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Abstract

Modern technology has enabled the scientific community to collect vast amounts of physical data.
These data are often sampled at unstructured spatial locations because of physical constraints,
and measured with uncertainty because of measurement technique errors. However, most existing
data representation and visualization methods apply only to gridded or regular data and ignore the
uncertainty in the data. There currently exists no general and robust solution to the n-dimensional
nonlinear continuous, uncertain data management problem supporting computer interrogation and
visualization.

In this thesis, we investigate the application of multivariate simplex splines on scientific database
systems to represent, manipulate and visualize efficiently huge collections of 2D and 3D data. Our
methods are extensible to general n-dimensional data. The system we develop consists of prepro-
cessing (domain establishment), construction of data representation functions, and visualization.

The domain of 2D or 3D physical data is created by a generalization of the convex hull of
unstructured data, the a-shape, such that the intuitive shape of the domain of the data can be
captured in a realistic manner. The a-shape technique is used to detect interactively the boundary
of the domain of a finite set of points and thus to generate an appropriate domain for a set of points
for data modeling and representation.

Multivariate simplex splines are introduced and applied in this work for non-linear physical
data representation. Methods of efficient evaluation of bivariate and trivariate simplex splines are
presented and implemented in the system. By using simplex spline functions in data modeling,
optimal smoothness up to C*~! for piecewise polynomials of degree k over irregular domains is
achieved automatically. Least-squares approximation is adopted in 2D and 3D data modeling.
Automatic knot generation and adaptive subdivision are developed in the data modeling procedure
to enhance the modeling efficiency and accuracy.

Interval simplex splines (ISS) are introduced next and a method for creating bivariate and
trivariate ISS functions from measured data based on linear optimization is developed to capture
all possible behavior of physical data with uncertainties in irregular domains. In this way, the
uncertainties in the data set are represented in a manner that provides for high accuracy and
resolution with a guaranteed bounded approximation error.

Current algorithms in the marching cubes category for rendering implicit or isovalued surfaces
lack the power to accurately render surfaces in irregular domains. Based on the cell-tuple topologi-
cal modeling data structure and adaptive subdivision, marching simplices, a method of visualizing
general scalar functions in 2D and 3D irregular domains, is developed and implemented. It has
the following advantages: ability in modeling scalar functions in irregular domains; elimination of
ambiguous cases; provision of automatic consistency between pieces of the function in adjacent sim-
plices; and generation of isosurfaces ready for further interrogation since their topology is encoded.

Examples illustrate the computational properties of the above techniques.

Thesis Supervisor: Nicholas M. Patrikalakis
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Chapter 1

Introduction

“The purpose of computing is insight, not numbers”
— Richard Hamming, 1962 [54].

“Scientific visualization is concerned with exploring data and information graphi-
cally — as a means of gaining understanding and insight into the data.”

— Rae Earnshaw, 1992 [27].

1.1 Motivations

Computer databases have been used for business and administrative applications for more
than twenty years. In the early days of computing machinery, the economic demands
caused by administrative applications (e.g., census problem) and automated bookkeeping
were the most important driving forces behind the development of computing machinery
and its accompanying software. Therefore, this area of business-oriented database concepts
has reached a level of practical maturity. The situation appears quite different in the
area of scientific databases. Here exist huge collections of data, for example, 20 gigabytes
containing geographical and geophysical data of the US, see [102]. However major problems
remain when evaluating and interrogating these data entities to answer important questions
using the information encapsulated in the data [58]. One of the reasons is that, while
in administrative problems, software developed for storing, evaluating, comparing, and
sorting discrete records carries very far, it is generally not sufficient to describe and evaluate
complex physical phenomena [51]. Here the amount of single data items is simply much
larger than what is encountered in the business world and the questions mostly posed
by evaluations are different. Generally the scientist is not so much interested in single
data but rather in evaluating continuous functions defined by using the data and in the
knowledge of the physical behavior of the system. As far as scientific data have a physical
meaning. they can be modeled by continuous functions because these functions (derived from
a few basic physical principles) have been extremely successful in describing and predicting
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physical phenomena. We must take this into consideration for our database because those
continuity properties offer the possibility to reduce the amount of datal enormously by using
highly accurate approzimations of the continuous function [104]. The representation of those
approximations may need many orders of magnitude less data than the representation of the
direct data measurements. This data reduction problem is one of the fields where techniques
from spline approzimation and representation offer powerful tools ideal for representation
of functions on computing machinery. Note that continuous data representation is not only
necessitated by the request for data reduction but also by the fact that physical properties
depending on (possibly higher order) derivatives (e.g., velocity, acceleration, curvature) can
only be recognized properly through continuous representations of the data. (See also [104].)

Physical and engineering data usually have inaccuracies and uncertainties. Those un-
certainties exist because of limitations in measurement precision, methods of measurement
reporting or, often, because of difficulties in making observations and measurements in in-
accessible or hostile regions. An important fact of scientific data is that they are often
sampled in irregular regions, that is, a domain that cannot be accurately decomposed into
square or cubical elements (quadtree, octree and voxel) and have non-uniform population
distribution. However, most current data modeling and database systems do not offer ro-
bust solutions to capture and process the uncertainties in physical data and handle data
defined in irregular domains. Thus, it is desirable to develop a database system to represent,
interrogate and visualize scientific data with uncertainty in irregular domains.

Scientific databases are also driven by important applications as e.g., (1) measurements
of temperature, salinity, and conductivity at various locations in 3D space in the ocean; (2)
mineral concentrations known at various locations in 3D space; (3) precipitation measure-
ments at various weather stations; (4) density measurements at various locations inside a
human body; and (5) geographical information systems (GIS).

1.2 Overview of Previous Work

Three main components for establishing a scientific database system are:
1. preprocessing, which facilitates the data modeling process;
2. representation, which is the key in the construction of a scientific database system;
3. and interrogation/visualization, which helps to further analyze and understand the
physical phenomena represented by the data.
1.2.1 Data Representation

The database research communrity is currently devoting considerable attention to scientific
database issues [51]. The techniques developed for scientific data management have been

!While keeping all the relevant information they contain.
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driven by applications and are often case-specific. There is currently no general and ro-
bust solution to the n-dimensional nonlinear continuous, and uncertain data management
problem supporting computer interrogation and visualization.

Data representation is an important issue in many fields such as geology, medical imag-
ing, shape design, CAD/CAM, and computer vision. The vast range of applications has
stimulated diverse methods for this problem since the early sixties. Different methods, de-
veloped to fulfill different application requirements, can be categorized by several criteria.
Data representation can be classified in three categories: discrete, linear, and nonlinear.
Discrete representation includes quadtree representation techniques; linear representation
uses faceted models for the data; and nonlinear representation, which is more related to
this thesis, contains the class of algebraic, Coons, B-spline, and interval B-spline functions.
In our work, we focus on nonlinear representations. Again, in the category of nonlinear
representation, there are several classifications which will be addressed in the following
subsections.

Discrete Representation

In the literature for discrete representation, many researchers use quadtree, octree, or voxel
methods to represent data, especially in image processing. Samet [81] discussed quadtree
and octree representations. In [81] the quadtree is a refinement of the array representation of
an image that attempts to save storage by taking advantage of a regularity in the image by
decomposing the array into homogeneous disjoint cubes centered at predetermined positions.
A shortcoming of the quadtree representation is that it involves a considerable amount of
overhead in computation.

Modeling is key to the development of scientific data visualization and interrogation.
Many current volume rendering applications are based on very regular and dense 3D image
data from a scanning instrument, as in magnetic resonance imaging. This type of data and
its constituent “voxels” are the direct 3D analog of the 2D images and pixels associated
with raster graphics. We often view this data as samples (over a regular Cartesian grid) of
a scalar-valued trivariate function. Some authors have used “volume modeling” to refer to
the process of identifying and synthesizing objects contained in this type of 3D data set,
see [71] for details.

Linear Representation

A typical approach to surface reconstruction in this category is to use surface characteristics
extracted directly from the discrete data set. Combining classical topological techniques
with differential geometry, the evaluation of Gaussian curvature is used in [34, 33, 5]. Gaus-
sian curvature can be extracted from a faceted model by use of the angle excess associated
with the polygonal paths of the triangular subdivision. The Gaussian curvature K, of a
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faceted surface at a vertex v can be computed with the following relations.

Q
A, = 21— 6 (1.1)

i=0

2412 _ 2
A (e tbi—cf 9
0; = cos ( Sah; ) (1.2)
2A

K, = —/—— 1.3
Z?=0Ai ( )
A, = \/s;(s,-——a,-)(s,-——b,')(s,-—c,-) (1.4)
s = %(a,-+b¢+c,~) (1.5)

where A, is the angle excess measured in radians (as defined in Figure 1-1), Q is the
number of adjacent vertices, 8; is the angle of the triangle formed by sides with lengths a;
and b; (emanating from the vertex being interrogated), ¢; is the side connecting the adjacent
vertices, and A; is the area of the triangle. The curvature information is mainly used to

Figure 1-1: Discrete surface analysis (adapted from Tuohy [96]). T; is the *# triangle.

extract the convex, concave, planar and saddle regions of the surface for the surface shape
description.

In [21, 32], an algorithm for constructing a Delaunay triangulation constrained 2 by
extracted surface characteristics is used to construct a faceted model of the data. In the
latter, surface refinement by incremental (based on deviations from the underlying data)
and stochastic means (the addition of a random displacement in a tiling approach) is used
to construct the surface representation.

2A constrained Delaunay triangulation is a process of surface refinement that allows the violation of the
Delaunay criteria to enhance the accuracy of the representation. For further details on definition of Delaunay
triangulation, see Appendix A.
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Nonlinear Representation

In this category, for 2D data, many basic ideas and different approaches have been sur-
veyed by Schumaker [83] and Barnhill [4]. Many developed methods have been tested and
compared by Franke [44, 45]. For both 2D and 3D data, Foley et al. [40] outlined sev-
eral methods that were recently developed for computer visualization and data interpola-
tion. They include multiquadric(M@) interpolation, distance and nearest neighbor methods,
triangulation-based methods. In this section, we list the ones in [40] and several recently
developed methods. All these methods are briefly described in the following subsections.

Multiquadric (MQ) Interpolation
The MQ method is an infinitely differentiable function of the form

N
F(p) = f(p) = )_ a;Bi(p) (1.6)
i=1

where p = (z,9), Bi(p) = \/d?(p) + B?, d}(p) = ||p — pil|* = (z — 2:)* + (y — ;) and R?
is a positive constant. The coefficients a; are computed by solving the N X N linear system
of equations F(p;) = fj for j = 1,..., N, where N is the number of the scattered data. In
matrix form, the vector a = (ay, ...,an)T is the solution of Aa = f, where f = (fi,..., fn)T
and the (i, j)-element of matrix A is B;(p;). See Hardy [55] and Franke [45] for a complete
description.

The reciprocal multiquadric (RMQ) interpolant is similar to the MQ interpolant, except
that the basis functions are [B;(p)]™1,¢=0,...,N.

Multiquadric interpolation is one of the simplest methods to implement and provides one
of the most effective solutions. It could be used for 3D data modeling easily. A negative
aspect of the MQ method is that if NV is large, the linear system of equations can be ill-
conditioned and costly to solve. The accuracy of the MQ method depends heavily upon
the value chosen for R?. The optimal value of R? is problem-dependent, and most early
formulas for R? involve the number of data points together with the size and shape of
the domain containing the data. A critical unsolved problem involving the use of the MQ
method is how to compute the optimum value (or even a consistently good value) for R2.

Distance and Nearest Neighbor Methods

These methods are also called Shepard’s Methods [86]. They were developed by meteorol-
ogists and geologists [17, 16], and are still undergoing development. Shepard defined his
interpolating function f(z,y) to be a weighted mean of the ordinates f;:

N
f(z,y) =Y _wi(z,y)f; (1.7)

=1
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with weight functions (basis functions)

oi(z,y) (1.8)

wi(z,y) = Z;\’;l o;i(z,y)

h
where 1

WO = e+ - g

is a power of the inverse Euclidean distance d;(z,y) = /(z — z:)? + (y — %:)?. This method
is simple and could be used for 3D data modeling. But it may have cusps at data points or
its partial derivatives may be ill-defined at these points. This type of method is global, that
is, as soon as one point is changed or a data point is added or removed, the interpolating
process needs to be repeated to permit interrogation/visualization.

u; € Rt (1.9)

Triangulation-based Methods

Generally in this category, there are sub-classifications, including classical methods, mini-
mum norm network methods and physically-based methods.

1. Classical methods: This type of method involves triangulating the domain vertices
and defining the fitting function F(p) piecewise over each triangle. For interpolation
of bivariate scattered data using a triangle-based method, the following steps are
involved. The points p; = (&, %) in the plane are first triangulated using local or
global optimality criteria. The next step involves estimating partial derivatives of the
underlying function at the vertices p; based upon some or all of the data (z;, i, fi).
Finally, the interpolating function is defined over each triangle using the position and
derivative information at the vertices of the triangle.

It has been shown in Farin [38] that it is not possible, in general, to solve the scattered
data interpolation problem with cubic polynomials defined over arbitrary triangulated
data with given tangents and guarantee C! continuity. The Clough-Tocher method
[15] overcomes the limitation by first splitting each domain triangle into three trian-
gles, and then a piecewise cubic interpolation is formed over the finer triangulation.
Given a triangulation of the scattered data and first-order partial-derivative estimates
at the vertices, a degree of freedom remains in the Clough-Toucher method for each
edge of the original triangulation. A commonly used approach is to assume that the
cross boundary derivatives vary linearly on the edges. A more useful approach for
selecting the value of this degree of freedom is given in Farin [38], where the cross-
boundary derivatives are selected to minimize a measure of the jump in the second
derivative across the edge.

2. Minimum norm network methods:
After constructing a triangulation of the data points in the plane, the minimum norm
network (MNN) method in Nielson [70] computes first-order partial derivatives at
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the vertices (z;, y;) that define cubic polynomials over each edge of the triangulation.
The first-order partial derivatives are computed by solving a sparse linear system of
equations so that the network of piecewise cubic polynomials minimizes the integral
of the square of the second derivatives over all edges in the triangulation. Because
of this minimization, the piecewise cubic network can be considered to be a bivariate
analog of the univariate cubic spline. The MNN method is a C? interpolant defined
on the convex hull of a set of data points, and it is perhaps the most-effective of the
triangle-based methods tested in Franke [45].

Examples of cellular decomposition methods for volumetric data are the 3D version
of the Minimum Norm Network (MNN) spline and the localized version of the volume
spline. The MNN can be applied to very large data sets, but its implementation
requires a tetrahedrization algorithm and a fairly complicated iterative method for
solving a large, sparse equation system. There are general strategies for local methods
but these approaches still need considerable work before they are truly viable.

3. Physically-based methods:

In related work, Celniker [9] and Celniker and Gossard [10] developed methods for
finite element based free-form shape design. The finite element method is applied to
generate shapes that minimize a surface energy functional subject to user-specified
geometric constraints while responding to user-specified forces. Because of energy
minimization, these surfaces seek globally fair shapes. Fair shapes with C? continuity
are constructed. Fang [35] and Fang and Gossard [37, 36] presented physically-based
methods for parametric curve and surface reconstruction in case the parametric values
of interior points of these entities are not known. The basic ideas involve simulating the
deformations of an elastic beam and plate under the application forces by minimizing
energy functionals which are specifically designed to meet CAD requirements. Similar
to work by Celniker, these functions have C? continuity and the method was developed
for univariate and bivariate problems.

Terzopoulos and Qin [93] developed a dynamic generalization of the nonuniform ra-
tional B-spline (NURBS) model, or D-NURBS, to represent free-form shapes as well
as common analytic shapes. This model is a physics-based model that incorporates
mass distributions, internal deformation energies, and other physical quantities into
the popular NURBS geometric substrate. Using D-NURBS, a modeler can interac-
tively sculpt curves and surfaces and design complex shapes to required specifications
not only in the traditional indirect fashion, by adjusting control points and weights,
but also through direct physical manipulation, by applying simulated forces and local
and global shape constraints. Their dynamic behavior results from the numerical in-
tegration of a set of nonlinear differential equations that automatically evolve the con-
trol points and weights in response to the applied forces and constraints. Lagrangian
mechanics and a finite-element-like discretization were employed to derive equations
for the dynamic behavior of the D-NURBS. Very recently, Qin and Terzopoulos [79)
developed a physically based model relying on triangular B-spline geometry and prin-
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ciples of physical dynamics. The dynamic behavior of this model, resulting from the
numerical integration of differential equations of motion, produces physically mean-
ingful and highly intuitive shape variation. Similar to their previous work, Lagrangian
mechanics are used to formulate the equations of motion and finite element analysis
is employed to reduce these equations to efficient numerical algorithms. Dynamic
triangular B-spline was applied in fitting of structured 2D data.

The class of triangulation-based methods are local methods and can yield smooth curves
or surfaces. A possible disadvantage of these methods is that they are generally implemented
in a procedural approach by cubic Hermite operators and a weighted combination of three
partial interpolants is formed. This lack of a simple closed form expression also makes it
somewhat complex to compute partial derivatives and surface normals that are needed in
most geometry processing applications.

Contour Based Methods

In a different approach, homotopy techniques using continuous deformation based on a
toroidal graph allow surface reconstruction from lower-dimensional data, such as contours,
see in Kunii and Shinagawa [59]. A toroidal graph represents correspondence between
points on adjacent contours in order to prevent unwanted folds or twists in the surface. As
an extension of this work, a new type of toroidal graph is used in Ikeda et al. [58] as a
data structure for terrain topology to represent the relationship between multiple contours
including critical points where contours split or merge. It is unclear how the method might
extend to higher dimensions.

Spline Based Methods

In a manner similar to physically-based methods, many methods for surface reconstruction
have used techniques from the field of regularization. In Delingette [22], Sinha [88], and
Terzopoulos [94], a surface is constructed by minimizing an energy functional that charac-
terizes geometric properties of the original surface. The method constructs a surface Z(z, y)
such that

2z =Li[Z(z,y)] + & (1.10)
for all ¢ where L; denotes measurement functionals, i.e., linear operators, of Z(z,y)
okz .
L,’[Z]= W J =0,1,2,...,k (1.11)

(zi,vi)

and z; is the function value of the data and ¢; denotes measured errors.
The regularized solution to the surface reconstruction problem seeks a minimum to the
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Tikhonov general form:

o= [ [ zf:(f) (L;(2))* da dy. (1.12)

where D is the 2D rectangular domain of interest.

In a similar approach, Dierckx [23] formulates the problem as finding the optimal knot
vector for a least squares fitting problem using splines. It defines a measure of smoothness
of the approximating spline as the high order discontinuity across the knots of the spline
and seeks a minimum subject to the constraint that the weighted sum of the squared
residuals cannot exceed a given value. This problem is solved using the method of Lagrange
multiplier.

Tuohy and Bardis [97] described a surface approximation method which can convert a
high degree Bézier or B-spline surface to a lower degree representation to facilitate the ex-
change of surface geometry between different geometric modeling systems. It uses adaptive
sampling to compute approximation error and lofting of isoparametric curves to efficiently
produce the approximating surface. The method is incapable of approximating scattered
data in an irregular domain. The 3D version of B-spline (volumetric B-spline) modeling is
a natural extension of B-spline surfaces and works well, but applies to modeling uniformly
distributed data only. See Tuohy et al. [100, 101] and Yoon [106] for further description.

Attempts to model data in irregular domains include application of simplicial B-splines.
Auerbach et al. [2] developed an approximation and geometric modeling system with sim-
plicial B-splines associated with irregular triangles. They employed bivariate quadratic
simplicial B-splines defined by their corresponding set of knots which are derived from a
(suboptimal) constrained Delaunay triangulation of the domain and use the simplicial B-
spline to fit a set of data to obtain a C'-smooth surface. The simplicial B-splines they
used are defined and developed in Dahmen and Micchelli [18, 19] and Héllig [56]. By using
simplicial B-splines associated with irregular triangles for the purpose of approximation and
geometric modeling, the shortcomings of tensor product B-splines requiring a grid of knots
topologically equivalent to a rectangular grid are overcome, while at the same time many of
their features are preserved. However, it is unclear how appropriate is the selection of the
domain of the 2D scattered data in their approach and how they subdivided the domain
if the resulting simplicial surface is not satisfactory after the first round of fitting. One of
the other weaknesses of this modeling system is in the calculation of the simplicial B-spline.
Incorrect results may arise when the recurrence relation is used for points that happen to
be on knot lines (lines connecting any two knots), see Micchelli [68] and Grandine [48] for
further explanation.

Very recently, Pfeifle and Seidel [78] presented a scheme to fit 2D scattered data with
bivariate simplex spline functions defined in [20, 85, 43]. The scheme first automatically
triangulates a domain containing the data points and generates basis functions over the
triangulation. Then it combines least squares and bending energy minimization into the
approximation of 2D scattered data. In this manner, a smooth surface can be generated.
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Therefore, this scheme is a good application of bivariate simplex splines, but is not extended
into trivariate problems.

Based on the above reviewed work, in this thesis, we will develop a data representation
system which includes an appropriate definition of the domain of 2D (3D) scattered data; the
proper triangulation on the 2D (3D) data domain to form initial approximating functions
and the application of simplex splines in modeling 2D (3D) data as defined in Dahmen,
Micchelli, and Seidel [20] to iteratively refine the approximation accuracy.

1.2.2 Data Representation with Uncertainty

A specific objective of this thesis is to explore interval arithmetic methods in represent-
ing and processing uncertainty in physical properties using the concept of interval simplex
splines (ISS), rather than uncertainty due to numerical inaccuracy alone. However in inter-
rogation of these splines, both uncertainties will be correctly accounted for by using interval
arithmetic methods.

