C [Uh], (2.21)

Uh = 2 (U+ + [Uh] = U- n - + U+n +.

where

17

u+ and u— denote the left and right value at the interface and C is a non-negative definite

matrix. This completes the definition of our DG scheme.

There are two main examples of DG methods considering the flux definition in Equation

(2.21) [13]. The first uses the following choice for the parameter C : 2 |a ■ n| I, where I is

the identity matrix. This implies that the numerical flux is

auh(x) = lim uh (x — ea),e^0

which is nothing but the classical upwinding numerical flux.

The second example is when we take C = 2 |a| I. For this choice, we have

auh(x) = auh + 2 |a| [uhj, (2.22)

which is the so-called Lax-Friedrichs numerical flux [42].

From the two examples above, we see tha t the DG methods are strongly related to finite

volume methods. Indeed, the method of lines, tha t is, the discretization in space, for the

upwinding scheme and the local Lax-Freidrichs scheme coincide with the corresponding DG

method under consideration when the local space V (K) is taken to be the space of constant

functions. Moreover, the DG methods, like finite volume methods, can easily handle

complex computational domains. However, unlike finite volume methods, DG achieves

higher order accuracy easily. Indeed, a theoretical order of convergence of k + 1/2 can be

proven simply by requiring tha t the local spaces V (K) contain all polynomials of degree at

most k. Moreover, this is achieved while keeping a high degree of locality since to increase the

degrees of freedom of the approximate solution uh in an element, only the degrees of freedom

of uh in the immediate neighbors are involved. We also add the fact that the mass matrix

is block diagonal, and hence easily invertible, which renders the DG schemes extremely

parallelizable when they are discretized in time by, for example, an explicit Runge-Kutta

method.

2.4 P revious Work
In order to introduce the basic ideas of this work and to put them into proper perspective,

we briefly review the development of postprocessing techniques devised to improve the

quality of numerical approximations. For further detail, the reader should consult lecture

notes of Wahlbin [74] on superconvergence in Galerkin finite element methods as well as

[19].
In 1978, Mock and Lax [52] showed tha t for a difference scheme of any formal order

of accuracy ^, for linear hyperbolic systems, the moments of the exact solution converge

18

with order ^ provided tha t the initial data were suitably preprocessed. This result holds

even when the exact solution contains discontinuities. They also showed how to postprocess

the approximate solution by a simple convolution to enhance its accuracy over regions of

smoothness of the exact solution. If the solution were sufficiently smooth locally, they

could obtain nearly the full order of convergence ^ provided tha t the support of the kernel

was of order almost one. This seems to have been the first instance when the ideas of (i)

preprocessing the initial data, (ii) obtaining an error estimate for the moments, and (iii)

postprocessing the approximation appear clearly delineated. Gottlieb and Tadmor [30],

motivated by the work of Mock and Lax [52], found a spectrally accurate postprocessing

kernel for spectral methods (see also [45]). Again, the full spectral accuracy could be

recovered by using a convolution; the measure of the support of the kernel had to be of

order one.

Quite independently of the review above, in 1977, Bramble and Schatz [11] considered

linear elliptic problems and showed how to postprocess the finite element solution by means

of a simple convolution to enhance the quality of the approximation. They showed tha t the

order of convergence could be doubled if the exact solution were locally smooth. In 1977,

Thomee [70] extended the work of Bramble and Schatz [11] to include superconvergence of

the derivatives and gave an elegant proof of their approximation results by using Fourier

analysis. In 1980, he extended these results [71] to semidiscrete Galerkin finite element

methods for parabolic problems.

It is important to point out that, just like Mock and Lax, Bramble and Schatz proved a

negative-order norm error estimate (an error estimate of the moments in Mock and Lax’s

terminology) and then showed how to use it to enhance the approximation by convolution.

However, unlike Mock and Lax’s convolution kernel, for locally translation invariant grids,

the Bramble-Schatz kernel has support in a cube whose diameter is of order h (mesh

characteristic) only; this fact represents a considerable advantage from the computational

point of view.

In 1981, Johnson and Navert [37] applied this technique to steady-state advection-

diffusion problems with small diffusion; they considered the standard Galerkin and the

streamline-diffusion methods. An application of this technique to the simulation of miscible

displacement was devised and analyzed in 1985 by Douglas [38]. Other applications can be

found in the book of Wahlbin [74].

According to Cockburn et al. [19] it seems tha t the first (and only) attem pt to apply

this technique to finite element methods for hyperbolic problems was carried out in 1993

19

by Bales [10] who considered a fourth-order accurate finite element method applied to a

one-dimensional wave equation. Built upon the framework initially established by Bramble

and Schatz [11] and Mock and Lax [52], Cockburn, Luskin, Shu, and Siili [19, 17] introduced

a class of postprocessors for hyperbolic PDEs using the discontinuous Galerkin method.

In [19, 17], the authors considered the postprocessing of the discontinuous Galerkin ap

proximation to time-dependent linear hyperbolic systems. In this case, they show that

the postprocessor improves the accuracy from order k + 1 to order 2k + 1 for linear

hyperbolic systems solved over a locally uniform mesh, namely h = A xi for all i in the

support of the postprocessor. Moreover, the postprocessor consists of a convolution kernel

applied to the approximation only once, at the final time, and is independent of the partial

differential equation under consideration as long as the necessary negative-order norm error

estimate can be proven. The negative-order norm error estimates give us information on

the oscillatory nature of the error and should be of higher order than the L2-norm error

estimates for the postprocessor to be applicable. The postprocessor extracts this information

and works to filter out oscillations in the error and to enhance the accuracy in the usual

L2-norm, up to the order of the error estimates in the negative-order norm. Our work in

this dissertation is based on the filtering technique introduced by Cockburn et al. in [19]

applied to linear hyperbolic equations.

C H A P T E R 3

O VERVIEW OF T H E SIAC FILTERS

The Smoothness-Increasing Accuracy-Conserving (SIAC) filters were first introduced

as a class of postprocessors for the discontinuous Galerkin method applied to hyperbolic

equations in [18, 19]. This filtering technique was extended to a broader set of applications

such as being used for filtering within streamline visualization algorithms in [20, 22, 62,

61, 67, 75]. Here we provide an overview of the structure and properties of this filtering

technique. Furthermore, quite often a numerical practitioner is interested in explicit steps

to make a numerical scheme applicable. In this chapter, we explicitly define the steps

to efficient computation of the postprocessor applied to different mesh tessellations. In

addition, as the SIAC filter is a good candidate for parallelization, we provide, for the

first time, results tha t confirm anticipated performance scaling when parallelized on a

shared-memory multiprocessor machine. We add tha t postprocessing over unstructured

triangulations will be discussed in Chapter 7.

We proceed in this chapter by providing the definition and properties of the convolution

kernel in Section 3.1. We then continue by demonstrating how SIAC filtering works to

extract the higher order accuracy hidden in the DG solution in Section 3.2. The detail

of the construction of the convolution kernel is given in Section 3.3. The implementation

of the SIAC filter will be discussed in Section 3.4 in one dimension. Moving on to higher

dimensions, we provide implementation details for quadrilateral and hexahedral meshes in

Section 3.4.1 and for triangular mesh structures in Section 3.4.2. In Section 3.5, we provide

performance analysis as well as the parallel implementation of the postprocessor. The result

of this contribution has been published in [49].

3.1 The C onvolution K ernel
The postprocessor itself is simply the discontinuous Galerkin solution at the final time

T , convolved against a B-splines kernel K r+1>fc+1. That is, in one dimension,

21

u*(x) = K r+1’fc+1 * u h ,

= 1 /H K ’+ u + 1 (’i t) ’‘‘ O ')*'- (3A)

where u* is the postprocessed solution and h is the mesh characteristic length. The

superscript r + 1 , k + 1 typically represents the number of B-splines used in the convolution

kernel as well as the B-spline order. In the following discussions, we shall drop this

superscript for the sake of a less cluttered explanation.

The convolution kernel in the SIAC filter is a linear combination of B-splines. We

note tha t filtering in most visualization applications has as its goal the reconstruction of

a continuous function from a given (discrete) data set. For example, assume tha t f k is

the given set of evenly sampled points of some function f (x). A filter might take this set

of points and introduce some type of continuity assumption to create the reconstructed

solution f*(x). Filtering for visualization based upon discrete data is often done using

convolution with some type of spline, often a cubic B-splines [57, 56, 28, 32, 51, 63]. Much

of the literature concentrates on the specific use in image processing, though there has also

been work in graphic visualization [12, 72] and computer animation [32].

There are many filtering techniques tha t rely on the use of splines in filtering. A good

overview of the evaluation of filtering techniques is presented in [53]. In [54], Moller et al.

further discuss imposing a smoothness requirement for interpolation and derivative filtering.

In [57], the methods of nearest neighbor interpolation and cubic splines are compared.

Hou and Andrew [32] specifically discuss the use of cubic B-splines for interpolation with

applications to image processing. The interpolation consists of using a linear combination

of five B-splines with the coefficients determined by the input data. This is a similar

approach to the one discussed throughout this dissertation. Another method of filtering for

visualization via convolution is presented in [54]. This methods chooses an even number of

filter weights for the convolution kernel to design a filter based on smoothness requirements.

The authors also discuss classifying filters and extend the analysis to the spatial domain.

We can also relate our filter to those evaluated by Mitchell and Netraveli [51], where they

design a reconstruction filter for images based on piecewise cubic filters, with the B-spline

filter falling into this class. In [51], it is noted tha t a 2D separable filter is desirable, as is

the case with the B-spline filter discussed in this work. Further discussion on spline filters

can be found in [34, 65, 66]. Here, we focus on a type of spline filter that is used to improve

the numerical solutions obtained from a discontinuous Galerkin scheme.

The kernel in Equation (3.1) has the following form

22

K (x) = ^ cY# +1)(x — xY), (3.2)
7=0

where ^ (fc+1) is the B-spline of order k + 1, cY are the kernel coefficients, and r = 2k

represents the number of B-splines used in the kernel. Furthermore, x Y represent the

positions of the kernel nodes and are given by

r
xY = — 2 + Y, Y = 0, ••• , r ■ (3.3)

The kernel in Equation (3.2) has a symmetric form (Figure 3.1 left) tha t can be used for

postprocessing in the interior of the domain. This type of kernel requires information from

both sides of an evaluation point at which we wish to calculate the postprocessed value. To

perform filtering near boundaries or shocks, we need to use a one-sided form of the kernel

tha t requires information only from one side of the boundary or shock (Figure 3.1 right).

In general, we can generate such a kernel by shifting the positions of the kernel nodes to

one side. This shifting can be done by using a shift function A(x) so that the new kernel

positions xY + A(x) all reside on the one side of the boundary or shock. We note tha t in

this work, we always consider periodic meshes and solutions; hence, only the symmetric

kernel is implemented. However, the ideas presented in this document can easily adapt to

the one-sided kernel. For more information on one-sided postprocessing, consult [62, 73].

The convolution kernel given in Equation (3.2) has three mains properties [19]:

Evaluation point \ Evaluation point

F ig u re 3.1. Symmetric (left) versus one-sided (right) kernel. Symmetric kernel uses
information from both sides of the evaluation point. Solid red line represents the kernel and
dashed blue lines depict the constructing B-splines of order two (k = 1).

23

1. K has a compact support.

2. It reproduces polynomials of degree up to r by convolution. For example, considering

monomials we get

K * xp = xp p = 0,1, ••• , r. (3.4)

This guarantees that the accuracy of order r +1 is not destroyed. Moreover, it provides

a mechanism for calculating the kernel coefficients cY. More detail is given in Section

3.3.

3. It allows us to express derivatives of the convolution with the kernel in terms of simple

difference quotients. This is the consequence of the kernel being a linear combination

of B-splines. Indeed it is not difficult to verify tha t for multi-indices a and such

that fii > a i for i = 1, ■ ■ ■ , d, we have

D “ (^H * u) = ^ - a * dHu, (3.5)

where ^H(x) = ^ (a/H)/H d, dH := dH \ ■ ■ ■ dHdd and

dn,ju(x) = -1 (u (x + 2 Hej) — u(x — 1 Hej))- (3.6)

For a = 1, dH is simply the central difference operator. This property can be exploited

in the finite element framework and in the theoretical proofs, as will be seen in the

next section.

Given the necessary background on the convolution kernel, we continue by demonstrating

how we can extend the higher order accuracy in the negative-order norm to the L2-norm

through the application of the SIAC filter.

3.2 E xtracting th e H igher Order Accuracy
in D G Solutions

We begin this section by stating the main theorem in filtering numerical solutions from

Bramble and Schatz [11] valid for locally uniform mesh structures:

T h eo re m 3.2.1 Let uh be any numerical approximation to u and Khk+1,k+1 the kernel

given in Equation (3.2). For T > 0 and sufficient smoothness of u we have

\\u(T) — K f +1’k+1 * u h k n < C1 h2k+1 + C2 £ ||da(u — U h) L ^ n (3.7)
|a|<k+1

where C1 and C2 are independent of h.

24

W hat we would ultimately like to show is

||u(T) — K f +1’fc+1 *uh||o,fi < Ch2k+1, (3-8)

where C depends solely on the smoothness of the solution and is independent of h-

We note here tha t the notation ||u||o,fi represents the standard L2—norm of a function

u on fi. In general, for any natural number I, we consider the norm of the Sobolev space

H l (fi), defined by

IMkfi = I £ ||D“ u ll2o , f i . (3-9)
l> |< i J

Moreover, | u | - i ;n denotes the negative-order norm of a function u and its definition will

be given later in this section-

In this work, we consider uh to be an approximation obtained by the DG methodology-

In this case, Equation (3-8) indicates tha t through the application of the SIAC filter, we can

pass from O (hk+1) accuracy in the L2-norm of DG solutions to O (h2k+1) in the L2-norm

of filtered DG solutions- According to Theorem 3-2-1, we can bound the error in the

L2-norm by a higher order term of h2k+1 accuracy and the negative-order norm of the

divided differences of the error- If this second term, i.e., negative-order norm of the divided

differences of the error, is also of higher order h2k+1, we arrive at Equation (3-8) and hence

the effectiveness of SIAC filtering in raising the order of accuracy in the L2—norm-

Let us now demonstrate how we can bound the L2-norm, as given in Theorem 3-2-1-

Note that we can rewrite the estimate in Equation (3-7) as

||u — K f +1’k+1 * uhIIo.fi < ||u — K f +1’k+1 * ullo.fi + | |K f +1’k+1 * (u — uh)||o,fi. (3-10)

To estimate the first term in Equation (3-10), we consider a Taylor series expansion of u(x, T)

around a point y and of degree 2k. We denote the Taylor polynomial by T 2k+1u(y, x) which

is given by

T 2k+1u(y, x) = £ _ y)a
. . a!|a|=o

and _
D a u(y)

R2k+1u(y,x) = u(x) — T 2k+1u(y,x) = ;— (x — y)a .
' a!|a|=2k+1

Consequently, we arrive at

u(x) — K h * u(x) = u(x) — Kh * (T2k+1u (y ,.) + R2k+1u(y, .))(x)

= u(x) — Kh * T 2k+1u(y, x) — Kh * R2k+1 u(y, x)

= R2k+1u(y, x) — Kh * R2k+1u(y, x),

25

where the third equation is resulted from the second property of the kernel mentioned in

the previous section which indicates tha t the kernel reproduces polynomials of degree up to

r (here r = 2k) by convolution.

For y = x, the above expression becomes

u(x) — K h -ku(x) = — / K h(z)R2k+1(x ,x — z)dz
JRd

= — J K (z)R 2k+1u (x ,x — hz)dz,

where the second equation is resulted from K h = hK (h) and I is the support of the kernel.

Consequently, we obtain the error bound on the first term of Equation (3.10) as

||u — K f +1’k+1 * u ||0,n < yK2k+1,k+1 ||L1(Rd) sup ||R2k+1u (x ,x — h z)||0,Qo.
zeI

We note tha t R2k+1u(x, x — hz) in the above equation is given by

Dau (e) h2k+1
R2k+1u(x, x — hz) = ---- u(e) (—hz)a = (—1)2k+17h— —D au(e)za , (3.11)

a! 2k + 1!

where |a | = 2k + 1. Ultimately, we arrive at the following error bound

||u — Khk+1’k+1 * u||0,n < C ih2k+1. (3.12)

At this stage, it only remains to show tha t the second term in Equation (3.10) is of higher

order which then results in the error estimate in Equation (3.8).

If u is a function in L2(Q), it can be shown tha t (Bramble and Schatz [11], Lemma 4.2)

||u||0,n < C £ HDaf ||— i. (3.13)
\a\<l

This indicates tha t we can derive error estimates for the standard L 2- norm in terms of the

negative-order norm of the divided differences. Substituting u with K"^+l’k+l * (u — uh)

and I with k + 1 we obtain:

©

| |K f +1’k+1 * (u — uh)||0,n < C2 ^ |D a (K f +1’k+1 * (u — uh)) ||—(k+1),n . (3.14)
|a|<k+1

We further emphasize tha t this is an important step to pass from the usual L2-norm to the

negative-order Sobolev norm.

26

To bound the error in Equation (3.14), we make use of the third property of the kernel

presented in the previous section to get

© <C 2 £ | |K f +1’fc+1- a ^ (u - uh)y_(fc+i),n
|a|<k+1

<C2 £ |K f + 1’fc+1_“ | Ll(Rd)|da(u - u h) |_ (fc+1;n)
|a|<k+1

< C2 £ |d a (u — uh)ll-(fc+1),n- (3.15)
|a|<k+1

In other words, by using the property of the kernel to rewrite the derivative of the con

volution as the convolution with the divided differences, we are able to bound 0 by the

negative-order norm of the divided differences of the error. Consequently, it is now clear

how the inequality relation given in Theorem 3.2.1 is obtained. Moreover, if we demonstrate

tha t this negative-order norm of the divided differences of the error is of higher order, our

initial claim given in Equation (3.8) is realized. For this, we continue by providing the

definition of the negative-order norm.

A negative-order norm is a norm equipped with the dual space of the Sobolev space

H l (Q). A dual space of a vector space consists of all linear functionals (linear maps) of that

vector space. For example, for u € H l and 0 € C0°(Q), ^ = (u, 0), i.e., the inner product

of u and 0, denotes a linear functional on u and thereby ^ belongs to the dual space of

H l (Q). We denote this space by H _ l (Q) and define its associated norm as
(u, 0)

IMI-^n = sup — — . (3.16)
^ecg°(n) ll0 lk,n

Equation (3.16) is what we refer to as the negative-order norm. We emphasize tha t although

||u |_ i)n is associated with H _ l (Q), here we only use this as a quantitative measure for

functions in L2.

In Equation (3.16), if we consider the simplified domain Q = [—n,n], then the complex

exponential functions emx = cos(nx) + i sin(nx), n € Z is an orthonormal basis for

L2([—n,n]). By assigning 0 = emx, will result in normalized Fourier coefficients

in the Fourier series expansion of u. Consequently, the negative-order norm in this case will

yield the supremum Fourier coefficient.

Similarly, the negative-order norm of the divided differences of the error as given in

Equation (3.15) will be

||da (u — u‘)||_ijn = sup (d‘ (u0 |i u‘) ,0) . (3.17)
^ecg°(n) ll0 lkn

The norm given in Equation (3.17) needs to be of higher order accuracy (using any numerical

approximation u‘) in order to achieve higher order accuracy in the L2-norm through convo

27

lution. Normally what happens in practice is that we demonstrate, through mathematical

proofs, the higher order accuracy of O (h2k+1) in the negative-order norm of the error u — Uh

by applying a duality argument for locally uniform meshes. Proofs for the divided differences

will be similar. Cockburn et al. have sketched the detail of the proof of higher order accuracy

in the negative-order norm of the error for a DG scheme of linear hyperbolic equations in

[19], therefore, we avoid repeating tha t discussion here. Details of the proof for variable

coefficient linear hyperbolic equations will be given in Section 5.2.

By demonstrating tha t 0 in Equation (3.15) can be estimated with high accuracy, the

estimate in Equation (3.10) will also be of higher accuracy and therefore, we provided in

this section how one can raise the order of accuracy in the L 2—norm through the application

of the SIAC filter.

3.3 C onstruction of the K ernel
We remind the reader that the postprocessor is simply the discontinuous Galerkin

solution at the final time T , convolved against a linear combination of B-splines. That

is, in one dimension,

u*(x) = h J K r+1,k+1 ^ Uh(y)dy, (3.18)

where u* is the postprocessed solution, h is the characteristic length and
r

K r+1>k+1(x) = cY+1’k+V (k+1)(x — x7), (3.19)
7=0

is the convolution kernel. ^ (k+1) is the B-spline of order k + 1 and cY+1,k+1 represent the

kernel coefficients. xY represent the positions of the kernel nodes and are defined as:
r

xY = — 2 + Y, Y = 0, ••• , r = 2k. (3.20)

B-splines form the core elements of spline filters. The B-splines tha t we consider for our

convolution kernel are more specifically referred to as central B-splines. A central B-spline of

degree k is a B-spline with knots x j = — kjr1 + j j= 0 _ k+1 and it can be defined by recursive

convolutions of the characteristic function with itself.

^ (1)(x) =X[—1/2,1/2],

^ (1)(0 ^ (k)(x — £)di, k = 1, 2, 3, ••• . (3.21)
-OO

By evaluating the integral in Equation (3.21), we arrive at the following recursion relations:

^ (1)(x) =X[—1/2,1/2],

+1) (x) = 1 ^ + x) ^ (k) (x + 2) + (—x) ^ (k) (x — 2)) ’ (3.22)

28

Figure 3.2 depicts the B-splines of different orders. From these plots, we observe tha t as

the order increases, the smoothness and support increase and the maximum value of the

B-spline decreases.

A B-spline of order k + 1 is a piecewise polynomial of degree k over each individual

interval separated by the B-spline knots. Using Equation (3.21), one can also calculate the

polynomial coefficients as fractions, a priori, store them in a matrix, and then use some

polynomial evaluation scheme such as Horner’s method to evaluate the B-spline at some

arbitrary point. As an example, for k = 2, the B-spline has the form

-0(3)(x) =

1 x2 + 3 x + 9 x G [_3 _1)2x + 2x + 8 , x G [2 , 2) ,
x G [_ 1 , 2) ,_ x 2 + f , (3.23)1 x2 _ 3 x + 9 x G [I 31

2 x 2 x + 8 , x G [2 , 2 J:
0, otherwise.

We should also note tha t from the aforementioned definitions, it is obvious tha t the B-

splines have compact support, meaning tha t a B-spline ^ (fc+1)(x) of degree k with knots

xo < ••• < xk+1 is zero outside of [xo,xk+1], where xo = _ (k+1) and xk+1 = (k+1).

This leads to a more efficient scheme for B-spline evaluations since the points outside this

interval simply result in a zero value. Algorithm 1 depicts the pseudo-code for evaluating

the B-spline at a particular point x. We further note that B-splines have been well-studied,

and we refer the interested reader to [35, 64, 23] for a more thorough discussion.

Now tha t the B-splines are defined, they can be used to construct the convolution kernel

in the SIAC filters. However, the kernel coefficients cY remain to be defined.

One of the important properties of the kernel, as mentioned in the previous chapter, is

tha t it reproduces polynomials up to a certain degree r, which equals 2k for the symmetric

kernel postprocessing we consider in this work. This means that the convolution of the

F ig u re 3.2. B-splines of order 2, 3, and 4. Note that as the order increases, the smoothness
and support increase and the maximum value of the B-spline decreases.

29

A lg o rith m 1 Evaluating 0 (fc+1)(x)
1: if x in [x0,x k+1] th e n
2: Find the interval of x, call it [xj,x j +1]
3: 0 (fc+1)(x) = value of the corresponding polynomial over [xj ,x j+1] (as in Equation

3.21) at x
4: else
5: 0 (fc+1)(x) = 0
6: end if

kernel with a polynomial of degree less than or equal to r is equal to tha t polynomial itself.

In addition, it guarantees that the accuracy of the DG approximation is not destroyed by

the convolution. Using the monomials, we obtain the following linear system for the kernel

coefficients:

^ c j 0 (fc+1)(y)(y — x — xY)mdy = xm, m = 0,1, ••• , r
7=0 J r

(3.24)

To calculate the integral in Equation (3.24), we use Gaussian quadrature with ^4^+ 1

quadrature points [40]. As an example for k = 1, Equation (3.24) gives

(3.25)
1 1 1 "co" 1

x + 1 x x — 1 c1 = x
x2 + 2x + 6 x2 + 6 i+x2—2x c2 x2

Equation (3.25) must hold for all x; we simply set x = 0 and obtain the coefficients

12
(3.26)

The linear system in Equation (3.24) is a nonsingular system. Hence, the existence and

uniqueness of the kernel coefficients is guaranteed (see [19] for a proof). Linear alge

bra routines provided by the LAPACK library can be used for solving the system (visit

www.netlib.org/lapack/). Figure 3.3 provides a schematic of the kernel function for k = 1

and k = 2.

Algorithm 2 provides the pseudo-code for constructing the matrix of the linear system

mentioned in Equation (3.24). Note that for calculating the integral in Equation (3.24) (Line

12 in Algorithm 2), the integration region R actually reduces to [—(k + 1)/2, (k + 1)/2], and

tha t we need to divide this region into subintervals tha t respect the continuity breaks in

the B-splines. This is required for the integral to be evaluated exactly to machine precision

using Gaussian quadrature.

Having defined the kernel, we continue by demonstrating how to implement the post

processor operator by evaluating the integral in Equation (3.18).

6

http://www.netlib.org/lapack/

30

(a) k = 1 (b) k = 2

F ig u re 3.3. The convolution kernels for k = 1 (a) and k = 2 (b). Dashed lines represent
the constructing B-splines.

A lg o rith m 2 Constructing the B-spline coefficient matrix
1 rowSize = r + 1
2 colSize = r + 1
3 LinMatrix[rowSize] [colSize]
4 bsplineKnots = [— kjr1, — + 1, ■ ■ ■ ,]
5 for row = 0 to rowSize do
6 for col = 0 to colSize do
7 LinMatrix[row][col] = 0
8 olc=

9 x II 1 +

10 {Evaluate the integral in Equation (3.24)}
11 for i = 0 to size(bsplineKnots) — 1 do
12 0 = [bsplineKnots[i], bsplineKnots[i + 1]]
13 x = map the Gaussian quadrature points obtained over [—1,1] to 0
14 LinMatrix[row][col]+ = ^ (fc+1)(x)(x + x Y)rowdx using Gaussian quadrature
15 en d for
16 en d for
17 en d for

3.4 Evaluation of the C onvolution Operator
Traditionally, SIAC filters are implemented as small matrix-vector multiplications [61].

That is, considering a fixed number of evaluation points per element, a number of coefficient

matrices are produced. These are computed one time and stored for future use. The

postprocessing is then implemented in a simple manner via these small matrix-vector

multiplications of the prestored coefficient matrices and the coefficients of the numerical

solution. However, as this approach is not suitable for the more general case of unstructured

meshes, we discuss in this section how the integral in Equation (3.18) can be evaluated

directly.

We begin by introducing the notion of a standard region (sometimes referred to as the

31

reference element). In order to evaluate a DG approximation at an arbitrary point or to

compute an integral using Gaussian quadrature, we often first need to map the points to a

standard region (see [40]). In this section, we introduce the 1D standard element, such

that

Rst = (C l - 1 < C < 1} . (3.27)

Therefore, to evaluate our DG approximation uh(x) in Equation (3.18) at a point x defined

on the interval I = [xa ,x b], which we refer to as the local region, we have

k
Uh(x) = ^ 2 u f V l (^ -1 (x)) (3.28)

l=0

(I)where ui are the local polynomial modes on I i resulting from a discontinuous Galerkin

approximation, are the polynomial basis functions of degree I defined over the standard

region, and ^(£) is the affine mapping from the standard to local region given by

M £) = xa ̂ + x b ̂ . (3.29)

To evaluate the postprocessed solution at an isolated point x € I i by directly evaluating

the integral in the convolution operator, we have

u*(x) = h J K (~ n ^) uh(y)dy = h E f K uh(y)dy (3.30)
- ^ Ii+j£Supp{K} Il+j

where the second equation is due to the compact support property of the kernel. In order

to evaluate the integral in Equation (3.30) exactly, we need to divide the interval I i+j

to subintervals over which there is no break in regularity in the integrand. We then use

Gaussian quadrature with sufficient quadrature points to evaluate the integration.

Figure 3.4 shows how the integration regions are constructed from the intersection of

the kernel knots and the DG element interfaces. As the figure demonstrates, in the final

integration mesh (red line), each DG element is divided into two subintervals so that there

Kernel \---------- \-----------j---------- 1-----------}---------- ‘---------- j---------- f

M esh 1— j-------1— j-------1— |------ 1— |-------1— |-------1— j------ 1— |------ 1— j-------1

Kernel-Mesh overlap i— i-----'— j------ l—l -----1—1-----1— 1----- j._j------ l _ ± -----1—1----- 1

F ig u re 3.4. A possible kernel-mesh overlap in one dimension. Upper line represents the
kernel, middle line depicts a DG mesh, and the lower line (dashed red) represents the
integration mesh.

32

is no break in continuity. The integration will then be carried out over these subintervals,

tha t is,

1 [°° K (y - x '
hu*(x) = h L K (yi r) u M d y '

= h E f - (^ (y H y ,

1 V
h

Ii+j
L/_1 k (^ S1 ̂ X) U h(^ i(€)) |J i|d e + £ K ^ s2® x) Uh(^s2(e))|J2|de

(3.31)

where s 1 and s2 are the two aforementioned subintervals within each DG element, i.e.,

s 1 U s2 = Ii+j. In addition, y si (£) and ^ S2 (£) represent the mappings from the standard to

local regions s 1 and s2 and | J 1| and | J 2| are the Jacobians of these mappings. Moreover, the

number of quadrature points should be enough to integrate polynomials of degree 2k. In

addition, similar to Equation (3.28), we evaluate the DG approximation in Equation (3.31)

as
k

uh(x) = Y^ u<ii+j (^_+j (x)) (3.32)
1=0

where in this case, x = y si 2 (£) and belongs to element I i+j-.

We note tha t the support of the kernel is given by

K = x + h (-) , K b = x + h () , (3.33)

where x is the evaluation point and I = k + 1. Consequently, the position of the kernel

breaks are given by

K a + h , K a + 2h, • • • , Kb. (3.34)

Algorithm 3 provides a pseudo-code for implementing the convolution operator in a

one-dimensional field. In Line 5, it is stated tha t the subintervals are the result of the kernel

and DG mesh intersection, which is a geometric problem. This will be addressed thoroughly

in Chapter 6. In one dimension, this problem is fairly straightforward as it is the result of

the sorted merge of the kernel breaks and the mesh element interfaces tha t are (partially)

covered by the support of the kernel (note that kernel breaks and element interfaces are

already sorted lists). For a uniform mesh, the footprint of the kernel can be found in

constant computational time. For a nonuniform mesh structure, where the positions of

the element interfaces in the mesh are defined by a smooth function, the footprint can be

found in O(log(N)), N being the number of elements in one direction (or total number of

elements in 1D). Moreover, for uniform meshes, h represents the uniform mesh spacing. For

33

A lg o rith m 3 1D-Convolution
1 for each evaluation point x do
2 Ii = the element to which x belongs
3 h = the size of the element I i
4 {Find the integration subintervals}
5 S = kernel and mesh intersection
6 {The following for loop implements the third line in Equation 3.31}
7 for each s in S do
8 intg + = Evaluate J'_1 K (Ms(h) j u h (^s(0)| J|d£
9 end for

10 hegni(x)
*

u

11 end for

nonuniform meshes, we simply consider h as being the size of the element (length of element

in 1D and length of element sides in 2D).