Stewart [90] presented a model-based approach to underwater 3D imaging and map-
ping with uncertainty. Approaches to incorporating new sensor information — stochastic
backprojection — are derived from an incremental adaptation of the summation method for
image reconstruction. Error and ambiguity are accounted for by blurring a spatial projec-
tion of remote-sensor data before combining it stochastically with the model. By exploiting
the redundancy in high-bandwidth sensing, model certainty and resolution are enhanced as
more data accumulate. In the case of three-dimensional profiling, the model converges to a
fuzzy surface distribution from which a deterministic surface may be extracted.

A different approach for uncertainty modeling is kriging, see [75, 26]. Kriging, a stochas-
tic model of spatial variation, originated from geophysical information systems (GIS) about
two decades ago. This approach considers the fact that spatially distributed data behave
like random variables and regionalized variable theory provides a set of stochastic methods
for analysing them. It is essentially a method of estimation by local weighted averaging:

2*(z) = Z Aiz(x;) (1.13)

=1

where z*(z) is the kriging estimation, and A; are the weights which are chosen such that
2*(z) is the best linear unbiased estimator based on the z*(z), i.e., the variance is minimized.
It has been proven in [75, 26] that splines are special cases of kriging. However, kriging
differs from other spline-bases methods in that its objective is not aesthetics but accuracy.
With kriging it is possible to calculate the estimation variance at each point which tells us
how well each point is estimated compared to the others. The negative aspect of kriging is
that it is time consuming.

Tuohy and Patrikalakis [99], Tuohy et al. [98] and Tuohy [96] applied interval methods
in the representation of functions with uncertainty, such as geophysical property maps. Ten-
sor product interval B-splines (IBS) are introduced for the nonlinear representation of two
dimensional geophysical parameters within rectangular domains. A method for the creation
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of IBS surfaces from measured data is developed such that the topography and uncertainty
in the data are represented in a manner that provides for high accuracy and resolution,
data reduction, and efficient interrogation with a guaranteed bounded approximation error.
Bounds of the error are represented by intervals instead of the more commonly used point
approximations. Tuohy and Patrikalakis [99] focused on geophysical data with uncertainty
and developed the method of tensor product interval B-spline surfaces (IBS). The recon-
struction of IBS is achieved by minimizing (maximizing) the volume under the B-spline
surface with the constraint that the upper (lower) B-spline surface must lie completely
above (below) the upper (lower) bilinear surface representing limits of variation of original
data. The method of IBS has been extended to trivariate cases, defined over 3D rectangular
parameter boxes. A summary of this work on trivariate interval B-splines can be found in
[100, 101, 106).

In this work, we introduce the concept of interval explicit bivariate and trivariate simplex
splines that not only represent the topography of the data, but also the uncertainty of
the data resulting from either sensor measurement error, measurement platform position
uncertainty (e.g., from GPS positioning resolution), or from standard formats for data
recording (e.g., proper documentation). Specifically, quadratic interval ezplicit (rather than
parametric) bivariate and trivariate simplex spline functions will be fit to the data.

1.2.3 Review of Visualization Methods

A popular technique for visualizing a trivariate scalar function is by rendering a selected set
of isosurfaces. The 2D analog is generating contour lines, e.g., topographical isolevel maps.
Techniques for rendering isosurfaces produce surfaces in the domain of the scalar quantity on
which the scalar quantity has the same value, the isosurface value. These isosurfaces can be
colored according to the isosurface values, or they can be colored according to another scalar
field using texture mapping, and multiple isosurfaces can be displayed using transparency
rendering techniques available on state-of-the-art graphics workstations.

As described by Drebin et al. [25] and Levoy [61], rendering techniques can be divided
into surface rendering techniques and (direct) volume rendering techniques. Surface ren-
dering is an indirect geometry-based technique which is used to visualize structures in 3D
scalar or vector fields by first converting these structures into surface representations and
then using conventional computer graphics techniques to render their surfaces. Direct vol-
ume rendering is a technique for the visualization of 3D scalar data sets without conversion
to surface representations. For a broad review, see Rogers and Earnshaw [80] and Brodlie
et al. [7].

A direct volume rendering technique for creating isosurfaces in sampled data considers
cells with sample points as corners and approximates the isosurface in each cell by one or
more polygons whose vertices are obtained by (usually linear) interpolation of the sample
data. Specifically, each polygon vertex is a point on a cell edge between two adjacent sample
points, where the function is estimated to be equal to the desired isosurface value. The two
sample points on that edge have values on opposite sides of the isosurface value, and the
interpolated point is called the intersection point.
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Figure 1-2: The look-up-table for marching cubes algorithm. There are fifteen distinct
topologies for a partial surface in a grain cube, “¢” means function value is +, otherwise
the value is —.

Cube Based Methods

The marching cubes algorithm developed by Lorensen and Cline [64] is one such direct
volume rendering method which constructs a polygonalization of an implicit (isovalued)
surface within cube cells. Using a discretization of the domain with fixed sized cubes,
polygons are computed for each cube from a look-up-table of possible facet topologies and a
large number of polygons are produced. This algorithm uses a divide and conquer approach
to create a table that defines fifteen possible facet topologies, see Figure 1-2. The algorithm
processes the data in scan-line order and uses linear interpolation to calculate facet vertices.

One weakness of the standard marching cubes algorithm is that there are situations
in which the choice of facet topologies is ambiguous. An incorrect choice can lead to
erroneous topology in the rendered surface, and possible discontinuities on a continuous
surface. A 2D example of such ambiguity is shown in Figure 1-3 where intersection points
between the contour and the square element occur at all four edges and there are three
possible topologies in which the intersection points can be connected. For an overview
of such problems and strategies for disambiguation involving discrete data, see Ning and
Bloomenthal [72]. Another weakness is resolution dependency of the surface evaluation.
Here, features whose size is smaller than the finest grain discrete element may be missed
entirely.

More recent extensions to the marching cubes algorithm include Schmidt’s cutting cubes
algorithm [82] and Wilhelms and Gelder’s octree method [103]. The cutting cubes algorithm
uses adaptive subdivision and makes few assumptions concerning the implicit surface and
the representation of its defining function. The surface may contain singularities; for ex-
ample, it may have self-intersections or be reducible. A user-defined domain is filled by a
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Figure 1-3: 2D example of ambiguities which occur when there are intersection points on
all four edges of the square element and there are three possible topologies for the contour
lines in the square.

set of cubes, some of which contain pieces of the surface. The set of cubes is controlled by
an octree converging to the surface by adaptively subdividing cubes where ambiguities of
possible surface topology appear. Although this method is capable of resolving some of the
surface topology ambiguities in a cube and finding any isolated surface components within
the domain of interest up to a specified minimum size, it may introduce inconsistencies be-
tween adjacent different-sized cubes in the octree. It also adds complexity since it requires a
rescanning of the polygonalization to account for inconsistencies between polygonalization
of adjacent cells that were introduced during the subdivision process.

If the function is defined by piecewise polynomials, then a method proposed by Tuohy
et al. [100] and Yoon [106] uses the computation of critical points of the function to render
reliably implicit (isovalued) surfaces. The method starts by computing the critical points
of the function, that is, all points for the function F(z,y, 2) where VF = 0. The solution to
this system of nonlinear equations is found using the interval projected polyhedron method
described by Sherbrooke and Patrikalakis [87] and Maekawa and Patrikalakis [66]. The orig-
inal domain is subdivided at the critical point values and the subdomains rendered using
marching cubes. In this manner, the algorithm will not miss singularities or small surface
components regardless of relative size. Note that the algorithm computes the critical points
only once, and thereafter, any implicit (isovalued) surface (i.e. F = C) can be rendered
without additional computational penalty. The one time computation cost imposed by pre-
computing the critical points does not delay the interactivity of rendering multiple surfaces
and is justified by the added reliability of surface rendering.

Interval methods are used in Suffern [91, 92] to robustly contour bivariate functions and
render implicit surfaces based on the non-uniform quadtree decomposition. These interval
methods have the advantage over their point-sampling counterparts that they are guaran-
teed not to miss parts of the contours or surfaces down to a specified plotting resolution.

All these methods, however, assume that the implicit (isovalued) surfaces are defined
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in regular domains. Additionally, methods that attempt adaptive subdivision have added
complexity to ensure topological consistency between adjacent cells. However, since there
are regions of the domain for which the function is undefined, such as occurs with triangular
Bézier patches [57], trimmed surfaces, and simplex spline surfaces, as described by Seidel
and Vermeulen [85], we seek an algorithm to render surfaces defined in domains described by
simplices (triangulations) or, in other words, irregular domains and one which automatically
encodes the topology of the resulting polygonalization.

Here, we present the marching simplices algorithm for rendering and interrogating im-
plicit (isovalued) surfaces defined in general irregular domains. The algorithm uses trian-
gular (tetrahedral) cells (i.e., 2-simplices (3-simplices)) for the decomposition of a 2D (3D)
domain. Similar to marching cubes, the marching simplices algorithm polygonalizes the
isosurface in each simplex based on a look-up table of possible facet topologies. Adaptive
subdivision techniques are used so as not to miss any fine scale features. By using a Topo-
logical Modeling Structure, based on the cell-tuple data structure developed by Brisson
[6], for the original decomposition of the domain as well as the polygonalization, subdivi-
sion can be performed while automatically maintaining adjacency information. The result
is a complete geometric model ready for complex interrogations (e.g., intersections, mesh
generation, simulation, etc.).

1.3 Problem Statement

Modern technology has enabled the scientific community to collect a vast amount of physical
data. There is currently no general and robust solution to the n-dimensional nonlinear
continuous, uncertain data management problem supporting computer visualization and
interrogation. These physical data exhibit certain important characteristics listed below:

e they are defined in irregular domains;

e they involve uncertainty;

o they describe continuous physical phenomena;
o they exist in huge amounts.

To efficiently and robustly represent such data, a modern scientific database should be
able to

e reduce the amount of data; 3

e evaluate (including function evaluation, differentiation, and integration), interrogate,
and visualize the data to respond to user queries;

3Since scientific data describes continuous physical phenomena, we need to use highly accurate approxi-
mations of continuous functions.
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e capture uncertainties, i.e., numerical inaccuracy and uncertainty by measurement er-
ror.

In summary, the thesis is essentially based on the following insight:

1. Continuous nonlinear higher dimensional geometry is the core of any sophisticated
scientific or engineering database.

2. Data representation and data interrogation are intimately related and should not be
treated as distinct issues because data representation should strongly support data
interrogation, which is the purpose and reason for the existence of the database.

Thus, the goal for this work is the development of a scientific database system that
efficiently represents, visualizes, and interrogates vast amount of physical data in irregular
domains with uncertainty.

1.4 Methodology of the Thesis

The physical data we are interested in this work is called scattered data, i.e., non-grided data
with non-uniform population. The domains of the definition of the data are often unknown.
They are generally irregular, i.e., they cannot be accurately described by 2D rectangle or
3D rectangular box; in addition, when represented by a polygon (2D) or polyhedron (3D),
the domains may not be convex. Thus such data segments differ from those that are in
grided format with a uniform population.

To represent data segments, usually tensor or triple product B-spline expressions were
adopted in previous work, (see Tuohy [96] and Tuohy et al. [100]), which are capable of
producing smooth bivariate and trivariate functions. Since the domain over which the tensor
or triple product B-splines are defined is a rectangle or a box in higher dimensional space,
it is difficult to model irregular objects or shapes with tensor or triple product B-spline
expressions. Attempts to overcome this difficulty have been based on subdivision [8, 24],
interpolation [77], and on the use of multi-sided patches [62, 63, 105] and trimmed surfaces
[39]. All of the above efforts work to some extent but often cause other problems. For
example, a trimmed surface is not suitable to all surface problems [39]; when trying to join
two trimmed surfaces together smoothly by joining along trimmed curves, there is no easy
way to ensure exact tangent plane continuity between them, as was the case for standard
tensor or triple product patches. Such questions of smoothness are usually handled on a
case by case basis, which is clearly not desirable.

Bivariate and trivariate functional representation may also be modeled using Bézier
triangles [39] which are defined on irregular triangular domains. However, stitching together
many patches to form a large smooth surface requires a considerable amount of computation.
To make the final surface smooth, i.e., to have some degree of continuity, control vertices
of the patches must satisfy sets of constraints. Altering the position of these control points
will destroy the continuity that has been meticulously achieved. So it is essential that
a modeling scheme be developed that has both the advantages of Bézier triangles and
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tensor/triple product surfaces and eliminates their drawbacks, i.e., a non-tensor or non-
triple product spline function that can model surfaces or volumes in irregular domains and
can produce smooth bivariate and trivariate functions automatically by its underlying basis
functions.

Using simplex spline basis functions recently developed by Dahmen, Micchelli and Seidel
(85, 20, 42, 43] can lead us to a spline expression with high order continuity while eliminat-
ing the above weakness of tensor product B-splines and Bézier triangles. Originally simplex
splines [19, 56] were defined over arbitrary triangulations of the parameter space but they
were lacking a geometric formulation relying on control vertices. The development of the
simplex spline function by Dahmen, Micchelli and Seidel [20], is based on the combination
of simplex splines with polar forms of polynomials formed by blending functions, control
points and knots. Thus the simplex spline function exhibits several important properties
that facilitate computation and modeling and are helpful for the development of high di-
mensional scientific databases. The new simplex spline allows construction of degree n
bivariate (trivariate) functions over arbitrary 2D (3D) triangulations with C"~1 continuity.
These functions are made of piecewise polynomials defined over the sub-triangulation in-
duced by the knot net of the parametric space; thus they can be manipulated by changing
the control vertices and the knots. Moving control points does not change the smoothness
of the surfaces or hypersurfaces (in a manner similar to B-splines). The major properties
and characteristics of the simplex spline function are [85]:

e The topology of the definition domain on which simplex splines are defined is a tri-
angulation in n-dimensional Euclidean space. Thus it can model both surfaces and
hypersurfaces in higher dimensional spaces within regular or irregular subdomains.

e The simplex spline is a piecewise polynomial of degree n over a triangulation and
could be continuous up to C"~! if the knots are in general position.

o The simplex spline is locally supported, i.e., it is greater than zero within part of the
triangulation and vanishes outside.

o The simplex spline surfaces and their control points are affinely invariant.

The basic theory for bivariate simplex splines is available [43, 50, 20, 85], based on a
combination of multivariate spline theory [12] and approximation theory [13]. In [85], the
polar forms and the refinement of bivariate simplex splines are introduced. In [50], bivariate
simplex splines are introduced and utilized to model solid objects. The general mathemat-
ical description for n-dimensional simplex splines can be found in [20] where the concept
of multivariate simplex spline functions is described based on polar forms of polynomials.
In [43], an implementation of bivariate triangular B-spline surfaces (i.e., bivariate simplex
spline surfaces) over arbitrary triangulation is presented including the evaluation, subdivi-
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sion and refinement. All the above works are contributions to the definition, processing and
implementation of simplex splines.

However, efficient algorithms for generating and implementing multivariate n-dimensional
simplex splines are still left open (e.g., trivariate simplex splines) and need to be developed
and applied in scientific data representation and interrogation. In this thesis, we shall in-
vestigate not only bivariate simplex spline forms but also trivariate ones within domains
defined by simplices. Combining interval arithmetic and multivariate simplex splines, we
shall create interval (multivariate) simplex splines which have properties inherited from
both and, hence, have broader applications than their predecessors.

The major contributions in this thesis are the investigation and applications of multi-
variate simplex splines and the development of a database system that efficiently represents,
interrogates, visualizes, and manipulates huge collections of multidimensional data. Meth-
ods of efficient evaluation of degree n, bivariate and trivariate simplex splines are presented
and implemented in the system. In this manner, data storage is dramatically reduced; yet,
in contrast to discrete data representation used in traditional database systems, all possible
data locations will be covered and higher-level interrogation can be performed.

Interval simplex splines (ISS) are presented and a method for creating bivariate and
trivariate ISS functions from measured data is developed to capture all possible behavior of
physical data with uncertainties in irregular domains. In this way, the uncertainties in the
data set are represented in a manner that provides for high accuracy and resolution, data
reduction and efficient interrogation with a guaranteed bounded approximation error.

A generalization of the convex hull of unstructured planar and spatial data is introduced
and applied in defining domains of physical data such that the intuitive shape of the data
can be captured in a realistic and practical manner. The a-shape technique can be used
to detect the boundary of the domain of a finite set of points and thus to generate an
appropriate domain for a set of planar or space points for fitting and approximation.

Based on a topological modeling structure (TMS) and adaptive subdivision, marching
simplices, a method of visualizing bivariate and trivariate simplex spline functions as well
as other general scalar functions in 2D (3D) irregular domains is presented and developed
in this work. This algorithm has the following advantages: (1) it is capable of extracting
implicit functions in irregular domains; (2) it needs fewer special cases for determining
grain partial surface topology; (3) it eliminates ambiguity cases; (4) it creates automatic
consistency between pieces of the surface in adjacent simplices; and most importantly, (5)
it generates isosurfaces or implicit surfaces which are ready for further interrogation since
their adjacency topology is encoded in the surface generation.

Figure 1-4 shows a conceptual flow chart of this work. We start by introducing 2D (3D)
physical data preprocessing. Then we will explore (interval) bivariate (trivariate) simplex
spline representation and evaluation to facilitate storage and reduction of the amount of
data. Finally, we will introduce the marching simplices algorithm to effectively visualize
and interrogate the (interval) representations.
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Figure 1-4: Flow chart of the methodology.

Input (data points)
Domain establishment
Preprocessing |- [
Data segmentation
Simpl lin
surface fitting
—Data modeling;
Interval simplex
l spline surface fitting
Visualization H Marching simplices

29



CHAPTER 1. INTRODUCTION 30

1.5 Organization of the Thesis

Chapter 2 will address the preprocessing procedure for constructing our scientific database.
This preprocessing procedure includes domain establishment and data segmentation. Chap-
ter 3 will introduce the mathematical background and explore efficient evaluation schemes
for bivariate and trivariate simplex spline functions. Using simplex splines, the shortcom-
ings of tensor (triple) product B-splines and Bézier triangles are overcome, while in the
mean time, many of their favorable features are preserved. Chapter 4 will present the
data modeling process with bivariate and trivariate simplex spline forms. Chapter 5 will
introduce Interval Simplex Splines (ISS) to handle the uncertainty associated with physical
data to ensure the bounded error in the databases. Based on the generated databases,
Chapter 6 will present and develop the marching simplices algorithm for visualizing the
data and facilitating further interrogation on the data to help understand the physical
phenomena encapsulated in the data. Chapter 7 will present conclusions and recommen-
dations for future research. Finally, Appendix A will discuss Delaunay triangulation and
constrained Delaunay triangulation which will be used to form the initial triangulation for
data modeling; Appendix B will present a method to determine which simplex in a 2D (3D)
triangulation contains a given point, which is frequently used in preprocessing, evaluation,
and data modeling procedures; and finally Appendix C will discuss the original definition
of simplex splines and their geometrical interpretation.



Chapter 2

Preprocessing for Data Modeling

2.1 Introduction

Before we proceed to model a set of scattered physical data by simplex splines, we need to
perform effective preprocessing on the data such that our data modeling process is not only
successful, but also efficient and able to represent the data with high fidelity and reduce data
storage significantly. This preprocessing procedure includes two major steps: (1) domain
establishment; (2) data segmentation.

The domain of a finite set of scattered points plays an important role in 2D (3D) data
representation, interrogation and visualization. Scientists and engineers often use the convex
hulls as the domain of finite sets of 2D (3D) data points or simply use a 2D (3D) rectangular
box enclosing all the points as the domains. Unfortunately, both convex hulls and boxes
cannot capture the intuitive boundary of the shape formed by the definition of physical
data points. For example, a set of physical points could be measured in a concave region
with holes, while the convex hull of the set of points cannot express the concave features
and distinguish the holes from the region.

Measured data are typically represented as raw data (e.g., densities) with no prior
definition of the objects to be visualized. The domain establishing step creates the domain
for the data and a classification/segmentation step that identifies the regions describing an
object must therefore accompany the representation process.

2.2 The Domain of Data

A generalization of the convex hull concept of a finite set of planar points introduced by
Edelsbrunner et al. [29] is described in this section and is applied in defining the domains of
sets of planar points. This generalization leads to a family of straight-line graphs — a-shapes
which appear to be able to capture the intuitive notions of fine shape and crude shape of
point sets.

For convenience and clarity, part of this subsection restates and explains the definitions
of a-shape from Edelsbrunner et al. [29]. For theoretical and in-depth coverage, readers are

31
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referred to [29, 28, 30, 31].

2.2.1 2D a-Shape

The a-shape of a set of points is closely related to the Delaunay triangulation. Appendix A
introduces the definition of Delaunay triangulation and describes the relation between a-
shape and the Delaunay triangulation of a set of points.

Definition of o shape

Definition 2.1 Given a set S of n planar points, let o be a sufficiently small but arbitrary
positive real number, i.e., o € R, the a-hull of S is the intersection of all closed discs with
radius v = L that contain all the points of S. The a-hull of S is also called the generalized

convez hullaof S.

In order to achieve an intersection of discs, it has to be guaranteed that there exists
at least one disc of the chosen size that contains all points. This implies that the smallest
possible value for 1/a is equal to the radius of the smallest enclosing circle. In fact, it has
been shown that 1/a is no less than 371/2 times the diameter of S suffices, no matter how
the points are distributed. See Edelsbrunner [29] and references therein.

In Figure 2-1(a), the a-hull for a particular sufficiently small positive a is depicted. Intu-
itively, a large (but still sufficiently small) o gives rise to hulls that have only in some sense
essential extreme points on their boundary. As a approaches zero, the a-hull approximates
the common convex hull.

Definition 2.2 For an arbitrary negative real number o, the a-hull is defined as the inter-
section of all closed complements of discs (where these discs have radii -1/0.) that contain
all the points of S.

Figure 2-1(b) displays such a hull for the same point set as used in Figure 2-1(a). For
convenience, let us define the 0-hull as being the usual convex hull of the points and let us
agree that the intersection of no discs (which may occur for a large positive o) is equal to
the entire plane.

If we define a generalized disc of radius 1/a as a disc of radius 1/a if @ > 0, the
complement of a disc of radius -1/e if @ < 0, and a halfplane if o = 0, then the preceding
definitions could be combined to the following definition.

Definition 2.3 For an arbitrary real o and a set S of points in the plane, the a-hull of §
is the intersection of all closed generalized discs of radius 1/a that contain all points of S.

Thus we have a family of a-hulls for a ranging from —oo to +0o0. Sample members of
this family are the entire plane (for a sufficiently large), the smallest enclosing circle of §
(when 1/a equals its radius), the convex hull of S (for o = 0), and § itself (for o sufficiently
small).
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a)

b)

Figure 2-1: a-hull for a) @ > 0 and b) a < 0.

Since negative a-hulls denote the domain of the points, in this thesis, we focus only on
negative a-hulls. Therefore, in the following context, we discuss only negative a-hull by
using r = —%.

Definition 2.4 Given a set S of points in the plane and an arbitrary real o, the a-shape

of S is the straight line graph of a-hull.

To understand the o-shape intuitively and procedurally, let us look at Figure 2-2(a)
which depicts a set of fourteen planar points and the Delaunay triangulation applied on the
points. For a given o (a < 0), there is a disc whose radius equal to 7 = —1. Imagine that
the disc is an eraser which will remove any edge larger than 2r. Figure 2-2(b) shows the
resulting triangulation after the erasing. Note that the area enclosed by the boundary of
the a-shape of the points is the area that is considered as the domain of the points in this
thesis.

Definition 2.5 The domain of a set of planar points is the area enclosed by the boundary
of the a-shape of a set of points.

The a;-hull of a set of points is contained in the as-hull if a; < ay. The set of a;-
extreme points in § is a subset of the aj-extreme points if a3 > az. See [29] for further
details. Intuitively, relatively large o tend to produce a rather crude shape of the points (
the extreme being a chord or an inscribed triangle of the smallest enclosing circle ), whereas
smaller a reveal more and more details, until, as o approaches —oo , all points are isolated
extreme points of the shape.
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Figure 2-2: a-shape is illustrated procedurally from Delaunay triangulation. In this trian-
gulation, two edges with lengths larger than the diameter (2x :al) of the disc are removed.

In our application of a-shape, we form the domain of a set of scattered data from the
a-shape. Therefore, it is not desirable for the domain formed from a-shape to contain
any non-manifold topology?, e.g., a triangle adjacent to a dangling straight line segment
emanating from a vertex of a triangle.

Implementation of a-Shape

As mentioned in previous sections, only “negative” a-shapes are used in this thesis in form-
ing domains of points. Therefore, we can simplify the implementation. In the following text
on domain creation, we omit the definition and implementation of (constrained) Delaunay
triangulation which are addressed in Appendix A.

1. Input: (1) the number of points; (2) the 2 and y coordinates of the points; (3) radius
R(-1)

2. Remove redundant points from the point array.
3. Apply Delaunay triangulation on the points.

4. For each edge in the triangulation, if the length of the edge is larger than 2R then
remove this triangle.

5. If any isolated point or incomplete triangle appears, the program will ask the user to
increase R and go to Step 4.

1Non-manifold is also called non-two manifold.
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Figure 2-3: The Delaunay triangulation of a set of 303 planar points.

6. If users are satisfied with the a-shape, then proceed; otherwise, users may change R
and go to Step 4.

7. Output the boundary points of a-shape and their topology.

Examples of a-Shape

In this section, we present examples of the a-shape at different values R for a set of 303
planar points. The z and y coordinates for this set of data are taken from data by Edels-
brunner et al. available by anonymous ftp the World Wide Web at ftp.ncsa.uiuc.edu. The
program is implemented in C++ and runs on a Silicon Graphics workstation with OpenGL
and Open Inventor. Figure 2-3 shows the Delaunay triangulation of the set of planar
points. Figure 2-4 shows the a-shapes at R = 60(c = —g;), B = 100(c: = —0.01) and
R = 4000(a = —0.00025), respectively. It can be seen that as R increases, the shape of the
set of points becomes cruder. Finally, Figure 2-5 shows the constrained Delaunay triangu-
lation on the planar points; the constraints in this case are the boundary of the a-shape.
The constrained Delaunay triangulation (described in Appendix A) based on the boundary
points of a-shapes and some interior points will be further developed and used in the next
section for data segmentation which is a necessary step for efficient data fitting.

The computational procedure for the 2D a-shape involves the construction of a 2D De-
laynay triangulation over a set of n points, which needs O(nlogn) time; the time complexity
of the computation needed for removing the triangles is O(n). Thus, the overall asymptotic
time complexity of the 2D a-shape is O(nlogn).

2.2.2 3D o-Shape

3D o-shape is the natural extension of 2D a-shape into 3D Euclidean space. See Edels-
brunner [28, 30] for a detailed description of 3D a-shape.
Let S be a finite set of points in R and o a real number with 0 < @ < co. The
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Figure 2-4: The a-shapes for a set of 303 points at R = 4000 (a = —0.00025), R = 60
(a = —g;), and R =10 (e = —0.1), from top to the bottom.
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Figure 2-6: The a-shapes of a set of 3D data at different o values. The left picture shows
the convex hull of the data when o is large, in which case the convex hull is equal to the
a-shape; the middle and right pictures show the a-shapes when o decreases (adapted from

(30]).

a-shape of § is a polytope 2 which is neither necessarily convex nor necessarily connected.
For oo = oo , the a-shape is identical to the convex hull of §. However, as a decreases, the
a-shape shrinks by gradually developing cavities. These cavities may join to form tunnels,
and even holes may appear (see Figure 2-6).

Intuitively, a piece of the polyhedron disappears when a becomes small enough so that
a sphere with radius a, or several such spheres, can occupy its space without enclosing any
of the points of §. Think of R? filled with styrofoam and the points of § made of more solid
material, such as a rock. Now imagine a spherical eraser with radius a. It is omnipresent in
the sense that it carves out styrofoam at all positions where it does not enclose any of the

2Polytope is the analog in n-dimensional space of point, segment, polygon and polyhedron in a space of
dimension 0, 1, 2 and 3. Later in this thesis, we simply use the term polyhedron to replace a 3D polytope.
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sprinkled rocks, that is, points of §. The resulting object will be called the a-hull. To make
things more feasible, we straighten the surface of the object by substituting straight edges
for the circular ones and triangles for the spherical caps. The resulting object is the a-shape
of S (see Figure 2-6). It is a polyhedron in a fairly general sense: it can be concave and
even disconnected, it can contain two-dimensional patches of triangles and one-dimensional
strings of edges, and its components can be as small as single points. (Since in this thesis,
we forbid the presence of non-manifold geometry for the sake of a meaningful domain for
data points, therefore, o cannot be too small to create isolated points, edges or faces.)

For 0 < a < 00 , let an a-ball be an open ball with radius . For completeness, a 0-ball
is a point and an oo-ball is an open half-space. An o-ball b is empty if 5N S = 0, where
S is the set of 3D points. Any subset T C S of size |T| = k + 1, with 0 < k < 3, defines
a k-simplex that is the convex hull of T. The general position assumption assures that all
k-simplices or are properly k-dimensional. For 0 < k < 2, a k-simplex ot is said to be
a-exposed if there is an empty a-ball b when T = 0b C S , where b is the sphere or plane
bounding b. A fixed a thus defines sets F(k, a) of a — exposed k-simplices for 0 < k < 2.
The a-shape of S, denoted by S,, is the polyhedron whose boundary consists the triangles
in F(2,a), the edges in F(1,a), and the vertices in F(0,a). The k-simplices in F(k, ) are
also called the k-faces of S,,.

Definition 2.6 The domain of a set of 3D points is the volume enclosed by the boundary
faces of the a-shape of a set of points.

The implementation of the 3D a-shape and the relation between 3D o-shape and Delau-
nay triangulation are analogous to the 2D context and thus are omitted here. Readers are
referred to references [29, 30] and software available through anonymous ftp on the World
Wide Web at ftp.uiuc.edu.

The time complexity for construction of the 3D Delaunay triangulation over a set of
n points is O(n?) in the worst case. On average, it seems to be roughly proportional to
O(n(logn)?), see [30]. The overall time complexity for 3D a-shape is O(n? + mlogm) where
m is the number of simplices formed by the Delaunay triangulation.

2.3 Data Segmentation

Data segmentation is an important process to extract critical features from physical data.
It is a necessary preprocessing step towards data modeling for scientific databases. This
preprocessing step extracts data by identifying the features of the underlying surface and
is of potential interest to physical data interpretation. The data segmentation technique in
this thesis subdivides the domain into triangles or tetrahedra such that (1) in each simplex,
there are enough number of data points for fitting, e.g., at least six data points in each
triangle when using quadratic simplex spline function in 2D data modeling; (2) the shape
of the domain triangles is nice, i.e., the minimum angle in the triangulation is no less than a
predefined real number and the maximum is no greater than % [67]; (3) points representing
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function values in the same simplex do not have large difference in distance to a linear
faceted triangular approximating surface.

The data modeling operations (presented in the next Chapter) will be based on the
triangulation formed by these triangles or tetrahedra and will be facilitated by the data
segmentation process.

Automatic segmentation systems have emerged only for very specific tasks and data. At
present, there are no general methods that could handle, for example, unstructured data
with arbitrary population distribution. Adaptive and efficient methods for data segmenta-
tion are an important step towards good fitting results. Blindly segmented data may result
in unnecessarily complex fitting procedures and infidelity in fitting results. Figure 2-7 shows
a set of 1D data in an interval [a, )] along z axis and different y coordinates. If we segment
the data with binary sections on the interval [a, b] and use a linear function to fit the data in
each subinterval, it can be seen that many unnecessary pieces are created; if we adaptively
segment the data at some significant (critical) points, a smaller number of segments are
created and less coefficients are needed; thus, a good fitting result with decreased memory
requirements can be achieved.

For a 2D (3D) problem, if a real valued function is defined over a large planar (spatial)
domain we can access geometrically interesting areas on the function’s graph represented
in a piecewise linear fashion. This computation for the approximation can be performed
rapidly. It can be used efficiently to detect areas of interest requiring refined representation.
Therefore, those areas may need the allocation of higher data density implying deeper
subdivision levels if we employ hierarchical techniques to subdivide the data into appropriate
region(s) within which nonlinear simplex spline fitting methods can be profitably used, (see
also Samet [81]).

2.3.1 2D Data Segmentation

2D data segmentation can be achieved by combining linear approximation and Delaunay
triangulation on the boundary nodes and interior nodes. Two triangulations are used in
data segmentation, one is the triangulation w.r.t. data points, in which each data point
is a vertex on the triangulation, called point triangulation; the other one is the domain
triangulation, also called current triangulation, which is the one over which we define the
fitting function.

The basic steps in 2D data segmentation include: filtering, inserting nodes, and smooth-
ing.

Filtering 2D Raw Data

The input data ready for data segmentation is raw data which inevitably has uncertainties,
high frequency noise and outliers. It is desirable to use filters to remove high frequency
noise so that features are captured which are representation of the function and not the
measurement error.

To remove high frequency noise, for every data point p; = (z;,y;, fi), we calculate the



CHAPTER 2. PREPROCESSING FOR DATA MODELING 40

Yy
a)
(o]
(??)0 oég Oc>oo
f OOO OOO x
a [e) b
1 |
g 1
N TP EE— -
a+(b-1)/2 .
PP S , | |
) f 1 1 j |
I'\\
l’ \\ ’,’
/s “ e
. ’ AY d
e = ‘\ a”
| ] ] N 1A ] ]
a tF———— LA 1 1
\\\ll’
)
N
I’ \\ ’—’
, \ -
”l \\ ’/’
o FHH I

Figure 2-7: 1D data segmentation: a) — e) show when using straight line segments to fit
a set of planar points, bisecting the domain causes unnecessarily many segments; f) shows
adaptively subdividing the domain results in reasonable sub-intervals for the fitting
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Figure 2-8: The bathymetric data from an area of Charles river, Boston, MA, USA.

weighted average of the data point and the points in the triangle neighborlet3 for this data
point. Suppose the number of points in the triangle neighborlet is m, and the points in the
neighborlet are denoted as p;, where j = 1, ...,m, then the weighted average of p; is:

I T S (21)
[ 2 7 .
m+ 2 m+2j=1,j¢z?

Finally, we use f; to replace fi in data segmentation process shown in the following
subsection.

Figure 2-9 shows a map of the Charles river (Boston, Massachusetts, USA) bathymetryic
data before filtering and after the filtering. The data is measured by commercially avail-
able GPS (Global Positioning System) and depth sounder. The data was gathered by
Ms. J. Brener and Ms. M. Frey during the 1993 MIT Sea Grant Summer Undergraduate
Workshop in AUVs under the supervision of Dr. D. K. Atwood and Dr. S. T. Tuohy. The
number of data points is 2201 and is shown in Figure 2-8.

Inserting nodes

The following steps illustrate the segmentation procedure.
1. Input the polygonal boundary of the domain of the data.

2. Place nodes at all boundary vertices.

®A triangle neighborlet includes the current triangle and the triangles sharing at least one vertex with
the current triangle.
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Figure 2-9: The filtered and unfiltered data of the Charles river. The figure at the right
side is the raw data of an area of the Charles river; the figure at the left side is the same
set of data after filtering.

3. Apply constrained Delaunay triangulation (introduced in Appendix A) on the nodes.
The constraints are the boundary of the domain.

4. The vertices of the triangles are themselves data points with coordinates (z;, ;) and
associated with scalar values f;. Thus we can form a piecewise linear function f(z,y)
over the triangulated nodes by interpolating function values at the vertices of every
triangle.

5. Calculate the absolute distance between every data point and the piecewise linear
interpolation function in the direction of the function value axis, i.e., d; = fi—f(:c,', Yi),
and find the maximum absolute distance. For efficiently determining which triangle
contains a certain data point, an algorithm presented in Appendix B may be used.

6. If the maximum absolute distance is less than a predefined threshold value, stop
segmentation process; otherwise proceed.

7. Place a node at the planar point with maximum absolute distance and go to Step 4.

Smoothing Boundary

The a-shape as the boundary of the domain of data is composed of line segments. This
boundary may have more vertices than necessary. For example, three consecutive nodes
may be nearly coincident (too close) and/or collinear or a set of consecutive nodes may
form a zig-zag shape on the boundary. (See Figures 2-10 and 2-11.) Without smoothing
these nodes, the triangles formed on these nodes may be too small to contain data points
and slivers may appear in the triangulation.
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Figure 2-10: The smoothing of the boundary of a domain. The upper figure shows three
consecutive nodes a, b, and ¢ which are too close and collinear. The lower figure shows the
mid-node b is removed from the node list.

(<]
]

Figure 2-11: The smoothing of the boundary of a domain. The upper figure shows three
consecutive nodes a, b, and ¢ which are too close and they form a concave kink. The lower
figure shows the mid-node b is removed from the node list.



CHAPTER 2. PREPROCESSING FOR DATA MODELING 44

Figure 2-12: The constrained Delaunay triangulation on the boundary nodes of the o shape.

The following illustrates the criteria and methodologies for smoothing the boundary:
For a predefined threshold o, if the summation of distances between two consecutive of
three consecutive nodes dy + ds is less than o, and if

1. the three nodes are collinear, or

2. the three nodes form a concave kink on the domain,

remove the mid-node from node list.

If the three nodes form a convex kink on the domain, we then remove the first and the
third nodes from the node list.

The triangulation formed is the segmented triangulation for the data modeling process.

Figure 2-12 shows an example of Charles river data set and a triangulation (resulting
from Step 3) based on the domain boundary nodes provided by the procedure of domain
establishment in Section 2.2. Figure 2-13 shows the triangulation after one node is inserted
into the interior of the domain at a point with the maximum absolute distance to the
underlying linear surface. Figure 2-14 shows the triangulation after four nodes are inserted
into the interior of the domain; and Figure 2-15 shows the triangulation we will use for data
modeling later in this thesis.

2.3.2 3D Data Segmentation

3D data segmentation can be achieved by combining linear approximation and Delaunay
triangulation on the boundary nodes and interior nodes of the domain. The basic steps
in 3D data segmentation are analogous to those in 2D segmentation, including filtering,
inserting nodes, smoothing boundary.
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Figure 2-15: The triangulation ready for data modeling.
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Filtering 3D Raw Data

To remove high frequency noise, for every data point p; = (zs, ¥, 2i, fi), We calculate the
weighted average of the data point and the points in the tetrahedron neighborlet* for this
data point. Suppose the number of points in the tetrahedron platelet is m, points in the
platelet are denoted as p;, where j = 1, ...,m, then the weighted average of p; is:

- 2 1 =
fiz it S fi (2.2)

Finally, we use f; to replace f; in data segmentation process shown in the following
subsection.

Inserting nodes

The following steps illustrate this segmentation procedure.
1. Input the polyhedral boundary of the domain of the data.
2. Place nodes at all boundary vertices.

3. Apply 3D constrained Delaunay triangulation on the nodes. The constraints are the
boundary facets of the domain.

4. Construct a piecewise linear trivariate interpolation function f(z,y, z) over each tetra-
hedron based on the function values of the four data points.

5. Calculate the absolute distance between every data point and the piecewise linear in-
terpolating function in the direction of the function value axis, i.e., d; = fi- f(zi i, 2:)
and find the maximum absolute distance. In determining which tetrahedron contains
a certain data point, an algorithm presented in Appendix B may be used.

6. If the maximum absolute difference is less than a predefined a threshold value, stop
segmentation; otherwise proceed.

7. Insert a node at the point with maximum absolute distance and go to Step 3.

Smoothing Boundary

The boundary of the domain resulting from a-shape may have more vertices than necessary.
The following illustrates the criteria and methodology for smoothing the boundary.

For a predefined threshold o, we check every boundary node v; and the boundary tri-
angular facets incident to v;. If the area of one such facet is smaller than o, and if

*A tetrahedron neighborlet includes the current tetrahedron and the tetrahedra sharing at least one
vertex with the current tetrahedron.
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1. the nodes of these triangular facets are co-planar, or

2. these facets form a non-convex kink at node v;,

then we remove the node v; from the node list.

If the facets form a convex kink on the domain, we then keep the node v; and remove
all the other boundary nodes which connect to node v;.

The 3D constrained Delaunay triangulation on rest of the the nodes in the node list will
be used for data segmentation. The definition of 3D constrained Delaunay triangulation
can be found in Appendix A.

The triangulation formed will serve as the initial segmented triangulation for the 3D
data modeling process.

2.4 Topological Modeling Structure

In this section, we introduce a data structure called Topological Modeling Structure (TMS)
and apply it in representing the 2D (3D) triangulation domains to facilitate data modeling,
visualization and interrogation. Without a topological data structure, it is difficult to main-
tain the adjacency information between domain simplices, especially for higher dimensional
problems. Additionally, a TMS can facilitate the solid and surface representation and in-
terrogation process. Later, in this thesis we will also use this data structure to represent
polygonalized implicit or isovalued surfaces and contour lines to help gain insight into the
data.

Brisson [6] presents a data structure for describing subdivisions of n-dimensional mani-
folds. This subdivision concept is called the cell-tuple structure because it contains a collec-
tion of topological cells of different dimension. A cell of dimension n is homeomorphic to the
solid n-dimensional unit disc. The quad-edge structure for subdivisions of two-manifolds
pioneered by Guibas and Stolfi [52] may be represented by an appropriate specialization of
the cell-tuple structure. No restrictions are posed to the underlying manifold C. In other
words, C can be embedded in the n+k-dimensional Euclidean space. C also can be a mani-
fold with boundary. The cell-tuple structure uses an incidence graph whose nodes are cells
of the set C. This structure is easy to implement in practice because of its hierarchical
nature, conceptual recursive simplicity, and small number of key processing algorithms. See
Bardis and Patrikalakis [3] for a recent detailed review of the relevant literature in this
general area.

To obtain the topological relation between facets in different cells, we use the cell-tuple
data structure to represent the cells in the domain and the generated polygonalized implicit
surfaces or isosurfaces and contour lines.

The three main modules of the TMS are:

o Topological data structure:
The whole structure is organized in incidence graphs of topological manifolds, illus-
trated here by the example shown in Figure 2-16. This incidence graph is rooted,
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Figure 2-16: A triangle.

Figure 2-17: The triangle’s incidence graph.

and each node represents a topological cell. Nodes at the same level represent cells
of the same dimension. Cells represented by nodes on different levels are connected
according to their incidence relationships. The incidence graph of a triangle is shown
in Figure 2-17. In this graph, rt indicates the root of the graph; p1 is the triangular
face (of dimension 2) and ap is the complement of the face; edge nodes (of dimension
1) and point nodes (of dimension 0) are at corresponding levels; the lowest level bt is
of dimension —1 which indicates the bottom of the graph.

e Topological operators:

These can be classified into two groups: one group contains low-level operators, while
the other group contains high-level operators. Low-level operators create and interro-
gate the incidence graph, while high-level operators manipulate the models represented
by incidence graphs.

o Geometric and attribute data structure:
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The topological data structure (that is, the incidence graph) only specifies the rela-
tionships between cells, not the geometry information of each cell, for example, its
geometric shape or attribute information (e.g., geophysical properties). Therefore, we
also need geometric and attribute data structures to store such information for each
cell. Such structures can be effectively connected to the topological structure.

The theoretical foundation of the TMS is Brisson’s work [6]. We employ the concept of
the cell-tuple structure in this work. This structure yields a subdivision of a manifold in
cells of different dimensions. The incidence relation between those cells is reflected in the
incidence graph representation of the respective manifold.