We further note tha t the postprocessed polynomial is of degree 2k + 1. Therefore, if

we want to postprocess a DG approximation of degree k over the entire field so that a

transformation to a modal representation is feasible, we need to evaluate the postprocessor

at 2k + 2 collocating points per element. Moreover, in our initial DG approximation space,

we have N x (k + 1) degrees of freedom (N being the number of elements in the field),

whereas in the postprocessed solution space, there are N x (2k + 2) — N x (k — 1) degrees

of freedom. The first term is due to higher order polynomials and the second term is due

to what is removed (constrained) due to continuity.

3.4.1 Q uadrilateral and H exahedral M eshes

In two dimensions, the convolution kernel is a tensor product of the one-dimensional

kernels
ri r2

K (x ,y) = £ £ C l c Y2 '0(fc+1)(x — xYi) ^ (fc+1)(y — xY2) (3.35)
71=0 72=0

= K (x) x K (y),

where xY1 and xY2 are the position of the kernel nodes in the x 1— and x2—directions and

the two-dimensional coordinate system is denoted with (x1,x 2). Furthermore, r 1, r 2 equal

2k.

The two-dimensional convolution over quadrilateral mesh structures is therefore,

34

u * (x , y) = - ^ / f K [Xl) ^ x \ y) Uhi,h2 (x1,x2)dx1dx2,
h 1h2 J - ' x J - ' x V h 1 / V h2

h1h2 ^ . . . V h1 / V h2Ii+d1 ,.+d2es«pp{irK •'J.+d ij+d2 v 7 v
(3.36)

which evaluates the postprocessed solution at (x,y) € I i;j . Notice that the scaling of the

kernel does not require h 1 = h2.

Once again to evaluate the integral in Equation (3.36) exactly to machine precision, we

need to divide the integration region h+d1,j+d2 which has a quadrilateral shape to subregions

over which there is no break in regularity.

Figure 3.5 demonstrates a possible kernel-mesh intersection over a quadrilateral mesh.

As shown in the figure, the postprocessing kernel can be viewed as a two-dimensional patch

which is the immediate result of the tensor product of the one-dimensional kernels on each

direction.

For the example in Figure 3.5, we can see that it is necessary to break down the DG

element to four subelements in order to evaluate the integration in Equation (3.36) exactly,

i.e.,

K (x \ x %) K f x2 y N) uh1,h2(x1,x2)dx1dx2
Ii+dl,.+d2 v h1 / V h2 /

£ / / K (x \ x) K (x2h y) Uhi,h2(x 1 ,x 2)dx 1dx2
n=0 Sn 1 2

£ K ^ ̂ &) - y ̂ |J 2| K (̂ (̂ - x) Uhi,h2 (^s„i (6) , ^ (6))|J1 |d&) d&,1 (e ^ - y \ |J2V I '1 K (Vsni (CQ - x
ra=^ - 1 \ h2) x J - 1 V h

(3.37)

where sn indicates the integration region resulting from the kernel-mesh intersection. Fur

thermore, the third equation is obtained using the tensor product property of the two

dimensional kernel. This allows us to write the two-dimensional integration as a product of

one-dimensional integrations. ^ Sni ({1) and ^ Sn2 (£2) are used to denote the one-dimensional

mappings from the standard element to the local regions, which in this case are the sides

of the subelement sn in the x 1 and x2 directions. |J 1| and |J 2| are the Jacobians of these

transformations. In addition, the number of quadrature points required for integration

should be chosen to exactly integrate polynomials of degree 2k in each direction.

Another point that we would like to mention here is the evaluation of our DG approx

imation, uhi,h2(x,y). To evaluate the DG approximation at an arbitrary point(x,y) € I i;j ,

we have

35

------- 1 --------------- - t ----------

52 53
1

1
_|

s i 54 1

1

F ig u re 3.5. A possible kernel-mesh overlap in two dimensions. Dashed lines represent the
kernel patch and solid line represent the DG mesh. Red lines depict possible integration
regions over one element.

k k
(*,y) = £ £ 0 (pq)(6 ,6) (3.38)

p=0 q=0

where £1 and £2 are obtained using the appropriate one-dimensional inverse mappings from

local to standard regions (see Section 3.4).

If we define our two-dimensional basis function ^ (pq')(£1,£2) as the tensor product of

one-dimensional basis functions (see [40])

4>pq (6 , 6) = ^ (6) ^ (6) , (3-39)

with 0 “ and 0 being the modified or orthogonal basis functions as in [40], then we can

evaluate the DG approximation in Equation (3.38) as

k k
Uh1,h2 (x , y) = Y 1 0 (“(£i) Y 1 ut j 0 q (£2) - (3-40)

p=0 q=0

This is the so-called sum-factorization technique introduced in [40]. Using this approach,

the number of operations needed to evaluate the DG approximation at O(k2) quadrature

points formed by the tensor product of one-dimensional points reduces from O(k4) to O(k3).

This aids the numerical practitioner in saving on the overall computational cost of the

postprocessor.

Algorithm 4 provides a pseudo-code for the two-dimensional convolution over quadrilat

eral mesh structures. Lines 6 and 7 are implemented the same way as the one-dimensional

case explained in the previous section. Consequently, S 1 and S 2 are integration sets that

represent the one-dimensional integration regions on each direction. This means tha t the

tensor product of these two sets produces the two-dimensional integration regions, as shown

in Figure 3.5. In addition, in Lines 3 and 4, if we are dealing with a uniform mesh, h 1 = h2

36

A lg o rith m 4 2D Quadrilateral Mesh Convolution
1 for each evaluation point (x, y) do
2 I i)j- = the element to which (x, y) belongs
3 h 1 = length of I i)j- side in direction x 1
4 h2 = length of I i)j- side in direction x 2
5 {Find the 1D integration subintervals on each direction}
6 S 1=kernel and mesh intersection in direction x 1
7 S2=kernel and mesh intersection in direction x2
8 for s 1 in S 1 do
9 for s2 in S2 do

10 in tg+ = Evaluate the outer integral in Equation (3.37)
11 end for
12 end for
13 u*(x,y) = in tg /(h 1 h2)
14 end for

and is equal to the uniform mesh spacing on each direction. Otherwise as we mentioned in

the previous section, we choose the length of the element size on each direction for h 1 and

h2, respectively (Figure 3.5).

Similar to the two-dimensional case, the convolution kernel in three dimensions can also

be formed by performing the tensor product of one-dimensional kernels. That is,

ri r2 rs
K (x, y, z) = £ £ £ cYic72c73^ (x — 7 1)^ (y — 72)^ (z — 7a)- (3.41)

Yi=0 72=0 Y3=0
= K (x) x K(y) x K (z),

where xYi, xY2, and xYs are the position of the kernel nodes in x 1—, x2— and x3-directions

and we have denoted the three-dimensional coordinate system with (x 1 ,x 2 ,x 3). Further

more, r d, d = 1, 2, 3 and equals 2k.

From Equation (3.41), it is clear tha t the three-dimensional postprocessor over hexahe-

dral meshes will be a natural extension of the two-dimensional quadrilateral postprocessor

given above and therefore, we will not provide further detail for this type of the postpro

cessing.

3.4.2 S tru ctured Triangular M eshes

In this section, we discuss postprocessing over structured triangular meshes. For this, we

simply take the quadrilateral mesh implementation and apply the same kernel for structured

triangular meshes. This means that we still use the kernel definition given in Equation

(3.35) and evaluate the integral in Equation (3.36). However, now this is over a triangular

region. The accuracy-enhancement capabilities of the SIAC filter over structured triangular

37

regions will be discussed thoroughly in Chapter 5. Here, we explain the details of the

implementation.

Figure 3.6 depicts a possible kernel-mesh intersection for a structured triangular mesh.

As was done in the quadrilateral mesh case, we note that it is necessary to divide the

element into subregions tha t respect both the element interfaces and kernel breaks, in

order to perform the integrations exactly to machine precision. Moreover, we choose to

further divide these subregions into triangles, as shown in red in Figure 3.6. Therefore, the

postprocessed solution at (x, y) € I i j becomes

u*(x,y) =
1 roo poo

hi h2 —

1
<x> J — <x h i

K (— - | K | — -) Uh!,h2(xi,x2)dxidx2:
h2

hi h2 £
Ii+d1 ,j+d2 &Supp[K} U(1i+di ,j + d2) hi

„ , x i — x \ ̂ / x2 — y , , , ,
K I ---;----- I K I ---;----- I Uh1,h2 (xi,x2)axidx2 +

h2

K
L(1i+di ,j + d2)

x i x
h i

K x2 — y
h2

Uh1 ,h2 (xi, x2)dxidx2

(3.42)

In Equation (3.42), we have simply modified Equation (3.36) in Section 3.4.1 by dividing

the integration over a quadrilateral element into two triangular elements U(Ii+d1j+d2) and

L (Ii+d1 ,j+d2)• We refer to the quadrilateral element in this case as a super-element, to

indicate the quadrilateral combination of the two diagonally aligned triangles in the DG

structured mesh.

We consider one of the integrals in Equation (3.42),and explain how this integration can

be evaluated exactly to machine precision. After triangulating the integration regions as

shown in Figure 3.6, we arrive at

F ig u re 3.6. A possible kernel-mesh overlap in two dimensions over a structured triangular
mesh (left). Dashed lines represent the kernel patch and solid lines represent the DG mesh.
In the right image, red lines depict possible integration regions over the upper element.

38

U (Ii+di ,j + d2) V 1
3

h 1 h 2
. x i x \ K f x2 y) Uhi,h2 (x1,x2)dx1dx2

J J K (^X1hi x ^ K (̂ 2h ̂ ^ Uhi,h2(x1,x2)dx1dx2
n=0 “ “ 'n

= /_ ! / _ / 2 K ^ 1(C1,/f12) - ^ K ^ 1’̂ - ^ U hi,h2(M 6 ,€2),M2(^1 ,£2))| J |d^1d^2
(3.43)

where Tn is the triangular subelement in U (Ii+di,j+d2), ^ 1 and ^ 2 are the appropriate

mappings from the the standard to local triangular region which are defined later in the

section, and | j ? 1 = 1 |.

In Equation (3.43), the third equation is derived by mapping the standard triangular

element defined as

Tst = { (6 , 6)| - 1 < £1>6 ; £1 + (2 < o} (3.44)

to the local region rn . We also note tha t in order to have the triangular expansion be

as efficient as the quadrilateral one, we want to be able to define the two-dimensional

basis functions used to evaluate our DG approximation in terms of a tensor product of

one-dimensional basis functions. Consequently, we define a mapping from the Cartesian

coordinate system to the so-called collapsed coordinate system such that

1 + £1
V1 = 2----- 11 - 1, n2 = £2 , (3.45)

1 - £2
with the inverse transformation

£1 = - j, £2 = (3.46)

These new local coordinates (n1,n2) define the standard triangular region by

Tst = { (n1 ,n2)|- 1 < V1,V2 < 1} . (3.47)

The transformation in Equation (3.45) can be interpreted as a mapping from the triangular

region to a rectangular one, as seen in Figure 3.7. This transformation ia also known as

the Duffy transformation (see [27]). Furthermore, for more information regarding tensorial

basis functions and the collapsed coordinate system, we refer the interested reader to [40].

Using the collapsed coordinate system, the integral in Equation (3.43) now becomes
'•1 r _?2

L 1/ / K (^ 1(£1,h£2) x) K ^ 6 ^ 2) ^ Uhi,h2(^1(£1,£2),^2(£1,£2))|Jf |d£1d£2

1 ! j ! K (— x) K (^ 2(n1 h22)— y) Uh i , h 2 (m, n2)) | J?| | Jn|dm dn2
(3.48)

39

F ig u re 3.7. Triangle to rectangle transformation.

Equation (3.48) results in the value of the two-dimensional integral over the triangular

region rn . We note that since the kernel is a function of both variables in the standard as well

as the collapsed coordinate systems, we can not separate the two-dimensional integration

in terms of one-dimensional integrations as we did in Equation (3.37). Consequently.

the number of quadrature points required for integration should be enough to integrate

polynomials of degree 3k exactly. Furthermore, if we denote the vertices of Tn as xA, xB

and xC then we have

+ xB + xC
2 i 2

Substituting {1 and {2 using Equation (3.46), we arrive at

i = 1,2.

xi = ^ (n 1 ,^ 2) = x
1 - ni i - n2 + x B 1 + ni 1 - n2 + x C 1 + n2

i = 1,2.

(3.49)

(3.50)
2 2 2 2 2

We can also use a similar procedure to Equation (3.38) to evaluate the DG approximation

at (x,y) € U(Iitj). That is,

k k-p
Uhuh2 (x , y) = vPUq(ii,j)^pq (^ i, ^2),

p=0 q=0

with the difference tha t the basis functions are given by

pq (Ci,C2) = (n i X (n2),

(3.51)

(3.52)

with and ^pq being the orthogonal or modified basis functions for triangular elements

defined in [40]. In Equation (3.51), U (Ii)j-) represents the DG triangular element that

contains (x, y) and ni and n2 are obtained by first applying an inverse mapping that maps

U (Ii,j) to the standard triangular region given in Equation (7.4), and then using Equation

(3.45). The use of the sum-factorization technique mentioned in the previous section is not

beneficial here, since the quadrature points obtained as a result of several mappings do not

necessarily follow a tensor-product form.

Algorithm 5 provides a pseudo-code for implementing the convolution operator over

structured triangular meshes. As we mentioned earlier, for implementation purposes, we

40

A lg o rith m 5 2D Triangular Mesh Convolution
1 for each evaluation point (x, y) do
2 I i)j- = the super-element to which (x, y) belongs
3 h 1 = size of I i)j- in direction x 1
4 h2 = size of I i)j- in direction x2
5 {This simply gives the super-elements (partially) covered by the 2D kernel}
6 k F o o tP rin t= the footprint of the 2D kernel on the DG mesh
7 for each super-element I in k F o o tP rin t do
8 {lower triangle}
9 L(I)=lower triangle

10 intgRegions = intersection of L (I) with each square in the 2D kernel patch
11 for each triangle t in intgRegions do
12 intg + = Result of the integral in Equation (3.48)
13 end for
14 {upper triangle}
15 U (I)= upper triangle
16 intgRegions = intersection of U (I) with each square in the 2D kernel patch
17 for each triangle t in intgRegions do
18 intg + = Result of the integral in Equation (3.48)
19 end for
20 end for
21 u*(x,y) = in tg /(h 1 h2)
22 end for

consider the kernel in two dimensions as a patch or a two-dimensional matrix of squares.

Therefore, to find the intersection region of a triangle with the kernel, we simply find the

intersection of the triangle with these squares. For structured triangulations, we can identify

all the possible cases for kernel-mesh intersection, as shown in Figure 3.8. Moreover, similar

ideas discussed in the previous section apply to the scaling parameters h 1 and h2 for the

nonuniform mesh structure. For general unstructured grids, these parameters need to be

modified properly to gain optimal error convergence. However, the general implementation

scheme for unstructured triangular grids will be similar to that of the structured ones.

Once we identify the elements covered by the kernel support, we solve a series of geometric

intersections (similar to Figure 3.6). As the unstructured mesh will be more complex, we

are likely to get more integration regions comparing to the structured mesh. Investigation

of the SIAC filter for unstructured triangular meshes will be discussed in Chapter 7.

We further note tha t in this document, when choosing a distribution of points for

integration, we prefer the Lobatto-type quadrature. Particularly, for triangular regions,

we choose Gauss-Lobatto-Legendre (GLL) points on the x 1-direction and Gauss-Radau-

Legendre (GRL) on the x2-direction. GRL points absorb the Jacobian of the collapsed

coordinate transformation and do not include the singularity at the collapsed vertex. For

41

(a) (b) (c) (d) (e) (f) (g)

F ig u re 3.8. One super-element of the DG mesh (black) with possible kernel breaks (red).
The number of integration regions increases with triangular meshes, with possibility of two
to seven different regions.

more information on these types of quadrature points, we refer the reader to [40].

3 .4 .3 N o te on th e C om pu tation al C om plexity

In this section, we discuss the complexity of the computational cost for postprocessing.

As mentioned in Section 3.4, finding the intersection of the kernel mesh with the DG

mesh is a geometric intersection problem that in general can be quite complex in two and

three dimensions. The complexity increases due to the elements being further tessellated

into subelements over which numerical integrations are performed. In our analysis thus

far, we have only considered uniform triangular meshes where at most one kernel break per

direction lies within a super-element. However, in the case of totally unstructured triangular

meshes, the number of breaks can be up to several breaks within an element, which will

result in more integration regions and therefore more numerical quadratures. Here, we

consider the cost of the convolution operator, assuming that the integration subintervals

have already been found.

The number of elements that are covered by the kernel support is dependent on the

extent (width) of the convolution kernel, which is a function of the polynomial order per

element. Therefore, if we denote the polynomial order as k and assume tha t all elements

have the same polynomial order in both directions, the number of elements tha t need to

be considered for every evaluation point will be O(k2) in two dimensions. Furthermore, for

each of these elements, depending on the number of integration regions within each element,

a series of numerical quadratures must be performed. After transforming to the collapsed

coordinate system, we evaluate integrals as shown in Equation (3.48). Gaussian quadrature

in two dimensions will be performed in O(k2) operations. However, we need to evaluate

the kernel as well as the DG approximation at each of the quadrature points used in the

integration. The DG approximation can be calculated at O(k2) quadrature points in O(k3)

floating point operations using the so-called sum-factorization technique when possible, and

42

in O(k4) operations otherwise. Kernel evaluation can also be performed in O(k3) operations

in the case of quadrilateral elements or in Q(k4) for triangular elements. Hence, the overall

cost of performing one numerical integration will be O(k4). Consequently, from Equation

(3.43), the cost of numerical quadrature on a single triangular element will be O (M k4),

with M being the number of integration regions within the element. When performing the

exact postprocessor scheme, M > 1 and is at most seven per triangular element in the case

of a uniform mesh. However, this upper bound increases in the case of totally unstructured

grids and will play a significant role in the overall performance of the algorithm, especially

when postprocessing the entire DG field such that a transform to the modal representation

is feasible. In tha t case, the total computational cost is O (M N k8), with N being the total

number of elements in the field.

3.5 Performance Analysis of the Postprocessor
In this section, we provide performance results for postprocessing DG fields using the

implementation strategies in Section 3.4. The postprocessor is a good candidate for paral-

lelization because when filtering an entire computational field, evaluating the postprocessed

value at one quadrature point is independent of the other. Therefore, having access to

a multiprocessor machine, we can have separate threads evaluate the postprocessed value

at different points without any communications among them. Using OpenMP, only a few

compiler directives are required to parallelize the execution of the postprocessor and gain

proper scaling in the performance on a multiprocessor shared-memory machine.

We note tha t although we are only considering the performance of the SIAC filter, we

provide the performance when applied to a discontinuous Galerkin solution. For our results,

we consider the traditional second-order wave equation,

ntt - Vxx - Vvv = 0, (x, y) € (0,1) x (0,1), T = 6.28. (3.53)

We rewrite Equation (3.53) as a system of first-order linear equations,

nt + Ux + Vy = 0

ut + nx = 0 (3.54)

vt + nv = 0,

with initial conditions

n(x,y, 0) = 0.01 x (sin(2nx) + sin(2ny))

u(x,y, 0) = 0.01 x (sin(2nx)) (3.55)

v(x,y, 0) = 0.01 x (sin(2ny)),

43

and 2n periodic boundary conditions in both directions. We apply the postprocessor to the

solutions of this DG problem for the n variable, after one period in time over triangular

mesh structures. The numerical behavior of the SIAC filter for Equation (3.53) is examined

in Chapter 5. Here, we provide a thorough performance analysis of the parallelization.

Algorithm 6 depicts the condensed version of Algorithm 5 presented in Section 3.4.2. The

OpenMP directives in lines 1 and 3 are used to parallelize the execution of the postprocessor.

As displayed in Algorithm 6, there exist three principle nested for loops in the code, and

we choose to parallelize the outer most one to minimize the overhead due to initiation of

OpenMP directives.

The performance results for postprocessing an entire triangular DG field provided in

this section consider six evaluation points per element. Results are provided for both the

uniform and the smoothly varying triangular meshes shown in Figure 3.9. Moreover, we

provide a performance comparison between the filtering approaches using exact and inexact

integration. Note that the timing results have been gathered on a SGI multiprocessor

machine with 2.67 MHz CPUs, using up to 16 threads.

The timing results for postprocessing are given in Table 3.1 (uniform mesh) and Table

3.2 (smoothly varying mesh). We note tha t the workload for the uniform mesh is statically

assigned to each thread, as each thread performs an equal amount of work. However, for the

smoothly varying mesh, we have used dynamic scheduling to simulate an equal workload

for each thread. Figures 3.10 and 3.11 demonstrate the performance scaling plots for the

uniform and smoothly varying meshes, respectively. The scaling results have been calculated

from the following,
T7 • T serial /<-> rscaling = —-------- (3.56)

Tparallel
where Tserial represents the serial execution time and Tparallel is the parallel execution

time. Ideally, this parameter should result in the number of threads used in the parallel

execution. We see that as we increase the order of the polynomial, the scaling approaches

the theoretically desired.

3.6 Summary and Conclusions
This chapter presents the explicit steps a numerical practitioner should use in order

to implement the Smoothness-Increasing Accuracy-Conserving (SIAC) filters in an efficient

manner. We consider quadrilateral and triangular element shapes in two dimensions and

hexahedra in three dimensions for both uniform and smoothly varying mesh structures. We

44

A lg o rith m 6 Parallel-2D-Tri-Postprocessor
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

ft pragma omp parallel
{
ft pragma omp for schedule(static/dynamic)
for each evaluation point (x, y) do

for each super-element I in k F o o tP rin t do
{lower triangle}
for each triangle in intgRegions do

intg + = Result of the integral in Equation 3.48
end for
{upper triangle}
for each triangle in intgRegions do

intg + = Result of the integral in Equation 3.48
end for

end for
{Lines 5-14 will be repeated here if convex combination is needed.}
u*(x,y) = in tg /(h 1 h2)

end for
}

45

F ig u re 3.9. Examples of the (a) uniform and the (b) smoothly varying triangular meshes
used in calculations.

T ab le 3.1. Timing results in seconds for postprocessing over the entire domain for the
uniform triangular mesh considering P2, P 3, and P4 polynomials. th represents the number
of threads used in the parallel execution._____________________________

P2
mesh 1h=t 2h=t th = 4 8h=t th = 16

2X2o
2 8.68 4.39 2.19 1.13 0.63

2X2o

34.74 17.70 8.85 4.48 2.47

2X2ooc 137.85 68.92 34.61 17.68 9.53
P3

2X2o
2 39.76 19.98 10.00 5.02 2.64

2X2o

159.68 79.68 40.04 20.22 10.47

2X2ooc 632.34 316.43 158.77 80.45 40.39
P4

2X2o
2 154.76 77.05 38.69 19.35 9.81

2X2o

617.32 310.56 155.65 78.27 39.43

2X2o00 2455.01 1238.38 622.12 311.82 157.08

46

T able 3.2. Timing results in seconds for postprocessing over the entire domain for the
smoothly varying triangular mesh considering P2, P 3 and P4 polynomials. th represents the
number of threads used in the parallel execution.______________________

P2
mesh th = 1 th = 2 th = 4 th = 8 th = 16

202 x 2 13.74 6.95 3.46 1.78 0.94
402 x 2 52.77 26.51 13.28 6.80 3.51
802 x 2 208.10 104.59 52.40 26.84 13.92

P3
202 x 2 59.39 29.77 14.90 7.59 3.84
402 x 2 223.59 112.04 56.14 28.57 14.64
802 x 2 853.65 426.84 213.43 106.72 53.37

P4
202 x 2 202.85 101.81 51.06 25.72 12.98
402 x 2 765.83 384.75 192.09 96.83 48.71
802 x 2 2960.00 1483.83 742.29 372.28 188.58

n u m b e r o f th re a d s n u m b e r o f th re a d s n u m b e r o f th re ad s

F ig u re 3.10. Postprocessor performance scaling for the uniform triangular mesh. N represents the number of elements in the field.

g l - - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - I- - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - 1 o ' - - - - - - - - - - - - - - - - - - - !- - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - !- - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - 1 O 1- - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - 1- 1- 1- - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - 1
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

n u m b e r o f th re a d s n u m b e r o l th re a d s n u m b e r o f th re a d s

F ig u re 3.11. Postprocessor performance scaling for the smoothly varying triangular mesh. N represents the number of elements in the
field.

48

49

address the computational tasks performed when postprocessing discontinuous Galerkin

(DG)fields. As the conventional way of postprocessing through the use of matrix-vector

multiplications has limited applicability, we provide a more general scheme to calculate the

postprocessed value, by directly evaluating the convolution operator of the postprocessor.

We demonstrate tha t when evaluating the convolution operator exactly to machine pre

cision, we need to respect the breaks in continuity over the integration regions which are

due to the element interfaces and kernel breaks. Consequently, the number of numerical

quadratures can increase significantly when dealing with general mesh structures. In an

attem pt to overcome the cost of several numerical quadratures, we provide results for

the first time tha t demonstrate the efficiency of the postprocessor when parallelized on

a shared-memory multiprocessor machine.

CHAPTER 4

QUADRATURE APPROXIMATIONS FOR
EVALUATING THE CONVOLUTION

OPERATOR IN THE
SIAC FILTERS

As discussed in the previous chapters, the basic operation performed to gain the smooth

ness and accuracy benefits is convolution of the DG solution against a judiciously con

structed B-spline-based kernel. The goal of this chapter is to ascertain and quantify the

impact of quadrature errors within this convolution process. All of the mathematical proofs

concerning accuracy and smoothness assume exact integration. All the empirical numerical

examples both in the mathematical literature [19, 61] and the engineering literature [67, 75]

employed consistent integration with Gaussian quadrature to guarantee tha t the numerical

errors within the convolution operator could be driven below machine precision. In this

chapter, we seek to quantify the impact of inexact quadrature on the filtering process and

to assess whether it greatly impacts its use as an intermediary stage between simulation

and visualization in the scientific pipeline.

Here, we examine a collection of common scenarios that might arise when one seeks

to implement the aforementioned postprocessing algorithms in the engineering context.

We focus on one-dimensional and two-dimensional quadrilateral implementations and use

as our gold-standard the solving of the convolution operation with consistent integration

(integration that partitions the domain so as to respect all breaks in regularity) combined

with Gaussian integration that integrates the kernel times the DG-based polynomial exactly

to double-precision machine zero. We first examine the case when consistent integration

with inexact Gaussian quadrature (under-integration) is used. Because consistent integra

tion requires solving the geometric problem of finding all the places in which regularity is

decreased and generating a super-mesh based on these data, we consider what happens when

only the original DG mesh is used as the underlying support mesh for integration. Under

51

this scenario, we examine the use of Gaussian quadrature and of midpoint quadrature.

This choice highlights the difference between polynomial-based high-order and adaptive

low-order quadrature implementations. We emphasis tha t this study is primarily for en

gineering circumstances when the trade-offs between time, resources, and accuracy are

important. Although the case against committing such numerical crimes is well-known, the

repercussions have not been well documented for the use of this filter as a visualisation tool.

It is this specific crime that we wish to address.

The chapter is organized as follows. In Section 4.1, we present the different implemen

tation strategies one might employ, in particular: (1) the consistent integration approach

with exact and inexact Gaussian quadrature, (2) the input mesh-based Gaussian quadrature

approach, and (3) the input mesh-based midpoint quadrature approach. In Section 4.2.2,

we present analysis which provides theoretical estimates which bound the numerical crimes

committed when using the three aforementioned approaches. In Section 4.3, we present an

empirical study which corroborates the error estimates we have derived. In Section 4.4, we

summarize our results and provide guidelines based upon our study concerning under which

circumstances one technique should be used versus another. We further add that the result

of these contributions has been published in [48].

4.1 Numerical Quadrature Approaches
In this section, we present the different implementation strategies used to calculate the

convolution operator.

4 .1 .1 G aussian Q uadrature A pproaches

We remind the reader that the postprocessor is simply the discontinuous Galerkin

solution convolved against a linear combination of B-splines at the final simulation time.

That is, in one dimension,

u*(x) = h / k 2fc+1,fc+1 ^ u h (y) d y , (4.1)

where uk is the postprocessed solution, h is the mesh characteristic length, and uh the DG

solution of degree k.

The postprocessed solution, uk(x), which is a piecewise polynomial of degree 2k + 1 , can

be evaluated exactly. As we mentioned in Chapter 3, uh(y) = k=0 u (y) , and

are the basis functions of the projected function on cell /j. Therefore, for x € /j, we have

“*(x) = h K (c i t) uh(y)dy = h £ / . + . K 0 ^) uh(y)dy. (4.2)ii+j eSupp{K}

52

The kernel in the expression above consists of a linear combination of B-splines. Therefore,

in order to calculate the above integral exactly, we need to decompose the interval I i+j- into

subintervals tha t respect the kernel knots (which we refer to as breaks) (see also Section 3.4);

the resulting integral is calculated as the summation of the integrals over each subinterval.

The term consistent integration is used to denote integration tha t respects these breaks

by finding the necessary subintervals such tha t the integral on each subinterval can be

done exactly to machine precision. To compute the postprocessed solution for x € I i , the

algorithm is as follows:

For j = - k!, • • • ,k! :

• Find the kernel breaks (if any) that lie in the interval I i+j-. Use the kernel breaks to

identify the subintervals. Note that in the general case, the number of breaks can be

zero up to several breaks within an element. In the case of uniform meshes, one can

show tha t there is at most one break per input mesh element.

• Evaluate the integral over each of the subintervals using Gaussian quadrature. For

the case of an exact quadrature, we are required to evaluate the integrand at k + 1

Gauss points where k is the approximation degree of the DG solution. We have used

k Gauss points (one less than the required) for the inexact quadrature experiments

presented in the results section.

• Sum the resulting values from each subinterval to gain the overall value of the integral

on element I i+j-.

This general algorithm can be used in one of several ways which we will mention here.

First, this algorithm holds for any x € I i , and hence can be used for isolated postprocessing

of the solution at some arbitrary point. The only additional cost not previously mentioned

is the search time needed to find the element I i containing the point x of interest. Building

upon this usage, the second strategy is to postprocess an entire element (i.e., find the

postprocessed polynomial of degree 2k + 1 on an element) by repeating the above procedure

for a collection of collocation points or at quadrature points so that a transform to a modal

representation can be done. The third usage, which is often implemented for uniform

meshes, is to rewrite the above equation using small matrix multiplications,
k! k

U*(x) = J 2 Ui+j Cj1,k(x) (4.3)
j=_k! 1=0

where Cj,i,k(x) is a polynomial of degree 2k + 1 and U(+j are the coefficients in the discon

tinuous Galerkin approximation.