Chapter 3

Simplex Spline Representation
and Evaluation

In this chapter, we introduce the definition, evaluation, and properties of bivariate and
trivariate simplex spline functions. Simplex spline functions will be used to model physical
data in our database system because of their appropriate properties, for instance:

e capability in modeling irregular domains;

e capability in achieving optimal®! and automatic smoothness.

3.1 Bivariate Simplex Splines

This section first introduces the mathematical background of bivariate simplex splines, see
also [42, 50, 85, 20, 43] and the references therein. We will then develop efficient evaluation

schemes for simplex spline surfaces.

3.1.1 Mathematical Background
Basic Definitions

Definition 3.1 Given to,t1,t2 € R2, we denote by A = [to,t1,t2] their closed convez
hull, and by A° = int[to, t1, t2] the interior of the conver hull. The half-open 2-simplex
[to,t1,t2) is then defined as follows: Let £ be the horizontal unit vector in R%. A point
u € R? belongs to the half-open 2-simplez [to,t1,ts) if and only if there ezists a vector n
with positive slope, and a positive scalar € > 0, such that the set

Agme(a) = {s€+1[0 < 5,,0< s+t < ¢} (3.1)

is completely contained in [to,t1,12).

! A simplex spline of degree n may be up to C™™! continuous everywhere.

50
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Figure 3-1: Two half-open 2-simplices. All interior points are in [t;,t;,tz); points on dark
boundary edges are in [t;, t;,t); other boundary points do not belong to [t;,t;,tx).

According to this definition, all interior points in a triangle belong to the triangle’s
[to,t1,t2); making a ray cast from a boundary point toward the positive z axis, if this
ray does not hit any point on the triangle, then this boundary point is not in [to, t1,t2);
otherwise, this boundary point is in [to,t1,t2). Although this inconsistent treatment for
points on the triangle boundary is dissatisfying from a purist’s point of view, researchers in
graphics often prefer this behavior, because when partitioning a region into many triangles,
every point will be in exactly one triangle. This definition ensures that the simplex spline
basis function (which will be introduced in the following definitions) cannot be calculated
multiple times at a point and thus avoids incorrect results.

Definition 3.2 Every polygon P (of m vertices) may be partitioned into simplices by the
addition of (zero or more) diagonals such that the intersection of any two simplices in the
triangulation T s either an empty set, a common vertez, or a common edge. The direction
of T is defined as clockwise/counterclockwise if every triangle’s vertices [to,t1,t2] in T are
organized clockwise/counterclockwise.

Definition 3.3 The barycentric coordinates (Ao, A1, A2) of a point u with respect to a trian-
gle A = (to,t1,t2), where t; € R2, and points to, t1,t, are affinely independent, are defined
as:

area(u,ty,ty)
area(to,t1,t2)’

area(to,u,ty)
area(to, t1,ts)’

area(tg,t1,u)

A A) =
o(ulA) area(tg, tq, to)

/\1(u|A) = )\2(11[A) = . (32)

It can be proven that

u= Z:/\j(ulA)tj’ Z Aj(u]A) = 1. (3.3)

1 1 1 1
to,t1,t2) = —det .
area(to,t1,tz) 5de (to t) t2) (3.4)
provided that the three points to, t1, t; are non-collinear, i.e. area(to,ty,t2) # 0.
Barycentric coordinates play an important role in evaluation of simplex spline basis
functions. Note: the points inside the triangle A have positive barycentric coordinates.
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Definition of Simplex Splines

Definition 3.4 For a set of m+1 planar points (knots) to, ..., t,, the simplez spline is
2
M(ulto,....,tn) = Z Aj(ulAtio iy by )M (ulto, N TPN cerytm) (3.5)
=0
Note: f;;j means f;ij is removed from the knot set.

X[tio 1ti1 ytiz ) ( u)
| det(ti,, tiy,ti,) |

M(ultio,tﬁ,tiz) = (36)

where
1 ifu€ [ti,ti),ti,)
A’[tio ,t.‘l,tiz)(u) = { 0 Othe‘rwiszg "2 (3-7)

is the characteristic function on the half-open 2-simplez [t;,,t;,,t:,).

Dt b by = {tis>ti;,ti,} € {to,...,tm}, called reference triangle, is any subset of
affinely independent 3 points and Aj(u|Ay, t, t.,) are the barycentric coordinates of u with
respect to N\

1

) 1tl'1 1ti2 °

Equation (3.5) is independent of the specific choice of A ;, i, [84].
The geometrical interpretation and the properties of simplex splines is shown in Ap-
pendix C.

Definition of Simplex Spline Surfaces

Definition 3.5 Let T = {A(I) = [tiy, ti,, ti, )| = (f0,%1,%2) € I C Z3} be an arbitrary
triangulation of the parameter plane R?. Assign a sequence of knots t;1,...,tin to every
vertex t; in this triangulation and t;o = t; such that any three knots associated with one
domain triangle form a proper triangle. A vertez and its associated knots are called a knot-
cloud.

Then simplex spline surfaces are defined under the following two conditions:

1. The triangles in the domain triangulation have the same orientation, e.g. counter-
clockwise.

2. Define region:
Qé = Ny<p | A£ |,Q£ =int (ﬂml:nﬂé) #¢ (3.8)

where v = (Y0,71,72) < (Bo,B1,B82) = B indicating yo < Bo,11 < Br1,72 < P2. int(4)
represents the interior of region A and AL = [ti) 1o, tiy v s binp]. This condition can
be met by associating the three knot-clouds with the three vertices for a triangle in
three separated circles, i.e. C;iNC; = ¢ if i £ j for all 4, j and C; is a circle centered
at vertezx t;. Figure 3-2 illustrates this condition for one domain triangle.
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Figure 3-2: The region §; formed by intersections int (ﬂlﬁlznﬂ,@[ ) (adapted from [20]).

Finally, consider the sets:

VﬁI = {f’io,Os vees big g0 +ns £i1,0 s iy 35 s g 0, "'1ti2,ﬂzl} (3'9)
nIS

where 8 = (Bo, B1,B2), |8l = Bo + B1 + B2 = n and an arbitrary simplez spline surface of
degree n over a given triangulation T is:

F(u)=)" )" Nj(u)ej, (3.10)

I€T |B|=n
where c;; € R3 are the control points for the shape of the surface and
Né(“) = |det(tio, 05 bi 015 tiz,5,) - M(u | VﬂI) (3.11)

is called the normalized simplex splines basis function. These are the blending functions for
the simplex spline scheme. It has been shown in [85, 20] that:

Yo ) Ni(uw)=1. (3.12)

IET |Bj=n

So the normalized simplex spline basis functions form a partition of unity.

If c/I, are scalar numbers, Equation 3.10 generates a bivariate simplex spline func-
tion. This function can be used in aplications, e.g., 2D data modeling.

In ensuring region Q1 # ¢, we can have:

> ) Nij(w)=1. (3.13)

IePu [Bl=n

where P, denotes the triangle neighborlet of A which contains u.
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Number of items needed for one basis function : M(u)
base conditions | lower degree basis functions | bar. coords.
Quadratic 32 3! 4 32 3! 4+ 32
Degree n 3" i 3 ra.3
Number of items needed for one point over one triangle : F(u)
base conditions | lower degree basis functions | bar. coords.
Quadratic 6x9 6x12 6x12
Degree n m.3" Mme Y g 3° me Y req 3

Table 3.1: The number of items needed for evaluation of a bivariate simplex spline basis
function and a point on a simplex spline function, where m, = g"—“é(lﬁ

Thus, we have
Fu)y= Y > Nj(u)cp. (3.14)
IePy |Bl=n
This equation provides a linear system with a banded matrix when we apply simplex
spline functions in approximating a set of data points in Chapter 4.

3.1.2 Evaluation of Bivariate Simplex Spline Functions

It is important to evaluate simplex spline basis functions efficiently since a substantial
number of them (including lower degree ones) are computed in evaluating a single point on
a bivariate simplex spline function. See Table 3.1 for a brief review, where “base condition”
means the calculation the the characteristic function X'.

From Table 3.1, at the worst case, the evaluation of a quadratic simplex spline basis
function needs nine base cases in calculating X', i.e., determining if a point is in a half-open
triangle; 12 lower degree basis functions; and 12 barycentric coordinates. The evaluation of
a point over a domain triangle needs more operations. Therefore, it is desirable to have a
scheme which can efficiently evaluate simplex spline functions.

Efficient evaluation of a simplex spline basis function includes the following approaches:

1. Efficiently determining the domain triangle in which the point u is enclosed.

2. Efficiently determining if a point u is in a half-open triangle; in addition, this operation
is numerically sensitive for points on the boundaries of the triangle. It is necessary to
develop a simple and numerically stable algorithm to perform these operations. The
algorithm should also be able to serve in its higher dimensional counterparts, e.g.,
trivariate cases.
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3. A single basis function over a set of knots is defined by recursive Equation 3.5. Some
lower degree basis functions in the recursive formula are reusable and can serve as in-
termediate terms for several higher degree basis function evaluations. This reusability
is of the same spirit as tensor product B-spline evaluation.

4. " , 3! barycentric coordinates are needed during each basis function of degree n
computation. It consumes much time if we compute all these barycentric coordinates
especially in higher dimensional cases (e.g., trivariate basis function). In fact, some
lower degree basis functions obtained are zero, in which cases it is not necessary to
calculate the corresponding barycentric coordinates [41].

Determining the triangle enclosing a point

The triangle in which the point u = (2, y) is enclosed must be found. We take here a bucket
sorting approach stimulated by the one presented in [11]. The detail of our algorithm is
illustrated in Appendix B. The main advantage of this algorithm is that, as long as the
buckets and the relation between the buckets and the triangles are determined, it can be
used for processing many points, each with a limited number of triangle-point checks. Thus
the algorithm takes O(V) time, where N is the number of triangle vertices.

Determining a point in an half-open 2-simplex

The base case in Definition 3.4 needs to determine if a point is in a half-open 2-simplex.
3" such operations are needed for calculating one basis function of degree n. Thus, how to
determine efficiently if a point is in a half-open 2-simplex is presented here which utilizes
lower dimensional half-open intervals. We will see later that this operation will be used for
higher dimensional simplex spline evaluation.

The following pseudocode will take in an array of three planar points v[0], v[1], v[2]
and a planar point u and determine if u € [v[0],v[1],v[2]). The code first translates the
triangle so that u will be the origin. (See Figure 3-3.) Then we project the edges of the
triangle onto the y-axis. Thus, on the y-axis, the three edges correspond to three intervals.
If the origin is not in any of the three half-open intervals, we conclude that u is not in the
half-open triangle; otherwise, the projection of u must be in only two of the three intervals.
Therefore, we can exclude one ray-edge intersection check immediately. The strategy of
converting such a 2D problem into 1D problems can be extended into its 3D or even higher
dimensional counterparts; and the benefit will be more obvious there.

In the pseudocode, a loop over all edges e(v[é], v[j]) checks whether the origin is in the
half-open interval of e projected on the y-axis. If so, then we calculate the edge’s function
values fo and f; at (0,0) and (1,0) and check if fy and f; have opposite signs or if | f;] is
closer to the edge e. If so, then we increase the number of crossings N, by one; otherwise
proceed to the next edge. At the end of the routine, if N, is an odd number, we conclude
u € [v[0],v[1],v[2]); otherwise u ¢ [v[0], v[1], v[2]).

IN_HO_.TRIANGLE (V, u)
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fori — 0to3
v[i] « v[i] - u;
N, < 0;
fori — 0to3
j < (i+1) mod 3;
if(v[i] and v{j] cross x-axis)
fo «— the function value of the edge at (0,0)
fi < the function value of the edge at (1,0)
if(foe fi < 0)
Ne—N:.+1;
11 else if(| fo| > | f1])
12 N.—N.+1;
13 return N, mod 2;

0~ U WIN

= O
o

Here “x mod n” means that 2 modulo ».

Calculating Basis Functions Efficiently

Simplex spline basis functions are evaluated in recursive Equation 3.5. A bivariate simplex
spline function of degree n needs m, = -("—H)%-'ﬁ'—z)- (normalized) basis functions Mg, (|8 = 2)
of the same degree; and each of them needs Y_"_, 3* lower degree Mp, (|| < 2). For example,
a quadratic bivariate simplex spline basis function needs 3 + 32 = 12 lower degree Mg and
a quadratic simplex spline function over a domain triangle needs %% = 6 Mg, (|8| = 2).
Straightforward computation for a point of the function over one triangle needs (124+1)x6 =
78 Mg, (|8] € {0,1,2}). If we assume that the knots associated with the domain triangle
are in general position, then we can evaluate the simplex spline basis functions with less
number of Mg, (|8| € {0,1,2}) by adopting the same spirit as in evaluating tensor product
B-spline basis functions.

For example, evaluating a quadratic simplex spline basis function Mg,g,5, needs only
9 lower degree Mg if we reuse some of its lower degree Mg. Figure 3-4 shows that, by
fixing the reference triangles, Mg,s,, can be obtained from 9 lower degree Mg instead of
12, where §; means, in the ** knot cloud, 3; + 1 knots are involved in computing Mg, s, 6,;
these knots are t;p,...,t; 3;. Applying this strategy to all the 6 basis functions of degree 2,
more calculations on Mg, (|8] € {0,1,2}) can be saved, see Figure 3-5.

The following rules are followed in choosing a reference triangle and computing the basis

functions:

1. A reference triangle A for basis function evaluation is formed by three knots, each of
which is from a distinct knot cloud if the knot cloud participates in the computation,
i.e., B; > 0. For example, to calculate Msqg, all three knot-clouds participate in the
computation and each will contribute one knot to form the reference triangle.

2. When choosing a knot from a knot-cloud to form the reference triangle, choose the
one with largest index if possible. For example, in case of Mago, choose tg 2,110,120
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Yo Vo

-

y2

Y1 v1

Figure 3-3: Determining if a point “o” is in the half-open triangle [vo, vy, v3).

Mg 31

M(u| tig,0, tig,2; tiz,0)

Mgo-1
Mjo-1
M20o Ma_10
Mj_10
M;

M(u|tiy,0, tig,2, t'izyo)

Mooo

Figure 3-4: Efficient evaluation of a quadratic bivariate simplex spline basis function.
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Ma_1-1

M(u|tig,0, tig,2, tiz,0)

Mjo-1
M(u|tig,1, tiy,0, tiz, 1)
Mzo-l
MOl-l
Mj;-1
l M(u|tig,0, ti},0, tiz,2)

M(u|tig,1, tig,0, tiz,l)

M_j10

M(u| tiy,1, tig,0» tin, 1)

M(u|tig,0, ti2,01 tiz,z)
M_1;1
M|t 0 tig,0, tig,2)

M_1-12

Figure 3-5: Efficiently evaluating a set of quadratic bivariate simplex spline basis functions.
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as reference triangle.

3. If the i** knot cloud does not contribute any knots (8; = —1), choose knots from other
knot clouds, keeping the above rules in mind. For example, in case of Myg_1, choose
10,05 0,2, 11,0 as the reference triangle.

For example, when calculating Magp, we choose A = (%g,2,%1,0,%2,0) as the reference
triangle. Thus we can use lower degree basis functions as Mjgg, Ma—10, M20-1, here index
' — 1" indicates the corresponding knot cloud does not participate further in computation.

Avoiding barycentric coordinate computations

From Definition 3.4, calculating a basis function at point u needs Y%, 3* (i.e., 3—'&;—‘1)
barycentric coordinates of the point u with respect to certain triangles, which is time
consuming. In cases that the basis function is zero, then it is not necessary to calculate the
corresponding barycentric coordinates A;, since the A;Mp(u) is zero. See Fong [41].

3.1.3 Differentiation of Bivariate Simplex Spline Functions

A directional derivative along a given direction d = (d;, d,) for a parameter u € R? may
be computed for a bivariate simplex spline in the same fashion as evaluation. It can be
shown that barycentric coordinates u(d|A) for a vector d with respect to the triangle
A = [tg, t1,t3] sum to zero instead of one, i.e.,

2 2
d=) ui(dlA)g; > pi(d|lAa)=0. (3.15)
i=0

=0

The first order directional derivatives for degree n simplex spline basis function can then
be computed as in [68, 95, 43]:

2
DaM(u|V) =n} _p;(d|A)M(ulV \ {t;;}) (3.16)

3=0

where V is the knot set.
For a simplex spline surface, we have:

DgF(u)= > > ctDaNj(u) (3.17)
IePu |B|=n

where P, denotes the triangles in the neighborlet of the triangle enclosing point u defined
in Section 3.1, and
DgNj(u) = |det(A5)| DgM(ul] V) (3.18)

Up to g** derivatives (1 < ¢ < n — 1) for simplex splines are given by:
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2
Dy, d,..a,M(u) = (n — ¢ +1) Y pi(d1]A) Dy, .a,M(u|V \ {t;;}) (3.19)

=0

3.1.4 Integration of Bivariate Simplex Spline Functions

It is obvious that, at the base case, an integral of simplex spline basis function over a region
A is:
/A M(ultio,tir, ti2)do = AN Altio, b1, i) (3.20)

A degree n simplex spline basis function is:

/ M(ufto, s t)do = Z ] X8t g 4 )M(u | to, iy, - tm)do (3.21)

j=0

The integral of a quadratic basis function is the summation of the integral of nine
bounded polynomials over region A. For example,

LMzoo(ll)do‘ = /22/\ (uIA()o)/\ (ulAh)XA”d t(lA,'j)da (322)

1—0 j=0

- det(A,,)EZ / ’\'(ulﬂoo)r\j(uIAh-)da (3.23)

1=0 j=0

where Ao = Az00 = (t0,2,t1,0,t2,0)s A1i = Dggoei, Dij = Dypp_eieir and € = (6;),] €
{0,1,2} or explicitly e = (100),e! = (010),e? = (001). Accordingly, integration of other
quadratic basis functions can be calculated in a similar manner.

3.2 Trivariate Simplex Splines

A trivariate simplex spline is a natural extension of bivariate simplex spline. Trivariate
simplex spline functions possess the same properties as bivariate simplex spline surfaces.
Therefore, in this section, we focus on the explicit definition and efficient evaluation of
trivariate simplex splines. The evaluation scheme developed here will be utilized in trivariate
data modeling in the next chapter. The generalization to n-variate simplex splines of
arbitrary degree can be found in [20].

3.2.1 Mathematical Background
Basic Definitions

Half-open 3-simplex is a natural analog of half-open 2-simplex in 3D space. The definition
for half-open 3-simplex is similar to that for half-open 2-simplex. Here we only give a
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Figure 3-6: The direction “out” for a tetrahedron

intuitive description to define it.

Definition 3.6 Given tg,t1,t,t3 € R3, we denote by A = [to, t1,t2,t3], the tetrahedron
formed by these points. For a point u € A, make a ray cast from u to the positive z-azis. If
this ray hits more than one point on the 3-simplex, then u is in the half-open 3-simplex,
denoted as [to,t1,t2,t3). Otherwise, u is not in the half-open simplez.

Definition 3.7 Every polyhedron P (of m vertices) may be partitioned into 3-simplices
such that the intersection of any two simplices in the triangulation T is either an empty
set, a common vertez, a common edge, or a common face. The direction of T is defined
as “in” or “out” if every tetrahedron [to,tq,ts,t3] in T is defined as pointing in or out.
Figure 3-6 shows an ezample of a tetrahedron pointing “out”.

Definition 3.8 The barycentric coordinates (Ag, A1, A2, A3) of a point u with respect to a
tetrahedron A = (to,t1,1t2,t3),t; € R3, are defined as:

T)Ol(u,tl,tz,t3) 'vol(to, u, t2,t3)

Mo(ulB) = ot tarts) 1) = Sollte . 2. 80) (3:24)
if points tg, t1, to, ts are affinely independent.
It can be proven that
3
u = Aoto + Aty + Aotz + Asta = 3 Ait; (3.26)

=0

1
vol(to,tl,tg,ta)zgdet(tlo tll t12 tla) (3.27)
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provided that the four point tg,t;,ts,t3 are not coplanar, i.e., vol(tg, t1,t2,t3) # 0.
Note: Similar to bivariate simplex spline cases, the points inside a tetrahedron have
positive barycentric coordinates.

Definition 3.9 A trivariate simplex spline basis function is defined as
3 ~
M(ulto, ... tm) = D Aj(w)M(ulto, ..., Eijy ey tm) (3.28)
—

X[ti,o )ti,l ’ti,2 yti,S ) ( u)

M(ult,',o,t,‘,l,ti'g,t{,;;) = |det(t0 tl t2 t3)| (329)
b b ?
where
1 ifue t"o t’,l t"2,t',3
X[ti,mti,l’ti,zvti.a)(u):{ 0 otherw[z's; b bi bis) (3.30)

Note: f;,-j means f;j s removed from the knot set.

Dy, iy iy iy = {tigs tirs tiyr tis} € {to,....tm}, called reference tetrahedron, is any
subset of affinely independent four points and Aj(u) are the barycentric coordinates of u
with respect to t;;.

Equation 3.28 is independent of the specific choice of A¢, 4, i, t:, [20].

Definition 3.10 Let T = {A(I) = [tiy, ti), tips tis]|I = (d0,%1,2,%3) € I C Z4} be an
arbitrary triangulation of the parameter space R3. Assign a sequence of knots t;o,...,t;n
to every vertex t; in this triangulation. So t;o = t; and any four knots form a proper
tetrahedron. Then consider the sets:

Vﬁl = {!‘.,’0,0, ey $ig, B0y +es i 05 '"7ti3,ﬁsl} (3.31)

—

n+4

where 8 = (Bo, B1, B2, 03), |B] = Bo+P1+ P2+ B3 = n then an arbitrary trivariate simplex
spline hyper-surface of degree n over a given triangulation T is:

Fuy= > Y Nj(u)c, (3.32)

Ie T |Bl=n
where cf, € R? are the control points for the shape of the surface and
Né(u) = |det(tio,ﬁo y8i1,815 ti,,620 tis, B )l : Mé(u) (3-33)
is called normalized trivariate simplezx splines basis function.