53

The purpose of this chapter is to quantify the numerical crimes committed when using

different quadrature schemes. Therefore, it is useful to understand the dominant costs in

the above algorithm so tha t one can appreciate why different engineering implementation

choices might be made. The possibly dominating cost in the above algorithm is performing

the numerical quadrature on the consistent integration mesh. When filtering based upon

the input mesh, we disregard the position of the kernel breaks and evaluate the integrand

over the entire element. That is, we skip the first step in the consistent integration approach

(and hence its associated cost); in the second step, there is only one interval which is the

entire element. We then proceed by using Q > k + 1 Gauss points for computing the

Gaussian quadrature. Considering the computational cost, as we increase the number of

quadrature points, Q, filtering based upon the input mesh will use more floating point

operations for Q > 2k + 2 to calculate the integral over I i+j- compared to the consistent

integration approach; however, the algorithmic scaling is still O (M) where M is a number

related to the extent of the local filter.

Two further notes are worth mentioning before proceeding. The first is tha t the al

gorithm above extends easily to the case of two-dimensional and three-dimensional post

processing as the convolution kernel is merely a tensor-product of the one-dimensional

kernels. Secondly, in the case of a nonuniform mesh, since the kernel is no longer translation

invariant, the postprocessing coefficients need to be recomputed for each element as is

mentioned in [22]. In order to avoid this recomputation, Curtis et al. proposed two strategies

for postprocessing over nonuniform meshes: one based upon the local L2 — projection of

the solution to a uniform “scratch-pad” mesh and one based upon the characteristic length.

The algorithmic scaling for both algorithms is O (N), with N being the size of the domain.

4 .1 .2 M idpoint Q uadrature A pproach

In this section, we examine an alternative strategy to using Gaussian quadrature for the

approximation of the convolution integral. For a given x € I we try to approximate the

integral

u* (x) = h J k uh(y)dy (4.4)

using midpoint integration. For a complete overview of the derivation and implementation

of the midpoint rule, we refer the reader to [39]. In this case, we evaluate the postprocessed

solution u*(x) using the midpoint rule to compute the integral in Equation (4.4) over the

entire kernel support at once, i.e., we are not following the element-by-element approach

mentioned in the previous section. In other words, we proceed as follows:

54

• For x € I i , determine where the limits of the kernel lie on the DG mesh. That specifies

the integration area, which we denote by [xlef t , x right\.

• Set the level of the midpoint integration. Assuming Ax is the size of each of the n

equal cells involved in the discretization, we have Ax = (xright — x lef t) /2 level with

2level being the number of evaluation points used in the midpoint rule. Typically, the

Again, we follow a similar process in case of a 2D postprocessor along each direction.

As it is understood from the aforementioned steps, we both disregard the kernel breaks and

the element interfaces in the input mesh for this quadrature approach.

In this section, we analyze the crimes committed when performing a nonconsistent

and/or inexact quadrature. Although we discuss the simplified case of a uniform one

dimensional mesh, many of the concepts extend to postprocessing over nonuniform meshes.

We begin by discussing the ideal case of an exact, consistent quadrature, then move on

to discuss an inexact quadrature on a consistent integration mesh. We secondly discuss

implementing an inconsistent quadrature which takes only the DG mesh into account and

lastly, the midpoint quadrature on the DG mesh.

4.2 .1 G aussian Q uadrature on a C on sisten t Integration M esh

4.2 .1 .1 E xact, C on sisten t G aussian Q uadrature

Gaussian quadrature is well-known to integrate polynomials of degree 2m — 1 exactly

by using m points, x i ,x 0, ■ ■ ■ , x m, and m weights w 1,w 2, ■ ■ ■ , wm [21]. The formula for the

quadrature is given by

support of the kernel centered around zero will be the case where x lef t = — and

xright = • This gives Ax = .

• Perform the midpoint integration,

4.2 Quadrature Approximations of the
Convolution Operator

(4.6)

55

where yj = b__aXj + , and Wj is the associated weight function. This implies that for our

convolution, which consists of integrals of polynomial degree at most 2k, we must employ

The main point of this discussion is to emphasize tha t in order to postprocess one element

in a uniform mesh construction that contains a discontinuous Galerkin approximation of

degree k, we have a support size of 2k' + 1 elements for the postprocessor, where k' = | " 1 •

There are two integral evaluations per element. Therefore, we are performing 4k' + 2

Gaussian quadrature evaluations of degree 2k + 1. Although Schumaker gives a simplified

formula for integrating B-splines against a polynomial [64], we should point out that we are

convolving the B-splines against a piecewise polynomial.

To begin, let us examine the kernel performed using exact integration over a uniform

mesh. In this case, to postprocess element i, we have

u*(x) = ^ (k+1)(n - y) 0 (l)(6 + n - j) d n (4.8)

discontinuous at element boundaries. This stems from the properties of the B-splines and

the basis of our DG approximation and is easily seen by examining the case of piecewise

monomials. In this case, 0 (l) (^ + n - j) = (6 + n - j) l - If we consider the boundary where

n ^ (- - 1/2), then we have, from the left of the elemental boundary:

since we are approaching from the element / i_ 1. However, approaching the limit from the

right, we would have

as we are approaching from element Ij. The limits of these two functions are continuous for

piecewise constants, but otherwise they are discontinuous.

k + 1 points and weights in our quadrature in order to be exact to machine precision.

Setting n = ~̂_x and , this becomes

On each element, I i+j , define the function in our integral to be

k
f (n ^ i) = £ ^ (k+1) (n - y) 0 (l)(Ci + n - j)• (4.9)

For purposes of error analysis, we note tha t this function is Ck 1 over each DG element and

56

In order to analyze the error for the case of consistent integration with reduced quadra

ture and quadrature based on the input DG mesh, it is useful to review the existing

literature. Here, we follow the work of de Boor [21] for w(x) = 1. That is, if we were

to use exact quadrature over a consistent integration mesh using k + 1 Gauss points per

integral, the error is given by

Note that in our case, f (n, &) is a polynomial of degree 2k, and the integral is exact.

4 .2 .1 .2 Inexact, C onsisten t G aussian Q uadrature

Now tha t we have discussed the necessary components for exact, consistent quadrature,

let us examine the case where we simply use fewer Gauss points. In this case, we are

respecting both the kernel breaks and the DG elemental boundaries and use only k Gauss

points. From the error formula above (Equation 4.11), we have the following error estimate

for one integral

The constant in the error is not necessarily less than one, but is certainly bounded due to

the smoothness of f (n,(i). We also note tha t the constant depends upon k.

Next, we examine the case were we are using exact quadrature over a discontinuous

Galerkin mesh. That is, we are ignoring the knots of the B-splines and disregarding the

level of smoothness. For this case, we simply note tha t it is only possible to use the error

estimate given in Equation (4.10) since the function on a given element is only Ck-1. That

is, the error is given by

/ f (n ,&)d n - j Pk(n)dn = j f [xo,••• ,x 2k+i]g2k+ i(x)dx (4 .10)

where pk is some polynomial tha t interpolates f (n ,6) at k+1 points and

g2k+l(x) = [(x - xo) ■ ■ ■ (x - xk)]2

If f (n, &) e C2k+2, then we have the error estimate

b b
/ f(n ,&) dn - Pk (n) dn = C(& ,yo, ••• ,y k + i)f(2k+2)(z,&), z e (a,b). (4 .1 1)
a a

f (n , i i) dn - Pk(n) dn = c(&,yo, ••• ,y k + i)f(2k)(z,Ci) = C. (4.1 2)

4 .2 .2 G aussian Q uadrature on th e D G M esh

/ f (n,&) dn - j Pk (n) dn = \ f [xo, ••• ,x 2k-i]g2k+i(x) dx. (4.13)

57

4 .2 .3 M idpoint Q uadrature on th e D G M esh

Lastly, we consider the problem of using midpoint integration. In this case, our formula

is given by

f f (x) dx = (b - a) f (c) (4.14)
a

where c = (a + b)/2 and f is as given in Equation 4.9. It is well known that the midpoint

error is given by

E rror(m idpoint) = - 4 f w(z)(b - a)3, z € (a, b)

[21]. In our case, we are carrying out m = level midpoint quadratures. Therefore, we have

for the error
m-1 ..

f //(z) A x3 < C A x3 (4.15)
j=0 24

where Ax = since xfe/t = - 3k2t1 , x right = 3k2t1 , and Ax = (xright - x tef t) /2m.

We should note two things: first, tha t the constant tha t bounds f //(z)/24 depends upon

the polynomial order, secondly, that this estimate of the error does not improve for higher

polynomial orders. Therefore, it does not m atter whether we increase the polynomial order

of our B-spline or our DG solution. The only time where implementing the midpoint

quadrature may be effective is for piecewise linear polynomial approximations.

4.3 Results
In this section, we present the results for the various choices of quadrature to see the

computational effect of the crimes committed in our quadrature. We examine the L2-errors,

and in the case of one dimension, the smoothness of the error. Lastly, we present a test

example to demonstrate the usefulness for visualisation purposes.

4 .3 .1 C on sisten t In tegration w ith Inexact G aussian
Q uadrature A pproach

We consider the one-dimensional projection of the function

u(x) = sin(2nx), x € (0,1) (4.16)

onto a uniform mesh. We assume tha t we have a periodic interval in order to simplify

the application of the postprocessor. Consistent integration is used, but the number of

quadrature points used in the computation of the integrals is one less than what is required

for exact integration. The results are presented in Figures 4.1, 4.2, and 4.3. In this set of

plots, we can see tha t the aliasing error is more sensitive at low orders and tha t the higher

F ig u re 4.1. Point-wise errors on a logarithmic scale before postprocessing (left), after postprocessing on the consistent integration mesh
with inexact quadrature (middle), and after postprocessing with exact quadrature (right). P 2 polynomials.

58

P : After Postprocessing, inexact quadrature P3: After Postprocessing

X

F ig u re 4.2. Point-wise errors on a logarithmic scale before postprocessing (left), after postprocessing on the consistent integration mesh
with inexact quadrature (middle), and after postprocessing with exact quadrature (right). P 3 polynomials.

69

P : After Postprocessing

' / N

/ \ \

r---------------------------------~ N r ^

t i f

J

\ ^ / # i ,v v *v v ' V ,S i \ / ' , / v ll4 \ /
V) j H f i, 'j

i

0.2 0.4 0.6 0.8

F ig u re 4.3. Point-wise errors on a logarithmic scale before postprocessing (left), after postprocessing on the consistent integration mesh
with inexact quadrature (middle), and after postprocessing with exact quadrature (right). P 4 polynomials.

09

61

order coefficients in the approximation are important. Additionally, notice tha t increasing

N for P 2-polynomial approximations does not lower the convergence rate as expected.

4.3 .2 Input M esh-B ased G aussian Q uadrature A pproach

In this section, we examine the results of not using a consistent integration mesh, but

instead attem pt to overcome the numerical crimes committed by integrating over the jump

by increasing the number of quadrature points.

4.3 .2 .1 O ne-D im ension al D G

For this section, we again consider the L2-projection of the function

u(x) = sin(2nx), x € (0,1) (4-17)

to a uniform mesh. We assume a periodic interval. Figures 4.4, 4.5, 4.6 4.7, 4.8, 4.9, and

4.10 show the point-wise errors when postprocessing on the DG mesh for P2, P 3, and P4

polynomials. Considering Pk polynomials, we need k + 1 Gauss points to exactly evaluate

the inner products involved in postprocessing of a DG solution on a consistent integration

mesh. Using the same number of points when postprocessing on the DG input mesh, we

observe that the accuracy in terms of error is improved but tha t oscillations still exist.

4 .3 .2 .2 O ne-D im ension al D G — N onuniform M esh

In this section, we examine the L2-projection of the function

u(x) = sin(2nx), x € (0,1) (4.18)

to smoothly varying mesh. The smoothly varying mesh is defined by x = £ + 1 sin £, so

tha t the element sizes vary by at most 50% from each other. We use the characteristic

length-based postprocessor implementation introduced in [22]. In the case of a nonuniform

mesh, Table 4.1 demonstrates tha t the lowest quadrature order for piecewise quadratic

polynomials is not sufficient for removing the error, unlike the uniform mesh case. In the

case of a nonuniform mesh, a quadrature that uses at least nine Gauss points seems to

be required. For piecewise cubic, the errors using the lowest value of the quadrature are

even worse (Table 4.2). And, unless exact quadrature is implemented, the errors are always

worse when using ten elements.

F ig u re 4.4. Point-wise errors on a logarithmic scale when postprocessing on the DG input mesh using P2 polynomials. Left: errors
before postprocessing. Q indicates the number of quadrature points.

62

F ig u re 4.5. Point-wise errors on a logarithmic scale when postprocessing on the DG input mesh using P 2 polynomials. Q indicates the
number of quadrature points.

ObOo

P : After Postprocessing, Q = 21 P2: After Postprocessing

X

F ig u re 4.6. Point-wise errors on a logarithmic scale when postprocessing on the DG input mesh using P2 polynomials. Right: errors
after postprocessing on the consistent integration mesh. Q indicates the number of quadrature points.

64

P3: Before Postprocessing

X

F ig u re 4.7. Point-wise errors on a logarithmic scale using P 3 polynomials.

99

P : After Postprocessing, Q = 13 P3: After Postprocessing

X

F ig u re 4.8. Point-wise errors on a logarithmic scale using P3 polynomials.

99

F ig u re 4.9. Point-wise errors on a logarithmic scale using P4 polynomials.

67

P : After Postprocessing, Q = 14

F ig u re 4.10. Point-wise errors on a logarithmic scale using P4 polynomials.

P4: After Postprocessing

X

68

69

T able 4.1. Errors for one-dimensional DG using P 2 polynomials for the nonuniform mesh.
Before postprocessing, after postprocessing on the DG mesh where Q is the number of
quadrature points, and finally after postprocessing on the consistent integration mesh. CI
stands for consistent integration mesh.__

P2
mesh L2 error order L^> error order L2 error order L^> error order

Be ore postprocessing After postprocessing, Q = 3
10 1.22E-03 - 5.60E-03 - 2.67E-03 - 1.04E-02 -
20 1.55E-04 2.98 7.74E-04 2.85 1.58E-03 0.76 6.16E-03 0.76
40 1.94E-05 3.00 9.93E-05 2.96 4.76E-04 1.73 2.22E-03 1.46
80 2.43E-06 3.00 1.25E-05 2.99 1.05E-04 2.17 6.06E-04 1.87

After postprocessing, Q = 9 After postprocessing, Q = 12
10 6.23E-04 - 1.44E-03 - 6.30E-04 - 1.49E-03 -
20 1.03E-04 2.60 3.68E-04 1.97 5.99E-05 3.39 1.94E-04 2.94
40 9.76E-05 0.08 3.26E-04 0.18 4.01E-05 0.58 1.67E-04 0.22
80 4.09E-05 1.26 1.81E-04 0.85 2.11E-05 0.93 1.12E-04 0.57

After postprocessing, Q = 21 After postprocessing, Q = 35
10 6.17E-04 - 1.42E-03 - 6.21E-04 - 1.41E-03 -
20 1.07E-05 5.85 2.95E-05 5.59 1.15E-09 5.76 2.57E-05 5.78
40 9.79E-06 0.12 3.50E-05 -0.24 2.14E-06 2.43 8.76E-06 1.55
80 8.03E-06 0.28 3.43E-05 0.03 2.01E-06 0.09 8.03E-06 0.13

After postprocessing, Q = 45 After postprocessing, CI
10 6.22E-04 - 1.42E-03 - 6.21E-04 - 1.42E-04 -
20 1.08E-05 5.84 2.30E-05 5.95 1.08E-05 5.84 2.27E-05 5.96
40 8.99E-07 3.59 3.65E-06 2.65 1.73E-07 5.96 3.36E-07 6.08
80 8.69E-07 0.05 4.34E-06 -0.25 2.74E-09 5.99 5.31E-09 5.99

T able 4.2. Errors for one-dimensional DG using P 3 polynomials for the nonuniform mesh.
Before postprocessing, after postprocessing on the DG mesh where Q is the number of
quadrature points, and finally after postprocessing on the consistent integration mesh. CI
stands for consistent integration mesh.__

P3
mesh L2 error order L^> error order L2 error order L^> error order

Be1tore postprocessing After postprocessing, Q = 4
10 5.56E-05 - 2.18E-04 - 2.97E-04 - 8.94E-04 -
20 3.55E-05 3.97 1.55E-05 3.81 1.88E-04 0.66 6.08E-04 0.55
40 2.24E-07 3.99 9.89E-07 3.97 6.85E-05 1.46 2.75E-04 1.15
80 1.40E-08 4.00 6.16E-08 4.00 1.32E-05 2.38 3.94E-05 2.80

Before postprocessing, Q = 7 After postprocessing, Q = 16
10 1.42E-04 - 3.39E-04 - 1.38E-04 - 3.40E-04 -
20 1.86E-05 2.94 6.16E-05 2.46 9.62E-07 7.16 2.74 6.95
40 1.98E-05 -0.09 6.07E-05 0.02 7.84E-07 0.30 2.82E-06 -0.04
80 4.63E-06 2.10 1.62E-05 1.90 6.21E-07 0.34 1.96E-06 0.53

Before postprocessing, Q = 31 After postprocessing, CI
10 1.38E-04 - 3.40E-04 - 1.38E-04 - 3.40E-04 -
20 6.34E-07 7.76 1.42E-06 7.91 6.32E-07 7.77 1.41E-06 7.91
40 5.96e-08 3.41 2.56E-07 2.47 2.57E-09 7.94 5.24E-09 8.08
80 5.68E-08 0.07 1.95E-07 0.39 1.02E-11 7.98 2.00E-11 8.04

70

4 .3 .2 .3 T w o-D im ensional D G

In this case, we consider the L2-projection of the function

u(x, y) = sin(2n(x + y)), x € (0,1) ,y € (0,1) (4.19)

to a uniform mesh. Again, we assume a periodic domain. Additionally, we see in Tables 4.3

and 4.4 tha t although the convergence rates with the postprocessor are not always improved,

the errors are always lower than for the input DG solution.

4 .3 .2 .4 T w o-D im ensional D G — C onstant C oefficient
Linear A d vection E quation

For this example, we consider solutions of the equation

ut + ux + uy = 0, (x,y) € (0, 2n) x (0, 2 n) , T = 12.5 (4.20)

with initial condition u(0 ,x ,y) = sin(x + y). Observe in Table 4.5 that when we use two

Gauss points for linear polynomials, we immediately obtain the desired convergence rate.

Additionally, the errors are slightly better than what is observed for the original DG solution.

For the quadratic polynomial approximation as presented in Table 4.6, we also immediately

improve both the errors and the convergence rate using only three Gauss points.

T ab le 4.3. Errors for two-dimensional DG using P 2 polynomials. Before postprocessing,
after postprocessing on the DG mesh where Q is the number of quadrature points, and
finally after postprocessing on the consistent integration mesh. CI stands for consistent
integration mesh.

P2
mesh L 2 error order L^> error order L2 error order L^> error order

Bef ore postprocessing After postprocessing, Q = 3
162 1.90E-04 - 9.16E-04 - 3.15E-05 1.00E-04 -

223 2.38E-05 3.00 1.16E-04 2.99 3.31E-06 3.25 1.18E-05 3.08
642 2.98E-06 3.00 1.45E-05 3.00 4.11E-07 3.01 1.48E-06 3.00

2821 3.72E-07 3.00 1.81E-06 3.00 5.15E-08 3.00 1.85E-07 3.00
After postprocessing, Q = 6 After postprocessing, Q = 9

162 1.72E-05 - 2.71E-05 - 1.68E-05 - 2.41E-05 -

223 5.05E-07 5.09 1.67E-06 4.02 2.88E-07 5.87 6.75E-07 5.16
642 5.35E-08 3.24 2.03E-07 3.04 1.37E-08 4.40 6.97E-08 3.27
1282 6.65E-09 3.00 2.54E-08 3.00 1.63E-09 3.07 8.68E-09 3.00

After postprocessing, Q = 12 After postprocessing, CI
162 1.68E-05 - 2.40E-05 - 1.68E-05 2.39E-05 -

223 2.77E-07 5.92 4.53E-07 5.73 2.69E-07 5.97 3.81E-07 5.97

246 9.45E-09 4.87 3.10E-08 3.87 4.22E-09 5.99 6.00E-09 5.99

2821 1.06E-09 3.15 3.80E-09 3.02 6.60E-11 6.00 3.38E-11 6.00

71

T able 4.4. Errors for two-dimensional DG using P 3 polynomials. Before postprocessing,
after postprocessing on the DG mesh where Q is the number of quadrature points, and
finally after postprocessing on the consistent integration mesh. CI stands for consistent
integration mesh

P3
mesh L2 error order L^> error order L2 error order L^> error order

Bef ore postprocessing After postprocessing, Q = 4
162 4.71E-06 - 2.42E-05 - 8.49E-07 - 1.91E-06 -

2
OC 2.95E-07 4.00 1.53E-06 3.99 1.72E-08 5.62 5.21E-08 5.19

642 1.84E-08 4.00 9.58E-08 4.00 1.06E-09 4.03 3.21E-09 4.02

2oc21 1.15E-09 4.00 5.99E-09 4.00 6.60E-11 4.00 2.01E-10 3.99
After postprocessing, Q = 7 After postprocessing, Q = 10

162 8.09E-07 - 1.15E-06 - 8.07E-07 - 1.16E-06 -

22
c

c 3.43E-09 7.88 5.37E-09 7.75 3.29E-09 7.94 6.05E-09 7.57

246 2.69E-11 7.00 6.56E-11 6.36 3.02E-11 6.77 1.08E-10 5.81
1282 1.10E-12 4.61 3.03E-12 4.44 1.71E-12 4.15 5.70E-12 4.25

After postprocessing, Q = 13 After postprocessing, CI
162 8.09E-07 - 1.15E06 - 8.07E-07 - 1.14E-06 -

22
C

C 3.42E-09 7.88 5.26E-09 7.77 3.26E-09 7.95 4.61E-09 7.95

246 2.44E-11 7.13 5.84E-11 6.49 1.29E-11 7.99 1.82E-11 7.99

2821 8.62E-13 4.82 2.59E-12 4.50 5.04E-14 7.99 7.74E-14 7.88

T able 4.5. Errors for one-dimensional DG using P 1 polynomials for the linear advection
equation. Before postprocessing, after postprocessing on the DG mesh where Q is the
number of quadrature points, and finally after postprocessing on the consistent integration
mesh. CI stands for consistent integration mesh.

P 1
mesh L2 error order L^> error order L2 error order L^> error order

Bef ore postprocessing After postprocessing, Q = 2
102 1.92E-01 - 2.93E-01 - 1.92E-01 - 2.78E-01 -

202 3.02E-02 2.67 4.98E-02 2.56 2.93E-02 2.71 4.35E-02 2.68

204 4.31E-03 2.81 7.69E-03 2.69 3.81E-03 2.94 5.95E-03 2.87
802 7.06E-04 2.61 2.45E-03 1.65 4.85E-04 2.97 8.24E-04 2.85

After postprocessing, Q = 5 After postprocessing, Q = 8
102 1.92E-01 - 2.73E-01 - 1.92E-01 - 2.71E-01 -

202 2.94E-02 2.71 4.18E-02 2.71 2.92E-02 2.71 4.15E-02 2.71

204 3.83E-03 2.94 5.50E-03 2.93 3.78E-03 2.95 5.39E-03 2.94

208 4.88E-04 2.97 7.10E-04 2.95 4.76E-04 2.99 6.82E-04 2.98
After postprocessing, Q = 11 After postprocessing, CI

102 1.92E-01 - 2.71E-01 - 1.92E-01 - 2.71E-01 -
202 2.92E-02 2.71 4.14E-02 2.71 2.92E-02 2.71 4.14E-02 2.71

204 3.78E-03 2.95 5.37E-03 2.95 3.78E-03 2.95 5.35E-03 2.95

208 4.75E-04 2.99 6.77E-04 2.99 4.76E-04 2.99 6.73E-04 2.99

72

T able 4.6. Errors for two-dimensional DG using P 2 polynomials for the linear advection
equation. Before postprocessing, after postprocessing on the DG mesh where Q is the
number of quadrature points, and finally after postprocessing on the consistent integration
mesh. CI stands for consistent integration mesh.

P2
mesh L2 error order L00 error order L2 error order L error order

Be fore postprocessing After postprocessing, Q = 3
102 4.95E-03 - 2.78E-02 - 3.48E-03 - 4.99E-03 -
202 4.87E-04 3.34 3.72E-03 2.90 1.11E-04 4.97 1.64E-04 4.92

20 5.96E-05 3.03 4.74E-04 2.97 3.83E-06 4.86 6.57E-06 4.64

208 7.44E-06 3.00 5.94E-05 3.00 2.38E-07 4.01 5.75E-07 3.51
Before postprocessing, Q = 6 After postprocessing, CI

102 3.48E-03 - 4.92E-03 - 3.48E-03 - 4.92E-03 -

202 1.10E-04 4.98 1.56E-04 4.98 1.10E-04 4.98 1.56E-04 4.98
402 3.44E-06 5.00 4.91E-06 4.99 3.42E-06 5.01 4.84E-06 5.01

208 1.12E-07 4.94 1.78E-07 4.79 1.07E-07 5.01 1.51E-07 5.01

73

4 .3 .2 .5 T w o-D im ensional D G — V ariable C oefficient
Linear A d vection E quation

In this example, we consider solutions to a two-dimensional variable coefficient equation,

ut + (au)x + (au)y = f (x ,y , t) , (x,y) € (0, 2n) x (0, 2 n) , T = 12.5 (4.21)

with the variable coefficient function a(x, y) = 2 + sin(x + y). We set the forcing function

so tha t the solution is u(x, y, t) = sin(x + y — 2t). We observe in Tables 4.7 and 4.8 that the

convergence rate is not always optimal, but tha t indeed, with a minimum number of Gauss

points, we improve the errors.

4 .3 .3 Input M esh-B ased M idpoint Q uadrature A pproach

In this section, the effect of using midpoint integration while approximating the convo

lution operator is examined for the 1D and 2D cases.

4 .3 .3 .1 O ne-D im en sional D G — M idpoin t Q uadrature

In this example, we again consider the case of projecting

sin(2nx), x € (0,1)

onto a piecewise polynomial space. The results are displayed in Figures 4.11, 4.12, and

4.13. The plots show tha t it takes many applications of the midpoint rule to get better

errors for the postprocessed solution than the initial projection, and tha t the midpoint rule

is effective when we use 128 points or greater. However, the point-wise errors are smoother

than the errors for the piecewise polynomial projection. This is because the breakpoints for

the midpoint rule align with the element boundaries on our mesh. Additionally, in Figure

4.14, we can see tha t the lines level off to the same error as tha t for consistent integration

error, which is the best possible scenario.

74

T able 4.7. Errors for two-dimensional DG using P 1 polynomials for the variable coefficient
advection equation. Before postprocessing, after postprocessing on the DG mesh where
Q is the number of quadrature points, and finally after postprocessing on the consistent
integration mesh. CI stands for consistent integration mesh.

P 1
mesh L2 error order L00 error order L2 error order L error order

Bef ore postprocessing After postprocessing, Q = 2
102 3.52E-02 - 2.06E-01 - 1.50E-02 - 2.51E-02 -

202 8.42E-03 2.06 5.10E-02 2.01 1.85E-03 3.01 4.90E-03 2.36

20 2.09E-03 2.01 1.28E-02 2.00 3.48E-04 2.41 9.61E-04 2.35

20
O

C 5.23E-04 2.00 3.17E-03 2.00 7.78E-05 2.16 2.16E-04 2.15
After postprocessing, Q = 5 After postprocessing, Q = 8

102 1.42E-02 - 2.21E-02 - 1.41E-02 - 2.20E-02 -

202 1.36E-03 3.38 2.68E-03 3.04 1.44E-03 3.29 2.66E-03 3.05

20 1.66E-04 3.04 3.73E-04 2.85 1.95E-04 2.88 3.74E-04 2.83

20
O

C 2.11E-05 2.97 5.57E-05 2.74 2.71E-05 2.85 5.67E-05 2.72
After postprocessing, Q = 11 After postprocessing, CI

102 1.41E-02 - 2.20E-02 - 1.41E-02 - 2.20E-02 -

202 1.44E-03 3.29 2.64E-03 3.06 1.44E-03 3.29 2.63E-03 3.06

20 1.97E-04 2.87 3.69E-04 2.84 1.94E-04 2.89 3.53E-04 2.90

20
00 2.75E-05 2.84 5.53E-05 2.74 2.66E-05 2.86 5.00E-05 2.82

T able 4.8. Errors for two-dimensional DG using P 2 polynomials for the variable coefficient
advection equation. Before postprocessing, after postprocessing on the DG mesh where
Q is the number of quadrature points, and finally after postprocessing on the consistent
integration mesh. CI stands for consistent integration mesh.

P2
mesh L2 error order L 00 error order L2 error order L error order

Be ore postprocessing After postprocessing, Q = 3
102 3.87E-03 - 3.39E-03 - 2.85E-04 - 6.30E-04 -

202 4.79E-04 3.02 4.06E-03 3.06 1.52E-05 4.22 4.36E-05 3.85

204 5.97E-05 3.01 4.93E-04 3.04 1.72E-06 3.14 4.73E-06 3.20

208 7.45E-06 3.00 6.05E-05 3.03 2.12E-07 3.02 5.64E-07 3.07
After postprocessing, Q = 6 After postprocessing, Q = 9

102 2.62E-04 - 4.91E-04 - 2.61E-04 4.69E-04 -

202 6.91E-06 5.24 1.43E-05 5.10 6.59E-06 5.31 1.44E-05 5.03

204 3.59E-07 4.27 1.05E-06 3.77 2.49E-07 4.73 6.30E-07 4.51

208 3.43E-08 3.39 1.02E-07 3.36 1.12E-08 4.47 4.53E-08 3.80
After postprocessing, Q = 12 After postprocessing, Q = 15

102 2.61E-04 - 4.63E-04 - 2.61E-04 4.62E-04 -

202 6.58E-06 5.31 1.06E-05 5.45 6.60E-06 5.31 1.06E-05 5.45

204 2.44E-07 4.75 4.92E-07 4.43 2.41E-07 4.76 4.47E-07 4.57

208 9.40E-09 4.70 2.64E-08 4.22 8.37E-09 4.85 1.87E-08 4.58
After postprocessing, Q = 18 After postprocessing, CI

102 2.61E-04 - 4.62E-04 - 2.61E-04 4.62E-04 -

202 6.57E-06 5.31 1.06E-05 5.45 6.57E-06 5.31 1.06E-05 5.45

204 2.41E-07 4.77 4.34E-07 4.61 2.41E-07 4.77 4.18E-07 4.66

208 8.08E-09 4.90 1.70E-08 5.34 8.04E-09 4.91 1.49E-08 4.81

P3, Before Postprocessing P3> number of points=32 P3, number of pointS=64

N=16

N=32

N=64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 ° -1 0 2 °-3 0 4 0 5 0 6 0 7 0 8 0 9 1 0 0-2 0.4 0.6 0.8 1

x x x

F ig u re 4.11. Point-wise errors on a logarithmic scale when using midpoint integration for postprocessing with different number of
evaluation points. Left: before postprocessing.