If ¢l are scalar numbers, Equation 3.32 generates a trivariate simplex spline func-
tion. This function can be used in aplications, e.g., 3D data modeling.
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Similar to the 2D counterpart, in ensuring region Qf # ¢, we can have:

Y Y Nju)=1. (3.34)

IePu |B|=n

where P, denotes the tetrahedron neighborlet of A which contains u.

Thus, we have
Fu)= Y 3 Nj(u)cs. (3.35)
IePu |B|=n

This equation provides a linear system with a banded matrix when we apply simplex
spline functions in approximating a set of data points in Chapter 4.

3.2.2 Evaluation of Trivariate Simplex Spline Functions

For the same reason stated in Section 3.1.2, we emphasize the efficiency of evaluation of
trivariate simplex spline functions. Evaluation of a point of a trivariate simplex spline
function over one tetrahedron includes (1) determining if u € Dy iy iy big 5 (2) computing
barycentric coordinates; (3) multiplication of barycentric coordinates and the lower degree
basis functions.

Analogously we consider the following four computational steps:

1. Determining the tetrahedron enclosing point u
2. Determining if a point is in a half-open 3-simplex.
3. Reducing the number of intermediate terms of lower degree basis functions.

4. Avoiding unnecessary barycentric coordinate computations.

Determining which domain tetrahedron encloses u

The tetrahedron in which the point u = (z,y, z) is enclosed must be found. We use here
bucket sorting discussed in Section 3.1.2, see also Appendix B.

Determining if u is in a half-open 3-simplex

For the same reason as stated for bivariate simplex spline basis functions, we need to de-
termine efficiently if a point u € R3 is in a half-open 3-simplex with numerical stability.
Obviously, we do not want to use the barycentric coordinates of u because (1) it is inap-
propriate for boundary points, and (2) it needs to compute determinants of five matrices of
order four. We do not want to use ray casting directly on the four faces of a 3-simplex either
because that will check the ray intersecting four faces. However, by using the algorithm
from 2D cases, we can simplify this s1tuat10n based on the simple fact that, prOJectlng u
and a simplex onto y-z plane, we obtain u' and 4 triangles out of 4 vertices: vy, v}, Vg, V3.
On the y-z plane, there are two possible cases.



CHAPTER 3. SIMPLEX SPLINE REPRESENTATION AND EVALUATION 64

V3

AN

\£)

Figure 3-7: Project the 3-simplex onto y-z plane, we obtain four planar points: v('), v;, v;, v;
and u =origin. Then (1) check which half-open triangles contain u; (2) check the corre-
sponding triangle faces to see if they intersect the positive z-axis; if yes increase N, the
number of axis-face intersection by 1; (3) Finally, if N, is odd, return TRUE; otherwise
return FALSE.

e u' is not in the convex hull formed by the projected triangles. This indicates u is not
in the 3-simplex.

e u’ isin the convex hull. Then u is in at most two half-open 2-simplex. This indicates
that we can exclude two 2-simplices by using the 2D process IN_.HO_TRIANGLE. Thus
we need to perform only two ray-face checks. If the result is that the ray intersects only
one face, u is in the half-open 3-simplex, otherwise it is not. (Note: This procedure
is extensible to a general half-open s-simplex (s > 3).)

The following pseudocode will take in an array of four space points v[0], v[1], v[2], v[3]
and a space point u and determine if u € [v[0],v[1],v[2],v[3]), i.e., u € [v), where [v)
denotes the half-open tetrahedron formed by the vertices v[0], v[1], v[2], v[3]. This routine
first translates the origin to u and projects the vertices onto y-z plane. In the projected
triangles, it uses IN.-HO_TRIANGLE to determine half-open triangles containing u; if none
contains u, then u is not in the half-open 3-simplex; otherwise, check which projected
half-open triangles contain u, and denote the corresponding triangle faces as F;,i € {0,1}.
Afterwards, check how many F; intersect the positive z-axis, if the number is odd, then u
is in [v). See Figure 3-7.

IN_.HO_TETRAHEDRON (V, u)

1 fori—0to4

2 v[i] « v[i] - u;

3 N, 0

4 project u, v[i] to y-z plane obtaining o, v'[i],z’ =0,...,n.
5 fori—0to4

6 j < (i+1) mod 4;
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Number of items needed for one basis function : M(u)

base cases | lower degree basis functions bar. coords.
Quadratic 42 41 4 42 41 4 42
Degree n 4" Yo 4 i 4
Number of items needed for one point over one tetrahedron: F(u)

base cases | lower degree basis functions bar. coords.
Quadratic [ 10 x 42 10 x (41 + 4%) 10 x (4! + 42)
Degree n mcA4" Moy ieq 4 mMe Y g 4

Table 3.2: The number of items needed for evaluation of a trivariate simflex spline basis
function and a point on a trivariate simplex spline function, where m, = ntl "22 ntd)

7 k — (i+2) mod 4;

8 n « IN.HO_TRIANGLE(V , u)

9 if(n > 0)

10 fo < the function value of the face at (0,0)
11 f1 < the function value of the face at (1,0)
12 if(foe f < 0)

13 N, = N, +1;

14 else if(| fo| > |f1])

15 N.— N.+1;

16 return N, mod 2;

Evaluation of Simplex Spline Functions

Simplex spline basis functions are evaluated by a recursive formula, see Equation 3.28.
A degree n trivariate simplex spline function needs m, = in—ﬂ)—(%ﬁﬂ basis functions
of the same degree; and each of them needs Y"1, 4‘ lower degree basis functions. For
example, straightforward computation for a point on a quadratic trivariate simplex spline
function over one tetrahedron needs 10 basis functions of degree, i.e., Mg, (|8| = 2). If we
assume that the knots associated with a domain tetrahedron are in general position, then
we can evaluate the Mg, |3| = 2 with less operations by a method analogous to the one in
Section 3.1.2.

For example, evaluating a quadratic simplex spline basis function Mg,g, g,3, needs only
20 lower degree basis functions, i.e., 4 Mpg,(|8] = 1) and 16 Mp,(|8| = 0). Figure 3-8
shows that, by fixing the reference tetrahedra, Mg,p, 8,3, can be obtained from fourteen
Mg, |B| = {0,1}, where B; means taht, in the i** knot-cloud, 8; + 1 knots will be involved
in computng Mpg,p,6,5;- These knots are t;g,...,t; 3;. Applying this strategy on all ten
basis functions needed for evaluating a point on a quadratic simplex spline function over a
tetrahedron, about 70% of lower degree My can be saved.

The following rules are followed in choosing a reference tetrahedron and computing the
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Mg0-1-1

M(u| tig,0, tig,2> tiy,0, ti2,0)

Mg_10-1
M200-1 M;j00-1
Mgo-10 Ma_1-10
V2000 Mg_100 M(u|tiq,0, tig,2s ti1,0s tig,0)
Mj000 Mjo-10
Mj-_100

M(u| tio, » tig,2s tig,0» ti3,0)
Mogoo00

Figure 3-8: Efficiently evaluating a quadratic trivariate simplex spline basis function.
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basis function:

1. A reference tetrahedron A for basis function evaluation is formed by four knots,
each of the knots is from a distinct knot cloud if the knot cloud participates in the
computation, i.e., 8; > 0.

2. When choosing a knot from a knot cloud, choose the one with largest index if possible.

3. If a knot cloud does not contribute any knots (3; = —1), choose knots from other
knot clouds, keeping the above rules in mind.

For example, when calculating Magp0, choose A = (%o,2,%1,0,%2,0,%3,0) as the reference
tetrahedron, thus we can have lower degree basis function as Myygg—ei 2 = 0,...,3, or
explicitly, Mio00, M2-100, M20-10, M20o-1, here “-1” indicating the corresponding knot cloud
does not participate in further computing and e’ = (§;),j € {0,1,2,3}.

Avoiding barycentric coordinate computations

Similar to bivariate cases, if the basis function is zero, then it is not necessary to calculate
the corresponding barycentric coordinate A;.
3.2.3 Differentiation of Trivariate Simplex Spline Functions

A directional derivative along a given direction d = (dg, dy, d,) for a parameter u € R3 can
be computed for a trivariate simplex spline in the following form:

3 3
d =Y pi(dlA); Y pi(dlA)=0. (3.36)
j=0 7=0

Similar to bivariate simplex splines, the first order directional derivatives for a degree n
simplex spline basis function can then be computed as [68, 20, 95]:

3
DaM(u|V) =n}_ p;(dlA)M(uV \ {t;;}) (3.37)

=0

For a trivariate simplex spline function, we have:

DgF(u)=>" > c4DgN}(u) (3.38)
I€T |B|=n
DgNj(u) = |det(A§)| DaM(u]V) (3.39)

Up to ¢t* derivatives (1 < ¢ < n — 1) for simplex splines are given by:
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3
Dq,d;..a,M(w) = (n =g +1) 3 pj(d1]A)Dg,..a,M(ulV \ {t;}) (3.40)
Jj=0

3.2.4 Integration of Trivariate Simplex Spline Functions
It is obvious that, as in the base case, integral of simplex spline basis function over the
spatial region V is:

./V M(u|t0, tl,tz,t;g)da' =Vn ’UOl[to, t1,t2,t3] (341)

where do = dzdyd=z.
The integration of a degree n simplex spline basis function is:

3
E/V ’\j(ulAtioytil,f»i-“ i )M (ulto, ...i‘.,'j, et )do (3.42)

§=0

/ M(ulto, .y tm) =
14

For example, a quadratic trivariate basis function is the summation of the integral of
sisteen bounded quadratic polynomials over the spatial region V.

3 3 3 3
[, Modo = [ 5= 5" Aultoors(ultita,de = 33 [ Auldao)s(uldr)do

1=0 j=0 =0 j=0
(3.43)

where Ngo = Ag, Dii = Dp_ei, Dij = Dpg_ei_ei, and €® = (1000),e' = (0100),e* =
(0010), e = (0001).

3.3 Properties of Simplex Splines
Simplex splines have the following properties:

1. Modeling capability in modeling irregular domains.

2. Piecewise polynomials of degree n. Therefore a simplex spline function can be
subdivided into Bézier expressions although the resulting subdivided subdomains are
numerous and multisided, see [85, 20] for details.

3. Convex hull property: A simplex spline surface lies in the convex hull of its control
points. This is also a local property, i.e., a part of the surface lies in the convex hull
of its local control points.

4. Locality: Movement of a control point influences the region of the (hyper)surface
within the domain simplex’s neighborlet and the simplices adjacent to the neighborlet.
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5. Continuity: A degree n simplex spline function is C*~! continuous everywhere if
knots are in general position in every domain simplex.

6. Affine invariance: The relationship between the control points and the simplex
spline (hyper)surface is invariant under affine coordinate transformations.

These properties can be utilized to model physical data over irregular domains with low
degree simplex spline surfaces, and automatic continnuity and optimal smoothness can be

achieved.

3.4 Discussion

Simplex spline, B-spline and composite triangular Bézier patches

Table 3.3 shows a comparison among simplex splines, tensor product B-splines and trian-
gular Bézier patches. It is shown in the table that simplex splines can achieve optimal
smoothness (C™~1) automatically and model surfaces in irregular domains.

Simplex spline | Tensor product B-spline Triangular Bézier
Degree Low (n) High (nxn) Low (n)
Domain Irregular Regular only Irregular
Continuity | High order(C™1) High order(C™1) Low order(CL*F1)[38]
Smoothness Automatic Automatic Complex

Table 3.3: Comparison of simplex spline, B-spline, and composite Bézier triangles.

Evaluation complexity of simplex spline, and composite triangular Bézier patches

Quadratic simplex spline surfaces can achieve up to C! continuity contrary to the situation
of composite triangular Bézier patches which need quintic surface patches to achieve the
same degree of continuity. We compare the number of multiplications/divisions they need
in the evaluation of a point on the corresponding surfaces. Table 3.4 shows a comparison
between evaluation of a point on a quadratic simplex spline surface and a composite quintic
triangular Bézier patch which are needed in modeling a C! surface. We show the numbers
of multiplications/divisions under straightforward basis function computation for both sur-
faces and using the De Casteljau algorithm for the triangular Bézier patch. Notice that
the evaluation using De Casteljau algorithm saves computational time dramatically. Un-
fortunately, for simplex spline surfaces, a De Casteljau-type algorithm is not yet available.
However, the same magnitude of time-saving can be expected if such an algorithm could be
developed.
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Straightforward | De Casteljau
Simplex splines 444m; -
Bézier patches 7631 371

Table 3.4: Complexity of evaluation of a quadraric simplex spline surface and a quintic
Bézier triangular patch by straightforward basis function computation and De Casteljau
algorithm, respectively. Here m; is the number of triangles in the triangle neighborlet.

For the evaluation of a point on a quadratic simplex spline surface, from Definition 3.10,
we notice that 6 normalized basis functions Ng(u) = det(ti, gy, tiy 8,5 tin,8,) Mp(u), where
|B| = 2 are needed.

1. Each Mg, (]3| = 2) needs 12 barycentric coordinates; every 3 barycentric coordinates
involve 6 multiplications and 2 divisions, i.e., 2 x(6+2)=32 multiplications/divisions.

2. In addition, each barycentric coordinate will multiply a lower degree basis function
once, i.e., 12 multiplications.

3. At the base case in Equation 3.6, if we neglect the computational time for the char-
acteristic function X'(u), we need to calculate a determinant det of order 2, which
needs 2 multiplications, and the value of ﬂk%l’ where “| o |” means |det|, which needs 1
division and since there are 9 base cases for an Mg(u) where || = 2, the total number
of multiplications involved in the base cases is (2+1)x9=27.

4. After Mg(u), where |8] = 2 is computed, a = det(t;y g, ti; 5, ti,5,) Needs 2 multi-
plications and a x Mg(u) should also be counted as 1 multiplication. Therefore, to
compute a Ng(u), where || = 2, we need 32 + 124 27 + 2 + 1 = 74 multiplica-
tions/divisions.

5. Finally, the linear combination of 6 normalized basis functions and the corresponding
control coefficients takes 6 multiplications.

Therefore the overall multiplication and divisions needed is: 74x6=444 for each in-
volved triangle in the triangle neighborlet. Thus, at worst case, totally 444ms multipli-
cations/divisions are needed in computing a point on a quadratic bivariate simplex spline
surface, where m, is the number of triangles in the triangle neighborlet.

By using the De Casteljau algorithm, the computation of a point on a Bézier triangle
needs 314 multiplications. Equation 3.44 shows the De Casteljau algorithm for the evalu-
ation of a point with barycentric coordinates u = (u,v,w) on a degree n Bézier triangle
[39]:

bi(u) = ubir_:él(u) + vb;:;z(u) + wb;";és(u), (3.44)
where 7 = 1,...,n and |i| = n — 7, b; € R are control coefficients, and el = (100),

e2 = (010), and e3 = (001). To calculate the b(u) = b?(u), S22, 3" = 363 multiplications
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are needed. In addition, 6 multiplications and 2 divisions are needed to determine the 3
barycentric coordinates of a point in the parametric space. Thus, we need 363+8 = 371
multiplications/divisions in the evaluation.

By straightforward basis function computation, the complexity of evaluation is shown
below, see Equation 3.45.

b*(w)= Y bi(u)Bf " (u) (3.45)

lil=n—r

where the Bernstain polynomials Bf*(u) are recursively defined by

B{ (u) = uB{=} (w) + vB}~ly(n) + wB] ks (w); (3.46)
Analog to the complexity analysis for the computation of a Bf(u) using Equation 3.46
recursively, we need 363 multiplications. Since a quintic Bézier triangle has 21 control
coefficients, totally, for the straightforward computation together with the computation of
barycentric coordinates, we need 21 x 363 + 8 = 7631 multiplications/divisions.

The use of Clough-Toucher method instead of standard Bézier triangles can reduce the
complexity in evaluation but increase the memory storage dramatically.

Issues on simplex spline functions

There are some issues that need to be explored extensively in the theoretical development
of simplex splines.

o Triangulation: In scattered data fitting, a simplex spline needs certain number of data
points in every domain simplex. Although such a requirement can be met by a data
segmentation scheme, which is good for approximation, it is not ideal for interpolation.
See Traas [95].

o Knot configuration: How to generate optimal knot configurations has not been thor-
oughly studied. See Traas [95].

o De Casteljau-like Algorithm: The development of a De Casteljau-like algorithm is
highly desired to enhance the efficiency of the evaluation of simplex spline functions.

3.5 Examples of Bivariate/Trivariate Simplex Spline Func-
tions

Our example shows a quadratic simplex spline surface defined over a 2D domain shown in
Figure 3-9. At each vertex, we associate two knots. The domain triangulation and the knots
are stored in a topological modeling structure introduced in Section 2.4. Control points can
be accessed by corresponding triangle supports. Figure 3-10 shows the rendered surface in
wireframe.
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P ~

Figure 3-9: The domain of a simplex spline surface.

Figure 3-10: A quadratic simplex spline surface defined in domain shown in Figure 3-9.
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Figure 3-11: The domain tetrahedron and the knots of a trivariate simplex spline.

Our second example is a quadratic simplex spline hypersurface over a 3D tetrahedron.
Similar to 2D cases, we associate two knots with each vertex. Figure 3-11 shows the domain
tetrahedron and the knots; Figure 3-12 shows a isovalued surface of this hypersurface when
the function value is 0.5 by using the visualization technique called marching simplices,
which will be described in Chapter 6.
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Figure 3-12: Isosurface of a trivariate simplex spline function in a tetrahedron.



Chapter 4

Modeling Physical Data in
Irregular Domains

4,1 Introduction

Data modeling is the key in the construction of scientific databases. In this chapter, 2D
(3D) data refers to the data points defined in a two (three)-dimensional Euclidean space and
associated with scalar function values. Each function value has a certain physical meaning,
e.g., terrain elevation, oil concentration, temperature, which can be described by continuous
functions. The goal of data modeling and representation is to find a bivariate/trivariate
continuous function defined in the same domain which can describe the behavior of the
data in an accurate manner. This process is also called (hyper) surface reconstruction.
The purpose of 2D (3D) data modeling is to interrogate and visualize the scientific data
effectively to provide information on the data set. In this thesis, scattered data modeling
involves approximating or fitting the data with low degree nonlinear piecewise polynomial
functions.

In recent years, multivariate simplex splines have received much attention because of
their attractive properties such as capability in modeling surfaces in irregular domains and
achieving optimal smoothness. These properties are appropriate for fitting scattered 2D
(3D) data.

However, applications of multivariate simplex splines in [85, 20, 42] are very rare, espe-
cially for the general simplex spline form, which is very likely due to their recent introduc-
tion, the difficulties arising in knot distribution derivation, and programming complexity.
As demonstrated in Chapter 3, their use requires mathematical sophistication, and good
software programming skills.

In this chapter, bivariate (trivariate) simplex spline functions of arbitrary degree are
employed in modeling physical data in irregular domains. The modeling process includes
knot generation, least-squares approximation, error estimation and domain subdivision.
Figure 4-1 shows the flow chart of these operations. The resulting bivariate and trivariate
functions can achieve optimal and automatic smoothness (if knots in one support are in

75
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Input data,
error threshold ¢

Preprocessing

1

Knot generation

Least squares
approximation

Error estimation

4
Error>__ Subdivision

Figure 4-1: Flow chart for data modeling,.
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general position) to reflect the continuity of the physical phenomena encapsulated in the

data.

4.2 2D Data Modeling

We concentrate on 2D data modeling in this section. Our objective is to create a bivariate
simplex spline function F : R? — R!. The tasks of 2D data modeling include, apart from
preprocessing (i.e., domain establishment and data segmentation discussed in Chapter 2),

1.
2.
3.
4.

knot generation;

error estimation;

subdivision.

least squares approximation;

These four processes can be automated in order to reduce the dependence on a sophis-
ticated user of the modeling system.
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Figure 4-2: Knots associated with a vertex are in a circle centered at the vertex with radius

r<£”g‘“.

4.2.1 Knot Generation

Knots associated with each vertex in domain triangulation have much flexibility (freedom).
Knot configurations associated with domain triangles play an important role in surface
generation. For example, in a domain triangle, if there are ¢ (> 2) knots collinear, the
degree of continuity of the simplex spline surface will decrease by (¢ —2) [85, 43, 20]. Knot
configuration also influences the second order derivatives [95] of the surfaces [85, 43, 20, 95].
For physical data modeling, the knots have several constraints.

1. The distance between the knots t;,...,t;, and the vertex t;o, where n is the degree
of the surface, needs to be considered. It is desirable to generate knots close to the
vertex t;o. A criterion to be used here is that the knots should be placed within a
circle centered at the vertex with radius less than %Lm;n, where L,,;, is the length of
the shortest edge of all the edges incident to the vertex t;g [95, 43]. (See Figure 4-2.)

2. To achieve optimal smoothness C™~1, it is desirable that any three knots associated
with a domain triangle are non-collinear. If we call a straight line between two knots
a knot line or forbidden line, then we generate a new knot avoiding any existing knot
lines (forbidden lines); in turn, the new knot with all the other knots form a new set of
knot lines to serve as additional constraints for future knot generation. For example,
Figure 4-3 shows knot generation for a quadratic simplex spline domain triangle. The
vertices are knots and each vertex will be associated with two knots. Before we place
any new knots, there are 3 knot lines (i.e., the three edges of the triangle). When
creating a knot to; for vertex to(= to,), we obtain three additional knot lines: to 1to,
to,1t1, and to1t2. The three knot lines, together with the initial three knot lines form
constraints for the next knot generation. (See Figure 4-3.)
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Figure 4-3: A new set of constraints is formed after introducing new knots in one do-
main triangle. Besides the constraints from toot1,0, t1,0t2,0, t2,0t0,0, New constraints are:
to,1t0,0,t0,1t1,0, to,1t2,0

3. Since three nearly collinear knots in one triangle make the jump in second derivatives
of the surface across the knot lines of these knots very high [95], keeping the distance
to the forbidden lines bounded from below assures that the second derivatives of the
spline basis remain bounded. This fact is expressed by Equation 4.1, which describes
the jump across the edge defined by the knots z*,y* and z7,y’ [53].