75

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

X X X

F ig u re 4.12. Point-wise errors on a logarithmic scale when using midpoint integration for postprocessing with different number of
evaluation points.

76

F ig u re 4.13. Point-wise errors on a logarithmic scale when using midpoint integration for postprocessing with different number of
evaluation points. Right: after postprocessing on the consistent integration mesh.

F ig u re 4.14. Convergence of the L2 errors when using midpoint integration for postprocessing.

78

79

4 .3 .3 .2 T w o-D im ensional D G — M idpoint Q uadrature
In this section, we again consider the two-dimensional projection problem given by

Equation (4.19). It is observed tha t in the case of the 2D midpoint rule, the convergence

rate in the L2-norm is linear, as is shown in the sample plot in Figure 4.15. We observe

this linear trend as we double the number of evaluation points. For this particular example

and based upon the slope of our convergence diagram, we would need approximately 213

evaluation points to get an error level similar to the DG solution. The errors for the higher

degree polynomials are not shown as they do not provide any new information given the

computational time required to compute them.

4 .3 .4 T w o-D im ensional V ector Field
As it is mentioned in [67, 75], smoothness-increasing, accuracy-conserving filtering can

be applied to discontinuous Galerkin vector fields to enhance streamline integration. In

this section, we examine the impact of input mesh-based filtering of a 2D vector field on

streamline calculations for visualization purposes.

A two-dimensional vector field was created from

u(r, 0)
v(r, 0)

2 cos(2O0) cos(0) — r sin(0)
21 (4.22)

L2 cos(2O0) sin(0) + r cos(0)

This has streamlines which are oscillating closed circuits. In Figures 4.16, 4.17, and 4.18,

Log2(number of evalutaion points)

F ig u re 4.15. Convergence of the L2 errors when using midpoint integration for postpro
cessing.

E F , di = 0.1 E F , dt = 0.01 E F > dt = 0.001

F ig u re 4.16. Streamline integration example based upon vector field mentioned in Equation (4.22). Solid black streamlines denote
“true” solution; blue streamlines were created based upon integration on an L2 projected field; red streamlines were created based upon
integration on a filtered field using consistent integration approach, and dashed black streamlines were created based upon integration
on a filtered field using the input mesh-based approach. Euler forward time integration.

80

RK-2, dt = 0.01 R K-2, d t = 0.001

F ig u re 4.17. Streamline integration example based upon vector field mentioned in Equation (4.22). Solid black streamlines denote
“true” solution; blue streamlines were created based upon integration on an L2 projected field; red streamlines were created based upon
integration on a filtered field using consistent integration approach, and dashed black streamlines were created based upon integration
on a filtered field using the input mesh-based approach. Euler forward time integration. Rk-2 time integration.

81

RK—4, d t = 0.1 R K-4, d t = 0.01 RK-4, d t = 0.001

F ig u re 4.18. Streamline integration example based upon vector field mentioned in Equation (4.22). Solid black streamlines denote
“true” solution; blue streamlines were created based upon integration on an L2 projected field; red streamlines were created based upon
integration on a filtered field using consistent integration approach, and dashed black streamlines were created based upon integration
on a filtered field using the input mesh-based approach. RK-4 time integration.

82

83

we present a sample streamline of this vector field by projecting the function above over a

40 x 40 uniform mesh on the interval [-1,1] x [-1,1] with a starting location of (0.0, 0.3).

The field approximations are linear in both the x — and y— directions. Streamlines were

calculated using three different time integration schemes, Euler Forward, 2nd-order Runge-

Kutta (RK-2), and 4th-order Runge-Kutta (RK-4), with three different time steps dt =

0.1,0.01,0.001. The “true solution” streamlines (denoted as a solid black line in all the

images) are calculated by performing RK-4 on the analytical function.

These results corroborate that input mesh-based integration with sufficient quadrature

provides sufficient postprocessing benefit in terms of smoothness and accuracy to be of use

in data processing and visualization.

4.4 Summary and Conclusions
In this chapter, we presented a atudy of the impact of numerical quadrature approxima

tions used for evaluating the convolution operator in the smoothness-increasing accuracy-

conserving (SIAC) filter. We provided both theoretical estimates as well as empirical results

which demonstrated the efficacy of the postprocessing approach when different levels and

types of quadrature approximation are used. We first examined the case when consistent in

tegration with inexact Gaussian quadrature (under-integration) is used. Because consistent

integration requires performing up to several numerical quadratures within an element, we

considered what happens when only the original DG mesh is used as the underlying support

mesh for integration. Under this scenario, we examined the use of Gaussian quadrature and

midpoint quadrature. This choice highlighted the differences between polynomial-based

high-order and adaptive low-order quadrature implementations.

There are several points that can be drawn from our results and discussions:

• The major uncontrollable cost in the postprocessing algorithm is performing several

numerical quadratures within a DG element. In the case of uniform meshes, many

things simplify to drastically cut down the cost; however, uniform meshes are not

often used in general engineering practice.

• Because the postprocessor consists of integrating a B-spline kernel against a DG

solution, there are certain things we can state about the integrand being integrated.

As the DG element discontinuities and the B-spline knot lines cannot overlap, we

know that in the worst case, the integrands contain a reduction in regularity due to

the product of the DG discontinuity with the polynomial on a B-spline knot-segment.

84

Although Gauss quadrature over such a region is not exact, it can nonetheless be very

effective.

• If the cost of performing integration on the consistent mesh is prohibitive, postprocess

ing with input mesh-based postprocessing provides in many cases benefits comparable

with consistent integration. The error introduced can be controlled by increasing the

number of quadrature points.

• Alternatives to Gaussian quadrature can be used for evaluating the convolution inte

grals; however, a large number of samples are needed to obtain comparable results.

• When examined in light of an application area as visualization of DG solutions, input

mesh-based postprocessing appears to provide a convenient means of obtaining smooth

solutions with controllable accuracy.

We emphasize again that our study is primarily for engineering circumstances when

trade-offs between time, resources, and accuracy are important. Although the case against

committing such numerical crimes is well-known, the repercussions have not been well

documented for the use of this filter as a visualization tool. It is concerning this specific

crime to which we have attempted to provide both theoretical and empirical insight.

CHAPTER 5

NUMERICAL BEHAVIOR OF SIAC
FILTERING FOR STRUCTURED

TRIANGULATIONS

One drawback of the previous implementations of the postprocessor is that there is a

basic assumption that the data are obtained over a uniform quadrilateral mesh. However,

this assumption is restrictive, which makes the application of this postprocessing technique

to general tessellations a challenging task. In this chapter, we demonstrate the behavior

and complexity of the computational extension of this SIAC filter to structured triangular

meshes. We furthermore show that the theoretical extension to variable coefficient equations

over structured triangular meshes is straightforward. Moving from quadrilateral meshes to

triangulated ones introduces more complexity in the calculations as the number of required

integrations increases. This is a challenging first step toward implementing smoothness-

increasing accuracy-conserving filters for unstructured tessellations. By using the usual

B-spline implementation, we are able to improve on the order of accuracy as well as decrease

the magnitude of the errors. We are essentially able to increase the order of accuracy from

O(hk+1) to approximately O(h2fc+1) for structured triangular meshes and show accuracy

enhancement for smoothly varying meshes and Union-Jack meshes. These results are valid

regardless of whether we employ exact or inexact integration.

The detail of implementation of the SIAC filter for structured triangular meshes was

discussed in Section 3.4.2. Here, we present the numerical behaviour of this filtering tech

nique over these type of meshes. We begin by reviewing the key concepts of discontinuous

Galerkin methods over triangulations. In Section 5.2, we show how there is a natural

theoretical extension of the accuracy enhancing capabilities of the SIAC filter for structured

triangular meshes. In Section 5.3, we give numerical results confirming the usefulness of

our smoothness-increasing accuracy-conserving filter for triangulated meshes. The result of

these contributions has been published in [46].

86

5.1 The Discontinuous Galerkin Formulation
for Triangular Mesh Structures

In this section, we provide an overview of the discontinuous Galerkin method over a

domain that is subdivided into triangular elements. A more thorough study of the DG

formulation is presented in Section 2.3. Here, we introduce the notations we consider

throughout this chapter.

We consider the numerical solution of a two-dimensional linear hyperbolic equation of

the form

2 d
ut + ^ — (A i(x)u) = 0 , x e Q x [0,T], (5.1)

i=1 Xi
u(x, 0) = uo(x), x e Q,

where x e Q, t e R, and A i (x), i = 1, 2 is bounded in the L ^ — norm. We also assume

smooth initial conditions are given along with periodic boundary conditions.

We begin by defining our mesh such that the computational domain, Q, consists of

N nonoverlapping triangular elements. We designate these by Te and assume that their

characteristic length is h. The tessellated computational domain then is given by Q =

1JN= 1 Te. We also define Vh to be the approximation space consisting of piecewise polynomials

of degree at most k on element Te,

Vh = {p e l 2(Q) : ^ |Te e Pk(Te), VTe e q } . (5.2)

We will approximate the exact solution u(x) with uh(x) e Vh.

To begin defining our numerical method, we consider the weak form of Equation (5.2) in

order to derive our discontinuous Galerkin approximation. That is, we multiply Equation

(5.2) by a smooth function v(x) and integrate over Te. We then make use of Green’s theorem

in the second term to obtain a formulation that includes boundary terms. Next, the test

function, v, is replaced with a piecewise polynomial function, vh e V h, in the approximation

space. The flux function is defined to be f i(x, t) = A i(x)uh(x ,t) , i = 1,2. The DG

formulation is then given by

2 2
/ Vh dx — ^ f f i (x ,t) d x dx + ^ f fiiiiVh ds = 0, (5.3)
Te i=1 Te i i=1

where 3tc is the boundary of the element Te, and hi denotes the unit outward normal to the

element boundary in the ith direction. Notice that the flux is multiply defined at element in

terfaces and therefore, we impose the definition that fa iii = h(uh(xexterior, t) , uh(x interior ,t))

87

is a consistent two-point monotone Lipschitz flux as in [13]. We note that if we sum over

all the elements, Te, we can rewrite Equation (5.3) as

+ B(A,ut; vt)q = 0, (5.4)

where

2 / d \ 2 f
B(A, UT; vT) — ̂̂ (Ai(x)uT(x?t) j dd) _ + E E / Ai(x)«TVT? î ds, (5.5)

i=1 ' n Te i=1 7dTe

and we have denoted Aj(x), i — 1,2 by A for simplicity.

The approximate solution, ut, within an element is given by

k k-p
Uh(x,t) —£ £ uTP’(‘t]0(p,q)(x)j x € Te, (5.6)

p=0 q=0

where uTp,q) (t) represent the expansion coefficients and 0(p>q) (x) are the given basis functions.

We note here that for our DG solvers, we are using the NEKTAR++ implementation given

in [40] and available at h ttp ://w w w .n ek ta r.in fo .

5.2 Higher Order Accuracy in DG Solutions
We remind the reader that the two-dimensional postprocessor has the following form:

u*(x,y) — J J KV'e (X1̂ 1 ^) KV'e (X2̂ 2 ^) u tx,hi(x i,x 2)dxidx2 .

In this section, we discuss the theoretical extension of the smoothness-increasing accuracy-

conserving filter to two dimensions. We build on previous proofs in [19, 36] and account for

a variable coefficient as well as the triangular mesh structure. This allows us to arrive at

an estimate that demonstrates that the order accuracy of the DG solution can be improved

from O(hk+1) to O(h2k+1) for structured triangular meshes such as that in Figure 5.1.

We begin by stating our main theorem:

T heorem 5.2.1 Let ut be the discontinuous Galerkin solution for the variable coefficient

problem (5.2), where Aj(x), i — 1,2 is bounded in the L ^ —norm, and uT — K ^ * u t , where

K Ur — K v,l(HX) is the position-dependent SIAC kernel given in (3.19). Given sufficient

smoothness in the initial data, we have that

||u — k H * u fcyn < Ch2k+1, (5.7)

where C depends upon the smoothness of the solution as well as the boundedness o f Aj(x), i —

1,2, and K ^ f a B-spline kernel as given in Equation (3.19).

http://www.nektar.info

88

Figure 5.1. A structured triangular mesh.

In this statement, we see that it is possible to improve the order of accuracy of the

approximation through the use of a B-spline kernel. This improvement is possible provided

the negative-order norm of the solution and the divided differences are of higher order. Since

we are considering the simplest case of structured triangular mesh, we have translation

invariance of the mesh. It only remains to prove that we have higher order accuracy in the

negative-order norm for the solution and the divided differences. To show this, we follow the

proofs in [19, 36]. We note that in those proofs, the coefficients multiplying the convection

term are constant. Here, we consider the variable-coefficient case.

Proof: We note that we can rewrite the estimate in Equation (5.7) as

||u - KH11 *Uh||n < ||u - K f 1 *u ||n + [[K^11 * (u - u^Hn. (5.8)

The estimate for the first term on the right side was shown in Section 3.2. For the

second term, we need to demonstrate that the divided differences of the error in a negative-

order norm are of higher order for the variable coefficient equation solved over a structured

triangular mesh. We show this by considering the inner product of the errors from the DG

solution with a smooth function, $(x), that is the final time condition to the dual problem.

We can define this dual problem by

2
f t + ^ 2 Ai(x)^xi = 0, (x, t) € Q x (0, T], (5.9)

i=1
f (x ,T) = $(x), (5.10)

with f having periodic boundary conditions. Multiplying the equation for the exact solu

tion, (5.2), by f and the dual equation, (5.9), by the exact solution, we see that we have

dt (u, f) = 0. We can use this to begin estimating ((u — uh)(T), $)n , which would become

89

((u - Uh)(T), $)q =(u - uh, v)n(0) - / {((uh)t, v)n + (uh, Vt)n} dt
Jo

=(u - Uh, v)n(0) - {((Uh)t, V - x)n + B(A, Uh; V - x)n} dt
Jo

= 01 + 02; (5.11)

where B (A, uh; v - x) is the bilinear form given in (5.5) and v is the solution to the dual

equation (5.9).

We note that the proof of 0 1 being of higher order was given in [19] and is |0 1| <

C1h2k+2\\uo\\k+1\\lp(0)\\k+1- The proof for 0 2 uses x = PV, the projection of v, and Lipschitz

continuity to obtain:

|02| <

<

- / {((uh)t,<P - x)n + B(A, uh; V - x)n} dt < - f {B(A,uh; V - x)n} dt
Jo Jo

Y] / < (A i(x)uh (x, t), (v - P v)x i) - y A i(x)iihfii(v - P v) d s \ dt
t = 1 Jo { ^ J9re J

(5.12)

Adding and subtracting the term ((Ai(x)u)Xi , v - P v)n , and using simple inequalities gives

the bound on 0 2 as

/ rT \ 1/2 / rT \ 1/2 / p T \ 1/2
|0 2| < C h 2 k + y J o \\uh - u \n dtj [J Q llvNk+1 dtj + C h 2 k + \ J 0 HvNk+1dt

For the negative-order norm of the solution, we then have the estimate

|u - uh||-(k+1),n = Ch2k+1,

(5.13)

(5.14)

where C depends on the smoothness of the solution and the bound on ||A ||ltc(q). We

have obtained this by using the above bounds on 1011, |0 21, as well as the definition of

the negative-order norm together with the regularity for the variable coefficient equation,

Nv(x,t)||l;n < C Nv(x,0)||l;n, where C is a constant that depends on ||A||LTC(q).

We emphasize that the proof of the negative-order norm estimate of the DG solution

did not rely on the mesh from the DG solution. The mesh type only plays a role in the

estimation of the divided differences that help to bound the error. However, because we are

assuming a structured triangular mesh, we maintain the translation invariance property.

The constant now relies on the bound on the variable coefficient A i , i = 1, 2. To show that

this is indeed the case, we first define the DG method for the divided differences of the

variable coefficient equation,
2

dHut + J] dH (A(x)u)Xi = 0 , x € R2 x (0,T], (5.15)
i=1

dHu(x, 0) = dHuo(x), (5.16)

where a is the order of the divided difference, dH = dal dH22 and
1 m / \

v(x) = E (—1)^ 7) v (x + (— *) • i=0 V /
The DG scheme is given by

(dH uh, vh)n + Ba (A, uh; Vh)n = 0, (5.17)

for all vh € Vh, where

90

B„(A,uh;vh)n = — E (^ H (A ^ x) ^) , ^) + E E / ^H(Ai(x)uh)vhT?ids. (5.18)
i=1 ' « re i=1 7dTe

For the dual equation, we need to factor in the divided differences of the error:
2

dH(^«)t + E Ai(x)dH(^a)xj = 0, (x,t) € Q x (0,T], (5.19)
i=1

^ „ (x ,T) = $ a (x) • (5.20)

Defining the dual equation in this way gives the relation dt(dHu, ^«)n = 0. Having this

relation is an important step in the proof of the higher order accuracy in the negative-order

norms.

We can perform a similar rearrangement of terms as above to obtain

(dH(u — uh)(T), i a)n =(dH(u — ufe), ^«)n (0)

/ {(dH(uh ^ — x)Q + B a(A, dHuh; — x)Q} dt
0

/ {(dH(uh), (^«)t)n — Ba(A, dHufe; ^«)n} dt
0

=d©1 + d©2 + d©3. (5.21)

Here, d©1, d©2, and d©3 are

d© 1 = (dH (u — uh),pa)n (0) (5.22)
cT

{(d« (u). ,,Qd©2 = — f {(dH(uh)t , ^a — x)Q + Ba (A,dHuh; — x)Q} dt (5.23)
J0

d©3 = — f {(dH(uh), (^«)t)Q — dHuh; ^«)Q} d t (5.24)
0

91

The bounds on d©1 and d©2 provide a similar estimate to that appearing above and

therefore, we only concentrate on bounding d©3. For the interior part of the integral

of d©3, we have

/ N T(d©3) = (dH(uh) j (f a)t)n — Ba (A, dHuh; f a)n
2

= dH(f a)t)n + ^ (dH(Ai(x)uh)J (f «)xi)n
i=1

2 /- dH (A i(x)uh)fa fii ds
Te i=1

2
= (—1)a(uh, dH(f a)t)n + (—1)a Ai(x)dH(f a)xi)n = 0. (5.25)

i=1

Combining the estimates and using the regularity of f , we then have

(dH(u - uh)(T), i) n < Ch2fc+1, (5.26)

proving our theorem.

We point out that the negative-order norm estimates for the solution did not rely on

the mesh type, and that in fact, we do see higher order convergence; however, the divided

differences do. In order to extend this to unstructured meshes, we will need to focus our

attention on improving the estimates for the divided differences of the error. The proofs for

the accuracy extracting capabilities of the SIAC filter do not change.

5.3 Results
The main contribution of this section is the demonstration of the effectiveness of the

quadrilateral B-spline postprocessor applied to discontinuous Galerkin solutions calculated

over a structured triangular mesh and its accuracy enhancing capabilities. Furthermore,

we present the results for the various choices of quadrature to see the computational effect

of the numerical crimes committed in our integration. We examine both the L2- and

L00-errors, but note that the theory presented in this paper only applies to the L2-errors.

We note that all examples have been implemented using NEKTAR++ for the discontinuous

Galerkin solution to the partial differential equation under consideration. The classical

Runge-Kutta 4 time-stepping scheme was used for the time discretization and the cfl was

taken so that spatial errors dominate. We note that this restriction is not necessary in

practical applications - the errors will still be improved over the DG errors. However, in

order to see the higher rate of convergence, it is necessary to have such a restriction. For

the consistent integration approach, we always use exact integration to calculate the L2

92

projections, i.e., the number of quadrature points is what is required for exact integration.

However, when performing integration considering only the DG mesh, we increase the

number of quadrature points. In order to isolate the applicability of this filter, we assume

that we have periodic boundary conditions for our test cases to simplify the application

of the postprocessor so that it is only necessary to implement the symmetric filter with

r + 1 = 2k + 1 B-splines. In addition, Gauss-Lobatto-Legendre (GLL) points are used

in one direction, and Gauss-Radau-Legendre (GRL) points are used on the other. In all

examples, we calculate the error for six quadrature points on each element, i.e., three GLL

points on one direction and two GRL points on the other.

5.3.1 C onstant C oefficient Linear A d vection E quation

For this example, we consider solutions of the equation

ut + ux + uy = 0, (x ,y) e (0,1) X (0,1), T = 12.5 (5.27)

with initial condition u(0,x,y) = sin(2n(x + y)).

Table 5.1 shows the errors when postprocessing using inexact quadrature that only

respects the DG element breaks and postprocessing on a mesh that respects both kernel

breaks and DG element breaks, for a uniformly structured triangular mesh. For this case,

we clearly see improvements from k+1 to 2k+1 in the order of the errors. Furthermore,

we see a decrease in the magnitude of the errors. We note that the errors for inexact

postprocessing on the DG mesh are represented for two different sets of quadrature points.

The first two sets of errors are for inexact integration, where only the DG element breaks

are respected. The second set of errors for inexact quadrature demonstrates our attempt to

overcome the numerical crimes with increased quadrature points. These sets of quadrature

points are designated “inexact postprocesssing” and the number of quadrature points are

given in the tables. We see that even in the first set of quadrature points, the results of

the DG mesh are similar to the results of the consistent-integration approach. In addition,

increasing the number of quadrature points results in decreased error and improved order

of convergence. The final set of errors is what is required to calculate the integrals exactly

when applying the postprocessor on the consistent integration mesh. In the tables, we

designate this “consistent postprocessing.” We see that for this set of errors, we obtain the

desired order accuracy as given by the theory in Equation (5.7), except for P4 and the finest

mesh, where we expect that roundoff errors have begun to dominate.

The errors for the smoothly varying triangular mesh shown in Figure 5.2 are provided

in Table 5.2. We note that technically, the theory does not cover this case. We see that

93

Table 5.1. Errors for the linear constant coefficient advection equation using P2, P3, and
P4 polynomials for the structured (uniform) triangular mesh. Before postprocessing and
after postprocessing on the DG mesh, where Q0 represents GLL points on one direction
and Q1 represents GRL points on the other direction, CI indicates consistent integration.

P2
mesh L2 error order LTC error order L2 error order LTC error order

Before postprocessing Inexact postprocessing, Q0 = 5, Q1 = 4

2X
M

01 6.86E-03 - 3.27E-02 - 2.32E-03 - 3.28E-03 -
202 X 2 9.86E-04 2.78 4.35E-03 2.91 7.15E-05 5.02 1.02E-04 5.01

2X
M

0 1.36E-04 2.86 5.45E-04 3.00 2.22E-06 5.01 3.21E-06 4.99
Inexact postprocessing, Q0 = 34, Q1 = 33 Consistent postprocessing, CI

102 X 2 2.32E-03 - 3.28E-03 - 2.32E-03 - 3.28E-03 -

2X
M

02 7.14E-05 5.02 1.01E-04 5.02 7.14E-05 5.02 1.01E-04 5.02

2X
M

0 2.18E-06 5.03 3.09E-06 5.03 2.18E-06 5.03 3.09E-06 5.03
P3

Before postprocessing Inexact postprocessing, Q0 = 6, Q1 = 6

2X
M

01 4.95E-04 - 2.60E-03 - 4.58E-05 - 6.52E-05 -

2X
M

02 2.44E-05 4.34 1.74E-04 3.90 2.68E-07 7.42 4.21E-07 7.27

2X
M

0 2.01E-06 3.60 1.11E-05 3.97 3.17E-09 6.40 6.70E-09 5.97
Inexact postprocessing, Q0 = 45, Q1 = 44 Consistent postprocessing, CI

2X
M

01 4.54E-05 - 6.42E-05 - 4.54E-05 - 6.42E-05 -

2X
M

02 2.44E-07 7.54 3.51E-07 7.51 2.44E-07 7.54 3.51E-07 7.51

2X
M

0 1.41E-09 7.44 2.65E-09 7.05 1.41E-09 7.44 2.65E-09 7.05
P4

Before postprocessing Inexact postprocessing, Q0 = 8, Q1 = 7

2X
M

01 3.62E-05 - 2.05E-04 - 4.02E-06 - 5.69E-06 -

2X
M

02 1.14E-06 4.99 6.47E-06 4.99 5.81E-09 9.44 8.27E-09 9.43
402 X 2 3.56E-08 5.00 2.00E-07 5.02 2.30E-10 4.66 3.27E-10 4.66

Inexact postprocessing, Q0 = 56, Q1 = 55 Consistent postprocessing, CI

2X
M

01 4.02E-06 - 5.68E-06 - 4.02E-06 - 5.68E-06 -
202 X 2 5.84E-09 9.43 9.35E-09 9.25 5.84E-09 9.43 9.35E-09 9.25

2X
204 2.31E-10 4.66 4.74E-10 4.30 2.31E-10 4.66 4.74E-10 4.30

Figure 5.2. Smoothly varying triangular mesh.

94

Table 5.2. Errors for the linear constant coefficient advection equation using P2, P3, and
P4 polynomials for the smoothly varying triangular mesh. Before postprocessing and after
postprocessing on the DG mesh, where Qo represents GLL points on one direction and Q1
represents GRL points on the other direction, CI indicates consistent integration.

P2
mesh L2 error order LTC error order L2 error order LTC error order

Before postprocessing Inexact postprocessing, Q0 = 5, Q1 = 4
102 X 2 1.11E-02 - 9.15E-02 - 6.32E-03 - 1.21E-02 -

2X
M

02 1.37E-03 3.01 1.31E-02 2.80 5.97E-04 3.40 3.75E-03 1.69

2X
M

0 1.71E-04 3.00 1.66E-03 2.98 2.53E-04 1.24 1.60E-03 1.23
Inexact postprocessing, Q0 = 34, Q1 = 33 Consistent postprocessing, CI

2X
M

01 6.17E-03 - 1.14E-02 - 6.17E-03 - 1.14E-02 -

2X
M

02 1.95E-04 4.98 5.53E-04 4.37 1.96E-04 4.98 5.49E-04 4.38

2X
M

0 7.02-E06 4.80 6.04E-05 3.19 7.08E-06 4.78 6.26E-05 3.14
P3

Before postprocessing Inexact postprocessing, Q0 = 6, Q1 = 6

2X
M

01 1.22E-03 - 1.05E-02 - 3.81E-04 - 9.88E-04 -
202 X 2 7.82E-05 3.96 7.49E-04 3.81 5.00-E05 2.93 2.64E-04 1.90

2X
M

0 4.97E-06 3.98 4.75E-05 3.98 2.37e-05 1.08 1.07E-04 1.30
Inexact postprocessing, Q0 = 45, Q1 = 44 Consistent postprocessing, CI

102 X 2 3.45E-04 - 9.37E-04 - 3.45E-04 - 9.37E-04 -

2X
M

02 1.86E-06 7.54 4.83E-06 7.60 1.86E-06 7.54 4.83E-06 7.60
2X

M
0 1.24E-08 7.23 1.02E-07 5.57 1.24E-08 7.23 1.02E-07 5.57

P4
Before postprocessing Inexact postprocessing, Q0 = 8, Q1 = 7

2X
M

01 1.11E-04 - 1.34E-03 - 7.31E-05 - 2.13E-04 -
202 X 2 3.66E-06 4.92 4.73E-05 4.82 2.83E-06 4.69 1.63E-05 3.71

2X
20 1.17E-07 4.97 1.52E-06 4.96 1.87E-06 0.60 1.38E-05 0.24

Inexact postprocessing, Q0 = 56, Q1 = 55 Consistent postprocessing, CI
102 X 2 7.25E-05 - 2.13E-04 - 7.25E-05 - 2.13E-04 -

2X
202 9.55E-08 9.57 2.76E-07 9.59 9.55E-08 9.57 2.76E-07 9.59

2X
20 3.70E-09 4.69 6.28E-09 5.46 3.70E-09 4.69 6.28E-09 5.46

95

errors have decreased and the order of convergence in the L2-norm is generally better when

postprocessing on the consistent integration mesh and improves to approximately 2k+1.

For the smoothly varying structured triangular mesh, when using quartic polynomials and

the finest mesh, the error values improved compared to the initial solution; however, the

convergence rate decreased. Using the smoothly varying triangular mesh, more quadrature

points are required to simulate the exact results. Furthermore, Figures 5.3 and 5.4 depict

the point-wise errors in logarithmic scale when using quadratic polynomials over a 202 x 2

mesh. From these plots, we observe that the error has decreased for the postprocessed

solution, and the postprocessor has filtered out the oscillations. We note that the error

plots for the inexact integration give the same results as for the consistent integration and

therefore, we neglect to include these.

5.3.2 V ariable C oefficient Linear A d vection E quation

For this example, we consider solutions of the equation

ut + (au)x + (au)y = f, (x, y) € (0,1) x (0,1), T = 12.5. (5.28)

We implement a smooth coefficient a(x,y) = 2 + sin(2n(x + y)), with an initial con

dition of u(x,y, 0) = sin(2n(x + y)). Periodic boundary conditions are implemented in

both directions and the forcing function, f(x ,y ,t) , is chosen so that the exact solution is

u(x ,y ,t) = sin(2n(x + y — 2t)). By examining the results of this equation, we can gain

insight into how effective the filter might be for nonlinear equations.

Table 5.3 shows the errors when postprocessing on both the consistent-integration mesh

and the DG mesh for the structured triangular mesh. There is clear improvement from k+1

to approximately 2k for P2 and P3 polynomials. For P4—polynomials, the improvement is

diminished, but the magnitude of the errors improves significantly, especially for fine-mesh

structures. The errors for the smoothly varying triangular mesh are similar, and provided

in Table 5.4.

o: 0.2 0.4 0.6 D.O 1 D 0.2 0.4 0.6 0.8 1

(c) (d)

Figure 5.3. Three- and two-dimensional view of point-wise errors in logarithmic scale for constant coefficient advection equation when P2
discontinuous Galerkin method is used over a structured (uniform) triangular mesh. (a) and (c) demonstrate the initial DG approximation
errors; (b) and (d) represent the errors after the application of the postprocessor on the consistent-integration mesh. Filled contour plots
have been used to visualize the data for (c) and (d). The SIAC filter works to reduce the oscillations in the error. 96

(c) (d)

Figure 5.4. Three- and two-dimensional view of point-wise errors in logarithmic scale for constant coefficient advection equation when a
P2 discontinuous Galerkin method is used over a smoothly varying triangular mesh. (a) and (c) demonstrate the initial DG approximation
errors and (b) and (d) represent the errors after the application of the postprocessor on the consistent-integration mesh. We can clearly
see how the SIAC filter reduces the oscillations in the error.

97

98

Table 5.3. Errors for variable coefficient advection equation using P2, P3, and P4 poly
nomials. Before postprocessing and after postprocessing on the consistent-integration (CI)
and DG meshes. We have assumed a structured (uniform) triangular mesh.