(v - )P (= — y')>

DPM|, — DP M|, = 24 7
h g [Tk=o,xi,; det(zt, o9, z*)

(4.1)

.. 181
where 4,5 € (0,1,2,3,4), 81,82 € (0,1,2),8 + B2 = 2,D? = ?h—gxaz—ﬂz' In case of

collinearity, at least one of the determinants in the denominator of Equation 4.1 be-
comes zero. Therefore we generate a knot such that the absolute value of Equation 4.1
is minimized (at least approximately) over the edges in the domain triangles in which
the knot is placed. The approach taken here is to avoid nearly three collinear knots
in knot generation. Thus, it is desirable to generate a knot on the bisector of the two
knot lines.

4. Knots associated with boundary vertices should be placed in the region K defined by
the following criteria.

(1) If the domain of definition is D, then the region for knots is outside of D, i.e.,
KnD=¢.

(2) For points t € K C R?, if we draw a line linking t and t; and extend the line
to obtain a symmetric point t of t with respect to t;, t' should be in one of the
boundary triangles incident to t;, i.e.,t’ € A; C D. See vertices t; in Figure 4-4. The
shaded region is the region for knots associated with vertex t;. In this way, the knot
lines containing boundary knots are out of the domain D, which ensures the region
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Figure 4-4: Boundary knot generation: knots associated with a boundary vertex should be
in the shaded region.

Figure 4-5: Inner knot generation: knots associated with an inner vertex can be anywhere
in a circle centered at the vertex with a bounded radius, except on forbidden lines.

} defined by Equation 3.8 in the boundary triangle to be maximum. These criteria
guarantee that the surface along the boundary of the domain is created properly!.

5. Knots associated with interior vertices can be placed anywhere in the knot circles
(except on the forbidden lines). (See Figure 4-5.)

Note:

1. Additional constraints with respect to knot generation may be imposed in case a
designer wishes to use control points for manipulating surfaces.

!Otherwise, at some points in the domain near the boundary, the summation of the normalized basis
functions may not be unity.
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2.

A further constraint with respect to knot generation may arise because of considera-
tions of minimizing (on the average) the number of domain triangles which are incident
to a given vertex. This is of importance for efficiency reasons, when computing values
of linear combinations of simplex splines, see [95] for further details.

Based on the above constraints, we develop an automatic knot generator for bivariate
simplex spline surfaces of arbitrary degree n. In the knot generator, T is the domain
triangulation, £ is a predefined positive real and 0 < £ < 0.5.

1.
2.

10.
11.
12.
13.

Input T, » and €£.

For each vertex v; of T, compute L,,;,, the shortest length of edges incident to the
vertex.

. Let r = €Lyn.

If the vertex v; is a boundary vertex, proceed; otherwise, go to Step 10.

For every new knot t;;, j=1 to n, find all edges € that are incident to v; and their
symmetric edges €' with respect to the vertex v; lie outside the domain.

Compute the angles between € and the z-axis and sort these angles in an increasing
order; we then obtain an array of angles ax, k = 0,1, ..., m, where m is the number of
edges incident to v;.

Find the largest difference between two consequent angles in the array 6, = ag+1 — ok,
i.e. Omaz = maz(6i).

Create a knot t; ; = v; — rd, where d = (cos($ma=), sin(8maz)).
If i < n, go to Step 5; otherwise, go to Step 2.

Find all edges € incident to v;.

Repeat Steps 6 and 7;

Create a knot t;; = v; + rd.

If i < n, go to Step 5; otherwise, go to Step 2.

4.2.2 Least Squares Approximation

To achieve arbitrarily high order optimal continuity of a simplex spline function, the mod-
eling system in this thesis is designed for arbitrary degree simplex spline functions. The
goal is to calculate control coefficients based on given triangulation and knot configuration.
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Given data points (u;, f;), i=0 to N,, where N, is the number of data points u; € R?,
we use as our objective function for least squares approximation the following:

Np mi . .
Fu)=) [fi-Y Y Nj(w)c,]? (4.2)
=0 J=0|8]=n

where m; is the number of triangles in the neighborlet of the triangle A enclosing u; and
¢ are unknown control coefficients. Since Nj(u;) are evaluated constants and some of the
control points are common control points, the matrix on the right side of Equation 4.2 is
a banded matrix with bandwidth = max{l; — k;} for all A in T, where {I; — k;} is the
{maximum numbering - minimum numbering} of control coefficients of the neighborlets of
the A. We can solve the above system by standard numerical solver provided in NAG [74].

Note: Adding, deleting or slightly perturbing a data point in a triangle will change the
fitting function in a local area (i.e., the triangle neighborlet and the triangles sharing at
least one vertex with the neighborlet).

4.2.3 Error Estimation

For points in different domain triangles, the errors are different. Error in triangle A;, where
i =0,..., Ny and N, is the number of triangles in the triangulation, is denoted as E;. Suppose
there are m data points in A;, then:

2

1 N
E; = 'TEE fi=>_ ) Nj(uj)ch (4.3)
j=0 I€T |Bl=n

We need to find the maximum error E,,,, over all the domain triangles and the correspond-
ing triangle Ag, ..

4.2.4 Adaptive Domain Subdivision

It is possible that the error resulting from a least squares approximation over the current
domain triangulation is greater than a predefined threshold € (> 0), i.e., Eyqz > €. Based
on the fact that scientific data is usually dense, we can subdivide the domain and repeat
the knot generation and approximation process to obtain a smaller approximation error.
This process is repeated until a satisfying result is obtained.

There are four approaches to subdivide a domain. The following shows the four sub-
division strategies on a triangulation. Suppose the slightly shaded triangle has maximum
error and we need to subdivide it in a certain way. The subdivision may propagate to other
triangles. The following four methods to subdivide the domain may be used.

1. Subdivide every domain triangle into 4 equal triangles; each of which is  of its parent
triangle. (See Figure 4-6.)
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Figure 4-6: Subdivide every triangle into four.

Figure 4-7: Subdivide the triangle with E,,,, at its longest edge into two and the adjacent
triangle into two.

2. Subdivide the triangle with the largest error E,,;, into two triangles at the middle
point of its longest edge and consequently the triangle that shares the edge. (See
Figure 4-7.) This type of subdivition propagates to all the triangles.

3. Combine the above two methods and subdivide the shaded triangle A; into two or four
triangles depending on the shape of the triangle. If the triangle has an angle o > %,
then subdivide the A; into two and the adjacent triangle(s) A; (j € {0,1,2,3})
into two or four, also depending on the shape of the triangle A;. The subdivsion is
propagated to other triangles, see Figure 4-8.

4. Finally, the fourth approach can be taken to restrict the propagation of subdivisions,
see Figure 4-9.)

The third and fourth approaches create less triangles and can make the triangles more
equiangular.

4.3 3D Data Modeling

The analysis for 2D data modeling can be extended to 3D. In this section, we briefly address
the major points in 3D data modeling.
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Figure 4-8: Subdivide the triangles into two or four depending on their shapes. Starting
from the one with E,,z, if it has an inner angle > 7, then subdivide it into two; otherwise
into four. Then subdivide the triangle(s) sharing the subdivided edge(s) into two or four
depending on their shapes and the length of the subdivided edges.

Figure 4-9: Subdivide the triangles into two or four depending on their shapes. This type
of subdivision restricts the propagation.
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Apart from preprocessing of the data addressed in Chapter 2, the tasks of 3D data
modeling include:

1.
2.
3.
4.

knot generation;
least squares approximation;
error estimation; and

subdivision.

As for the 2D problem, these processes can be automated in order to reduce the depen-
dence on a sophisticated user of the modeling system.

4.3.1 Knot Generation

Knot configurations associated with domain tetrahedra also are important in trivariate
function generation for the same reasons stated in previous sections. The difference is that
if four knots in one tetrahedron are co-planar then the order of continuity decreases by
one; if they are nearly co-planar then the jump in (at least) one of the second order partial
derivatives across any of the planes formed by three knots is very high. Knot configuration
also influences the second order partial derivatives of the trivariate function [20]. Therefore
constraints for 3D modeling are given below:

1.

The knots t; 1, ..., t; , associated with the vertices t; o should be contained in a sphere
centered at t; o with radius r < %Lm;n, where, similar to its counterparts in 2D, Ly,
is the shortest edge of all the edges incident to t;.

To achieve optimal smoothness C"~! with degree n simplex spline, it is desirable that
any four knots associated with a domain tetrahedron are non-coplanar. Denote a
plane formed by three knots a knot plane or forbidden plane, then new knots should
avoid being on any knot plane (forbidden plane). Also, the new knot with all the other
knots form a new set of knot planes that impose additional constraints for future knot
generation.

Keeping the distance to the forbidden planes bounded from below assures that the
second derivatives of the spline basis remain bounded. Therefore, four nearly co-
planar knots should be avoided in knot generation. It is better to generate a knot
between two knot planes having equal distance to the two knot planes.

Knots associated with boundary vertices should be placed in the space K C R? defined
by the following criteria.

(1) If the domain of definition is D, then the space for knots is out of D, i.e., KND = ¢.
(2) For points t € K, if we make a symmetric point t' of t with respect to the line

linking t and t;, t’ should be in one of the boundary tetrahedra incident at t;, i.e.,
= N; C D.
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By this constraint, the knot planes containing boundary knots do not cut the do-
main tetrahedron D, which ensures the volume  in boundary tetrahedron will be
maximum. These criteria make the function along the boundary of the domain to be
created properly?.

5. Knots associated with interior vertices can be placed anywhere in the spheres (except
the forbidden planes).

Also, the number of tetrahedra incident at a vertex should not be large.
Based on these constraints, we developed an automatic knot generator for trivariate
simplex spline functions of degree up to n (n > 2) similar to the 2D knot generator scheme.

4.3.2 Least Squares Approximation

The database in this thesis includes trivariate simplex spline functions with arbitrary de-
gree n which can achieve up to C™"~! continuity. For a given tetrahedrization and knot
configuration, the goal is to calculate control coefficients cf,.

Given data points (u;, f;), i = 0 to N,, where N, is the number of data points u; € R3,
we use as our objective function for least squares approximation the following:

Np mi
Flu)=) [fi=> > Nj(w)e; ] (4.4)
i=0 7=0|Bl=n
where m; is the number of tetrahedra in the neighborlet of the tetrahedron enclosing u;, j =
0,1,...,m;, and cé are unknown control coefficients. Since N é(u,-) are evaluated constants
and some of the control coeflicients are shared by several tetrahedra, the matrix at the right
side of Equation 4.4 is a banded matrix with bandwidth = max{l; — k;} in all A, where
{l; — k;} is the {maximum numbering - minimum numbering} of control coeflicients of the
neighborlets of the tetrahedron. We can solve the above system by standard numerical
solver provided in NAG [74].
Note: similar to 2D data modeling, adding, deleting or slightly perturbing a data point
in a tetrahedron will change the fitting function in a local region (i.e. the tetrahedron
neighborlet and the tetrahedra sharing at least one vertex with the neighborlet).

2Otherwise, at some points in the domain near the boundary, the summation of the normalized basis
functions may not be unity.
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2

Figure 4-10: Subdivision of a tetrahedron into two on its longest edge.

4.3.3 Error Estimation

For data points in different domain tetrahedra, the errors are different. Error in tetrahedron
/\; is denoted as F;. Suppose there are m data points in A;, then:

2

N
E;= %Z =3 ) Ni(uj)eh (4.5)
J=0 I€T |8|=n

Finally, we can find the maximum error and the corresponding tetrahedron Ag, .. If
maximum error is greater than a given error threshold €, we will subdivide certain domain
tetrahedra and perform knot generation, least squares approximation, and error estimation
repeatedly until the maximum error is smaller than the threshold e.

4.3.4 Adaptive Domain Subdivision

Suppose € > 0 is the predefined threshold, then based on the same reasons stated in Sec-
tion 4.2, if Epqz > €, then the domain needs to be subdivided. The following three methods
to subdivide the domain may be used:

1. Subdivide every domain tetrahedron into eight tetrahedra; see Figure 4-11.

2. Subdivide the tetrahedron with the largest error Epq, into two tetrahedra at the
middle point of its longest edge and consequently all the tetrahedra that share this
edge; see Figure 4-10.

3. Combine the above two methods and subdivide the tetrahedron A; with the largest
error into two or four tetrahedra depending on the shape of the tetrahedron. Define
the aspect ratio e of a tetrahedron as e = ,{':“‘- where /i, and l,qz are the shortest
and the longest edges of the tetrahedron. If the tetrahedron has an aspect ratio
e < 0.5, then subdivide the A; into two at the middle point of the longest edge,
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Figure 4-11: Subdivision of a tetrahedron into eight sub-tetrahedra: A(1,7,5,6), D(2,9,7,8)5
A@ge10) Ds,106), and the four additional tetrahedra created from the polyhedron:

P(5,6,7,8,9,10)-

otherwise subdivide the A; into eight tetrahedra and all other tetrahedra incident to
the edge into two or eight tetrahedra, also depending on the aspect ratio e of the
tetrahedron A\;.

4.4 Examples of Data Modeling

In this section, we present two examples. The first example shows a generated quadratic
simplex spline surface by fitting 597 data points taken from a cubic polynomial function in
a concave domain with a triangular hole. Figure 4-12 shows the domain of definition of this
surface and Figure 4-13 illustrates the surface.

Figure 4-12: Concave domain with a hole (slightly shaded) and the knot configuration.
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Our second example is a surface modeling a set of 2201 data points taken from a portion
of the Charles river, Boston, MA, USA. Figure 4-14 shows the domain and the generated
knots over the initial triangulation provided by the preprocessing steps in Chapter 2.

Figure 4-15 shows subdivision of the initial triangulation of Figure 4-14 and the gener-
ated knots on the new triangulation.

Figure 4-16 shows the wireframe of the surface resulting from least squares approxima-
tion on the data with maximum relative error of about 2%. Figure 4-17 shows the shaded
surface resulting from least squares approximation on the data. The number of control
points used in this surface is 193 and the total knots associated with the vertices in the
triangulation is 59x3. Thus the total storage needed for representing the bivariate function
is: 59x3x2+193x3=933 while the storage used for the measured data is 2201x3=6603,
i.e., a reduction by a factor of 7.1.

Our third example applies the data modeling scheme over a set of 254 salinity data
defined in a 3D domain and obtained from Mr. E. Dever of the Woods Hole Oceanographic
Institution (WHOI), Woods Hole, MA, USA and consists of CTD observations made off
the northern coast of California under the Shelf Mixed Layer Experiment (SMILE). The
3D domain, which is composed of 2 tetrahedra, and the three isosurfaces at isovalues F =
9,F = 10, and F = 11 (all in units of psu) are shown in Figure 4-18 and 4-19. The
trivariate function approximation involves a maximum relative error of about 4%. The
three isosurfaces are displayed with certain level of transparency. The number of control
points involved is 14 and the number of knots is 5x3. Thus the total storage needed for
representing the trivariate function is: 14x4+5Xx3x3=101, while the storage used for the
measured data is: 254x4 = 1016, i.e., a reduction by a factor of 10.
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Figure 4-13: Surface defined on a 2D domain of Figure 4-12.

)
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Figure 4-14: Domain and knots generated for the initial triangulation for the bathymetric
data on a portion of the Charles river.
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Figure 4-15: Subdivision on the initial triangulation in Figure 4-14.
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Figure 4-16: The wireframe of the topography surface of a portion of the Charles river.
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Figure 4-17: The topography surface of a portion of the Charles river.

Figure 4-18: 3D domain and three isosurfaces of a trivariate simplex spline function obtained
by fitting 254 salinity data. The data is obtained from WHOI under Shelf Mixed Layer
Experiment (SMILE). The isovalues are F' = 9, F = 10, F = 11, all in units of psu.
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Figure 4-19: An other view of the 3D domain and three isosurfaces of a trivariate simplex
spline function from Figure 4-18.



Chapter 5

Interval Simplex Spline
Representations

5.1 Introduction

There is usually uncertainty in scientific data because of limitations in measurement preci-
sion, methods of measurement reporting, or difficulties in making observations and measure-
ments in inaccessible or hostile regions. The measurement uncertainty in scientific data is
typically much larger than that from floating point arithmetic. Hence, a new way to model
the data in the presence of uncertainty over irregular domains needs to be introduced and
studied.

The techniques developed for scientific data management have been driven by applica-
tions and are often case-specific. The tasks of a scientific database require:

1. compactness in storage to reduce data storage requirements;
ability to represent the data to a suitable accuracy (or resolution);

ability to represent uncertainty;

Ll

ability to visualize and interrogate in a robust manner.

These requirements have led us to use non-linear, low degree continuous piecewise poly-
nomial functions with interval coefficients to represent the physical data to a suitable accu-
racy. In this chapter, we introduce the concept of Interval Simplex Spline (ISS) and apply
it to represent physical data with measurement uncertainty in irregular domains for our
scientific databases. In such cases, for a given set of points x; in 2D or 3D and associated
function values f;, we wish to construct a bivariate (trivariate) F(x) that satisfies certain
criteria.
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5.2 Interval Arithmetic

94

Interval arithmetic was developed three decades ago [69]. Here, we state the basic interval

arithmetic operations. For further information, see Moore [69] and Alefeld [1].

e Definition of an interval number
An interval number is a set of real numbers z such that
[a,b] =(z|a <z <))

¢ Interval arithmetic operations
For the usual algebraic operators o € {+,—,*,/},
(a,b]0 [¢c,d] = Oz o y|z € [a,b],y € [¢,d]
where O corresponds to the convex hull operation. More explicitly,
[a,b] + [c,d] = [a +¢,b+ d]
[a’b] - [C,d] = [a’ - d7b_ c]
[a,b] * [c, d] = [min(ac, ad, be, bd),
max(ac, ad, be, bd)]
[a,b]/ [c,d] = [a,b] - [1/d,1/c]

where 0 ¢ [c, d].

¢ Midpoint of an interval

a+bd

m((a,8) = 4]

e Width of an interval

w([e,b]) =b—a

(5.1)

(5.2)
(5.3)
(5.4)
(5.5)
(5.6)

(5.7)

(5.8)

Classical interval arithmetic operations still involve floating point arithmetic operations,
so accuracy in interval arithmetic operations will gradually deteriorate as the floating point
arithmetic operator does. Rounded interval arithmetic can solve this problem by performing

operations in a conservative manner.

In addition, the use of bounded® interval operators permits the utilization of exact
precision implementation on a computer for the performance of floating point operations.
For example, we can redefine (5.1) such that all machine operations satisfy the inclusion

1The use of the term bounded here refers to the representation of number values by a pair of truncated

real numbers such that the number value is bounded up to the last significant digit.
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principle

[a, )0 [e,d] = [e, f] € [e — €, f + €] (5.9)

where €* or € are associated with e or f, respectively, and are defined as € = 257753 for the

IEEE standard double-precision having 64 bits, 8 bytes word size, and stored in a binary

form as (£)m - 2°*P, where m is the mantissa (0.5 < m < 1) and ezp is the ezponent [65].
Utilizing (5.9) results in the following redefinition of (5.1), namely

[@,b] + [e,d] = [a+ c—é,b+d+ e"] (5.10)
[@,b] — [e,d] = [a—c—el,b—d+ e“] (5.11)
(a,b] % [e,d] = [min(ac, ad,be,bd) — €, (5.12)

max(ac, ad, be,bd) + €] (5.13)

Interval arithmetic is commutative and associative.

[a,b] + [¢,d] = [¢,d] + [a, }] (5.14)
[a,b] - [¢,d] = [c,d] - [a,}] (5.15)
[a,6] + ([c,d] + [, f]) = ([a, ] + [c, d]) + [e, f] (5.16)

[avb] : ([csd] : [e» f]) = ([a’ b] ' [Cvd]) : [e’ f] (5'17)

But it is not distributive, however, it is subdistributive.

[a,d] - ([e,d] + [e, f]) € [a, ] - [¢,d] + [a, ] - [e, f] (5.18)

5.3 Interval Functions

In this work, we treat interval functions as functions represented by interval coefficients
that are evaluated at real parameter values. For example, Figure 5-1 shows the function

£ = [£'(), £ (5.19)
evaluated at the parameter value ¢t = a such that
f(a) = [f(a), f*(a)] (5.20)

Finally, note that interval functions represent bounded values and are not uniquely defined
in the interior. For example, the function shown in Figure 5-1 can represent uncertainty by
either a uniform probability distribution (i.e., the function value is equally likely to occur
anywhere inside the bounds), or by a normal (or Gaussian) probability where the bounding
values represent the first standard deviation of the function. The different representations
do not affect the method of surface reconstruction described in the following section but
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Figure 5-1: Interval function representation (adapted from Tuohy [96]).
depend upon the application.

5.4 Interval Simplex Spline Functions

In our approach, instead of using plain floating point representations of boundary spline
functions, we explore a new representation based on interval simplez splines (ISS) geome-
tries. ISS differs from classical simplex splines in that the real numbers representing control
coefficients are replaced by intervals. Hence, the classical control coefficients are replaced
by rectangular boxes. This implies that in 3D space, an ISS surface represents thin volumes
typically visualized as shells; and in 4D space, an ISS hypersurface represents hyper-volumes
embracing all possible behavior of the measured data. The ISS concept comes up naturally
when formalizing computational accuracy on computing machinery. Namely, a floating
point representation of a simplex spline patch is not a true 3D object over 2D domain, but
rather an object enclosed by a shell containing a family of surface patches, whose represen-
tation fulfills the error bounds controlled by floating point arithmetic.