P2
mesh L2 error order L̂ > error order L2 error order L̂ > error order

Before postprocessing After postprocessing, Q0 = 5, Q1 = 4
102 x 2 6.16E-03 - 3.39E-02 - 2.11E-04 - 4.19E-04
202 x 2 7.43E-04 3.05 4.11E-03 3.04 5.68E-06 5.22 1.54E-05 4.77
402 x 2 9.13E-05 3.02 4.98E-04 3.04 3.98E-07 3.84 1.05E-06 3.87

After postprocessing, Q0 = 34, Q1 = 33 After postprocessing, CI
102 x 2 2.09E-04 - 4.05E-04 - 2.09E-04 - 4.05E-04
202 x 2 4.89E-06 5.42 9.66E-06 5.39 4.89E-06 5.42 9.66E-06 5.39
402 x 2 1.74E-07 4.81 3.87E-07 4.64 1.74E-07 4.81 3.87E-07 4.64

P3
Before postprocessing After postprocessing, Q0 = 6, Q1 = 6

102 x 2 5.50E-04 - 3.34E-03 - 3.11E-05 - 4.75E-05
202 x 2 3.23E-05 4.09 2.00E-04 4.06 1.55E-07 7.65 2.98E-07 7.32
402 x 2 2.05E-06 3.98 1.20E-05 4.06 2.39E-09 6.02 5.64E-09 5.72

After postprocessing, Q0 = 45, Q1 = 44 After postprocessing, CI
102 x 2 3.08E-05 - 4.66E-05 - 3.08E-05 - 4.66E-05
202 x 2 1.55E-07 7.63 2.98E-07 7.29 1.55E-07 7.63 2.98E-07 7.29
402 x 2 2.39E-09 6.01 5.64E-09 5.72 2.39E-09 6.01 5.64E-09 5.72

P4
Before postprocessing After postprocessing, Q0 = 8, Q1 = 7

102 x 2 4.34E-05 - 2.82E-04 - 3.95E-06 - 5.61E-06
202 x 2 1.20E-06 5.18 7.75E-06 5.19 4.44E-09 9.80 7.78E-09 9.49
402 x 2 3.55E-08 5.08 2.20E-07 5.14 1.19E-10 5.22 2.73E-10 4.83

After postprocessing, Q0 = 56, Q1 = 55 After postprocessing, CI
102 x 2 3.95E-06 - 5.61E-06 - 3.95E-06 - 5.61E-06
202 x 2 4.43E-09 9.80 8.30E-09 9.40 4.43E-09 9.80 8.30E-09 9.40
402 x 2 1.19E-10 5.22 4.65E-10 4.16 1.19E-10 5.22 4.65E-10 4.16

99

Table 5.4. Errors for variable coefficient advection equation using P2, P3, and P4
polynomials for the smoothly varying triangular mesh. Before postprocessing and after
postprocessing on the consistent-integration (CI) and DG meshes.

P2
mesh L2 error order L00 error order L2 error order L 00 error order

Before postprocessing After postprocessing, Q0 = 5, Q1 = 4

2X201 1.19E-02 - 9.97E-02 - 2.78E-03 - 7.67E-03 -

2X202 1.40E-03 3.09 1.32E-02 2.92 5.67E-04 2.29 3.25E-03 2.36

2X20 1.70E-04 3.04 1.66E-03 2.99 2.54E-04 1.16 1.59E-03 1.03
After postprocessing, Q0 = 34, Q1 = 33 After postprocessing, CI

2X201 2.63E-03 - 6.83E-03 - 2.63E-03 - 6.83E-03 -

2X202 8.77E-05 4.91 3.95E-04 4.11 8.77E-05 4.91 3.95E-04 4.11

2X20 4.17E-06 4.39 4.55E-05 3.12 4.03E-06 4.44 4.55E-05 3.12
P3

Before postprocessing After postprocessing, Q0 = 6, Q1 = 6

2X201 1.30E-03 - 1.22E-02 - 3.59E-04 - 1.01E-03 -

2X202 7.81E-05 4.06 8.48E-04 3.85 4.97E-05 2.85 2.63E-04 1.94

2X20 4.91E-06 3.99 4.96E-05 4.10 2.37E-05 2.10 1.02E-04 1.37
After postprocessing, Q0 = 45, Q1 = 44 After postprocessing, CI

2X201 3.30E-04 - 9.99E-04 - 3.30E-04 - 9.99E-04 -

2X202 2.19E-06 7.24 1.55E-05 6.01 2.19E-06 7.24 1.55E-05 6.01

2X20 5.86E-08 5.22 8.26E-07 4.23 5.86E-08 5.22 8.26E-07 4.23
P4

Before postprocessing After postprocessing, Q0 = 8, Q1 = 7

2X201 1.48E-04 - 1.57E-03 - 7.36E-05 - 2.16E-04 -

2X202 4.02E-06 5.20 5.01E-05 4.97 2.83E-06 4.70 1.59E-05 3.76

2X20 1.17E-07 5.10 1.54E-06 5.02 1.87E-06 0.60 1.37E-05 0.21
After postprocessing, Q0 = 56, Q1 = 55 After postprocessing, CI

2X201 7.30E-05 - 2.16E-04 - 7.30E-05 - 2.16E-04 -

2X202 1.22E-07 9.22 5.84E-07 8.53 1.22E-07 9.22 5.84E-07 8.53

2X20 1.25E-09 6.61 1.26E-08 5.53 1.25E-09 6.61 1.26E-08 5.53

5.3 .3 T w o-D im ensional W ave E quation as a System

We now consider the traditional second-order wave equation,

ntt - Vxx - Vyy = 0, (x, y) € (0,1) X (0,1), T = 6.28. (5.29)

We rewrite Equation (5.29) as a system of first-order linear equations shown below

nt + Ux + Vy = 0

Ut + nx = 0 (5.30)

Vt + ny = 0

with initial conditions

n(x,y, 0) = 0.01 X (sin(2nx) + sin(2ny))

u(x,y, 0) = 0.01 X (sin(2nx)) (5.31)

v(x,y, 0) = 0.01 x (sin(2ny))

100

and 2n periodic boundary conditions in both directions. In Tables 5.5 and 5.6, we have

provided the errors after one period in time for the n variable. As it is presented, the

value of the error and the order of convergence are improved after the application of the

postprocessor. For both the structured triangular mesh and the smoothly varying mesh,

this is the expected improvement to O (h2k+1).

Table 5.5. Errors for 2D system using P2, P3, and P4 polynomials. Before postprocessing
and after postprocessing on the consistent-integration (CI) and DG meshes. We have
assumed a structured (uniform) triangular mesh.

P2
mesh L 2 error order L̂ > error order L2 error order L̂ > error order

Before postprocessing After postprocessing, Q0 = 5, Q1 = 4

2X201 1.24E-05 - 6.14E-05 - 2.35E-06 - 4.78E-06 -

2X202 1.56E-06 2.99 7.97E-06 2.95 5.42E-08 5.44 1.22E-07 5.29

2X20 1.95E-07 3.00 1.01E-06 2.98 3.85E-09 3.82 9.42E-09 3.70
After postprocessing, Q0 = 34, Q1 = 33 After postprocessing, CI

2X201 2.33E-06 - 4.66E-06 - 2.33e-06 - 4.66e-06 -

2X202 4.48E-08 5.70 9.03E-08 5.69 4.48e-08 5.70 9.03e-08 5.69

2X20 9.17E-10 5.61 1.85E-09 5.61 9.17E-10 5.61 1.85E-09 5.61
P3

Before postprocessing After postprocessing, Q0 = 6, Q1 = 6

2X201 6.58E-07 - 3.36E-06 - 2.31E-07 - 4.70E-07 -

2X202 4.12E-08 4.00 2.09E-07 4.01 1.17E-09 7.63 2.69E-09 7.45

2X20 2.58E-09 4.00 1.32E-08 3.98 2.13E-11 5.78 5.51E-11 5.61
After postprocessing, Q0 = 45, Q1 = 44 After postprocessing, CI

2X201 2.29E-07 - 4.58E-07 - 2.29E-07 - 3.36E-07 -

2X202 9.80E-10 7.87 1.96E-09 7.87 9.80E-10 7.87 1.96E-09 7.42

2X20 4.02E-12 7.93 8.05E-12 7.93 4.03E-12 7.93 1.37E-11 7.16
P4

Before postprocessing After postprocessing, Q0 = 8, Q1 = 7
2X201 2.44E-08 - 1.29E-07 - 2.80E-08 - 5.61E-08 -

2X202 7.64E-10 5.00 4.16E-09 4.95 3.10E-11 9.82 6.22E-11 9.82
2X20 2.40E-11 4.99 1.32E-10 4.98 8.07E-13 5.26 1.64E-12 5.25

After postprocessing, Q0 = 56, Q1 = 55 After postprocessing, CI

2X201 2.80E-08 - 5.61E-08 - 2.80E-08 - 5.61E-08 -

2X202 3.10E-11 9.82 6.19E-11 9.82 3.10E-11 9.82 6.19E-11 9.82

2X20 8.17E-13 5.24 1.78E-12 5.12 8.17E-13 5.24 1.78E-12 5.24

101

Table 5.6. Errors for 2D system using P2, P3, and P4 polynomials for the smoothly varying
triangular mesh. Before postprocessing and after postprocessing on the consistent-integra-
tion (CI) and DG meshes.

P2
mesh L2 error order L̂ > error order L2 error order L̂ > error order

Before postprocessing After postprocessing, Q0 = 5, Q1 = 4

2X201 2.79E-05 - 1.81E-04 - 1.61E-05 - 9.08E-05 -

2X202 3.57E-06 2.97 2.60E-05 2.80 8.14E-06 0.98 5.37E-05 0.76

2X20 4.48E-07 2.99 3.37E-06 2.95 3.59E-06 1.18 2.59E-05 1.05
After postprocessing, Q0 = 34, Q1 = 33 After postprocessing, CI

2X201 9.92E-06 - 3.14E-05 - 9.92E-06 - 3.14E-05 -

2X202 1.90E-07 5.71 5.30E-07 5.89 1.92E-07 5.69 5.46E-07 5.85

2X20 1.48E-08 3.68 9.27E-08 2.52 3.85E-09 5.64 2.72E-08 4.33
P3

Before postprocessing After postprocessing, Q0 = 6, Q1 = 6

2X201 1.70E-06 - 8.97E-06 - 2.67E-06 - 8.35E-06 -

2X202 1.09E-07 3.96 6.38E-07 3.81 7.07E-07 1.92 4.20E-06 0.99

2X20 6.85E-09 3.99 4.11E-08 3.96 3.55E-07 0.99 1.85E-06 1.18
After postprocessing, Q0 = 45, Q1 = 44 After postprocessing, CI

2X201 1.95E-06 - 6.84E-06 - 1.95E-06 - 6.84E-06 -

2X202 8.93E-09 7.77 2.84E-08 7.91 9.01E-09 7.76 2.84E-08 7.91

2X20 1.11E-10 6.33 5.55E-10 5.68 3.69E-11 7.93 1.06E-10 8.07
P4

Before postprocessing After postprocessing, Q0 = 8, Q1 = 7
2X201 1.21E-07 - 8.29E-07 - 4.72E-07 - 1.70E-06 -

2X202 3.87E-09 4.97 3.04E-08 4.77 4.34E-08 3.44 2.72E-07 2.64

2X20 1.22E-10 4.99 9.88E-10 4.94 2.70E-08 1.61 2.25E-07 0.27
After postprocessing, Q0 = 56, Q1 = 55 After postprocessing, CI

2X201 4.58E-07 - 1.72E-06 - 4.58E-07 - 1.72E-06 -

2X202 5.58E-10 9.68 1.86E-09 9.85 5.58E-10 9.68 1.86E-09 9.85

2X20 7.67E-13 9.51 2.98E-12 9.29 5.79E-13 9.91 1.77E-12 10.04

102

5.3 .4 C onstant C oefficient Linear A d vection E quation
Over U nion-Jack M esh

We conclude this section by demonstrating the application of the SIAC filter on the

solutions of the linear advection equation (Equation (8.7)) over a different type of triangular

mesh, known as the criss-cross mesh, shown in Figure 5.5. We consider

ut + ux + Uy = 0, (x,y) € (0,1) x (0,1), T = 6.28 (5.32)

with initial condition u(0, x, y) = sin(2n(x + y)) and periodic boundary conditions. Tables

5.7 and 5.8 present the error values for the uniform and smoothly varying criss-cross meshes

after one period in time. The error plots for the uniform structured mesh are displayed in

Figure 5.6. For quartic polynomials and the finest mesh, we see that the error values

improved but the convergence rate decreased. In addition, in the smoothly varying mesh

case, the L2-error value for the quartic polynomial and the coarsest mesh has increased and

this is because the kernel support covers the entire area of the mesh. In general, however,

we see that the error values and the convergence rate have improved. Moreover, the inexact

approach when using enough quadrature points yields similar results to the exact scheme.

5.4 Summary and Conclusions
The most pressing issue in accuracy enhancement is to formulate a suitable technique for

extracting extra accuracy from the discontinuous Galerkin solution solved over an unstruc

tured triangular mesh. In this chapter, we make a significant contribution to addressing

this problem by demonstrating that there is a direct extension of the theory to structure

triangular meshes as well as investigating the performance of the smoothness-increasing

accuracy-conserving filter to two-dimensional hyperbolic equations solved over structured

Figure 5.5. Union-Jack mesh

103

Table 5.7. Errors for constant coefficient advection equation over a uniformly structured
criss-cross mesh using P2, P3, and P4 polynomials. Before postprocessing and after
postprocessing on the consistent-integration (CI) and DG meshes.

P2
mesh L2 error order L̂ > error order L2 error order L̂ > error order

Before postprocessing After postprocessing, Q0 = 5, Q1 = 4
102 x 2 2.76E-03 - 1.78E-02 - 1.14E-03 - 3.61E-03 -
202 x 2 3.47E-04 2.99 2.31E-03 2.94 6.74E-04 0.75 2.72E-03 0.40
402 x 2 4.35E-05 2.99 3.03E-04 2.93 6.76E-04 -0.004 2.83E-03 -0.05

After postprocessing, Q0 = 34, Q1 = 33 After postprocessing, CI
102 x 2 8.36E-04 - 1.30E-03 - 8.36E-04 - 1.30E-03 -
202 x 2 2.88E-05 4.86 5.55E-05 4.55 2.87E-05 4.86 5.55E-05 4.55
402 x 2 2.43E-06 3.57 5.05E-06 3.46 2.36E-06 3.60 4.63E-06 3.58

P3
Before postprocessing After postprocessing, Q0 = 6, Q1 = 6

102 x 2 2.44E-04 - 1.59E-03 - 4.22E-05 - 1.12E-04 -
202 x 2 1.54E-05 3.98 1.03E-04 3.94 2.61E-05 0.69 6.82E-05 0.72
402 x 2 9.72E-07 3.98 6.44E-06 3.99 2.55E-05 0.03 7.12E-05 -0.06

After postprocessing, Q0 = 65, Q1 = 64 After postprocessing, CI
102 x 2 3.57E-05 - 5.48E-05 - 3.57E-05 - 5.49E-05 -
202 x 2 2.40E-07 7.22 4.99E-07 6.78 2.40E-07 7.22 4.99E-07 6.78
402 x 2 9.30E-09 4.69 1.83E-08 4.78 9.97E-09 4.60 1.83E-08 4.78

P4
Before postprocessing After postprocessing, Q0 = 8, Q1 = 7

102 x 2 1.48E-05 - 1.12E-04 - 3.98E-06 - 6.36E-06 -
202 x 2 4.71E-07 4.97 3.40E-06 5.04 3.18E-07 3.65 1.19E-06 2.42
402 x 2 1.47E-08 5.00 1.07E-07 4.99 3.09E-07 0.04 1.23E-06 -0.04

After postprocessing, Q0 = 56, Q1 = 55 After postprocessing, CI
102 x 2 3.98E-06 - 5.68E-06 - 3.98E-06 - 5.68E-06 -
202 x 2 4.95E-09 9.64 8.08E-09 9.45 4.95E-09 9.64 8.08E-09 9.45
402 x 2 1.84E-09 1.43 2.65E-09 1.61 1.84E-09 1.43 2.65E-09 1.61

104

Table 5.8. Errors for constant coefficient advection equation over a criss-cross mesh
using P2, P3, and P4 polynomials. Before postprocessing and after postprocessing on the
consistent-integration (CI) and DG meshes. We have assumed a smoothly varying criss-cross
mesh.___

P2
mesh L2 error order L̂ > error order L2 error order L̂ > error order

Before postprocessing After postprocessing, Q0 = 5, Q1 = 4
102 x 2 5.57E-03 - 5.12E-02 - 4.10E-03 - 1.57E-02 -
202 x 2 7.25E-04 2.94 8.09E-03 2.66 2.91E-03 0.49 1.42E-02 0.14
402 x 2 9.16E-05 2.98 1.17E-03 2.78 2.88E-03 0.01 1.46E-02 0.04

After postprocessing, Q0 = 34, Q1 = 33 After postprocessing, CI
102 x 2 2.67E-03 - 6.52E-03 - 2.67E-03 - 6.52E-03 -
202 x 2 1.32E-04 4.34 5.77E-04 3.50 1.31E-04 4.35 5.78E-04 3.50
402 x 2 1.57E-05 3.07 8.99E-05 2.68 1.35E-05 3.28 9.00E-05 2.68

P3
Before postprocessing After postprocessing, Q0 = 6, Q1 = 6

102 x 2 6.51E-04 - 6.63E-03 - 4.01E-04 - 2.43E-03 -
202 x 2 4.18E-05 3.96 5.34E-04 3.63 3.72E-04 0.10 2.96E-03 -0.28
402 x 2 2.64E-06 3.98 3.15E-05 4.08 3.87E-04 -0.05 3.17E-03 -.09

After postprocessing, Q0 = 45, Q1 = 44 After postprocessing, CI
102 x 2 3.12E-04 - 8.80E-04 - 3.11E-04 - 8.80E-04 -
202 x 2 3.00E-06 6.70 2.14E-05 5.36 2.97E-06 6.71 2.14E-05 5.36
402 x 2 2.38E-07 3.66 1.63E-06 3.71 2.20E-07 3.75 1.63E-06 3.71

P4
Before postprocessing After postprocessing, Q0 = 8, Q1 = 7

102 x 2 5.52E-05 - 7.03E-04 - 7.59E-05 - 2.29E-04 -
202 x 2 1.77E-06 4.96 2.67E-05 4.71 3.59E-05 1.08 3.20E-04 -0.48
402 x 2 5.62E-08 4.97 9.03E-07 4.88 3.69E-05 -0.03 3.60E-04 -0.16

After postprocessing, Q0 = 56, Q1 = 55 After postprocessing, CI
102 x 2 7.23E-05 - 2.12E-04 - 7.23E-05 - 2.12E-04 -
202 x 2 1.07E-07 9.40 3.24E-07 9.35 1.07E-07 9.40 3.24E-07 9.35
402 x 2 2.58E-09 5.37 1.73E-08 4.23 2.35E-09 5.51 1.73E-08 4.23

Figure 5.6. Three- and two-dimensional view of point-wise errors in logarithmic scale for constant coefficient advection equation when
a P2 discontinuous Galerkin method is used over a Union-Jack triangular mesh. (a) and (c) demonstrate the initial DG approximation
errors and (b) and (d) represent the errors after the application of the postprocessor on the consistent-integration mesh. We can clearly
see how the SIAC filter reduces the oscillations in the error.

105

106

triangular meshes. The implementation of this method leads to formidable computational

challenges because of the many (computationally intensive) integrations involved. For exact

integration, the technique must respect both the DG mesh breaks as well as the B-spline

kernel breaks. However, we have demonstrated that we can obtain optimal convergence

even though we perform inconsistent integration and ignore the B-spline kernel breaks. We

have given these elements both a uniform size structure and a smoothly varying structure.

In both cases, we are able to improve the order of accuracy of the discontinuous Galerkin

solution from k+1 to better then 2k, and in some cases 2k+1. The results obtained here

are exciting because previously accuracy enhancement on triangles has been restricted to

O(hk+2). Furthermore, we have addressed one of the computational bottlenecks of the

multidimensional implementation of this filter by reducing the number of integrations

required.

Forming the filter for general unstructured triangular meshes is a challenging task

and requires visiting the issue of the appropriate interpolation function to use for the

convolution kernel. The proofs of the higher order accuracy in the negative-order norm

of the discontinuous Galerkin method do not rely on the mesh assumption; however, the

accuracy-extracting capabilities of the kernel rely on the translation invariance of the mesh.

Once this is accomplished, the postprocessor can then also be utilized for determining mesh

adaptivity.

CHAPTER 6

IMPROVED ERRORS VERSUS HIGHER
ORDER ACCURACY IN APPLICATIONS

OF SIAC FILTERS TO DG SOLUTIONS

Smoothness-increasing accuracy-conserving (SIAC) filtering has demonstrated its effec

tiveness in raising the convergence rate for discontinuous Galerkin solutions from order k + 2

to order 2k + 1 for specific types of translation invariant meshes [19, 22, 46]. Additionally,

it improves the weak continuity in the discontinuous Galerkin method to k — 1 continuity.

Typically, this improvement has a positive impact on the error quantity in the sense that

it also reduces the absolute errors in the solution. However, not enough emphasis has

been placed on the difference between superconvergent accuracy and improved errors. This

distinction is particularly important when it comes to interpreting the interplay introduced

through meshing, between geometry and filtering. The underlying mesh over which the

DG solution is built is important because the tool used in SIAC filtering - convolution -

is scaled by the geometric mesh size. This scaling heavily contributes to the effectiveness

of the postprocessor. Although the choice of this scaling is straightforward when dealing

with a uniform mesh, it is not clear what the impact of either a global or local scaling will

be on either the absolute error or on the superconvergence properties of the postprocessor.

In this chapter, we present a study of the mesh scaling used in the SIAC filter and how it

factors into the theoretical errors.

As mentioned, the typical application of SIAC filters has been to discontinuous Galerkin

solutions on translation invariant meshes. The most common means of generating transla

tion invariant meshes is by constructing a base tessellation of size H and repeatedly tiling

in a nonoverlapping fashion the base tessellation until the volume of interest is filled [7, 1].

The effectiveness of such a translation invariant filter for discontinuous Galerkin solutions

of linear hyperbolic equations was initially demonstrated by Cockburn, Luskin, Shu, and

Suli [19]. A computational extension to smoothly varying meshes as well as random meshes,

108

where a scaling equal to the largest element size was used, was given in [22]. For smoothly

varying meshes, the improvement to order 2k + 1 was observed. For random meshes, there

was no clear order improvement, which could be due to an incorrect kernel scaling. These

results were theoretically and numerically extended to translation invariant structured

triangular meshes in Chapter 5 and published in [46]. However, the outlook for triangular

meshes is actually much better than those presented in [46]. Indeed, the order improvement

was not clear for filtering over a Union-Jack mesh when a filter scaling equal H was used.

In this chapter, we revisit the Union-Jack mesh case, as well as a Chevron triangular mesh,

and demonstrate that it is indeed possible to obtain superconvergence of order 2k + 1 for

these mesh types when the proper scaling of the filter, related to the translation invariant

properties of the mesh, are employed. Furthermore we also introduce theoretical proof

that these results can be extended to adaptive meshes that are constructed in a hierarchical

manner - in particular, adaptive meshes whose elements are defined by hierarchical (integer)

splittings of elements of size H , where H represents both the macro-element spacing used

in the generation of the mesh and the minimum scaling used for the SIAC filter.

This chapter addresses these issues in the following manner: in Section 6.1, we present

the theoretical extension of the SIAC filter to adaptive meshes; in Section 6.2, an emphasis

on the difference between order improvement and error improvement is discussed through

presenting various numerical examples. The result of these contributions has been published

in [47].

6.1 Theoretical Kernel Scaling
In this section, a proof of the superconvergence of the DG solution through SIAC filtering

for h = 1H where I is a multi-integer is given. The main theorem is the following:

T heorem 6.1.1 Let uh be the DG solution to

d
ut + ^ AjUXi + A0u = 0, x € Q x [0, T],

n=1
u(x, 0) = uo(x), x € Q,

where Aj, i = 0 , . . . , d are constant coefficients, Q C Rd. The approximation is taken

over a mesh whose elements are o f size h = 1H in each coordinate direction where I is a

multi-integer (of dimension equal to the number of elements along one coordinate direction)

and H represents the macro-element size of which any particular element is generated by

109

hierarchical integer partitioning of the macro-element. Given sufficient smoothness in the

initial data,

||u — K h * Uh||n < C H 2fc+1,

where K h is the SIAC postprocessing kernel scaled by H.

R em ark 1 This theorem is more about geometry than the issues o f superconvergence.

Indeed, the difference between this estimate and the estimate in [19] has to do with the

kernel scaling, H .

Proof: The general estimate for a uniform mesh was proven in [19]. Here, we repeat

the important points for this extension.

First, the error is split into two parts - the error from the design of the filter and the

error from the approximation method used:

||u — K h * u%||n < ||u — K h * u ||q + ||Kh * (u — Uh)||n. (6.1)
V V

Filtering exact solution Filtering of approximation

The first part of this error estimate simply uses the fact that the kernel reproduces polyno

mials of degree less than or equal to degree 2k as well as a Taylor expansion. Details are

given in [19]. Note that it is possible to make the estimate of the first term of arbitrarily high

order. It is therefore the second term, the postprocessed approximation, that dominates

the error estimate.

One key aspect of the second error estimate is a property of the B-Splines. That is,

D“ (Kh * (u — Uh)) = K h * d%(u — Uh), (6.2)

where Kh is the kernel using B-splines of order k + 1 + a, K % is the kernel using B-splines

of order k + 1, and the operator d% denotes the differencing operator as defined in [11].

Another important factor in obtaining the bound on the approximation is the estimate

by Bramble and Schatz [11] that bounds the L2-error by the superconvergent error in the

negative-order norm:

||Kh * (u — Uh)||n < C £ ||D“ (Kh * (u — Uh))||-i < C £ ||d%(u — Uh)||-i < C H 2fc+1.
a<|l| a<|l|

(6.3)

This superconvergence in the negative-order norm was proven by Cockburn et al. in [19]

for a uniform translation invariant mesh. This is a consequence of the B-Spline property that

allows derivatives to be expressed as divided difference quotients. The divided difference

110

quotient relationship as expressed in Equation (6.2) is only possible for an H-translation

invariant mesh or those meshes in which the mesh element spacings are integer multiples

of the characteristic length H. This occurs automatically for uniform quadrilateral or

hexahedral meshes as well as structured triangular meshes. However, extension to adaptive

meshes is possible by constructing the element spacing h as an integer partitioning of the

fundamental characteristic size, h = |H , I a multi-integer. When this is the case, one can

observe that the translation operator as defined in [11] specified with respect to H can be

related to translation with respect to the actual element size h, i.e., over the DG mesh, as

follows:

Tf} v(x) = v(x + m H) = v(x + mlh) = T/mlv(x). (6.4)

The error estimate therefore follows as the divided difference operator in Equation (6.3),

originally expressed in terms of H, can be expressed in terms of its integer multiples. The

constant C in the right-most expression encapsulates the impact of the (integer multiple)

adaptive spacing.

R em ark 2 Particular emphasis should be placed on the fact that this makes the SIAC filter

applicable to adaptive meshes, provided the scaling is taken in the correct manner.

6.2 Numerical Results
In this section, we discuss the importance of geometric mesh assumptions for obtaining

improved errors versus improved order of accuracy. This is done by inspecting one equation

for different mesh types. That is,

ut + V ■ u = 0, x € [0, 2n]2 X [0, T]

u(x, 0) = sin(x + y).

An investigation of the filtered DG solution will be performed for meshes that include the

uniform quadrilateral mesh, an adaptive mesh, a structured triangular mesh, a Union-Jack

mesh, and a Chevron mesh. Additionally, for the first time, three-dimensional results over

a hexahedral mesh are also given. Note that similar behavior has been observed for variable

coefficient equations, as predicted by the theory (see Section 5.2). A particular emphasis

will be placed on the distinction between reduced errors and higher order accuracy for a

given scaling of the SIAC filter.

111

6.2.1 U niform Q uadrilateral M esh

The first example presented is a study of the scaling for the SIAC filter for a uniform

quadrilateral mesh, as shown in Figure 6.1.

The theory of [19] establishes that the scaling H used by the postprocessor should be

the same as used to construct the mesh (i.e., the mesh is of uniform spacing H). However,

according to Theorem 6.1.1, a scaling of any integer multiple, m H should also produce

superconvergent accuracy. Indeed, in Table 6.1 the numerical results using different values

of m for the kernel scaling are presented. It can be seen that as long as m > 1, accuracy

of order 2k + 1 is obtained. Examining the errors closely, it becomes obvious that the

errors are actually increasing as the kernel scaling becomes greater, even with this 2k + 1

convergence. A plot of absolute error versus different scalings is given in Figure 6.2. This

plot demonstrates that the minimal error actually occurs with a SIAC filter scaling a bit

less than the element spacing H and after this scaling, the errors begin increasing, although

maintaining the 2k+1 convergence rate. In Figure 6.3, contour plots of the errors for N = 40

for P2 and P3 polynomial approximations are presented for scalings of 0.5H, H , and 2H .

The plots demonstrate that the errors get much smoother as we increase the scaling from

0.5H to H . The errors using 2H scaling are also smooth; however, the magnitude of the

errors is larger.

2H

____________________ ,_____ |

| | | | | | | | | | | | | | | | | | | H

(a) Uniform quadrilateral mesh (b) Filter spacing

Figure 6.1. Example of uniform quadrilateral mesh (a) and diagram of filter spacing used
(b).

112

Table 6.1. Table of L2-errors for various scalings used in the SIAC filter for a uniform
quadrilateral mesh. ‘x’ indicates the cases where the width of the kernel became larger than
the computational field.__

m = 0.5 m = 1 m = 2 m = 3
Mesh L2 error Order L2 error Order L2 error Order L2 error Order

P2

202 2.95E-05 — 4.48E-06 — 2.69E-04 — x —

20 3.75E-06 2.98 7.09E-08 5.98 4.45E-06 5.92 4.96E-05 —

20
oc 4.7E-07 2.99 1.11E-09 5.99 7.06E-08 5.98 7.99E-07 5.95

1602 5.88E-08 3 1.74E-11 6 1.11E-09 5.99 1.26E-08 5.99
P3

202 1.99E-07 — 1.38E-07 — 3.22E-05 — x —

20 1.27E-08 3.97 5.49E-10 7.97 1.38E-07 7.87 3.4E-06 —

20
OC 7.97E-10 3.99 2.16E-12 7.99 5.49E-10 7.97 1.4E-08 7.93

1602 4.99E-11 4 9.1E-15 7.89 2.16E-12 7.99 5.52E-11 7.98
P4

20 3.36E-11 — 4.41E-12 — 4.38E-09 — x —
20

OC 1.06E-12 4.99 3.19E-15 10.4 4.41E-12 9.96 2.51E-10 —
1602 3.37E-14 4.97 2.38E-15 0.421 3.79E-15 10.2 2.48E-13 9.98

(a) P2-polynomials (b) P3-polynomials

Figure 6.2. Plots of error versus scaling (m) used in the SIAC filter for a uniform quadrilateral mesh for P2 (left) and P3 (right)
polynomial approximations.