The ISS method can be used to represent uncertainty and to reduce data. In this section
we want to illustrate with an example how the concept of ISS can be used to represent
uncertainties in data. The first figure in Figure 5-2 represents a sequence of rectangles. This
sequence of rectangles contains a discrete sequence of point data corresponding to values
assigned to a continuous, univariate function. As those data have uncertainties, we do not
know the precise function value assigned to the independent variable. Moreover it is also
possible that we do not even know precisely the value of the independent variable to which
the uncertain data value is attached. Therefore, we only know with certainty that a single
data point (whose two coordinates are given by the uncertain independent variable value and
the uncertain function value respectively) must be contained in a specific rectangular box.
We may also have reasons to assume that the graph of the continuous function is contained
in the area bounded by the bold drawn curves used to enclose the sequence of rectangles.
The second picture in Figure 5-2 illustrates the same concept now with an example of a real
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Figure 5-2: Interval simplex splines. Top: in one-dimensional space; middle: interval data
set in two-dimensional space; bottom: interval surface over a 2D domain.

valued function defined over a two-dimensional domain. Finally, the last picture in Figure 5-
2 represents the volume covered by an interval spline function (defined over a triangulation)
used to approximate a collection of discrete uncertain data points given in a collection of
3-dimensional polyhedra similar to the middle picture of Figure 5-2. Theoretical estimates
from approximation theory indicate that under reasonable assumptions, the approximating
interval spline needs for its representation orders of magnitude less in storage than the data
amount of the (uncertain) point data which it approximates [104].

For a bivariate (trivariate) simplex spline function S(u), on a given 2D (3D) trian-
gulation and knot configurations K, the control coefficients are defined by an interval
C =|[C'CH.

The definition for interval bivariate (trivariate) simplex spline functions Is(u) of degree
n is:

Is(u) = [$'(u), $*(w)] = Y Y Nj(w)Cs=3_ Y Nj(w)[Ch,Ch] (5.21)

I€T |B)=n I |Bl=n

where T is the triangulation in 2D /3D space, u € R?, s € {2, 3}.
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Advantages of ISS are: (1) automated error control, (2) economical memory space, (3)
machine representability, and (4) generality. ISS combined with rounded interval arithmetic
can automatically control rounding errors induced by floating point arithmetic. The ISS
will only use less than two times memory space as a simplex spline with real coefficients, so
memory space of ISS is not too demanding. Importantly, ISS are represented and processed
reliably in standard floating point arithmetic.

5.5 Construction of Bivariate (Trivariate) ISS Functions

The ISS construction procedure begins with bucket-sorting measured values into a (non)-
uniformly distributed grid of cells. The cellular data is characterized (according to the
measured values f;) by a minimum and maximum measured value for a region u € T C R?,
(s € {2,3}). To derive vertices where groupings of empty cells occur, a linear interpolation
of a faceted model obtained from a Delaunay triangulation of the vertices from non-empty
cells is used as in Tuohy [96].

Upper and lower boundary functions, in the form of a quadratic simplex spline, are then
fit by minimizing the difference between the bounding simplex spline functions with the
constraint that the upper (lower) simplex spline function must lie completely above (below)
the upper (lower) measured values f;. Continuity is maintained automatically by making
the knots associated with a triangle (tetrahedron) non-collinear (non-coplanar).

5.5.1 Preprocessing

In this section, we take an approach similar to that described in [96, 106].

Non-uniformly distributed cells ¢y, (cq,,s) consist of the minimum ., (¢}, ,) and the
maximum ¢, (¢4, ,) values of a given set of measured data for a particular region [z, +
Dgyyr + Dyl in 2D ([2g+ Dgy yr + Dy, 2, + A;] in 3D) where z,y and z are coordinates of
the data points in Cartesian coordinate system. For scattered data, the sorting procedure
¢y, = maz(fy,) and cfm = min(2,,) (i, = maz(fyrs) and ch .o = Min(2g;rs)) Where

=~ B o 62

for k =0...n—1 can be used to place the scattered data into the appropriate cells in O(n)
time.

After the cells have been constructed, we check each cell with respect to the domain. If
a cell is completely outside of the domain, then we remove this cell from the cell list. For
the remaining cells, we check if a cell is empty, i.e., if it contains no data points. If so, we
use a quadratic polynomial to fit the cell with the points in the neighborlet of the cell and
find the upper and lower bounds of the cell. Finally, the cells in the cell list are ready to
serve in the interval simplex spline fitting.
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5.5.2 Fitting 2D Data with ISS Bivariate Functions

The general goal for the ISS fitting algorithm is to construct a bivariate function Ig(u) =
[S'(u), S*(u)] which minimizes the approximation error and still conforms to the shape of
the data. For interval bivariate functions, upper and lower bounding functions, in the form of
quadratic simplex spline functions, are fit by minimizing (maximizing) the volume under the
simplex spline function with the constraint that the upper (lower) simplex spline function
must lie completely above (below) the upper (lower) the measured values g = [g¢',g%].
Therefore, we define the objective functions for the two separate minimization problems as:

F = [sw4=% ¥ ci, [ Npaa (5.23)
T A |Bl=n T
G = - [s4a=- 3 Ch, [ Njda (5.24)
T A |Bj=n T

subject to the following constraints:

> ) Np(u)Chp2 gl (5.25)
A |gl=n
-2 Y N(w)Chp 2 —gi (5.26)
A |gl=n

respectively, where dA = dzdy.

This minimization problem with linear constraints can be solved using techniques for
linear programming [74, 46]. The integral of normalized simplex spline basis function N ﬁA is
calculated by the scheme presented in Section 3.1.4.

5.5.3 Fitting 3D Data with ISS Trivariate Functions

The construction of interval trivariate simplex spline functions involves defining a function
Ir(z,y,z), where Ip(z,y,2) € [F’(m,y, z), F¥(z,y, z)]

The goal of this trivariate function construction is to model a set of function values
fi measured at spatial data points: (z;,¥i,2) where i = 0,...,N and z; € [z},z¥],5; €
!, ¥, zi € [2}, 28], f; € [f}, f#], where N is the number of points.

Each data point (z;,y;,2i, f;) in 4D space forms a 4D box, or simply, 4-box. The
4D point cells can be represented by a trivariate function. The approach towards the
interval trivariate function construction based on ISS is to fit spatial uncertain data by
minimizing (maximizing) the hyper-volume under the ISS function with the constraint that
the evaluated upper (lower) ISS trivariate function must be completely above (below) the
upper (lower) measured values. That is, we seek a minimum to each of the following:

F = /V s*dv=3"3 Ci, / N2dv (5.27)

A |Bl=n
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¢ = - [ stdw=-3 3 chy [Ny (5.28)

A |B|=n

where dv = dzdydz, C} and C’é are unknown control coefficients subject to:

Yo N CRaNS(ziviz) > S (5.29)
A |Bl=n
l A 1
=YY ChsNg(ziyiz) > —fi (5.30)
A |Bl=n

respectively.
The integral of the normalized simplex spline basis function is defined in Section 3.2.4.
Analogous to Section 5.5.2, the minimization problem can be solved by using techniques
for linear programming [74, 46].

5.6 Examples of Interval Simplex Spline Surfaces

In this section, we give an example to illustrate the concept of ISS. We use the set of data
points taken from a portion of the Charles river. Figure 5-3 and 5-4 show the wireframes
of upper and lower ISS surface. Figure 5-5 shows the resulting interval surface. The upper
surface is shown in light wireframe and the lower is shaded.
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Figure 5-3: The upper surface for a set of data taken from a portion of Charles river.
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Figure 5-4: The lower surface for the same set of data as shown in Figure 5-3.

Figure 5-5: The ISS surface corresponding to Figures 5-3 and 5-4.



Chapter 6

Marching Simplices for
Interrogation

6.1 Introduction

To help in understanding the physical phenomena represented by data, it is important and
necessary to have an efficient method for visualization which also facilitates subsequent
interrogation on the data. The domains in our data modeling system are based on trian-
gulation. This feature requires our visualization method to be capable of visualize physical
data defined in this type of domain and, more importantly, prepare for further interrogation
on physical data over the domain.

In this chapter, we present a novel method for visualizing and evaluating implicit func-
tions defined over irregular domains. Evaluation of implicit or isovalued surfaces is a pow-
erful rendering technique for visualizing trivariate functions and there exist many mature
methods to perform this operation (e.g. marching cubes). Most methods, however, assume
the presence of a regular rectangular domain, i.e., a domain that can be decomposed easily
into square or cubical elements (e.g. quadtree, octree, and voxel). To visualize functions
based on real data (from finite element analysis, computational fluid dynamics, geographic
information systems, etc.), which can be defined over irregular domains represented by tri-
angulations in 2D (3D) Euclidean space, we develop the marching simplices algorithm. The
marching simplices algorithm begins with discretizing the domain triangulation into small
grain simplices. In each grain simplex, an implicit or isovalued surface is approximated by
comparing the function values at the vertices of the grain simplex with the isosurface value
and establishing an approximation of the topology of the surface in each grain. Adaptive
subdivision methods are used to capture small scale features. To enhance the utility of
the resulting polygonal representation, the topological relations between the facets of the
polygonalized surface are emphasized and maintained in a cell-tuple topological modeling
structure.
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Figure 6-1: A domain in R? represented by a triangulation with a polygonal hole.

6.2 Problem Definition

Assume a function F : D C R® — R,n € {2,3} is defined in a domain D which can
be described by a triangulation 7. Our goal is to extract implicit or isovalued surfaces
in an irregular domain geometrically and topologically on which this function F is equal
to a constant C. This is equivalent to rendering surfaces defined by points x; such that
F(x;) = C, where x; € D.

The function F' could be a piecewise polynomial, a transcendental function, or a pro-
cedurally defined function. The function is assumed to be continuous in the entire domain
D.

In this work, we assume that the grain simplices are small. We use small simplices
to decompose the domain, since, as stated in the previous section, the domain can be
represented by triangulation. Figure 6-1 shows a 2D domain represented by a triangulation
with a polygonal hole.

By using simplices as grains, we can model general irregular domains. Using simplices for
determining the topology of pieces of surface in the grain, we have the following advantages:

e we eliminate the topological ambiguities that appear in marching cubes algorithms;

¢ in addition, using the cell-tuple topological modeling structure to represent both the
triangulated domain and the polygonalized surface, we encode the adjacency infor-
mation between facets of the generated surface;

e another benefit from the topological structure is that the generated surface can be
used for further interrogation directly;

e by adaptive subdivision, we can describe small features of the surfaces;

¢ and finally, using simplices as grain elements requires fewer cases in the look-up-table
which reduces programming complexity.
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Figure 6-2: Two adjacent triangles in a domain (dashed lines). AB and BC represent an
isovalued implicit curve F = C.

6.3 The Relation between Domains and Surfaces

In Chapter 2, we described the Topological Data Structure (TMS) and applied it into
representing domain triangulations. In this chapter, we use TMS to represent both the
domain triangulation and a polygonalized surface within the domain. Now let us take a
closer look at how the polygonalized implicit or isovalued surfaces are represented in the
TMS. Figures 6-2 and 6-3 show a 2D example: two triangles represented by the TMS which
gives the topological relation among cells. First, three intersection points are found on edges
at whose end points the function being contoured has opposite signs. These intersection
points can be accessed by corresponding domain edges. Then, for each grain triangle,
edges of the surface piece incident at intersection points are created. In this case, two
edges AB and BC are created, both incident at B. Thus, the adjacency relations between
the generated contour segments are built up automatically. In other words, this process
automatically leads to a TMS for the contour in which AB and BC are adjacent at B.

Similarly in a 3D case, Figures 6-4 and 6-5 illustrate how the adjacency relation between
two surface facets is represented automatically by the TMS. First, the intersection points on
domain edges are calculated as A, B, C and D and their corresponding 0-dimensional nodes
are created. These 0-dimensional nodes can be accessed through corresponding domain’s
edge nodes. The topologies of the facets in each domain tetrahedron are found from a
look-up-table (which will be presented in the Section 6.4. Then a face node (2-dimensional)
and three edge nodes (1-dimensional) are created for the implicit or isovalued surface in
each grain simplex, all incident at corresponding point nodes and edge nodes. Finally,
the facets, edges of the facets, and vertices of the facets’ edges are now in a TMS at
corresponding dimension levels related by incidence relations, see Figure 6-5. In this manner,
the topological relations among the facets are formed naturally and efficiently and adjacency
information between any two facets is embedded in the TMS and can be retrieved with little
effort.
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Figure 6-3: An incidence graph for a generated contour in Figure 6-2.

Figure 6-4: Two adjacent tetrahedra in a domain (dashed lines). Facets ABD and DBC
represent an isovalued implicit surface F = C.

Figure 6-5: The incidence graph for the generated isovalued surface in Figure 6-4.
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6.4 Approximation of Isovalued Functions

The approximation of isovalued functions with connected grid of points x € D C R%,s =
{2,3} where F(x) = C defined in a 2D (3D) region D involves creation of straight line
segments or triangular facets closely approximating the surface. These line segments or
facets are calculated based on approximation and subdivision of the function domain into
small grain simplices.

To generate a proper approximation for the surface piece within a grain simplex, we
calculate good approximations of the intersection points between F(x) = C and the edges
of the simplex connecting two vertices which have function values below and above the
value C. (When the function values equal to C, it indicates that the surface passes through
the corresponding vertices and thus are considered as a special case.) For other function
values, we find the intersection points by either (1) linearly interpolating the function values;
(2) binary search; or (3) regula falsi method, which uses two previous approximations and
constructs the next approximation by making a linear interpolation between them. The
interpolation point then serves as our next approximation to the root of F(x) = C on a
given edge.

The calculated function values are associated with the corresponding nodes of vertices
in the TMS representing the domain triangulation. The intersection points are defined as
nodes in TMS and can be accessed through the corresponding edges in the data structure of
the domain triangulation. Later, we will show how an implicit curve or surface is generated
out of these intersection points.

6.4.1 Contour Lines

In this work, the domain of definition D of a scalar function F : D C R? — R is represented
by a triangulation. For each triangle of the triangulation, function values at the three
vertices are calculated. Since there are three vertices and two conditions for the sign of F—C
at each vertex, i.e., F > C and F < C, there are eight cases. Eliminating topologically
equivalent cases, there are only two cases left for consideration (see Figure 6-6). In the
first case, since F' — C > 0 at all vertices, (denoted as “4” in Figure 6-6), there are no
contour lines in the simplex. In the second case, at one vertex the function value is greater
than C and at the other two vertices the function values are less than C (denoted as “-”
in Figure 6-6); thus, there exists a piece of contour line ab in the simplex. In these two
cases, based on the assumption that the grain is small, there are no ambiguities. Thus, the
topology of the contour line in a triangle can be easily created. Yet, in the second case,
in order to detect possible small features on the contour line, we calculate the function
value F(p) at mid-point p. Based on the function value at p, the method will decide if the
triangle needs to be further subdivided, see Section 6.5.

6.4.2 Implicit or Isovalued Surfaces
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Figure 6-6: The look-up-table for marching 2-simplices and the subdivision to detect small
features on the contour lines. '
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Figure 6-7: The look-up-table for marching 3-simplices and the subdivision to detect small
features on the isosurface.
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In this work, the domain of definition D of a scalar function f : D C R2 — R is represented
by a 3D triangulation (tetrahedrization). Function values at all vertices of the triangulation
are calculated, and, for each tetrahedron there are only three cases for arrangements of the
signs of F — C, i.e., F > C or F < C, see Figure 6-7. In the first case, three function
values are less than C, denoted at the corresponding vertices as “-” and one function value
is greater than C, denoted at the vertex as “+”. Thus the piece of surface in the grain
is a triangle facet. In the second case, two vertices have signs “+” and two other vertices
have signs “-”, thus the surface in the grain can be decomposed into two triangular facets.
In the third case, since all the sign of the four vertices are the same, we conclude that the
grain contains no pieces of the surface. In order to capture possible small features on the
surface, for the second case, we calculate the mid-points p and q on the two edges incident
to the vertices possessing the same signs for FF — C. The method will decide if the grain
needs subdivision based on the function values at p and q, see Section 6.5. In the three
cases there are no ambiguities; thus, the topology of the implicit or isovalued surface in a
tetrahedron can be created without considering and analyzing ambiguities.

6.5 Refinement of Isovalued Curves and Surfaces

Although uniformly discretizing a domain triangulation is easy to implement, it may un-
necessarily create many simplices and may be time consuming in generating polygonalized
implicit or isovalued surfaces. To save memory space and computation time, it is desirable
to subdivide certain grain simplices adaptively. Another reason for adaptive subdivision
is that certain singularities may appear in some grain simplices. A simplex under consid-
eration is likely to contain a singularity of the surface if mid-point p of an edge lies in a
half-space different from that of the edge’s two vertices. We also use the absolute value of
the function at each vertex which is called the algebraic distance between a point and the
surface (see Patrikalakis and Kriezis [76]) in determining the condition for subdivision.
The criteria for subdivision include the following steps:

1. For a 2-simplex, if the three vertices have different signs for ' — C then calculate the
function value at the mid-point p of the edge whose vertices have the same sign for
F-Cyif

(a) the sign of F — C at p is different from those of the two vertices, or

(b) the absolute function value |F| at p is less than both of the vertices’ absolute
function values,

then subdivide the edge at p and consequently all the simplices which share the edge
at point p. (See right side of Figure 6-6.)

2. For a 3-simplex, if the simplex has two positive and two negative signs for FF — C
then calculate the function values at the mid-points p and q of the two edges whose
vertices are of the same sign, if
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(a) the signs for F' — C' at p or q are different from those of the corresponding two
vertices, or

(b) the absolute function value | F| at p or q is less than both of the absolute function
values at the vertices, respectively,

then subdivide the edge at p or q and all tetrahedra which share the edge. (See right
side of Figure 6-7).

6.6 Overview of Marching Simplices Algorithm

Our algorithm for generating a polyhedral approximation of an implicit or isovalued surface
involves the following steps:

1.

9.

Input the domain triangulation and the minimum length of a grain edge. Any simplex
whose longest edge is less than the minimum length will not be subdivided.

. Use a cell-tuple topological modeling structure to represent the domain triangulation.

. Decompose the domain into simplices.

Compute the function values at all vertices of the triangulation. We treat cases in
which one or more function values at the vertices of the grain are equal to C as special
cases.

. Find the intersection points of F(x) = C with all edges of the triangulation and place

the intersection points into another topological modeling structure, for the contour
or surface. These points are represented as 0-dimensional nodes in the data structure
for the contour or surface.

. Adaptively subdivide simplices if needed; otherwise proceed to Step 7.

. Find the contour or surface topology within each simplex from the look-up-tables.

In each face, the algorithm creates 1-dimensional nodes for edges of the surface
TMS incident at those intersection-point nodes; in each tetrahedron, it creates 2-
dimensional nodes for facets incident at the edges. For 2D cases, the algorithm creates
1-dimensional nodes for edge in each 2-simplex incident at those intersection-point
nodes. Note: the algorithm does not make multiple nodes for the same geometric
entities.

Output contour or surface TMS.

Note: The output of the algorithm is the polygonalized implicit (isovalued) contour or
surface represented by the TMS, thus consistency between adjacent facets is resolved auto-
matically and the surface model can be used for interrogation (e.g. Boolean operations on
two implicit contour or (isovalued) surfaces, mesh generation, etc.).
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So far, we described a marching simplices algorithm for 2D (3D) scalar function visu-
alization and interrogation in irregular domains. We used TMS throughout the algorithm
to represent both the domains and the generated implicit surfaces (isosurfaces) to maintain
the topological information among the facets of the implicit surfaces (isosurfaces) not only
for surface visualization but also for further interrogation. The algorithm can be applied to
general functions as well as unstructured sample data.

Our marching simplices algorithm has several advantages over the generally used march-
ing cubes algorithm, including;:

o The ability to model irregular (and regular) domains. This is one of the most im-
portant advantages since it provides the power of modeling surfaces in domains with
complex boundaries, holes and cavities.

¢ The generated polygonalized surface is stored in a topological data structure and can
be used for further interrogation, e.g., for Boolean operations, meshing, etc.

e No ambiguity cases. This advantage makes the topology in a grain simplex clearly
defined without ambiguity.

o Adaptive subdivision. This advantage is important since it enables the algorithm to
efficiently resolve small features of the surfaces.

e Fewer cases for the surface topology in a grain simplex than in a cube, i.e., the look-
up-table is smaller. This simplifies the design and implementation of the algorithm.

Nevertheless, marching simplices is not a panacea. Its main weakness is that, like other
discrete methods, it may still miss some very small features of implicit surface, such as small
isolated surface components, near self-intersection points, and other singularities.

The method presented here also can be applied in visualizing and interrogating a uniform
or non-uniform sample of a function of two or three variables, i.e., direct volume rendering,
in regular or irregular domains. This type of problem arises in computer-aided tomography
(CAT), numerical simulations of fluid flows, etc. Constrained Delaunay triangulation can be
used to triangulate the sample with a domain boundary as the constraints and the marching
simplices algorithm can be utilized on the triangulation without the adaptive subdivision
step.

6.7 Examples

In this section, we give a few examples to demonstrate the application of the marching
simplices algorithm in visualizing and interrogating bivariate and trivariate functions over
irregular domains.
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6.7.1 Bivariate Functions

Our example for bivariate functions shows the contour lines for a real valued function. The
domain for this problem is a square with a polygonal hole shown in Figure 6-8 as the area
bounded by the outer square and the inner polygon.

The definition of the function, taken from Hoschek and Lasser[57], is:

F(z,y) = % ¢~ HO-2)+(99-2] | % o[ (9m+1)24 3 (9y+1)]

_%e—[(9x—4)2+(9y—7)] + %6-%[(9$—7)’+(9y‘3)2] (6.1)

We can now represent the domain in a TMS and subdivide the domain to 1150 small
triangles and generate contour lines by using our marching simplices algorithm for isovalues
C =02 C =04, f = 0.6 and C = 0.8 shown in Figure 6-8 with 134, 333, 105, 64
segments, respectively. Note that contour lines may be topological loops entirely enclosed
in the domain or they may be open curves terminating at the boundary of the domain.