113

114

115

6.2 .2 Q uadrilateral Cross M esh

In this example, we consider a variable-spacing quadrilateral mesh. The mesh was

designed in the following manner: let H = N2, where N is the total number of elements

in one direction used in the approximation. We first divide the mesh into a collection

of evenly-spaced quadrilateral macro-elements of size H . In order to generate the final

mesh, we further split some of these quadrilateral elements (more towards the middle of the

mesh) into two, four, or more quadrilateral subelements, i.e., each element of the new mesh

is created by subdividing the macro-element of size H by some integer partition. This type

of scaling gives an adaptive cross mesh, as shown in Figure 6.4. Note that although this

mesh is not uniformly-spaced, the mesh construction proposed does meet a local hierarchical

partitioning property which we have proven to be sufficient for observing superconvergence

when applying the SIAC filter with a scaling of H.

In Table 6.2 ,the errors for mH where m = 0.5,1.0,1.5,2.0 are given. Notice that one

begins to see the correct superconvergent rate of order 2k + 1 for a scaling of m = 1.0, as

expected. The “x’s” given in the table denote regions in which the chosen scaling of the

kernel makes the kernel support wider than the mesh used in the approximation. In Figure

6.5, a plot of error versus m is given. Observe that the minimum error and the correct

convergence rate occurs at H (m = 1), as predicted by the theory. In Figure 6.6, contour

error plots are shown for different scalings of the SIAC filter.

I______ I
H

(a) Variable-spacing quadrilateral (b) Filter spacing
(cross) mesh

Figure 6.4. Example of a variable-spacing quadrilateral (cross) mesh (a) and diagram of
filter spacing used (b).

116

Table 6.2. Table of L2-errors for various scalings used in the SIAC filter for a variable-s
pacing cross mesh. ‘x’ indicates the cases where the width of the kernel became larger than
the computational field.

m = 0.5 m = 1 m = 1.5 m = 2
Mesh L2 Error Order L2 Error Order L2 Error Order L2 Error Order

P2
202 1.5E-04 — 3.19E-04 — x — x —

402 1.83E-05 3.03 6.04E-06 5.72 5.11E-05 — 2.71E-04 —

802 2.34E-06 2.97 1.28E-07 5.56 8.52E-07 5.91 4.5E-06 5.91
1602 2.95E-07 2.98 4.74E-09 4.75 1.77E-08 5.59 7.21E-08 5.96

P3
202 1.91E-06 — 3.23E-05 — x — x —

402 1.24E-07 3.95 1.38E-07 7.87 3.4E-06 — 3.22E-05 —

802 7.92E-09 3.96 5.72E-10 7.92 1.4E-08 7.93 1.38E-07 7.87
1602 5E-10 3.99 3.75E-12 7.25 5.56E-11 7.97 5.5E-10 7.97

P4
402 6.61E-10 — 4.38E-09 — 2.4E-07 — x —

802 2.19E-11 4.91 7.87E-12 9.12 2.51E-10 9.9 4.38E-09 —

1602 7.6E-13 4.85 3.71E-13 4.4 4.23E-13 9.21 4.38E-12 9.96

(a) P2-polynomials (b) P3-polynomials

Figure 6.5. Plots of error versus various scalings (m) used in the SIAC filter for a variable-spacing cross mesh for P2 (left) and P3
(right) polynomial approximations.

117

Figure 6.6. Contour plots using a scaling of 0.5H (left), H (middle), and 1.5H (right) for a variable-spacing cross quadrilateral mesh
such as the one in Figure 6.4. Top row: P2, Bottom row: P3.

118

119

6.2 .3 S tru ctured Triangular M esh

Once it has been established that superconvergence occurs for various scalings of quadri

lateral meshes, it is then interesting to test whether these ideas extend to structured trian

gular meshes, as these meshes are also translation invariant. Below are the numerical results

for three different types of structured triangular meshes: a uniform structured triangular

mesh, a Union-Jack mesh, and a Chevron mesh. The uniform structured triangular mesh,

as shown in Figure 6.7, is first examined to ensure the extension of the main ideas of

Theorem 6.1.1 to this type of mesh. The DG errors together with the filtered errors were

first presented in [46] and discussed in Chapter 5. In Figure 6.8, the L2-errors are presented

for various scalings. It can be seen that superconvergent accuracy of order 2k + 1 occurs

for scalings of m H , m > 1 although the errors increase with increasing m. In Figure 6.9,

contour plots of the errors for scalings of m = 0.5,1,2 are also shown. A scaling of 0.5H

and 2H produces worse errors than that of H, although scalings of H and 2H also produce

smoothness in the errors. Furthermore, in Table 6.3, the ratio of kernel size to mesh size

is given. It demonstrates that the ratio becomes larger for increasing polynomial order

or increased m values, which means that the footprint of the postprocessor requires more

elements in the computation and becomes less local. Table 6.4 provides the error values.

(a) S tructured triangular mesh (b) Filter spacing

Figure 6.7. Example of structured triangular mesh (a) and diagram of filter spacing used
(b).

• N=202
. * N=402

--1-------1----- ----- 1-----

•

■ N=8G2
M=1602 +

A '

. •
A

A • A ■

' ■
■ ■

♦ * ■

♦

4

■ ♦

♦
J.. S. ■ ■ ■ j ..

0 .0.5 1 1.5 2 2.5 3 3.5 4 4.5m
(a) P2 -polynomials (b) P3-polynomials

Figure 6.8. Plots of error versus various scalings (m) used in the SIAC filter for a structured triangular mesh for P2 (left) and P3 (right)
polynomial approximations.

120

121

122

Table 6.3. Kernel to mesh ratios for the structured triangular mesh cases (uniform, Jack,
and Chevron). N 2 represents the number of quadrilateral elements.

H P2 P3 P4
0.5 3.5/N 5/N 7.5/N
1 7/N 10/N 13/N
2 14/N 20/N 26/N
3 21/N 30/N 39/N
4 28/N 40/N 52/N

Table 6.4. Table of L2-errors for various H scalings used in the SIAC filter for a structured
triangle mesh.

- m = 0.5 m = 1 m = 2 m = 3
Mesh L 2 Error Order L2 Error Order L2 Error Order L 2 Error Order

P2

202 1.01E-04 — 4.65E-06 — 2.69E-04 — x —

204 1.25E-05 3.01 7.50E-08 5.95 4.46E-06 5.92 4.96E-05 —

208 1.57E-06 3.00 1.26E-09 5.89 7.06E-08 5.98 7.99E-07 5.96
1602 2.28E-07 2.78 1.05E-09 0.259 2.14E-09 5.04 1.36E-08 5.87

P3

202 1.49E-06 — 1.38E-07 — 2.21E-04 — x —

204 9.15E-08 4.02 5.50E-10 7.97 1.38E-07 10.65 3.40E-06 —

208 5.70E-09 4.01 2.16E-12 7.99 5.49E-10 7.97 1.40E-08 7.93
1602 3.52E-10 4.02 1.64E-13 3.72 2.2E-12 7.97 5.52E-11 7.98

P4

204 7.26E-10 — 4.41E-12 — 4.38E-09 — 3.47E-07 —

208 2.24E-11 5.02 1.75E-14 7.98 4.41E-12 9.96 2.51E-10 10.43
1602 5.81E-013 5.27 2.38E-013 -3.77 2.37E-013 4.22 3.53E-013 9.47

123

6.2 .4 U nion-Jack M esh

In Section 5.3.4, error results for the Union-Jack mesh were presented with a scaling of

H2 equal to the uniform spacing of the base quadrilateral mesh. It was noted at the time

that the correct convergence order was not obtained (and from the theory was not expected

to be obtained), but error improvement was observed. However, as Babuska et al. noted in

[5, 55, 8, 7], this mesh is translation invariant in H , as seen in Figure 6.10.

In Table 6.5, errors for scaling of m H , where m = 0.5,1,1.5, 2 are presented. It is clearly

seen that the superconvergence is observed for scalings of mH where m > 1. It is interesting

to note that the mesh is not translation invariant in 1.5H but we see the superconvergence

of order 2k + 1. Additionally, the errors begin to worsen after the scaling of H . This is

also seen in Figure 6.11 (m = 1). Additionally, in Figure 6.12 the differences in the errors

between 0.25H scaling, 0.5H, and H are shown. We obtain a much smoother contour plot

with the H scaling.

(a) Union-Jack mesh (b) F ilter Spacing

Figure 6.10. Example of a Union-Jack mesh (a) and diagram of filter spacing used (b).

124

Table 6.5. Table of L2-errors for various scalings used in the SIAC filter for a Union-Jack
mesh.___

- m = 0.5 m = 1 m = 1.5 m = 2
Mesh L2 Error Order L2 Error Order L2 Error Order L2 Error Order

P2

202 2.88E-05 — 2.87E-04 — 1.98E-03 — 7.92E-02 —

20 2.39E-06 3.59 5.01E-06 5.84 5.01E-05 5.31 2.70E-04 8.19

20
OC 2.92E-07 3.03 8.81E-08 5.83 8.17E-07 5.94 4.47E-06 5.92

1602 3.66E-08 3 1.65E-09 5.74 1.31E-08 5.96 7.11E-08 5.97
P3

202 2.39E-07 — 2.23E-04 — 8.64E-02 — 6.90E-02 —

20 9.97E-09 4.59 1.38E-07 10.66 3.40E-06 14.63 4.54E-05 13.89

20
OC 5.89E-10 4.09 5.51E-10 7.97 1.39E-08 7.93 1.38E-07 8.37

1602 3.65E-11 4.01 2.2E-12 7.97 5.52E-11 7.98 5.5E-10 7.97
P4

20 1.84E-09 — 4.77E-09 — 3.49E-07 — 2.72E-03 —
20

OC 3.11E-12 9.21 5.34E-12 9.80 2.51E-10 10.44 4.38E-09 19.24
1602 2.35E-13 3.73 2.34E-013 4.52 3.51E-13 9.48 4.42E-12 9.95

• N=202
------ 1----------1----------1-----------

II4 V

■ N=80 A

* N-lbtf* •
fe,-5

A
' # A•A

A

A A ■
. ■ ■

♦ "
♦

■ ♦
♦

■

♦

■ 1 ----- 1----------
st os 1 m z z

m

(a) P2-polynomials

m
(b) P3-polynomials

Figure 6.11. Plots of error versus various scalings used in the SIAC filter for a Union-Jack mesh for P2 (left) and P3 (right) polynomial
approximations.

125

Figure 6.12. Contour plots using a scaling of 0.25H (left), 0.5H (middle), and H (right) for a Union-Jack mesh such as the one in
Figure 6.10. Top row: P2, Bottom row: P3.

126

127

6.2.5 C hevron M esh

In this example, the structured Chevron mesh presented in Figure 6.13 is examined.

Note that the mesh is translation invariant for H = 2h in the x1-direction and H = h in

the x 2-direction where h denotes the spacing of the base quadrilateral mesh. For simplicity

in the calculations, the kernel scaling for the xi and x2 directions have been taken to be the

same and equal to H = 2h. In Figure 6.14, the errors versus different scalings are presented

similar to previous examples. Figure 6.15 depicts the contour plots. In Table 6.6, the errors

are presented for various choices of m . The table shows mixed results in convergence order

for a scaling of m = 0.5, but clear improvement to the theoretical order for m = 1 and

larger.

6.2 .6 H exahedral M esh

The last example that we present is the first example of the extension of this SIAC filter

to three-dimensions. The extension is for a uniform hexahedral mesh of spacing H . In Table

6.7, the errors for the discontinuous Galerkin solution of a three-dimensional DG projection

problem are given along with the improved errors using the SIAC filter for various scalings

m H . We can see that the added dimension does not reduce the order of convergence, and

a superconvergent rate of 2k + 1 is obtained. This is in agreement with the theory [19].

(a) Chevron mesh (b) F ilter Spacing

Figure 6.13. Example of a Chevron mesh (a) and diagram of filter spacing used (b). H
represents the minimum translation invariance of the mesh. This value is not necessarily
the same for each direction, as it is shown in (b).

(a) P2-polynomials (b) P3-polynomials

Figure 6.14. Plots of error versus various scalings used in the SIAC filter for a Chevron mesh for P2 (left) and P3 (right) polynomial
approximations.

128

Figure 6.15. Contour plots using a scaling of 0.25H (left), 0.5H (middle), and H (right) for a Chevron mesh such as the one in Figure
6.13. Top row: P2, Bottom row: P3.

129

130

Table 6.6. Table of L2-errors for various scalings used in the SIAC filter for a Chevron
mesh.___

- m = 0.5 m = 1 m = 1.5 m = 2
Mesh L2 Error Order L2 Error Order L2 Error Order L2 Error Order

P2

202 4.06E-05 — 3.05E-04 — x — x —

204 1.46E-06 4.79 5.57E-06 5.77 5.07E-05 — 2.71E-04 —

20
OC 1.09E-07 3.74 1.06E-07 5.72 8.34E-07 5.93 4.49E-06 5.91

1602 1.29E-08 3.09 2.2E-09 5.58 1.37E-08 5.93 7.17E-08 5.97
P3

202 1.96E-07 — 2.23E-04 — x — x —

204 2.75E-09 6.16 1.38E-07 10.66 3.40E-06 — 4.54E-05 —

20
OC 2.82E-10 3.29 6.00E-10 7.85 1.40E-08 7.93 1.38E-07 8.37

1602 1.17E-11 4.59 6.27E-12 6.58 5.56E-11 7.97 5.5E-10 7.97
P4

204 9.49E-11 — 4.38E-09 — 3.48E-07 — x —

20
OC 6.01E-12 3.98 7.46E-12 9.20 2.51E-10 10.44 4.38E-09 —

1602 4.67E-13 3.68 4.67E-13 4.0 5.38E-13 8.87 4.45E-12 9.94

Table 6.7. Table of L2-errors for various scalings used in the SIAC filter for a uniform
hexahedral mesh.___

- Original DG Error m = 0.5 m = 1 m = 1.5
Test Case DG Error Order L2 Error Order L2 Error Order L2 Error Order

P2
203 1.82e-04 4.22E-05 6.71e-06 7.44e-05
403 2.28e-05 2.99 5.36e-06 2.97 1.06e-07 5.98 1.21e-06 5.94

P3
203 3.17e-06 1.57e-07 — 2.06e-07 — 5.09E-06 —
403 1.98e-07 3.99 1.00e-08 3.97 8.24e-10 7.97 2.13E-08 7.90

6.3 Summary and Conclusions
By implementing smoothness-increasing accuracy-conserving filtering, the errors for the

DG solution can usually be improved from order k + 1 to order 2k + 1 for linear hyperbolic

equations. Additionally, due to the nature of the convolution kernel used in this SIAC filter,

the smoothness of the solution is also improved from only having weak continuity to having

continuity of k — 1. However, care has to be taken with the mesh geometry and correct kernel

scalings must be used. The emphasis of this chapter has been on the difference between

error improvement versus order improvement in terms of geometry. In all our numerical

examples, it has been demonstrated that it is possible to obtain superconvergence with the

131

correct kernel scaling. However, if the scaling becomes too large, the errors worsen and can

become worse than the original DG errors while maintaining superconvergence. We further

note that when the mesh size is large enough, filtering with the true scaling parameter H

yields the optimal results in terms of the magnitude of the error. Lastly, numerical results

showing the effectiveness of the SIAC filter for a three-dimensional DG projection problem

were presented. For this equation, superconvergence of order 2k + 1 was obtained, showing

that adding a dimension did not reduce the achieved convergence rate.

CHAPTER 7

APPLICATION OF SIAC FILTERING TO

UNSTRUCTURED TRIANGULATIONS

As was mentioned previously, allowing discontinuity between element interfaces provides

such flexibility with the discontinuous Galerkin method that is difficult to match with

conventional continuous Galerkin methods. Although the DG methodology can be applied

to arbitrary triangulations, the typical application of SIAC filters with mathematically

proven properties, as shown in Chapters 5 and 6, has been to discontinuous Galerkin

solutions obtained over translation invariant meshes. In an attempt to make the SIAC filter

applicable to arbitrary tessellations, Curtis et al. [22] proposed a computational extension

of this filtering technique to smoothly varying meshes as well as random meshes. They

provided numerical results in one dimension, which confirmed the accuracy enhancement

of 2k + 1, proved in [19], for smoothly varying meshes when a kernel scaling equal to the

largest element size was used. For random meshes, there was no clear order improvement.

which may have been due to an incorrect kernel scaling. To further expand the applicability

of the SIAC filter, we previously demonstrated how to extend the postprocessing results,

both theoretically and numerically, to structured triangular meshes.

As the assumption of any sort of regularity, including the translation invariance of

the mesh, is a hindrance towards making the SIAC filter applicable to real-life simula

tions, in this chapter, we demonstrate for the first time the mathematical behavior and

computational complexity of the extension of this filter to unstructured tessellations. We

consider four examples: a simple Delaunay triangulation, a Delaunay triangulation with

obvious change in element sizes, a Delaunay triangulation with splitting, and a stretched

(anisotropic) triangulation. We show that it is indeed possible to obtain reduced errors and

improved smoothness through a proper choice of kernel scaling. These results are promising

as they pave the way towards a more generalized SIAC filtering technique that could be

used for arbitrary unstructured tessellations.

We proceed in this chapter by providing the implementation details of the postproces

133

sor for unstructured triangular meshes and we discuss the Sutherland-Hodgman clipping

algorithm used to compute the mesh-kernel intersections. In Section 7.2, we give numerical

results confirming the usefulness of our SIAC filter for the proposed triangulated meshes.

We note tha t the result of these contributions is reported in a submitted manuscript [47].

7.1 Smoothness-Increasing Accuracy-Conserving
Filters for Unstructured Triangular Meshes

In this section, we provide the implementation details of the postprocessor over unstruc

tured triangular meshes. The implementation discussed in this section is used to produce

the results given in Section 7.2.

In Chapters 3 and 5, we thoroughly discussed the extension of the SIAC filter to

structured triangular meshes. Here, we simply take the existing implementation of the

SIAC filter and apply the same ideas to unstructured triangular meshes.

The postprocessor takes as input an array of the polynomial modes used in the discon

tinuous Galerkin method and produces the values of the postprocessed solution at a set

of specified evaluation points. We assume these evaluation points correspond with specific

quadrature points which can be used at the end of the simulation for such things as error

calculations. We examine how to calculate the postprocessed value at a single evaluation

point. Postprocessing of the entire domain is obtained by repeating the same procedure

for all the evaluation points. Let us consider the case of a discontinuous Galerkin solution

produced over an unstructured triangular mesh, shown in Figure 7.1. We remind the reader

tha t in two dimensions, the convolution kernel is the tensor product of one-dimensional

kernels. Therefore, the postprocessed solution at (x, y) € Tj, becomes

1
u*(x,y) = h h I IljX2 J —̂ J —̂

where Tj is a triangular element, uh is our approximate DG solution, and we have denoted

F ig u re 7.1. A sample unstructured triangular mesh.

134

the two-dimensional coordinate system as (x l ,x 2). The main difference in the implemen

tation of Equation (7.1) for unstructured triangulations versus structured meshes is in the

choices of hXl and hX2 used to scale the kernel in the x l and x2 directions, respectively.

As we discussed in Chapter 6, hXl = H Xl and hX2 = H X2, where HXl and HX2 represent

the minimum scaling for translation invariance of the mesh. For instance, for a uniform

quadrilateral mesh, hXl = hX2 = H and is simply the uniform mesh spacing. We also

provided mathematical proofs demonstrating that for an adaptive mesh whose elements are

of size h = j H , I a multi-integer, and H the size of the largest element, we can obtain

the correct convergence order and smoothness enhancement in the postprocessed results by

choosing H as the scaling parameter. However, for an unstructured triangulation, neither

the translation invariant property nor any interelement relation, as in the adaptive mesh case

holds. Therefore, we require another mechanism to find the proper scaling parameter. As

it is not straightforward to speculate as to the width of the kernel support (and hence the

corresponding neighboring information) necessary to generate accuracy conservation and

smoothness enhancement, we will investigate how different choices of the scaling parameter

lead to different postprocessing results. We start by considering a scaling equal to the

largest side of all the triangular elements, which we refer to as H. We then continue by

investigating the impact of a kernel scaling smaller or larger than H on postprocessing DG

solutions. In particular, in Section 7.2, we present postprocessing results using 0.5H , 0.75H,

H , 1.5H, and 2H as kernel scaling values.

To calculate the integral involved in the postprocessed solution in Equation (7.1) exactly,

we need to decompose the triangular elements that are covered by the kernel support into

subelements that respect the kernel knots (which we also refer to as kernel breaks); the

resulting integral is calculated as the summation of the integrals over each subelement.

Figure 7.2 depicts a possible kernel-mesh intersection for a sample triangular element of the

unstructured triangular mesh shown in Figure 7.1. As it is shown in Figure 7.2(b), we divide

the triangular region into subregions over which there is no break in regularity. Furthermore,

we choose to triangulate these subregions for ease of implementation. Choosing H as the

kernel scaling value in each direction, we can therefore rewrite Equation (7.1) as

*/ x 1 f ~ f ™ „ (x i - x \ TJ x 2 - y \ , ,
u (x,y) = H2 K l h) K I h 1 U h(xi,x2)dxidx2

= H 2 E / / K (XIh x \ K (X2h y \ Uh(xi,x2)dxidx2 (7.2)
TjeSupp{Ky ^ ^ ^

where we have used the compact support property of the kernel to transform the infinite

integral to finite local sums over elements. Each of the integrals over a triangle Tj then

135

(a) Triangular element (b) Integration regions

F ig u re 7.2. Demonstration of integration regions resulted from the kernel-mesh intersec
tion. Dashed lines represent the kernel breaks. Solid red lines represent a triangulation of
the integration regions.

where N is the total number of triangular subregions formed in the triangular element Tj

as the result of kernel-mesh intersection.

We note here tha t to evaluate the integrals in Equation (8.6) exactly to machine pre

cision, we first map via a Duffy transformation the triangular region Tn to the standard

triangular element defined as

and then we apply Guassian quadrature rules with enough quadrature points. For more

information regarding the Gaussian quadrature and the various mappings involved in the

integration, consult [46, 49, 40].

We further add tha t in order to find the footprint of the kernel on the DG mesh, we

first lay a regular grid over our unstructured mesh. Each regular grid element contains the

information of the triangles that intersect with it. In this way, we can easily find the extent

of the kernel support on this regular grid and consequently compute the integration regions

by solving a geometric intersection problem. For this, we apply the Sutherland-Hodgman

clipping algorithm from computer graphics [69]. Next, we provide a brief overview of this

algorithm.

becomes

(7.3)

Tst = { (6 ,6)1 - 1 < 6 , 6 ; 6 + 6 < ° } , (7.4)

7.1.1 T he Su therland-H odgm an C lipp ing A lgorithm
The Sutherland-Hodgman clipping algorithm finds the polygon that is the intersection

between an arbitrary polygon (the subject polygon) and a convex polygon (the clip polygon)

136

[69]. Figure 7.3 depicts a sample kernel-mesh overlap. We remind the reader that the

convolution kernel used in the postprocessing algorithm is a linear combination of B-splines

and therefore is a piecewise polynomial. Moreover, in two dimensions, it is the tensor

product of one-dimensional kernels. Consequently, for implementation purposes, we will

think of the footprint of the two-dimensional kernel as an array of squares, as depicted

with red dashed lines in Figure 7.3 (left). Thereby, the problem of finding the integration

regions becomes the problem of finding the intersection areas between each square of the

kernel array (the clip polygon) and the triangular elements (the subject polygons) covered

by the kernel support. Furthermore, it is clear tha t both the clip polygon and the subject

polygons are convex.

To find the intersection area between a square of the kernel and a triangular element

(Figure 7.3 (right)), we follow the Sutherland-Hodgman clipping algorithm and use a divide-

and-conquer strategy. First, we clip the polygon (in our case, the triangular element) against

the left clipping boundary (left side of the square in the kernel array). The resulting partially

clipped polygon is then clipped against the top boundary, and then the process is repeated

against the two remaining boundaries, as shown in Figure 7.4.

To clip against one boundary, the algorithm loops through all polygon vertices. At

each step, it considers two of the vertices that we denote as previous and current. First,

it determines whether these vertices are inside or outside the clipping boundary. This,

of course, is a m atter of comparing the horizontal or vertical position to the boundary’s

position. We then apply the following simple rules:

1. if the previous vertex and the current vertex are both inside the clipping boundary,

output the current vertex,

2. if the previous vertex is inside the clipping boundary, and the current vertex is outside

the clipping boundary, output the intersection point of the corresponding edge with

the clipping boundary,

3. if the previous vertex and the current vertex are both outside the clipping boundary,

then output nothing,

4. if the previous vertex is outside the clipping boundary and the current vertex is inside

the clipping boundary, output the intersection point of the corresponding edge with

the clipping boundary.

Following this procedure, we obtain a new polygon, clipped against one boundary, and

ready to be clipped against the next boundary. Furthermore, we triangulate the resulting

137

F ig u re 7.3. A sample kernel-mesh overlap (left). Dashed lines represent the two-dimen
sional kernel as an array of squares. In right, the intersection between a square of the kernel
and a triangular element is shown.

F ig u re 7.4. The Sutherland-Hodgman clipping. The final intersection area is triangulated
for ease of implementation. Dashed red lines represent a square of the kernel, solid black
lines represent the triangular DG element, solid blue lines represent the clipped area at
each stage of the Sutherland-Hodgman algorithm and dashed blue lines represent the final
triangulation of the integration region.

138

clipped area for ease of implementation of the quadrature rules (Figure 7.4 (right)). As

the final triangulation is merely used for performing numerical quadrature, there is no

rigorous requirement on the triangle element quality. We only require well-formed (i.e.,

valid) triangles over which the approximate solution and the kernel can be evaluated and

their product integrated.

7.2 Numerical Results
In this section, we provide postprocessing results tha t demonstrate the efficacy of the

SIAC filter when applied to multiple unstructured triangulations. In all the examples, we

consider the solutions of the constant coefficient linear advection equation given below:

ut + Ux + Uy = 0, (x,y) € (0,1) x (0,1), T = 12.5 (7.5)

with initial condition u (0 ,x ,y) = sin(2n(x + y)). We further note that to generate the

various unstructured meshes, we used the Gmsh finite element mesh generator [29].

7.2.1 S im ple D elaunay Triangulation

For this example, we consider a simple Delaunay triangulation of the domain given in

Figure 7.1. As we discussed in Section 7.1, we consider the largest side of all the triangular

elements and denote tha t with H. We then perform postprocessing using m H as the kernel

scaling values, where m = 0.5,1.0,1.5,2.0. Table 7.1 and Figure 7.5 provide the L2-error

results and plots for these scaling values. The m = 2.0 case is purposefully omitted from

the table as this scaling is not valid for many of the meshes, i.e., the kernel would become

larger than the domain size. However, the m = 2.0 data are provided in the error plots

when available. This omission has been done for all the tables presented herein. Generally

speaking, as we increase the kernel width by using a larger m, the error decreases until it

reaches a point where we obtain the minimal error value and it increases afterwards. For

coarser mesh structures, it is often more beneficial to use a smaller kernel to avoid the not

valid scenarios. We further note tha t the L2-error values presented herein are always better

than the initial DG errors by orders of magnitude.

In Figure 7.6, we present the point-wise error contour plots. As can be observed from

these plots, the errors are highly oscillatory before the application of the postprocessor

(left column). However, the postprocessor filters out the oscillations, and this effect is

noticeably visible when using P4 polynomials. The magnitude of the error also decreases

after postprocessing. Moreover, we get better results in terms of smoothness with a larger

kernel; however, the error might increase in some cases.

139

T able 7.1. L2-errors for various kernel scalings used in the SIAC filter for a simple Delaunay
triangulation.

- m = 0.5 m = 0.75 m = 1.0 m = 1.5
Mesh L 2 Error Order L2 Error Order L2 Error Order L2 Error Order

P 2
878 1.14E-04 — 5.34E-05 — 6.54E-05 — not valid —

3588 1.40E-05 3.02 9.61E-06 2.47 6.20E-06 3.40 7.48E-06 —

14888 1.50E-06 3.22 1.02E-06 3.23 6.30E-07 3.30 2.30E-07 5.02
59264 2.07E-07 2.85 1.56E-07 2.70 1.09E-07 2.53 4.51E-08 2.35

P 3
878 1.71E-06 — 8.09E-07 — 2.95E-06 — not valid —

3588 1.05E-07 4.02 3.09E-08 4.71 1.46E-08 7.65 2.43E-07 —

14888 8.55E-09 3.61 3.45E-09 3.16 1.20E-09 3.60 9.06E-10 8.06
59264 5.21E-10 4.03 2.48E-10 3.79 1.08E-10 3.47 1.87E-11 5.59

P4
878 2.37E-08 — 1.27E-08 — not valid — not valid —

3588 3.77E-09 2.65 3.69E-09 1.78 3.69E-09 — not valid —

14888 3.57E-11 6.72 7.39E-12 8.96 6.07E-12 9.24 1.01E-11 —

59264 2.44E-12 3.87 1.55E-12 2.25 1.03E-12 2.55 6.94E-13 3.86

• -N=878
- A - N=3588 .
- ■ - N=14888

♦ N=59264
* - - -t

^ ^ * - A

_ _ ■ -

' ♦ .

m

F ig u re 7.5. L2-errors versus different kernel scalings when postprocessing over a simple Delaunay triangulation. Left: P2, middle: P3
and right: P4 polynomials. N represents the number of triangular elements in the mesh.

140

P , Before postprocessing

m m I

F ig u re 7.6. Point-wise error contour plots before and after postprocessing over a simple Delaunay triangulation with N = 14888
elements. Left column: before postprocessing; Middle column: H scaling; Right column: 1.5H scaling. Top row: P3 polynomials;
Bottom row: P4 polynomials. 141

142

7.2.2 D elaunay T riangulation w ith E lem en t Sp littin g

For this case, we took the unstructured mesh in Figure 7.1 and refined it with splitting

(Figure 7.7). We suspected tha t this would give better postprocessing results due to the

natural hierarchy of solution spaces generated. Table 7.2 and Figure 7.8 provide the L2-error

values with respect to different sizes of kernel scalings. Again, it is noted that generally,

there is an optimal kernel scaling value for which we obtain the minimum L2-error. In

addition, Figure 7.9 presents the point-wise error contour plots. Comparing to the contour

plots in Figure 7.6, these provide much smoother error values.

(a) Triangular E l
ement

F ig u re 7.7. Refining a sample triangular element by splitting.

T ab le 7.2. L2-errors for various kernel scalings used in the SIAC filter for a triangulation
with element splitting.__

- m = 0.5 m = 0.75 m = 1.0 m = 1.5
Mesh L2 Error Order L2 Error Order L2 Error Order L2 Error Order

P 2
776 1.10E-04 — 7.08E-05 — 1.25E-04 — not valid —

3104 1.22E-05 3.17 7.84E-06 3.17 6.45E-06 4.27 not valid —
12416 1.46E-06 3.06 8.24E-07 3.25 5.02E-07 3.68 1.98E-06 —
49664 1.80E-07 3.15 1.09E-07 2.20 5.97E-08 3.07 8.11E-08 4.60

P 3
776 1.47E-06 — 9.88E-07 — 8.52E-06 — not valid —

3104 1.23E-07 3.57 2.71E-08 5.18 1.30E-07 6.03 not valid —
12416 1.17E-08 3.39 3.28E-09 6.02 1.99E-09 6.02 4.58E-08 —
49664 1.05E-09 3.47 2.34E-10 3.80 5.85E-11 5.08 6.20E-10 6.20

P4
776 2.68E-08 — 4.48E-08 — not valid — not valid —

3104 4.84E-10 5.79 2.52E-10 7.47 4.07E-09 — not valid —

12416 2.76E-11 4.13 6.66E-12 5.24 2.05E-11 7.63 not valid —
49664 1.49E-12 4.21 7.81E-13 3.09 7.12E-13 4.85 5.17E-12 —

N=776
- N=3104

- ■ N=12416
- ♦ N=49664

A
■

A*. >

■- ^ "

...
♦

N=776
- * • -N =3104

- * - N=12416
- ♦ N=49664

» »

>

» J
■

i 1.5

m
1 1.5

m

F ig u re 7.8. L2-errors versus different kernel scalings when postprocessing over a triangulation with element splitting. Left: P2, middle:
P3, and right: P4 polynomials. N represents the number of triangular elements in the mesh.

143

F ig u re 7.9. Point-wise error contour plots before and after postprocessing over a triangulation with element splitting with N = 12416
elements. Left column: before postprocessing; Middle column: H scaling; Right column: 1.5H scaling. Top row: P3 polynomials; Bottom
row: P4 polynomials. 144

145

7.2.3 D elaunay T riangulation w ith V ariable-Sized E lem ents

In this example, we examine two variants of the Delaunay triangulation of the domain,

shown in Figure 7.10, where there is an obvious spatial transition in element size in the

interior of the domain. This change was made in the middle of the mesh in order to maintain

the periodic boundary conditions and simplify the application of the postprocessor.

Table 7.3 and Figure 7.11 present the L2-errors for postprocessing over the Mesh Exam

ple 1 in Figure 7.10 using different kernel scaling values. Moreover, Figure 7.12 provides the

point-wise error contour plots for this mesh. We observe similar postprocessing behavior to

the previous mesh examples. Postprocessing results for the Mesh Example 2 are provided

in Table 7.4 and Figures 7.13 and 7.14.

7.2.4 D elaunay T riangulation w ith S tretched E lem ents

Here, we consider a sample Delaunay mesh with stretched elements in the x-direction

(Figure 7.15). This is the so-called anisotropic unstructured mesh and is often the type

of mesh we see in practice when simulating flows which have strong preferential direction.

Table 7.5 and Figures 7.16 and 7.17 provide the postprocessing results. Again, through the

application of the SIAC filter, we are able to smooth out the oscillations in the error and

obtain lower error values.

(a) Mesh Example 1 (b) Mesh Exam ple 2

F ig u re 7.10. Examples of variable-sized unstructured Delaunay triangulation.

146

T able 7.3. L2-errors for various kernel scalings used in the SIAC filter for the Mesh
Example 1.

- m = 0.5 m = 0.75 m = 1.0 m = 1.5
Mesh L2 Error Order L2 Error Order L2 Error Order L2 Error Order

P 2
1350 6.74E-05 — 4.68E-05 — 5.30E-05 — not valid —
5662 1.30E-05 2.37 7.59E-06 2.62 3.75E-06 3.82 6.78E-06 —

22960 1.66E-06 2.96 1.19E-06 2.67 7.43E-07 2.33 2.91E-07 4.54
90682 1.95E-07 3.08 1.44E-07 3.04 9.53E-08 2.96 3.37E-08 3.11

P 3
1350 9.99E-07 — 3.90E-07 — 2.06E-06 — not valid —
5662 9.84E-08 3.34 2.32E-08 4.07 1.14E-08 7.49 2.20E-07 —

22960 7.59E-09 3.69 2.70E-09 3.10 9.15E-10 3.63 8.53E-10 8.01
90682 5.04E-10 3.91 1.87E-10 3.85 5.93E-11 3.94 1.05E-11 6.34

P4
1350 1.33E-08 — 8.41E-09 — not valid — not valid —
5662 6.22E-10 4.41 1.01E-10 6.37 1.41E-10 — not valid —

22960 2.56E-11 4.60 7.12E-12 3.82 6.08E-12 4.53 9.60E-12 —
90682 2.17E-12 3.56 1.38E-12 2.36 1.04E-12 2.55 6.83E-13 3.81

F ig u re 7.11. L2-errors versus different kernel scalings when postprocessing over the Mesh Example 1. Left: P 2, middle: P 3, and right:
P4 polynomials. N represents the number of triangular elements in the mesh.

147

P3, Before postprocessing P3, After postprocessing, H P3, After postprocessing, 1.5H

F ig u re 7.12. Point-wise error contour plots before and after postprocessing over the Mesh Example 1 with N = 22960 elements. Left
column: before postprocessing; Middle column: H scaling; Right column: 1.5H scaling. Top row: P 3 polynomials; Bottom row: P4
polynomials. 148

149

T able 7.4. L2-errors for various kernel scalings used in the SIAC filter for the Mesh
Example 2.

- m = 0.5 m = 0.75 m = 1.0 m = 1.5
Mesh L 2 Error Order L2 Error Order L2 Error Order L2 Error Order

P 2
1972 6.61E-05 — 4.40E-05 — 5.02E-05 — not valid —
8240 9.06E-06 2.86 4.69E-06 3.22 2.31E-06 4.44 6.52E-06 —

34562 1.18E-06 2.94 7.99E-07 2.55 4.68E-07 2.30 1.68E-07 5.27
138254 1.38E-07 3.09 9.60E-08 3.05 6.14E-08 2.93 2.32E-08 2.84

P 3
1972 1.04E-06 — 3.97E-07 — 2.27E-06 — not valid —

8240 7.02E-08 3.88 2.01E-08 4.30 1.10E-08 7.68 2.17E-07 —
34562 6.35E-09 3.46 1.70E-09 3.56 4.01E-10 4.77 8.11E-10 8.06
138254 4.58E-10 3.79 1.65E-10 3.36 4.27E-11 3.23 7.08E-12 6.83

P4
1972 8.71E-09 — 9.29E-09 — not valid — not valid —

8240 3.75E-10 4.53 2.34E-10 5.31 2.69E-10 — not valid —
34562 2.06E-11 4.18 1.46E-11 4.00 1.45E-11 4.21 1.62E-11 —
138254 2.15E-12 3.26 1.27E-12 3.52 9.04E-13 4.00 6.28E-13 4.68

- • - N=1972
- A - N=8240
- » - N=34562
- ♦ N=138254

9 - - _ «

A _ , - A
- - A - -

- ■ ■

* * ♦ ; -----------♦ -

m

F ig u re 7.13. L2-errors versus different kernel scalings when postprocessing over the Mesh Example 2. Left: P2, middle: P3, and right:
P4 polynomials. N represents the number of triangular elements in the mesh.

150

F ig u re 7.14. Point-wise error contour plots before and after postprocessing over the Mesh Example 2 with N = 34562 elements. Left
column: before postprocessing; Middle column: H scaling; Right column: 1.5H scaling. Top row: P 3 polynomials; Bottom row: P4
polynomials. 151

152

F ig u re 7.15. A sample unstructured triangular mesh with stretched elements in the
x-direction.

T ab le 7.5. L2-errors for various kernel scalings used in the SIAC filter for a stretched
triangulation.

- m = 0.5 m = 0.75 m = 1.0 m = 1.5
Mesh L2 Error Order L2 Error Order L2 Error Order L2 Error Order

P 2
796 3.38E-04 — 2.96E-04 — not valid — not valid —

3232 3.48E-05 3.27 1.86E-05 3.99 3.31E-05 — not valid —

12816 4.10E-06 3.08 2.51E-06 2.88 1.62E-06 4.35 5.54E-06 —
51430 6.79E-07 2.59 4.12E-07 2.60 2.13E-07 2.92 1.62E-07 5.09

P 3
796 5.25E-06 — not valid — not valid — not valid —

3232 5.13E-07 3.35 2.04E-07 — 1.72E-06 — not valid —
12816 3.10E-08 4.04 6.46E-09 4.98 7.44E-09 7.85 1.79E-07 —

51430 2.23E-09 3.79 5.05e-10 3.67 1.80E-10 5.36 1.45E-09 6.94
P4

796 1.07E-07 — not valid — not valid — not valid —
3232 4.40E-09 4.60 7.07E-09 — not valid — not valid —
12816 7.38E-11 5.89 9.61E-12 9.52 1.08E-10 — not valid —

51430 2.60E-12 4.82 8.17E-13 3.55 7.00E-13 7.26 1.49E-11 —

• N=796
* N=3232 .

N=12816
• • ♦ N =51430

A-

: — 1
f - -Â

 " I ---------------
_ 4

- • - N=796
- a - N=3232 .
- ■ - N=12816
- ♦ - N=51430

•

^ s r ^

♦ - -

1 1.5

m

2P
0

0

0

0

0

-10
0

-12
0

-14
0

0 2 2.5

m

F ig u re 7.16. L2-errors versus different kernel scalings when postprocessing over a stretched triangulation. Left: P2, middle: P3, and
right: P4 polynomials. N represents the number of triangular elements in the mesh.

153

F ig u re 7.17. Point-wise error contour plots before and after postprocessing over a stretched triangulation with N = 12816 elements.
Left column: before postprocessing; Middle column: H scaling; Right column: 1.5H scaling. Top row: P 3 polynomials; Bottom row: P4
polynomials. 154

155

7.3 Conclusion
The smoothness-increasing accuracy-conserving filtering technique has traditionally been

applied to translation invariant meshes. In some cases, random meshes in one dimension

and structured smoothly varying meshes in two dimensions were also considered. However,

as the assumption of any sort of regularity will restrict the application of this filtering

technique to more complex simulations, we provided in this chapter the behavior and

complexity of the computational extension of this filtering technique to totally unstructured

tessellations. We note tha t this is an important step towards a more generalized SIAC filter.

We considered various unstructured tessellations and demonstrated that it is indeed possible

to get reduced errors and improved smoothness through a proper choice of kernel scaling.

Lastly, GPU implementations of this SIAC filter were described. Using a single GPU, up

to a 18 x reduction in computational costs over the traditional CPU implementations can

be obtained for these unstructured tessellations. We documented why care must be taken

with the programming of the GPUs to obtain such a reduction when applied to SIAC

postprocessing of DG solutions.

CHAPTER 8

APPLICATION OF THE SIAC FILTERING
TO STRUCTURED TETRAHEDRAL

MESHES

In this chapter, we attem pt to address the potential usefulness of smoothness-increasing

accuracy-conserving (SIAC) filters when applied to real-world simulations. As presented

so far, the application of the SIAC filter never exceeded beyond two-space dimensions for

time-dependent simulations. As tetrahedral meshes are often the type considered in more

realistic scenarios, we contribute to the class of SIAC postprocessors by demonstrating

the effectiveness of SIAC filtering when applied to structured tetrahedral meshes. These

types of meshes are generated by tetrahedralizing uniform hexahedra and therefore, while

maintaining the structured nature of a hexahedral mesh, they exhibit an unstructured

tessellation within each hexahedral element. Moreover, we address the computationally

intensive task of performing numerical integrations when one considers tetrahedral elements

for SIAC filtering and provide guidelines on how to ameliorate these challenges through the

use of more general cubature rules. We consider two examples of a hyperbolic equation and

confirm the usefulness of SIAC filters in obtaining the superconvergence accuracy of 2k + 1

when applied to structured tetrahedral meshes. Additionally, as these filters improve the

weak continuity in the DG method to k — 1 continuity, we provide results that show how

postprocessing is useful in extracting smooth isosurfaces of DG fields.

We proceed in this chapter by briefly discussing the theoretical foundations in SIAC

filtering of DG solutions and how it applies to structured tetrahedral meshes. We then

continue by presenting the detail of the implementation as well as important practical

considerations. Section 8.2 provides numerical results confirming the usefulness of post

processing over structured tetrahedral meshes. The results of this contribution have been

documented in a submitted manuscript [50].

157

8.1 Smoothness-Increasing Accuracy-Conserving
Filter for Structured Tetrahedral Meshes

In this chapter, we consider accuracy enhancement of numerical solutions to three

dimensional linear hyperbolic equations of the form

3 d
ut + ^ -d— (Ai(x)u) = 0, x e Q x [0, T],

i=1 Xi
u(x, 0) = uo(x), x e Q (8.1)

where Q e R3, and Ai(x), i = 1,2,3 is bounded in the L ^ — norm. We also assume smooth

initial conditions are given along with periodic boundary conditions.

We continue by restating the main theorem in SIAC filtering of DG solutions, which

was thoroughly discussed in Chapter 6:

T h eo re m 8.1.1 Let uh be the DG solution to the linear hyperbolic equation given in Equa

tion (8.1). The approximation is taken over a mesh whose elements are of size h = 1H in

each coordinate direction where I is a multi-integer (of dimension equal to the number of

elements along one coordinate direction) and H represents the macro-element size of which

any particular element is generated by hierarchical integer partitioning of the macro-element.

Given sufficient smoothness in the initial data,

||u — K h * u fc||n < CH2fc+1, (8.2)

where K h is the postprocessing kernel in the SIAC filter scaled by H.

Comparing to the original theorem in [19], Theorem 8.1.1 encompasses a broader range

of mesh structures. More detail along with several numerical examples can be found in

Chapter 6.

As discussed in previous chapters, if within each macro-element of size H we assume

equal partitioning, the resulting mesh will have a translation invariant structure. A trans

lation invariant mesh is a type of mesh in which we can identify a repeating pattern [7].

Consequently, according to Theorem 8.1.1, we are able to obtain higher order accuracy in

the L 2-norm when postprocessing translation invariant meshes. The structured tetrahedral

mesh we consider in this paper will fall into this category.

To generate a translation invariant structured tetrahedral mesh, we first split the domain

into uniform hexahedral elements and then subdivide each hexahedral element into tetra-

hedra. As it is mentioned in [26], there are eight different ways to divide a hexahedron into

tetrahedra. These configurations are shown in Figure 8.1. As you notice from this figure, the

158

F ig u re 8.1. All possible subdivisions of a hexahedral element into five and six tetrahedra.
When juxtaposing the hexahedral elements, it is necessary to flip the hexahedron in x-, y-, or
z-direction with the first five configurations. No flipping is required with the configurations
in the bottom row. We consider the lower left configuration as our structured tetrahedral
mesh.

top configuration leads to 5 tetrahedra per element while the rest lead to six tetrahedra.

Another point worth mentioning is that in the first five configurations (first and second

row in Figure 8.1), we sometimes need to flip the hexahedral element when constructing

the entire mesh so that the diagonal edges of adjacent hexahedra align. We are, however,

not required to do that if we choose any of the last three configurations (bottom row in

Figure 8.1). In either case, we are always able to identify a repeating pattern within these

structured meshes. Here, we have chosen the lower left configuration in Figure 8.1 as our

structured tetrahedral mesh. We continue by providing the detail of the implementation of

the SIAC filter over structured tetrahedral meshes.

The convolution kernel in three dimensions is formed by the tensor product of one

dimensional kernels. That is

K (x ,y ,z) = K (x) x K(y) x K (z). (8.3)

Consequently the postprocessor in three dimensions will have the following form:

u*(x, y, z) =

H 1h 2H 3 j / / K (Xlf f1 X) K (X2h 2 y) K (X3f f1 X) Uh(xi,X2,X3)dXidX2dX3,
(8.4)

where Uh is the approximate DG solution of the numerical simulation and Hi, i = 1,2,3 are

the kernel scaling parameters in each direction.

159

We note that in Chapters 5 and 7, we thoroughly discussed the extension of the SIAC

filter to structured and unstructured triangular meshes, respectively. Similarly, here we have

taken the existing implementation of this filtering technique and applied it to structured

tetrahedral meshes.

The convolution kernel in the SIAC filter along with the DG approximation Uh are

piecewise polynomials. Therefore, to numerically evaluate the integral in Equation (8.4)

exactly to machine precision, we need to subdivide the integration domain into regions

of sufficient continuity. Previously in Chapter 7, we demonstrated that these integration

regions can be found by solving a geometric intersection problem between a square and a

triangle for triangular meshes. In three dimensions, the footprint of the kernel is contained

in a cube tha t is further subdivided by the kernel knots into smaller cubes of H l x H 2 x H 3

dimensions. As a result, to find the regions of continuity as shown in Figure 8.2, we find

the intersection region between a tetrahedral element and a cube. For this, we again apply

the Sutherland-Hodgman clipping algorithm from computer graphics [69].

Following Theorem 8.1.1, the scaling parameters Hi, i = 1, 2, 3, which determine the

extent of the kernel on the DG mesh, will be equal to the translation invariance of the

mesh. This is necessary in order to observe the proper order of convergence in the L 2-

norm after the application of the SIAC filter. It is therefore clear tha t Hi is equal to the

uniform mesh spacing for the configurations in the bottom row of Figure 8.1 as the entire

mesh could be constructed by exactly repeating the hexahedral element. However, for the

other configurations, whenever we perform a flip in a direction i, the scaling H i will be

twice as large as the uniform mesh spacing.

To evaluate the postprocessed solution at a point denoted by (x,y, z) , we center the

kernel at tha t point. We then find the intersection regions and evaluate the resulted

integrals. Therefore, the integral in Equation (8.4) now becomes

1
u * (x , y , z) = — 3 K (x l) K (x 2) K (x 3)uh(xl , x 2, x 3)dxl dx2dx3

H J — ̂ J — ̂ J —̂

K (x l) K (x 2) K (x 3)uh(x l , x 2, x 3)dxldx2dx3 (8.5)
Tj €Supp{K}

where we have denoted K(xj) = K () for simplicity, and S u p p {K } contains all the

tetrahedral elements Tj tha t intersect with the kernel footprint.

We note tha t the final integration region resulted as the kernel-mesh intersection is

itself a polyhedron. For ease of implementation, we further tetrahedralize this polyhedron

1
H 3 E T

160

(a) Kernel footprint (b) Kernel-mesh intersec
tion

F ig u re 8.2. Footprint of a three-dimensional kernel (a). Demonstration of an intersection
between a tetrahedral element and a cube of the kernel footprint (b).

by triangulating its faces (as shown in Figure 8.2b) and connecting the resulting triangles

to the centroid of the polyhedron. Consequently, the integral in Equation (8.5) becomes

/ i? (x i)i?(x2)i?(x3)uh(x i, x2, x3)dxi_dx2dx3

= / KC(x1)KC(x2)KC(x3)uh(xl5x2,x 3)dx1 dx2dx3 (8.6)
n=0 Tn

where N is the total number of tetrahedral subregions formed in the tetrahedral element

Tj as the result of kernel-mesh intersection.

By numerically computing the integral in Equation (8.6) using a quadrature technique,

we can now evaluate the postprocessed solution u*(x, y, z).

8.1.1 P ractica l C onsiderations

From the computational perspective, postprocessing over tetrahedral meshes is a very

challenging task. Let us consider again the postprocessing formula given in Equation (8.4).

Following our discussion in the previous section, in computing the postprocessed value at a

single point (x, y,z), there exist three distinct steps:

1. Centering the kernel at (x, y, z) and identifying the support of the kernel over the DG

mesh.

2. Solving a geometric intersection problem to obtain the integration regions.

3. Numerically evaluating the integrals by a means of quadrature rule.

In the case of structured tetrahedral meshes, it suffices to find the extent of the kernel

on the basic hexahedral mesh which has a uniform structure. It is trivial that the footprint

161

of the kernel over such a uniform mesh can be found in constant computational time. In

the case of unstructured meshes, as it was performed in Chapter 7, we can always group the

unstructured mesh elements within a regular grid. Consequently, we conclude tha t Step 1

has always a constant computational complexity.

To find the integration regions in Step 2, as mentioned in the previous section, we

perform the Sutherland-Hodgman clipping algorithm. In this algorithm, we loop through

the faces of one polyhedron and clip it against the second polyhedron. The computational

complexity of this algorithm is O(n), where n = f i x f 2 and is equal to 24 when finding the

intersection between a cube and a tetrahedron. fi, i = 1, 2 indicate the number of faces in

each polyhedron. For structured tetrahedral meshes, the support of the kernel spans 3k + 1

hexahedral elements in each direction, k being the degree of the approximation. That is,

for each evaluation point, we need to process 6 x (3k + 1)3 tetrahedra for the configuration

we chose in this paper. As each tetrahedral element intersects with at most 8 cubes of the

kernel, the cost of finding all the intersection regions will therefore be 8 x 6 x 24(3k + 1)3

or O(k3).

Given the amount of processing we need to perform in Step 2, we should maintain the

computational cost of Step 3 as low as possible in order to have a tractable postprocessing

algorithm. It appears that the main computational bottleneck in postprocessing over

tetrahedral meshes lies in evaluation of the integrals. The key point to consider here

is tha t the three-dimensional integral over a tetrahedral region Tn as given in Equation

(8.6) is in fact an expensive operator to evaluate due to several function evaluations. To

understand why this is the case, consider quadrilateral and hexahedral meshes. For these

mesh structures, the tensor product nature of the convolution kernel in higher dimensions

would result in separation of the integrals and ultimately, the multidimensional integral

could essentially be evaluated by computing one-dimensional integrals (refer to Chapter 3).

This evaluation could even further be simplified if one also considers tensorial basis functions

to represent the DG approximation in multidimensions [40]. Consequently, using tensor

product Gaussian quadrature rules provides a convenient way to numerically evaluate the

integrals involved in the convolution when dealing with tensor product mesh structures such

as quadrilateral and hexahedral meshes. However, in the case of triangular or tetrahedral

meshes, due to the dependency of the coordinate directions, the convolution integral is

not separable (see Chapter 3 for triangles) and therefore, we can not reduce the cost

of computing the 3D integral through evaluating 1D integrals. As a result, using the

conventional tensor product quadrature rules will not be optimal in the sense of using the

162

fewest function evaluations for a given approximation degree. A suitable alternative here is

to use nontensor product formulas -generally known as cubature rules. The cubature rules

are complicated to derive and are not known to very high orders. For our postprocessing

experiments, we used the pregenerated points and weights by Zhang et al. in [76] and

available for polynomials up to degree 14. We note that from equation (8.6), it is clear

tha t the cubature rule we apply should be exact to integrate a polynomial integrand of

degree 4k. Tables 8.1 and 8.2 provide the number of points (see [76]) required to evaluate

the convolution integral over each region of continuity using the aforementioned quadrature

strategies. While there is no substantial difference in the number of quadrature points for

the case of triangular elements, there is a noticeable difference in terms of computational

efficiency when using cubature rules for tetrahedral meshes over tensor product quadrature.

Note that we could not find the cubature points for a k = 4 DG approximation (polynomial

integrand of degree 16). However, in practice, we were able to use even fewer cubature

points, tha t are required to integrate a lower degree polynomial, to evaluate the convolution

operator. In fact, using only 24 points for a P 2 approximation, 36 points for a P 3, and 46

points for a P 4 approximation seemed to be enough to provide the accuracy predicted by

theory.

We further emphasize the use of the sum-factorization technique introduced in Section

3.4.1 for evaluating our DG approximation at the cubature points. The application of this

T able 8.1. Number of quadrature points required in each integration technique for
triangular elements. k indicates the degree of the numerical approximation.

Triangles
k Tensor product Cubature

P 2 16 12
P 3 25 19
P 4 49 33

T able 8.2. Number of quadrature points required in each integration technique for
tetrahedral elements. k indicates the degree of the numerical approximation. We were
not able to find the cubature points for the P 4 approximation.

Tetrahedra
k Tensor product Cubature

P 2 125 46
P 3 343 140
P 4 729 -

163

technique, along with the cubature rules, led to a substantial decrease in the computational

intensity of Step 3 of the postprocessing algorithm.

8.2 Numerical Results
In this section, we provide numerical results tha t demonstrate the effectiveness of SIAC

filtering when applied to structured tetrahedral meshes. We consider a constant coefficient

and a variable coefficient advection equation and show tha t it is indeed possible to gain

the optimal convergence rate of 2k + 1 in the L2- and L^-norm s after the application of

the SIAC filter. Moreover, to demonstrate the effectiveness of SIAC filtering in introducing

smoothness back to our numerical approximation, we provide an example of isosurfaces of

a DG field before and after the application of the postprocessor.

8.2.1 C onstant C oefficient A d vection E quation

For this example, we consider the following advection equation

ut + ux + uy + uz = 0, (x, y, z) € (0,1) x (0,1) x (0,1), T = 12.5, (8.7)

with initial condition u(0, x, y, z) = sin(2n(x + y + z)). Table 8.3 provides the error results

for three different mesh resolutions and polynomial degrees. From these results, it is again

clear tha t SIAC filtering has been effective in raising the order of accuracy to 2k + 1 both

in the L2 and L ^ norms.

8.2 .2 V ariable C oefficient A d vection E quation

For this example, we consider solutions of the equation

ut + (au)x + (au)y + (au)z = f , (x, y, z) € (0,1) x (0 ,1), x (0,1) T = 12.5. (8.8)

We implement a smooth coefficient a (x ,y ,z) = 2 + sin(2n(x + y + z)), with an initial

condition of u(x, y, z, 0) = sin(2n(x+ y + z)). Periodic boundary conditions are implemented

in both directions and the forcing function, f (x,y, z ,t), is chosen so tha t the exact solution

is u(x, y, z, t) = sin(2n(x + y + z — 2t)). Table 8.4 demonstrates the error results before and

after postprocessing. Similarly to the previous example, we see a clear improvement in the

order of accuracy. Moreover, the magnitudes of the errors are lower after the application of

the postprocessor.

164

T able 8.3. Errors before and after postprocessing the solutions of the constant coefficient
advection equation over a structured tetrahedral mesh.

Mesh L2-error Order L o -error Order L2-error Order Lo -error Order
- Before postprocessing After postprocessing

P2
6000

48000
384000

1.06E-03
1.28E-04
1.60E-05

3.04
3.00

6.78E-03
8.96E-04
1.13E-04

2.91
2.98

2.50E-04
5.52E-06
1.40E-07

5.50
5.30

7.50E-04
1.54E-05
3.82E-07

5.60
5.33

P3
6000

48000
384000

1.21E-04
7.51E-06
4.76E-07

4.01
3.98

1.30E-03
8.41E-05
5.43E-06

3.95
3.99

3.72E-05
2.15E-07
1.07E-09

7.43
7.65

8.60E-05
4.43E-07
3.01E-09

7.60
7.20

P4
6000

48000
384000

2.02E-05
6.53E-07
2.21e-08

4.95
4.88

1.70E-04
5.65E-06
1.89E-07

4.91
4.90

not valid
2.02E-09
5.43E-12 8.56

not valid
6.50E-09
1.79E-11 8.50

T able 8.4. Errors before and after postprocessing the solutions of the variable coefficient
advection equation over a structured tetrahedral mesh.

Mesh L2-error Order L -error Order L2-error Order Lo -error Order
- Before postprocessing After postprocessing

P2
6000

48000
384000

1.78E-03
2.24E-04
2.82E-05

2.99
2.98

6.50E-03
8.83E-04
1.14E-04

2.88
2.95

3.02E-04
7.61E-06
1.93E-07

5.31
5.30

6.90E-04
1.58E-05
3.71E-07

5.45
5.41

P3
6000

48000
384000

2.00E-04
1.32E-05
8.60E-07

3.92
3.94

1.10E-03
6.97E-05
4.51E-06

3.98
3.95

4.50E-05
3.06E-07
2.10E-09

7.20
7.18

9.10E-05
7.36E-07
5.79E-09

6.95
6.99

P4
6000

48000
384000

2.91E-05
9.74E-07
3.15E-08

4.90
4.95

2.00E-04
6.79E-06
2.32E-07

4.88
4.87

not valid
5.50E-09
1.68E-11 8.50

not valid
8.43E-09
2.67E-11 8.30

165

8 .2 .3 Isosurfaces o f a D G Field

Here, we again consider the advection equation given in Equation (8.7) but this time

with u(x, y, z) = cos(2nx) + cos(2ny) + cos(2nz) as the initial condition. We consider an

isosurface of the numerical approximation of this equation before and after the application

of the SIAC filter. Figure 8.3 demonstrates an isosurface extracted from the analytical

field for isovalue = 0.2. To extract an isosurface we follow the approach of the traditional

Marching Cubes (MC) algorithm [44] with some modifications. For a given MC mesh (which

is a hexahedral mesh), we loop through individual cubes and identify the cube tha t contains

part of the isosurface for a given isovalue. In traditional MC, linear interpolation is used

to find the surface/edge intersection along an edge of the cube. However, in our modified

algorithm, we perform a higher order root-finding scheme. That is, we find the intersection

of the higher order DG approximation with the edge of the cube by a means of root-finding.

Therefore, along an edge of the cube tha t contains the isosurface, we find the intersection

point by finding the roots of the following equation:

uh(x) — isovalue = 0, (8.9)

where u^ is our numerical approximation as given in Equation (5.6). When generating

isosurfaces using the postprocessed data, uh is replaced by u*, the postprocessed value

given in Equation (8.4). We add tha t by applying a root-finding mechanism, we are able to

observe the discontinuities tha t exist in the solution data as long as the MC grid overlaps

with the hexahedral mesh tha t was used to construct our structured tetrahedral mesh.

Figure 8.4 depicts a zoomed-in portion of the isosurface in Figure 8.3, but this time

using the approximate DG solution uh (Figure 8.4a) and the postprocessed solution u*

(Figure 8.4b) to find the point of intersection in Equation (8.9). As you notice, there are

visible discontinuities in the isosurface constructed on the DG approximation whereas in the

isosurface extracted using the postprocessed value, there is no discontinuity. In other words,

through the application of the SIAC filter, we are indeed able to introduce smoothness back

to our numerical solution.

8.3 Conclusion
From its early introduction by Bramble and Schatz in [11] to its later development

for linear hyperbolic equations by Cockburn et al. in [18, 19], there has never been a

demonstration of the effectiveness of the Smoothness-Increasing Accuracy-Conserving filter

over three-dimensional mesh structures. In fact, the very first attem pt of applying this

filtering technique to meshes of nontrivial structures, mainly in one dimension, was in [22].

166

F ig u re 8.3. Isosurface constructed based on the analytical solution
u(x, y , z) = cos(2nx) + cos(2ny) + cos(2nz) for isovalue = 0.2.

(a) Isosurface based on the DG (b) Isosurface based on the post
solution. processed solution.

F ig u re 8.4. Comparison of isosurfaces before and after the application of the SIAC filter.