6.7.2 Trivariate Functions

We present three examples for the isosurfaces of trivariate real valued functions defined in
domains represented by 3D triangulations.

Our examples for isosurfaces of quadratic trivariate simplex spline functions have been
shown in Figure 3-12 and 4-18 and 4-19.

Our first example in this section shows a saddle surface in a domain composed of five
tetrahedra constructing a cube. The definition of the function for this example is:

F(z,y,2) = 42® - 4y? + zy — 4z + 4y — 2 + 0.5; (6.2)

Figure 6-9 shows the domain in red lines and the part of the saddle surface C = 0.2101 in
the domain.

Our second example is an implicit function made up of the product of three cylinder
equations. The function for this implicit surface is:

F(z,y,2) = (* +9* - 1)(8* + 2> - 1)(z* + 2 - 1) (6.3)

Figure 6-10 shows the surface with ' = 1.0001 in a cube. In this case, tetrahedra are
discretized and some of the grain tetrahedra are further subdivided. The total number of
tetrahedra in the final triangulation is 3006 and the generated surface contains 1357 facets.
Figure 6-12 shows the surface defined in a domain with six faces of a cube as its exterior
boundary and four faces of a tetrahedron (with four vertices A, B, C, and D) as its inner
boundary. The isovalue for this case is C = 1.0001. The domain is shown in Figure 6-11
and Figure 6-13 shows the wireframe for the surface in the domain.
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Figure 6-8: Contour lines of a bivariate function over a square with a hole.

Figure 6-9: A saddle surface in a cube.
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Figure 6-10: Surface of product of three cylinders in a cube.

Figure 6-11: The domain of the cylinders in a cube with a tetrahedral cavity. The tetrahe-
dron is depicted by the dotted edges and the vertices A, B, C, and D.
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Figure 6-12: Surface of product of three cylinders in a cube with a tetrahedral cavity in the

domain.
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Figure 6-13: Wireframe of the implicit surface of Figure 6-12.



Chapter 7

Conclusions and
Recommendations

7.1 Contributions

The major contributions in this thesis are the investigation and application of multivariate
simplex splines and the development of a database system that efficiently represents, inter-
rogates, visualizes, and manipulates large collections of multidimensional data. Methods of
efficient evaluation of degree n, bivariate and trivariate simplex splines are developed and
implemented in the system. In this manner, data storage is dramatically reduced; yet, in
contrast to discrete data representation used in traditional database systems, all possible
data locations will be covered and higher-level interrogation can be performed.

Interval simplex splines (ISS) are presented and the method for creating ISS surfaces
from measured data is developed to capture all possible behavior of physical data with
uncertainties in irregular domains. In this way, the uncertainties in the data set are rep-
resented in a manner that provides for high accuracy and resolution, data reduction and
efficient interrogation with a guaranteed bounded approximation error.

The generalization of the convex hull of unstructured planar and spatial data is intro-
duced and applied in defining domains of physical data such that the intuitive shape of the
domain of the data can be captured in a realistic and practical manner. This a-shape can
be used to detect the boundary of the domain of a finite set of points and thus to generate
an appropriate domain for a set of points in 2D or 3D for least squares approximation.

Based on a cell-tuple topological modeling structure and adaptive subdivision, marching
simplices, a method of visualizing bivariate and trivariate simplex spline functions as well as
other general scalar functions in 2D and 3D regular and irregular domains is developed in
this work. This algorithm has the following advantages: it is capable of modeling irregular
domains; it needs fewer cases for determining grain partial surface topology; it eliminates
ambiguity cases; it provides for automatic consistency between pieces of the surface in
adjacent simplices; it generates isosurfaces which are easier to further interrogate since
their topology is encoded in the surface generation.

116
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7.2 Future Research Issues

In this thesis, we developed a database system for representing and visualizing 2D and
3D physical data with uncertainty in irregular domains. Methods for the evaluation and
rendering of bivariate and trivariate simplex spline functions are developed, implemented
and utilized in approximating scattered physical data. Interval simplex spline functions are
defined and applied in physical data representation to capture the general form of the data
with uncertainties in regular and irregular domains. In this way, the uncertainties in the
data set are represented in a manner that provides for high accuracy and resolution, data
reduction, and efficient interrogation with a guaranteed bounded approximation error.

Further theoretical study of simplex spline properties needs to be undertaken. In partic-
ular, more efficient evaluation algorithms (of the de Casteljau type) need to be developed.
Study of properties like the linear precision property, subdivision/splitting and convex hull
property needs to be undertaken. Finally, approximation of functions using simplex splines
needs to be studied.

Based on this work, future research could emphasize efficient and robust interrogation
schemes for simplex spline representations, for example, finding all the singular points of
the surfaces using rounded interval arithmetic. A possible approach could be based on a
divide-and-conquer method.

Complexity analysis of the algorithms developed in this thesis such as the marching
simplices algorithm, needs to be developed.

The application of simplex spline functions in other engineering disciplines, e.g. finite
element analysis, computational fluid dynamics, applied mechanics etc., should be studied.

In addition, to approximate isosurfaces robustly and accurately, a priori computation
of singular points could be performed to capture small features on the surfaces such that
domain discretization could be planned in a fashion similar to the way shown in Tuohy et
al. [100]. Also visualization tools other than isosurfaces, e.g., ray casting, and glyphs, could
also be developed and implemented for 2D and 3D scalar functions in irregular domains. A
step beyond 3D scalar field visualization is the development of 3D vector and tensor field
visualization in irregular domains.

Animation would be an interesting and important future topic, i.e., visualization of the
3D physical data with time dependence, to simulate continuous motion using rapid display
of images, which is possible by modern graphics hardware. This technique can be applied
to a wide range of scientific studies, for example, ocean and earthquake simulation, fluid
flow, and forest growth.

Parallelism could be utilized for the database system on PVM (Parallel Virtual Machine)
when rendering surfaces, and for knot generation and error estimation.

An area of potential future work could be the application of scientific database systems
to Virtual Reality Environments to represent, interrogate and visualize complex real world
physical phenomena in real time.



Appendix A

Delaunay Triangulation

A.1 General Delaunay Triangulation

The following description appears here for completeness and is adapted from [99].

The general problem of the Delaunay (or Thiessen) triangulation can be stated as follows:
Given a set of vertices N; = (X;,Y;), ¢ = 0,...,n — 1 distributed randomly (or scattered)
in the X — Y plane, construct a triangulation using all vertices that is as equiangular as
possible. This triangulation can also be thought of as the dual to the Voronoi diagram, as
shown in Figure A-1.

To construct a triangulation of the region S, for each vertex N; define the Thiessen
region associated with that vertex to be the closure of the set of points that are closer to
N; than to any other vertex. Further, a pair of vertices are defined as Thiessen neighbors
if and only if their Thiessen regions share one (weak neighbors) or more (strong neighbors)
points. A triangulation can thus be constructed by connecting all pairs of strong neighbors
and connecting weak neighbors only when four or more vertices lie on a common circle [60].

Algorithms for triangulation can be found in Cline and Renka [14], Guibas and Stolfi
[52], Sloan [89] and Lawson [60]. All algorithms use a sorting procedure of time O(n log, n)

Figure A-1: The Voronoi diagram (solid) and the Delaunay diagram (dashed) (adapted
from [52]).
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Figure A-2: Sample of triangulation and adjacency storage (adapted from [14]).

to preprocess the data. In the Guibas and Stolfi [52] algorithm, sorting is dominant whereas
in the others, there is an additional O(n%/4) time operation. For example, the algorithm by
Cline and Renka [14] needs only O(7n) integer type data records to record adjacency and
ordering information and can be found in the NAG library [73].

The issue of insertion (or deletion) of a point in a Voronoi diagram of n points is
addressed in [52] and [49]. There, it is shown that a point can be inserted in time O(k) if
k updates are made, which is worst case when k = n. This is always lower than O(nlogn)
which is the time needed initially to build the triangulation. If a point already included in
the data set is to be updated (i.e. moved), then algorithms for this transition are outlined
in [47].

Several data structures have been used in the literature to store adjacency and ordering
information of the Delaunay triangulation. The data structure found in [14] has been
implemented here. The structure consists of two arrays of integer type; one array A [i] of
length n contains pointers to the final adjacency pair for each vertex and an array B [j]
of length L < 6n — 9 contains a pointer to each adjacent vertex (where zero refers to
a boundary adjacency). Therefore, using Figure A-2 as an example, the list of vertices
adjacent to vertex 2 in the figure are B[j] for j = A[1]+1,...,A[2].

A.2 Constrained Delaunay Triangulation

Constrained Delaunay triangulation is a suboptimal Delaunay Triangulation with con-
straints imposed on predefined edges. Thus if a triangulation T is to preserve a predefined
edge, it is generally not globally optimal. However, given the predefined edge, a new trian-
gulation 7™ can be constructed which is locally optimal for all strictly convex quadrangles
involved. This uniquely defined triangulation T* differs from the Delaunay triangulation T
only locally.
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A.3 a-Shape and Delaunay Triangulation

In this section we discuss the close relationship between a-shapes and Delaunay triangula-
tions. Specifically, we review the fact that any a-shape of a set S of points is a subgraph of
either the closest point or the furthest point Delaunay triangulation!. For theoretical and
in-depth coverage, readers are referred to [29, 28, 30, 31].

First we present a few facts about Voronoi diagrams and Delaunay triangulations. Given
a set S of n points in the plane, the closest point Voronoi diagram of S, V.D.(S) is a covering
of the plane by 7 regions V,, p € §, where

Vo = {zld(p,z) < d(g,2),p # g € S} (A.1)
Similarly the furthest point Voronoi diagram of S, V. Df(S) is defined by the regions
W, = {z|d(p,z) > d(q,2),p # ¢ € §} (A.2)

We will need the following properties of these diagrams.

1. The regions V,, and W, are closed, convex, and bounded by straight line segments,
called Voronoi edges, for all p € S.

2. Each region V, of V.D,(S) contains p. Provided n > 1, each region W, of V. Dy(S5)
does not contain p.

3. The regions V, and W, are unbounded if and only if p is a point on the convex hull
of S. Otherwise V, is a nonempty convex polygon and W, is empty.

4. Two points p and q of S are said to be closest point Voronoi neighbors if V,, and W,
share a common point. Thus, two points p and g of S are closest and furthest point
Voronoi neighbors if and only if (p, ¢) is a convex hull edge of S.

5. The closest point Delaunay triangulation of S, DT(S), is defined as the straight
line edge between p and q if and only if they are closest point Voronoi neighbors.
Both V,, and W, (as well as the respective Delaunay triangulation) of n points can
be constructed in O(nlogn) time and O(n) space. Furthermore the closest or furthest
point Voronoi diagram can be constructed from the respective Delaunay triangulation
in O(n) time, and vice versa.

For proofs leading to 1 — 5 and other properties of these constructions, see Edelsbrunner

[29] and the references therein.
In the following we assume that our point set S is fixed. The relationship between the

Delaunay triangulations and a-shapes is given by the following lemma [29)].

Lemma A.1 The a-shape of S is a subgraph of DT.(S) if a < 0.

1We will concentrate on negative a-shape and closest point Delaunay triangulation.
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Determining the Simplex
Enclosing a Point

B.1 Introduction

Suppose there is a 2D (3D) triangulation T and a set of 2D (3D) points. Our task here
is to efficiently find a simplex enclosing a given point. The strategy is based on a bucket
sorting, see Cho et al. [11]. That is, if we partition a box containing the triangulation into
buckets and identify the bucket enclosing a point and certain triangulation vertices and
edges, we can locate the point into a few triangles. The scheme consists of three parts: (1)
construction of buckets; (2) putting edges into bucket; and (3) determining the simplex and
repeating the above three parts for every point.

B.2 Construction of Buckets

Suppose a 2D (3D) triangulation falls into a rectangular (rectangular parallelepiped) frame
with sides parallel to the zy (zyz) axes, respectively. The frame is partitioned into n, X n,
(nz X my X n;) rectangular (rectangular parallelepiped) buckets of equal size as shown in
Figure B-1. A 2D bucket which is the i* from left and the j** from bottom is denoted by
B;;. A 2D bucket coordinate system is the coordinate system obtained by rescaling the z
and y axes such that the left-bottom corner of bucket B;; has coordinates (¢, j). In a similar
manner, a 3D bucket B;;ix and the corresponding coordinates (i,7,k) can be defined. We
note that a bucket to which an end point of an edge belongs is easily found by just taking
the integer parts of the bucket coordinates of the end point. Given the number of edges =,
corresponding n, and n, of the 2D frame are determined by the formulas :

gy = Lax\/’l_lj, Ny = I.ay\/ﬁJ’ (Bl)

with properly chosen weighting parameters a, and a,, where || denotes the greatest
integer less than or equal to . Parameters a, and a, can be appropriately obtained by the
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Figure B-1: A rectangle which bounds the edges of a triangulation in the coordinate system.

following two equations :
o _ Ly
o L’
where L, and L, are the width and height of a rectangle which exactly bounds the set of

edges in zy coordinate system, as depicted in Figure B-1.
By solving Equation B.2, a; and a, are determined as

/L /L
ax = —x, ay = Zl. (B3)
v z

Similarly, n;, ny and n, of the 3D frame are determined by the formulas :

agoy =1, (B.2)

ng = [axnéj, Ny = [ayn%J, ny = Lazn%J, (B.4)

where n is the number of edges and

L2 % L2 % L2 ';'
— ___.’L‘ = y et Z - B.
(877 (LyLz) k o‘y (Lsz) ’ a, (LxLy) ( 5)

If ng, ny or n, in Equations B.1 and B.4 happen to be zero, we consider them to be
one. The number of buckets constructed is obviously O(n) and consequently the number of
approximating segments in a bucket is O(1) on the average.

B.3 Putting Vertices into Buckets

After the bucket construction, we associate each vertex with a bucket containing the vertex.
For each p in zy (zyz) coordinate system, we first perform a transformation with respect
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to bucket coordinate system ¢j (¢jk), respectively, i. e. :

I

p= (i, pj) (B.6)

where vectors p are vertices of the triangles (tetrahedra). The tilde “~” represents the
corresponding transformed version. Those transformed points p in 2D case are obtained by
the following relations:

and

- n n
= (pz - zmin), pb; = L_y(py - ymin), (BS)
Yy

hi=1-

T

where p;, p, are z, y components of the point 7 and (Zmin,Ymin) are coordinates of the
left-bottom corner of a bounding rectangle shown in Figure B-1 and n, ny, L, L, are

described in Equation B.2 and B.3. In a similar manner, the transformed point 5 in 3D
case can be determined as :

B = (i, bj» Br) (B.9)
where n
Bk = 7-(P? = Zmin). (B.10)

and p;, p; are defined in Equations B.8.

B.4 Putting Edges into Buckets

After putting vertices into buckets, we associate each edge with the buckets constructed in
Section B.2. For each edge /, in zy (2yz) coordinate system, we now put each 2D (3D)

transformed edge I, into buckets B;; (Bijk), respectively. Buckets containing the end points
5,, and gp are easily determined by just taking the integer parts of the end points, as depicted
in Figure B-2. To determine intermediate buckets through which the transformed edge I,,

passes, a line-type of ip, associated with the signs of Ai, Aj and Ak, is identified, where

Ai =&y — by, Aj=ép;— bpiy Ak = épp — bpk. (B.11)
Once the_’]jne-type is identified, we know the tracing direction, and can easily trace the
segment ip. As an jllustrative example, we consider a 2D edge l;, shown in Figure B-2.

It is obvious that l~p has positive A7 and negative Aj. Therefore, the tracing direction is
either bottom (A; < 0) or right (A; > 0) starting from the bucket By; which contains

an end point b,, we need to check whether ip crosses the bottom edge or the right edge
of each bucket it passes through. This procedure is repeated until an intermediate bucket,
adjacent to Bzo which contains the other end point é,, is determined. As illustrated in

Figure B-3, l~p crosses the right edge of the bucket Bo;. An intermediate bucket By; is thus
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0 1 2

3
Figure B-2: Buckets containing the end points 5,,,

&, of a transformed edge fp (adapted
from Cho et al. [11]).

Figure B-3: Intermediate buckets through which the edge ip passes (adapted from Cho et
al. [11]).
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13
Figure B-4: A 2D bucket associated with three transformed edges (adapted from Cho [11}).

simply determined. Similarly, we next check if ip crosses the bottom edge or the right edge
of the bucket Byi, and consequently we obtain another intermediate bucket B;go. We can

easily extend the idea of this procedure to a 3D transformed edge l~ and the corresponding
1ntermed1ate buckets B;;ir. The only difference is that we have more possible lme-types of

l associated with Ak in Equation B.11 and we need to consider face-crossing of l instead
of edge-crossing in 2D case. We note that in general, very few numbers of 1ntermed1ate
buckets exist due to the characteristics of bucketing technique — the number of uniformly
distributed equal-sized buckets ~ O(n), where n is the number of edges.

Suppose tlle preprocessing step described above is completed for each 2D (3D) trans-

formed edge ip, each bucket B;; (B;;x) is associated with the corresponding edges. In
practical algorithms, a bucket B;; (B;;k) is no other than a pointer to the list of associated
edges. For example, provided that a 2D bucket By, is associated with three 2D transformed

edges ig, I, and 7100 as shown in Figure B-4, then data for the bucket By; can be represented
as

By — {i3, —— i4, — imo}. (B.12)

These buckets can be constructed in O(n) time and space on the average.

B.5 Determining the Simplex Enclosing a Point

After we find the buckets containing vertices, edges, or both, the rest of the buckets are
either completely inside a simplex or completely outside of any simplex.

By checking the bounding boxes of simplices, we can localize an undetermined bucket
in the region covered by a few simplices and further check which simplex enclosing the
bucket. Finally, the rest of buckets are those which do not have any intersection with the
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triangulation.
At this stage, we can immediately find the bucket B;; (Bi;jx) enclosing the point x.
There are four possible situations here:

1. If B;j (Bijk) is completely in the interior of a simplex, then we immediately conclude
that the simplex encloses the point.

2. If B;; (Bijkx) does not contain any piece of any simplex, then we conclude that the
point is outside of the triangulation.

3. If B;j (Bijk) encloses a vertex of the triangulation, we check every simplex incident at
the vertex and point x by calculating the barycentric coordinates of x with respect to
the simplex. If all the barycentric coordinates with respect to a simplex are greater
than or equal to zero, we conclude that the simplex is enclosing point x.

4. If B;j (Bijx) contains only partial edge(s) of the triangulation, we check every simplex
incident to the edge(s). We then find the simplex enclosing the point in the same
manner described above.

In this fashion, the simplex enclosing a point can be found in O(n) time on average where
n is the number of edges. Once the above framework is formed, it can be used repeatedly
for multiple points for enhanced efficiency of evaluation and visualization of simplex splines.



Appendix C

Geometrical Interpretation of
Simplex Splines

In [19], the following relation defines the s-variate simplex spline M(u|u®,...,u™), which
is a degree m — s polynomial of u € R® and depends on the m + 1 parameters (knots)
w eR%j=0,1,..,m(m>s)and s € Z+ :

/Ra F(@)M(u|t®, ..., u™)du = m! /S  J(t0u -+ b u™)dty - di (C.1)

This definition is true for any integrable function f : G C R* — R, for some G containing
the convex hull of the set of knots. The region of integration S™ is the standard m-simplex
i.e., the region in R™ defined by

S™ = {t|t = (t1,.ertm) € R™;2; 2 0,5 = 1,..,m; Y ¢; < 1} (C.2)
o

Given the values of t;, ..., 1, the coefficient #p is determined by > j=o t; = 1. To interpret
Equation C.1, we transform the integral over S™ to an integral over a general m-simplex
o which is based upon certain vertices v, ...,v™, v/ € R™ such that the points u’ are the
orthogonal projections onto R? of the v/. Then, after a series of mathematical operations
shown in [68, 95], the following result can be obtained:

V0l —5(A)

0 my __
M(uju’,...,u™) = volr(0)

(C.3)
where A = o N {v|v € R™;(vy,...,v,) = u} and vol,,(o) is the m-dimensional volume of o.

The geometrical interpretation is illustrated for cases s =1, m = 2,and s = 1, m = 3,
see Figure C-1.

The region in the parameter space in which the simplex spline value is non-zero is
[U] = {u°,...,u™} C R®, which is the convex hull of the collection of knots associated with

127
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the spline. A hyperplane in R?® passing through any s of the knots separates polynomial
pieces of degree n = m — s within the non-zero region of the spline (polynomial cut region).
If the knots are in general position (no s+ 1 knots are in one hyperplane in R® or, any s + 1
knots are affinely independent), then these polynomial pieces are C™~! continuous. Some
illustrations of simplex spline supports and of cut regions are given in Figures C-2 and C-3
for s = 2 and m = 4 (bivariate quadratic splines).

From this geometrical interpretation, we have the following for s-variate simplex spline:

1.
2.

3
4.

Piecewise polynomial of degree n = m — s over [U];

Optimal smoothness: C"~! continuous if any s 4+ 1 knots are not co-hyperplanar;

. Non-negativity: M > 0;

Normalization: From Equation C.1 it follows that
/R M(u|V)du =1 (C.4)

where U = uY,...,u™.

. Locality: M is zero for all u ¢ [U].
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Figure C-1: Geometrical interpretation for cases s = 1, m = 2 and s = 1, m = 3. The
vector u,u’ are scalars in this illustration, having the components u;(= u) and uj(= u/),
respectively.
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Figure C-2: Bivariate quadratic simplex spline basis function over 5 knots.
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Figure C-3: Bivariate quadratic simplex spline basis function. There are four knots collinear
in the five planar knots.
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