Later in a series of papers [46, 41, 47] (Chapters 5, 7, and 6), the extension to structured

triangular meshes, general translation invariant meshes, as well as adaptive meshes and

unstructured triangulations were provided, all in two-space dimensions. As our ultimate

goal is the application of this filter to real-world simulations, we provided in this chapter, for

the first time, computational results confirming the accuracy-conserving and smoothness-

increasing capabilities of the SIAC filter over structured tetrahedral meshes. We considered

two variants of a hyperbolic PDE and presented error results, which indicate that it is indeed

possible to obtain the optimal 2k + 1 order of accuracy through postprocessing. We further

demonstrated how postprocessing is useful in extracting smooth isosurfaces of DG fields.

We believe this is a significant contribution and a major step in extending the application

of the SIAC filter beyond conventional 2D mesh structures.

CHAPTER 9

SUMMARY AND FUTURE WORK

Throughout this dissertation, we contributed to a class of postprocessors known as

smoothness-increasing accuracy-conserving filters by providing mathematical foundations

and numerical examples confirming the effectiveness of this filtering technique in a variety

of circumstances. In particular, the following contributions were made:

• A study of the numerical quadrature approximations used for evaluating the con

volution operator in SIAC filters. Theoretical estimates as well as empirical re

sults tha t demonstrate the efficacy of the SIAC postprocessing approach when dif

ferent levels and types of quadrature approximation are used were presented. This

study was primarily for engineering circumstances when the trade-offs between time,

resources, and accuracy are important. These contributions were documented in

Chapter 4 and reported in the published peer-reviewed journal article: “Quantifi

cation of errors introduced in the numerical approximation and implementation of

smoothness-increasing accuracy-conserving (SIAC) filtering of discontinuous Galerkin

(DG) fields,” H. Mirzaee, J. K. Ryan, and R. M. Kirby, Journal of Scientific Comput

ing, Volume 45, Pages 447-470, 2010.

• Application of the SIAC filters to structured triangular meshes. The basic theoretical

assumption in the previous implementations of the postprocessor limited the use to

numerical solutions solved over a quadrilateral mesh. However, this assumption was

restrictive, which in turn complicates the application of this postprocessing technique

to general tessellations. We extended the current theoretical results to variable coeffi

cient hyperbolic equations solved over structured triangular meshes and demonstrated

the effectiveness of the application of this postprocessor to structured triangular

meshes. These contributions were documented in Chapter 5 and reported in the

published peer-reviewed journal article: “Smoothness-increasing accuracy-conserving

(SIAC) postprocessing for discontinuous Galerkin solutions over structured triangular

168

meshes,” H. Mirzaee, L. Ji, J. K. Ryan, and R. M. Kirby, SIAM Journal of Numerical

Analysis, Volume 49, Pages 1899-1920, 2011.

• Improved errors versus higher order accuracy in applications of SIAC filters to DG

solutions. Smoothness-increasing accuracy-conserving (SIAC) filtering has demon

strated its effectiveness in raising the convergence rate for discontinuous Galerkin

solutions from order k + l to order 2k + 1 for specific types of translation invariant

meshes [19, 46]. Additionally, it improves the weak continuity in the discontinuous

Galerkin method to k — 1 continuity. Typically, this improvement has a positive

impact on the error quantity in the sense that it also reduces the absolute errors in

the solution. However, not enough emphasis was placed on the difference between

superconvergent accuracy and improved errors. This distinction is particularly im

portant when it comes to interpreting the interplay between geometry and filtering

as introduced through meshing. We presented a study of the impact of mesh scaling

used in the SIAC filter and how it factors into the theoretical errors. These con

tributions were documented in Chapter 6 and reported in the peer-reviewed journal

article: “Smoothness-increasing accuracy-conserving (SIAC) filtering for discontinu

ous Galerkin solutions: Improved errors versus higher-order accuracy,” J. King, H.

Mirzaee , J. K. Ryan and, R. M. Kirby, Journal of Scientific Computing, In press,

2012.

• Application of the SIAC filters to unstructured triangular meshes. Although the DG

methodology can be applied to arbitrary triangulations, the typical application of

SIAC filters has been to discontinuous Galerkin solutions obtained over translation

invariant meshes such as structured quadrilaterals and triangles. As the assumption of

any sort of regularity, including the translation invariance of the mesh, is a hindrance

towards making the SIAC filter applicable to real-life simulations, we demonstrated

for the first time the behavior and complexity of the computational extension of this

filtering technique to fully unstructured tessellations. These results were promising

as they paved the way towards a more generalized SIAC filtering technique. These

contributions were documented in Chapter 7 and reported in the accepted journal

article: “Smoothness-increasing accuracy-conserving (SIAC) filters for discontinuous

Galerkin solutions over unstructured triangular meshes,” H. Mirzaee, J. King, J.

K. Ryan and, R. M. Kirby, SIAM Journal of Scientific Computing, accepted upon

revision, 2012.

169

• Application of the SIAC filters to structured tetrahedral meshes. While there have

been several attem pts to demonstrate the usefulness of the SIAC filtering technique

to nontrivial mesh structures, the application of the SIAC filter never exceeded beyond

two-space dimensions. Thereby, we considered this contribution to be the very first

attem pt of its kind in demonstrating the potential usefulness of SIAC filtering when

applied to real-world simulations. We consider two examples of a hyperbolic equation

and demonstrate tha t it is indeed possible to obtain the superconvergence accuracy of

2k+1 through the application of the SIAC filter. These contributions were documented

in Chapter 8 and reported in the submitted journal article:“Smoothness-increasing

accuracy-conserving (SIAC) filters for discontinuous Galerkin solutions: Application

to structured tetrahedral meshes,” H. Mirzaee, J. K. Ryan and, R. M. Kirby, SIAM

Journal of Numerical Analysis, submitted, 2012.

The following contributions were made in order to provide the necessary steps and algo

rithms used to obtain the results in the above contributions:

• Efficient implementation of SIAC filtering for DG solutions. Quite often, a numerical

practitioner is interested in explicit steps to make a numerical scheme applicable.

We explicitly defined the steps to efficient computation of the postprocessor applied

to different structured mesh tessellations. These contributions were documented in

Chapter 3 and reported in the published peer-reviewed journal article: “Efficient

implementation of smoothness-increasing accuracy-conserving (SIAC) filters for dis

continuous Galerkin solutions,” H. Mirzaee, J. K. Ryan, and R. M. Kirby, Journal of

Scientific Computing, Volume 52, Pages 85-112, 2011.

The extension of the SIAC filter to general unstructured tessellations was discussed in

Chapter 7 in two-space dimensions . There, we demonstrated how filtering can be performed

effectively through proper choices of the kernel scaling parameter. Although the results

in Chapter 7 were indicative of the usefulness of the SIAC filter in extracting the higher

order accuracy from approximation data obtained over unstructured meshes, the underlying

theoretical proofs strongly depend on the translation invariance of the mesh and therefore,

the numerical behavior of the SIAC filter can not be proven for general unstructured meshes.

Mathematical extension of the SIAC filter to unstructured tessellations is a very challenging

task for which we will need to focus on improving the estimates for the divided differences

of the error. This constitutes further research.

In Chapter 8, we briefly discussed how filtering the approximation data would naturally

result in smooth isosurfaces of DG fields. We applied a modified version of the Marching

170

Cubes algorithm where we find the point of intersection via a higher order root-finding

scheme rather than the usual linear interpolation. Using this approach of extracting isosur

faces, we further performed a preliminary investigation of the impact of postprocessing on

the Hausdorff distance metric. Hausdorff distance is a very generic technique to define a

distance between two nonempty sets [4]. Given two triangular representations of isosurfaces,

one way to measure the error between them is by computing their Hausdorff distance. If

we denote these two surfaces by S and S', the Hausdorff distance is defined by

d(S, S ') = max(min lip — p '|L), (9.1)
pes p'eS' " 112

tha t is, it is the maximum of the minimum distances between point samples of S and S'.

Table 9.1 presents the Hausdorff distances and their means for a sample isosurface extracted

from a DG projection of sin(x) x sin(y) x sin(z). We projected this function onto a 20 x 20 x 20

hexahedral mesh and considered the isosurface for the isovalue = 0.6 and kept refining the

Marching Cubes mesh. For each level of refinement, we computed the Hausdorff distance

and its mean with respect to the exact isosurface. To generate the exact isosurface, we

assumed a very fine mesh and the analytical representation of the function.

From Table 9.1, we observe tha t by refining the MC mesh, we reach a mesh resolu

tion after which there is no convergence in the Hausdorff distance when using the DG

approximation Uh to find the point of intersection. The convergence rate starts off the

convergence rate of the MC algorithm and decreases to zero where the pointwise error

in the approximation data begins to dominate. Comparing to the error results obtained

using the filtered approximation, it takes more mesh refinements for the convergence rate

to come to a halt. This could be related to the higher order estimates of the L°°-norm

after the application of the SIAC filter. On the other hand, the higher order accuracy in

the Hausdorff distance using the filtered data could be realized by using a higher order

polynomial approximation with the nonfiltered solution data Uh. A natural question that

arise here is: which approach would be (could be made) computationally more efficient?

This constitutes further research.

Lastly, going back to our motivating example in Chapter 1, we briefly discussed how post

processing discontinuous Galerkin approximations could result in more accurate streamline

placements. In [67], Steffen et al. investigated how SIAC filtering of DG fields for streamline

integration compares computationally to common adaptive error control approaches. The

authors in [67] postprocessing over the entire DG field prior to streamline integration

using the symmetric form of the kernel discussed throughout this dissertation. As the

symmetric form of the kernel may not be applicable over the entire domain, Walfisch et

171

T able 9.1. Statistics calculated for isosurfaces extracted from the P 2 DG-projection of the
function sin(x) x sin(y) x sin(z) for isovalue = 0.6. The exact isosurface was generated on
a 1000 x 1000 x 1000 mesh. The polynomial modes were calculated on a 20 x 20 x 20 DG
mesh. MC stands for Marching Cubes.

P 2
DG approximation, Uh Filtered approximation, vUh

MC mesh Hausdorff order mean order Hausdorff order mean order

2 O cc 5.44E-03 - 2.83E-03 - 5.43E-03 - 2.83E-03 -

4 O ■cc 1.34E-03 2.02 6.38E-04 2.14 1.32E-03 2.04 6.43E-04 2.13
803 3.79E-04 1.82 1.68E-04 1.92 3.91E-04 1.75 1.72E-04 1.90

1 o ■cc 1.17E-04 1.69 3.90E-05 2.10 1.08E-04 1.85 3.90E-05 2.14
3203 5.70E-05 1.03 1.20E-05 1.70 2.70E-05 2.00 9.00E-06 2.11
6403 5.70E-05 0.0 1.10E-05 0.12 8.00E-06 1.75 3.00E-06 1.58

172

al. [75] presented streamline integration using the one-sided form of the kernel given in

[62]. Moreover, they considered filtering only along the streamline rather than over the

entire computational field. However, the one-sided filter in [62] is not always robust in

terms of producing lower error values near the boundaries. In addition, it does not acquire

any information at the point where the postprocessed value needs to be computed. For

streamline integrators, this could result in the advection of the streamline beyond the

position where the velocity is zero and consequently leading to a wrong visualization of

the vector field. In [73], Slingerland et al. proposed a position-dependent form of the kernel

tha t alleviates the challenges posed by the original form of the one-sided kernel. However,

the behaviour of this filter for streamline integration was never investigated. Additionally,

uniform quadrilateral meshes were always considered. The extension of the SIAC filter for

streamline integration over unstructured tessellation is the subject of ongoing research.

APPENDIX A

GAUSSIAN QUADRATURE RULES

In numerical analysis, a quadrature rule is an approximation of the definite integral of a

domain of integration. Gaussian quadrature is a particularly accurate method for treating

integrals where the integrand is smooth. In this technique, the integrand is represented as

a Lagrange polynomial using the Q points £j, which are to be specified, tha t is,

above to be exact if u(£) is a polynomial of order at most Q — 1. This would be true if,

for example, we choose the points so tha t they are equispaced in the interval. There is,

however, a better choice of zeros which permits exact integration of polynomials of higher

order than Q — 1. This remarkable fact was first recognised by Gauss and is at the heart of

Gaussian quadrature.

There are three different types of Gauss quadrature known as Gauss, Gauss Radau, and

Gauss-Lobatto. The difference between these three types comes from the different choices

function, usually stated as a weighted sum of function values at specified points within the

Q-i

u(0 = u(&)hi (0 + e(u)> (A.1)

where e(u) is the approximation error. Therefore, to evaluate integrals as

(A.2)

we obtain
Q -l

(A.3)

where

(A.4)

and

Since u(£) is represented by a polynomial of order Q — 1, we would expect the relation

174

of quadrature zeros. Gauss quadrature uses zeros which have points that are interior to the

interval, —1 < (i < 1 for i = 0, ■ ■ ■ ,Q — 1. In Gauss-Radau, the zeros include one of the

end-points of the interval, usually (= —1, and in Gauss-Lobatto, the zeros include both

end-points of the interval, tha t is (= ±1. We further note tha t the quadrature zeros are

chosen so tha t are the P zeros of the P th order Jacobi polynomial P . For further

detail, consult [40].

APPENDIX B

CUBATURE RULES

Let T be a d-dimensional simplex; here d = 2 (triangle) or 3 (tetrahedron). A cubature

rule R on T is defined as a set of point and weight pairs: R = (pi,wi)\i = 1, ■ ■ ■ , n, such

tha t for any function f (x) defined on a domain containing T and the points pi , its integral

on T can be approximated by:

where n € N is the number of points, pi are the quadrature points, wi are the associated

weights, \T\ denotes the area (d = 2) or volume (d = 3) of T.

When dealing with a simplex, it is often convenient to use barycentric coordinates. Let

vi , i = 1, ■ ■ ■ , d + 1, be the vertices of T. Then the barycentric coordinates ({1, ■ ■ ■ , £d+1) of

a point p with respect to T is determined by:

In finite element computations, numerical integration is widely used for computing

integrals of functions or bilinear forms. For triangular meshes, numerical integrations

on line segments, triangles, and tetrahedra are needed. In contrast to quadrilaterals or

hexahedra on which quadrature formulas can be naturally derived from tensor products of

one-dimensional Gauss quadrature rules, high-order nontensor product quadrature rules on

triangles and tetrahedra are difficult to construct. In fact, many of the nontensor product

rules published in finite element textbooks contain either negative weights or points outside

of the integration domain, which are undesirable for numerical computations. For the

purposes of this document, we followed the symmetric quadrature rules from [76] with all

positive weights.

(B.1)

(B.2)

a n d £ d+1 £ = 1 .

REFERENCES

[1] A in sw o rth , M., an d O den, J. A Posterori Error Estimation in Finite Element
Analysis. Wiley-Interscience, 2002.

[2] A p pelo , D., an d P e te r s s o n , N. A. A stable finite difference method for the
elastic wave equation on complex geometries with free surfaces. Communications in
Computational Physics 5, 1 (84-107), 2009.

[3] A sc h e r , U. M. Numerical Methods for Evolutionary Differential Equations. Society
for Industrial and Applied Mathematics, PA, USA, 2008.

[4] A sp e r t , N., S a n ta -C ru z , D., a n d E brah im i, T. Mesh: Measuring errors between
surfaces using the hausdorff distance. In Proceedings o f the IEEE International Con
ference on Multimedia and Expo (2002), vol. I, pp. 705 - 708. h t tp : / /m e s h .e p f l .c h .

[5] B abuSka, I., B a n e r je e , U., a n d O sb o rn , J. E. Superconvergence in the general
ized finite element method. Numerische Mathematik 107 (2007), 353-395.

[6] B abuSka, I., a n d D o r r , M. Error estimates for combined h- and p- version of the
finite element method. Numerical Mathematics (1981), 37-257.

[7] B abuSka, I., a n d R o d rig u e z , R. The problem of the selection of an A-Posteriori
error indicator based on smoothing techniques. International Journal o f Numerical
Methods in Engineering 36, 4 (1993), 539-567.

[8] B abuSka, I., S tro u b o u lis , T ., U padhyay, C., an d G a n g a ra j , S. Computer-
based proof of the existence of superconvergent points in the finite element method; su
perconvergence of the derivatives in the finite element soultions of Laplace’s, Poisson’s.
and the elasticity equations. Numerical Methods for Partial Differential Equations 12
(1996), 347-392.

[9] B abuSka, I., Szabo, B., an d K a tz , I. The p-version of the finite element method.
SIA M Journal of Numerical Analysis (1981), 18-515.

[10] B a le s , L. Some remarks on post-processing and negative norm estimates for ap
proximations to nonsmooth solutions of hyperbolic equations. Communications in
Numerical Methods in Engineering 9 (1993), 701-710.

[11] B ra m b le , J. H., an d S c h a tz , A. H. Higher order local accuracy by averaging in
the finite element method. Mathematics of Computation 31 (1977), 94-111.

[12] C a b ra l , B., a n d Leedom , L. Imaging vector fields using line integral convolution.
Computer Graphics 27 (1993), 263-272.

http://mesh.epfl.ch

177

[13] C o c k b u rn , B. Discontinuous Galerkin methods for convection-dominated problems.
In High-Order Methods for Computational Physics (1999), vol. 9 of Lect. Notes Comput.
Sci. Eng., Springer, pp. 69-224.

[14] C o c k b u rn , B. Devising discontinuous Galerkin methods. Journal o f Computational
and Applied Mathematics, 128 (2001), 187-204.

[15] C o c k b u rn , B., K a rn ia d a k is , G., a n d Shu, C.-W . The development of the dis
continuous Galerkin methods. In discontinuous Galerkin methods: theory, computation
and applications. Lecture notes on computational science and engineering, 3-50, Ed.,
vol. 11. New York: Springer-Verlag, 2000.

[16] C o c k b u rn , B., K a rn ia d a k is , G. E., an d Shu, C.-W . Discontinuous Galerkin
Methods: Theory, Computation and Applications. Springer-Verlag, Berlin, 2000.

[17] C o c k b u rn , B., Luskin, M., Shu, C .-W ., an d S u li, E. Post-processing of Galerkin
methods for hyperbolic problems. In Proceedings of the International Symposium on
Discontinuous Galerkin Methods (1999), Springer, pp. 291-300.

[18] C o c k b u rn , B., Luskin, M., Shu, C .-W ., an d S u li, E. Post-processing of Galerkin
methods for hyperbolic problems. In Proceedings of the International Symposium on
Discontinuous Galerkin Methods (1999), Springer, pp. 291-300.

[19] C o c k b u rn , B., Luskin, M., Shu, C .-W ., a n d S u li, E. Enhanced accuracy by
post-processing for finite element methods for hyperbolic equations. Mathematics of
Computation 72 (2003), 577-606.

[20] C o c k b u rn , B., a n d Ryan, J. K. Local derivative post-processing for discontinuous
Galerkin methods. Journal of Computational Physics 228 (2009), 8642-8664.

[21] C o n te , S., a n d d e B o o r, C. Elementary Numerical Analysis. McGraw-Hill, Tokyo,
1972.

[22] C u r tis , S., K irb y , R. M., Ryan, J. K ., a n d Shu, C.-W . Post-processing for the
discontinuous Galerkin method over non-uniform meshes. SIA M Journal on Scientific
Computing 30, 1 (2007), 272-289.

[23] d e B o o r, C. A practical guide to splines. Springer-Verlag, New York, 2001.

[24] D em kow icz, L. Computing with hp-adaptive finite elements: Volume 1, One and
Two dimensional elliptic and maxwell problems. Applied Mathematics and Nonlinear
Science 7, Chapman and Hall/CRC, London, UK, 2007.

[25] D em kow icz, L. Computing with hp-adaptive finite elements: Volume 2 Frontiers:
Three dimensional elliptic and maxwell problems with applications. Applied Mathe
matics and Nonlinear Science 11, Chapman and Hall/CRC, London, UK, 2007.

[26] D o m pierre , J ., Labbe , P ., Vallet , M .-G ., and Cam arero , R. How to subdivide
pyramids, prisms and hexahedra into tetrahedra. Tech. rep., Centre de Recherche en
Calcul Applique, Montreal, Quebec, 1999.

[27] D u ffy , M. G. Quadrature over a pyramid or cube of integrands with a singularity at
a vertex. SIA M Journal of Numercial Analysis 19, 6 (1982), 1260 - 1262.

178

[28] E n te z a r i , A., D y e r, R ., a n d M o l le r , T. Linear and cubic box splines for the
body centered cubic lattice. In VIS ’04: Proceedings of the conference on visualization
’04 (Wachington, DC, 2004), IEEE Computer Society, pp. 11-18.

[29] G euzaine, C., a n d R em aole , J .-F . Gmsh: a three-dimensional finite element mesh
generator with built-in pre- and post-processing facilities. International Journal of
Numerical Methods for Engineering 79, 11 (2009), 1309-1331.

[30] G o t t l ie b , D., a n d T adm or, E. Recovering pointwise values of discontinuous data
within spectral accuracy. In Processings of US-Israel Workshop, Progress in Scientific
Computing (1985), vol. 6 of Lect. Notes Comput. Sci. Eng., Birkhauser Boston Inc.,
pp. 357-375.

[31] H e s th a v e n , J. S., an d W a rb u r to n , T. Nodal discontinuous Galerkin methods:
Algorithm, Analysis and applicaitons. Springer, New York, NY, 2008.

[32] H ou, H. S., a n d A n d rew s, H. C. Cubic splines for image interpolation and digital
filtering. IEEE Transactions on acoustics, speech, and signal processing 26 (1978),
508-517.

[33] H ughes, T. The finite element method: Linear Static and Dynamic Finite Element
Analysis. Dover Publications, New York, NY, 2000.

[34] Ihm, I., C ha, D., an d K an g , B. Controllable local monotonic cubic interpolation
in fluid animations: natural phenomena and special effect. Computer animation and
virtual worlds 16, 3-4 (2005), 365-375.

[35] I .J .S o h o e n b e rg . Cardinal Spline Interpolation. Society for Industrial Mathematics,
Philadelphia, Pa, 1987. Conference board of the mathematical sciences regional
conference series, No. 12.

[36] Ji, L., Xu, Y., a n d Ryan, J. K. Accuracy enhancement of the linear convection-
diffusion equation in multiple dimensions. Mathematics of Computation (2012). Avail
able online.

[37] Jo h n so n , C., a n d N a v e r t , U. Analysis of some finite element methods for
advection-diffusion problems. In Mathematical and numerical Approaches to Asymp
totic Problems in Analysis (1981), vol. 47, North Holland Math. Stud., pp. 99-116.

[38] J r . , J. D. Superconvergence in the pressure in the simulation of miscible displacement.
SIA M Journal of Numerical Analysis 22 (1985), 962-969.

[39] K a rn ia d a k is , G. E., an d K irb y , R. M. Parallel Scientific Computing in C++ and
M PI. Cambridge University Press, New-York, NY, USA, 2003.

[40] K a rn ia d a k is , G. E., an d Sherw in , S. J. Spectral/hp element methods for CFD -
2nd Edition. Oxford University Press, UK, 2005.

[41] K ing, J ., M irzaee , H., Ryan, J. K ., a n d K irb y , R. M. Smoothness-increasing
accuracy-conserving (SIAC) filtering for discontinuous Galerkin solutions: Improved
errors versus higher-order accuracy. Journal of Scientific Computing (2012). Available
online.

[42] L eV eque, R. J. Finite-Volume Methods for Hyperbolic Problems. Cambrige Univer
sity Press, Cambridge, UK, 2002.

179

[43] Li, B. Q. Discontinous finite elements in fluid dynamics and heat transfer. Springer,
London, UK, 2006.

[44] L o re n se n , W . E., a n d C lin e , H. E. Marching cubes: A high resulotion 3d surface
construction algorithm. In SIGGRAPH ’87 Proceedings of the 14th annual conference
on Computer Graphics and interactive techniques (1987), vol. 21, ACM New York, NY,
USA, pp. 163-169.

[45] M ajd a , A., M cD onough , J ., a n d O sh e r, S. The Fourier method for nonsmooth
inital data. Math. Comp., 32 (1978), 1041-1081.

[46] M irzaee , H., Ji, L., Ryan, J. K ., a n d K irb y , R. M. Smoothness-increasing
accuracy-conserving (SIAC) post-processing for discontinuous Galerkin solutions over
structured triangular meshes. SIA M Journal o f Numerical Analysis 49 (2011), 1899
1920.

[47] M irzaee , H., K in g , J ., Ryan, J. K ., and K irby , R. M. Smoothness-increasing
accuracy-conserving (siac) filters for discontinuous galerkin solutions over unstructured
triangular meshes. accepted., 2012.

[48] M irzaee , H., Ryan, J. K ., a n d K irb y , R. M. Quantification of errors introduced in
the numerical approximation and implementation of smoothness-increasing accuracy-
conserving (SIAC) filtering of discontinuous Galerkin (DG) fields. Journal of Scientific
Computing 45 (2010), 447-470.

[49] M irzaee , H., Ryan, J. K ., an d K irb y , R. M. Efficient implementation of
smoothness-increasing accuracy-conserving (SIAC) filters for discontinuous Galerkin
solutions. Journal o f Scientific Computing 52, 1 (2011), 85-112.

[50] M irzaee , H., Ryan, J. K ., and K irby , R. M. Smoothness-increasing accuracy-
conserving (siac) filters for discontinuous galerkin solutions: Application to structured
tetrahedral meshes. submitted to SIAM J. Numer. Anal.., 2012.

[51] M itc h e l l , D. P ., an d N e tr a v e l i , A. N. Reconstruction filters in computer-
graphics. In SIG GRAPH ’88: Proceedings of the 15th annual conference on computer
gaphics and interactive techniques (New York, NY, 1988), ACM Press, pp. 221-228.

[52] M ock, M. S., a n d Lax, P . D. The computation of discontinuous solutions of linear
hyperbolic equations. Communications on Pure and Applied Mathematics 18 (1978),
423-430.

[53] M o l le r , T ., M a c h ira ju , R ., M u e l le r , K ., a n d Y ag e l, R. Evaluation and
design of filters using a Taylor series expansion. IEEE Transaction on Visualization
and Computer Graphics 3, 2 (1997), 184-199.

[54] M o l le r , T ., M u e l le r , K ., K u rz io n , Y ., a n d Y ag e l, R. Design of accurate and
smooth filters for function and derivative reconstruction. Proc. IEEE Symp. Volume
Visualization (VVS ’98) (1998), 143-151.

[55] N aras im h an , R ., a n d B abuSka, I. Interior maximum norm estimates for finite
element discretizations of the stokes equations. Applicable Analysis 86, 2 (2007), 251
260.

180

[56] N u rn b e rg e r , S la te x c h u m a k e r , L. L., an d Z e ife ld e r , F. Local Lagrange
interpolation by bivariate C1 cubic splines. In Mathematical methods for Curves and
Surfaces: Oslo 2000 (Nashville, TN, 2001), Vanderbilt University, pp. 393-404.

[57] P a r k e r , J. A., K enyon , R. V., a n d T ro x e l , D. E. Comparison of interpolating
methods for image resampling. IEEE Transactions on Medical Imaging 2, 1 (1983),
31-39.

[58] P a te r a , A. A spectral method for fluid dynamics: Laminar flow in a channel
expansion. Journal o f Computational Physics (1984), 54-468.

[59] P e iro , J ., an d Sherw in , S. Finite difference, finite element and finite volume
methods for partial differential equaitons. Handbook of Materials Modeling (2005),
2415-2446.

[60] R e ed , W ., and H ill , T. Triangular mesh methods for the neutron transport
equation. Tech. rep., Los Alamos Scientific Laboratory Report, Los Alamos, NM,
1973.

[61] Ryan, J ., Shu, C .-W ., a n d A tk in s , H. Extension of a post-processing technique
for the discontinuous Galerkin method for hyperbolic equations with application to an
aeroacoustic problem. SIA M Journal on Scientific Computing 26 (2005), 821-843.

[62] Ryan, J. K ., a n d Shu, C.-W . On a one-sided post-processing technique for the
discontinuous Galerkin methods. Methods and Applications o f Analysis. 10 (2003),
295-307.

[63] S a b lo n n ie re , P . Positive spline operators and orthogonal splines. Journal of
Approximaiton Theory 52 (1988), 28-42.

[64] S ch u m ak er, L. Spline Functions: Basic Theory. John Wiley & Sons, New York,
1981.

[65] S ta l l in g , D. Fast texture-based algorithms for vector field visualization. PhD thesis,
Konrad-Zuse-Zentrum fur Informationstechnik, 1998.

[66] S ta l l in g , D., a n d H ege, H .-C. Fast and resolution independent line integral
convolution. Proc. AC M SIG GRAPH ’95 (1995), 249-256.

[67] S te f f e n , M., C u r tis , S., K irb y , R ., a n d Ryan, J. Investigation of smoothness-
enhancing accuracy-conserving filters for improving streamline integration through
discontinuous fields. IEEE Transactions on Visualization and Computer Graphics 14,
3 (2008), 680-692.

[68] S t r a n g e , G., an d F ix, G. J. Analysis of the finite element method. Prentice Hall,
Englewood Cliffs, NJ, 1973.

[69] S u th e r la n d , I. E., a n d H odgm an, G. W. Reentrant polygon clipping. Commun.
AC M 17, 1 (1974), 32-42.

[70] ThomEe, V. High order local approximations to derivatives in the finite element
method. Mathematics of Computation 31 (1977), 652-660.

[71] Thom ee, V. Negative norm estimates and superconvergence in Galerkin methods for
parabolic problems. Mathematics of Computation 31 (1980), 93-113.

181

[72] T o n g , Y ., Lom beyda, S., H iran i, A., an d D esb ru n , M. Discrete multiscale
vector field decomposition. ACM Transaction on Graphics 22, 3 (2003), 445-452.

[73] van S l in g e r la n d , P ., Ryan, J. K ., a n d V uik, C. Position-depnedent smoothness-
increasing accuracy-conserving (SIAC) filtering for improving discontinuous Galerkin
solutions. SIA M Journal on Scientific Computing 33 (2011), 802-825.

[74] W ah lb in , L. Superconvergence in Galerkin finite element methods. vol. 1605 of
Lecture Notes in Mathematics, Springer Verlag.

[75] W a lf isc h , D., Ryan, J. K ., K irb y , R. M., an d Haim es, R. One-sided smoothness-
increasing accuracy-conserving filtering for enhanced streamline integration through
discontinuous fields. Journal of Scientific Computing 38, 2 (2009), 164-184.

[76] Z hang , L., Cui, T ., an d Liu, H. A set of symmetric quadrature rules on triangles
and tetrahedra. Journal of Computational Mathematics 27, 1 (2009), 89-96.

[77] Z ienkiew icz, O., a n d T a y lo r , R. Finite element method: Volume 1, The Basics.
Butterworth-Heinemann, Boston, MA, 2000.

[78] Z ienkiew icz, O., a n d T a y lo r , R. Finite element method: Volume 2, Solid
Mechanics. Butterworth-Heinemann, Boston, MA, 2000.

[79] Z ienkiew icz, O., a n d T a y lo r , R. Finite element method: Volume 3, Fluid
Dynamics. Butterworth-Heinemann, Boston, MA, 2000.

